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About these notes

These are the lecture notes for the first year UCL module MATH0005 Algebra
1. If you are reading the web version of these notes and you want a pdf copy,
you can find one at this link.

In previous years, this course was taught online. Lecture videos from the
last online version are available on the module’s Moodle page (only available to
UCL students) and on YouTube.

I hope you enjoy the module. If you have questions or comments on the
material, or if you find errors in the text, please email me at m.towers@ucl.

ac.uk

You will find suggestions for further reading at the end of each chapter.
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Chapter 1

Logic

This part of MATH0005 is about logic: the study of how we can reason and
make deductions, of methods of argument, and of methods of proof.

1.1 Propositional calculus

We begin with propositional calculus, the study of propositions. A proposition
is a mathematical statement which is either true or false.1

Here are some example propositions.

• 34043 is the sum of two square numbers.

• The function f(x) = sin(x) is continuous.

• The square root of 2 is not a rational number.

• 1111111111111111111 is a prime number.

• 1 + 1 = 3.

• 1 + 1 = 2.

• The Riemann hypothesis is false.

• 25 is a square and 26 is a square.

Some of these are true and some are false, but each has a well-defined truth
value, even if we don’t know what it is. On the other hand, something like “n is
even” is not a proposition, because it doesn’t have a truth value until we know
what n is.

1.1.1 Logical connectives

Connectives combine simpler logical statements into more more complex ones.
We use them to build complex propositions out of simpler ones. The standard
connectives are ‘and’, ‘or’, ‘not’, ‘implies’, ‘if and only if’ (iff, for short).

Here are some examples of propositions which contain connectives.

1Sometimes people use the word proposition for something that’s a bit like a theorem but
not quite as important. That’s not what we’re talking about here.

7
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8 CHAPTER 1. LOGIC

• and: “34043 is a sum of two squares and 34043 is divisible by 17”

• or: “34043 is a sum of two squares or 34043 is divisible by 17”

• not: “it is not true that 34043 is a sum of two squares”

• implies: “34043 is odd implies 34043 is divisible by 3”

• if and only if: “an odd prime number is a sum of two squares if and only
if it leaves remainder 1 when you divide it by 4”

Implies is often expressed as “if. . . then”. The sentence “if 34043 is odd then
34043 is divisible by 3” means the same thing as “34043 is odd implies 34043 is
divisible by 3.”

You might wonder if there are any more interesting “exotic connectives”
that would allow us to create new statements not expressible using the connec-
tives above. There are other connectives — common examples are exclusive or
(written XOR), NAND (sometimes called Sheffer stroke), and NOR — but it’s
a theorem that any connective you invent can be expressed in an equivalent way
using just the connectives above (in fact, you don’t even need all of them).

1.2 Well-formed formulas

We’re now going to develop a formal language for expressing logical propositions
and how they are combined using connectives.

1.2.1 Variables and connective symbols

Because we want to talk abstractly about how to reason, we don’t want to
confine ourselves to particular propositions but to explore what can be said
about all propositions. For that reason we introduce propositional variables:
symbols that represent a proposition. Traditionally lower case English letters p,
q, r, . . . are used for propositional variables, or letters with subscripts p1, p2, . . .

In additional to propositional variables, the language we use will have sym-
bols for some of the logical connectives we discussed before.

• ∧ represents and.

• ∨ represents or.

• → or =⇒ represents implies.

• ¬ represents not.

Finally, we will also use brackets: ( and ).
We’ve now got the “letters” of our language: propositional variables, con-

nective symbols, and brackets. Just like the letters a, b, c. . . z can be used
to make English sentences, we can now build what we will call formulas, like
(p ∨ q), or (p =⇒ (q ∧ (¬r))). But just like eifaefeaioj is a legitimate string of
letters that isn’t a meaningful word, ∧ =⇒ pq)¬ doesn’t seem like something
we can give a useful logical interpretation to. Collections of propositional vari-
ables, connectives, and brackets to which we can give a sensible meaning will
be called well-formed formulas, and we are going to see next what the rules are
for a formula to be well-formed.

https://en.wikipedia.org/wiki/Exclusive_or
https://en.wikipedia.org/wiki/Sheffer_stroke
https://en.wikipedia.org/wiki/Logical_NOR
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1.2.2 Definition of a well-formed formula

We need rules to say which strings of connectives, brackets, and variables are
well-formed formulas, or WFFs for short. We do this by specifying rules for
constructing WFFs. By definition, something is a WFF if and only if it can be
constructed using these rules.

1. A propositional variable is a WFF.

2. If ϕ and ψ are any two WFFs then

2.1 (ϕ ∧ ψ) is a WFF,

2.2 (ϕ ∨ ψ) is a WFF,

2.3 (ϕ =⇒ ψ) is a WFF, and

2.4 ¬ϕ is a WFF.

1.2.3 WFF examples

Suppose p and q are propositional variables. Then the following are WFFs:

• p is a WFF because of rule 1.

• (p =⇒ q) is a WFF by using rule 1 twice then rule 2.3.

• ¬r by using rule 1 then rule 2.4.

• ((p =⇒ q) ∨ ¬r) is a WFF as rule 1 says p, q, r are WFFs, rule 2.3 and
rule 2.4 say that (p =⇒ q) and ¬r are WFFs, and finally rule 2.2 says
the whole thing is a WFF.

• ¬¬(p =⇒ q) by rule 1, then rule 2.3, then rule 2.4 twice.

Only things that can be built using the rules are WFFs. You can’t build

r∧ =⇒ pq)¬

using the rules above (can you prove it?), so it’s not a WFF. You can’t even
build p ∨ q or (p ∧ q ∧ r), so these aren’t WFFs either.

1.3 Truth tables

We’ve seen what a WFF is. It’s important to remember that a WFF like (p∧ q)
isn’t true or false on its own: that will depend on the truth or falsity of the
statements represented by the propositional variables p and q. The aim of the
next couple of sections is to see how, once we decide whether the propositional
variables in a WFF are true or false, we can give a truth value to the whole
WFF.

The way we do this is by making a truth-table definition for each connective
of how the truth value of a WFF using that connective depends on the truth
values of the WFFs it connects. We do this in such a way that the connective
behaves like the informal logical idea it is supposed to represent: for example,
∧ is supposed to represent and so we will define (ϕ ∧ ψ) to be true if and only
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if ϕ and ψ are both true. Once we’ve done this for every connective, we can
determine the truth value of any WFF by looking at the simplest formulas
contained in it, determining their truth values using our tables, and working
our way upwards until we have the truth value of the whole formula.

1.3.1 Truth assignments for propositional variables

Let’s start with giving truth values to propositional variables. Here and else-
where T means true and F means false.

Definition 1.3.1. A truth assignment for a set V of propositional variables
is a function v : V → {T, F}.

(A better name for this concept would be ‘truth-value assignment’ since
a truth assignment can make variables false as well as true, but this is the
conventional name.)

Example 1.3.1. If p and q are propositional variables and V = {p, q} then
there is a truth assignment v for V such that v(p) = T and v(q) = F .

This is one of the four different truth assignments for a set of two proposi-
tional variables. In general, if you have n propositional variables then there are
2n different truth assignments for those variables, since each variable must be
given one of two different truth values.

1.3.2 Extending a truth assignment to WFFs

Given a truth assignment for some propositional variables, we would like to
extend it to get a truth value for all the WFFs using those variables in a way
that takes into account the intended meaning of the logical connectives. This
is a difficult problem for complex WFFs. For example, if you have a truth
assignment which makes p and r true and q false, what should the truth value
of the following WFF be?

((p =⇒ (q ∨ r)) =⇒ (¬p ∨ q))

In order to approach the problem of extending a truth assignment so that it
gives a sensible truth value to any WFF, suppose that we somehow already
knew what truth values we were going to assign to the WFFs ϕ and ψ. What
truth value should we give to the WFF (ϕ ∧ ψ)? We are free to choose this
of course, but since ∧ is supposed to represent the ordinary usage of the word
“and” it would be sensible to assign (ϕ∧ψ) the value true if both ϕ and ψ were
assigned true, and false otherwise.

This idea is summed up in the following truth table for ∧:

ϕ ψ (ϕ ∧ ψ)
T T T
T F F
F T F
F F F

Table 1.1: Truth table for ∧
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The meaning of the table is that given a truth assignment v : V → {T, F},
our method of assigning a truth value to a WFF (ϕ ∧ ψ) using the variables V
will be as follows. Row 1 means that if v(ϕ) = T and v(ψ) = T then v((ϕ∧ψ))
will be T . Row 2 means that if v(ϕ) = T and v(ψ) = F then v((ϕ ∧ ψ)) will be
F , and so on.

Another way to think about this truth table is to use it to define ∧ as a way
to combine two truth values into another truth value, just like + combines two
numbers into another number. We let T ∧ T = T , T ∧ F = F , F ∧ T = F , and
T ∧ F = F . The advantage of this is that it lets us rewrite the last paragraph
in a single sentence: we will define v((ϕ ∧ ψ)) to be v(ϕ) ∧ v(ψ).

Here are the truth tables for the other connectives in our language.

ϕ ¬ϕ
T F
F T

Table 1.2: Truth table for ¬

ϕ ψ (ϕ ∨ ψ)
T T T
T F T
F T T
F F F

Table 1.3: Truth table for ∨

ϕ ψ (ϕ =⇒ ψ)
T T T
T F F
F T T
F F T

Table 1.4: Truth table for =⇒

Similarly to what we did for ∧, we regard all of our connectives not just
as symbols to be used in WFFs but as ways of combining truth values. For
example, we define ¬T = F , T ∨ F = T , and F =⇒ T = T .

People often find the truth table for implies confusing, especially the final
two rows where ϕ is false. These last two rows tell us that (ϕ =⇒ ψ) is true
whenever ϕ is false, regardless of the truth value given to ψ. If you’d like to
read more about why this truth table is a sensible way to define truth values for
statements containing implies, this short piece of writing by (Fields medallist)
Tim Gowers, or this longer version is good.

1.4 Truth values for WFFs

Suppose we have a truth assignment v : V → {T, F}. There is then a unique way
to extend v so that it gives a truth value to any WFF using the propositional

https://www.dpmms.cam.ac.uk/~wtg10/implication.html
https://www.dpmms.cam.ac.uk/~wtg10/implication.html
https://gowers.wordpress.com/2011/09/28/basic-logic-connectives-implies/
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variables V such that for any WFFs ϕ and ψ,

v((ϕ ∧ ψ)) = v(ϕ) ∧ v(ψ),
v((ϕ ∨ ψ)) = v(ϕ) ∨ v(ψ),

v((ϕ =⇒ ψ)) = v(ϕ) =⇒ v(ψ), and

v(¬ϕ) = ¬v(ϕ).

Recall that we use the connective symbols not just as parts of WFFs but as
ways of combining truth values, for example T ∧ F = F , T =⇒ T = T , and
¬F = T . For example, if V = {p, q} and v(p) = T, v(q) = F we would have

v((p ∧ q)) = v(p) ∧ v(q)
= F ∧ T
= F

and

v((¬p) =⇒ (p ∨ q)) = v(¬p) =⇒ v(p ∨ q)
= (¬v(p)) =⇒ ((v(p) ∨ v(q)))
= F =⇒ (T ∨ F )
= F =⇒ T

= T.

It’s not completely obvious this really works, but you can read a proof in
section 2.3 of the book by Goldrei mentioned in the further reading section at
the end of this chapter.

This method of assigning truth values to WFFs can be thought of in a slightly
different way: we just substitute in truth values in place of the propositional
variables, and combine them using the truth tables for the connectives — exactly
like how if you wanted to find the value of x2 + y + 3 when x = 1 and y = 2,
you would substitute the values in to get 12 + 2 + 3 and combine them using
the usual arithmetic operations to get 6.

Example 1.4.1. Let
ϕ = ((p ∧ q) ∨ (¬p ∧ ¬q)).

Let v(p) = T, v(q) = F . We are going to find v(ϕ).
The method of assigning truth values to WFFs above tells us

v(ϕ) = v((p ∧ q) ∨ (¬p ∧ ¬q))
= v(p ∧ q) ∨ v(¬p ∧ ¬q) (1.1)

so we need to work out v(p ∧ q) and v(¬p ∧ ¬q).
We have v(p ∧ q) = v(p) ∧ v(q) = T ∧ F . Looking at the T, F row of Table

1.1, the truth table for ∧, we see that T ∧ F is F .
Next,

v(¬p ∧ ¬q) = v(¬p) ∧ v(¬q)
= ¬v(p) ∧ ¬v(q)
= ¬T ∧ ¬F
= F ∧ T.
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The F, T row of the same truth table tells us that this is F .
Finally, substituting the values we have just worked out for v(p ∧ q) and

v(¬p ∧ ¬q) into (1.1)
v(ϕ) = F ∨ F.

Looking at the F, F row of Table 1.3, the truth table for ∨, we see that v(ϕ) = F .

Example 1.4.2. Consider the WFF ϕ = (p =⇒ (p =⇒ p)) and the truth
assignment v(p) = T . What is v(ϕ)?

By definition,

v(ϕ) = v(p) =⇒ (v(p) =⇒ v(p))

= T =⇒ (T =⇒ T ).

Looking at the T, T row of the truth table for implies, Table 1.4, we see that
T =⇒ T is T . So v(ϕ) = T =⇒ T . For the same reason, v(ϕ) = T .

If you work out the truth value of ϕ when v(p) = F , you should find that
the result is also T .

p (p =⇒ (p =⇒ p))
T T
F T

Notice that the WFF ϕ from the previous example is true for every truth
assignment of its variables. A WFF with this property is called a tautology,
and a WFF which is false under every truth assignment, for example (p ∧ ¬p),
is a contradiction.

Example 1.4.3. Let
ϕ = ((p ∨ q) ∧ (p ∨ ¬q)).

Given the truth assignment v such that v(p) = T, v(q) = F , let’s work out the
truth value v(ϕ). Since

v(ϕ) = v(p ∨ q) ∧ v(p ∨ ¬q)

we can start by working out v(p ∨ q) and v(p ∨ ¬q) separately. From the truth
table for ∨, Table 1.1, we see that

v(p ∨ q) = T ∨ F = T.

We have v(¬q) = ¬v(q) = ¬F = T , so

v(p ∨ ¬q) = T ∨ T = T.

Finally v(ϕ) = T ∧ T = T .

The truth table for a WFF lists its truth value under all possible truth
assignments for its propositional variables. The truth table for the formula ϕ
from the previous example (and for some of the formulas that make up ϕ) is
given below. You should check that the following table is correct.

p q (p ∨ q) ¬q (p ∨ ¬q) ϕ
T T T F T T
T F T T T T
F T T F F F
F F F T T F
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1.5 Logical equivalence

To motivate the idea of logical equivalence, consider the two WFFs

ϕ = (p ∧ q)
ψ = (q ∧ p).

These are different WFFs because a WFF is purely a sequence of symbols
and these are two different sequences of symbols. However, given any truth
assignment, no matter what it is, ϕ and ψ always get equal truth values. You
can see this by looking at the truth table for ∧, Table 1.1 which is symmetrical
in p and q, in the sense that if you swap the truth values for p and q, the truth
value of (p ∧ q) stays the same.

Definition 1.5.1. Two WFFs ϕ and ψ are called logically equivalent, and
we write ϕ ≡ ψ, if and only if they have the same truth value under every
possible truth assignment.

Since the truth table for a WFF displays its truth values under every possible
truth assignment, two WFFs are logically equivalent if and only if they have
the same truth table.

When two WFFs are logically equivalent they may look different but they
always have the same truth value, no matter what the truth values of their vari-
ables. This concept is useful in practise because if you want to prove something
is true, you can prove some logically equivalent formula instead.

Theorem 1.5.1. Let ϕ, ψ, and θ be WFFs. Then

1. (ϕ ∧ ψ) ≡ (ψ ∧ ϕ),

2. (ϕ ∨ ψ) ≡ (ψ ∨ ϕ),

3. (ϕ ∧ (ψ ∧ θ)) ≡ ((ϕ ∧ ψ) ∧ θ), and

4. (ϕ ∨ (ψ ∨ θ)) ≡ ((ϕ ∨ ψ) ∨ θ).

The first two parts of this theorem are referred to as the commutativity
properties for ∧ and ∨, and the second two parts as the associativity properties.

Proof. Parts 1 and 2 are very easy to check as they follow straight from the
truth tables for ∧, Table 1.1 and ∨, Table 1.3.

Parts 3 and 4 are tedious to check, but very easy. I will work out the truth
values for one truth assignment and leave the others to you. Let v be a truth
assignment such that v(ϕ) = v(ψ) = T and v(θ) = F . For the left hand side of
part 3 we have

v(ϕ ∧ (ψ ∧ θ)) = v(ϕ) ∧ v(ψ ∧ θ)
= T ∧ (v(ψ) ∧ v(θ))
= T ∧ (T ∧ F )
= T ∧ F
= F
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and for the right hand side

v((ϕ ∧ ψ) ∧ θ) = v(ϕ ∧ ψ) ∧ v(θ)
= (v(ϕ) ∧ v(ψ)) ∧ F
= (T ∧ T ) ∧ F
= T ∧ F
= F.

Continuing like this you can show that the truth tables for both (ϕ ∧ (ψ ∧ θ))
and ((ϕ ∧ ψ) ∧ θ) are as follows.

ϕ ψ θ
T T T T
T T F F
T F T F
T F F F
F T T F
F T F F
F F T F
F F F F

Part 4 can be done similarly.

What the associativity laws, parts 3 and 4, do, is to allow us to drop some
brackets while remaining logically unambiguous. Something like p ∧ q ∧ r isn’t
a WFF — because it has ∧ symbols but no brackets — but part 3 guarantees
us that any two ways we choose to bracket it give logically equivalent WFFs.
Similarly

p1 ∧ p2 ∧ · · · pn
p1 ∨ p2 ∨ · · · pn

may not be WFFs, but any bracketings that do turn them into WFFs give
logically equivalent formulas. For this reason, we often omit bracketings when
they don’t cause ambiguity, even though when we miss out the brackets we
don’t strictly speaking have a WFF.

Example 1.5.1. Sometimes brackets are essential. The WFFs

ϕ = (p ∧ (q ∨ r))
ψ = ((p ∧ q) ∨ r)

are not logically equivalent. Before you look at the truth tables below you
should prove this by finding a truth assignment for the variables p, q, r which
makes one of these WFFs true and the other false.

Here are the truth tables:
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p q r (p ∧ (q ∨ r)) ((p ∧ q) ∨ r)
T T T T T
T T F T T
T F T T T
T F F F F
F T T F T
F T F F F
F F T F T
F F F F F

so they differ under the truth assignment making p false, q true, and r true,
and also under the truth assignment making p false, q false, and r true.

1.6 Useful logical equivalences

1.6.1 Distributivity

The property that for all numbers a, b, c we have a× (b+ c) = a× b+ a× c is
called distributivity of × over +. Similar rules hold for ∧ and ∨.

Theorem 1.6.1. Let ϕ, ψ, and θ be WFFs. Then

1. (ϕ ∧ (ψ ∨ θ)) ≡ ((ϕ ∧ ψ) ∨ (ϕ ∧ θ)), and

2. (ϕ ∨ (ψ ∧ θ)) ≡ ((ϕ ∨ ψ) ∧ (ϕ ∨ θ)).

Proof. Here are the truth tables for the four WFFs:

ϕ ψ θ (ϕ ∧ (ψ ∨ θ)) ((ϕ ∧ ψ) ∨ (ϕ ∧ θ))
T T T T T
T T F T T
T F T T T
T F F F F
F T T F F
F T F F F
F F T F F
F F F F F

ϕ ψ θ (ϕ ∨ (ψ ∧ θ)) ((ϕ ∨ ψ) ∧ (ϕ ∨ θ))
T T T T T
T T F T T
T F T T T
T F F T T
F T T T T
F T F F F
F F T F F
F F F F F

The last two columns are the same in both tables, so the formulas are logi-
cally equivalent.
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1.6.2 Double negation

Theorem 1.6.2. Let ϕ be a WFF. Then ¬¬ϕ ≡ ϕ.

Proof. Let v be a truth assignment for the propositional variables involved in
ϕ. If v(ϕ) = T then v(¬ϕ) = ¬v(ϕ) = F and so v(¬¬ϕ) = ¬v(¬ϕ) = ¬F = T .
Similarly if v(ϕ) is false so is v(¬¬ϕ). Therefore under any truth assignment v
we have v(ϕ) = v(¬¬ϕ).

1.6.3 De Morgan’s laws

Theorem 1.6.3. Let ϕ and ψ be WFFs. Then

1. ¬(ϕ ∨ ψ) ≡ (¬ϕ ∧ ¬ψ), and

2. ¬(ϕ ∧ ψ) ≡ (¬ϕ ∨ ¬ψ).

You might find it clearer to write the right hand sides of these equivalences
as (¬ϕ)∧(¬ψ) and (¬ϕ)∨(¬ψ), even though these are not well-formed formulas.
From now on I will add or remove brackets from formulas where it helps to make
them clearer or more readable even if it means that they are not strictly WFFs.

Proof. Again, proving this is simply a matter of checking the possibilities for
the truth values of ϕ and ψ under any assignment. In a table:

ϕ ψ ¬(ϕ ∨ ψ) (¬ϕ ∧ ¬ψ)
T T F F
T F F F
F T F F
F F T T

The final columns are the same, so the two formulas have the same truth
value no matter what truth assignment is used and are therefore logically equiv-
alent.

De Morgan’s laws can be generalized to more than two WFFs.

Theorem 1.6.4. For any n and any WFFs ϕ1, . . . , ϕn we have

1. ¬(ϕ1 ∧ · · · ∧ ϕn) ≡ ¬ϕ1 ∨ · · · ∨ ¬ϕn, and

2. ¬(ϕ1 ∨ · · · ∨ ϕn) ≡ ¬ϕ1 ∧ · · · ∧ ¬ϕn.

While ϕ1∧ϕ2∧ϕ3, for example, isn’t a WFF, every way of adding brackets to
make it into one produces a logically equivalent WFF because of the associativity
of ∧, Theorem 1.5.1 part 3. Therefore it’s OK for us to omit brackets here for
the sake of making the formula easier to read.

1.7 The contrapositive

The following logical equivalence shows us that every WFF that uses =⇒ can
be written with ¬ and ∨ instead.
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Theorem 1.7.1. Let ϕ and ψ be WFFs. Then

(ϕ =⇒ ψ) ≡ (ψ ∨ ¬ϕ).

Here is the truth table that proves this result:

ϕ ψ (ϕ =⇒ ψ) (ψ ∨ ¬ϕ)
T T T T
T F F F
F T T T
F F T T

This equivalence is commonly used when proving a statement like “A implies
B.” Proofs of statements in this form are often carried out by assuming that A
is true and then deducing that B is also true. Why is that sufficient to prove
A =⇒ B?

Suppose that if A is true, so is B. If A is false then ¬A is true, so ¬A ∨ B
is true no matter what the statements A and B were. On the other hand if A is
true we know B is true as well, so ¬A∨B is true in that case too. So regardless
of the truth value of A, the formula ¬A ∨ B is true. Because this is logically
equivalent to A =⇒ B, we’re done.

1.7.1 The contrapositive

The contrapositive of an implication A =⇒ B is by definition ¬B =⇒ ¬A.
For example, the contrapositive of “if it’s Monday, then it’s raining” is “if it’s
not raining, then it’s not Monday.” We are going to use the logical equivalence
of the previous section to show that an implication is logically equivalent to its
contrapositive.

Theorem 1.7.2. Let ϕ and ψ be WFFs. Then

(ϕ =⇒ ψ) ≡ (¬ψ =⇒ ¬ϕ).

Proof. You can check the truth tables for these two statements, or you can do
this:

ϕ =⇒ ψ ≡ ψ ∨ ¬ϕ Theorem 1.7.1

≡ ¬¬ψ ∨ ¬ϕ Theorem 1.6.2

≡ ¬ϕ ∨ ¬¬ψ Theorem 1.5.1

≡ ¬ψ =⇒ ¬ϕ Theorem 1.7.1

Again this is very useful as a proof technique. If you want to prove A =⇒ B,
it is logically equivalent to prove the contrapositive (¬B) =⇒ (¬A), and this
is sometimes easier. An example is

x2 is an irrational number implies x is an irrational number.

This statement is true, but the contrapositive “x is rational implies x2 is ra-
tional” is easier to prove because x being rational actually tells you something
specific (that x = p/q for some whole numbers p and q) which you can use to
make the proof work. There are further examples given in this blog post by
Timothy Gowers.

https://gowers.wordpress.com/2011/10/05/basic-logic-relationships-between-statements-converses-and-contrapositives/
https://gowers.wordpress.com/2011/10/05/basic-logic-relationships-between-statements-converses-and-contrapositives/


1.8. ADEQUACY 19

1.7.2 The converse

Don’t confuse the contrapositive of an implies statement with its converse.
The converse of (ϕ =⇒ ψ) is defined to be (ψ =⇒ ϕ), and these two are not
in general logically equivalent. (You should think of a truth assignment to show
that (p =⇒ q) and (q =⇒ p) are not logically equivalent.)

1.8 Adequacy

One of the logical equivalences we proved earlier 1.7.1 was

p =⇒ q ≡ (¬p) ∨ q

which you could interpret as saying that we don’t really need the =⇒ connec-
tive, in the sense that if you give me any WFF using ∨, ∧, =⇒ , and ¬ I can
convert it into a logically equivalent one that does not use =⇒ by replacing
every occurrence of ϕ =⇒ ψ with (¬ϕ) ∨ ψ.

Definition 1.8.1. A set of connectives is adequate if every WFF is logically
equivalent to one using only the connectives from that set.

The argument above shows that the set {∧,∨,¬} is adequate, but there are
even smaller adequate sets.

Theorem 1.8.1. {∨,¬} is adequate.

Proof. Every WFF is equivalent to one using only ∧, ∨, and ¬. By the second
of De Morgan’s laws, Theorem 1.6.3 part 2,

¬(ϕ ∧ ψ) ≡ (¬ϕ) ∨ (¬ψ)

so by double negation, Theorem 1.6.2,

ϕ ∧ ψ ≡ ¬((¬ϕ) ∨ (¬ψ)). (1.2)

This means every occurrence of ∧ in a formula can be replaced with the logically
equivalent formula on the right hand side of (1.2) which only uses ∨ and ¬.
We’ve shown every WFF is equivalent to one only using ∨ and ¬.

Example 1.8.1. Consider the formula ϕ given by

p =⇒ (q ∧ r).

Because {∨,¬} is adequate there must exist a formula logically equivalent to ϕ
using only ¬ and ∨. Let’s find one.

p =⇒ (q ∧ r) ≡ (¬p) ∨ (q ∧ r) Theorem 1.7.1

≡ (¬p) ∨ ¬((¬q) ∨ (¬r)) (1.2)

Theorem 1.8.2. {∧,¬} is adequate.
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Proof. We already know that every WFF is logically equivalent to one only
using ¬, ∧, and ∨. By the first of De Morgan’s laws, Theorem 1.6.3 part 1,

¬(ϕ ∨ ψ) ≡ (¬ϕ) ∧ (¬ψ)

and so using double negation (Theorem 1.6.2)

ϕ ∨ ψ ≡ ¬((¬ϕ) ∧ (¬ψ)) (1.3)

which means we can replace every occurrence of ϕ∨ψ in a WFF with the right
hand side of (1.3), which only involves ¬ and ∧.

1.8.1 Which sets of connectives are not adequate?

It’s clear that we can’t go any further: it isn’t true that every WFF is equivalent
to one using ∨ only (any such formula is true when all its variables are true, so
we can’t find one equivalent to ¬p) or using ∧ only (same argument) or =⇒
only (same argument).

There are single connectives which are adequate on their own. For example,
if we define p ↑ q to have the same truth table as ¬(p ∧ q) (the Sheffer stroke
or NAND), and p ↓ q (the Pierce arrow or NOR) to have the truth table of
¬(p ∨ q), it can be shown that both {↑} and {↓} are adequate.

ϕ ψ (ϕ ↓ ψ)
T T F
T F F
F T F
F F T

Table 1.5: Truth table for ↓

1.8.2 Why should I care about adequacy?

Firstly it can be useful for proving theorems to be able to find logical equiv-
alents to a WFF in simple standard forms, e.g. disjunctive normal form and
its and-analogue conjunctive normal form. Second, logic gates (electronic de-
vices implementing logical connectives) are a fundamental part of digital circuit
design. A computer chip is largely made up of many logic gates connected to-
gether. In the early days of digital electronics using only one type of logic gate
helped make the design much easier. The Apollo guidance computer, used on
the first ever moon landing, was built using only NOR gates (about 6000 of
them).

1.9 First order logic

The WFFs we have studied so far only capture logical statements of a very
simple form. Very commonly we want to work with more complex statements,
especially those that depend on some kind of parameter or variable. Here are
some examples.

Example 1.9.1. • There exists a rational number x with x2 = 2.

https://en.wikipedia.org/wiki/Disjunctive_normal_form
https://en.wikipedia.org/wiki/Apollo_Guidance_Computer
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• For every natural number2 n there exists a natural number m withm > n.

• For all real numbers m there exists a real number n such that for all real
numbers x greater than n it holds that f(x) is greater than m.

This kind of statement is especially common in analysis, but they arise
everywhere in mathematics. Propositional calculus doesn’t have a way of talking
about statements that depend on a variable, and might be true for some values,
or all values, or no values that variable could take. It also has no way to talk
about functions or relations. The logical theory we’re going to learn about that
can deal with statements like this is called first order logic or predicate
calculus.

1.9.1 Informal introduction to first order formulas

In propositional calculus we had WFFs. The corresponding thing in first order
calculus is called a first order formula.

When we studied propositional calculus, we were able to give a precise def-
inition of a WFF. Doing something similar in first order logic is much more
complicated, so we won’t do that (if you want to know how, read chapter 4
of the book by Goldrei mentioned in the further reading section at the end of
this chapter, or take MATH0037 in year 3). Instead we are going to list the
ingredients used to write first order formulas and give some examples.

Here is a simple example of a first order formula:

∀x∃y R(x, y)

The intended meaning of this is “for all x, there exists a y, such that x and y
are related by the relation R.” At the moment, this is like a WFF in that it
isn’t true or false — we need more information (what sort of thing are the xs
and ys? What is the relation R?) to decide that.

1.9.2 Quantifiers, variable symbols, relation symbols

First order formulas are made up of

• quantifiers ∀ and ∃,

• the logical connectives ¬,∧,∨, =⇒ and brackets,

• variable symbols x, y, z, . . ., and

• relation symbols P,Q,R, . . .

The quantifiers ∀ and ∃ are known as the universal quantifier and the exis-
tential quantifier). Formulas that contain ∀x . . . are interpreted to mean “for
all x, . . . ” and formulas that contain ∃x . . . are interpreted to mean “there
exists an x such that . . . .”

We write R(x, y) to indicate that x and y are related by some relation R.
A two-variable relation is a property of two things that can be true or false, for
example ⩽ and ̸= and = are relations on the real numbers: for every two real

2A natural number is a non-negative whole number.

https://www.ucl.ac.uk/maths/sites/maths/files/math0037.pdf


22 CHAPTER 1. LOGIC

numbers x and y, the statements x ⩽ y and x ̸= y and x = y are either true or
false.

We allow relations on any number of things. A one-variable relation R(x)
is just a true or false property of a single thing x (for example, “x is even”), a
three-variable relation R(x, y, z) is a true or false property of three things (for
example, “x+ y equals z”), and so on.

The three statements in Example 1.9.1 correspond to first order formulas

• ∃x P (x) (“there exists a rational number x with x2 = 2”)

• ∀n ∃m Q(n,m) (“for every natural number n there exists a natural number
m with m > n”)

• ∀m ∃n ∀x (P (x, n) =⇒ Q(x,m)) (“for all m there exists an n such that
for all x greater than n, f(x) is greater than m.”)

Turning the first order formula into the statement in brackets is called giving
an interpretation for the formula.

1.10 Interpretations

A WFF isn’t true or false until you specify a truth assignment for its variables.
Similarly, a first order formula isn’t true or false on its own. Before we can get
a truth value we have to give an interpretation.

Definition 1.10.1. An interpretation of a first order formula consists of a
set A, called the domain of the interpretation, and a relation on A for each
relation symbol in the formula.

In the interpreted formula, the variables can be elements of the domain A
of the interpretation. We write ∀x ∈ A to mean “for every x in A”, and ∃x ∈ A
to mean “there exists an element x ∈ A.”

Once we’ve given an interpretation, we can try to decide if the formula is
true or false in that interpretation.

Example 1.10.1. Here are some interpretations of the first order formula

∀x ∃y R(x, y).

The notation N means the set of all natural numbers {0, 1, 2, . . .}.

• Domain N, relation R is <. The interpreted formula is written

∀x ∈ N ∃y ∈ N x < y.

The interpreted formula is true. For every natural number x there does
exist a natural number y with x < y, e.g. y could be the natural number
x+ 1.

• Domain N, relation R is >. The interpreted formula is written

∀x ∈ N ∃y ∈ N x > y.

The interpreted formula is false. It’s not true that for every natural
number x there exists a natural number y such that x > y. For example,
x could be 0 in which case no natural number y satisfies x > y.
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Example 1.10.2. This is a slight variation on the formula from the previous
example.

∃y∀x R(x, y)

Again, to give an interpretation we have to give a domain — a set A for the
elements represented by y and x to belong to — and a relation R on A. The
interpreted statement will be true if and only if there is an element y ∈ A such
that every x ∈ A is related to y by the interpretation of the relation R.

Is this formula true in the following interpretations?

• Domain N, relation R(x, y) is x ⩽ y.

• Domain N, relation R(x, y) is x ⩾ y.

(The answer is no for the first one and yes for the second.)

We already know how to determine the truth value in a particular interpre-
tation of a formula just involving the logical connectives.

1.10.1 Truth of quantified formulas

The rules for deciding whether a formula containing a quantifier is true in an
interpretation with domain A are:

• An interpreted formula ∀x ∈ A ϕ is true if for every element a of A,
substituting a into ϕ in place of x gives a true statement.

• An interpreted formula ∃x ∈ A ϕ is true in an interpretation if there is an
element a of A such that substituting a into ϕ in place of x gives a true
statement.

(There are some subtleties in doing substitution into logical formulas caused
by the concepts of free and bound variables, but they are beyond the scope of
MATH0005. If you want to learn more, take MATH0037 Logic in your third
year or read the book by Goldrei in the further reading for this chapter.)

Example 1.10.3. Here are two first order formulas:

• F1 = ∃x¬∃y P (x, y)

• F2 = ∀y¬∀x P (x, y)

Let’s try and determine whether F1 and F2 are true in some interpretations.

(1) Consider the interpretation with domain {0, 1, 2} and where the relation
P (x, y) is interpreted as x < y.

• F1 is interpreted as saying there is an x ∈ {0, 1, 2} such that it is not
the case that there is a y in {0, 1, 2} such that x < y. That’s true: if
x = 2 then it is not the case that there is a y in {0, 1, 2} with x < y.

• F2 is interpreted as saying for every y ∈ {0, 1, 2} it is not the case that
for all x ∈ {0, 1, 2} we have x < y. We could find if this is true by
checking each y in turn. But it’s simpler to just notice that whatever
y is, x could take the same value, and then x < y will be false. So F2

is also true.

https://en.wikipedia.org/wiki/Free_variables_and_bound_variables
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(2) Next, consider the interpretation with domain {0, 1, 2} and where the rela-
tion P (x, y) is interpreted as x ⩽ y.

• F1 is interpreted as saying there is an x ∈ {0, 1, 2} such that it is not
the case that there is a y in {0, 1, 2} such that x ⩽ y. That’s false: y
can always take the same value as x, and then x ⩽ y.

• F2 is interpreted as saying for every y ∈ {0, 1, 2} it is not the case that
for all x ∈ {0, 1, 2} we have x ⩽ y. But when y = 2, it is the case that
for all x ∈ {0, 1, 2} we have x ⩽ y. So F2 is false in this interpretation.

(3) Finally, consider the interpretation with domain N and where the relation
P (x, y) is interpreted as x < y.

• F1 is interpreted as saying there is an x ∈ N such that it is not the
case that there is a y in N such that x < y. That’s false: for every
x ∈ N the number y = x+ 1 is in N too, and x < y.

• F2 is interpreted as saying for every y ∈ N it is not the case that for all
x ∈ N we have x < y. This is true: whatever y is, we can take x = y
and then it is not the case that x < y.

It was awkward to determine the truth or falsity of these formulas in the
given interpretations. One thing that would be helpful would be to transform
them into equivalent, simpler formulas. We know about logically equivalent
WFFs for propositional calculus, but right now we don’t know how to define
logical equivalence in first order logic.

1.11 First order equivalences

Definition 1.11.1. Two first order formulas F1 and F2 are called logically
equivalent if and only if, in every interpretation, F1 and F2 have the same
truth value. We write F1 ≡ F2 if F1 and F2 are logically equivalent.

Just as when we studied propositional calculus, there are distinct formulas
of first order logic which are true in exactly the same interpretations, which is
the idea the definition above captures. Logical equivalence has the same use as
before: if you want to prove some statement is true, you can instead prove some
logically equivalent statement, and this may be easier if the logically equivalent
statement is somehow simpler or clearer.

1.11.1 Example of logically equivalent statements

Here’s a simple example and a non-example of logically equivalent statements.

Lemma 1.11.1. 1. ∀x∀y P (x, y) ≡ ∀y∀x P (x, y)

2. ∀x∃y P (x, y) ̸≡ ∃y∀x P (x, y)

Proof. 1. ∀x∀y P (x, y) is true in an interpretation if and only if all of the in-
terpreted statements P (a, b) for a, b in the domain are true. This is exactly
the same collection of statements required to be true for ∀y∀x P (x, y) to be
true in that interpretation. So the two statements are logically equivalent.
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2. Consider the interpretation with domain the real numbers and with P (x, y)
interpreted as x ⩽ y. The interpretation ∀x∃y x ⩽ y is true, since what-
ever real number x is, y = x is another real number and x ⩽ y. On the
other hand the interpretation ∃y∀x x ⩽ y is false, because there is no real
number y which is greater than or equal to every real number x.

1.11.2 Logical equivalents for negated quantifiers

Let’s look at two more interesting equivalences. It’s often useful to ask, about
a mathematical statements, “what would it mean for this statement not to be
true?” e.g.

• what does it mean for a function not to be continuous?

• what does it mean for a function not to have a limit as x→ 0?

Continuity and limits are expressed using quantifiers, so to analyse this log-
ically we need to be able to negate formulas of first order logic. Obviously you
can just put a ¬ in front of them to negate them, but a helpful solution will
provide a logical equivalence that might actually be useful in understanding the
negation of these statements.

Lemma 1.11.2. 1. ¬∀x P (x) ≡ ∃x ¬P (x)

2. ¬∃x P (x) ≡ ∀x ¬P (x)

Proof. 1. ∀x P (x) is true in an interpretation if and only if every statement
P (a) for a in the domain of the interpretation is true. So the formula is
false in the interpretation if not all of the statements P (a) is true, that
is, for at least one a in the domain P (a) is false. That’s precisely what is
required for ∃x ¬P (x) to be true in the interpretation.

2. ∃x P (x) is true in an interpretation if and only if there is some a in the
domain of the interpretation such that P (a) is true. So ¬∃x P (x) is true
in this interpretation if and only if there is no a ∈ A such that P (a) is true,
that is, for all a ∈ A, ¬P (a) is true. This is exactly the requirement for
∀x ¬P (x) to be true in this interpretation. Therefore in any interpretation
¬∃x P (x) is true if and only if ∀x ¬P (x) is true, and the two statements
are logically equivalent.

You can use the lemma in this section together with what we already know
about negating logical expressions to negate any quantified statement.

1.12 Negation

This section is about some examples of producing useful logical equivalents for
negations of quantified formulas. We’re going to use real-life examples from bits
of mathematics you may not have met yet, but this won’t be a problem as our
negation procedure doesn’t require understanding anything about the meaning
of the formulas!
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Example 1.12.1. R means the set of all real numbers. The statement “every
value the function f : R → R takes is less than 10.” can be written

∀x f(x) < 10.

This is an interpretation of a formula

∀x P (x).

Let’s negate it, using the negation of quantifiers lemma, Lemma 1.11.2:

¬∀x P (x) ≡ ∃x¬P (x)

Passing back to our interpretation, this says ∃x ¬(f(x) < 10) which is the same
as ∃x f(x) ⩾ 10.

Example 1.12.2. Consider the statement “the function f : R → R is bounded”,
which we could write as

∃M∀x |f(x)| ⩽M.

This is an interpretation of a formula

∃M∀x P (x,M).

Let’s negate it.

¬∃M∀x P (x,M) ≡ ∀M¬∀x P (x,M)

≡ ∀M∃x ¬P (x,M)

so “the function f is not bounded” is ∀M∃x ¬(|f(x)| ⩽ M), or equivalently,
∀M∃x |f(x)| > M .

Example 1.12.3. Goldbach’s conjecture is that every integer larger than 2 is
either odd or is a sum of two prime numbers. We could write this as

∀n Odd(n) ∨ ∃p∃q Prime(p) ∧ Prime(q) ∧ (p+ q = n)

This is an interpretation of a formula

∀n O(n) ∨ ∃p∃q P (p) ∧ P (q) ∧R(p, q, n).

Let’s negate it.

¬(∀n O(n) ∨ ∃p∃q P (p) ∧ P (q) ∧R(p, q, n))
≡ ∃n¬(O(n) ∨ ∃p∃q P (p) ∧ P (q) ∧R(p, q, n))
≡ ∃n ¬O(n) ∧ (¬∃p∃q P (p) ∧ P (q) ∧R(p, q, n))
≡ ∃n ¬O(n) ∧ (∀p¬∃q P (p) ∧ P (q) ∧R(p, q, n))
≡ ∃n ¬O(n) ∧ (∀p∀q ¬(P (p) ∧ P (q) ∧R(p, q, n)))

≡ ∃n (¬O(n)) ∧ (∀p∀q ¬P (p) ∨ ¬P (q) ∨ ¬R(p, q, n))
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Further reading

The book Propositional and Predicate Calculus: A Model of Argument by Derek
Goldrei goes far beyond what we cover in MATH0005, but I recommend it if
you want to know about logic in much more depth. You can also take the 3rd
year course MATH0037 Logic.

Chapter 3 of the free online book Discrete Mathematics: An Open Introduc-
tion by Oscar Levin has material on propositional calculus and first order logic,
though it doesn’t use the same framework of well-formed formulas that we do
and the vocabulary they use is slightly different.

https://www.springer.com/gp/book/9781852339210
https://www.ucl.ac.uk/maths/sites/maths/files/math0037.pdf
http://discrete.openmathbooks.org/dmoi3/ch_logic.html
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Chapter 2

Sets and functions

2.1 Introduction to set theory

2.1.1 Definition of a set

A set is a collection of (mathematical) objects. There is an entire field of
mathematics called set theory dedicated to the study of sets and to their use as
a foundation for mathematics, but in MATH0005 we are going to give only an
informal introduction to sets and their properties. If you want to know more,
see the further reading section at the end of this chapter.

We use curly brackets to denote sets and commas to separate the things in
the set. {1, 2, 3} is the set containing 1, 2, and 3.

Sets are what we use for reasoning about unordered collections of objects,
ignoring repetition. Unordered means that we consider {1, 2} and {2, 1} the
same set, ignoring repetition means that {1, 1} = {1}. You will see why this is
true when we make a definition of set equality shortly.

2.1.2 Elements of a set

The things in a set are called its elements or members. We write a ∈ X to
mean that a is an element or member of the set X, and a /∈ X to mean that a
is not an element or member of X.

There is a unique set with no elements, called the empty set and written ∅
or {}. No matter what a is, a /∈ ∅.

We allow any kind of mathematical object, including sets themselves, as
elements of sets. Sets can contain functions, matrices, vectors, numbers, and
sets themselves.

Example 2.1.1.

{∅, 1, {2}, {{3}}}

is a set whose four elements are the empty set, the number 1, the set containing
the number 2, and the set containing the set containing 3.

Example 2.1.2. Let X = {1, 2, {3}}. Then 1 ∈ X, 0 /∈ X, 3 /∈ X, {3} ∈ X.

29
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2.1.3 Subsets and set equality

We need vocabulary for talking about one set being contained in another.

Definition 2.1.1. • X is a subset of Y , written X ⊆ Y , if and only if
every element of X is also an element of Y .

• If X is not a subset of Y we write X ̸⊆ Y .

• X is equal to Y , written X = Y , if and only if for any a we have a ∈ X
if and only if a ∈ Y .

• X is a proper subset of Y , written X ⊊ Y , if and only if X ⊆ Y but
X ̸= Y .

Thus X being a proper subset of Y means that X is a subset of Y and Y
contains something that X does not contain.

There is an important way to rephrase the definition of two sets being equal:
X = Y if and only if X ⊆ Y and Y ⊆ X. This is sometimes useful as a proof
technique, as you can split a proof of X = Y into first checking X ⊆ Y and
then checking Y ⊆ X.

Example 2.1.3. • {0} ⊆ {0, 1}

• {0} ⊊ {0, 1}

• {0, 1} ̸⊆ {1, 2}

• {1, 2, 1} = {2, 1}

Why is the last equality true? The only things which are elements of {1, 2, 1}
are 1 and 2. The only things which are elements of element of {1, 2} are 1 and
2. So the two sets are equal according to our definition. There’s no concept of
something being an element of a set “more than once.”

This is the way in which our definition of set equality captures the idea of
sets being unordered collections of objects which disregard repetition.

The definition of subset means that the empty set is a subset of any set.
∅ ⊆ X for any set X, because ∀x : x ∈ ∅ =⇒ x ∈ X is vacuously true: there’s
nothing in ∅ which could fail to be in the set X in order to make ∅ ⊆ X false.

2.1.4 Set builder notation

Suppose we have a set X and a property P (x) that is true or false for each
element x of X. For example, X might be the set Z = {. . . ,−2,−1, 0, 1, 2, . . .}
of all integers and P (x) might be the property “x is even”. We write

{x ∈ X : P (x)} (2.1)

for the set of all elements of X for which the property P (x) is true. This is
called set-builder notation. In our example,

{x ∈ Z : x is even}

is the set {. . . ,−4,−2, 0, 2, 4, . . .}. In other texts you may see a | in place of a :
in set builder notation; they mean exactly the same thing.
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We sometimes use the notation {x : P (x)} to mean the set of all things for
which the property P (x) is true.1

2.2 Set operators

2.2.1 Union, intersection, difference, complement

Definition 2.2.1. Let A and B be sets.

• A ∪B, the union of A and B, is {x : x ∈ A ∨ x ∈ B}.

• A ∩B, the intersection of A and B, is {x : x ∈ A ∧ x ∈ B}.

• A \B, the set difference of A and B, is {x ∈ A : x /∈ B}.

• If A is a subset of a set Ω then Ac, the complement of A in Ω, is
{x ∈ Ω : x /∈ A}.

We can express complements using set differences. If A is a subset of Ω then
its complement Ac in Ω is equal to Ω \A.

Example 2.2.1. Suppose A = {0, 1, 2}, B = {1, 2, 3}, C = {4}.

• A ∪B = {0, 1, 2, 3}

• A ∩B = {1, 2}

• A ∩ C = ∅

• A \B = {0}

• A \ C = A

• If Ω = {0, 1, 2, . . .} then Ac would be {3, 4, . . .}.

The set N = {0, 1, 2, . . .} is called the natural numbers. Some people
exclude 0 from N but in MATH0005 the natural numbers include 0.

It’s typical to draw Venn diagrams to represent set operations. We draw a
circle, or a blob, for each set. The elements of the set A are represented by the
area inside the circle labelled A. Here are some examples:

A B

Figure 2.1: Venn diagram for the set difference of A and B

1You have to be slightly careful with this kind of unrestricted comprehension because it
can lead to contradictions. You can ignore this for the purposes of MATH0005, but if you
want to know more then check out the Further Reading section at the end.
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A B

Figure 2.2: Venn diagram for the union of A and B

A B

Figure 2.3: Venn diagram for the intersection of A and B

A B

Figure 2.4: Venn diagram for the complement of the union of A and B

A B

Figure 2.5: Venn diagram for the complement of the intersection of A and B
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2.2.2 Size of a set

Definition 2.2.2. The size or cardinality of a set X, written |X|, is the
number of distinct elements it has.

Example 2.2.2. • |{1, 2}| = 2

• |∅| = 0

• |{1, 2, 1, 3}| = 3

Definition 2.2.3. A set is finite if it has 0, or 1, or 2, or any other natural
number of elements. A set that is not finite is called infinite.

N and Z are infinite sets while the sets in Example 2.2.2 are all finite.

2.3 Set algebra

2.3.1 Commutativity and associativity

This section is about the laws that union, intersection, difference, and comple-
ment obey.

Theorem 2.3.1. For all sets A and B,

• A ∩B = B ∩A, and

• A ∪B = B ∪A.

These are called the commutativity properties for intersection and union.
These results might seem obvious, but we will write out the proofs carefully
because the method of using logical equivalences will be applied to more complex
set identities later.

Proof. By definition,

A ∩B = {x : x ∈ A ∧ x ∈ B}
B ∩A = {x : x ∈ B ∧ x ∈ A}.

Theorem 1.5.1 tells us that for any two WFFs ϕ and ψ, the formulas (ϕ ∧ ψ)
and (ψ ∧ ϕ) are logically equivalent: one is true if and only if the other is true.
So

x ∈ A ∧ x ∈ B

is true if and only if
x ∈ B ∧ x ∈ A

is true. This shows that for any x we have x ∈ A ∩B if and only if x ∈ B ∩A,
so by definition of set equality, A ∩B = B ∩A.

The argument for ∪ is the same, except that we use the logical equivalence
(ϕ ∨ ψ) ≡ (ψ ∨ ψ).

What this proof shows is that if you have a set X defined in set builder
notation using a logical formula

X = {x : P (x)}

then it is equal to any other set defined using a logically equivalent formula.
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Theorem 2.3.2. For all sets A, B, C we have

• A ∩ (B ∩ C) = (A ∩B) ∩ C and

• A ∪ (B ∪ C) = (A ∪B) ∪ C.

This is the associativity property for ∩ and ∪.

Proof. Like the proof of the last theorem, these equalities follow from the asso-
ciativity properties for ∧ and ∨ we saw in Theorem 1.5.1.

Associativity tells us means there’s no ambiguity in writing

A ∪B ∪ C or A ∩B ∩ C

without any brackets to indicate which union or intersection should be done
first. Compare this with

1 + 2 + 3.

There’s no need for brackets because it doesn’t matter whether you do 1+2 first
then add 3, or whether you add 1 to the result of 2 + 3. On the other hand
1+2× 3 or 1− 2− 3 require either brackets or a convention on which operation
to do first. Similarly A ∪ (B ∩ C) is different to (A ∪B) ∩ C in general, so the
brackets here are obligatory, and A \ (B \ C) is different to (A \B) \ C.

2.3.2 The distributive laws

Because we defined unions and intersections using logical conditions on set el-
ements, they should obey laws that come from the results we proved about ∧
and ∨.

Theorem 2.3.3. For any sets A, B, C

1. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) and

2. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Proof. Consider the first of these identities. The left hand side consists of all
things x such that

x ∈ A ∨ (x ∈ B ∧ x ∈ C). (2.2)

The right hand side consists of all things x such that

(x ∈ A ∨ x ∈ B) ∧ (x ∈ A ∨ x ∈ C) (2.3)

By Theorem 1.6.1, for any WFFs ϕ, ψ, θ we have ϕ∨ (ψ∧ϕ) ≡ (ϕ∨ψ)∧ (ϕ∨ψ).
Thus any x makes (2.2) true if and only if it makes (2.3) true. So x belongs to
the first set if and only if it belongs to the second, therefore the two sets are
equal.

The second identity can be proved similarly.



2.4. DE MORGAN’S LAWS 35

2.4 De Morgan’s laws

Take a look at this Venn diagram:

A B

Figure 2.6: Venn diagram for the complement of the union of A and B

You can see that the shaded area is exactly the area not in A ∪ B, so this
is the Venn diagram for (A ∪B)c. Now consider the Venn diagrams for Ac and
Bc:

A B

Figure 2.7: Venn diagram for the complement of A

Figure 2.8: Venn diagram for the complement of B

You can see from the diagrams that Ac ∩ Bc = (A ∪ B)c. This is a general
and useful fact, one of De Morgan’s laws.

Theorem 2.4.1. (De Morgan’s laws for sets). Let A,B ⊆ Ω and let Ac and
Bc denote the complement with respect to Ω. Then

1. (A ∪B)c = Ac ∩Bc, and
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2. (A ∩B)c = Ac ∪Bc.

Proof. These follow from De Morgan’s laws in logic. The left hand side of the
first of these is the set of all x ∈ Ω such that

¬(x ∈ A ∨ x ∈ B)

and the right hand side is the set of all x ∈ Ω such that

¬(x ∈ A) ∧ ¬(x ∈ B).

Since ¬(p∨ q) is logically equivalent to (¬p∧¬q) (Theorem 1.6.3), the two sets
have the same elements and so are equal. The second equality follows from the
other logical De Morgan law.

De Morgan’s laws also work for unions and intersections of more than two
sets.

Theorem 2.4.2. For any sets A1, A2, . . .

1. (A1 ∪A2 ∪ · · · )c = Ac
1 ∩Ac

2 ∩ · · · , and

2. (A1 ∩A2 ∩ · · · )c = Ac
1 ∪Ac

2 ∪ · · ·

2.5 Cartesian products

2.5.1 Ordered pairs

When we want to use coordinates to talk about points in the plane, we often do
this with pairs of real numbers ⟨x, y⟩. The first element x of the pair tells you
how far across to go and the second element y how far up. The key properties
of these pairs ⟨x, y⟩ is that ⟨x, y⟩ = ⟨z, w⟩ if and only if x = z and y = w. A
construction with this property is called an ordered pair, and we can form
ordered pairs with elements from any two sets — not just for real numbers.

The symbols ⟨ and ⟩ are just a kind of bracket. We don’t use ( and ) for our
ordered pairs because the notation (x, y) is going to be used for something else
later (in the part of this chapter on permutations).

We’ve defined ordered pairs by saying what they do, that is, by giving a
defining property they satisfy. For MATH0005 that’s all we need, but if you
are interested in how to actually construct sets with this property you can read
about the Kuratowski definition at this link. Proving that the definition does
what it is supposed to needs some formal set theory which is why we omit it
here.

2.5.2 Cartesian products

Definition 2.5.1. The Cartesian product of two sets A and B, written A×B,
is the set of all ordered pairs in which the first element belongs to A and the
second belongs to B:

A×B = {⟨a, b⟩ : a ∈ A, b ∈ B}.

https://en.wikipedia.org/wiki/Ordered_pair
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Notice that the size of A × B is the size of A times the size of B, that is,
|A×B| = |A||B|.

Example 2.5.1. {1, 2} × {2, 3} = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 2⟩, ⟨2, 3⟩}.

Of course we produce ordered triples (a, b, c) as well, and ordered quadruples,
and so on.

2.6 Functions

2.6.1 Definition of function, domain, codomain

Informally, given two sets X and Y a function or map f from X to Y is a
definite rule which associates to each x ∈ X an element f(x) ∈ Y .

Definition 2.6.1. We write f : X → Y to mean that f is a function from X
to Y . X is called the domain of f and Y is called the codomain of f .

We refer to the element f(x) of Y as being the “output” or “value” of f
when it is given the “input” or “argument” x.

This might seem vague: what is a definite rule? What does associates mean?
Should we say that two functions with the same domain and codomain are equal
if and only if they have the same rule, or should it be if and only if they have
the same output for every input?2

The formal definition of a function is:

Definition 2.6.2. A function consists of a domain X, a codomain Y , and a
subset f ⊆ X × Y containing exactly one pair ⟨x, y⟩ for each x ∈ X. We write
f(x) for the unique element of Y such that ⟨x, f(x)⟩ is in f .

In other words, the formal definition of a function is its set of ⟨input, output⟩
pairs.

Example 2.6.1. The function f : N → N such that f(x) = x + 1 corresponds
to {⟨0, 1⟩, ⟨1, 2⟩, ⟨2, 3⟩ . . .} ⊆ N× N

We won’t use the formal definition in MATH0005.

2.6.2 When are two functions equal?

Definition 2.6.3. Two functions f and g are said to be equal, and we write
f = g, if and only if

• they have the same domain, say X, and

• they have the same codomain, and

• for all x ∈ X we have f(x) = g(x).

Sometimes the definition has slightly strange-looking consequences.

Example 2.6.2. Let f, g : {0, 1} → {0, 1}. f(x) = x2. g(x) = x. Are they
equal?

2These concepts are called intensional and extensional equality, but that won’t be relevant
in MATH0005.
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(the answer is yes — they have the same domain, same codomain, and the
same output for every input in their common domain).

Definition 2.6.4. For any set X, the identity function idX : X → X is
defined by idX(x) = x for all x ∈ X.

Sometimes we just write id instead of idX if it is clear which set we are
talking about.

2.7 Function composition

2.7.1 Definition of function composition

Suppose you have two functions f : X → Y and g : Y → Z:

X
f→ Y

g→ Z

Then you can make a new function X → Z whose rule is “do f , then do g”.

Definition 2.7.1. Let f : X → Y and g : Y → Z. The composition of g and
f , written g ◦ f or gf , is the function X → Z with rule (g ◦ f)(x) = g(f(x)).

This makes sense because f(x) is an element of Y and g has domain Y so
we can use any element of Y as an input to g.

It’s important to remember that g ◦ f is the function whose rule is “do f ,
then do g”.

Proposition 2.7.1. If f : X → Y then f ◦ idX = idY ◦f = f .

Proof. For any x ∈ X we have (f◦idX)(x) = f(idX(x)) = f(x) and (idY ◦f)(x) =
idY (f(x)) = f(x).

2.7.2 Associativity

Functions f and g such that the codomain of f equals the domain of g, in other
words, functions such that g ◦ f makes sense, are called composable. Suppose
that f and g are composable and g and h are also composable, so that we can
draw a diagram

X
f→ Y

g→ Z
h→W.

It seems there are two different ways to compose these three functions: you could
first compose f and g, then compose the result with h, or you could compose g
with h and then compose the result with f . But they both give the same result,
because function composition is associative.

Lemma 2.7.2. Let f : X → Y, g : Y → Z, h : Z → W . Then h ◦ (g ◦ f) =
(h ◦ g) ◦ f .

Proof. Both h ◦ (g ◦ f) and (h ◦ g) ◦ f have the same domain X, same codomain
W , and same rule that sends x to h(g(f(x))).

The associativity property says that a composition like h◦g ◦f doesn’t need
any brackets to make it unambiguous: however you bracket it, the result is the
same. In fact we can omit brackets from a composition of any length without
ambiguity.
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2.8 Function properties

2.8.1 Image of a function

Definition 2.8.1. Let f : X → Y . Then the image of f , written im(f), is
defined to be {f(x) : x ∈ X}.

Don’t confuse codomain and image. Y is the codomain of f and the image
im(f) is a subset of Y , but it need not equal Y .

Some people use the word range to refer to one of these two concepts, but
since different people use it for different things we will only say image and
codomain in MATH0005.

Example 2.8.1. • Let f : R → R be the function f(x) = x2. Every
element f(x) of the image of f is a nonnegative number, and every non-
negative number is the square of some real number, so im(f) = [0,∞).

• Let g : Z → Z be defined by g(z) = 3z. Then im(g) = {g(z) : z ∈ Z} =
{3z : z ∈ Z}.

2.8.2 Injection, surjection, bijection

Definition 2.8.2. Let f : X → Y be a function.

• We say f is injective or one-to-one if and only if for all a, b ∈ X, if
f(a) = f(b) then a = b.

• We say f is surjective or onto if and only if for all y ∈ Y there is at
least one x ∈ X such that f(x) = y.

• We say f is a bijection if and only if it is injective and surjective.

Another way to write the definition of surjective would be that a function is
surjective if and only if its image equals its codomain.

As an example, here’s a picture of a function f : {1, 2, 3, 4, 5, 6} → {1, 2, 3, 4, 5}.
I have drawn an arrow from x to f(x) for each x in the domain of f .

1

2

3

4

5

1

2

3

4

5

6

Figure 2.9: Drawing of a function from {1, 2, 3, 4, 5, 6} to {1, 2, 3, 4, 5} such that
f(1) = f(2) = 1, f(3) = 5, f(4) = 3, f(5) = 1, f(6) = 2.
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The function f shown in Figure 2.9 is not onto because im(f) is a proper
subset of the codomain, specifically, the codomain contains 4 but im(f) does
not. f is not one-to-one because f(1) = f(2) but 1 ̸= 2.

Example 2.8.2. Here are some more examples to illustrate the injective, sur-
jective, and bijective properties.

• f : R → R, f(x) = x2. It isn’t injective as f(−1) = f(1) and it isn’t
surjective as −1 is in the codomain, but there’s no element x in the domain
such that f(x) = −1.

• g : R → [0,∞), g(x) = x2. This is not injective for the same reason as
before, but this time it is surjective: for each y ⩾ 0 we can find an element
of the domain which g sends to y: for example. g(

√
y) = y.

• h : [0,∞) → R, h(x) = x2. Not surjective, for the same reason f isn’t
surjective (the codomain contains negative numbers, but the image doesn’t
contain any negative numbers, so the image doesn’t equal the codomain).
But h is injective: if x and y are in the domain of h and h(x) = h(y) then
x2 = y2, so x = ±y. Since elements of the domain of h are nonnegative,
it must be that x = y.

• j : (−∞, 0] → [0,∞), j(x) = x2. This is injective (for a similar reason to
h) and surjective (for a similar reason to g), so it is a bijection.

All of these functions had their rules described in the same way, but their
properties differed. This shows how important it is to specify the domain and
codomain when you talk about a function. A question like “is the function
f(x) = x2 injective?” doesn’t make any sense unless you do this.

2.8.3 Bijections and sizes of sets

How do we know when two sets have the same size? If you see an alien creature
with an apple in each of its hundreds of hands you know it has the same number
of apples as it does hands, even if you haven’t counted either the apples or the
hands.

You know that because you can pair each apple with the hand holding it.
Every apple is held by one hand, and every hand holds one apple.

Suppose there is a bijection f between two sets X and Y . This gives us a
way to pair up elements of X and elements of Y such that every element of X
is paired with exactly one element of Y .

Consider the pairs (x, f(x)) for x in X. Every element of Y appears in
exactly one of these pairs (at least one pair because f is onto, at most one pair
because f is one-one). So a bijection pairs up each element of X with a unique
element f(x) of Y .
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1

2

3

a

b

c

Figure 2.10: Picture of a bijection f from {1, 2, 3} to {a, b, c} such that f(1) =
c, f(2) = b, f(3) = a

The picture is an illustration of a bijection f : {1, 2, 3} → {a, b, c}. If
we pair each element x of the domain with its image f(x) we get the pairs
(1, c), (2, b), (3, a). Because f is a bijection, every element of the domain is paired
with exactly one element of the domain and every element of the codomain is
paired with exactly one element of the domain. This leads us to make the
definition that two sets have the same size (or the same cardinality) if and
only if there is a bijection between them.

This definition works even for infinite sets — though it sometimes provides
some counter-intuitive results. The set of integers Z and the set of even integers
2Z = {. . .− 4,−2, 0, 2, 4, 6, . . .} have the same size since there is a bijection

f : Z → 2Z
f(z) = 2z

even though one is a proper subset of the other.

2.9 Invertibility

Definition 2.9.1. Let f : X → Y .

• A left inverse to f is a function g : Y → X such that g ◦ f = idX .

• A right inverse to f is a function h : Y → X such that f ◦ h = idY .

• An inverse (or a two sided inverse) to f is a function k : Y → X which
is a left and a right inverse to f .

We say f is invertible if it has a two sided inverse.

Notice that if g is left inverse to f then f is right inverse to g. A function
can have more than one left inverse, or more than one right inverse: you will
investigate this further in the problem sets.

The idea is that a left inverse “undoes” its right inverse, in the sense that if
you have a function f with a left inverse g, and you start with x ∈ X and apply
f to get to f(x) ∈ Y , then doing g gets you back to where you started because
g(f(x)) = x.

Example 2.9.1. • f : R → [0,∞), f(x) = x2 has a right inverse g :
[0,∞) → R, g(x) =

√
x. f(g(x)) = x for all x ∈ [0,∞). It is not the

case that g is a left inverse to f because g(f(−1)) ̸= −1.
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• This function f does not have a left inverse. Suppose h is left inverse
to f , so that hf = idR. Then h(f(−1)) = −1, so h(1) = −1. Similarly
h(f(1)) = 1, so h(1) = 1. Impossible! (The problem, as we will see in the
next section, is that f isn’t one-to-one.)

• The function g has a left inverse, f . But it does not have a right inverse.
If g ◦ h = idR then g(h(−1)) = −1 so g(h(−1)) = −1. But there’s no
element of [0,∞) that g takes to −1. (This time the problem is that g
isn’t onto.)

2.10 Conditions for invertibility

Here is the connexion between function properties and invertibility.

Theorem 2.10.1. Let f : X → Y be a function between nonempty sets.

1. f has a left inverse if and only if it is injective.

2. f has a right inverse if and only if it is surjective.

3. f has a two sided inverse if and only if it is bijective.

Proof. 1. • ONLY IF. Let g be a left inverse to f , so g◦f = idX . Suppose
f(a) = f(b). Then applying g to both sides, g(f(a)) = g(f(b)), so
a = b.

• IF. Let f be injective. Choose any x0 in the domain of f . Define
g : Y → X as follows. Each y in Y is either in the image of f or
not. If y is in the image of f , it equals f(x) for a unique x in X
(uniqueness is because of the injectivity of f), so define g(y) = x. If
y is not in the image of f , define g(y) = x0. Clearly g ◦ f = idX .

2. • IF. Suppose f has a right inverse g, so f ◦ g = idY . If y ∈ Y then
f(g(y)) = idY (y) = y, so y ∈ im(f). Every element of Y is therefore
in the image of f , so f is onto.

• ONLY IF. Suppose f is surjective. Let y ∈ Y . Then y is in the image
of f , so we can choose an element g(y) ∈ X such that f(g(y)) = y.
This defines a function g : Y → X which is evidently a right inverse
to f .

3. If f has a left inverse and a right inverse, it is injective (by part 1 of this
theorem) and surjective (by part 2), so is a bijection. Conversely if f is a
bijection it has a left inverse g : Y → X and a right inverse h : Y → X by
part 1 and part 2 again. We will now show g = h, so that g is a two sided
inverse to f .

g = g ◦ idY Proposition 2.7.1

= g ◦ (f ◦ h) as f ◦ h = idY

= (g ◦ f) ◦ h associativity

= idX ◦h as g ◦ f = idX

= h

so g = h is a two sided inverse of f .



2.10. CONDITIONS FOR INVERTIBILITY 43

X Ya

b

c

x

y

z

e

d

Figure 2.11: A diagram illustrating the construction, in part 1 of the theorem,
of the left inverse to an injective function f : X → Y where X = {x, y, z}, Y =
{a, b, c, d, e}, and f(x) = c, f(y) = b, f(z) = a. Left-to-right arrows show where
f sends elements of X and right-to-left arrows show where g sends elements of
Y . The elements d and e of Y which are not in the image of f are all sent to
the element x of X.

Figure 2.11 illustrates the construction in part 1 of the theorem. Arrows
from left to right show where f sends each element of X. Arrows from right to
left show where the left inverse g we have constructed sends each element of Y .

Definition 2.10.1. If f : X → Y is invertible, we write f−1 for the two sided
inverse of f .

It makes sense to talk about the two sided inverse to f because there really
is only one: if g and h are two sided inverses of f then certainly g is a left inverse
and h is a right inverse, so the argument in the proof of part 3 of the theorem
above shows g = h.

2.10.1 Inverse of a composition

Theorem 2.10.2. If f : X → Y and g : Y → Z are invertible then so is g ◦ f ,
and (g ◦ f)−1 = f−1 ◦ g−1.

Proof. f−1 ◦ g−1 is a left inverse to g ◦ f , because

(f−1 ◦ g−1) ◦ (g ◦ f) = f−1 ◦ (g−1 ◦ g) ◦ f associativity

= f−1 ◦ idY ◦f
= f−1 ◦ f
= idX .

A similar calculation shows that it is a right inverse as well.
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It is important to get this the right way round. The inverse of g ◦ f is not
normally g−1 ◦ f−1, indeed this composition may not even make sense. The
correct result is easy to remember when you think about getting dressed. Each
morning you put on your socks, then you put on your shoes: if k is the put-on-
socks function and h is the put-on-shoes function then you apply the function
h ◦ k to your feet. The inverse of this is taking off your shoes, then taking off
your socks: k−1 ◦ h−1. Not the other way round — it’s not even (normally)
possible to take off your socks, then take off your shoes, just as it is not normally
possible to form the composition g−1◦f−1 in the context of the theorem above.3

A similar result applies when you compose more than two invertible func-
tions: if f1, f2, . . . , fn are invertible and if the composition

f1 ◦ · · · ◦ fn

makes sense, it is also invertible and its inverse is

f−1
n ◦ · · · ◦ f−1

1 .

2.11 Permutations

Definition 2.11.1. • A permutation of a set X is a bijection X → X.

• Sn, the symmetric group on n letters, is the set of all permutations of
{1, 2, . . . , n}.

Example 2.11.1. • For any set X, the identity function idX : X → X is a
permutation.

• The function f : {1, 2, 3} → {1, 2, 3} given by f(1) = 3, f(2) = 2, f(3) = 1
is a permutation. f is an element of S3.

• The function g : {1, 2, 3, 4} → {1, 2, 3, 4} given by g(1) = 2, g(2) =
3, g(3) = 4, g(4) = 1 is a permutation. g is an element of S4.

Here are some diagrams illustrating the permutations f and g:

1

2

3

1

2

3

Figure 2.12: Diagram of the permutation f from the example above.

3The shoes and socks illustration comes from Gilbert Strang’s famous 18.06 linear algebra
course.
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1

2

3

4

1

2

3

4

Figure 2.13: Diagram of the permutation g from the example above.

2.11.1 Two row notation

We need a way of writing down elements of Sn. The simplest is called two row
notation. To represent f ∈ Sn, you write two rows of numbers. The top row
is 1, 2, . . . , n. Then underneath each number i on the top row you write f(i):(

1 2 · · · n
f(1) f(2) · · · f(n)

)
As an example, here are the two row notations for the two permutations of the
previous example.

f :

(
1 2 3
3 2 1

)
g :

(
1 2 3 4
2 3 4 1

)
The two row notation for the identity in Sn is particularly simple:(

1 2 · · · n− 1 n
1 2 · · · n− 1 n

)
.

This is a simple and not-that-efficient notation (it is not feasible to write
down an element of S100 this way, even if it is a very simple permutation e.g.
swaps 1 and 2, leaves 3-100 alone), but it is at least concrete and simple.

2.11.2 How many permutations?

n!, pronounced n factorial, means n× (n− 1)× · · · × 2× 1.

Theorem 2.11.1. |Sn| = n!

Proof. Instead of counting permutations we will count possible bottom rows of
two row notations for elements of Sn. Because a permutation is a bijection —
one-to-one and onto — this bottom row consists of the numbers 1, 2, . . . , n in
some order. We just need to show that there are exactly n! different ways to
order the numbers 1, 2, . . . , n.

We prove this by induction on n. For the base case n = 1 we have 1! = 1
and it is clear that there is only one way to order a single 1.



46 CHAPTER 2. SETS AND FUNCTIONS

For the inductive step, suppose |Sn−1| = (n− 1)!. An ordering of 1, 2, . . . , n
arises in exactly one way as an ordering of 1, 2, . . . , (n − 1) with the number
n inserted into one of n places (the first, or second, or . . . , or nth position).
So the number of such orderings is |Sn−1| (the number of ways to choose an
ordering of 1, 2, . . . , (n − 1)) times the number of ways to insert an n, giving
|Sn| = |Sn−1| × n = (n− 1)!× n = n!. This completes the inductive step.

For example, there are 2! = 2 elements of S2: they are(
1 2
1 2

)
,

(
1 2
2 1

)
The first one is the identity function on {1, 2}.

2.12 Inverses and composition

2.12.1 Inverse of a permutation

Permutations are bijections, so by Theorem 2.10.1 they have inverse functions.
The inverse function to a permutation σ undoes what σ did, in the sense that
if σ(x) = y then σ−1(y) = x. In two row notation you write σ(x) beneath x, so
you can get the two row notation for σ−1 by swapping the rows (and reordering).

Example 2.12.1.

σ =

(
1 2 3 4
2 3 4 1

)
σ−1 =

(
2 3 4 1
1 2 3 4

)
=

(
1 2 3 4
4 1 2 3

)

2.12.2 Composition of permutations

We know by Theorem 2.10.2 that the composition of two bijections is a bijection,
so the composition of two permutations of a set X is again a permutation of X.

Example 2.12.2. Let

σ =

(
1 2 3
2 1 3

)
τ =

(
1 2 3
1 3 2

)
Then σ ◦ τ is the function {1, 2, 3} → {1, 2, 3} whose rule is “do τ , then do σ.”
Thus

(σ ◦ τ)(1) = σ(τ(1)) = σ(1) = 2

(σ ◦ τ)(2) = σ(τ(2)) = σ(3) = 3

(σ ◦ τ)(3) = σ(τ(3)) = σ(2) = 1

In two row notation,

σ ◦ τ =

(
1 2 3
2 3 1

)
.
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There are several similarities between composing permutations and multi-
plying nonzero numbers. For example, if a, b, and c are nonzero real number
then a(bc) = (ab)c. Furthermore the identity permutation behaves for compo-
sition just like the number 1 behaves for multiplication. For each nonzero real
number a we have a × 1 = 1 × a = a, and for each permutation s we have
s ◦ id = id ◦s = s. Equally, for each nonzero real number a there is another
nonzero real number a−1 such that a× a−1 = 1 = a−1 × a, and for each permu-
tation s there is an inverse permutation s−1 such that s ◦ s−1 = id = s−1 ◦ s.
Because of these similarities we often talk about multiplying two permutations
when we mean composing them, and given two permutations s and t we usually
write st for their composition instead of s ◦ t.

2.12.3 Composition isn’t commutative

Composition has one big difference with real number multiplication: the order
matters.

Example 2.12.3. With σ and τ as before,

στ =

(
1 2 3
2 3 1

)
τσ =

(
1 2 3
3 1 2

)
Comparing this to the example in the previous section, στ and τσ are dif-

ferent. Composition of permutations is not commutative in general.

Definition 2.12.1. Two permutations s and t are said to commute if st = ts.

2.13 Cycles

2.13.1 Cycle definition and notation

We’re going to introduce a more efficient way of writing permutations. This
involves thinking about a special kind of permutation called a cycle.

Let m > 0, let a0, . . . , am−1 be distinct positive integers. Then

a = (a0, . . . , am−1)

is defined to be the permutation such that

• a(ai) = ai+1 for i < m− 1,

• a(am−1) = a0, and

• a(x) = x for any number x which isn’t equal to one of the ai.

If we let am be a0 then we could just say a(ai) = ai+1 for all i.

Definition 2.13.1. A permutation of the form (a0, . . . , am−1) is called an m-
cycle. A permutation which is an m-cycle for some m is called a cycle.

There are two important things to note:



48 CHAPTER 2. SETS AND FUNCTIONS

• Any 1-cycle, e.g. (1) or (2), is equal to the identity permutation.

• If we just write down the cycle (1, 2, 3), say, it could be could be an element
of S3, or S4, or S5, or any other Sn with n ⩾ 3. When it matters, we will
make this clear.

Example 2.13.1. • In S3, the 2-cycle (1, 2) is the permutation that sends

1 to 2, 2 to 1, and 3 to 3. In two row notation (1, 2) =

(
1 2 3
2 1 3

)
.

• In S4, the 3-cycle (2, 4, 3) is the permutation that sends 1 to 1, 2 to 4, 4

to 3, and 3 to 2. In two row notation, (2, 4, 3) =

(
1 2 3 4
1 4 2 3

)
.

The picture below is of the 5-cycle (1, 2, 3, 4, 5), illustrating why these per-
mutations are called “cycles”.

1

2

3
4

5

Figure 2.14: Picture of the 5-cycle (1,2,3,4,5). The numbers 1, 2, 3, 4, 5 are
arranged in a circle with an arrow pointing from 1 to 2, 2 to 3, 3 to 4, 4 to 5, 5
back to 1

2.13.2 Composing cycles

Let’s compose two cycles. Let s = (1, 2, 3, 4, 5), t = (4, 3, 5, 1) be elements of
S5. We’ll work out the two row notation for s ◦ t. Remember that this is the
permutation whose rule is to do t then do s.

t(1) = 4, so s(t(1)) = s(4) = 5. Therefore the two row notation for s ◦ t
looks like. (

1 2 3 4 5
5 ? ? ? ?

)
Next, t(2) = 2 (as 2 doesn’t appear in the cycle defining t), so s(t(2)) = s(2) = 3.
Now we know the next bit of the two row notation:(

1 2 3 4 5
5 3 ? ? ?

)
You should continue this procedure and check that what you end up with is

s ◦ t =
(
1 2 3 4 5
5 3 1 4 2

)
.
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2.13.3 Multiple ways to write the same cycle

Example 2.13.2. Consider the two cycles a = (1, 2, 3, 4) and b = (2, 3, 4, 1).
The permutation a sends 1 to 2, 2 to 3, 3 to 4, 4 to 1, and any other number to
itself. So does b. So a = b. Similarly if c = (3, 4, 1, 2) and d = (4, 1, 2, 3) then
a = b = c = d.

In general, every m-cycle can be written m different ways since you can put
any one of the m things in the cycle first.

Example 2.13.3. In S5,

(5, 3, 2) = (3, 2, 5) = (2, 5, 3).

2.13.4 Disjoint cycles

Definition 2.13.2. Two cycles (a0, . . . , am−1) and (b0, . . . , bk−1) are disjoint
if no ai equals any bj .

Example 2.13.4. • (1, 2, 7) is disjoint from (5, 4)

• (1, 2, 3) and (3, 5) are not disjoint.

One reason disjoint cycles are important is that disjoint cycles commute,
that is, if a and b are disjoint cycles then a ◦ b = b ◦ a. This is special as you
have seen that in general, for two permutations s and t, s ◦ t ̸= t ◦ s. You will
prove this in the problem sets for MATH0005, but we’ll record it here for future
use.

Theorem 2.13.1. Let a and b be disjoint cycles. Then ab = ba.

2.13.5 Non-uniqueness

There can be many different ways to write a given permutation as a product of
disjoint cycles. For example, taking the permutation s we’ve just seen,

s = (1, 7, 4)(2, 3)(5)(6, 9, 8)

= (7, 4, 1)(2, 3)(6, 9, 8)

= (2, 3)(6, 9, 8)(7, 4, 1)

= . . .

It is important to remember are that an m-cycle can be written in m differ-
ent ways, for example (1, 2, 3) = (2, 3, 1) = (3, 1, 2), and that disjoint cycles
commute, for example (1, 2)(3, 4) = (3, 4)(1, 2).

2.13.6 Inverse of a cycle

For every permutation s there is an inverse permutation s−1 such that s◦s−1 =
s−1 ◦ s = id. How do we find the inverse of a cycle? Let

a = (a0, . . . , am−1)



50 CHAPTER 2. SETS AND FUNCTIONS

Then a sends ai to ai+1 for all i (and every number not equal to an ai to itself),
so a−1 should send ai+1 to ai for all i (and every number not equal to an ai to
itself). In other words, a−1 is the cycle (am−1, am−2, . . . , a1, a0):

(a0, . . . , am−1)
−1 = (am−1, am−2, . . . , a1, a0)

As a special case, the inverse of the 2-cycle (i, j) is (j, i). But (i, j) = (j, i)! So
every 2-cycle is its own inverse.

If we draw cycles as we did in Figure 2.14, their inverses are obtained by
“reversing the arrows.”

1

23

1

23

Figure 2.15: On the left is a diagram showing the numbers 1, 2, and 3 in a cycle
with an arrow from 1 to 2, 2 to 3, and 3 to 1 illustrating the 3-cycle (1, 2, 3).
On the right is its inverse (3, 2, 1), the same picture with the arrows reversed

2.13.7 Not all permutations are cycles

Not every permutation is a cycle.

Example 2.13.5. The permutation σ =

(
1 2 3 4
2 1 4 3

)
is not a cycle. Suppose

for a contradiction that it was. σ sends 1 to 2, and 2 to 1, so if it were a cycle it
would have to be (1, 2). But (1, 2) sends 3 to 3, whereas σ(3) = 4, so σ ̸= (1, 2).

Here is a diagram of the permutation σ from the previous example.

1

2

3

4

Figure 2.16: Picture of the permutation sending 1 to 2, 2 to 1, 3 to 4, and 4 to
3. Arrows indicate where each number is sent.

While σ is not a cycle, it is the composition of two cycles: σ = (1, 2) ◦ (3, 4).
In fact, every permutation can be written this way, which we’ll prove in the next
section.

2.14 Products of disjoint cycles

2.14.1 Every permutation is a product of disjoint cycles

To prove the theorem in the section title, we need a lemma on multiplying
permutations.
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Lemma 2.14.1. Let a0, a1, . . . , am be distinct numbers. Then

(a0, a1)(a1, a2, . . . , am) = (a0, a1, . . . , am).

For example, you should check by calculating the two row notation for both
sides that

(1, 2)(2, 3) = (1, 2, 3)

(2, 3)(3, 1, 4, 5) = (2, 3, 1, 4, 5)

(7, 2)(2, 8, 9, 6, 4) = (7, 2, 8, 9, 6, 4).

Proof. Let

r = (a0, a1, . . . , am)

t = (a0, a1)

s = (a1, a2, . . . , am)

so that we have to show r(s) = t(s(x)) for all integers x. If x is not one of the
ai then r(x) = x, s(x) = x, and t(x) = x so r(x) = t(s(x)) = x. We only need
to do the case when x is equal to ai for some 0 ⩽ i ⩽ m.

• Let i = 0. Then r(a0) = a1, and s(a0) = a0 and t(a0) = a1 so t(s(a0)) =
a1 = r(a0).

• Let i = 1, so r(a1) = a2. We have s(a1) = a2 and t(a2) = a2, so t(s(a1)) =
a2 = r(a1).

• Let 2 ⩽ i < m, so, r(ai) = ai+1, s(ai) = ai+1, t(ai+1) = ai+1, so t(s(ai)) =
t(ai+1) = ai+1 = r(ai).

• Finally r(am) = a0, s(am) = a1, t(a1) = a0, so t(s(am)) = a0 = r(am).

Theorem 2.14.2. Every s ∈ Sn equals a product of disjoint cycles.

Proof. By induction on n. It is certainly true for n = 1 when the only permu-
tation in S1 is the identity (which equals the one-cycle (1)) and for n = 2 when
the only two permutations are the identity and (1, 2).

Now let s ∈ Sn and suppose that every permutation in Sn−1 is a product
of disjoint cycles. If s(n) = n then we can consider s as a permutation of
1, 2, . . . , n− 1, so it equals a product of disjoint cycles by the inductive hypoth-
esis. If s(n) is equal to something other than n, say s(n) = k, then consider the
permutation

t = (n, k) ◦ s.

t(n) = n, so we can consider t as a permutation in Sn−1 and therefore by
induction we can write t as a product of disjoint cycles

t = c1c2 · · · cr.

where the cycles c1, . . . , cr only contain the numbers 1, 2, . . . , n− 1.
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Since (n, k)(n, k) is the identity permutation, we can compose both sides of
the previous equation on the left with (n, k) to get

(n, k)(n, k)s = (n, k)c1c2 · · · cr
s = (n, k)c1c2 · · · cr.

None of the cycles ci contain n. If none of them contain k then this is an
expression for s as a product of disjoint cycles, so we are done. If one of them
contains k, then because disjoint cycles commute by Theorem 2.13.1 we can
assume that it is c1.

4

Recall from 2.13.3 that we can write c1 starting with any one of its elements.
We choose to write it starting with k, so that for some numbers a1, . . . , am

c1 = (k, a1, . . . , am).

By Lemma 2.14.1,

(n, k)c1 = (n, k)(k, a1, . . . , am)

= (n, k, a1, . . . , am)

and therefore

s = (n, k, a1, . . . , am)c2c3 · · · cr.

This is a product of disjoint cycles since neither k nor n belongs to any of
c2, . . . , cr, so we are done.

Definition 2.14.1. An expression for a permutation s as a product of disjoint
cycles c1, c2, . . . , cr

s = c1c2 · · · cr

is called a disjoint cycle decomposition of s.

We’ve just proved that every permutation has at least one disjoint cycle
decomposition. In fact a permutation can have lots of disjoint cycle decompo-
sitions, e.g.

(1, 2)(3, 4) = (3, 4)(1, 2) = (4, 3)(1, 2) = · · ·

2.14.2 How to find a disjoint cycle decomposition

To find a disjoint cycle decomposition for an element of Sn:

1. Pick a number that doesn’t yet appear in a cycle.

2. Compute its image, and the image of that, and so on, until you have a
cycle. Write down that cycle.

3. If all elements of 1, . . . , n are in one of your cycles, stop, else go back to
step 1.

4For example, if s = (n, k)c1c2c3 and c2 was the cycle containing k, you could use the fact
that c1c2 = c2c1 to get s = (n, k)c2c1c3 and then just renumber the cycles.
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Example 2.14.1. Let s =

(
1 2 3 4 5 6 7
7 6 3 1 2 5 4

)
. We pick a number not

yet in a cycle, say 1. 1 goes to 7, 7 goes to 4, 4 goes to 1. We are back to
the number we started with, so our first cycle is (1, 7, 4). Now we pick another
number not in a cycle, say 2. s sends 2 to 6, 6 to 5, and 5 to 2. That’s another
cycle, so we have (1, 7, 4)(2, 6, 5). Now we pick another number not yet in a
cycle — the only one left is 3. s sends 3 to 3, so this is immediately a cycle. We
have s = (1, 7, 4)(2, 6, 5)(3).

As we saw when we defined cycles in Definition 2.13.1, any 1-cycle is equal
to the identity function. For that reason (and because 1-cycles look confusingly
like what we write when we evaluate a function) we usually omit 1-cycles like
(3) from disjoint cycle decompositions, so we’d write the permutation s of the
previous example as (1, 7, 4)(2, 6, 5).

2.14.3 Composing permutations given as products of dis-
joint cycles

Example 2.14.2. Let’s work out a disjoint cycle decomposition for στ where

σ = (4, 2, 6, 1, 5)

τ = (5, 4, 7, 3, 8)

are elements of S8.

Remember that στ means do τ , then do σ. Keeping that in mind, all
we have to do is follow the instructions from before. Start with 1:

σ(τ(1)) = σ(1) = 5

σ(τ(5)) = σ(4) = 2

σ(τ(2)) = σ(2) = 6

σ(τ(6)) = σ(6) = 1

. . . and we have our first cycle, (1, 5, 2, 6). Continuing with a number not yet in
a cycle, say 3, we get

σ(τ(3)) = σ(8) = 8

σ(τ(8)) = σ(5) = 4

σ(τ(4)) = σ(7) = 7

σ(τ(7)) = σ(3) = 3

. . . and we have our next cycle, (3, 8, 4, 7). There are no numbers left, so

στ = (1, 5, 2, 6)(3, 8, 4, 7).

You should do τσ now. You’ll find that your disjoint cycle decomposition
has two 4-cycles again, but isn’t the same as the decomposition we got for στ .

Example 2.14.3. Let’s find a disjoint cycle decomposition for (1, 2, 3, 4)(2, 3, 4, 5).
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Write a = (1, 2, 3, 4), b = (2, 3, 4, 5). Starting with 1 as usual,

a(b(1)) = a(1) = 2

a(b(2)) = a(3) = 4

a(b(4)) = a(5) = 5

a(b(5)) = a(2) = 3

a(b(3)) = a(4) = 1

and so ab = (1, 2, 4, 5, 3).

2.15 Powers and orders

2.15.1 Powers of a permutation

Since the composition of two permutations is another permutation, we can form
powers of a permutation by composing it with itself some number of times.

Definition 2.15.1. Let s be a permutation and let m be an integer. Then

sm =


s · · · s (m times) m > 0

id m = 0

s−1 · · · s−1 (−m times) m < 0

It’s tedious but straightforward to check that for any integers a, b,

• sa ◦ sb = sa+b, and

• (sa)b = sab

so that some of the usual exponent laws for real numbers hold for com-
posing permutations. The two facts above are called the exponent laws for
permutations.

2.15.2 Order of a permutation

Definition 2.15.2. The order of a permutation σ, written o(σ), is the smallest
strictly positive number n such that σn = id.

For example, let

s =

(
1 2 3
2 3 1

)
t =

(
1 2 3
2 1 3

)
You should check that s2 ̸= id but s3 = id, so the order of s is 3, and that

t ̸= id but t2 = id so the order of t is 2.
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2.15.3 Order of an m-cycle

Lemma 2.15.1. The order of an m-cycle is m.

Proof. Let the m-cycle be a = (a0, . . . , am−1). If r < m then ar(a0) = ar ̸= a0,
so ar ̸= id. On the other hand am(a0) = a(am−1) = a0 and in general am(ai) =
ai(am−i(ai)) = ai(a0) = ai, so a

m = id.

2.16 Transpositions

2.16.1 Definition of a transposition

Definition 2.16.1. A transposition is a 2-cycle.

For example, the only transpositions in S3 are (1, 2), (2, 3), and (1, 3).

2.16.2 Every permutation is a product of transpositions

In this section we’re going to prove that every permutation can be written as a
product of transpositions. Before we do so, here is some motivation for why we
should expect this to be true.

One way we’ve already seen of illustrating a permutation s in Sn is to draw
the numbers 1, 2, . . . , n in a column, and then in another column to its right,
and draw a line from each number i in the first column to s(i) in the second.
You get what looks like a lot of pieces of string tangled together.

Here is a diagram of the permutation s = (1, 2, 3, 4, 5). Think of the lines as
pieces of string connecting i on the left with s(i) on the right.

1

2

3

4

5

1

2

3

4

5

Figure 2.17: A string diagram of the permutation (1, 2, 3, 4, 5). Two columns
contain the numbers 1, 2, 3, 4, 5. Strings connect the numbers 1, 2, 3, 4, 5 in
the left-hand column to 2, 3, 4, 5, 1 respectively in the right-hand column.

Composing two permutations drawn in this way corresponds to placing their
diagrams side-by-side:



56 CHAPTER 2. SETS AND FUNCTIONS

s t

ts

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

Figure 2.18: String diagrams for (1, 2) and (2, 3) are shown side by side, and
then the right-hand column of the diagram for (1, 2) is joined to the left-hand
column for (2, 3). The resulting diagram represents (2, 3)(1, 2) = (1, 3, 2)

Imagine taking such a diagram and stretching it out. You could divide it up
into smaller diagrams, each of which contains only one crossing of strings.

1

2

3

4 4

3

2

1

Figure 2.19: String diagram for (1, 2, 3, 4), with dotted vertical lines to divide
the strings into sections with only one crossing. From left to right, the first
crossing is between strings 3 and 4, then 2 and 3, then 1 and 2

A diagram with a single string crossing is a transposition, since only two
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numbers change place. The diagram above illustrates the fact that

(1, 2, 3, 4) = (1, 2)(2, 3)(3, 4).

Now we’re ready for a formal proof of the result that every permutation
equals a product of transpositions. We first do it for cycles:

Lemma 2.16.1. Every cycle equals a product of transpositions.

Proof. Let a = (a0, . . . , am−1) be a cycle. Lemma 2.14.1 tells us that

a = (a0, a1)(a1, a2, . . . , am−1).

Using that lemma again on the cycle (a1, . . . , am−1) we get

a = (a0, a1)(a1, a2)(a2, a3, . . . , am−1).

Repeating this gives

a = (a0, a1)(a1, a2) · · · (am−2, am−1)

which shows that a can be written as a product of transpositions.

To illustrate this result you should check by computing both sides that

(1, 2, 3, 4) = (1, 2)(2, 3)(3, 4).

Theorem 2.16.2. Every permutation in Sn is equal to a product of transposi-
tions.

Proof. Let p be a permutation. We have seen that every permutation can
be written as a product of cycles, so there are cycles c1, . . . , ck such that
p = c1 · · · ck. The lemma above shows how to write each ci as a product of
transpositions, which expresses p as a product of transpositions too.

Example 2.16.1. Suppose we want to express

s =

(
1 2 3 4 5 6
2 3 1 5 6 4

)
as a product of transpositions. A disjoint cycle decomposition for s is

s = (1, 2, 3)(4, 5, 6)

and applying the lemma above, we get

(1, 2, 3) = (1, 2)(2, 3)

(4, 5, 6) = (4, 5)(5, 6)

So

s = (1, 2, 3)(4, 5, 6) = (1, 2)(2, 3)(4, 5)(5, 6).
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2.17 Sign

2.17.1 Definition of odd and even permutations

Theorem 2.16.2 says that every permutation can be expressed as a product of
transpositions.

Definition 2.17.1. A permutation is odd if it can be expressed as a product
of an odd number of transpositions and even if it can be expressed as a product
of an even number of transpositions.

(Sometimes people refer to the parity of a permutation to mean whether it
is odd or even. We won’t do this since we want to save the word parity for
integers.)

Example 2.17.1. • (1, 2) is odd.

• id = (1, 2)(1, 2) is even.

• (1, 2, 3) = (1, 2)(2, 3) is even.

• The expression for an m-cycle a = (a0, . . . , am−1) as a product of m − 1
transpositions

(a0, . . . , am−1) = (a0, a1)(a1, a2) · · · (am−2, am−1)

in Lemma 2.16.1 shows that an m cycle is even if m is odd and odd if m
is even.

2.17.2 The odd xor even theorem

It seems possible that a permutation could be odd AND even at the same time,
but this isn’t the case.

Theorem 2.17.1. No permutation is both odd and even.

To prove this we need to do a little work.

Lemma 2.17.2. For any k, l ⩾ 0 and any distinct numbers a, b, x1, . . . , xk, y1, . . . , yl
we have

(a, b)(a, x1, . . . , xk, b, y1, . . . , yl) = (a, x1, . . . , xk)(b, y1, . . . , yl).

Proof. This will be a problem set exercise.

We know every permutation can be written as a product of disjoint cycles.
We are now going to be interested in how many cycles it takes to express a given
permutation, and we will include all 1-cycles in our count. For example, in S4 the
identity id = (1)(2)(3)(4) has four cycles, the transposition (1, 2) = (1, 2)(3)(4)
has three cycles, the permutation(

1 2 3 4
2 3 1 4

)
= (1, 2, 3)(4)

has two cycles as does (1, 2)(3, 4), and the permutation (1, 2, 3, 4) has one cycle
only.
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Lemma 2.17.3. If s ∈ Sn has r cycles and t is a transposition then ts has r+1
or r − 1 cycles.

Proof. Let s = c1c2 · · · cr be a disjoint cycle decomposition for s, remembering
that we include any 1-cycles in this product so that each number between 1 and
n appears in exactly one of these cycles.

Let t = (a, b). There are two possibilities: either a and b belong to the same
ci, or they belong to different cis.

In the first case, because disjoint cycles commute we can assume a and b
belong to c1, which we can write as (a, x1, . . . , xk, b, y1, . . . , yl) for some distinct
numbers xi and yj . Lemma 2.17.2 then shows us that

ts = (a, x1, . . . , xk)(b, y1, . . . , yl)c2 · · · cr

has r + 1 cycles.
In the second case, because disjoint cycles commute we can assume a belongs

to c1 and b to c2. Write the disjoint cycles c1 as (a, x1, . . . , xk) and c2 as
(b, y1, . . . , yl). Then multiplying Lemma 2.17.2 on the left by (a, b) gives

(a, b)(a, x1, . . . , xk)(b, y1, . . . , yl) = (a, x1, . . . , xk, b, y1, . . . , yk) (2.4)

and so
ts = (a, x1, . . . , xk, b, y1, . . . , yk)c3c4 · · · cr

has r − 1 cycles.

Let’s consider two examples to illustrate the two cases in this proof. Take
n = 7, t = (1, 2), c1 = (1, 4, 2, 3), c2 = (5, 7), c3 = (6), and

s = c1c2c3 = (1, 4, 2, 3)(5, 7)(6)

so the number r of cycles in s is equal to 3. We are in the first case of the proof
since 1 and 2 both belong to the same cycle c1 from s. You can check that

(1, 2)(1, 4, 2, 3) = (1, 4)(2, 3)

so that
ts = (1, 4)(2, 3)(4, 7)(6)

has r + 1 = 4 cycles.
Next take n = 7, t = (1, 2) and c1 = (1), c2 = (3, 6, 4), c3 = (5, 2, 7), and

s = c1c2c3 = (1)(3, 6, 4)(5, 2, 7)

so the number r of cycles in s is again 3. We are in the second case of the proof
since 1 and 2 belong to c1 and c3. Rewriting c3 as (2, 7, 5) and using the identity
(2.4),

(1, 2)(1)(2, 7, 5) = (1, 2, 7, 5)

(you should check this by computing the left hand side). It follows

ts = tc1c2c3

= tc1c3c2 disjoint cycles commute

= (1, 2)(1)(2, 7, 5)(3, 6, 4)

= (1, 2, 7, 5)(3, 6, 4)
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and ts has r − 1 = 2 cycles.
The parity of an integer is whether it is even or odd. Two integers are said

to have the same parity if they are either both even or odd, otherwise they
are said to have the opposite parity.

Lemma 2.17.4. Let t = t1 · · · tk be a product of transpositions, each of which
belongs to Sn. If n is even then the number of cycles in t has the same parity
as k, and if n is odd then the number of cycles in t has the opposite parity to k.

For example, let n be the odd number 3. In S3 the product (1, 2)(2, 3)(1, 2)
of two transpositions is equal to (1, 3)(2) which has two cycles. The parity of
the number of cycles is opposite to the parity of k, and the same is true of any
product of transpositions in Sn for any odd n. Now let n be the even number
4. In S4 the product (1, 2)(3, 4)(2, 3)(1, 4) of four transpositions is equal to
(1, 3)(2, 4) which has two cycles. The parity of the number of cycles is the same
as the parity of k, and the same is true of any product of transpositions in Sn

for any even n.

Proof. We will do the case when n is even, the odd case being similar. We prove
by induction on k that the number of cycles in t1t2 · · · tk has the same parity
as k. The base case is k = 1 when the product is just t1 which has n− 1 cycles
(the 2-cycle from t1 and then n− 2 one-cycles), an odd number of cycles.

For example, if n = 6 then t1 might be

(2, 4) = (1)(2, 4)(3)(5)(6)

which has five cycles.
For the inductive step, consider a product t1t2 · · · tk. If k is even then k − 1

is odd, so by the inductive hypothesis t2 · · · tk has an odd number r of cycles,
and by Lemma 2.17.3 t1t2 · · · tk has r+1 or r− 1 cycles, which in either case is
an even number. If k is odd then k − 1 is even, so by the inductive hypothesis
t2 · · · tk has an even number r of cycles and then by the same Lemma as before
t1 · · · tk has r ± 1 cycles, an odd number.

Finally we can prove the main theorem, that no permutation is both odd
and even.

Proof. Suppose n is even and we can write s ∈ Sn as a product of k transpo-
sitions, and also as a product of k′ transpositions. Lemma 2.17.4 shows that
both k and k′ has the same parity as the number of cycles in s, in particular, k
and k′ have the same parity. The argument for odd n is similar.

2.17.3 Sign of a permutation

Definition 2.17.2. • The sign of a permutation is 1 if it is even and −1 if
it is odd.

• We write sign(s) for the sign of the permutation s.

So if s can be written as a product of m transpositions, sign(s) = (−1)m.

Lemma 2.17.5. For any two permutations s and t, sign(st) = sign(s) sign(t)
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Proof. If s can be written as a product of m transpositions and t can be written
as a product of n transpositions, then st can be written as a product of m+ n
transpositions. So

sign(st) = (−1)n+m

= (−1)m(−1)n

= sign(s) sign(t)

This rule about the sign of a product means that

• an even permutation times an even permutation is even,

• an even permutation times an odd permutation is odd, and

• an odd permutation times an odd permutation is even

just like when we multiply odd and even integers.

2.17.4 Two results on the sign of a permutation

Lemma 2.17.6. 1. Even length cycles are odd and odd length cycles are
even.

2. If s is any permutation, sign(s) = sign(s−1).

Proof. 1. We saw in the proof of Lemma 2.16.1 that if a = (a0, . . . , am−1) is
any m-cycle,

(a0 . . . , am−1) = (a0, a1)(a1, a2) · · · (am−2, am−1)

so an m-cycle can be written as a product of m − 1 transpositions. The
number of transpositions in this expression therefore has the opposite
parity to m, as required.

2. If s = t1 · · · tm is a product of m transpositions, s−1 = t−1
m · · · t−1

1 . But
the inverse of a transposition is a transposition, so s−1 is also the product
of m transpositions.

Another way to express the first part of this lemma would be to say that
sign(a0, . . . , am−1) = (−1)m−1.

Further reading

You don’t need to read any of these for the purposes MATH0005, but if you
want to learn more about the topics covered here are my recommendations.
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Set theory

The third year course MATH0037 Logic contains some material on set theory. If
you want to learn about formal (ZFC) set theory and can’t wait for MATH0037,
Classic Set Theory by Derek Goldrei is a great introduction. It was written as
an Open University textbook so is designed for self-study. Naive Set Theory by
Paul Halmos gives an idea of what formal set theory is all about without getting
into all of the axiomatic details.

The problems with unrestricted set comprehension mentioned briefly in the
text are explained nicely in the Stanford Encyclopedia of Philosophy entry for
Russell’s Paradox, but you can find hundreds of other examples with an internet
search. This short pdf by the philosopher Richard Pettigrew gives a short sketch
of what goes wrong and how it is fixed formally.

Permutations

Most basic algebra textbooks go into more detail on permutations than we
do in 0005. I like A Concise Introduction to Pure Mathematics by Martin
Liebeck a lot, and it has a nice application of the sign of a permutation to
(not) solving the 15 puzzle. Topics in Algebra by I. Herstein is not always the
easiest text but contains loads of interesting material if algebra is your thing,
some of which is covered in MATH0006 Algebra 2. C. Pinter’s Book of Abstract
Algebra is published by Dover so is cheap even if you want a hard copy, and
covers permutations in chapters 7 and 8. It’s especially worthwhile if you want
to learn more abstract algebra.

https://www.ucl.ac.uk/maths/sites/maths/files/math0037.pdf
https://www.routledge.com/Classic-Set-Theory-For-Guided-Independent-Study/Goldrei/p/book/9780412606106)
https://plato.stanford.edu/entries/russell-paradox/
https://plato.stanford.edu/entries/russell-paradox/
https://www.mcmp.philosophie.uni-muenchen.de/students/math/basic-set-theory.pdf
https://en.wikipedia.org/wiki/15_puzzle


Chapter 3

Matrices

3.1 Matrix definitions

We begin with a lot of definitions.

Definition 3.1.1. • A m×nmatrix is a rectangular grid of numbers with
m rows and n columns.

• A square matrix is one which is n× n for some n.

• A (height m) column vector is an m× 1 matrix.

• A (width n) row vector is a 1× n matrix.

• Rn is the set of all column vectors with height n and real numbers as
entries, Cn is the set of all height n column vectors with complex numbers
as entries.

• Mm×n(R) is the set of all m× n matrices with real number entries.

• The m× n zero matrix, written 0m×n, is the m× n matrix all of whose
entries are zero.

Example 3.1.1. •
(
1
0

)
is a 2× 1 column vector, an element of R2.

•
(
1 2 3
4 5 6

)
is a 2× 3 matrix

•
(
−1 −2

)
is a 1× 2 row vector

•
(
1 2
2 1

)
is a 2× 2 square matrix.

• 02×2 =

(
0 0
0 0

)
.

63
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3.1.1 Matrix entries

The i, j entry of a matrix means the number in row i and column j. It is
important to get these the correct way round. Usually when you give (x, y)
coordinates, x refers to the horizontal direction and y refers to the vertical
direction. When we talk about the i, j entry of a matrix, however, the first
number i refers to the row number (i.e. the vertical direction) and the second
number j refers to the column number (i.e. the horizontal direction).

We often write A = (aij) to mean that A is the matrix whose i, j entry is
called aij . For example, in the 2× 2 case we would have

A =

(
a11 a12
a21 a22

)
.

If you’re using this notation you must also specify the size of the matrix, of
course.

We often talk about the columns and rows of a matrix. If A is an m × n
matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn


then the ith row of A means the 1× n row vector(

ai1 ai2 · · · ain
)

and the jth column is the m× 1 column vector
a1j
a2j
...

amj

 .

For example, if

A =

(
1 2
3 4

)

then the first row is
(
1 2

)
and the second column is

(
2
4

)
.

3.1.2 Matrix addition and scalar multiplication

We can add matrices of the same size. If A = (aij) and B = (bij) are the same
size, then A+B is defined to be the matrix whose i, j entry is aij + bij .

Example 3.1.2.(
1 2
4 5

)
+

(
0 1
2 3

)
=

(
1 + 0 2 + 1
4 + 2 5 + 3

)
=

(
1 3
6 8

)
.
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In other words, we add matrices by adding corresponding entries. We never
add matrices of different sizes.

We also multiply matrices by numbers. This is called scalar multiplica-
tion. If A = (aij) is a matrix and λ a number then λA means the matrix
obtained by multiplying every entry in A by λ, so the i, j entry of λA is λaij .

Example 3.1.3.

2

(
1 −3
0 1

)
=

(
2 −6
0 2

)
.

3.1.3 Laws for addition and scalar multiplication

These operations have some familiar properties.

Theorem 3.1.1. If a and b are numbers and A, B, and C are matrices of the
same size,

1. A+B = B +A (commutativity)

2. A+ (B + C) = (A+B) + C (associativity)

3. (a+ b)A = aA+ bA (distributivity),

4. a(A+B) = aA+ aB (distributivity), and

5. a(bA) = (ab)A.

These can be proved using the usual laws for addition and multiplication of
numbers.

3.2 Matrix multiplication

We are going to define a way to multiply certain matrices together. After that
we will see several different ways to understand this definition, and we will see
how the definition arises as a kind of function composition.

Definition 3.2.1. Let A = (aij) be a m× n matrix and B = (bij) be an n× p
matrix. Then the matrix product AB is defined to be the m× p matrix whose
i, j entry is

n∑
k=1

aikbkj . (3.1)

Before we even start thinking about this definition we record one key point
about it. There are two ns in the definition above: one is the number of columns
of A and the other is the number of rows of B. These really must be the same.
We only define the matrix product AB when the number of columns of A
equals the number of rows of B. The reason for this will become clear when we
interpret matrix multiplication in terms of function composition later.

Example 3.2.1. The 1, 2 entry of a matrix product AB is obtained by putting
i = 1 and j = 2 in the formula (3.1). If A = (aij) is m × n and B = (bij) is
n× p then this is

a11b12 + a12b22 + a13b32 + · · ·+ a1nbn2
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You can see that we are multiplying each entry in the first row of A by the
corresponding entry in the second column of B and adding up the results. In
general, the i, j entry of AB is obtained by multiplying the entries of row i of
A with the entries of column j of B and adding them up.

Example 3.2.2. Let’s look at an abstract example first. Let

A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
.

The number of columns of A equals the number of rows of B, so the matrix
product AB is defined, and since (in the notation of the definition) m = n =
p = 2, the size of AB is m× p which is 2× 2. From the formula, we get

AB =

(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
.

Example 3.2.3. Making the previous example concrete, if

A =

(
1 2
3 4

)
, B =

(
5 6
7 8

)
.

then A is 2 × 2, B is 2 × 2, so the matrix product AB is defined and will be
another 2× 2 matrix:

AB =

(
1× 5 + 2× 7 1× 6 + 2× 8
3× 5 + 4× 7 3× 6 + 4× 8

)
=

(
19 22
43 50

)
.

Matrix multiplication is so important that it is helpful to have several dif-
ferent ways of looking at it. The formula above is useful when we want to prove
general properties of matrix multiplication, but we can get further insight when
we examine the definition carefully from different points of view.

3.2.1 Matrix multiplication happens columnwise

A very important special case of matrix multiplication is when we multiply a
m× n matrix by an n× 1 column vector. Let

A =

(
a b c
d e f

)
,x =

xy
z

 .

Then we have

Ax =

(
ax+ by + cz
dx+ ey + fz

)
Another way to write the result of this matrix multiplication is

x

(
a
d

)
+ y

(
b
e

)
+ z

(
c
f

)
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showing that the result is obtained by adding up scalar multiples of the columns
of A. If we write cj for the jth column of A then the expression

xc1 + yc2 + zc3,

where we add up scalar multiples of the cjs, is called a linear combination of
c1, c2, and c3. Linear combinations are a fundamental idea and we will return
to them again and again in the rest of MATH0005.

This result is true whenever we multiply an m × n matrix and an n × 1
column vector, not just in the example above.

Proposition 3.2.1. Let A = (aij) be an m× n matrix and x an n× 1 column
vector with entries x1, . . . , xn. If c1, . . . , cn are the columns of A then

Ax =

n∑
k=1

xkck.

Proof. From the matrix multiplication formula (3.1) we get

Ax =


∑n

k=1 a1kxk∑n
k=1 a2kxk

...∑n
k=1 amkxk

 =

n∑
k=1

xk


a1k
a2k
...

amk


The column vector whose entries are a1k, a2k, . . . amk is exactly the kth column
of A, so this completes the proof.

Definition 3.2.2. For a fixed n, the standard basis vectors e1, . . . , en are
the vectors 

1
0
0
...
0

 ,


0
1
0
...
0

 , . . . ,


0
0
...
0
1

 .

The vector ei with a 1 in position i and zeroes elsewhere is called the ith
standard basis vector.

For example, if n = 3 then there are three standard basis vectors

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 .

The special case of the proposition above when we multiply a matrix by a
standard basis vector is often useful, so we’ll record it here.

Corollary 3.2.2. Let A be a m×n matrix and ej the jth standard basis vector
of height n. Then Aej is equal to the jth column of A.

Proof. According to Proposition 3.2.1 we have Aej =
∑n

k=1 xkck where xk is
the kth entry of ej and ck is the kth column of A. The entries of ej are all zero
except for the jth which is 1, so

Aej = 0× c1 + · · ·+ 1× cj + · · ·+ 0× cn = cj .
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Example 3.2.4. Let A =

(
1 2
3 4

)
. You should verify that A

(
1
0

)
equals the

first column of A and A

(
0
1

)
equals the second column of A.

Proposition 3.2.1 is important it lets us show that when we do any matrix
multiplication AB, we can do the multiplication column-by-column.

Theorem 3.2.3. Let A be an m×n matrix and B an n×p matrix with columns
d1, . . . ,dp. Then

AB =

 | · · · |
Ad1 · · · Adp

| · · · |

 .

The notation means that the first column of AB is equal to what you get
by multiplying A into the first column of B, the second column of AB is what
you get by multiplying A into the second column of B, and so on. That’s what
it means to say that matrix multiplication works columnwise.

Proof. From the matrix multiplication formula (3.1) the jth column of AB has
entries 

∑n
k=1 a1kbkj∑n
k=1 a2kbkj

...∑n
k=1 amkbkj

 (3.2)

The entries bkj for k = 1, 2, . . . , n are exactly the entries in column j of B, so
(3.2) is Adj as claimed.

Corollary 3.2.4. Every column of AB is a linear combination of the columns
of A.

Proof. Theorem 3.2.3 tells us that each column of AB equals Ad for certain
vectors d, and Proposition 3.2.1 tells us that any such vector Ad is a linear
combination of the columns of A.

Example 3.2.5. Let’s look at how the Proposition and the Theorem in this

section apply to Example 3.2.3, when A was

(
1 2
3 4

)
and the columns of B are

d1 =

(
5
7

)
and d2 =

(
6
8

)
.

You can check that

Ad1 =

(
19
43

)
= 5

(
1
3

)
+ 7

(
2
4

)
Ad2 =

(
22
50

)
= 6

(
1
3

)
+ 8

(
2
4

)
and that these are the columns of AB we computed before.
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3.2.2 Matrix multiplication happens rowwise

There are analogous results when we multiply an 1×n row vector and an n× p
matrix.

Proposition 3.2.5. Let a be a 1× n row vector with entries a1, . . . , an and let
B be an n× p matrix with rows s1, . . . , sn. Then aB =

∑n
k=1 aksk.

Proof. From the matrix multiplication formula (3.1) we get

aB =
(∑n

k=1 akbk1 · · ·
∑n

k=1 akbkp
)

=

n∑
k=1

ak
(
bk1 · · · bkp

)
=

n∑
k=1

aksk.

In particular, aB is a linear combination of the rows of B.

Theorem 3.2.6. Let A be a m × n matrix with rows r1, . . . , rm and let B be
an n× p matrix. Then

AB =

— r1B —
· · · · · · · · ·
— rmB —


The notation is supposed to indicate that the first row of AB is equal to

r1B, the second row is equal to r2B, and so on.

Proof. From the matrix multiplication formula (3.1), the ith row of AB has
entries (∑n

k=1 aikbk1 · · ·
∑n

k=1 aikbkp
)

=

n∑
k=1

aik
(
bk1 · · · bkp

)
. (3.3)

Row i of A is ri =
(
ai1 ai2 · · · ain

)
, so riB agrees with (3.3) by Proposition

3.2.5.

The theorem combined with the proposition before it show that in general
the rows of AB are always linear combinations of the rows of B.

Example 3.2.6. Returning to the example where

A =

(
1 2
3 4

)
, B =

(
5 6
7 8

)
the rows of A are r1 =

(
1 2

)
and r2 =

(
3 4

)
and the rows of B are s1 =

(
5 6

)
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and s2 =
(
7 8

)
. We have

r1B =
(
1 2

)(5 6
7 8

)
= s1 + 2s2

=
(
19 22

)
r2B =

(
3 4

)(5 6
7 8

)
= 3s1 + 4s2

=
(
43 50

)
.

and these are the rows of the matrix product AB.

Example 3.2.7. When the result of a matrix multiplication is a 1× 1 matrix
we will usually just think of it as a number. This is like a dot product, if you’ve
seen those before.

(
1 2 3

)4
5
6

 = 1× 4 + 2× 5 + 3× 6 = 32.

Example 3.2.8. Let A =

1 2
3 4
5 6

, a 3 × 2 matrix, and c =

(
7
8

)
, a 2 × 1

column vector. The number of columns of A and the number of rows of c are
equal, so we can compute Ac.

Ac =

1× 7 + 2× 8
3× 7 + 4× 8
5× 7 + 6× 8

 .

Example 3.2.9. Let

A =
(
1 2

)
, B =

(
1 0 1
0 1 0

)
.

A is 1×2, B is 2×3, so the matrix product AB is defined, and is a 1×3 matrix.

The columns of B are c1 =

(
1
0

)
, c2 =

(
0
1

)
, and c3 =

(
1
0

)
. The product AB

is therefore(
Ac1 Ac2 Ac3

)
=
(
1× 1 + 2× 0 1× 0 + 2× 1 1× 1 + 2× 0

)
=
(
1 2 1

)
Example 3.2.10. Let

A =

(
1 2
3 4

)
, B =

(
5 6
7 8

)
.

Then A is 2 × 2, B is 2 × 2, so the matrix product AB is defined and will be
another 2× 2 matrix:

AB =

(
1× 5 + 2× 7 1× 6 + 2× 8
3× 5 + 4× 7 3× 6 + 4× 8

)
.
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3.2.3 Matrix multiplication motivation

In this section we’ll try to answer two questions: where does this strange-looking
notion of matrix multiplication come from? Why can we only multiply A and
B if the number of columns of A equals the number of rows of B?

Definition 3.2.3. Let A be a m × n matrix. Then TA : Rn → Rm is the
function defined by

TA(x) = Ax.

Notice that this definition really does make sense. If x ∈ Rn then it is an
n× 1 column vector, so the matrix product Ax exists and has size m× 1, so it
is an element of Rm.

Now suppose we have an m × n matrix A and a q × p matrix B, so that
TA : Rn → Rm and TB : Rp → Rq. Can we form the composition TA ◦ TB? The
answer is no, unless q = n, that is, unless the number of columns of A equals
the number of rows of B. So let’s assume that q = n so that B is n× p and the
composition

TA ◦ TB : Rn → Rp

makes sense. What can we say about it?

Theorem 3.2.7. If A is m× n and B is n× p then TA ◦ TB = TAB.

You will prove this on a problem sheet.
The theorem shows that matrix multiplication is related to composition of

functions. That’s useful because it suggests something: we know that function
composition is always associative, so can we use that to show matrix multipli-
cation is associative too? That is, if the products AB and BC make sense, is
A(BC) equal to (AB)C? This is not exactly obvious if you just write down the
horrible formulas for the i, j entries of both matrices. If we believe the theorem
though it’s easy: we know

TA ◦ (TB ◦ TC) = (TA ◦ TB) ◦ TC

because function composition is associative, and so

TA ◦ TBC = TAB ◦ TC
TA(BC) = T(AB)C .

If TX = TY then X = Y (for example, you could evaluate at the standard basis
vector ej to see that the jth column of X equals the jth column of Y for any
j), so we get A(BC) = (AB)C.

Since we didn’t prove the theorem here, we’ll prove the associativity result
in a more pedestrian way in the next section.

3.3 Transpose

Definition 3.3.1. Let A = (aij) be a m × n matrix. The transpose of A,
written AT , is the n×m matrix whose i, j entry is aji.

You can think of the transpose as being obtained by reflecting A in the
south east diagonal starting in the top left hand corner, or as the matrix whose
columns are the rows of A, or the matrix whose rows are the columns of A.
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Example 3.3.1. • If A =

(
1 2 3
4 5 6

)
then AT =

1 4
2 5
3 6

.

• If A =

(
1 2
3 4

)
then AT =

(
1 3
2 4

)
.

• If A =

1
2
3

 then AT =
(
1 2 3

)
.

It’s common to use transposes when we want to think geometrically, because
if x ∈ Rn then xTx is equal to

x21 + x22 + · · ·+ x2n

which is the square of the length of x. (As usual, we have identified the 1 × 1
matrix xTx with a number here).

When z is a complex column vector, that is, an element of Cn for some n,

this doesn’t quite work. If z =

(
1
i

)
for example, then zT z = 0, which is not

a good measure of the length of z. For this reason, when people work with
complex vectors they often use the conjugate transpose AH defined to be the
matrix whose entries are the complex conjugates of the entries of AT . With this

definition, for a complex vector z =

z1...
zn

 we get

zHz = |z1|2 + · · ·+ |zn|2.

3.4 Multiplication properties

Proposition 3.4.1. Let A and A′ be m × n matrices, let B and B′ be n × p
matrices, let C be a p× q matrix, and let λ be a number. Then

1. A(BC) = (AB)C (associativity),

2. (A+A′)B = AB +A′B, and A(B +B′) = AB +AB′ (distributivity),

3. (λA)B = λ(AB) = A(λB), and

4. (AB)T = BTAT .

Proof. Let A = (aij), A
′ = (a′ij), B = (bij), B

′ = (b′ij), C = (cij). During this
proof we also write Xij to mean the i, j entry of a matrix X.

1. AB has i, j entry
∑n

k=1 aikbkj , so the i, j entry of (AB)C is

p∑
l=1

(AB)ilclj =

p∑
l=1

n∑
k=1

aikbklclj . (3.4)
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On the other hand, the i, j entry of BC is
∑p

l=1 bilclj so the i, j entry of
A(BC) is

n∑
k=1

aik(BC)kj =

n∑
k=1

aik

p∑
l=1

bklclj

=

n∑
k=1

p∑
l=1

aikbklclj . (3.5)

(3.5) and (3.4) are the same because it doesn’t matter if we do the k or l
summation first: we just get the same terms in a different order.

2. The i, j entry of (A+A′)B is
∑n

k=1(aik+a
′
ik)bjk which equals

∑n
k=1 aikbkj+∑n

k=1 a
′
ikbkj , but this is the sum of the i, j entry of AB and the i, j entry

of A′B, proving the first equality. The second is similar.

3. The i, j entry of λA is λaij , so the i, j entry of (λA)B is

n∑
k=1

(λaik)bkj = λ

n∑
k=1

aikbkj = λ(AB)ij

so (λA)B and λ(AB) have the same i, j entry for any i, j, and are therefore
equal. The second equality can be proved similarly.

4. This will be an exercise on one of your problem sets.

These results tell you that you can use some of the normal rules of algebra
when you work with matrices, like what happened for permutations. Again, like
permutations, what you can’t do is use the commutative property.

3.4.1 Matrix multiplication isn’t commutative

Definition 3.4.1. Two matrices A and B are said to commute if AB and BA
are both defined and AB = BA.

For some pairs of matrices, the product AB is defined but BA is not. For
example, if A is 2 × 3 and B is 3 × 4 then AB is defined but BA isn’t. Even
when both AB and BA are defined and have the same size they won’t in general
be equal.

Example 3.4.1. let A =

(
1 2
3 4

)
and B =

(
5 6
7 8

)
. Then

AB =

(
19 22
43 50

)
BA =

(
23 34
31 46

)
.

3.4.2 The identity matrix

Definition 3.4.2. The n× n identity matrix In is the matrix with i, j entry
1 if i = j and 0 otherwise.
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For example,

I2 =

(
1 0
0 1

)
, I3 =

1 0 0
0 1 0
0 0 1

 .

The most important property of identity matrices is that they behave like
the number 1 does when you multiply by them.

Theorem 3.4.2. If A is an m× n matrix then ImA = AIn = A.

Proof. Let A = (aij), In = (δij), so δij is 1 if i = j and 0 otherwise. The formula
for matrix multiplication tells us that for any i and j, the i, j entry of ImA is∑m

k=1 δikakj The only term in this sum that can be nonzero is the one when
k = i, so the sum equals 1 × aij = aij . Thus the i, j entry of ImA equals aij ,
the i, j entry of A.

The other equality can be proved similarly.

3.5 Invertible matrices

Definition 3.5.1. An n× n matrix A is called invertible if and only if there
exists an n× n matrix B such that AB = BA = In.

If there is such a matrix B, we can prove that there is only one such matrix
B:

Proposition 3.5.1. If AB = BA = In and AC = CA = In then B = C.

Proof.

B = BIn Theorem 3.4.2

= B(AC)

= (BA)C associativity

= InC

= C Theorem 3.4.2

This means that when a matrix is invertible we can talk about the inverse
of A. We write A−1 for the inverse of A when it exists.

3.5.1 Matrices with rows or columns of zeroes are not
invertible

Theorem 3.5.2. If an n × n matrix A has a row of zeroes, or a column of
zeroes, then it is not invertible.

Proof. Suppose A has a column of zeroes and that B is any other n×n matrix.
By Theorem 3.2.3, the columns of BA are B times the columns of A. In partic-
ular, one of these columns is B times the zero vector, which is the zero vector.
Since one of the columns of BA is all zeroes, BA is not the identity.

If A has a row of zeroes, we can make a similar argument using Theorem
3.2.6.
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3.5.2 Inverse of a product of matrices

If you multiply any number of invertible matrices together, the result is invert-
ible. Recall the shoes-and-socks result about the inverse of a composition of two
functions: exactly the same thing is true.

Theorem 3.5.3. If A1, . . . , Ak are invertible n × n matrices then A1 · · ·Ak is
invertible with inverse A−1

k · · ·A−1
1 .

The proof is the same as for functions: you can simply check that A−1
k · · ·A−1

1

is a two sided inverse to A1 · · ·Ak using the associativity property for matrix
multiplication.

This theorem has a useful corollary about when matrix products are invert-
ible.

Corollary 3.5.4. Let A and E be n× n matrices with E invertible. Then EA
is invertible if and only if A is invertible, and AE is invertible if and only if A
is invertible.

Proof. If A is invertible then the theorem tells us that so are EA and AE.
Suppose EA is invertible. Certainly E−1 is invertible (its inverse is E), so

by the theorem E−1EA is invertible, that is, A is invertible. The argument for
AE is similar.

3.6 Systems of linear equations

3.6.1 Definition of a linear system

Definition 3.6.1. A system of m linear equations in n unknowns x1, . . . , xn
with coefficients aij , 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n and b1, . . . , bm is a list of simultaneous
equations

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm

As the notation suggests, we can turn a system of linear equations into a
matrix equation and study it using matrix methods.

3.6.2 Matrix form of a linear system

Every system of linear equations can be written in matrix form: the above

system is equivalent to saying that Ax = b, where A = (aij), x =

x1...
xn

, and

b =

 b1
...
bm

.
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Example 3.6.1. The system of linear equations

2x+ 3y + 4z = 5

x+ 5z = 0 (3.6)

has matrix form (
2 3 4
1 0 5

)xy
z

 =

(
5
0

)
.

This connection means that we can use systems of linear equations to learn
about matrices, and use matrices to learn about systems of linear equations.
For example, if A is invertible and we want to solve the matrix equation

Ax = b

we could multiply both sides by A−1 to see that there is a unique solution
x = A−1b.

We are going to make two more observations about solving linear systems
based on what we know about matrix multiplication. The first is that by Propo-
sition 3.2.1, the vectors which can be written as Au for some u are exactly the
ones which are linear combinations of the columns of A, that is, vectors of the
form

u1c1 + · · ·+ uncn

where cj is the jth column of A. So the matrix equation Ax = b has a solution
if and only if b can be written as a linear combination of the columns of A.
This set of linear combinations is therefore important enough to have a name.

Definition 3.6.2. The column space of a matrix A, written C(A), is the set
of all linear combinations of the columns of A.

A homogeneous matrix equation is one of the form Ax = 0. These are
particularly important because the solutions to any matrix equation Ax = b
can be expressed in terms of the solutions to the corresponding homogeneous
equation Ax = 0.

Theorem 3.6.1. Let p be a solution of the matrix equation Ax = b. Then any
solution of Ax = b can be written as p+k for some vector k such that Ak = 0.

Proof. Suppose q is a solution of Ax = b. Then Ap = Aq, so A(p − q) = 0.
Letting k = p− q we get q = p+ k as claimed.

The theorem tells you that if you can solve the homogeneous equation Ax =
0 and you can somehow find a particular solution p of Ax = b, you know all
the solutions of the inhomogeneous equation Ax = b.

What does it mean for Ak = 0 to be true? Using Proposition 3.2.1 again, it
says that

k1c1 + · · ·+ kncn = 0 (3.7)

where the kj are the entries of k and the cj are the columns of A. An equation
of the form (3.7) is called a linear dependence relation, or just a linear
dependence, on c1, . . . , cn. We’ve seen that solutions of the matrix equation
Ax = 0 correspond to linear dependences on the columns of A.

The solutions of the matrix equation Ax = 0m are so important that they
get their own name.
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Definition 3.6.3. The nullspace of an m × n matrix A, written N(A), is
{v ∈ Rn : Av = 0m}.

The homogeneous equation Ax = 0m has the property that the zero vector
is a solution, if u and v are solutions then so is u+v, and if λ is a number then
λu is also a solution. This is what it means to say that N(A) is a subspace of
Rn, something we will cover in the final chapter of MATH0005.

3.6.3 Augmented matrix

The augmented matrix of a system of linear equations whose matrix form is
Ax = b is the matrix which you get by adding b as an extra column on the
right of A. We write this as (A | b) or just (A b).

For example, the augmented matrix for the system of linear equations (3.6)
above would be (

2 3 4 5
1 0 5 0

)
.

Definition 3.6.4. A solution to a matrix equation Ax = b is a vector y (of
numbers this time, not unknowns) such that Ay = b.

A system of linear equations may have a unique solution, many different
solutions, or no solutions at all. In future lectures we will see how to find out
how many solutions, if any, a system has.

3.7 Row operations

3.7.1 How we solve linear systems

If you are given a system of linear equations in variables x, y, z and asked to
solve them, what you probably do is to manipulate the equations by adding
multiples of one equation to another until you have “eliminated” some of the
variables and you can read off the solutions. We are going to try to formalise
this method of solving linear equations.

Because we want to use matrix methods, let’s solve an example system and
keep track of what our equation manipulation does to the corresponding aug-
mented matrix.

Consider the linear system

3x+ 4y = 6

x+ 2y = 5.

The corresponding matrix equation is Ax = b where

A =

(
3 4
1 2

)
,b =

(
6
5

)
,x =

(
x
y

)
.

The augmented matrix is (A | b) =
(
3 4 6
1 2 5

)
.
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To solve the system, we first eliminate x from first equation by subtracting
3 times the second equation from the first. The equations become

−2y = −9

x+ 2y = 5

The augmented matrix

(
−2 0 −9
1 2 5

)
of this new system is obtained by

adding −3 times the second row of the old augmented matrix to the first row.
Next we get the coefficient of y in the first equation to 1 by multiplying the

first equation by −1/2. The equations become

y = 9/2

x+ 2y = 5

The augmented matrix

(
0 1 9/2
1 2 5

)
of this new system is obtained by multi-

plying every entry in the first row of the old augmented matrix by −1/2.
Next we eliminate y from the second equation by subtracting 2 times the

first equation from the second. The equations become

y = 9/2

x = −4

The augmented matrix

(
0 1 9/2
1 0 −4

)
of this new system is obtained by adding

−2 times the first row to the second row.
Lastly, if we wanted the first equation to tell us the value of the first variable

and the second equation to tell us about the second variable, we could swap the
order of the two equations, corresponding to swapping the rows of the augmented

matrix so that it becomes

(
1 0 −4
0 1 9/2

)
.

3.7.2 Row operations

The manipulations we do to systems of linear equations correspond to doing
row operations to the augmented matrices.

Definition 3.7.1. A row operation is one of the following things we can do
to a matrix.

1. Add λ times row i to row j (for j ̸= i, λ any number), written rj 7→ rj+λri.

2. Multiply row i by λ, where λ ̸= 0, written ri 7→ λri.

3. Swap rows i and j, written ri ↔ rj .

3.7.3 Row operations are invertible

For each row operation r there is another row operation s such that doing r
then s, or doing s then r, gets you back to the matrix you started with. Here
is a table of the three types of row operations and their inverses.
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row operation inverse
rj 7→ rj + λri (add λ times ri to rj) rj 7→ rj − λri (add −λ times ri to rj)
ri 7→ λri (multiply ri by λ ̸= 0) ri 7→ λ−1ri (multiply ri by λ

−1)
ri ↔ rj (swap ri and rj) ri ↔ rj (swap ri and rj)

3.8 Elementary matrices

3.8.1 Definition of an elementary matrix

An elementary matrix is one you can get by doing a single row operation to an
identity matrix.

Example 3.8.1. • The elementary matrix

(
0 1
1 0

)
results from doing the

row operation r1 ↔ r2 to I2.

• The elementary matrix

1 2 0
0 1 0
0 0 1

 results from doing the row operation

r1 7→ r1 + 2r2 to I3.

• The elementary matrix

(
−1 0
0 1

)
results from doing the row operation

r1 7→ (−1)r1 to I2.

3.8.2 Doing a row operation is the same as multiplying by
an elementary matrix

Doing a row operation r to a matrix has the same effect as multiplying that
matrix on the left by the elementary matrix corresponding to r:

Theorem 3.8.1. Let r be a row operation and A an m × n matrix. Then
r(A) = r(Im)A.

Proof. We will use the fact that matrix multiplication happens rowwise. Specif-
ically, we use Proposition 3.2.5 which says that if the rows of A are s1, . . . , sm
and if r =

(
a1 · · · am

)
is a row vector then

rA = a1s1 + · · ·+ amsm

and Theorem 3.2.6, which tells us that the rows of r(Im)A are r1A, . . . , rmA
where rj is the jth row of r(Im). We deal with each row operation separately.

1. Let r be rj 7→ rj+λri. Row j of r(Im) has a 1 in position j, a λ in position
i, and zero everywhere else, so by the Proposition mentioned above

rjA = sj + λsi.

For j′ ̸= j, row j′ of r(Im) has a 1 at position j′ and zeroes elsewhere, so

rj′A = sj′ .

The theorem mentioned above tells us that these are the rows of r(Im)A,
but they are exactly the result of doing r to A.
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2. Let r be rj 7→ λrj . Row j of r(Im) has a λ in position j and zero
everywhere else, so

rjA = λsj .

For j′ ̸= j, row j′ of r(Im) has a 1 at position j′ and zeroes elsewhere, so

rj′A = sj′ .

As before, these are the rows of r(Im)A and they show that this is the
same as the result of doing r to A.

3. Let r be ri ↔ rj . Row i of r(Im) has a 1 in position j and zeroes elsewhere,
and row j of r(Im) has a 1 in position i and zeroes elsewhere, so rows i
and j of r(Im)A are given by

riA = sj

rjA = si.

As in the previous two cases, all other rows of r(Im)A are the same as the
corresponding row of A. The result follows.

Corollary 3.8.2. Elementary matrices are invertible.

Proof. Let r be a row operation, s be the inverse row operation to r, and let
In an identity matrix. By Theorem 3.8.1, r(In)s(In) = r(s(In)). Because s is
inverse to r, this is In. Similarly, s(In)r(In) = s(r(In)) = In. It follows that
r(In) is invertible with inverse s(In).

3.9 Row reduced echelon form

3.9.1 Row operations don’t change the solutions to a ma-
trix equation

Our informal method of solving linear systems is to do certain manipulations
to the equations until they are in a form where the solutions are easy to read
off. This method only works if the manipulations we do don’t change the set of
solutions.

When we introduced row operations, it was because their effect on the aug-
mented matrix of a linear system corresponded to the kind of manipulations we
perform when solving such a linear system. We’re now going to prove that these
row operations don’t change the set of solutions.

Theorem 3.9.1. Suppose that (A′ | b′) results from (A | b) by doing a sequence
of row operations. Then the matrix equations Ax = b and A′x = b′ have the
same solutions.

Proof. If the elementary matrices corresponding to these row operations are
E1, . . . , Ek then letting E = Ek · · ·E1 we have

E(A | b) = (A′ | b′)
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and so (because matrix multiplication works columnwise) EA = A′ and Eb =
b′. Note that E is a product of invertible matrices, so by Theorem 3.5.3 is itself
invertible.

We must show that a column vector v is a solution of Ax = b if and only if
it is a solution of A′x = b′. If Av = b then multiplying on the left by E gives
EAv = Eb, that is, A′v = b′. If A′v = b′ then EAv = Eb, so multiplying on
the left by E−1 gives Av = b.

3.9.2 Row reduced echelon form

We talked about manipulating equations into a simple form where the solutions
could be easily read off. One possible “simple form” is called row reduced
echelon form. To define that we need the notion of a leading entry.

Definition 3.9.1. The leading entry in a row of a matrix is the first non-zero
entry in that row, starting from the left.

Of course, if a row is all zeroes then it doesn’t have a leading entry. In the

matrix

(
0 2
0 0

)
the leading entry in the first row is the 2 in position 1, 2 while

the second row has no leading entry.

Definition 3.9.2. A matrix is in row reduced echelon form (RREF) if

1. all leading entries are 1,

2. any rows which are all zero are below any rows which are not all zero,

3. all entries in the same column as a leading entry are zero, and

4. for every i, if row i and i+ 1 have a leading entry then the leading entry
in row i+ 1 is to the right of that in row i.

Example 3.9.1. •
(
0 0
1 0

)
isn’t in RREF: the zero row is at the top.

•
(
2 0
0 0

)
isn’t in RREF: there is a row in which the left-most non-zero

entry is not 1.

•
(
0 1
1 0

)
isn’t in RREF: the left-most 1 in row 2 is not to the right of the

left-most 1 in the row above it.

•
(
1 α β 3
0 0 1 −2

)
is in RREF if and only if β = 0: the left-most 1 in row

2 is in column 3, but it is not the only non-zero entry in column 3 unless
β = 0.

•

1 0 0 3
0 0 1 0
0 0 0 0

 is in RREF.
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3.10 RREF existence and uniqueness

3.10.1 Existence and uniqueness

Here are two facts about row reduced echelon form.

Theorem 3.10.1. For every matrix A, there is a sequence of row operations
taking A to a matrix in row reduced echelon form.

Proof. We prove this by induction on the number of columns of A. When A has
one column, either A is the zero vector (in which case it is already in RREF) or
it has a nonzero entry a. Swap a to the top row, multiply the top row by 1/a,
and use the 1, 1 entry as a pivot to eliminate the other entries of A. The result
is the vector with a 1 at the top and zeroes elsewhere, which is in RREF.

For the inductive step, suppose that A is m × n and that the result is true
for all matrices with n− 1 columns. We then know that there is a series of row
operations we can do to A that result in a matrix X whose first n− 1 columns
form a RREF matrix. Suppose the matrix formed by these n − 1 columns has
k rows of zeroes at the bottom. If the final column has zeroes in its bottom k
entries, the matrix is in RREF. If not, swap a nonzero entry to the top of these k
rows, use it as a pivot to eliminate all other nonzero entries in the final column,
and multiply by a scalar so that its entry is 1. The result is in RREF.

Theorem 3.10.2. Let A be a matrix. If R and S are RREF matrices that can
be obtained by doing row operations to A, then R = S.

This theorem says that there is only one RREF matrix which can be obtained
by doing row operations to A, so we are justified in calling the unique RREF
matrix reachable from A the row reduced echelon form of A.

Proof. Again, the proof is by induction on the number n of columns of A. There
are only two RREF column vectors: the zero vector and a vector with a 1 at
the top and all other entries zero. Clearly no sequence of row operations takes
one of these to the other, so the base case of the induction holds.

For the inductive step, suppose that R and S are RREF matrices reachable
from A. Let A′, R′, and S′ be the matrices formed by the first n− 1 columns of
A, R, and S respectively. The matrices R′ and S′ are RREF matrices formed
by doing row operations to A′, so by induction they are equal. Suppose for a
contradiction that R ̸= S, so that there is some j such that the jth entry rjn
in the last column of R which differs from the corresponding entry sjn of S.

Theorem 3.9.1 tells us that the equations Ax = 0, Rx = 0, and Sx = 0 all
have exactly the same solutions.

Let u be any solution of Ax = 0. We have Ru = Su = 0, so (R− S)u = 0.
Since the first n− 1 columns of R− S are all zeroes, we get (rjn − sjn)un = 0,
so un = 0. In other words, every solution of Ax = 0 has last entry zero.

The RREF matrix R′ has some nonzero rows and then some zero rows. Say
there are k zero rows. We can then write R′ like this(

X
0k×(n−1)

)
where X has no zero rows. Then R and S have the form

R =

(
X r

0k×(n−1) t

)
, S =

(
X s

0k×(n−1) u

)
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I claim that t ̸= 0. Suppose for a contradiction that t = 0. The first m−k rows
of R all have leading entries. For 1 ⩽ i ⩽ m − k, let the leading entry in row
i of R occur in column number ci. Let r have entries r1, . . . , rm−k, where m is
the number of rows of A. Notice that column ci of R has a 1 in position i and
zeroes everywhere else, so if we add up r1 times column c1, r2 times column c2,
and so on, up to rm−k times column cm−k we get the vector



r1
...

rm−k

0
...
0


which is the last column of R. It follows that the vector with −1 in position n,
with ri in position ci for 1 ⩽ i ⩽ m− k, and with zeroes elsewhere is a solution
to Rx = 0. This contradicts every solution to Ax = 0 having last entry zero.

Since R is in RREF, t must have a 1 at the top and all other entries zero,
and r = 0. The same argument applies to S, so u = t and s = 0. This shows
R = S.

3.10.2 Example of putting a matrix into RREF

Let A =

1 2 3
4 5 6
7 8 9

. We want to do a sequence of row operations to A which

ends up with a matrix in RREF. Row 1 has a leading entry at position 1, 1,
but the other entries in column 1 aren’t 0. We use the 1, 1 entry as a pivot to
eliminate the other entries in column 1. That is, we apply row operations of the
form rj 7→ rj + λr1 to make the other entries in column 1 equal to 0.

A
r2 7→r2−4r17−−−−−−−→

1 2 3
0 −3 −6
7 8 9

 r3 7→r3−7r17−−−−−−−→

1 2 3
0 −3 −6
0 −6 −12


This matrix isn’t in RREF. One reason is that the leading entry in row 2,

in position 2, 2, isn’t equal to 1. To make that leading entry 1 we can use the
row operation that multiplies row 2 by −1/3:

1 2 3
0 −3 −6
0 −6 −12

 r2 7→(−1/3)r27−−−−−−−−→

1 2 3
0 1 2
0 −6 −12


Now we have a leading entry in row 2, column 2 which is equal to 1, but there
are other nonzero entries in that column. We use the 2, 2 entry as the next pivot
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to eliminate entries in column 2.1 2 3
0 1 2
0 −6 −12

 r1 7→r1−2r27−−−−−−−→

1 0 −1
0 1 2
0 −6 −12


r3 7→r3+6r27−−−−−−−→

1 0 −1
0 1 2
0 0 0


This matrix is in RREF, so we are done.

3.11 Solving RREF systems

Suppose we start with a linear system with matrix form Ax = b then put the
augmented matrix (A | b) into RREF. Suppose the resulting matrix in RREF
is (A′ | b′). The whole point of RREF was that the solutions of Ax = b are
the same as those of A′x = b′ but it should be “easy” to find the solutions of
A′x = b′. How do we actually find those solutions?

Example 3.11.1. Here is an augmented matrix in RREF
1 0 2 0 0
0 1 4 0 0
0 0 0 1 0
0 0 0 0 1


If the variables are called x, y, z, w then the corresponding equations are

x+ 2z = 0

y + 4z = 0

w = 0

0 = 1

The last equation is impossible, so there are no solutions to this linear system.

Example 3.11.2. Here is the same augmented matrix with a different final
column. 

1 0 2 0 2
0 1 4 0 3
0 0 0 1 4
0 0 0 0 0


In this case, if the variables are x, y, z, w, the equations are

x+ 2z = 2

y + 4z = 3

w = 4

0 = 0

The solutions are x = 2−2z, y = 3−4z, w = 4. The last 0 = 0 equation doesn’t
tell us anything so it can be ignored. We can write the solutions in vector
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form as 
x
y
z
w

 =


2− 2z
3− 4z
z
4



=


2
3
0
4

+ z


−2
−4
1
0


In general:

• If the last column of the augmented matrix has a leading entry (like in
example 1), there are no solutions. Otherwise,

• variables corresponding to a column with no leading entry (like z in ex-
ample 2) can be chosen freely, and

• the other variables are uniquely determined in terms of these free param-
eters.

The variables whose column has no leading entry are called free parame-
ters.

3.11.1 Fundamental solutions

Recall that homogeneous system of linear equations is one whose matrix form
is Ax = 0. This section is about a set of solutions to such a system called the
fundamental solutions. These are the ones you get by putting the system
into RREF and then choosing one free parameter to be 1 and the rest to be 0.

Let Rx = 0 be a homogeneous linear system where the m × n matrix R
is in RREF. Suppose that there are leading entries in rows 1 up to r of R,
where r ⩽ m and r ⩽ n. Let the leading entry in row i occur in column ci,
so c1 < c2 < · · · < cr, and note that because of part 3 of the RREF definition
Definition 3.9.2, column ci of R has a 1 in position i and zeroes elsewhere. Let
the columns of R with no leading entry be d1 < · · · < dk, so that k + r = n.

Here is an example. Suppose that

R =

0 1 2 0 3
0 0 0 1 4
0 0 0 0 0


In this case m = 3, n = 5, and r = 2 as only rows 1 and 2 contain leading
entries. The leading entries are in columns 2 and 4, so c1 = 2, c2 = 4. Columns
1, 3, and 5 don’t contain leading entries, so k = 3 and d1 = 1, d2 = 3, d3 = 5.
If the variables in this linear system are x, y, z, u, v then x, z, and v are free
parameters as their columns have no leading entry.

There are therefore three fundamental solutions, obtained by setting one free
variable to 1 and the rest to 0 (and then working out the values of the other
variables y and u by substituting into the equations).
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By substituting into the equations Rx = 0, which are

y + 2z + 3v = 0

u+ 4v = 0,

you can check that the fundamental solution corresponding to x = 1, z = v = 0
is

(
1 0 0 0 0

)T
,

the fundamental solution in which z = 1, x = v = 0(
0 −2 1 0 0

)T
and the fundamental solution corresponding to v = 1, x = z = 0 is(

0 −3 0 −4 1
)T

It’s possible to write down a general expression for the fundamental solutions
of a system Rx = 0: with the notation above, for each 1 ⩽ j ⩽ k the jth
fundamental solution sj to Rx = 0 is

sj = edj
−

r∑
i=1

ri,dj
eci

where R = (rij) and ej denotes, as usual, the jth standard basis vector. We
won’t use this expression in MATH0005 so I won’t prove it here.

The reason we are interested in fundamental solutions is that they have an
important property: any solution to Rx = 0 can be written uniquely as a linear
combination of the fundamental solutions. This property is expressed by saying
that the fundamental solutions form a basis of the space of solutions of Rx = 0:
we will look at bases for the solution space the final chapter of MATH0005.

Corollary 3.11.1. If A is m× n and n > m then the matrix equation Ax = 0
has a nonzero solution.

In terms of systems of linear equations, this says that homogeneous linear
system with more variables than equations has a nonzero solution.

Proof. When we do row operations to A to get a RREF matrix, that RREF
matrix has at most one leading entry per row. It must therefore contain a
column with no leading entry, and so there is a fundamental solution which is
not the zero vector as one of its entries is 1.

The number r of leading entries in the RREF form of a m × n matrix A is
called the rank of A, and the number k of columns with no leading entry is its
nullity. The fact that r + k = n is called the rank-nullity theorem, which we
will return to in a more general context in the final chapter of MATH0005 on
linear algebra.
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3.12 Invertibility and RREF

We are going to prove the following theorem:

Theorem 3.12.1. A square matrix A is invertible if and only if there is a
sequence of row operations taking A to the identity matrix.

We need a lemma to make the proof work.

Lemma 3.12.2. Let X be an n× n matrix in RREF. Either X = In or X has
a column with no leading entry.

Proof. Suppose every column has a leading entry, so there are n leading entries.
There’s at most one leading entry per row and there are n rows, so every row
must have a leading entry.

The leading entries go from left to right as we move down the rows of the
matrix, so the leading entries in row 1, 2, . . . , n must be in columns 1, 2, . . .n
otherwise there would be no room to fit them in.

Because X is in RREF, columns with leading entries have zeroes in all other

positions. So the first column is


1
0
...
0

, the second column is


0
1
0
...
0

, and so on.

These are the columns of the identity matrix, so X = In.

Now we can prove the theorem.

Proof. Suppose there is a sequence of row operations takingA to I, say r1, . . . , rk.
Let Ei = ri(I), the elementary matrix associated to ri. Then

EkEk−1 · · ·E1A = In

since we know from Theorem 3.8.1 that doing ri is the same as left-multiplication
by Ei. Every elementary matrix is invertible by Corollary 3.8.2. The matrix
E = Ek · · ·E1 is invertible as it is a product of invertible matrices (Theorem
3.5.3). EA = I, so A = E−1 which is invertible (with inverse E).

Conversely suppose there is no sequence of row operations taking A to I.
We can do a sequence of row operations to any matrix and end up with a RREF
matrix, so when we do this to A, the RREF matrix X we get cannot be I.

Our lemma tells us that in this case X has a column with no leading entry,
so there are n−1 or fewer leading entries, so there’s a row with no leading entry,
that is, a zero row. So X isn’t invertible by Theorem 3.5.2.

As before, there’s an invertible matrix E such that EA = X. By Corollary
3.5.4, A isn’t invertible.

3.12.1 Invertibility and solving equations

Theorem 3.12.3. A square matrix A is invertible if and only if the only solution
to Ax = 0 is 0.
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Proof. If A is invertible and Av = 0 then v = A−10 = 0.
If A is not invertible, we can do a sequence of row operations to A ending

with a RREF matrix R which cannot be the identity because of Theorem 3.12.1.
By Lemma 3.12.2, R has a column with no leading entry, so there is at least

one fundamental solution to Rx = 0. The fundamental solutions are not zero,
and the solutions of Ax = 0 are the same as the solutions of Rx = 0 by Theorem
3.9.1, so we are done.

3.13 Finding inverses

Let A be a square matrix. We now have a method of determining whether or not
A is invertible: do row operations to A until you reach a matrix in RREF. Then
by Theorem 3.12.1 A is invertible if and only if the RREF matrix is invertible.

What if we actually want to know what the inverse matrix is? You probably

already know that a 2 × 2 matrix A =

(
a b
c d

)
is invertible if and only if

ad− bd ̸= 0, and in this case

A−1 =
1

ad− bc

(
d −b
−c a

)
This formula does generalise to larger matrices, but not in a way which is easy
to use: for example, the general formula for the inverse of a 3 × 3 invertible
matrix A = (aij) is

A−1 =
1

∆



∣∣∣∣a22 a23
a32 a33

∣∣∣∣ −
∣∣∣∣a12 a13
a32 a33

∣∣∣∣ ∣∣∣∣a12 a13
a22 a23

∣∣∣∣
−
∣∣∣∣a21 a23
a31 a33

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣ −
∣∣∣∣a11 a13
a21 a23

∣∣∣∣∣∣∣∣a21 a22
a31 a32

∣∣∣∣ −
∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a12
a21 a22

∣∣∣∣


where

∣∣∣∣a b
c d

∣∣∣∣ means ad− bc and

∆ = a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31.

This isn’t a formula that you want to use. Luckily we can use RREF techniques
to determine invertibility and find inverses.

3.13.1 How to determine invertibility and find inverses

Let A be an n × n matrix, and suppose we want to find out whether A is
invertible and if so what its inverse is. Let In be the n×n identity matrix. Here
is a method:

1. Form the super-augmented matrix (A | In).

2. Do row operations to put this into RREF.

3. If you get (In | B) then A is invertible with inverse B.
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4. If the first part of the matrix isn’t In then A isn’t invertible.

It works because the first part of the matrix is a RREF matrix resulting from
doing row operations to A, so if it is In then by Theorem 3.12.1 A is invertible,
and if it is not In then A is not invertible. It just remains to explain why, in
the case A is invertible, you end up with (In | A−1).

Think about the columns c1, . . . , cn of the inverse ofA. We haveA(c1 · · · cn) =
In, so Ac1 = e1, Ac2 = e2, etc, where ei is the ith column of In. So c1 is the
unique solution of the matrix equation Ax = e1. You find that by putting
(A | e1) into RREF, and you must get (In | c1) since c1 is the only solution.

Repeating that argument for every column, when we put (A | e1 · · · en)
into RREF we get (In | c1 · · · cn), that is, (In | A−1).

Example 3.13.1. Let A =

(
1 2
3 4

)
. To find whether A is invertible, and if so

what its inverse is, we put (A | I2) into RRE form:(
1 2 1 0
3 4 0 1

)
r2 7→r2−3r17−−−−−−−→

(
1 2 1 0
0 −2 −3 1

)
r2 7→(−1/2)r27−−−−−−−−→

(
1 2 1 0
0 1 3/2 −1/2

)
r1 7→r1−2r27−−−−−−−→

(
1 0 −2 1
0 1 3/2 −1/2

)
This is in RRE form, so the inverse of A is(

−2 1
3/2 −1/2

)
as you can check by multiplying them together.

Further reading

There are literally hundreds of textbooks about matrices and linear algebra, so
it is worth browsing the library and finding one that you like. If you get a good
one, let me know.

As an undergraduate I found Linear Algebra by A.O. Morris very clear and
easy to read. Advanced Engineering Mathematics by E. Kreyszig (any edition,
there are loads) is also well written and despite the title has a great deal of
material relevant to a math degree, not just linear algebra. I haven’t read Vec-
tors, Pure and Applied: A General Introduction to Linear Algebra by T. Körner,
but the author is an excellent writer. The previous MATH0005 lecturer recom-
mended Guide to Linear Algebra by D. Towers (no relation to me), Elementary
Linear Algebra by H. Anton, and the more sophisticated Linear Algebra by S.
Lang.

The MIT class 18.06 Linear Algebra lectured by Gilbert Strang is really
interesting, and Strang is a famously good lecturer. Lecture videos and assign-
ments are available online. The course has almost no proofs which means it has
time to cover a really wide range of material, far beyond what goes in a normal
first year linear algebra course. Don’t watch the lectures without also doing the
assignments!

https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/
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Chapter 4

Linear algebra

4.1 Fields

This part of the module is about generalizing what we know about matrices and
vectors.

When we talk about vectors, or matrices, there’s an important thing we have
to decide: where do the entries come from? For example, we might work with
matrices with real numbers as entries, or with complex numbers as entries. We
never really discussed this in the first part of the module, because it doesn’t
make any difference to the theory we developed. So it’s natural to ask which
other kinds of numbers we could use as entries in our vectors and matrices and
still have everything work OK.

The answer is that the entries must come from what is called a field.
Roughly speaking, a field is a set with multiplication and addition operations
that obey the usual rules of algebra, and where you can divide by any non-zero
element. Examples are R, the set of all real numbers, C, the set of all complex
numbers, Q, the set of all rational numbers. Non-examples are Z: you can’t
divide by 2 in Z, and M2×2(R), the set of all 2× 2 real matrices, again because
we know there are non-zero 2× 2 matrices which aren’t invertible.

The usual way to define a field is to write down a list of axioms. Everything
that satisfies the axioms is a field. If you do want to know the field axioms, here
they are: you can read them here.

The next section is about an important family of fields we have not seen yet.

4.1.1 Finite fields of prime order

Let p be a prime number. Then Fp, the finite field of order p, is the set
{0, 1, 2, . . . , p − 1} with addition and multiplication exactly the same as for
ordinary whole numbers, except that we regard all multiples of p as equal to 0.

This is easier to understand in an example. Let’s work in F5. Then

• 3 + 4 = 7 = 2 because 5 = 0 in F5. Similarly,

• 3 + 2 = 0,

• 4× 3 = 12 = 2.

91
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We can deal with subtractions and negative numbers too:

• 3− 4 = −1 = −1 + 5 = 4

• 4× (−3) = −12 = −12 + 15 = 3.

4.1.2 Addition and multiplication tables

There’s an easy way to summarize all the possible additions and multiplications
in F5: draw tables with rows and columns labelled by 0, 1, 2, 3, 4, and in row i
and column j put the result of i+ j or i× j.

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Table 4.1: Addition table for F5.

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Table 4.2: Multiplication table for F5.

Here are the addition and multiplication tables for F3.

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Table 4.3: Addition table for F3.

× 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Table 4.4: Multiplication table for F3.

4.1.3 Multiplicative inverses

In a field, you have to be able to divide by non-zero elements. Being able to
divide by x is equivalent to the existence of an element 1/x or x−1, called a



4.1. FIELDS 93

multiplicative inverse to x (because y/x is just y×1/x). So to check that we
can divide, we need to check that for each nonzero x there is another element
which you can multiply x by to get 1. We will do this for the examples of F3

and F5.
In F3, you can see from the table that

• 1× 1 = 1, so 1−1 = 1

• 2× 2 = 1, so 2−1 = 2

and so every non-zero element of F3 has a multiplicative inverse.
In F5, you can see from the table that

• 1× 1 = 1, so 1−1 = 1

• 2× 3 = 1, so 2−1 = 3 and 3−1 = 2

• 4× 4 = 1, so 4−1 = 4.

and so every non-zero element of F5 has a multiplicative inverse.
We’re going to give a proof that every element of Fp has a multiplicative

inverse and give a method for finding these multiplicative inverses.
First, here is a reminder about division with remainder. There is a fun-

damental fact about the natural numbers: if you have any two positive whole
numbers x and y, you can try to divide x by y. When you do that you get a
quotient q and a remainder r, which is a nonnegative integer less than y:

x = qy + r 0 ⩽ r < y

It’s easy to convince yourself of the truth of this by imagining starting at zero
on the number line and taking steps of size y to the right, stopping when the
next step would take you past x. Call the number of steps taken at the point
you stop q. You’ve stopped at the number qy, and the distance from this point
to x, which is the remainder r = x − qy, must be less than y since otherwise
you could take another full step without passing x.

Theorem 4.1.1. Let p be prime and 0 < a < p be a whole number. Then there
are whole numbers s and t such that as+ pt = 1.

Proof. Let g be the smallest positive number that can be written as an integer
multiple of p plus an integer multiple of a, so g = as + pt for some integers s
and t. Note that g < p since p − a is a positive number that can be written
this way. Divide p by g to get quotient q and remainder r, so p = qg + r where
0 ⩽ r < g. Then

r = p− qg

= p− q(as+ pt)

= (1− qt)p− qsa.

Since 0 ⩽ r < g and g is the smallest positive number that can be written as
a multiple of p plus a multiple of a we must have r = 0, that is, g divides the
prime number p. Since g < p we have g = 1.
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We can even calculate numbers s and t satisfying as+ pt = 1 quickly. To do
this divide p by a, getting a quotient q2 and a remainder r2

p = q2a+ r2 0 ⩽ r2 < a

(I’ve chosen to start with a 2 here because I want to think of p as r0 and a as r1).
If r2 = 0, stop. Otherwise divide a by r2 getting a quotient q3 and remainder
r3

a = q3r2 + r3 0 ⩽ r3 < r2

If r3 = 0, stop. Otherwise divide r2 by r3 getting a quotient q4 and remainder
r4:

r2 = q4r3 + r4 0 ⩽ r4 < r3

If r4 = 0, stop. Otherwise divide r3 by r4 getting quotient q5 and remainder r5:

r3 = q5r4 + r5 0 ⩽ r5 < r4

and so on. The sequence r2, r3, . . . satisfies

a > r2 > r3 > r4 > r5 > · · · ⩾ 0

You can’t have a decreasing sequence of positive integers that goes on forever,
so there is some m such that rm = 0. The last few divisions were

rm−5 = qm−3rm−4 + rm−3 (4.1)

rm−4 = qm−2rm−3 + rm−2 (4.2)

rm−3 = qm−1rm−2 + rm−1 (4.3)

rm−2 = qmrm−1 + 0 (4.4)

I claim that rm−1 = 1. For rm−1 divides rm−2, because of the last equation. In
(4.3) the terms on the right hand side are multiples of rm−1, so the left hand
side rm−3 is a multiple of rm−1 as well. Repeating the same argument we end
up with rm−1 dividing all the left-hand-sides, in particular, rm−1 divides the
prime number p. Since rm−1 < a < p we have rm−1 = 1. So (4.3) is really

rm−3 = qm−1rm−2 + 1

or equivalently
rm−3 − qm−1rm−2 = 1. (4.5)

Now we can express rm−3 in terms of rs with a smaller subscript with equation
(4.1), and we can express rm−2 in terms of rs with a smaller subscript using
(4.2). When we substitute this in (4.5), we get get 1 = some multiple of rm−3

plus some multiple of rm−4. And we can keep doing that over and over again
until we eventually get 1 = a multiple of r2 plus a multiple of r1, that is, as+pt
for some whole numbers s and t.

It helps to see an example. Take p = 13 and a = 5. We have

13 = 2× 5 + 3

5 = 1× 3 + 2

3 = 1× 2 + 1

2 = 2× 1 + 0
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and so

1 = 3− 1× 2

= (13− 2× 5)− 1× (5− 1× 3)

= (13− 2× 5)− 1× (5− 1× (13− 2× 5))

= 2× 13− 5× 5

This helps us find multiplicative inverses in Fp because if as + pt = 1 then
in Fp we have, since multiples of p are equal to zero, as = 1 and s is the
multiplicative inverse of a. In our example, p = 13, a = 5, s = −5, t = 2, so the
multiplicative inverse of 5 in F13 is −5 which is the same as 8.

4.2 Vector spaces

We are now ready to define vector spaces. The idea is to observe that sets
of column vectors, or row vectors, or more generally matrices of a given size,
all come equipped with a notion of addition and scalar multiplication and all
obey the same collection of simple algebraic rules, for example, that addition
is commutative, that scalar multiplication distributes over vector addition, and
so on. We will define a vector space as any set with operations of addition and
scalar multiplication obeying similar rules to those satisfied by column vectors.
The power of doing this is that it lets us apply our theory in seemingly entirely
different contexts.

4.2.1 The vector space axioms

Definition 4.2.1. Let F be a field. An F-vector space is a set V with

• a special element 0V called the zero vector

• an operation + called addition

• a way to multiply elements of V by elements of F, called scalar multi-
plication

such that for all u,v,w in V and all λ, µ in F,

1. v+w = w+ v

2. u+ (v+w) = (u+ v) +w

3. 0V + v = v

4. there exists x ∈ V such that x+ v = 0V

5. λ(µv) = (λµ)v

6. 1v = v

7. λ(v+w) = λv+ λw

8. (λ+ µ)v = λv+ µv

You sometimes see the phrase “vector space over F”, which means the same
thing as F-vector space.
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4.2.2 Examples of vector spaces

The elements of vector spaces can be anything at all. They don’t have to look
like column or row vectors. Here are some examples of vector spaces.

• Rn is a real vector space, Cn is a complex vector space, and if F is any
field then Fn, the set of all height n column vectors with entries from F is
an F-vector space.

• Mm×n(R), the set of all m× n matrices with real entries, is a real vector
space with the zero vector being the all-zeroes matrix. Similarly for any
other field.

• {0} with the only possible operations is an F-vector space, for any field F,
the zero vector space.

• Let F be the set of all functions R → R. Define f + g to be the function
R → R given by (f + g)(x) = f(x) + g(x) and, for a real number λ and a
function f , define λf by (λf)(x) = λf(x). Then F is a real vector space
with the zero vector being the constant function taking the value 0.

• If A is a m×n matrix, the set of all solutions of Ax = 0 is a vector space.
This is the nullspace N(A) we met in Definition 3.6.3.

• The set of all real solutions to the differential equation y′′+ay′+by = 0 is
a vector space, with the definitions of addition and scalar multiplication
as in F above.

• The set F[x] of all polynomials in one variable x is a F-vector space, as is
the set F⩽n[x] of all polynomials in x of degree at most n.

• the set of magic matrices, those whose row sums and column sums are
all equal, is a vector space with the usual matrix scalar addition and
multiplication.

4.3 Using the vector space axioms

There are some familiar properties of vector addition and scalar multiplication
— like the fact that if you multiply a vector by the scalar zero, you get the zero
vector — which aren’t listed in the axioms. Are they special to column vectors,
or do they hold in every vector space?

To answer questions like this we can give a proof that uses only the vector
space axioms, not the specific form of a particular vector space’s elements.

Lemma 4.3.1. Let V be a vector space and v ∈ V . Then 0v = 0V .

Be careful that you understand the notation here. 0V means the special zero
vector given in the definition of the vector space V , and 0v means the vector v
scalar multiplied by the scalar 0. They’re not obviously the same thing.
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Proof. 0v = (0+ 0)v = 0v+ 0v (by axiom 8 of Definition 4.2.1). Axiom 4 says
there’s an element u of V such that u+ 0v = 0V , so add it to both sides:

u+ 0v = u+ (0v + 0v)

0V = (u+ 0v) + 0v axiom 2, definition of u

0V = 0V + 0v definition of u

0V = 0v axiom 3.

Lemma 4.3.2. Let V be a vector space and let x ∈ V . Then x+ (−1)x = 0V .

Proof.

x+ (−1)x = 1x+ (−1)x axiom 6

= (1 +−1)x axiom 8

= 0x

= 0V Lemma 4.3.1.

We write −x for the additive inverse of x which axiom 2 provides, and y−x
as shorthand for y +−x. Here are two more proofs using the axioms.

Lemma 4.3.3. 1. Let λ be a scalar. Then λ0V = 0V .

2. Suppose λ ̸= 0 is a scalar and λx = 0V . Then x = 0V .

Proof. 1.

λ0V = λ(0V + 0V ) axiom 3

= λ0V + λ0V axiom 7

Axiom 2 tells there’s an additive inverse to λ0V . Adding it to both sides
and using axiom 2, we get 0V = λ0V .

2.

λx = 0V

λ−1(λx) = λ−10V

(λ−1λ)x = 0V axiom 5 and part 1

1x = 0V

x = 0V axiom 6.

4.4 Subspaces

When we talk about a vector space over a field F, the word scalar refers to an
element of F.
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Definition 4.4.1. A subspace of a vector space V is a subset U of V which

1. contains the zero vector 0V ,

2. is closed under addition, meaning that for all v,w ∈ U we have v+w ∈ U ,
and

3. is closed under scalar multiplication, meaning that for all scalars λ and all
u ∈ U we have λu ∈ U .

We write U ⩽ V to mean that U is a subspace of V .

The idea this definition captures is that a subspace of V is a nonempty subset
which is itself a vector space under the same addition and scalar multiplication
as V .

If U ⩽ V and u1, . . . ,un ∈ U and λ1, . . . , λn are scalars then
∑n

i=1 λiui ∈ U .
This follows by using closure under addition lots of times.

4.4.1 Subspace examples

Example 4.4.1. If V is any vector space, V ⩽ V . This is because, as a vector
space, V contains the zero vector, is closed under addition, and is closed under
scalar multiplication.

A subspace of V other than V is called a proper subspace.

Example 4.4.2. For any vector space V we have {0V } ⩽ V . Certainly this
set contains the zero vector. It is closed under addition because 0V +0V = 0V ,
and it is closed under scalar multiplication by Lemma 4.3.3. This is called the
zero subspace.

Example 4.4.3. Let U be the set of vectors in R2 whose first entry is zero.
Then U ⩽ R2. We check the three conditions in the definition of subspace.

1. The zero vector in R2 is

(
0
0

)
. This has first coordinate 0, so it is an

element of U .

2. Let v,w ∈ U , so that v =

(
0
x

)
and w =

(
0
y

)
for some real numbers x

and y. Then v+w =

(
0

x+ y

)
has first coordinate 0, so it is an element

of U .

3. Let v be as above and λ ∈ R. Then λv =

(
0
λx

)
which has first coordinate

0, so λv ∈ U .

All three conditions hold, so U ⩽ R2. Of course, a similar argument shows the
vectors in Fn with first entry 0 are a subspace of Fn for any field F and any n.

To every matrix A we associate two important subspaces. The nullspace
N(A) (Definition 3.6.3) is the set of all vectors x such that Ax = 0, and the
column space C(A) is the set of all linear combinations of the columns of A.
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Example 4.4.4. Let A be an m × n matrix with entries from the field F.
The nullspace N(A) contains the zero vector as A0n = 0m. It is closed under
addition as if u,v ∈ N(A) then Av = 0m and Au = 0m so

A(u+ v) = Au+Av

= 0m + 0m

= 0m

and therefore u + v ∈ N(A). It is closed under scalar multiplication because
if λ is any scalar then A(λu) = λAu = λ0m = 0m so λu ∈ N(A). Therefore
N(A) ⩽ Fn.

The column space C(A), defined to be the set of all linear combinations of
the columns of A, is a subspace of Fm. We won’t prove that here, because it is
a special case of Proposition 4.7.1 which we prove later.

Example 4.4.5. The set U of all vectors in R3 with first entry 1 is not a
subspace of R3. It doesn’t contain the zero vector (and it doesn’t meet the
other two conditions either).

Example 4.4.6. Z is not a subspace of R. It contains the zero vector 0, it is
closed under addition because if you add two integers you get another integer.
But it is not closed under scalar multiplication:

√
2 is a scalar, 1 ∈ Z, but

√
2×1

is not in Z.

Example 4.4.7. Let U be the set of all functions f : R → R with f(1) = 0.
This a subspace of the vector space F of all functions R → R. The zero vector
in F is the constant function that always takes the value zero, so certainly it
belongs to U . If f, g ∈ U then (f+g)(1) = f(1)+g(1) = 0+0 = 0, so f+g ∈ U .
If λ ∈ R and f ∈ U then (λf)(1) = λf(1) = λ× 0 = 0 so λf ∈ U .

Example 4.4.8. {A ∈ Mn×n(R) : AT = A} ⩽ Mn×n(R). The transpose
operation satisfies (A+ B)T = AT + BT and (λA)T = λAT , which you should
check. This makes the three conditions straightforward to check.

Example 4.4.9. U = {A ∈ Mn×n(R) : A2 = 0m×n} is not a subspace of

Mn×n(R). For example, U contains E12 =

(
0 1
0 0

)
and E21 =

(
0 0
1 0

)
but you

can check that E12 + E21 /∈ U .

4.5 Sums and intersections

Proposition 4.5.1. Let X and Y be subspaces of a vector space V .

1. X ∩ Y ⩽ V .

2. X + Y = {x+ y : x ∈ X,y ∈ Y } ⩽ V .

Proof. To show something is a subspace we have to check the three properties:
containing the zero vector, closure under addition, and closure under scalar
multiplication.

1. • 0V ∈ X ∩ Y as X and Y are subspaces so contain 0V .
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• Let x,y ∈ X ∩ Y . X is a subspace, so closed under addition, so
x+y ∈ X. For the same reason x+y ∈ Y . Therefore x+y ∈ X∩Y .

• Let λ be a scalar and x ∈ X ∩ Y . X is a subspace, so closed under
scalar multiplication, so λx ∈ X. For the same reason λx ∈ Y .
Therefore λx ∈ X ∩ Y .

2. • 0V is in X and Y as they are subspaces, so 0V + 0V = 0V is in
X + Y .

• Any two elements of X+Y have the form x1+y1 and x2+y2, where
xi ∈ X and yi ∈ Y .

(x1 + y1) + (x2 + y2) = (x1 + x2) + (y1 + y2)

by associativity and commutativity. But x1 + x2 ∈ X as X is a
subspace and y1 + y2 ∈ Y as Y is a subspace, so this is in X + Y
which is therefore closed under addition.

• Let λ be a scalar.

λ(x1 + y1) = λx1 + λy1

λx1 ∈ X as X is a subspace so closed under scalar multiplication,
λy1 ∈ Y for the same reason, so their sum is in X + Y which is
therefore closed under scalar multiplication.

4.6 Linear independence

4.6.1 Linear combinations

We met the idea of a linear combination of column vectors in chapter 3. Here
it is for elements of an arbitrary vector space.

Definition 4.6.1. Let V be a vector space and v1, . . . ,vn ∈ V . A linear
combination of v1, . . . ,vn is an element of V of the form

λ1v1 + λ2v2 + · · ·+ λnvn

where the λi are scalars.

4.6.2 Linear independence

Definition 4.6.2. Let V be a vector space.

• A sequence v1, . . .vn of elements of V is linearly independent if and
only if the only scalars λ1, . . . , λn such that

∑n
i=1 λivi = 0V are λ1 =

· · · = λn = 0.

• A sequence which is not linearly independent is called linearly depen-
dent.
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It is important that linear independence is a property of sequences (not sets)
of vectors. Sequences have a particular order, and they can contain the same
element multiple times.

Checking whether elements of a vector space are linearly independent is
simple. You just have to try and find a linear combination that gives the zero
vector where not all the scalars are zero. If you can do it, the sequence is linearly
dependent, if you can’t it is linearly independent. When we’re talking about
vectors in Fn, or matrices, this is just solving linear equations.

4.6.3 Examples of linear (in)dependence

Example 4.6.1. u =

(
1
0

)
, v =

(
0
1

)
,w =

(
1
1

)
are not linearly independent

in R2, because 1× u+ 1× v+ (−1)×w = 0.

Example 4.6.2. u =

(
1
1

)
,v =

(
1
−1

)
are linearly independent in R2. For if

αu+ βv =

(
0
0

)
then

(
α+ β
α− β

)
=

(
0
0

)
. This is a system of linear equations:

α+ β = 0

α− β = 0

For such a simple system it’s easy to see that the only solution is α = β = 0.
This tells you that the only solution to αu+ βv = 0 is α = β = 0, which is the
definition of linear independence for u,v.

Example 4.6.3.

(
1
0

)
and

(
0
1

)
are linearly independent in R2. You can prove

this in a similar (but easier) way to the previous example.
More generally if ei is the height n column vector with 0 everywhere except

1 at position i, then the sequence e1, . . . , en is linearly independent.

Example 4.6.4. In F , the vector space of all functions R → R, I claim that the
functions f(x) = cos(x) and g(x) = sin(x) are linearly independent. Suppose
that αf + βg = 0F , that is, suppose α cos(x) + β sin(x) = 0 for all x.

Take x = 0. Since α cos(0) + β sin(0) = 0 we get α = 0. Now take x = π/2
to get β sin(π/2) = 0, that is β = 0. We have shown α = β = 0 and so these
functions are linearly independent.

Often it turns out that deciding whether a sequence of vectors is linearly
independent is equivalent to seeing whether a system of linear equations has
only the solution where every variable is zero — so you can apply the methods
we learned in chapter 3.

4.7 Spanning sequences

4.7.1 Definition of span

Definition 4.7.1. Let V be an F-vector space and v1, . . . ,vn ∈ V . The span
of v1, . . . ,vn, written span(v1, . . . ,vn) is the set of all linear combinations of
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v1, . . . ,vn, so

span(v1, . . . ,vn) = {λ1v1 + · · ·+ λnvn : λ1, . . . , λn ∈ F}.

For technical reasons we define the span of the empty sequence of vectors to
be {0V }.

To understand the definition a bit better, let’s look at two simple special
cases. The span of a single element s of an F-vector space V is

{λs : λ ∈ F},

since any linear combination of s is just a scalar multiple of s. The span of two
elements u,v of V is

{au+ bv : a, b,∈ F}.

4.7.2 Spans are subspaces

Proposition 4.7.1. If s1, . . . , sn are elements of a vector space V then span(s1, . . . , sn)
is a subspace of V .

Proof. Write S for span{s1, . . . , sn}. Recall that S consists of every linear com-
bination

∑n
i=1 λisi, where the λi are scalars.

1. S contains the zero vector because it contains
∑n

i=1 0si, and each 0si is
the zero vector.

2. S is closed under addition because if
∑n

i=1 λisi and
∑n

i=1 µisi are any two
elements of S then

n∑
i=1

λisi +

n∑
i=1

µisi =

n∑
i=1

(λi + µi)si

is in S.

3. S is closed under scalar multiplication because if
∑n

i=1 λisi is in S and λ
is a scalar then

λ

n∑
i=1

λisi =

n∑
i=1

(λλi)si

is also in S.

S fulfils all three conditions in the Definition 4.4.1 of a subspace, so S ⩽ V .

4.7.3 Spanning sequences

Definition 4.7.2. Elements v1, . . . ,vn of a vector space V are a spanning
sequence for V if and only if span(v1, . . . ,vn) = V .

The term spanning set is also used.
We also say v1, . . . ,vn spans V to mean that it is a spanning sequence.
Often deciding whether or not a sequence of vectors is a spanning sequence

is equivalent to solving some linear equations.
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Example 4.7.1. If you want to check whether

(
1
1

)
and

(
−1
1

)
are a spanning

sequence for R2, what you need to do is to verify that for every

(
x
y

)
∈ R2 there

are real numbers α and β such that

α

(
1
1

)
+ β

(
−1
1

)
=

(
x
y

)
.

In other words, you have to prove that for every x, y ∈ R the system of
linear equations

α+ β = x

α− β = y

has a solution. That’s easy in this case, because you can just notice that
α = (x+ y)/2, β = (x− y)/2 is a solution, but for bigger and more complicated
systems you can use the method of RREF.

Example 4.7.2.

(
1
1

)
and

(
−1
1

)
are a spanning sequence for R2, as we have

just seen.

Example 4.7.3. Let’s try to determine whether v1 =

 1
−1
0

, v2 =

 0
1
−1

,

v3 =

 1
0
−1

 are a spanning sequence for R3. We need to find out whether it’s

true that for all

xy
z

 ∈ R3 there exist α, β, γ ∈ R3 such that

α

 1
−1
0

+ β

 0
1
−1

+ γ

 1
0
−1

 =

xy
z

 .

This is equivalent to asking whether for every x, y, z the simultaneous equations

α+ γ = x

−α+ β = y

−β − γ = z

have a solution. Again, in this special case you might just notice that (adding
the three equations) there is no solution unless x+y+z = 0, so this collection of
vectors is not a spanning sequence. In general, to find out if a system of linear
equations has a solution you can put the augmented matrix into row reduced
echelon form. In this case the augmented matrix is 1 0 1 x

−1 1 0 y
0 −1 −1 z


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Doing the row operations r2 7→ r2 + r1 followed by r3 7→ r3 + r2 leads to1 0 1 x
0 1 1 y + x
0 0 0 z + y + x



These equations have no solutions if x+ y + z ̸= 0, so for example

1
0
0

 is not

in the span of v1,v2,v3 because 1 + 0 + 0 ̸= 0.

4.8 Bases

4.8.1 Basis definition

Definition 4.8.1. A sequence v1, . . . ,vn of elements of a vector space V is a
basis for V if and only if

1. it is linearly independent, and

2. it is a spanning sequence for V .

Importantly, bases are sequences not sets. This is because the order of a
basis matters to some of the definitions we will make later, like the matrix of a
linear map.

4.8.2 The standard basis for Fn

The most important example is the standard basis of Fn (no matter which
field F is). Let ei be the column vector in Fn with a 1 in position i and 0s
elsewhere. When n = 3, for example, we have

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 .

Then e1, . . . , en is a basis of Fn, called the standard basis. To check this, we
must verify the two parts of the definition of basis.

1. (Linear independence). Suppose
∑n

i=1 λiei = 0. To verify linear indepen-
dence we have to prove all the λi are zero. Using the definition of the ei

we get

λ1...
λn

 =

0
...
0

. So λi = 0 for all i as required.

2. (Spanning) We have to show that any element of Fn is a linear combination

of e1, . . . , en. Let v =

v1...
vn

 ∈ Fn. Then v =
∑n

i=1 viei, so v is a linear

combination of the ei as required.
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4.8.3 More basis examples

Example 4.8.1. R⩽3[x] consists of all polynomials of degree at most 3 in the
variable x. It has a basis 1, x, x2, x3, because

• (linear independence) if a+ bx+ cx2 + dx3 is the zero polynomial, that is
if it is zero for every value of x, then a = b = c = d = 0. This is because
a polynomial of degree m has at most m roots.

• (spanning) every polynomial of degree at most 3 has the form a + bx +
cx2 + dx3 for some a, b, c, d, and so is a linear combination of 1, x, x2, x3.

Example 4.8.2. Let V =Mm×n(F) be the F-vector space of allm×n matrices.
Let Eij be the matrix which as a 1 in position i, j and zeroes elsewhere. Then

E11, E21, . . . , En1, E12, E22, . . . Emn

is a basis for V . This can be proved in exactly the same way as we proved that
the standard basis of Fn really was a basis.

4.8.4 What is a basis good for?

Lemma 4.8.1. If v1, . . . ,vn is a basis of V , every v ∈ V can be written
uniquely as

∑n
i=1 λivi for some scalars λi.

Proof. Every v ∈ V can be written this way because the vi are a basis and
hence a spanning sequence for V . The problem is to prove that every v ∈ V
can be written like this in only one way.

Suppose that
n∑

i=1

λivi =

n∑
i=1

µivi.

Then subtracting one side from the other,

n∑
i=1

(λi − µi)vi = 0V .

Linear independence of the vi tells us λi − µi = 0 for all i, so λi = µi for all i.
We have proved that there is only one expression for v as a linear combination
of the elements of the basis v1, . . . ,vn.

This means that a basis gives a way of giving coordinates to an arbitrary
vector space, no matter what the elements look like. Once we fix a basis of
V , there is a one-one correspondence between the elements of V and the coeffi-
cients needed to express them in terms of that basis — you could call these the
coordinates of the vector in terms of this basis.

A basis also allows us to compare coefficients. Suppose v1, . . . ,vn is a basis
of a vector space V and that

λ1v1 + · · ·+ λnvn = µ1v1 + · · ·+ µnvn.

Then the uniqueness result Lemma 4.8.1 tells us we can compare coefficients
to get that λ1 = µ1, λ2 = µ2, and so on.
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4.8.5 Multiple bases for the same vector space

A given vector space can have many different bases. This is true in a trivial

sense: as we saw before, basis are sequences, the order matters, so

(
0
1

)
,

(
1
0

)
is different to

(
1
0

)
,

(
0
1

)
but clearly still a basis of R2. But it is also true in a

more interesting way. Take R2, for example: we know e1, e2 is a basis, but so
also is

u =

(
1
1

)
,v =

(
1
−1

)
.

Let’s check this. Suppose au + bv = 0. Then

(
a+ b
a− b

)
=

(
0
0

)
, so a + b =

0 = a − b from which it follows a = b = 0 and u,v is linearly independent. To

show u,v spans R2, let

(
x
y

)
∈ R2. We must show there exist a, b ∈ R such that

au + bv =

(
x
y

)
. The condition a and b must satisfy is a + b = x, a − b = y.

It is always possible to find such a and b: solving the equations you get a =
(x+ y)/2, b = (x− y)/2, so u,v spans R2.

Here’s why a vector space having several different bases is useful. The ex-
pression of an element v in terms of different bases can tell us different things
about v. In other words, different bases give different ways of looking at the
elements of the vector space.

Say for example you are representing an image as an element of Rn. The
smallest possible example is a 2-pixel image which we could represent as an

element

(
a
b

)
= ae1 + be2 in R2, where the first coordinate tells me how bright

the first pixel is and the second tells me how bright the second is.

Now consider the alternative basis e1+e2, e1−e2. Any image ae1+ be2 can
be re-written in terms of the new basis:

ae1 + be2 =
a+ b

2
(e1 + e2) +

a− b

2
(e1 − e2).

So the new basis is giving us a different description of the image. It tells us
how bright the image is overall (the coefficient (a+b)/2 of e1+e2 is the average
brightness of the two pixels, so it measures the overall image brightness) and
how different in brightness the two pixels are (the coefficient (a− b)/2 of e1−e2
is a measure of how different the brightnesses a and b of the two pixels are).

4.9 Dimension

4.9.1 Basis size

We are going to define the dimension of a finite-dimensional vector space V
as the size of a basis of V . But as we’ve seen, a vector space can have many
different bases. So we have some proving to do before this definition makes
sense. We need to know that any two bases have the same size.
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4.9.2 Spanning sequences are at least as big as linearly
independent sequences (Steinitz exchange)

Theorem 4.9.1. Let V be a vector space and suppose s1, . . . , sm spans V and
l1, . . . , ln is linearly independent. Then m ⩾ n.

Proof. Assume for a contradiction that m < n. Since the si span V we can
write each lj as a linear combination of the si so there are scalars aij such that
lj =

∑m
i=1 aijsi. Let A be the m×n matrix (aij), which has more columns that

rows.
By Corollary 3.11.1, the matrix equation Ax = 0 has at least one nonzero

solution v =

v1...
vn

. Because Av = 0, for any i we have
∑n

j=1 aijvj = 0. Now

n∑
j=1

vjlj =

n∑
j=1

vj

m∑
i=1

aijsi

=

m∑
i=1

 n∑
j=1

aijvj

 sj

=

m∑
i=1

0si

= 0V

and since the vj are not all zero, this contradicts the linear independence of
l1, . . . , ln.

4.9.3 All bases of a finite-dimensional vector space have
the same size

To make life slightly easier, we are going to work only with finite-dimensional
vector spaces. A vector space is called finite-dimensional if it contains a finite
spanning sequence.

Theorem 4.9.2. Any two bases of a finite-dimensional vector space V have the
same size.

Proof. V has a finite spanning sequence s1, . . . , sm because it is finite-dimensional.
Therefore every linearly independent sequence has size at most m, so is finite,
so every basis is finite. (We haven’t actually shown that a basis exists, but this
will follow from something we prove later).

Let b1, . . . ,bk and c1, . . . , cl be bases of V . Then k ⩽ l (as the bis are
linearly independent and the cis span). By the same argument with the two
bases swapped, l ⩽ k. Therefore k = l.

Now that we know any two bases have the same size, we can make our
definition of dimension:

Definition 4.9.1. The dimension of a vector space V , written dimV , is the
size of any basis of V .
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There’s a special case: the dimension of the zero vector space {0} is defined
to be 0. If you want you can talk yourself into believing that the empty set is
a basis of the zero vector space, so that this is covered by the definition above,
but it’s easier just to think of this as a special case.

4.10 Basis and dimension examples

We’ve already seen a couple of examples, the most important being the stan-
dard basis of Fn, the space of height n column vectors with entries in F. This
standard basis was e1, . . . , en where ei is the height n column vector with a 1
in position i and 0s elsewhere. The basis has size n, so dimFn = n.

We can do a similar thing for the vector space of all m× n matrices over a
field F. Let Eij be the m× n matrix with a 1 in position i, j and 0s elsewhere.
Then the Eij , for 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n are a basis ofMm×n(F), which therefore
has dimension mn.

Example 4.10.1. The trace of a matrix is the sum of the elements of its leading
diagonal. We will find a basis of the set S of 2× 2 matrices with trace zero.

First note that this really is a vector space (a subspace of M2×2(F)), so its
dimension is at most 4.

A good start is to write down an expression for a general matrix with trace

zero. It must have the form

(
a b
c −a

)
. This matrix can be written

a

(
1 0
0 −1

)
+ b

(
0 1
0 0

)
+ c

(
0 0
1 0

)
Call the three matrices above H,E, F so that our expression was aH+bE+cF .
Since H,E, F are in S, they are a spanning sequence for S. You can check that
they’re linearly independent, so they are a basis and dimS = 3.

Example 4.10.2. dimR⩽n[x] = n+ 1, because 1, x, . . . , xn is a basis.

Example 4.10.3. Let S = span(sin, cos), a subspace of the R-vector space of
all functions R → R. We will find dimS.

The functions cos and sin are linearly independent by Example 4.6.4, and
they span S by definition. Therefore they form a basis of S and dimS = 2.

4.11 Fundamental solutions are linearly indepen-
dent

In this section we are going to do an extended example on solutions to a ho-
mogeneous matrix equation Ax = 0, where A is some fixed m× n matrix with
entries from a field F. We will prove that the fundamental solutions constructed
in 3.11.1 are a basis of the nullspace N(A).

Here is a recap of how the fundamental solutions to Ax = 0 are obtained.
First do row operations to A until we reach a matrix R in row reduced echelon
form, and recall that the solutions to Ax = 0 are exactly the same as the
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solutions to Rx = 0, that is, N(A) = N(R). 1 Let r be the number of nonzero
rows in R, which is the number of columns containing a leading entry, and let
k be the number of columns with no leading entry, so that r + k = n. Let the
numbers of the columns with a leading entry be c1 < c2 < · · · < cr and the
columns with no leading entry be d1 < d2 < · · · < dk. Returning to the example

R =

0 1 2 0 3
0 0 0 1 4
0 0 0 0 0


we have m = 3, n = 5, r = 2, c1 = 2, c2 = 4, d1 = 1, d2 = 3, d3 = 5. In general,
there are k fundamental solutions s1, . . . , sk defined by

sj = edj −
r∑

i=1

ri,djeci

where el is the column vector with a 1 at position l and zeros elsewhere and
R = (rij). In other words, the row dj entry of sj is 1, the entry in row ci is
−ri,dj for 1 ⩽ i ⩽ r, and all other entries are 0. In the example,

s1 =


1
0
0
0
0

 , s2 =


0
−2
1
0
0

 , s3 =


0
−3
0
−4
1

 .

It’s useful to record a general lemma.

Lemma 4.11.1. (The easy linear independence criterion). Suppose some
column vectors v1, . . . ,vk have the property that for each i, vi has a nonzero
entry in a row where all the other vjs have zero. Then v1, . . . ,vk is linearly
independent.

For example, if

v1 =


1
0
0
3

 ,v2 =


4
5
0
0

 ,v3 =


7
0
8
0


then v1 has a nonzero entry in row 4 while the other two vectors are zero in
row 4, v2 has a nonzero entry in row 2 while the other two vectors are zero in
row 2, and v3 has a nonzero entry in row 3 while the other two vectors are zero
in row 3, so these three vectors meet the easy linear independence criterion.

Proof. Suppose that
k∑

i=1

λivi = 0. (4.6)

There is a row, say row j, where v1 has a nonzero entry v1j and all of v2, . . . ,vk

are zero. Comparing the entries of row j in (4.6) gives λ1v1j = 0 and so λ1 = 0.
A similar argument shows all the other λi are zero, so the vectors are linearly
independent.

1It is not true that the column space C(A) equals C(R). Row operations don’t change the
nullspace but they can change the column space.
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To illustrate the proof, return to the example above. Suppose

av1 + bv2 + cv3 = 0.

Rather than write out the resulting vector, just think about what appears in
row 4 on the left hand side. Vectors v2 and v3 are zero there, so we just get
3a = 0 and so a = 0. Considering row 2 shows b = 0 and considering row 3
shows c = 0, therefore they are linearly independent.

Lemma 4.11.2. The fundamental solutions to Ax = 0 are linearly independent.

Proof. Apply the easy linear independence lemma above, using row di for si.
The criterion applies because no di is equal to any cj or any other dj .

It is also true that the fundamental solutions span the null space N(A), so
that they are a basis. We could do a direct proof of this now, but it would be
messy. Instead we will return to it later when we have the technology to make
it easy.

4.12 Extending to a basis

Our goal in this section is to show that every linearly independent sequence in
a finite-dimensional vector space can be extended, by adding some more vectors
to the sequence, to a basis.

4.12.1 The extension lemma

Lemma 4.12.1. Suppose v1, . . . ,vn is a linearly independent sequence in a
vector space V , and u ∈ V . Then u /∈ span(v1, . . . ,vn) implies v1, . . . ,vn,u is
linearly independent.

Proof. We prove the contrapositive, which is that if v1, . . . ,vn,u is linearly
dependent then u ∈ span(v1, . . . ,vn).

Suppose v1, . . . ,vn,u is linearly dependent. There are scalars λ, λ1, . . . , λn,
not all of which are zero, such that

λu+

n∑
i=1

λivi = 0V .

λ can’t be zero, for then this equation would say that v1, . . . ,vn was linearly
dependent. Therefore we can rearrange to get

u = −λ−1
n∑

i=1

λivi =

n∑
i=1

−λ−1λivi ∈ span(v1, . . . ,vn)

as required.

4.12.2 Every linearly independent sequence can be ex-
tended to a basis

Proposition 4.12.2. Let V be finite-dimensional and let l1, . . . , ln be linearly
independent. Then there is a basis of V containing l1, . . . , ln.
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Proof. : Let L = l1, . . . , ln. Since V is finite-dimensional there are elements
v1, . . . ,vm of V that span V .

Define a sequence of sequences of elements of V as follows: S0 = L, and for
i ⩾ 0,

Si+1 =

{
Si if vi+1 ∈ spanSi

Si,vi+1 otherwise.

Here Si,vi+1 just means take the sequence Si and add vi+1 on to the end.

Note that in either case vi+1 ∈ spanSi+1, and also that S0 ⊆ S1 ⊆ · · · ⊆ Sm.

Each sequence Si is linearly independent by the extension lemma, Lemma
4.12.1 and in particular Sm is linearly independent. Furthermore spanSm con-
tains the spanning sequence {v1, . . . ,vm} because for each i we have vi ∈
spanSi ⊆ spanSm, so since subspaces are closed under taking linear combi-
nations, spanSm = V . Therefore Sm is a basis containing L. This completes
the proof.

As a corollary, we can prove that every finite-dimensional vector space has a
basis. Start with any nonzero vector you like — this forms a linearly independent
sequence of length 1. The above result lets us extend that to a basis, and in
particular, a basis exists.

Example 4.12.1. Consider the sequence of elements L = l1, l2 where l1 =
(0, 1, 1, 0), l2 = (1, 0, 1, 0) of the vector space V of all width 4 row vectors with
real number entries. It’s easy to check that they are linearly independent. We
are going to use the procedure above, together with the spanning sequence

v1 = (1, 0, 0, 0),v2 = (0, 1, 0, 0)

v3 = (0, 0, 1, 0),v4 = (0, 0, 0, 1)

of V to produce a basis of V containing L.
We begin with the sequence S0 = L. To find S1 we have to determine if

v1 ∈ spanS0. It isn’t (to see this, show that the system of linear equations

v1 = al1 + bl2

has no solutions), so S1 is S0 with v1 added, which is l1, l2,v1.

To find S2 we have to determine if v2 ∈ spanS2. It is, because

v2 = (0, 1, 0, 0) = l1 − l2 + v1

so S2 is the same as S1.

To find S3 we have to determine if v3 ∈ spanS3. It is, because

v3 = l2 − v1

so S3 is the same as S2.

Finally to find S4 we have to determine if v4 ∈ spanS3. It is not (no linear
combination of S3 can have a nonzero entry in the last position), so S4 is S3

with v4 added. We have run out of vis, so S4 is the required basis containing
L.
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4.13 Finding dimensions

The extension lemma has all sorts of consequences that are very useful for
making arguments about the dimension of a vector space. In this section we’ll
write down the most common ones.

4.13.1 Lower bound for the dimension of a vector space

As soon as you see k linearly independent elements in a vector space, you know
its dimension is at least k.

Corollary 4.13.1. Let V be a vector space and let v1, . . . ,vk be linearly inde-
pendent elements of V . Then dimV ⩾ k.

Proof. You can extend these elements to a basis of V having size at least k, and
the size of that basis is the dimension of V .

4.13.2 Any dimV +1 elements must be linearly dependent

Theorem 4.13.2. Any sequence of at least n+ 1 elements in a vector space of
dimension n is linearly dependent.

Proof. If they were linearly independent, we could extend them to a basis of
size larger than n using Proposition 4.12.2 contradicting that every basis has
size n.

For example, if you have 4 vectors in R3 you know they must be linearly
dependent, no matter what they are.

4.13.3 Dimensions of subspaces

Proposition 4.13.3. If U ⩽ V then

1. dimU ⩽ dimV , and

2. if dimU = dimV then U = V .

Proof. 1. A basis of U is a linearly independent sequence in V , so we can
extend it to a basis of V . So its size is less than or equal to the size of a
basis of V .

2. Let dimV = n and let u1, . . . ,un be a basis of U , so U = span(u1, . . . ,un).
Suppose for a contradiction that U ̸= V , and let v be an element of V not
in U . Then u1, . . . ,un,v is linearly independent (by the extension lemma,
Lemma 4.12.1), which contradicts Theorem 4.13.2.

As soon as you have n linearly independent elements in a vector space of
dimension n, they must be a basis.

Corollary 4.13.4. Let V be a vector space of dimension n. Any sequence of n
linearly independent elements of V are a basis of V .

Proof. Let U be the span of this sequence. This length n sequence spans U by
definition, and it is linearly dependent, so it is a basis of U and dimU = n. The
proposition tells us U = V , so in fact the sequence is a basis of V .
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4.13.4 Dimension of a sum of subspaces

Consider two sets X and Y . What’s the size of X ∪ Y in terms of the size of X
and the size of Y ? It isn’t |X|+ |Y |, in general, because elements belonging to
X and Y get counted twice when you add the sizes like this. The correct answer
is |X|+ |Y | − |X ∪ Y |. We would like a similar result for sums of subspaces.

Theorem 4.13.5. Let V be a vector space and X,Y ⩽ V . Then

dim(X + Y ) = dimX + dimY − dimX ∩ Y.

Proof. Take a basis I = i1, . . . , ik of X ∩ Y . Extend I to a basis X =
i1, . . . , ik,x1, . . . ,xn ofX, using 4.12.2. Extend I to a basis Y = i1, . . . , ik,y1, . . . ,ym

of Y . It’s now enough to prove that J = i1, . . . , ik,x1, . . . ,xn,y1, . . . ,ym is a
basis of X + Y , because if we do that then we will know the size of J , which
is k + n +m, equals the size of a basis of I (which is k + n) plus the size of a
basis of Y (which is k +m) minus the size of a basis of X ∩ Y (which is k).

To check something is a basis for X +Y , as always, we must check that it is
a spanning sequence for X + Y and that is it linearly independent.

Spanning: let x + y ∈ X + Y , where x ∈ X,y ∈ Y . Then there are scalars
such that

x =

k∑
j=1

ajij +

n∑
j=1

cjxj

y =

k∑
j=1

bjij +

m∑
j=1

djyj

and so

x+ y =

k∑
j=1

(aj + bj)ij +

n∑
j=1

cjxj +

m∑
j=1

djyj

Linear independence: suppose

k∑
j=1

ajij +

n∑
j=1

cjxj +

m∑
j=1

djyj = 0.

Rearrange it:
k∑

j=1

ajij +

n∑
j=1

cjxj = −
m∑
j=1

djyj .

The left hand side is in X and the right hand side is in Y . So both sides are
in X ∩ Y , in particular, the right hand side is in X ∩ Y . Since I is a basis of
X ∩ Y , there are scalars ej such that

k∑
j=1

ejij = −
m∑
j=1

djyj

This is a linear dependence on Y which is linearly independent, so all the dj
are 0. Similarly all the cj are 0. So the aj are 0 too, and we have linear
independence.
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4.14 Linear maps

4.14.1 Motivation

Suppose that you have two finite sets X and Y and a function f : X → Y . If
you know that f is onto then you get some information about X and Y : you
know that X must be at least as large as Y .

But an arbitrary function between two vector spaces doesn’t necessarily
give you any information about their relationship as vector spaces. To get
such information, we need to restrict to functions that respect the vector space
structure — that is, the scalar multiplication and the vector addition.

Functions with this property, which we’re going to define shortly, are called
linear maps. They allow us to do something similar to the finite set example
above: for example, if you have a surjective linear map from a vector space X
to another vector space Y , it is true that dimX ⩾ dimY .

4.14.2 Definition of a linear map

Definition 4.14.1. Let V and W be vector spaces over the same field F. A
function T : V →W is called a linear map or a linear transformation if

1. for all λ ∈ F and all v ∈ V we have T (λv) = λT (v), and

2. for all v,w ∈ V we have T (v +w) = T (v) + T (w).

Point 1 is what it means to say that T respects scalar multiplication and
point 2 is what it means to say that T respects vector addition.

This concept is so common that it has many names. For us,

• T is a linear map

• T is a linear function

• T is a linear transformation

• T is linear

all mean exactly the same thing, namely that T satisfies Definition 4.14.1.

4.14.3 Examples of linear maps

1. For any vector space V , the identity map id : V → V and the zero map
z : V → V given by z(v) = 0V for all v ∈ V are linear.

2. Let A be a m × n matrix with entries in a field F. Then TA : Fn → Fm

defined by TA(x) = Ax is linear.

3. T :Mn×n(R) →Mn×n(R), T (A) = A2 is not linear.

4. T : Rn → R, T

x1...
xn

 =
∑n

i=1 xi is linear.

5. D : R⩽n[x] → R⩽n[x] given by D(f) = df
dx is linear.
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Let’s look at why some of these are true, starting with example 3. To show
that TA is a linear map we have to check the two parts of the definition of
being a linear map. Both of these are going to follow from properties of matrix
multiplication and addition that you learned in the previous section.

1. Let x ∈ Fn and λ ∈ F. Then

TA(λx) = A(λx) definition of TA

= λAx matrix mult properties

= λTA(x) definition of TA

2. Let x,y ∈ Fn. Then

TA(x+ y) = A(x+ y) definition of TA

= Ax+Ay matrix mult properties

= TA(x) + TA(y) definition of TA

The properties of matrix multiplication used were proved in Proposition
3.4.1.

Similarly, the fact that the differentiation map D of example 5 is linear
follows from standard properties of derivatives: you know, for example, that for
any two functions (not just polynomials) f and g we have d

dx (f + g) = df
dx + dg

dx ,
which shows that D satisfies the second part of the linearity definition.

As an example where the linearity of a map doesn’t just come from standard
facts you already know, consider

T : R2 → R T

(
x
y

)
= 2x− y

To show T is linear we have to show that it has properties 1 and 2 from the
definition.

1.

T

(
λ

(
x
y

))
= T

(
λx
λy

)
= 2λx− λy

= λ(2x− y)

= λT

(
x
y

)
2.

T

((
x1
y1

)
+

(
x2
y2

))
= T

(
x1 + x2
y1 + y + 2

)
= 2(x1 + x2)− (y1 + y2)

= (2x1 − y1) + 2x2 − y2

= T

(
x1
y1

)
+ T

(
x2
y2

)
.
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Here are some examples of things which are not linear maps:

Example 4.14.1. • T : R → R, T (x) = |x| isn’t linear. It doesn’t satisfy
either linearity property. T (−2 ·3) ̸= −2 ·T (3), and T (−1+1) ̸= T (−1)+
T (1).

• T : R3 → R3, T (x) = x+

1
0
0

. Again it doesn’t satisfy either part of the

definition - you should check that.

4.15 Kernel and image

4.15.1 Definition of kernel and image

To every linear transformation we associate two important subspaces.

Definition 4.15.1. let T : V →W be linear.

1. the kernel of T , written kerT , is {v ∈ V : T (v) = 0W }

2. the image of T , written imT , is {T (v) : v ∈ V }

In other words, the image is what we normally mean by the image of a
function.

An important family of examples are the linear maps TA : Fn → Fm defined
by left-multiplication by an m × n matrix A with entries from the field F. In
that case the image imTA is equal to the column space C(A) by Proposition
3.2.1, and the kernel kerTA is the nullspace N(A).

4.15.2 A property of all linear maps

Lemma 4.15.1. Let T : V →W be a linear map. Then T (0V ) = 0W .

Proof.

T (0V ) = T (0V + 0V )

= T (0V ) + T (0V )

by the first part of the definition of linearity. Now add −T (0V ) to both sides:

T (0V )− T (0V ) = T (0V ) + T (0V )− T (0V )

0W = T (0V )

4.15.3 Kernels and images are subspaces

Lemma 4.15.2. Let T : V →W be linear. Then kerT ⩽ V and imT ⩽W .

Proof. To show something is a subspace you must check the three conditions:
it contains the zero vector, it is closed under addition, it is closed under scalar
multiplication.

First, the kernel.
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1. To show that the kernel contains 0V , we must show that T (0V ) = 0W .
That’s exactly Lemma 4.15.1.

2. If v,w ∈ kerT then T (v + w) = T (v) + T (w) = 0W + 0W = 0W , so
v +w ∈ kerT .

3. If v ∈ kerT and λ ∈ F then T (λv) = λT (v) by the second part of the
definition of linearity, and this is λ0W which equals 0W . Since T (λv) =
0W , we have λv ∈ kerT .

Next, the image.

1. We know from Lemma 4.15.1 that T (0V ) = 0W , so 0W ∈ imT .

2. Any two elements of imT have the form T (u), T (v) some u,v ∈ V . Then
T (u) + T (v) = T (u+ v) (linearity definition part 1), which is an element
if imT , so imT is closed under addition.

3. If T (u) ∈ imT and λ ∈ F then λT (u) = T (λu) by the definition of linearity
part 2, and this is an element of imT as it is T applied to something, so
imT is closed under scalar multiplication.

Example 4.15.1. Let A =

(
0 1
0 0

)
so that we have a linear map TA : R2 → R2

given by TA(x) = Ax. We will find imTA and kerTA.

imTA =

{
TA

(
x
y

)
: x, y ∈ R

}
=

{(
0 1
0 0

)(
x
y

)
: x, y ∈ R

}
=

{(
y
0

)
: x, y ∈ R

}

Another way to write this is that imTA = span

(
1
0

)
, and so dim imTA = 1.

Now we’ll do the kernel.

kerTA =

{(
x
y

)
∈ R2 : TA

(
x
y

)
=

(
0
0

)}
=

{(
x
y

)
∈ R2 :

(
0 1
0 0

)(
x
y

)
=

(
0
0

)}
=

{(
x
y

)
∈ R2 :

(
y
0

)
=

(
0
0

)}
=

{(
x
0

)
: x ∈ R

}

Again we could write this as kerTA = span

(
1
0

)
. The kernel and image are

equal in this case.
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Example 4.15.2. Let D : R⩽n[x] → R⩽n[x] be D(f) = df
dx . We will describe

kerD and imD.

A polynomial has derivative zero if and only if it is constant, so kerD is
the set of all constant polynomials. This is spanned by any (nonzero) constant
polynomial, so it has dimension one.

Next consider imD. Let S ⩽ R⩽n[x] be the subspace spanned by 1, x, . . . , xn−1,
that is, the subspace consisting of all polynomials of degree at most n− 1. Cer-
tainly imD ⩽ S, since when you differentiate a polynomial of degree at most
n you get a polynomial of degree at most n− 1. But if s(x) ∈ S then s(x) has
an indefinite integral t(x) in R⩽n[x] and D(t) = s, so every s ∈ S is in imD, so
imD = S.

4.16 The rank-nullity theorem

4.16.1 Definition of rank and nullity

Definition 4.16.1. Let T : V →W be a linear map.

• The nullity of T , written nullT , is dimkerT .

• The rank of T , written rankT is dim imT .

Example 4.16.1. Returning to the differentiation example from the end of
the last lecture, D : R⩽n[x] → R⩽n[x] has nullity 1 (since its kernel was one-
dimensional, spanned by the constant polynomial 1) and rank n, since its image
had a basis 1, x, . . . , xn−1 of size n. Notice that rank(D)+null(D) = dimR⩽n[x],
this isn’t a coincidence.

4.16.2 Statement of the rank-nullity theorem

Theorem 4.16.1. Let T : V →W be a linear map. Then

rankT + nullT = dimV.

This is called the rank-nullity theorem.

Proof. We’ll assume V and W are finite-dimensional, not that it matters. Here
is an outline of how the proof is going to work.

1. Choose a basis K = k1, . . . ,km of kerT

2. Extend it to a basis B = k1, . . . ,km,v1, . . . ,vn of V using Lemma 4.12.2.
When we’ve done this, dimV = m+n and we need only show dim imT =
n)

3. Show that T (v1), . . . , T (vn) is a basis of imT .

The only part needing elaboration is the last part. First, I claim that T (v1), . . . , T (vn)
span imT . Any element of the image is equal to T (v) for some v ∈ V . We have
to show that any such T (v) lies in the span of the T (vi)s.
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Since B is a basis of V we may write v as
∑m

i=1 λiki +
∑n

i=1 µivi for some
scalars λi, µi. Then

T (v) = T

(
m∑
i=1

λiki +

n∑
i=1

µivi

)

=

m∑
i=1

λiT (ki) +

n∑
i=1

µiT (vi) linearity

=

n∑
i=1

µiT (vi) as ki ∈ kerT

∈ span(T (v1), . . . , T (vn))

as required.
Now I claim T (v1), . . . , T (vn) is linearly independent. Suppose

n∑
i=1

µiT (vi) = 0,

so that we need to show the µi are all 0. Using linearity,

T

(
n∑

i=1

µivi

)
= 0

which means
∑n

i=1 µivi ∈ kerT . As K is a basis for kerT , we can write

n∑
i=1

µivi =

m∑
i=1

λiki

for some scalars λi. But B, being a basis, is linearly independent and so all the
scalars are 0. In particular all the µi are 0, which completes the proof.

4.17 Matrix nullspace basis

We are ready to prove that the fundamental solutions of Ax = 0 are a basis for
N(A). We use the notation of Section 4.11 where we proved the fundamental
solutions were linearly independent: A is a m× n matrix, R is a RREF matrix
obtained by doing row operations to A, the number of columns of R with a
leading entry is r and the number of columns with no leading entry is k, so
r + k = n. There are k fundamental solutions to Ax = 0, and we showed in
Lemma 4.11.2 that these are linearly independent.

Theorem 4.17.1. The fundamental solutions to Ax = 0 are a basis of the
nullspace N(A).

Proof. Consider the linear map TR : Fn → Fm. The kernel of TR, which is
the nullspace N(R), contains the k fundamental solutions, which are linearly
independent, so dimkerTR ⩾ k by Corollary 4.13.1.

The image of TR, which is the column space C(R), contains each of the r
columns of R which contain a leading entry. These are standard basis vectors
(by definition of RREF), so by Corollary 4.13.1 again dim imTR ⩾ r.
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We know that k+r = n, and the rank-nullity theorem says that dimkerTR+
dim imTR = n. So dimkerTR = k and dim imTR = r (if dimkerTR were strictly
larger than k, for example, then dimkerTR+dim imTR would be strictly larger
than k + r = n, a contradiction).

The fundamental solutions are now k linearly independent elements of the
vector space kerTR = N(R), which has dimension k. By 4.13.4, they are a basis
of N(R). This completes the proof, because N(A) = N(R) by Theorem 3.9.1.

4.18 Column space basis

We can now calculate a basis for the nullspace of a m× n matrix A by putting
it into RREF and reading off the fundamental solutions to Ax = 0. In this
section we consider the problem of finding a basis of the column space C(A),
which we defined in Definition 3.6.2 to be the span of the columns of A.

By Proposition 3.2.1, the set of vectors Av is exactly the set of linear com-
binations of the columns of A. Therefore the column space C(A) is equal to the
image of TA : Fn → Fm given by TA(x) = Ax.

It would be nice to be able to solve this problem using RREF, because it is
very easy to find a basis for the column space of a RREF matrix like

R =

0 1 2 0 3
0 0 0 1 4
0 0 0 0 0

 .

The columns containing a leading entry, in this example columns 2 and 4, are
easily seen to be a basis for the column space of R. Unfortunately doing row
operations can change the column space of a matrix, so knowing the column
space of R does not immediately give you the column space of A.

One solution for this would be to introduce column operations and column
reduced echelon form, and re-prove all the things about row operations and row
reduced echelon form. Instead we are going to stick with the row operations we
already know and use the transpose to convert columns into rows.

We defined the column space of a matrix as the span of its columns. The
row space is defined similarly.

Definition 4.18.1. Let A be a m× n matrix. The row space of A is defined
to be the span of the rows of A.

Theorem 4.18.1. Let A be m×n, let E be a m×m invertible matrix, and let
F be a n× n invertible matrix. Then the row space of EA equals the row space
of A and the column space of AF equals the column space of A.

Proof. We will do the second part only as the first one can be proved similarly.
By Corollary 3.2.4, the columns of AF are linear combinations of the columns
of A, that is, elements of the subspace C(A). The span C(AF ) of the columns
of AF is therefore also contained in C(A).

Applying the same argument again with AF in place of A and F−1 in place
of F , the column space C(AF ) is contained in C(AFF−1), that is, in C(A).
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Since doing a row operation to a matrix is the same as left multiplication by
an elementary matrix (Theorem 3.8.1), this shows that doing row operations to
a matrix doesn’t change its row space.

Theorem 4.18.2. Let R be a m× n RREF matrix. Then the nonzero rows of
R are a basis for the row space of R.

Proof. Certainly the nonzero rows span the row space, so we only need show
they are linearly independent. Let the nonzero rows be r1, . . . , rl, and let the
leading entry in row i occur in column ci. Suppose

∑l
i=1 airi = 0. Pick any

1 ⩽ i ⩽ l and consider the entry in column ci of this sum. On the right we have
0. On the left airi has a ai in column ci, and all the other rjs have zeros in
column ci because R is in RREF. Thus we have ai = 0 for 1 ⩽ i ⩽ l, so the
rows are linearly independent.

The columns of A are the transposes of the rows of AT , so we can get a basis
for the column space of A by forming the matrix AT , doing row operations until
we reach a RREF matrix, then taking the transposes of the nonzero rows of this
RREF matrix.

Example 4.18.1. Let A =

1 2 3
4 5 6
7 8 9

. To find a basis of C(A) we take the

transpose of A to get

AT =

1 4 7
2 5 8
3 6 9


Doing row operations, we reach the RREF matrix

R =

1 0 −1
0 1 2
0 0 0

 .

The nonzero rows
(
1 0 −1

)
and

(
0 1 2

)
are a basis for the row space of

R, which equals the row space of AT , so their transposes 1
0
−1

 ,

0
1
2


are a basis for the column space of A.

4.19 Matrix of a linear map

Linear maps are abstractly defined things. We’d like to make them concrete.
We do this by making the following observation: once you know what a linear
transformation does on a basis, you know what it does everywhere.

Here’s what that means exactly. Let T : V → W be linear. Let b1, . . . ,bn

be a basis of V. Then we can write any v as
∑n

i=1 λibi for some scalars λi, and
so by linearity T (v) = T (

∑n
i=1 λibi) =

∑n
i=1 λiT (bi)
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So if I want to communicate a linear map, I can just say what it does on a
basis b1, . . . ,bn. You can then work out T (v) for any v ∈ V just by knowing
the T (bi).

We can record what T does to each vi by giving the coefficients needed to
write the T (bi) in terms of some fixed basis of W .

4.19.1 Definition of the matrix of a linear map

Definition 4.19.1. Let T : V →W be linear, and let

• B = b1, . . . ,bn be a basis of V

• C = c1, . . . , cm be a basis of W .

Define scalars aij by T (bj) =
∑m

i=1 aijci. Then the matrix of T with respect
to initial basis B and final basis C, written [T ]BC , is the m× n matrix (aij).

Another way to think of this definition is that the jth column of [T ]BC records
the image of the jth basis element from B under T , in the sense that the entries
are the coefficients used in expressing T (bj) as a linear combination of C.

When we have a linear map from a vector space to itself, we sometimes use
a slightly different terminology. If T : V → V and B is a basis of V, the matrix
of T with respect to B means [T ]BB.

Notice that the order of the basis matters in this definition. If you order the
basis elements differently, you change the order of the columns or rows in the
matrix. That’s why our bases are sequences, not sets.

4.19.2 Examples of the matrix of a linear map

Example 4.19.1. Let T : R2 → R3 be defined by T

(
a
b

)
=

 a+ b
a− b
2a+ b

. This is

linear. Let’s find the matrix of T with respect to

• initial basis E = e1, e2, the standard basis for R2, and

• final basis E ′ = e′1, e
′
2, e

′
3, the standard basis for R3.

We have

T (e1) =

1
1
2

 = 1e′1 + 1e′2 + 2e′3

T (e2) =

 1
−1
1

 = 1e′1 − 1e′2 + 1e3

so the matrix [T ]EE′ is

1 1
1 −1
2 1

.

Example 4.19.2. Let
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• V be the vector space of all polynomials with real coefficients of degree
⩽ 3 in one variable x

• D : V → V be the differentiation map

• B be the basis 1, x, x2, x3 of V .

D is a linear map, so let’s find the matrix [D]BB of D with respect to B. We have

D(1) = 0 = 0× 1 + 0× x+ 0× x2 + 0× x3

D(x) = 1 = 1× 1 + 0× x+ 0× x2 + 0× x3

D(x2) = 2x = 0× 1 + 2× x+ 0× x2 + 0× x3

D(x3) = 3x2 = 0× 1 + 0× x+ 3× x2 + 0× x3

and so

[D]BB =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


Example 4.19.3. Let id : V → V be the identity map id(v) = v. Let B =
b1, . . . ,bn be any basis for V . We’re going to work out [id]BB. For any j,

id(bj) = bj = 0× b1 + · · ·+ 1× bj + · · ·+ 0× bn.

This means the jth column of [id]BB is all 0s, except a 1 in position j. In other
words, [id]BB = In, the n× n identity matrix.

This shows that the matrix of the identity map is the identity matrix, so
long as the initial basis and the final basis are the same.

On the other hand, if C = c1, . . . , cn is a different basis of V then [id]CB
will not be the identity matrix. To figure out what goes in the jth column of
this matrix we have to work out id(bj), which is just bj of course, as a linear
combination of the cis. The coefficients we have to use, whatever they are, make
up this column of the matrix.

Example 4.19.4. Consider two bases for R2

B : e1 =

(
1
0

)
, e2 =

(
0
1

)
C : c1 =

(
1
1

)
, c2 =

(
1
−1

)
Both [id]BB and [id]CC will be the identity matrix I2. Let’s work out [id]CB. To do
that, we have to express id(cj) as a linear combination of the ei for j = 1, 2:

id(c1) = c1 = e1 + e2

id(c2) = c2 = e1 − e2

and so [id]CB =

(
1 1
1 −1

)
.

Example 4.19.5. Let A be an m by n matrix, and TA : Rn → Rm be the linear
map TA(x) = Ax. Then the matrix of TA with respect to the standard bases of
Rn and Rm is A.
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4.20 Matrix of a composition

Suppose we have two composable linear maps, S and T . The composition T ◦S
is still linear, as you can check. There should be a connection between the
matrix of T ◦ S with respect to some bases and the matrices for T and S.

Theorem 4.20.1. Let S : U → V and T : V →W be linear maps. Let

• B = b1, . . . ,bl be a basis of U ,

• C = c1, . . . , cm be a basis of V , and

• D = d1, . . . ,dn be a basis of W .

Then [T ◦ S]BD = [T ]CD[S]
B
C

Here is picture of this situation:

B C D
U

S→ V
T→ W

This theorem provides some justification for our definition of matrix multi-
plication: composition of linear maps corresponds to multiplication of matrices.

Proof. Let [T ]CD = (tij) and [S]BC = (sij). We will work out [T ◦ S]BD using the
definition of the matrix of a linear map. For any 1 ⩽ c ⩽ l,

(T ◦ S)(bc) = T (S(bj))

= T

(
m∑

k=1

skcck

)
as [S]BC = (sij)

=

m∑
k=1

skcT (ck) linearity of T

=

m∑
k=1

skc

n∑
i=1

tikdi as [T ]CD = (tij)

=

n∑
i=1

(
m∑

k=1

tikskc

)
di for finite sums,

∑
k

∑
i

=
∑
i

∑
k

so the r, c entry of [T ◦ S]BD is
∑m

k=1 trkskc, which is the same as the r, c entry
of [T ]CD[S]

B
C by the matrix multiplication formula.

4.21 Change of basis

Suppose we have a linear map T from V to W and two different bases for V
and two different bases for W . We can form the matrix of T with respect to the
first initial and final bases, and the second. These record the same information
(the linear map T ) in different ways, so they should be related in some way.
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4.21.1 The change of basis formula

Let

• T : V →W be a linear map,

• B and B′ be bases of V , and

• C and C′ be bases of W .

Now make the following observation:

T = idW ◦T ◦ idV

which holds purely because composing with an identity map doesn’t change
anything.

Now apply Theorem 4.20.1 from the previous section twice: you get the
change of basis formula:

[T ]B
′

C′ = [idW ]CC′ [T ]BC [idV ]
B′

B (4.7)

4.21.2 The matrix of the identity map with respect to
different bases

In this subsection we’re going to work an example of computing matrices of lin-
ear maps using the change of basis formula. On the way we’ll see the significance
of the matrix of the identity map with respect to different bases.

Let T : R2 → R2 be the linear map

T

(
x
y

)
=

(
−16x+ 6y
−45x+ 17y

)

Let E be the standard basis e1, e2 of R2 and let F be the basis f1 =

(
2
5

)
, f2 =(

1
3

)
. The matrix of T with respect to E is easy to find:

T (e1) = T

(
1
0

)
=

(
−16
−45

)
= −16e1 − 45e2

T (e2) = T

(
0
1

)
=

(
6
17

)
= 6e1 + 17e2

so [T ]EE =

(
−16 6
−45 17

)
.
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[id]FE is also easy: it’s the matrix which tells us how to express the elements
of F in terms of the standard basis.

id(f1) = f1 = 2e1 + 5e2

id(f2) = f2 = 1e1 + 3e2

and so [id]FE =

(
2 1
5 3

)
.

How to express the ei in terms of the fi isn’t so obvious, so on the face of it
computing [id]EF is harder. But we can avoid that, because we know about the
matrix of a composition.

[id]EF [id]
F
E = [id ◦ id]FF Theorem 4.20.1

= [id]FF as id ◦ id = id

= I2

so

[id]EF = ([id]FE )
−1

=

(
2 1
5 3

)−1

=

(
3 −1
−5 2

)
We could work out [T ]FF directly using the definition, but instead we are

going to practise using the change of basis formula (4.7). It says

[T ]FF = [id]EF [T ]
E
E [id]

F
E

=

(
3 −1
−5 2

)(
−16 6
−45 17

)(
2 1
5 3

)
=

(
−1 0
0 2

)
Now consider [T ]EF . Again we could find it directly from the definition by

computing T (e1) and T (e2) and expressing them in terms of the fis. But we
already have the information we need: by Theorem 4.20.1,

[T ]EF = [T ◦ id]EF
= [T ]FF [id]

E
F

=

(
−1 0
0 2

)(
3 −1
−5 2

)
=

(
−3 1
−10 4

)

To check our answer we compute T (e1), which is

(
−16
−45

)
. If the matrix is correct

this should be the same as −3f1 − 10f2, and you can check that it really is.
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4.21.3 Why would we use different bases to represent a
linear map?

We already saw, when we first met bases of vector spaces, that different bases
of vector spaces give us a different perspective on their elements — recall the
example about two-pixel images. The same idea applies to linear maps.

A linear transformation which looks complex with respect to one basis can
become much easier to understand when you choose the correct basis.

Example 4.21.1. A =

 4 −3 −3
3 −2 −3
−1 1 2

. Consider TA : R3 → R3, so the

matrix of TA with respect to the standard basis of R3 is A. There is no obvious
structure to TA.

Now consider a new basis B of R3: b1 =

1
1
0

 ,b2 =

1
0
1

 ,b3 =

−3
−3
1

.

(You should check it really is a basis.) Let’s find the matrix of TA with respect
to B, that is, [TA]BB.

You can check that TA(b1) = b1, TA(b2) = b2, TA(b3) = 2b3. Thus [TA]
B
B =1 0 0

0 1 0
0 0 2


Suddenly the behaviour of TA is clear. Vectors in the direction

1
1
0

 and1
0
1

 are unchanged by TA, vectors in the direction b3 are scaled by a factor of

2.

This technique is called diagonalisation, you will learn more about it when
you study eigenvectors and eigenvectors in Algebra 2.

Further reading

Most of the recommendations from the previous chapter are also relevant to the
material in this one. If you want to take linear algebra further and you like the
style, the books Introduction to Linear Algebra, Linear Algebra and Learning
From Data, and Linear Algebra and its Applications by G. Strang might be
good for you. The second is especially relevant if you are interested in AI/ML.

You will learn more about linear algebra and matrices in MATH0006 Algebra
2 next term, and there are more advanced linear algebra courses in subsequent
years such as MATH0014 Further Linear Algabra and MATH0058 Computa-
tional Methods. Full details and syllabuses can be found on my pathways web-
page.

https://www.ucl.ac.uk/~ucahmto/pathways/
https://www.ucl.ac.uk/~ucahmto/pathways/
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