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Chapter 1

Calculus – FAQ

Calculus is probably not the most popular course for computer scientists.
After all, if someone has a particularly great desire to study calculus, he or she
probably studies mathematics, not computer science. And strangely enough
computer science freshmen, eager to write their first lines of professional
software code are forced to study questions like : “does this infinite sum
converge?”. It turns out, that among the mandatory courses on the first
year you find calculus!

I would like to address some frequently arising questions or doubts, and
convince you that this course did not make it to the schedule by a mistake.
Actually, it is one of the most important courses of the first few years, and
its worthy to devote it your attention.

One frequently encounters the following question: why does the computer
scientist need mathematics. Well if a need ever arises to apply a particular
mathematical concept or result, you can always read up the necessary stuff,
or you can consult the specialist. Actually, this line of reasoning is a mis-
understanding. The basic course of calculus is not in any way a specialized
knowledge. You should not expect that notions and theorems we will study
in this course are going to apply to any of your particular projects. All that
calculus stuff is simply a language that we use when we want to formulate
or understand a problem. It is a universal language throughout engineering
sciences, also in computer science. In today’s world, if one wants to be a
true, creative professional, practically in any field one has to command En-
glish. The professional literature, Internet (simplifying a little bit) are all in
English, and any professional foreign stay will not be a success, if you do not
know English. It is similar with calculus. You have to become accustomed
to notions like convergence, continuity, approximation, integral, power series
and the likes. Notions of this type appear everywhere, and will accompany
you throughout your future career. Many of you will leave to gain experience
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in foreign countries, for example to the Microsoft headquarters in Redmond
on the shores of lake Washington. Remember that every graduate of a uni-
versity in the engineering field (and that includes computer science) in the
United States has at least 3 semesters of calculus. Those people will form
your environment, with them you will do your projects. Without the knowl-
edge of the basic language of the technical trades you will be, so to speak,
professionally illiterate. Let me stress that: the basic course in calculus is
not a specialized knowledge, which might become useful or it might as well
not. It is the basic notions and the relations among them that will appear
perpetually, throughout your studies, and then in your professional everyday
life. During your further studies you will be offered various other mathemat-
ical or borderline mathematical courses. A lot of them will be optional – you
can take them or opt out. But calculus, as well as, for example, logic, plays
a different role – it is basic, and it is mandatory.

Another problem arises frequently. Students say: “All right, if you insist
that badly we will study calculus. But why do you justify everything in such
a detail, and why do you give us proofs of theorems. Some of your proofs
pour over an entire page! We trust you, if you say that the theorems are
true. Instead of proofs, cover more material.” Well, this is still the same
misunderstanding. In this course our aim is to learn notions, dependencies
between them, the way in which they influence one another. The way of
arguing is just as important as the facts themselves. In this course the
question “what?” is just as important as “why?”. Observe, that most proofs
are really short and clear. If the proof is not immediate I always try to stress
the idea. First, we try intuitively to grasp, why the theorem should hold,
and once we get the general idea, we try to make it precise, and we “dress it
up” with the right words. If we sense from the start what the proof is trying
to accomplish the whole thing is neither hard nor complicated.

Many students make the following comment: “This course is merely a
repetition of what we had in high school. Most problems on the mid-terms
and the final are shamefully easy. We want, and we can, do more!” It is true,
that a lot of the material of this course is in the high school program. But
please remember that this course is not aimed at breaking scientific world
records. We want to systematically develop the basic knowledge, which is
the calculus. There is not much new material, but everything gets laid out
with details, without hiding the troublesome odds and ends. In the problem
sessions we will do a lot of exercises. As the Americans say: “What is
the basis of thorough knowledge? Repetition, repetition, repetition!” But
do not worry, if you are looking for in-depth, quality knowledge you have
found yourself in the right place. Besides calculus a lot of other courses
await you, and you will not get bored. If you are interested in calculus, or
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other mathematical subjects, then in the building next door you will find
courses in virtually any mathematical field and on virtually any level. Many
computer science students attend courses in the Mathematical Institute, and
many math students come to classes in the Computer Science Institute. It
is not by accident, that these two buildings are adjacent to one another, and
you can go from one to the other “with the dry foot”. Even the library is
common. You are always welcome at the office hours, where you can talk to
your lecturer who, so to speak, has eaten his mathematical oats.

Another question arises: “The lecture notes have 15 chapters, roughly
the same as the number of weeks for the course. Thus we have the work
plan, and additionally the notes. Can we then skip the classes? Why should
we drag ourselves out of bed for a class at noon, just to watch you copy
your notes to the blackboard? Why should we go to the problem sessions to
watch someone solve a simple exercise?” Well, the answer is no, you should
definitely attend both the lecture and the problem sessions. Listening to the
lecture is something completely different than reading the notes. It is not
just the matter of questions or ideas appearing. From experience we know,
that each lecture is different. Sometimes same topic is covered in 15 minutes
some other time the same topic takes an hour. Most certainly a lecture does
not mean simply copying notes to the blackboard. The same goes for the
problem sessions. You cannot master the material without doing exercises on
you own. I think one could use an analogy with studying a foreign language.
You have to practice, you have to try, and of course you have to go to
the blackboard, and solve the problem in public. Also you have to try not
to “fall behind”. In a course like calculus it is easy to get lost and lose
contact at some point. Notions and ideas once introduced are used later
repeatedly. Your attendence is not formally checked, but please remember
that not coming to a lecture or to a problem session you can get yourself into
trouble. It is not easy to master the material by simply reading the notes.
Besides the final exam during the semester we will have 3 mid-term exams,
roughly one a month. The mid-terms should give you a “real time” clear
image of how you are doing.

If you have other questions – please ask. My address is

mpal@math.uni.wroc.pl
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Chapter 2

Real and complex numbers

Real numbers

We are not going to go into details of construction of the set of real numbers.
Constructing real numbers, all the arithmetic operations, establishing all
their properties is an interesting subject, and is certainly worthy of interest.
But in this course we will only recall the more important facts, and we will
basically assume that everybody knows the real numbers. The set of real
numbers is denoted by R, and we understand the real number as a decimal
expansion (sequence of decimal digits), for example 123, 357290 . . . . Decimal
expansion contains a decimal point (in this part of the world it is the comma),
it is finite to the left, and finite or infinite to the right. The expansion can
have a sign − , and then it is called a negative number. We all know how
to add, subtract, multiply and divide numbers like that, and we know the
properties of such arithmetic such as connectivity. Let us recall important
facts:

1. If certain sequence of digits repeats itself right of the decimal point,
we say that the expansion is periodic, and we enclose the repeated
sequence between the parenthesis: 0, 03212512512 · · · = 0, 032(125).

2. If from certain place right of the decimal point the expansion consists
entirely of zeros, we call such expansion finite, and we omit he trailing
zeros: 3, 234000000 · · · = 3, 234(0) = 3, 234.

3. In principle different decimal expansions mean different real numbers.
There are, however, exceptions and it may happen, that 2 different
expansions denote the same number. Such an exception happens if the
expansion, from certain point (right of the decimal), consists of only
9. Such an expansion represents the same number as the expansion,
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in which all repeating 9 are dropped and the last non-9 is increased
by 1. For example 0, 09999 · · · = 0, 0(9) = 0, 1. This can be easily
proved, using the properties of arithmetic (for example, using the fact
that multiplying a number by 10 means shifting the decimal point of
its expansion right by one place). Let x = 0, 0(9). We then have

10 · x = 0, (9) = 0, 9 + 0, 0(9) = 0, 9 + x⇒ 9 · x = 0, 9⇒ x = 0, 1.

Real numbers, whose expansions have only zeros to the right of the deci-
mal point are called integers, and the set of integers is denoted by Z. Positive
integers 1, 2, . . . (without zero) are called natural numbers, or naturals, and
the set of naturals is denoted by N.

Rational numbers

Numbers whose decimal expansions are finite or periodic are called rational
numbers. We denote the set of rational numbers by Q. Rational numbers
can be written as fractions m

n
, where m,n are integers, and n ̸= 0. If n is a

natural number, and m and n have no common divisor, then the expression
of x as the fraction m

n
is unique, and we call such fraction irreducible. Each

rational number can be expressed as an irreducible fraction.

Examples: (a) 1
7
= 0, 1428571428 · · · = 0, (142857). The decimal expansion

can be obtained by applying the “long division” procedure. Dividing, at
certain point we observe, that the remainder repeats a past value. At that
point the entire expansion starts repeating a period. It is not hard to observe,
that the period is no longer than the value of the denominator minus 1.

(b) 0, 123 = 123
1000

. This is an irreducible fraction, since, as can be easily
checked the numerator and the denominator have no common divisors, and
the denominator is positive.

(c) 0, (a1a2 · · · ak) = a1a2···ak
99···9 (k – nines in the denominator). It is easy to

prove, writing out and solving an appropriate equation for x = 0, (a1 · · · ak).

(d) Let us convert the following decimal expansion into a fraction

0, 123(45) = 0, 123 + 0, 000(45) =
123

1000
+

0, (45)

1000

=
123

1000
+

1

1000

45

99
=

99 · 123 + 45

99000
=

12222

99000
.
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Irrational numbers

Real numbers which are not rational, that is those with decimal expansions
neither finite nor periodic, are called irrational numbers.

Examples: (a) Let us write out an expansion which contains consecutively
longer sequences of zeros, separated by single ones:

x = 0, 101001000100001 · · · 10 · · · 010 · · · .

The series of zeros are progressively longer, and so the expansion is not
periodic. It is not finite either, since ones keep appearing, although more
and more scarcely. x is thus an irrational real number.

(b) Another example of an irrational number is 3
√
15. We will show, that

3
√
15 is not rational. This will be a typical reasoning, and it can be adapted

to many examples. First of all recall, that a root of arbitrary order can
be extracted from any non-negative real. This is a property of reals, and
we assume it is known. Thus 3

√
15 by definition is the unique positive real

number, such that raised to the third power recovers 15. Let us assume it
is rational. This is an example of indirect reasoning. We assume something,
and show that such assumption leads to contradiction. By the rules of logic
this shows, that the initial assumption was false. So, again let us reason
indirectly, and let us assume that 3

√
15 is rational. Let us then express it as

an irreducible fraction

3
√
15 =

m

n
⇒ 15 =

m3

n3
⇒ n3 · 15 = m3.

3 divides the left hand side of the last equality, and so it must divide the right
hand side. 3 is a prime number, so if it divides a product of numbers it must
divide one of the factors (it is a property of primes). So 3 must divide m,
and so the right hand side, as a cube, has to be divisible by 27. In that case
on the left hand side n3 has to be divisible by 3 (since 15 can only be divided
by 3), and thus again, since 3 divides n3 it must divide n. The fraction m

n

is thus not irreducible, which contradicts our assumption. The assumption
that 3

√
15 is a rational number has to be false.

Remarks: (i) A prime number is a natural number, greater than 1, which
has no other divisors than 1 and itself. Prime numbers have the following
property: if p is a prime, and p|m · n (p divides m · n), then p|m or p|n.

(ii) The above reasoning in (i) is an application of the decomposition of a
natural number as a product of factors, each of which is prime. Such a decom-
position is called a decomposition into prime factors, and such decomposition
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is unique. In the equality

n3 · 15 = m3

the prime factors of n3 and m3 come in triples, and the prime factors of 15,
that is 3 and 5 are lone. We have used this to arrive at a contradiction. The
existence and the uniqueness of the prime factor decomposition is a property
of the set N, which we will not prove, but which is worth remembering. As
an exercise in which prime factor decomposition can be useful let us mention
the following question: how many trailing zeros does the number (1000)!
(1000 factorial) have?

(iii) The root appearing in the above example, sa the logarithm and powers
appearing below are examples of elementary functions. We assume that
we know elementary functions, and we will not provide detailed definitions.
In the next chapter we will briefly recall the most important facts about
elementary functions.

(c) log2 3. We will reason in the same way as in the previous example, that is
indirectly. Let us assume that log2 3 is a rational number and let log2 3 = m

n

be an irreducible fraction.

log2 3 =
m

n
⇒ 2

m
n = 3 ⇒ 2m = 3n.

We have arrived at a contradiction, since the left hand side of the above
equality only contains twos as its prime factors, while the right hand side
only contains threes. The assumption that log2 3 is rational must thus be
false.

(d) The sum, difference, product and fraction of rational numbers are all
rational (of course one cannot divide by zero). The sum, difference, product
and fraction of an irrational number by a rational number are irrational
(unless, in the case of product and fraction the rational number is zero). The
result of an arithmetic operation on two irrational numbers depends, can be
rational or irrational, depending on the particular values.

Geometric interpretation

We can think of real numbers as points on a line. On that line we mark places
for zero and one, and we mark with the arrow the positive direction, which
is determined by the relative position of zero and one. Traditionally the
positive direction points to the right. Each real number can then be assigned
a unique point on such line. The line with the real numbers assigned to its
points is called the real axis.
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0 1

Figure 2.1: The real axis.

The ordering of the set R

If x − y is a positive number we write x > y (“x is greater than y”), if it
is a non negative number we write x ≥ y (“x is greater or equal than y”).
Similarly, if x − y is negative we write x < y, and if non-positive we write
x ≤ y. Therefore, we see that for for any two real numbers x, y we have
either x = y or x < y or x > y. We say that the set R is ordered. O the real
axis x > y if x is more to the right than y – this is symbolized by the arrow
– to the right the numbers grow.

Symbols

∀ we read “for all”, ∃ we read “exists”, ⇔ we read ‘if and only if”, (· · · )⇒
(· · · ) we read “(· · · ) implies (· · · )”, ∈ we read “belongs to”, ⊂ we read “is a
subset of”. The symbol ∧ we read ‘and”, while the symbol ∨ we read “or”.

Let us recall two properties of the set of real numbers: the Archimedean
axiom and the continuity axiom.

Archimedean axiom

The real numbers have the following property, which intuitively is clear: for
any x, y > 0 there exists a natural number n such that

nx > y.

Using the above introduced notation we can write the axiom as follows

∀ x, y > 0 ∃ n ∈ N nx > y.

It follows from the Archimedean axiom that, for example, there are natural
numbers arbitrarily large (larger than any fixed real number). Since multiply-
ing by −1 reverses the inequalities, then it also follows from the axiom that
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there exist integers arbitrarily small (smaller than any fixed real number).
Let us observe, that it also follows from the axiom that there are positive
numbers arbitrarily small (positive, but smaller than arbitrary other fixed
positive number). We will be using all these facts, without directly referring
to the Archimedean axiom.

The extrema

We say that the set A ⊂ R is:

• bounded from above, if

∃ c ∀ x ∈ A x ≤ c,

• bounded from below, if

∃ d ∀ x ∈ A x ≥ d,

• bounded, if it is bounded from above and from below.

The constants c and d in the above conditions are respectively called the
bound of the set A from above (or the upper bound), and the bound of the
set A from below (the lower bound). The set of natural numbers is bounded
from below (the bound from below is, for example, the number 1), but is not
bounded from above (it follows from the Archimedean axiom that one cannot
find a c which is a bound of N from above). If the set A ⊂ R is bounded
from above, then the smallest upper bound of A is called its supremum, and
is denoted

supA (supremum of A).

If A ⊂ R is bounded from below, then the largest lower bound of A is called
its infimum, and is denoted

inf A (infimum of A).

Thus, s = supA if

• ∀ x ∈ A x ≤ s,

• ∀ u < s ∃ x ∈ A x > u.

The first condition says that A is bounded from above, and s is its upper
bound, while the second condition says that no number smaller than s is an
upper bound of A. Thus, both conditions together say that s is the smallest
upper bound of A. We can similarly summarize the definition of the infimum:
k = inf A if the following two conditions are satisfied simultaneously:
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• ∀ x ∈ A x ≥ k,

• ∀ l > k ∃ x ∈ A x < l.

The notions of supremum and infimum have been introduced in the case of
a set bounded from above and from below respectively. In addition to that,
if A is not bounded from above we will write

supA = +∞,

and if A is not bounded from below we will write

inf A = −∞.

For example

infN = 1 and supN = +∞.

Continuity axiom

This axiom states that every set A ⊂ R, bounded from above has a supre-
mum. This is a property of the set of real numbers: from all upper limits of
A, bounded from above, one can choose the smallest one. Thinking geomet-
rically, this property says that the real numbers fill out the entire real axis,
with no holes left. This property, the continuity axiom, can be equivalently
formulated in terms of lower bounds: every set bounded from below has an
infimum.

Remark: A set can contain its supremum or infimum or not. Consider, for
example

sup{x : x < 1} = sup{x : x ≤ 1} = 1.

The first set does not contain 1, while the second one does.

Example: Let us consider the following set

A =

{
m2 + n2

2mn
: m,n ∈ N,m < n

}
.

Let us observe, that A is not bounded from above. Indeed, that set A
contains all numbers of the form m2+1

2m
, m ∈ N, m > 1. Each such number

is larger than m
2
, and numbers of that form, with arbitrary m ∈ N include

all natural numbers. Thus A contains elements larger than arbitrary fixed
natural number. It is therefore not bounded from above. On the other hand,
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let us observe, that A is bounded from below, and that 1 is a lower bound.
To this end, let us recall a well known inequality:

2ab ≤ a2 + b2 ⇒ m2 + n2

2mn
≥ 1 for m,n > 0.

We will now prove that 1 is the largest lower bound of A. Let c > 1. Then
1

c−1
is a positive number, and from the Archimedean axiom it follows, that

there exists a natural number m larger that 1
c−1

. Additionally let m ≥ 2,
which we can always assume, increasing m if necessary. Then

1

c− 1
< m < 2m(m− 1) ⇒ 1 +

1

2m(m− 1)
< c.

We thus have

m2 + (m− 1)2

2m(m− 1)
=
m2 +m2 − 2m+ 1

2m(m− 1)
=

=
2m(m− 1) + 1

2m(m− 1)
= 1 +

1

2m(m− 1)
< c.

Assuming that c > 1 we found in A an element m2+(m−1)2

2m(m−1)
, smaller that c.

Thus, no c > 1 can be a lower bound of A, and so 1 is the largest lower
bound of A, that is inf A = 1. In addition, let us observe that 1 /∈ A: if
1 ∈ A then there would be m,n ∈ N, n ̸= m, such that m2+n2 = 2mn. But
we know that such equality is equivalent to (m − n)2 = 0, so m = n, which
is a contradiction.

Intervals

We denote intervals in the following way:

(a, b) = {x : a < x < b}, (open interval),

[a, b] = {x : a ≤ x ≤ b}, (closed interval),

(a, b] = {x : a < x ≤ b}, (left-hand open interval),

[a, b) = {x : a ≤ x < b}, (right-hand open interval).

In the case of intervals (a, b) and (a, b] we allow a = −∞, and in the case
of intervals (a, b) and [a, b) we allow b = ∞. Such intervals then denote the
appropriate half-axes. We assume by default that a < b, and in case of the
closed interval [a, b] we allow a = b.
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Absolute value

We define the absolute value of a real number in a following way

|x| =

{
x : x ≥ 0,

−x : x < 0.

The absolute value has the following properties:

1. | − x| = |x|,

2. −|x| ≤ x ≤ |x|,

3. |x+ y| ≤ |x|+ |y| (triangle inequality),

4.
∣∣|x| − |y|∣∣ ≤ |x− y|,

5. |x− y| represents the distance from x to y on the real line,

6. |x · y| = |x| · |y|,

7. |x| =
√
x2,

8. |x| ≥ 0 and |x| = 0⇔ x = 0,

9. x ≤ y ∧ −x ≤ y ⇒ |x| ≤ y.

As an example let us prove the triangle inequality 3. We consider separately
two cases
(a) x and y have the same sign ±. Their sum again has the same sign, so

|x+ y| = ±(x+ y) = ±x+±y = |x|+ |y|.

In this case we see, that the triangle inequality is actually an equality.
(b) x and y have opposite signs. We can assume x ≤ 0 ≤ y, if not we simply
rename x and y. If x+ y ≥ 0 then

|x+ y| = x+ y ≤ −x+ y = |x|+ |y|,

while if x+ y < 0 then

|x+ y| = −(x+ y) = −x− y ≤ −x+ y = |x|+ |y|.

In this case, if none of x and y is zero, the inequality is actually sharp.
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Integral part and fractional part

The integral part of x is the largest integer not greater that x (clearly, such
greatest integer exists). The integral part of x is denoted by [x]. The frac-
tional part of x is {x} = x−[x]. The integral part has the following properties

• [x] ∈ Z,

• [x] ≤ x < x+ 1 and x− 1 < [x] ≤ x,

• [x] = x⇔ x ∈ Z.

Examples: [1, 5] = 1, [−1, 5] = −2, {−1, 5} = 0, 5.

−2 −1 0 1 2

f(x) = [x]

−2 −1 0 1 2

f(x) = {x}

Figure 2.2: The integral part and the fractional part.

The density of the rational and the irrational numbers

Both a rational and an irrational numbers exist in every interval (a, b). Let
(a, b) ba an arbitrary interval (remember that a < b, so the interval is not
an empty set). We will show that there is a rational number in (a, b). The
irrational number is let as an exercise. We have 1

b−a
> 0, so it follows from

the Archimedean axiom that there exists a number n ∈ N such that n > 1
b−a

,

that is 1
n
< (b− a). Let us consider the set of numbers of the form{

k

n
: k ∈ Z

}
.
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We will show now, that one of the numbers from the above set must fall
into our interval (a, b). The idea is clear: numbers from the above set are
uniformly spaced on the real line, with the distance 1

n
between adjacent. This

spread this smaller than the size of our interval. Let us now make this idea
precise. Let k0 be the largest if the integers k such that

k ≤ na.

The set of integers k satisfying the above condition is clearly bounded from
above, and clearly its supremum is an integer, so such largest k0 exists.
Observe, that k0+1

n
> a and since k0

n
≤ a and 1

n
< (b − a), then k0+1

n
<

a+ (b− a) = b. Therefore k0+1
n
∈ (a, b), and is of course rational.

Mathematical induction

The set of natural numbers has the following property: each of its non-empty
subsets has a smallest element. From this property we obtain the following
principle of mathematical induction. Let T (n), n ≥ n0 be some sequence of
theorems. In applications often these are equalities or inequalities, with the
natural parameter n. Let:

1. T (n0) be true (the starting point for induction),

2. ∀ n ≥ n0 the following implication is true (T (n) – true) ⇒ (T (n+1) –
true) (the induction step).

Then all theorems T (n), n ≥ n0 are true. The principle of mathematical
induction is intuitively obvious, and it can be easily proved: If not all of
the theorems T (n), n ≥ n0 are true, then the set A ⊂ N of those n ≥ n0,
for which T (n) is false is non-empty. A has the smallest element, which we
denote ñ.Observe, that it follows from 1. that we must have ñ > n0. So we
have T (ñ) false (since ñ ∈ A), but T (ñ − 1) true, since ñ − 1 /∈ A. This
contradicts 2., since from the fact that T (ñ− 1) is true it should follow that
T (ñ) is also true.

Example: We will show, that for every n ∈ N the following inequality is
true: 10n < 2n + 25. This inequality is our theorem T (n). We first try to
prove the induction step, that is, we prove 2. Let us thus assume

10n < 2n + 25,

and let us try, assuming the above, to prove

10(n+ 1) < 2n+1 + 25. (2.1)
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We thus have
10(n+ 1) = 10n+ 10 < 2n + 25 + 10. (2.2)

To conclude the proof, and arrive at the right hand side of (2.1) we need the
inequality 10 ≤ 2n, which, unfortunately is only true for n ≥ 4. We thus
restrict ourselves to n0 = 4, and conclude (2.2):

2n + 25 + 10 < 2n + 2n + 25 = 2n+1 + 25,

that is we have the induction step proved for n ≥ 4. The induction principle
can be only used with the starting point n0 = 4. We still have to check
T (4), and additionally T (1), T (2) and T (3), which could not be “reached”
by induction. We easily check these particular cases by hand.
n = 1 : 10 < 2 + 25 true,
n = 2 : 20 < 22 + 25 true,
n = 3 : 30 < 23 + 25 true, and finally
n = 4 : 40 < 24 + 25 = 41 also true.

We have used the principle of induction to conduct the proof for n ≥
4, and we did the remaining cases directly. This is the typical approach:
attempting to make the induction step we identify the conditions (lower
bound) on n under which the induction step can be proved. To this lower
bound we adjust the induction starting point, and we verify the eventual
leftover cases “by hand”.

Complex numbers

The set of complex numbers C is the set of symbols a+ b i, where a, b ∈ R.
Such symbols are added, subtracted and multiplied according to the formulas

(a+ b i)± (c+ d i) = (a± c) + (b± d) i,
(a+ b i) · (c+ d i) = (ac− bd) + (ad+ cb) i.

We can also divide by non zero complex numbers:

a+ b i

c+ d i
=

(ac+ bd) + (−ad+ bc) i

c2 + d2
, c2 + d2 > 0.

We treat real numbers as a subset of the complex numbers R ⊂ C by identi-
fying x ∼ x + 0 i. Observe, that such identification preserves the arithmetic
operations: for example (a + 0 i) + (b + 0 i) = (a + b) + 0 i. Also, observe
that (i)2 = (0 + 1 i)2 = −1 + 0 i = −1. With the above identification we
have i2 = −1, and we treat complex numbers as an expansion of the set of
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real numbers. The set C has an advantage: each polynomial with complex
coefficients factors into a product of linear terms. Thanks to this the complex
numbers are an important tool for both mathematicians and engineers (also
for computer scientists:-)). Let us introduce the following notions:

• ℜ(a+ b i) = the real part of (a+ b i) = a,

• ℑ(a+ b i) = the imaginary part of (a+ b i) = b,

• a+ b i = the conjugate of (a+ b i) = a− b i.

We have the following properties

1. (z) = z, z + w = z + w, z · w = z · w,

2. ℜ(z) = z+z
2
, ℑ(z) = z−z

2 i
,

3. z = z ⇔ z ∈ R,

4. z · z = ℜ(z)2 + ℑ(z)2 – a nonnegative real number.

The modulus

The modulus of a complex number is defined as

|z| =
√
ℜ(z)2 + ℑ(z)2.

Examples: | − 1 + 2 i| =
√
(−1)2 + 22 =

√
5, |i| = |0 + 1 i| = 1.

The modulus of a complex number correspondes to the absolute value of a
real number. If z happens to be real (ℑz = 0), then |z| is the same number,
regardless of whether we think of it as the absolute value of a real number,
or as the modulus of a complex numbers. Both names “the modulus” and
‘the absolute value” are often used interchangeably. We have the following
properties of the modulus

• |z| ≥ 0 i |z| = 0⇔ z = 0,

• |z| = | − z| = |z|, |αz| = |α| · |z| for α ∈ R,

• |z · w| = |z| · |w|,

• |z + w| ≤ |z|+ |w| (the triangle inequality),

• |z − w| ≥
∣∣|z| − |w|∣∣.
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The geometric interpretation

The complex numbers, that is the expressions of the form a + b i can be
identified with points in the plane R2 = {(x, y) : x, y ∈ R}. With this geo-

z = a+ i b

b

a

Figure 2.3: Complex plane.

metric interpretation the addition corresponds to vector addition (according
to the parallelogram rule), and multiplication by a real number corresponds
to multiplication by a scalar. The operation of conjugation is a reflection
with respect to the horizontal axis, and the modulus represents the Euclidean
distance from the origin of the coordinate system.

The trigonometric form

A complex number a+ b i can be written in the so-called trigonometric form.
In this form numbers can be easily multiplied, raised to the power, and roots
can be easily extracted. Let z = a+ b i ̸= 0

z = a+ b i =
√
a2 + b2

(
a√

a2 + b2
+

b√
a2 + b2

i

)
.

We can find a number φ ∈ [0, 2π), such that

cosφ =
a√

a2 + b2
, sinφ =

b√
a2 + b2

.
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z

z

w

w

Figure 2.4: The conjugation of the complex number.

This can be plugged into the formula for z, and we obtain the so called
trigonometric form of z

z = |z| (cosφ+ i sinφ).

Using the geometric interpretation, writing a complex number a+ b i in the
trigonometric form r(cosφ+ i sinφ) corresponds to presenting a point (a, b)
on the plane in polar coordinates (r, φ). The number φ is called the argument
of z. Since functions sin and cos are periodic with period 2π, so each complex
number z has infinitely many arguments, which differ precisely by an integer
multiple of 2π. This one of them, which falls into the interval [0, 2π) (there
is precisely one such) is called the principal argument of z.

Example: z = 1− i =
√
2( 1√

2
+ −1√

2
i). We are looking for φ ∈ [0, 2π), such

that

cosφ =
1√
2
, sinφ = − 1√

2
.

It is easy to observe, that φ = 7
4
π.

Remarks: (i) Two complex numbers are equal, if both their real and imag-
inary parts are equal. In the case these numbers are written in the trigono-
metric form we have

r (cosφ+ i sinφ) = s (cosψ + i sinψ)

if r = s and φ− ψ is an integer multiple of 2π.
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z = r(cosφ+ i sinφ)

φ

r

w = s(cosψ + i sinψ)

ψ

s

Figure 2.5: The trigonometric form of a complex number.

(ii) The product can be easily expressed in the trigonometric form

r (cosφ+ i sinφ) · s (cosψ + i sinψ) = rs (cos(φ+ ψ) + i sin(φ+ ψ)).

In other words, we multiply the moduli and we add the arguments.

(iii) As an immediate consequence of (ii) we obtain

z = r(cosφ+ i sinφ)⇒ zn = rn(cos(nφ) + i sin(nφ)).

Observe, that the above holds for all n ∈ Z, bot positive and negative.

(iv) A root of a complex number z of order n ∈ N is a number w such, that
wn = z. Using the trigonometric form we will show, that every complex
number z ̸= 0 has exactly n distinct roots of order n. Let

z = r (cosφ+ i sinφ),

and n ∈ N. Let us introduce the following numbers

wk =
n
√
r (cosψk + i sinψk),

where

ψk =
φ+ 2kπ

n
k = 0, 1, . . . , n− 1.

Observe, that each of the numbers wk is indeed the root of order n of z (this
is immediate from (iii)), and that they are all distinct. By definition we have

ψk − ψl =
k − l
n

2π,
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and −1 < k−l
n
< 1. The only integer satisfying these inequalities is zero, so

if wk = wl we have k = l. We thus have n distinct roots. There can be no
more, since each root of order n of number z is also a root of the polynomial
of order n

P (w) = wn − z.

We know, that polynomials of order n have at most n distinct roots.

Example: We will compute all roots of order 4 of 1 − i. By the above
procedure,

4
√
1− i = 8

√
2 (cosψk + i sinψk),

where

ψk =
7
4
π + 2kπ

4
=

7

16
+
k π

2
, k = 0, 1, 2, 3.
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Chapter 3

Functions

Let us recall some basics about functions, that we will use. Let A ⊂ R be
a subset of the real numbers. A real valued function f(x) defined on A is a
way of assigning some real number to every element of A. A complex valued
function is, similarly, a way of assigning a complex number to each element
of A. We write

f :M → R or f :M → C.

The set A is called the domain of the function f(x) and is often denoted by
Df . The set

{y : ∃ x ∈ Df f(x) = y}
is called the range of f(x), or the set of values of f(x). Defining a function
(that is the way of assigning values to elements of the domain) most often
takes the form of a formula. The formula is often split between parts of the
domain. A function so defined is called a function “spliced” from its parts.
Often we do not specify the domain Df . In such case we assume that the
function is defined on the largest set on which the formula (or formulas)
defining it makes sense. Such maximal set is called the natural domain of
the function f(x). When we refer to a function, we write it together with
its typical argument: f(x). We will be careful not to confuse this with the
value of the function at a particular point x.

The monotonicity

For real valued f(x) we say that f(x) is increasing (or strictly increasing), if

x < y ⇒ f(x) < f(y).

We say that it is weakly increasing (or non-decreasing), if

x < y ⇒ f(x) ≤ f(y).

23



Similarly, f(x) is decreasing (strictly decreasing), if

x < y ⇒ f(x) > f(y)

and weakly decreasing (non-increasing), if

x < y ⇒ f(x) ≥ f(y).

In other words and increasing function can be applied to the sides of an in-
equality, and the inequality is preserved, while if the function is decreasing
the inequality is reversed. We say, that f(x) is monotonic, if it is either in-
creasing or decreasing, and the same with adjectives “strictly” and “weakly”.
Functions can be piecewise monotonic. For example, f(x) = x3 is strictly
increasing, and thus inequalities can be raised to the third power. On the
other hand f(x) = x2 is only piecewise monotonic – decreasing for x ≤ 0,
and increasing for x ≥ 0. Inequalities can be therefore raised to the second
power (squared), provided they relate nonnegative numbers.

The graph

If f(x) is real valued, then its graph is the following subset of the plane

{(x, y) : x ∈ Df , y = f(x)} ⊂ R2.

When analyzing a function it is always a good idea to try to sketch its graph.
A graph visualizes properties, which are usually not so easy to deduce from
the formulas. Of course, the sketch of the graph is not a replacement for the
proper definition.

Elementary functions

Functions that are encountered most often are the so-called elementary func-
tions. Let us recall the some of the elementary functions

(a) Polynomials are functions of the form f(x) = a0 + a1x + · · · + anx
n. n

is called the degree of the polynomial f(x) – provided an ̸= 0. The coeffi-
cients can be real (then the polynomial is real valued) or complex (then the
polynomial is complex valued). Df = R. A polynomial of degree n has at
most n roots (points where it is zero). A polynomial with real coefficients
with odd degree has at least 1 root, while that with even degree might have
no roots at all. For values |x| large the polynomial behaves like its leading
term anx

n.

(b) Rational functions are functions of the form f(x) = P (x)
Q(x)

, where P (x) i
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Figure 3.1: Polynomials of degree 3 and 4
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Figure 3.2: An example of a rational function
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Figure 3.3: Two power functions, with exponents 0, 25 i 1, 5.

Q(x) are polynomials. Df = {x : Q(x) ̸= 0}.
(c) The power function f(x) = xα. Df depends on α If α = m

n
and m,n ∈ N,

then xα = n
√
xm. x0 = 1 for every x, and for m < 0 we let xm = 1

x−m . If α is
irrational, and x > 0 we define

xα = sup{xq : q ∈ Q, q < α}, x ≥ 1,

xα = inf{xq : q ∈ Q, q < α}, x < 1.

Apart from particular cases of α (for example, α ∈ N) we have Df = R+ =
{x ∈ R : x > 0}. If α > 0 then the power function is increasing, while if
α < 0 the function is decreasing. Of course, if α = 0, the the power function
is constant equal to one.

(d) The exponential function f(x) = ax, a > 0. Df = R. The arithmetic
operation is the same as in the case of the power function, but now it is the
exponent that is variable, while the base is fixed. If a > 1 then the function
is increasing, while if a < 1 it is decreasing. Of course, if the base a = 1 then
the function is constant, equal to 1.

(e) The logarithm f(x) = loga x, a > 0, a ̸= 1. Df = RR+. The logarithm
is a function inverse to the exponential, that is y = loga x ⇔ ay = x. If the
base a > 1 then the logarithm is increasing, while if a < 1 the logarithm is
decreasing. The case a = 1 is excluded.

The power function, the exponential function and the logarithm are all re-
lated to raising numbers to some powers. We have thus the following prop-
erties (in each case we must remember possible limitations on the range of
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Figure 3.4: Exponential functions with bases greater and smaller than 1.
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Figure 3.5: Logarithms with bases larger and smaller than 1.
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Figure 3.6: Functions sin(x) and cos(x).

variables): (xα)β = xα·β, (x · y)α = xαyα, xαxβ = xα+β, ax+y = ax · ay,
loga(x · y) = loga x+ loga y, loga(x

α) = α loga x, logb x = loga x
loga b

.

(f) Trigonometric functions. On the unit circle on the plane we measure,
from the point (1, 0) the distance φ (on the circumference), counterclockwise
if φ > 0 and clockwise if φ < 0. We arrive at some point (x, y) on the
unit circle, depending on φ. The coordinates of this point are called cos(φ)
(cosine) and sin(φ) (sine) respectively:

x = cosφ, y = sinφ.

Functions cos(x) and sin(x) are periodic with period 2π, that is both satisfy
f(x+2π) = f(x) (since the length of the complete circumference is 2π). We
also have sin2 x+ cos2 x = 1 (since the radius of the defining circle is 1, and
the equalities

cos(φ+ ψ) = cosφ cosψ − sinφ sinψ,

sin(φ+ ψ) = cosφ sinψ + sinφ cosψ.

Operations on functions

At each point of the domain the value of the function is a number, so it can be
added, subtracted, multiplied and divided. In that case the same arithmetic
operations can be carried over to the functions. If we have two functions,
f(x) and g(x), with domains Df and Dg, then we can define functions

(f ± g)(x), where (f ± g)(x) = f(x)± g(x),
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(f · g)(x), where (f · g)(x) = f(x) · g(x),(
f

g

)
(x), where

(
f

g

)
(x) =

f(x)

g(x)
.

The domain of these functions is the common part of the domains df and
Dg, with, in the case of division the points where the denominator is zero
removed (we cannot divide by zero).

Example: The function tan x is a fraction of the sine by the cosine:

tanx =
sinx

cosx
, x ̸= π

2
+ k π, k = 0,±1,±2, . . . .

Composition of functions

If we have functions f(x) and g(x), and the range of f(x) falls into the
domain of g(x) we can define the composition of g(x) with f(x):

(g ◦ f)(x) = g(f(x)).
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Chapter 4

Sequences

Definition 4.1. A real valued sequence is a function a : N → R, and a
complex valued sequence is a function a : N→ C.

In the case of sequences the value of a at n is called the n-th term of
the sequence, and instead a(n) we write an. The sequence with terms an
is denoted {an}∞n=1 or, more compactly {an}. We will be mostly concerned
with real sequences, and will occasionally remark about complex sequences.

Examples: (a) A geometric sequence (traditionally called a geometric pro-
gression): a, aq, aq2, . . . , an = aqn−1.

(b) A constant sequence an = c.

(c) The harmonic sequence an = 1
n
.

(d) a1 =
√
2, an+1 =

√
2 + an.

(e) Fibonacci sequence a1 = a2 = 1, an+2 = an + an+1.
To define a sequence we must describe the way in which all terms an are

to be computed. We can do this with one formula like in examples (a)–(c) or
recursively like in examples (d) and (e). The recursive definition (also called
an inductive definition) describes way in which a consecutive term in the
sequence is computed when all previous terms are already known. Also, one
has to define sufficiently many initial terms. For example, in the definition of
the Fibonacci sequence consecutive terms are computed using two previous
terms, so as a staring point we have to know initial two terms. The rest of
the sequence is then uniquely defined by these two initial terms, in the case
of Fibonacci sequence, they are a1 = a2 = 1.

We say that the sequence is:

• strictly increasing, if an < an+1, and strictly decreasing, if an > an+1,
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• weakly increasing if an ≤ an+1, and weakly decreasing, if an ≥ an+1,

• strictly monotonic if it is either strictly increasing or strictly decreas-
ing, and weakly monotonic if it is either weakly increasing or weakly
decreasing

Sometimes we will just say, that a sequence is increasing or decreasing, if it is
not important whether strictly or weakly. Also, sometimes we refer to weakly
increasing sequences as non-decreasing, and similarly for weakly decreasing.
The above monotonicity notions, clearly, correspond to the monotonicity of
the sequence as a function.

The harmonic sequence from example (c) is strictly decreasing, while
sequences from examples (d) and (e) are strictly increasing. The example (c)
follows directly from the formula: an > an+1 is nothing else than n+ 1 > n.
Examples (d) and (e) can be dealt with using induction. In (d) we first
prove that all terms an are smaller than 2, and than, using that, we prove
that the sequence is strictly increasing. Both proofs can be carried out by
induction. Similarly in example (e), the Fibonacci’s sequence, we first prove,
using induction, that all terms are strictly positive an > 0. Then directly
from the recursive formula we show that the sequence is increasing: an+2 =
an + an+1 > an+1. This is a typical situation – if the sequence is defined
inductively, then its properties can be usually established using induction.

Operations on sequences

We add, subtract, multiply and divide sequences as we do functions: (a ±
b)n = an + bn, (a · b)n = an · bn,

(
a
b

)
n
= an

bn
, bn ̸= 0.

Bounded sequences

We say that a sequence is bounded, if

∃ M ∀ n ∈ N |an| ≤M,

we say that it is bounded from above, if

∃ M ∀ n ∈ N an ≤M,

and we say that it is bounded from below, if

∃ M ∀ n ∈ N an ≥M.
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Examples: (a) The harmonic sequence an = 1
n
is bounded, from below by

0, and from above by a1 = 1. More generally, a decreasing sequence is always
bounded from above by its first term, and similarly an increasing sequence
is always bounded from below by its first term.

(b) The Fibonacci’s sequence is not bounded from above. We have already
mentioned, that its terms are positive. Similarly, inductively we can show
that its elements satisfy an ≥ n for n ≥ 6. From this we can deduce imme-
diately, that the sequence is not bounded from above.

(c) The sequence an =
√
n+ 1 −

√
n is bounded. We can see immediately,

that its terms are positive (square root is an increasing function), that is the
sequence is bounded from below by 0. We will show, that it is also bounded
from above.

an =
√
n+ 1−

√
n = (

√
n+ 1−

√
n)

√
n+ 1 +

√
n√

n+ 1 +
√
n

=
n+ 1− n√
n+ 1 +

√
n
≤ 1√

1 + 1 + 1
≤ 1

2
.

(d) The geometric progression an = aqn−1 is bounded if |q| ≤ 1, and un-
bounded if |q| > 1 and a ̸= 0. The first statement is immediate: |an| =
|aqn−1| = |a||q|n−1 ≤ |a|. The second statement requires a proof. We can,
for example use the following important inequality, which can be proved, for
example, inductively: for ϵ > 0

(1 + ϵ)n > 1 + nϵ. (4.1)

If |q| > 1 then |q| = (1 + ϵ) for some ϵ > 0. We thus have

|an| = |a| · |q|n−1 =
|a|
|q|

(1 + ϵ)n >
|a|
|q|

(1 + nϵ).

If |an| ≤M , then

|a|
|q|

(1 + nϵ) ≤M ⇒ n ≤ 1

ϵ

(
M
|q|
|a|
− 1

)
.

It is clear from the above estimate, that the sequence an cannot be bounded.

Convergent sequences

We now pass to the most important for us notion concerning sequences
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gg − ϵ g + ϵ

interval |x− g| < ϵ

Figure 4.1: The limit of a sequence.

Definition 4.2. We say that the sequence {an} is convergent to a number
g, if

∀ ϵ > 0 ∃ n0 ∈ N ∀ n ≥ n0 |an − g| < ϵ.

We write this
lim
n→∞

an = g or an
n→∞−−−→ g.

The definition can be applied both to the real and complex valued se-
quences, in the latter case the limit might also be a complex number, and
| · · · | would then denote the modulus of a complex number.

Examples: (a) an = 1
n
. We can easily prove, that limn→∞ an = 0. To do so,

le us see, that

n ≥ n0 =

[
1

ϵ

]
+ 1 ⇒ n >

1

ϵ
⇒ 1

n
< ϵ.

The absolute value in the last inequality can be dropped, since the terms of
the sequence are all positive.

(b) an =
√
n+ 1−

√
n

n→∞−−−→ 0. Let us prove that.

|an − 0| =
√
n+ 1−

√
n =

1√
n+ 1 +

√
n
≤ 1

2
√
n
.

It is thus enough to solve the inequality 1
2

√
n
< ϵ

1

2
√
n
< ϵ⇔ 2

√
n >

1

ϵ
⇔ n >

1

4 ϵ2
.

For given ϵ > 0 there thus exists n0 =
[

1
4ϵ2

]
+ 1 satisfying the condition in

the definition.
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(c) an = n2+2
2 n2−1

n→∞−−−→ 1
2
. Similarly as in the previous example we will solve

an appropriate inequality. As in the previous example, we will aid ourselves
in the calculations by using estimates, instead finding an exact solution.∣∣∣∣ n2 + 2

2n2 − 1
− 1

2

∣∣∣∣ = 5

2 (2n2 − 1)
≤ 5

2n
.

The last estimate, that is 2(2n2 − 1) ≥ 2n, is true for all n ∈ N, and it can
be proved by solving a quadratic inequality. Finally, it is enough to solve a
simple inequality 5

2n
< ϵ, which gives us n > 5

2ϵ
. Let then, for a given ϵ > 0

be n0 = [ 5
2ϵ
] + 1. This n0 satisfies the condition in the definition.

(d) The constant sequence an = c has limit limn→∞ an = c.
To prove the convergence of sequences to the given limits in the above

examples we used the definition directly. In practice we usually establish
the convergence using various properties of limits. For example, we have the
following basic theorem

Theorem 4.3. If limn→∞ an = a and limn→∞ bn = b then the sequences
{(a± b)n} i {(a · b)n} converge, and

lim
n→∞

(a± b)n = lim
n→∞

an ± lim
n→∞

bn = a± b,

lim
n→∞

(a · b)n = lim
n→∞

an · lim
n→∞

bn = a · b.

If additionally bn ̸= 0 for all n ∈ N and b ̸= 0 then the sequence of fractions
{(a

b
)n} converges, and

lim
n→∞

(a
b

)
n
=

limn→∞ an
limn→∞ bn

=
a

b
.

In the proof we will use the following observations

Fact 4.4. (i) A convergent sequence is bounded. To see that let sequence
{an} converge to a and let us take arbitrary ϵ > 0, for example ϵ = 1. Then,
by the definition, there exists n0 ∈ N such that for all n ≥ n0 we have
|an| − |a| ≤ |an − a| < 1, from which we get |an| < |a|+ 1. Let

M = max{|a1|, |a2|, . . . , |an0−1|, |a|+ 1}.

Then the sequence {an} is bounded by M : ∀ n ∈ N |an| ≤M .
(ii) A sequence {bn} of numbers different than zero, convergent to a limit b
different than zero is “bounded away from zero”:

∃ δ > 0 ∀ n ∈ N |bn| ≥ δ.

34



To see that, let ϵ = |b|
2
. Then, from the definition of convergence, there exists

n0 ∈ N such, that |b| − |bn| ≤ |b− bn| < |b|
2
, thus |bn| > |b| − |b|

2
= |b|

2
. Let

δ = min

{
|b1|, |b2|, . . . , |bn0−1|,

|b|
2

}
> 0.

Then ∀ n ∈ N we have |bn| ≥ δ.

Proof of the theorem. We will carry out the proof for the product, and we
leave the other cases as exercises. For the product, the inequality we will be
trying to solve for n will be

|an · bn − a · b| < ϵ.

Let au do the following

|a·bn − a · b| = |a·bn − a · bn + a · bn − a · b|
≤ |an · bn − a · bn|+ |a · bn − a · b|
= |an − a| · |bn|+ |a| · |bn − b|.

The expression on the left hand side can be estimated using the fact, that
we can estimate the expressions on the right hand side. We know, that the
sequence {bn} is bounded (since it is convergent), so let M be the bound
|bn| ≤ M . Let M̃ = max{M, |a|, 1}, and ϵ > 0 be arbitrary. Let us fix
ϵ̃ = ϵ

2 M̃
> 0 (we can divide, since we know, that M̃ > 0). Then there exists

n1 ∈ N such that |an − a| < ϵ̃ for n ≥ n1 and there exists n2 ∈ N such that
|bn− b| < ϵ̃ for n ≥ n2. Finally, let n0 = max{n1, n2}. Then |an− a| < ϵ̃ and
|bn − b| < ϵ̃ for n ≥ n0. We thus have, for n ≥ n0

|an · bn − a · b| ≤ |an − a| · |bn|+ |a| · |bn − b|
≤ |an − a| M̃ + |bn − b| M̃
< ϵ̃ M̃ + ϵ̃ M̃

=
ϵ

2
+
ϵ

2
= ϵ,

which finishes the proof

Example: Let

an =
n2 + 2

2n2 − 1
=

1 + 2
n2

2− 1
n2

.
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We have 1
n
→ 0 ⇒ 1

n2 = 1
n
· 1
n
→ 0 ⇒ 2

n2 = 2 · 1
n2 → 0 so the numerator

converges to 1, and the denominator to 2, so

an =
1 + 2

n2

2− 1
n2

n→∞−−−→ 1

2
.

We have found this limit earlier, using just the definition, but now we did it
much easier.

Improper limits

Definition 4.5. A real valued sequence {an} has an improper limit +∞ (we
say that it diverges to +∞) if

∀ M ∃ n0 ∈ N ∀ n ≥ n0 an > M.

The real valued sequence {an} has an improper limit −∞ (diverges to −∞)
if

∀ M ∃ n0 ∈ N ∀ n ≥ n0 an < M.

A complex valued sequence {an} has improper limit ∞ (diverges to ∞) if

∀ M ∃ n0 ∈ N ∀ n ≥ n0 |an| > M,

(In the case of complex valued sequences we do not distinguish infinities).

Example: The sequence an = n2−3
n+1

diverges to +∞: for n ≥ 3 we have

n2 − 3

n+ 1
≥

1
2
n2

2n
=
n

4
,

while n
4
> M ⇔ n ≥ [4M ] + 1. Let then n0 = max{3, [4M ] + 1}, then for

n ≥ n0 we have |an| > M .

The theorem about arithmetic operations on limits extends to some cases
of improper limits. For example, let an → a, bn → b (real valued sequences).
Then

a = +∞, b > 0⇒ an · bn → +∞,
a = +∞, b < 0⇒ an · bn → −∞.
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The Cauchy’s condition

Theorem 4.6. The sequence {an} is convergent⇔ (if and only if) it satisfies
the so-called Cauchy’s condition:

∀ ϵ > 0 ∃ n0 ∈ N ∀ m,n ≥ n0 |am − an| < ϵ.

Proof. We will prove the theorem for real valued sequences. Extension to
the case of complex valued sequences is then an easy exercise. The proof
has two parts: the Cauchy’s condition from convergence(the “⇒” part), and
from the Cauchy’s condition the convergence(the “⇐” part).

⇒ We assume that {an} is convergent to a. Let ϵ > 0 be arbitrary. Them
from the definition of convergence there exists an n0 ∈ N such that for all
n ≥ n0 we have |an− a| < ϵ/2. Let both m,n ≥ n0, then |am− a| < ϵ/2 and
|an − a| < ϵ/2, and so

|am − an| = |am − a+ a− an| ≤ |am − a|+ |an − a| <
ϵ

2
+
ϵ

2
= ϵ.

The Cauchy’s condition is thus satisfied.

⇐ Let us assume that the sequence {an} satisfies the Cauchy’s condition.
Observe, that in that case the sequence {an} has to be bounded: let ϵ = 1,
so

∃ n0 ∈ N ∀ m,n ≥ n0 |am − an| < 1.

So, taking n = n0 we obtain, for every m ≥ n0 |am − an0 | < 1 ⇒ |am| <
|an0 | + 1. The terms of the sequence {an}, from the n0-th on, all sit in the
interval (−|an0 | − 1, |an0 + 1). Finally, let

M = max{a1, |a2|, . . . , |an0−1|, |an0 |+ 1}.

Then, for every n ∈ N we have |an| ≤M .
Let us define the following two auxillary sequences

αk = inf{an : n ≥ k} a non-decreasing sequence,

βk = sup{an : n ≥ k} a non-increasing sequence,

and let

A = sup{αk : k ∈ N},
B = inf{βk : k ∈ N}.

(4.2)

The observation that {αk} is non-decreasing and {βk} is non-increasing is
obvious, the terms are the infimum and supremum of a set, that is getting
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smaller with increasing k. The original sequence {an} is bounded, so all the
extrema exist. In the first step we will prove, that A ≤ B. This inequality is
true for all bounded sequences, not only those satisfying the Cauchy’s con-
dition. It simply reflects the definition of auxillary sequences: by definition
we always have αk ≤ βk. Let us carry out this proof in detail. We will argue
indirectly, so let us assume that A > B, and then show that this leads to a
contradiction. If A > B then let 0 < ϵ < A−B

2
. From the definition of the

extrema we can find k1 ∈ N such that

αk1 > A− ϵ.

Since the sequence {αk} is non-decreasing, then the above inequality holds
for all k ≥ k1. Similarly there has to exist k2 ∈ N such that

βk2 < B + ϵ, ⇒ ∀ k ≥ k2 βk < B + ϵ.

Now let k0 = max{k1, k2}, so we have

A− ϵ < αk0 ≤ βk0 < B + ϵ ⇒ A−B
2

< ϵ,

that is the contradiction. We have arrived at a contradiction, indeed, we
must have

A ≤ B.

As we have already mentioned, the above inequality is a consequence of the
definition of A and B, and is true for all bounded sequences {an}, not just
those satisfying the Cauchy’s condition. We will now show, that for sequences
satisfying the Cauchy’s condition actually the equality holds: A = B. We
will again argue indirectly. Let A < B, and let 0 < ϵ < B−A

2
. There exists

n0 ∈ N such that for all m,n ≥ n0 we have |am − an| < ϵ, in particular

∀ n ≥ n0 |an0 − an| < ϵ⇒ an0 − ϵ < an < an0 + ϵ.

From this it follows that

αn0 = inf{an : n ≥ n0} ≥ an0 − ϵ ⇒ A ≥ an0 − ϵ
βn0 = sup{an : n ≥ n0} ≤ an0 + ϵ ⇒ B ≤ an0 + ϵ.

We thus have

B − A ≤ an0 + ϵ− an0 + ϵ = 2ϵ ⇒ ϵ ≥ B − A
2

,
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that is, the contradiction. We therefore must have A = B. Finally, let
g = A = B. From the definition of the extrema

∀ ϵ > 0 ∃ n0 ∈ N ∀ n ≥ n0 g − ϵ < αn and βn < g + ϵ.

In the above we have used the fact that g = A = B is both the infimum of all
β′
ks and the supremum of all αk’s, and that both sequences are appropriately

monotonic ({αk} non-decreasing and {βk} non-increasing). Since for all n
we obviously have αn ≤ an ≤ βn, thus, for n ≥ n0

g − ϵ < αn ≤ an ≤ βn < g + ϵ ⇒ |an − g| < ϵ.

This clearly finishes the proof

Remark: The constants A and B defined in the above proof have sense for
any bounded sequence {an}. They are called the lower limit and the upper
limit of the sequence {an}. Soon we will discuss these issues in more detail.

Examples: (a) The sequence an = (−1)n does not satisfy the Cauchy’s
condition. Let ϵ = 1, then |an − an+1| = 2 > ϵ for all n. Clearly an n0 from
the Cauchy’s condition cannot exist.

(b) The sequence an = n−1
n

does satisfy the Cauchy’s condition. Let us verify
that: let m > n, then

|am − an| =
m− 1

m
− n− 1

n
=

(m− 1)n− (n− 1)m

m · n
=
m− n
m · n

<
m

m · n
=

1

n
.

Clearly then, it is enough to take n0 = [1
ϵ
] + 1, then for m,n ≥ n0 we have

1
m
, 1
n
< ϵ and the Cauchy’s condition is satisfied.

Theorem 4.7. (i) A monotonic bounded sequence has a limit (proper).
(ii) A monotonic unbounded sequence has an improper limit.

Remark: Weak monotonicity and only from a certain point on is suffi-
cient. Also, in (ii) we mean unbounded from above, if it is increasing, and
unbounded from below, if it is decreasing. Clearly, a monotonic sequence
is automatically bounded on one end: increasing bounded from below, and
decreasing bounded from above.

Proof. (i) Suppose that {an} is weakly increasing, and bounded, that is

an ≤ an+1 and |an| ≤M for n = 1, 2, . . . .

It thus has a supremum

g = sup{an : n = 1, 2, . . . }.
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From the definition of supremum we have

∀ n ∈ N an ≤ g and ∀ ϵ > 0∃ n0 ∈ N an0 > g − ϵ.

Since {an} is weakly increasing, then for all n ≥ n0 we have an ≥ an0 > g−ϵ,
that is g − ϵ < an ≤ g ⇒ |an − g| < ϵ.
(ii) Let us suppose that the sequence {an} is wekly increasing, and not
bounded from above. Let a number m be given. Since the sequence {an}
is not bounded from above, then there exists n0 ∈ N such, that an0 > M .
Since the sequence is weakly increasing, we have

∀ n ≥ n0 an ≥ an0 > M.

The condition in the definition of an improper limit +∞ is therefore satisfied.
The case of decreasing sequences can be proved in the same way.

Remark: Observe, that at the same time we have proved, that if the se-
quence {an} is increasing and bounded, then

lim
n→∞

an = sup{an : n ≥ 1},

and if it is decreasing and bounded, then

lim
n→∞

an = inf{an : n ≥ 1}.

Binomial expansion

Let us recall the following formula, the so-called binomial expansion. For
n ∈ N the factorial of n is the product of all natural numbers k ≤ n:
n! = 1 · 2 · 3 · . . . · (n − 1) · n. We also write 0! = 1. For 0 ≤ k ≤ n let us
introduce the so-called binomial coefficient(

n

k

)
=

n!

k! (n− k)!
, k, n ∈ Z, 0 ≤ k ≤ n.

The following formula is called the binomial expansion. It can be proved, for
example, by induction. It is one of the formulas that we will constantly use,
so it is worthy to learn it well. Let a, b ∈ R, n ∈ N, then

(a+ b)n =

(
n

0

)
a0 bn +

(
n

1

)
a1 bn−1 +

(
n

2

)
a2 bn−2 + · · ·+

(
n

n

)
an b0

=
n∑

k=0

(
n

k

)
ak bn−k.

The last equality is simply an expansion of the summation symbol Σ. We
will often use this symbol. It simply means the sum of the expression for all
values of the parameter k in the given range, in this case k = 0, 1, . . . , n.
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The number e

Let us consider the following sequence: an = (1 + 1
n
)n. We will show, that

this sequence is increasing nd bounded, and thus convergent. Let us observe
right away, that neither the fact that {an} is increasing nor that it is bounded
is obvious: even though the power increases, but the base decreases to 1. For
example,

a1 = 2, a2 =

(
3

2

)2

= 2,25, a3 =

(
4

3

)3

= 2,370 . . . ,

a4 =

(
5

4

)4

= 2,441 . . . , a5 =

(
6

5

)5

= 2,488 . . . .

We will now show, that the sequence {an} is increasing. Let us observe
the following equality for k = 0, 1, . . . , n(

n

k

) (
1

n

)k

=
n!

k! (n− k)!

(
1

n

)k

=
(n− k + 1) · (n− k + 2) · . . . · (n− 1) · (n)

k!n · n · . . . · n · n

=
1

k!

n− 1

n
· n− 2

n
· . . . · n− (k − 1)

n

=
1

k!

(
1− 1

n

)
·
(
1− 2

n

)
· . . . ·

(
1− k − 1

n

)
.

We will now expand the terms of {an} using the binomial expansion, and
then use the above formula.

an =

(
n

0

)(
1

n

)0

+

(
n

1

)(
1

n

)1

+

(
n

2

)(
1

n

)2

+ . . .

. . .+

(
n

k

)(
1

n

)k

+ . . .+

(
n

n

)(
1

n

)n

= 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ . . . (4.3)

. . .+
1

k!

(
1− 1

n

)
· . . . ·

(
1− k − 1

n

)
+ . . .

. . .+
1

n!

(
1− 1

n

)
· . . . ·

(
1− n− 1

n

)
.

Observe, that written in the above form the term of an, with increase of n,
contains more components, and each of the components is becoming greater
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(with the exception of the first two terms, 1 + 1, which are left unchanged).
Therefore, having written the terms of {an} in the above form we more easily
see, that this sequence is increasing. In addition observe that we can estimate
an from above

an ≤ 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

n!
< 1 + 1 +

1

2
+

1

22
+ · · ·+ 1

2n−1
. (4.4)

The first inequality is obtained from (4.3) by omitting factors which are less
than 1, while the second inequality is obtained by replacing the factors larger
that 2 in the denominators by 2. The denominators therefore become smaller,
and the fractions larger. What remains to do, is to use the formula for the
sum of the geometric progression: for q ̸= 1 and l ∈ N we have

1 + q + q2 + · · ·+ ql−1 =
1− ql

1− q
. (4.5)

The above equality can be proved, for example, by induction. It is one
of those formulas, that we have to constantly remember, and which will
constantly keep appearing. The sum on the right hand side of the estimate
(4.4) is precisely the sum of a geometric progression, with q = 1

2
, and with

an extra 1 at front. We thus have

an < 1 +
1− (1

2
)n

1− 1
2

< 1 +
1
1
2

= 3.

We have shown that the sequence {an} is increasing and bounded, and thus
convergent. The limit of this sequence is called e.

e = lim
n→∞

(
1 +

1

n

)n

.

We also know from our estimates, that 2 < e ≤ 3. e is an important number
and it will be constantly present throughout our lecture, mostly as the base
for logarithms and exponential functions.

Theorem 4.8 (The 3 sequence theorem). Suppose we have 3 sequences sat-
isfying inequalities

an ≤ bn ≤ cn, n = 1, 2, 3, . . . , (4.6)

and the “outside” sequences {an} and {cn} converge to a common limit

a = lim
n→∞

an = lim
n→∞

cn.

Then the sequence {bn} also converges to the same, common limit

a = lim
n→∞

bn.
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Remark: It is sufficient that the sequences satisfy the inequalities (4.6) from
certain n0 ∈ N onwards.

Proof of the theorem. Let ϵ > 0 and let n1 ∈ N be such, that for n ≥ n1

|an − a| < ϵ ⇒ an > a− ϵ,

and let n2 ∈ N be such, that for n ≥ n2

|cn − a| < ϵ ⇒ cn < a+ ϵ.

The existence of such n1 and n2 is a consequence of the convergence of the
sequences {an} and {cn} to the common limit a. Then, for n ≥ n0 =
max{n1, n2} we have

a− ϵ < an ≤ bn ≤ cn < a+ ϵ ⇒ |bn − a| < ϵ. (4.7)

Let us also observe, that if the inequalities hold only from certain point,
say for n ≥ k,then it is enough to modify the definition of n0: let n0 =
max{n1, n2, k}, and the inequality (4.7) holds. This way we have justified
the note below the statement of the theorem.

Examples: (a) Let an =
√
n (
√
n+ 1−

√
n). We will employ the 3 sequence

theorem, and to do so we need to do some computations. We have seen
earlier how to transform a difference of two square roots

√
n (
√
n+ 1−

√
n) =

√
n

1√
n+ 1 +

√
n
=

1√
n+1
n

+ 1
=

1√
1 + 1

n
+ 1

.

Then

1 ≤
√
1 +

1

n
≤ 1 +

1

n
⇒ 1

1 + 1
n
+ 1
≤ an ≤

1

2
.

The two outside sequences share a common limit 1
2
, and so an → 1

2
.

(b) Let a > 1 and an = n
√
a. The terms of the sequence are roots of increasing

degree of a number greater that 1. Let us observe at once, that such sequence
must converge, since it is decreasing, and bounded from below by 1. We do
not actually need to use this observation, since we will use the 3 sequence
theorem. First of all, since a > 1 we must have an > 1 for all n. Let
ϵn = an − 1 > 0. We will use the inequality (4.1), and obtain

a = (1 + ϵn)
n ≥ 1 + nϵn ⇒ 0 < ϵn ≤

a− 1

n
.
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The outside sequences both converge to 0, so also ϵn → 0 that is

lim
n→∞

an = lim
n→∞

n
√
a = 1.

(c) Let an = n
√
n. Similarly as in the previous example let us write an = 1+ϵn,

and thus ϵn > 0. We will now use another simple inequality, which is true
for x > 0 and n ≥ 2

(1 + x)n >

(
n

2

)
x2 =

n (n− 1)

2
x2.

The above inequality can be proved using the binomial expansion (this is also
one way of proving (4.1)). Using the above inequality for x = ϵn we obtain,
for n ≥ 2

n = (1+ϵn)
n >

n (n− 1)

2
ϵ2n ⇒ ϵ2n <

2n

n (n− 1)
⇒ 0 < ϵn <

√
2

n− 1
.

The rightmost sequence converges to 0, which can be easily shown using
the definition, or applying the theorem about limits of roots which we will
present next. We can thus apply the 3 sequence theorem and conclude that
ϵn → 0, so

lim
n→∞

an = lim
n→∞

n
√
n = 1.

Theorem 4.9. Let an → a, an ≥ 0 and m ∈ N. Then

lim
n→∞

m
√
an = m

√
a.

Proof. We will consider 2 cases: a = 0 and a > 0. If a = 0 (this is a slightly
simpler case) let ϵ > 0 be arbitrary, and let ϵ̃ = ϵm. From the definition of
the limit

∃ n0 ∈ N ∀ n ≥ n0 0 ≤ an < ϵ̃ ⇒ 0 ≤ m
√
an < ϵ.

In the case a = 0 the theorem is thus proved. Let us consider the remaining
case of a > 0. We will use the following formula, for α, β ≥ 0, m ∈ N

(α− β) (αm−1 + αm−2 β + · · ·+ αβm−2 + βm−1) = αm − βm.

This equality can be proved directly (for example inductively), or it can be
deduced from the formula for the sum of the geometric progression (4.5). We
thus have
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| m
√
an − m

√
a| =

=
|an − a|(

( m
√
an)m−1 + ( m

√
an)m−2 m

√
a+ · · ·+ ( m

√
a)m−1

) ≤ |an − a|(
m
√
a
)m−1 .

It is sufficient now, as in the precious case, to take ϵ̃ = ( m
√
a)m−1ϵ and then

we have
|an − a| < ϵ̃ ⇒ | m

√
an − m

√
a| < ϵ.

Observe, that the above theorem allows us to “enter with the limit under”
an arbitrary rational power, provided an and a are such, that the power can
be applied.

lim
n→∞

(an)
p
q =

(
lim
n→∞

an
) p

q , p ∈ Z, q ∈ N.

Example: Let a1 =
√
2 and let an+1 =

√
2 + an for n ≥ 1. We have already

considered this sequence, and we have shown that {an} is increasing and
bounded, and thus convergent. We will now use this to find the limit.

g = lim
n→∞

an = lim
n→∞

an+1 = lim
n→∞

√
2 + an =

√
2 + lim

n→∞
an =

√
2 + g.

The limit g (which we know from previous considerations exists) must there-
fore satisfy the quadratic equation g2 − g − 2 = 0. This equation has two
roots g = −1 and g = 2. The limit cannot be negative, since the sequence
has positive terms, so the only possibility is g = 2.

Remark: We have used the following fact: if an → a and an ≥ 0 then
a ≥ 0. This fact can be formulated more generally: if an → a and bn → b
and an ≤ bn (at least from some point on), then a ≤ b. We leave this fact as
an exercise.

Subsequences

Definition 4.10. A subsequence of the sequence {an} is the sequence of the
form {ank

}∞k=1, where {nk} is strictly increasing sequence of natural numbers.

Remark: In the definition it is important that the sequence of indices {nk}
be strictly increasing. In other words, a1, a5, a6, a17, . . . could be a subse-
quence of the sequence {an}, but a1, a2, a2, . . . or a1, a5, a2, . . . are not subse-
quences. Let us observe, that according to the definition the entire sequence
{an} is its own subsequence, it is enough to take nk = k. The definition of
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the subsequence reduces to extracting from the original sequence only certain
terms, but respecting their order.

Example: The sequence 1, 1
4
, 1
9
, 1
16
, . . . , 1

n2 , . . . is a subsequence of the har-
monic sequence 1, 1

2
, 1
3
, 1
4
, . . . . Here an = 1

n
and nk = k2, so ank

= 1
k2
.

Theorem 4.11. Every subsequence of a convergent sequence is also conver-
gent, to the same limit.

Proof. Let {an} be a sequence, converging to a limit g. Suppose we have a
subsequence of this sequence, with indices {nk}. Let ϵ > 0, and let n0 ∈ N
be such, that for n ≥ n0 we have |an − g| < ϵ. That we have from the the
fact that an → g. Next, let

k0 = min{k ∈ N : nk ≥ n0}.

So, if k ≥ k0 then nk ≥ nk0 ≥ n0 (the sequence nk increases), and so
|ank
− g| < ϵ. This finishes the proof.

Example: Let l ∈ N and

an =

(
1 +

1
l

n

)n

.

Let nl = lk. It is a strictly increasing sequence, and

an =

(
1 +

1

l n

)n

=

((
1 +

1

l n

)l n
) 1

l

,

so, if bn = (1 + 1
n
)n (the sequence defining the number e), then ak = l

√
bnk

.
We know, that bn → e, and thus

bnk

k→∞−−−→ e ⇒ l
√
bnk

k→∞−−−→ l
√
e,

and so we have
lim
n→∞

an = e
1
l = l
√
e.

Theorem 4.12 (Bolzano-Weierstrass). Each bounded sequence contains a
convergent subsequence.

Proof. Let the sequence {an} be bounded. Let us recall the construction
from Theorem 4.6, which was about the Cauchy’s condition.

αk = inf{an : n ≥ k}, A = sup{αk : k ≥ 1} = lim
k→∞

αk.
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We know, that the infima and supremum exist, since the sequence {an} is
bounded by assumption. This was already remarked in the proof of Theorem
4.6. We also know, that A is the supremum of the set of values of sequence
{αk}, and also its limit, since this sequence is increasing, possibly weakly.
We will now show, that there exists a subsequence {ank

} converging to A.
The construction of this subsequence is as follows. Let an1 be the element
of the sequence {an} which is closer to α1 than 1

2
. We know such element

exists, from the definition of the infimum. We thus have

α1 ≤ an1 < α1 +
1

2
.

From now on the construction of the subsequence will be inductive. We will
choose the next element in the subsequence from among an’s with indices
larger than n1, so let an2 be the element of the sequence {an}, n ≥ n1 + 1,
which lies closer to αn1+1 than 1

4
. We thus have n2 > n1 and

αn1+1 ≤ an2 < αn1+1 +
1

22
.

Let us now describe the step of the inductive definition. Suppose we have
already constructed the a piece of the subsequence an1 , an2 , . . . , anm such,
that n1 < n2 < · · · < nm, and

αnl+1 ≤ anl+1
< αnl+1 +

1

2l+1
, l = 1, 2, . . . ,m− 1.

This is precisely what we have done for m = 2. Let the next index nm+1 be
such that, firstly, nm+1 ≥ nm +1 (the indices have to increase strictly)) and,
secondly,

αnm+1 ≤ anm+1 < αnm+1 +
1

2m+1
.

Let us notice, that such choice is always possible, by the definition of the
sequence {αk} as the sequence of infima. In this way, we have inductively
defined a subsequence {ank

} satisfying

αnk−1+1 ≤ ank
< αnk−1+1 +

1

2k
, k = 2, 3, . . . .

On the outside of the above chain of inequalities we have sequences converging
to A ({αnk−1+1} is a subsequence of the sequence {αn} and 1

2k
→ 0), so

applying the 3 sequence theorem we get

lim
k→∞

ank
= lim

k→∞
αk = A.

47



Remark: The theorem is intuitively clear. If the sequence is bounded, then
its terms (of which there are infinitely many) have to accumulate somewhere.
The above proof makes this intuitive statement precise.

Definition 4.13. A number α is called an accumulation point of the sequence
{an} if there exists a subsequence {ank

} converging to α.

Theorem 4.14. α is an accumulation point of the sequence {an} if, and only
if

∀ ϵ > 0 ∀ n0 ∈ N ∃ n ≥ n0 |an − g| < ϵ. (4.8)

In other words, any neighborhood of the point α contains terms of the se-
quence {an} with arbitrarily far indices (in particular any neighborhood of
the point α contains infinitely many terms of the sequence {an}).

Proof. If α is an accumulation point of the sequence {an} then from the
definition there exists a subsequence {ank

} converging to α. Let then ϵ > 0,
and k0 be such, that for any k ≥ k0 we have |ank

− α| < ϵ. If there is given
n0 ∈ N, then let some k ≥ k0 satisfy nk ≥ n0. Such k must exist, since
the sequence of indices {nk} diverges to +∞. The index nk is the required
index in (4.8). In the opposite direction, let the condition (4.8) be satisfied.
We will construct inductively a subsequence {ank

} converging to α. To start
our construction let n1 be the index of such element of the sequence, which
satisfies

|an1 − α| <
1

2
.

The existence of such element follows from (4.8). Further, assume we have
already constructed an increasing sequence of indices n1 < n2 < · · · < nk

satisfying

|anl
− α| < 1

2l
, l = 1, 2, . . . , k.

Let nk+1 be the index of the element of the sequence {an} which satisfies

|ank+1
− α| < 1

2k+1
,

and nk+1 > nk. By (4.8) such element must exist. This way, we obtain a
subsequence {ank

} satisfying

0 ≤ |ank
− α| < 1

2k
, k = 1, 2, . . . .

We now see, from the definition, that ank
→ α, so α is indeed an accumulation

point of the sequence {an}.
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If the sequence {an} is bounded, then the set of its accumulation points
(which by the Bolzano-Weierstrass theorem is not empty) is also bounded
(we leave this as an exercise). This set therefore has its extrema

Definition 4.15. The infimum and the supremum of the set of accumulation
points of a sequence {an}, are called the lower and the upper limits of this
sequence respectively, and denoted by

lim inf
n→∞

an lower limit lim sup
n→∞

upper limit.

Remarks: (i) The lower limit is less then or equal to the upper limit.

(ii) The set of accumulation points of a bounded sequence contains its ex-
trema. The lower limit is thus the smallest accumulation point, and the
upper limit is the largest accumulation point.

(iii) The bounded sequence is convergent if and only if its lower and upper
limits are equal. In other words, a bounded sequence is convergent if and
only if it has exactly one accumulation point.

(iv) The constants A and B which appeared in (4.2) in the proof of Theorem
4.6 are the lower and upper limits respectively of the squence {an}.
Example: Let m ∈ N be fixed, and let an = (1 + m

n
)n. We will show that

lim
n→∞

an = lim
n→∞

(
1 +

m

n

)n

= em.

First, let 0 ≤ x < 1, and let bn = (1 + 1
n+x

)n. Observe, that we have the
following estimate(

1 +
1

n+ 1

)n

<

(
1 +

1

n+ x

)n

≤
(
1 +

1

n

)n

,

The right hand side converges to e, and the left hand side, as can be easily
seen, also:(

1 +
1

n+ 1

)n

=

(
1 +

1

n+ 1

)n+1 (
n+ 1

n+ 2

)
n→∞−−−→ e · 1 = e. (4.9)

Applying the 3 sequence theorem we thus see, that bn → e, regardless of x.
Let us now fix l = 0, . . . ,m− 1, and let nk = mk+ l. Observe, that that the
corresponding subsequence of the sequence {an} zbiega do em, regardless of
l:

ank
=

(
1 +

m

mk + l

)mk+l

=

(
1 +

1

k + l
m

)mk+l

49



=

(1 + 1

k + l
m

)k
m

·

(
1 +

1

k + l
m

)l

k→∞−−−→ em,

by (4.9). All such subsequences, for different l share the same limit em. Each
element of the sequence {an} belongs to one of these subsequences, of which
there is finitely many. It follows, that {an} is convergent, and its limit is em.
Let us prove this last statement. Let {nl

k} be the sequence nl
k = mk + l for

l = 0, 1, . . . ,m− 1. We know that each subsequence {anl
k
} converges to em,

so for every ϵ > 0 there exist kl0 ∈ N such that for k ≥ kl0 we have

|anl
k
− em| < ϵ, l = 0, . . . ,m− 1

Let n0 = max{mk00,mk10 + 1, . . . ,mkm−1
0 + m − 1}. If n ≥ n0, then n

has to be in one of the subsequences nl
k and additionally k ≥ kl0. an thus

satisfies |an − em| < ϵ. Let m, k ∈ N. As a direct consequence of the above
computations we have(

1 +
m
k

n

)n

=

((
1 +

m

k · n

)k·n) 1
k

= (akn)
1
k

n→∞−−−→ (em)
1
k = e

m
k .

For p = m
k
, m, k ∈ N we thus have

lim
n→∞

(
1 +

p

n

)n
= ep.

The above equality can be first extended to arbitrary p ∈ R, p > 0, and then
on an arbitrary p ∈ R. We leave this as an exercise.
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Chapter 5

Series

Series are infinite sums. To define them we use the notion of convergence,
introduced in the previous chapter. The infinite sums are nothing exotic,
they frequently appear in practice, for example if we want to compute the
area of various planar shapes. Suppose we have a given sequence {an}, and
we form a sequence of consecutive sums

s1 = a1, s2 = a1 + a2, s3 = a1 + a2 + a3, sn = a1 + a2 + · · ·+ an, . . .

Definition 5.1. If the sequence {sn} has a limit s we say that the series
(infinite sum)

∑∞
n=1 an converges, and that its sum is s. We write s =∑∞

n=1 an. We call sk the k-th partial sum of the series
∑
an, and the sequence

{sn} the sequence of partial sums. If the sequence {sn} does not converge, we
say that the series

∑
an diverges, and the expression

∑
an is only a symbol

and has no numerical interpretation.

Examples: (a) Let an = (2
3
)n. Then

sn =
2

3
+

(
2

3

)2

+ · · ·+
(
2

3

)n

=
2

3

1− (2
3
)n

1− 2
3

= 2

(
1−

(
2

3

)n)
n→∞−−−→ 2.

The series
∑∞

n=1(
2
3
)n is thus convergent, and

∑∞
n=1(

2
3
)n = 2 (it is an example

of a geometric series). We have used the formula for the sum of the geometric
progression (4.5)

(b) Let an = 1
n (n+1)

. Let us observe, that an = 1
n
− 1

n+1
. We thus have

sn =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n− 1
− 1

n

)
+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1

n→∞−−−→ 1.
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The series
∑∞

n=1
1

n (n+1)
is therefore convergent, and its sum is 1.

(c) The series
∑∞

n=1(−1)n diverges, since sn = −1 or 0, depending on the
parity of n.

Operations on series

The theorem about arithmetic operations on limits carries over to series:

∞∑
n=1

(an ± bn) =
∞∑
n=1

an ±
∞∑
n=1

bn

∞∑
n=1

(c · an) = c ·
∞∑
n=1

an,

with the assumption that the series on the right hand side are convergent.
The theorem about the limit of a product or a fraction does not apply here.

Theorem 5.2. If the series
∑
an is convergent, then limn→∞ an = 0.

Proof. The series being convergent means that the sequence of partial sums
sn = a1 + · · ·+ an is convergent. For n ≥ 2 an = sn − sn−1, so

lim
n→∞

an = lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = 0.

Remark: The above theorem provides the so-called necessary condition for
convergence. lim an = 0 does not guarantee the convergence of the series∑∞

n=1 an. The theorem is mostly useful to show divergence.

Example: Let an = 1
n
. The series

∑∞
n=1

1
n
is divergent. It is the so-called

harmonic series. We will show, that the sequence of partial sums is not
bounded, and thus cannot be convergent. It is enough to produce a subse-
quence of the sequence {sn}, which diverges to +∞.

s2n = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ · · ·+ 1

2n

= 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ . . .

· · ·+
(

1

2n−1 + 1
+

1

2n−1 + 2
+ · · ·+ 1

2n

)
.
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Between each consecutive pair of parentheses we have 2k−2k−1 = 2k−1 terms,
and each term is ≥ 1

2k
. The sum within each pair of parentheses is therefore

larger than 2k−1 · 1
2k

= 1
2

s2n ≥ 1 +
1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ · · ·+

(
1

2n
+

1

2n
+ · · ·+ 1

2n

)
= 1 +

1

2
+

1

2
+ · · ·+ 1

2︸ ︷︷ ︸
n times

= 1 + n · 1
2
= 1 +

n

2
.

So, we have s2n ≥ 1+ n
2
, so the sequence of partial sums {sn} is not bounded,

and thus not convergent.

Theorem 5.3. The series
∑∞

n=1 an is convergent if and only if the sequence
of partial sums {sn} satisfies the Cauchy’s condition:

∀ ϵ > 0 ∃ n0 ∈ N ∀ m,n ≥ n0 |sm − sn| < ϵ.

This condition can be reformulated:

∀ ϵ > 0 ∃ n0 ∈ N ∀ m ≥ n ≥ n0 |an + an+1 + · · ·+ am| < ϵ.

Proof. The theorem is an immediate consequence of Theorem 4.6 for se-
quences.

Example: If |r| < 1 then the series
∑∞

n=0 r
n is convergent. Let m ≥ n ≥ n0.

|an + an+1 + · · ·+ am| ≤ |an|+ |an+1|+ · · ·+ |am| = |rn|+ |rn+1|+ · · ·+ |rm|
= |r|n + |r|n+1 + · · ·+ |r|m = |r|n(1 + |r|+ · · ·+ |r|m−n)

= |r|n · 1− |r|
m−n+1

1− |r|
<
|r|n

1− |r|
≤ |r|n0

1− |r|
.

The sequence |r|n
1−|r| converges to 0, so it is enough to find appropriate n0 for

given ϵ.

Convergence criteria

Establishing the convergence of series in most cases can be reduced to the
application of one of the following convergence criteria.

Theorem 5.4 (Comparative criterion).

(i) If |an| ≤ bn and the series
∑∞

n=1 bn is convergent, then the series∑∞
n=1 an is also convergent.
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(ii) If 0 ≤ an ≤ bn and the series
∑∞

n=1 an is divergent, then the series∑∞
n=1 bn is also divergent.

Proof. (i) Since
∑
bn converges, then its sequence of partial sums satisfies

the Cauchy’s condition. On the other hand we have

|an + an+1 + · · ·+ an+k| ≤ |an|+ |an+1|+ · · ·+ |an+k|
≤ bn + bn+1 + · · ·+ bn+k = |bn + bn+1 + · · ·+ bn+k|.

Thus the sequence of partial sums of the series
∑
an also satisfies the Cauchy’s

condition.

(ii) The series
∑
an has non-negative terms, and is divergent, so its sequence

of partial sums is increasing (possibly weakly), and not convergent. It must
be therefore unbounded. The sequence of partial sums of the series

∑
bn has

terms which are not smaller, so it is also unbounded, and thus cannot be
convergent.

Remark: It is enough, that the relevant inequalities are satisfied only from
a certain point onwards.

Examples: (a) The series
∑∞

n=1
1

n2+2n
is convergent, since

1

n2 + 2n
≤ 1

n2 + n
=

1

n(n+ 1)
.

(b) The series
∑∞

n=1
1

n+1
is divergent, since

1

n+ 1
≥ 1

n+ n
=

1

2n
,

and the series
∑

1
2n

diverges. Observe, that in this case the estimate 1
n+1

< 1
n

is not useful.

Theorem 5.5. Let the sequence {an} be non-negative, and weakly decreasing,
a1 ≥ a2 ≥ · · · ≥ 0. Then the series

∑∞
n=1 an converges if and only if, the

series
∑∞

n=1 2
na2n converges.

The above criterion does not directly decide whether the given series
converges or not, but it reduces the study of the convergence of one series to
the study of convergence of another series.
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Proof. Let us denote by {sn} the sequence of partial sums of the series
∑
an,

and by {s′n} the sequence of partial sums of the series
∑

2na2n . Since the
terms of both series are non-negative, both sequences of partial sums are
non-decreasing. Using the appropriate estimates we will show, that these
sequences are simultaneously either bounded or unbounded. We have

sn = a1 + a2 + a3 + · · ·+ an,

s′n = 2 · a2 + 4 · a4 + 8 · a8 + . . . 2n · a2n
= 2 (a2 + 2 · a4 + 4 · a8 + · · ·+ 2n−1 · a2n).

Let us observe then, that

1

2
s′n = a2 + 2 · a4 + 4 · a8 + · · ·+ 2n−1 · a2n

≤ a1 + a2 + a3 + a4 + · · ·+ a2n−1 + a2n

= s2n

To the sum on the left hand side we have added a1 ≥ 0, and each component
of the sum 2k−1·a2k we have replaced by a greater or equal expression a2k−1+1+
· · · + a2k , k = 1, . . . , n. If the sequence {sn} is bounded then the sequence
{s′n} is also bounded.

On the other hand observe, that

s2n+1−1 = a1 + a2 + a3 + a4 + · · ·+ a2n+1−1

≤ a1 + 2 · a2 + 4 · a4 + · · ·+ 2n · a2n
= a1 + s′n.

We obtained the inequality by replacing te sums a2k + a2k+1 + · · · + a2k+1−1

(2k terms in the sum) by non-smaller expression 2k · a2k , k = 1, . . . , n. If the
sequence {s′n} is bounded, then it follows from the above inequality that the
subsequence {s2n+1−1} of the sequence {sn} is also bounded. The sequence
{sn} is non-decreasing, and contains a bounded subsequence, thus it must
be bounded (exercise).

Example: Let us consider the series of the form
∑∞

n=1
1
np . If p ≤ 0 then

the sequence { 1
np} is not convergent to 0, so the series cannot converge. If

p > 0 then the sequence { 1
np} is positive and decreasing, so it satisfies the

assumptions of the above criterion 5.5. Instead of the series
∑

1
np let us

consider the series with terms

2n
1

(2n)p
= 2n

1

2n·p
=

1

2n·(p−1)
=

(
1

2p−1

)n

.
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The series
∑

( 1
2p−1 )

n is a geometric series. If p− 1 > 0 then the ratio of the
series 1

2p−1 < 1 and the series converges, while, if p − 1 ≤ 1, then the ratio
1

2p−1 ≥ 1, and the series does not converge. We thus have

∞∑
n=1

1

np
←

{
convergent if p > 1,

divergent if p ≤ 1.
(5.1)

Let us observe, that the case p = 1 was already considered before (we called
it the harmonic series). The series of this form often prove useful. If the
terms of some series could be somehow estimated by a power function, then
such estimate can be compared with series (5.1), for which the convergence
or divergence has been established, depending on p.

Theorem 5.6 (d’Alembert’s criterion). Let {an} be a sequence with non-zero
terms. Then

(i) If lim supn→∞ |
an+1

an
| < 1 then the series

∑
an converges,

(ii) If lim infn→∞ |an+1

an
| > 1 then the series

∑
an diverges (this includes the

case of the improper limit limn→∞ |an+1

an
| = +∞).

Proof. (i) Let us observe, that since the upper limit of the sequence |an+1

an
| is

less than 1, then there exist 0 < c < 1 and n0 ∈ N such that for n ≥ n0∣∣∣∣an+1

an

∣∣∣∣ ≤ c,

and in particular, for k ≥ 0

|an0+k| =
∣∣∣∣ an0+k

an0+k−1

∣∣∣∣ · ∣∣∣∣an0+k−1

an0+k−2

∣∣∣∣ · . . . · ∣∣∣∣an0+1

an0

∣∣∣∣ · |an0 | (5.2)

≤ |an0 | · ck =
|an0 |
cn0
· cn0+k.

The product appearing in (5.2) is sometimes called a telescopic product,
since we use it by extending or contracting the required number of terms.
The sequence {an} thus satisfies (for n ≥ n0) the inequality

|an| ≤
|an0 |
cn0
· cn, 0 < c < 1,

so it converges by the comparative criterion 5.4.

(ii) Let us observe, that since the lower limit of the sequence |an+1

an
| is greater
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than 1 (similarly if this sequence has an improper limit +∞), then there
exist c > 1 and n0 ∈ N such that for n ≥ n0∣∣∣∣an+1

an

∣∣∣∣ ≥ c.

As in case (i), for k ≥ 0 we have

|an0+k| =
∣∣∣∣ an0+k

an0+k−1

∣∣∣∣ · ∣∣∣∣an0+k−1

an0+k−2

∣∣∣∣ · . . . · ∣∣∣∣an0+1

an0

∣∣∣∣ · |an0 | ≥ |an0 | · ck ≥ |an0 |,

so the sequence {an} does not converge to 0. The series
∑
an must then

diverge.

The d’Alembert’s criterion leaves certain cases unsettled. For example
for series of the form

∑
1
np we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

np

(n+ 1)p
=

(
lim
n→∞

n

n+ 1

)p

= 1.

This series are not covered by the either case the d’Alembert’s criterion.
Indeed, we know that these series can be convergent or divergent, depending
on the parameter p.

Theorem 5.7 (Cauchy’s criterion). Let the sequence {an} be given, and let

g = lim sup
n→∞

n
√
|an|,

(proper or improper limit). Then

(i) If g < 1 then the series
∑
an converges,

(ii) If g > 1 then the series
∑
an diverges (this covers also the case of an

improper upper limit g = +∞).

Proof. (i) Just like in the case of the d’Alemert’s criterion, there exist 0 <
c < 1 and n0 ∈ N such that for n ≥ n0

n
√
|an| ≤ c ⇒ |an| ≤ cn,

so from the comparative criterion the series
∑
an converges.

(ii) If g > 1, then there exists a subsequence {ank
} such that |ank

| ≥ 1.
The sequence {an} thus cannot converge to 0, so the series

∑
an does not

converge,
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Remarks: (i) Similarly as in the case of the d’Alembert’s criterion the
Cauchy’s criterion leaves the case g = 1 unresolved. In this cases certain
series can converge and others not. The Cauchy’s criterion does not help in
this case.

(ii) Both above criteria apply to the series with complex terms. The absolute
value is then the complex modulus. and both the statements and the proofs
basically remain valid.

Example: The series
∑∞

n=0
1
n!
. We have an = 1

n!
, and so∣∣∣∣an+1

an

∣∣∣∣ = n!

(n+ 1)!
=

1

n+ 1

n→∞−−−→ 0.

Using d’Alembert’s criterion we get, that the series
∑

1
n!
converges. Comput-

ing the actual sum of the series is much harder, than proving its existence.
We will now prove, that

∞∑
n=0

1

n!
= e. (5.3)

Let us recall that e is the limit

e = lim
n→∞

(
1 +

1

n

)n

.

Proving the existence of this limit we have shown in (4.4), that(
1 +

1

n

)n

≤ 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

n!
= sn,

where {sn} is the sequence of the partial sums of our series
∑∞

n=0
1
n!
. Passing

to the limit n→∞ on both sides of the inequality, we obtain

e ≤
∞∑
n=0

1

n!
. (5.4)

On the other hand, let us fix k ∈ N and let n ≥ k. From the expansion (4.3)
(truncating the expansion after the k-th term) we have(

1 +
1

n

)n

≥ 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ . . .

. . .+
1

k!

(
1− 1

n

)
· . . . ·

(
1− k − 1

n

)
.
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Passing to the limit n→∞ on both sides of the inequality (leaving k fixed)
we obtain

e ≥ 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

k!
= sk,

for each k ∈ N. Now passing to the limit as k → ∞ (the left hand side is
constant) we obtain

e ≥
∞∑
n=0

1

n!
,

which, together with (5.4) gives us (5.3). Equation (5.3) is sometimes used
as the definition of the number e.

Absolutely convergent series

Definition 5.8. If the series
∑
|an| converges, we say that the series

∑
an

converges absolutely. If the series
∑
an converges, but does not converge

absolutely (that is the series
∑
|an| diverges), we say that the series

∑
an

converges conditionally.

Remarks: (i) If the series converges absolutely, then it also converges in the
normal sense. This is the consequence of the Cauchy’s condition:

|an+1 + an+2 + · · ·+ am| ≤ |an+1|+ |an+2|+ · · ·+ |am|.

If the series
∑
|an| converges, then it satisfies the Cauchy’s condition, so the

series
∑
an also satisfies the Cauchy’s condition, so it also converges. The

absolute convergence is therefore a special type of convergence.

(ii) If the terms of the series
∑
an all have the same sign, then the absolute

convergence follows from the ordinary convergence, and both convergence
types are equivalent. The absolute convergence is thus an issue for series
whose terms change signs.

(iii) Let us observe, that all convergence criteria we have so far considered
deal with absolute convergence. None of these criterions allow to establish
conditional convergence.

(iv) Absolute convergence is important – it is only for series converging ab-
solutely that the convergence and the sum are independent of the order of
summation, and eventual placement of the parentheses.
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Alternating series

We say that the series
∑
an is alternating if its terms alternate the sign, that

is they are alternately positive and negative: an = (−1)n · bn and bn ≥ 0 or
bn ≤ 0 for all n.

Theorem 5.9 (The Leibniz’s criterion). If the series {an} is decreasing (pos-
sibly weakly) and limn→∞ an = 0, then the alternating series

∞∑
n=1

(−1)n+1an

is convergent.

Proof. Let sn = a1 − a2 + a3 − a4 + · · · + ±an be the sequence of partial
sums. Let us observe, that the subsequence of terms with even indices s2n is
increasing:

s2(n+1) = s2n + a2n+1 − a2n+2 ≥ s2n,

and the subsequence of terms with odd indices s2n+1 is decreasing:

s2(n+1)+1 = s2n+1 − a2n+2 + a2n+3 = s2n+1 − (a2n+2 − a2n+3) ≤ s2n+1.

Let us observe, that the subsequence s2n (which is increasing) is bounded
from above:

s2n = a1 − a2 + a3 − a4 + · · · − a2n
= a1 − (a2 − a3)− (a4 − a5)− · · · − (a2n−1 − a2n) ≤ a1,

while the subsequence s2n+1 (which is decreasing) is bounded from below

s2n+1 = a1 − a2 + a3 − a4 + · · · − a2n + a2n+1

= (a1 − a2) + (a3 − a4) + · · ·+ (a2n−1 − a2n) + a2n+1 ≥ 0.

Bot subsequences are thus convergent. Let s = limn→∞ s2n. Then

lim
n→∞

s2n+1 = lim
n→∞

(s2n + a2n+1) = lim
n→∞

s2n + lim
n→∞

a2n+1 = s+ 0 = s.

Both subsequences thus have a common limit. The sequence {sn} therefore
splits into two subsequences, The terms with even indices and the terms with
odd indices. Each element of the sequence {sn} belongs to one of the two
subsequences, and both subsequences share the common limit s. It follows,
that the entire sequence {sn} converges to s. Let us write down the above
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sketch of the reasoning. Let ϵ > 0. From the fact that limn→∞ s2n = s it
follows that

∃ k1 ∈ N ∀ k ≥ k1 |s2k − s| < ϵ,

and from the fact that limn→∞ s2n+1 = s we have

∃ k2 ∈ N ∀ k ≥ k2 |s2k+1 − s| < ϵ.

Let n0 = max{2k1, 2k2 + 1}. Then, for n ≥ n0 there is n = 2k, k ≥ k1 or
n = 2k + 1, k ≥ k2, depending on the parity of n. In both cases

|sn − s| < ϵ.

Remark: Let us observe, that from the proof follows the following estimate
for the sum s. For any k, l ∈ N

s2l ≤
∞∑
n=1

(−1)n+1an ≤ s2k+1.

The sum is greater or equal that any even partial sum, and less or equal
than any even partial sum. This applies to the alternating series whose even
terms are ≤ 0 and odd are ≥ 0.

Example: The series
∑∞

n=1
(−1)n+1

n
converges, but not absolutely. In the

nearest future we will see, that

∞∑
n=1

(−1)n+1

n
= log 2,

but, again, the computing the actual sum is much harder than simply proving
the convergence. In this case the convergence (conditional) follows directly
from the Leibniz’s criterion.

The power series

Definition 5.10. A series of the form
∑∞

n=0 anx
n, where the sequence of

coefficients {an} and the number x can be real or complex, is called a power
series.

Remarks: (i) For a fixed sequence of coefficients {an} the power series can
converge or not, depending on the number x. It always converges for x = 0.
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(ii) At those points x, in which the power series converges it defines a function:

f(x) =
∞∑
n=1

an x
n.

The functions which are sums of convergent power series are very important.
These are the so-called analytic functions, and we will see that practically
any function, in particular all elementary functions can be written this way
(sometimes we say that a function “can be expanded into power series”).

(iii) Of course, any series can be written in the form of a power series. There-
fore the term “power series” concerns the way of presenting of the series.

(iv) In the sequel we will concentrate on series with real valued terms.

Theorem 5.11. The power series
∑∞

n=0 anx
n is either convergent absolutely

for every x ∈ R, or there is a number R ≥ 0 such that

(i) For x ∈ (−R,R) the series converges absolutely.

(ii) For x /∈ [−R,R] the series diverges.

The set of those x for which the powers series
∑∞

n=0 anx
n is convergent has

therefore the form of the interval, containing one or both ends, or perhaps
without ends (it can be the entire real line R). This set is called the “interval
of convergence” of the power series. The number R is called the “radius of
convergence” (in the case when the interval of convergence is (−∞,∞), we
say that the radius of convergence is infinite).

Remark: On the endpoints of the interval of convergence we can have con-
vergence or not. For example, the series

∑
xn has the interval of convergence

(−1, 1), the series
∑

1
n
xn has the interval of convergence [−1, 1), while the

series
∑

1
n2x

n has the interval of convergence [−1, 1].

The proof of the theorem. If for x0 ∈ R the series
∑
anx

n
0 converges, then

the sequence {anxn0} converges to 0, and in particular is bounded:

∃ M ∀ n ∈ N |anxn0 | ≤M.

If |x| < |x0| then let q = |x|
|x0| < 1. We then have

|anxn| =
∣∣∣∣an xn0 xn

xn0

∣∣∣∣ = |an xn0 | · ( |x||x0|
)n

≤M · qn.
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The geometric series with terms qn converges, since 0 ≤ q < 1. From the
comparative criterion the series

∑
anx

n thus converges absolutely. Let

A =

{
|x| :

∞∑
n=0

an x
n converges, x ∈ R

}
.

If A is not bounded, then the series converges absolutely for all x ∈ R. This
is because for every x ∈ R we can find x0 such that |x0| > |x|, and the series∑
anx

n
0 converges. If A is bounded, then let

R = supA.

The R so defined satisfies the properties stated in the theorem. If |x| < R,
then we can find x0 such that |x0| > |x|, and the series

∑
anx

n
0 converges.

In this case the series
∑
anx

n converges absolutely. On the other hand, if
|x| > R then the series

∑
anx

n cannot converge: if it did, we would have
|x| ∈ A, so |x| ≤ R.

Examples: (a) The series
∑∞

n=1
xn

n
has the radius of convergence R = 1,

which can be checked using d’Alembert’s criterion. At x = 1 it diverges (it
is tere the harmonic series), and at the point x = −1 it converges, which
follows from the Leibniz’s criterion.

(b) The series
∑∞

n=0
xn

n!
has an infinite radius of convergence, which can be

verified using the d’Alembert’s criterion:∣∣∣∣∣
xn+1

(n+1)!

xn

n!

∣∣∣∣∣ = |x| · 1

n+ 1

n→∞−−−→ 0,

independently of x.

(c) The series
∑∞

n=0 n
nxn has the radius of convergence R = 0:∣∣∣∣(n+ 1)n+1 xn+1

nn xn

∣∣∣∣ = |x| · (n+ 1)

(
1 +

1

n

)n
n→∞−−−→ +∞,

for each x ̸= 0.
Using the known criteria of convergence of the series we obtain various

formulas for the radius of convergence.

Theorem 5.12. Let us consider the power series
∑
anx

n and let

g = lim sup
n→∞

n
√
|an|.
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If g = 0 then the radius of convergence of the series is infinite, if g = +∞
then R = 0, and if 0 < g <∞ then

R =
1

g
.

Proof. We will apply the Cauchy’s criterion to the series
∑
anx

n.

lim sup
n→∞

n
√
|an xn| = lim sup

n→∞
|x| n
√
|an| = |x| · lim sup

n→∞

n
√
|an| = |x| · g.

If g = 0 then the series converges (absolutely) for every x ∈ R, that is the
radius of convergence is infinite. If g = +∞ diverges, independently of x ̸= 0,
so R = 0. Finally, if 0 < g < ∞ then the series converges (absolutely) for
|x| < 1

g
and diverges for |x| > 1

g
, so R = 1

g
.

Remark: Using the d’Alembert’s criterion in a similar way we obtain the
following theorem: if

g = lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣
exists (proper or improper), then R = 1

g
(we understand that R = 0 for

g = +∞ and R infinite for g = 0).

Example: Let us consider the series
∑∞

n=0
nn

n!
xn. Using the above observa-

tion we compute:∣∣∣∣ an+1

an

∣∣∣∣ = (n+ 1)n+1

(n+ 1)!
· n!
nn

=
(n+ 1)n

n!
· n!
nn

=

(
1 +

1

n

)n
n→∞−−−→ e.

Thus R = 1
e
. We note, comparing this to Theorem 5.12 that we can conclude,

that

lim sup
n→∞

n

√
nn

n!
= lim sup

n→∞

n
n
√
n!

= e.

Let us show now, that the sequence { n

√
nn

n!
} is increasing, and if so, then

its upper limit is its limit (an exercise), and we have the following corollary,
which is worth remembering

lim
n→∞

n
n
√
n!

= e.

Let us check that this sequence is indeed increasing. Let us introduce the
notation cn = (1 + 1

n
)n. We know, that 2 = c1 < c2 < c3 < · · · < e, and so

(n+ 1)n
2

nn2 =

(
n+ 1

n

)n2

=

(
1 +

1

n

)n2

= cnn > c1·c2·. . .·cn−1 =
nn

n!
. (5.5)
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The last equality can be proved inductively: for n = 2 we have c1 =
22

2
= 2,

so the equality holds. Next we perform the induction step:

c1 · · · · · cn−1 · cn =
nn

n!
· cn =

nn

n!

(
1 +

1

n

)n

=
nn

n!

(
n+ 1

n

)n

=
(n+ 1)n

n!
=

(n+ 1)n+1

(n+ 1)!
.

We thus have proved the inequality (5.5). It follows immediately that:

(n+ 1)n
2

nn(n+1)
>

1

n!
⇒ (n+ 1)n

2

(n!)n
>
nn(n+1)

(n!)n+1
.

Now it is enough to extract roots of order n(n+ 1) from both sides, and we
obtain

n+1

√
(n+ 1)n+1

(n+ 1)!
> n

√
nn

n!
,

which is what we wanted.
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Chapter 6

Limit of a function at a point

Let f(x) be a function of real variable with real values, that is f : Df → R,
where Df ⊂ R is the domain of f(x). Let Df be the “completion” of Df ,
that is the set of all those points x, for which there is a sequence {xn} ⊂ Df ,
xn ̸= x, converging to x. For example, the natural domain of the function
f(x) = 1

x
is the set Df = {x : x ̸= 0}. Then Df = R. The notion of a limit of

a function at a point will be introduced for points in Df , that is those points
which belong to the domain of f(x) (but are not isolated), or those, which
do not belong to the domain, but are “at the very edge” of the domain.

Definition 6.1. We say that the function f(x) has at the point x0 ∈ Df a
limit g, if

∀ ϵ > 0 ∃ δ > 0 ∀ x ∈ Df 0 < |x− x0| < δ ⇒ |f(x)− g| < ϵ.

In this case we write

lim
x→x0

f(x) = g.

We say, that the function f(x) has at the point x0 ∈ Df an improper limit
∞ (or −∞) if

∀ M ∈ R ∃ δ > 0 ∀ x ∈ Df 0 < |x− x0| < δ ⇒ f(x) > M,

(or f(x) < M). In such case we write

lim
x→x0

f(x) = ±∞.

The definition of the limit of the function at a point can be readily inter-
preted in the language of convergence of sequences:
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Theorem 6.2. Let x0 ∈ Df . Then limx→x0 f(x) = g if and only if, for each
sequence {xn} ⊂ Df , xn ̸= x0 such that limn→∞ xn = x0 there is

lim
n→∞

f(xn) = g.

Similarly, limx→x0 f(x) = ±∞ if and only if for each sequence {xn} ⊂
Df , xn ̸= x0 such that limn→∞ xn = x0 there is

lim
n→∞

f(xn) = ±∞.

Proof. Let f(x) have at a point x0 the limit g

g = lim
x→x0

f(x).

Let {xn} be an arbitrary sequence from Df , converging to x0, xn ̸= x0. We
will show, that the sequence {f(xn)} converges to g. Let ϵ > 0. From the
definition of the limit we know that there exists δ > 0 such that if x ∈ Df

and x ̸= x0 then
|x− x0| < δ ⇒ |f(x)− g| < ϵ. (6.1)

Since xn → x0 thus (δ plays the role of ϵ from the definition of the sequence
limit) there exists n0 ∈ N such that ∀ n ≥ n0 we have |xn − x0| < δ, so,
using (6.1)

|f(xn)− g| < ϵ.

This way we have proved that limn→∞ f(xn) = g.
Now the proof in the opposite direction. Let f(xn)→ g for every sequence

xn → x0, satisfying xn ̸= x0 and {xn} ⊂ Df . We will show, that f(x) ha at
the point x0 the limit g. We will proceed with the proof indirectly. Suppose
that f(x) does not have the limit g at x0, that is the condition from the
definition of the limit does not hold:

∃ ϵ0 > 0 ∀ δ > 0 ∃ x ∈ Df 0 < |x− x0| < δ ∧ |f(x)− g| ≥ ϵ0.

Using the above we define a sequence {xn} which will give us the contradic-
tion. The sequence {xn} is defined in the following way. For n ∈ N let δ = 1

n
,

and xn be this element ofDf , which satisfies 0 < |xn−x0| < 1
n
∧ |f(xn)−g| ≥

ϵ0. Let us observe, that such sequence {xn} satisfies {xn} ⊂ Df , xn ̸= x0
and xn → x0, but f(xn) 9 g. We have thus obtained the contradiction.

We leave the case of improper limits as an exercise for our dear reader.
:-)

Using the above theorem, and theorems about convergence and limits of
sequences we have the following corollary.
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Corollary 6.3. (i) If a = limx→x0 f(x) and b = limx→x0 g(x) then

lim
x→x0

(f ± g)(x) = a± b, lim
x→x0

(f · g)(x) = a · b,

and if additionally b ̸= 0 then

lim
x→x0

(
f

g

)
(x) =

a

b
.

(ii) If in some neighborhood of x0 we have

g(x) ≤ f(x) ≤ h(x),

and

lim
x→x0

g(x) = lim
x→x0

h(x) = a,

then also

lim
x→x0

f(x) = a.

(iii) We can “take the limit under” roots, that is

lim
x→x0

k
√
f(x) = k

√
lim
x→x0

f(x),

provided given roots are defined (f ≥ 0 for even k).

Examples: (a) Let us compute the limit

lim
x→2

3x− 5

x3 − 1
.

The denominator x3 − 1 is non-zero in some neighborhood of x0 = 2, so
2, together with some neighborhood belongs to the natural domain of the
function, which is the set of all x ∈ R for which x3 ̸= 1. Let xn → 2, xn ̸= 2,
and x3n ̸= 1. Then

3xn − 5

x3n − 1
→ 3 · 2− 5

23 − 1
=

1

7
,

that is limx→2
3x−5
x3−1

= 1
7
.

(b) limx→0 sin x. We will use the following estimate: 0 ≤ x ≤ π
2

0 ≤ sinx ≤ x, 0 ≤ x ≤ π

2
. (6.2)
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10

r
/
1

x

(cosx, sinx)

h = sinx

Figure 6.1: The estimate for sinx.

It follows from Fig. 6.1. x
2
is the area of the disc sector cut out by the central

angle x while sinx
2

is the area of the triangle inside this sector (the triangle
has the base 1, and height sinx). The estimate (6.2) is thus clear. Further
we have that sin(−x) = − sin(x) (that is sin(x) is an odd function), so for
−π

2
≤ x ≤ 0 we obtain from the above

x ≤ sinx ≤ 0.

Thus, for |x| ≤ π
2
we have

0 ≤ | sinx| ≤ |x|,

that is limx→0 sin x = 0.

(c) In the case of cos x we can use the facts we have already shown for sinx.
In the neighborhood of zero cos x is positive, and so

lim
x→0

cosx = lim
x→0

√
1− sin2 x =

√
1−

(
lim
x→0

sin x
)2

= 1.

(d) Using the trigonometric identities we find limits in other points

lim
x→x0

sinx = lim
x→0

sin(x+ x0)

= lim
x→0

(sinx cosx0 + cos x sinx0)

= cosx0 lim
x→0

sin x+ sin x0 lim
x→0

cos x
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= sin x0,

and

lim
x→x0

cos x = lim
x→0

cos(x+ x0)

= lim
x→0

(cosx cosx0 − sinx sinx0)

= cos x0 lim
x→0

cosx− sinx0 lim
x→0

sin x

= cos x0.

1

−1

−2 −1 1 2

Figure 6.2: The function sin 1
x
in the neighborhood of 0.

(e) Let us observe, that the limit limx→0 sin
1
x
does not exist. Let us consider

two sequences, xn = 1
π/2+2nπ

and yn = 1
3π/2+2nπ

. Observe that

sin
1

xn
= sin

(π
2
+ 2nπ

)
= sin

(π
2

)
= 1,

sin
1

yn
= sin

(3π
2

+ 2nπ
)
= sin

(3 π
2

)
= −1,

so limn→∞ f(xn) = 1, and limn→∞ f(yn) = −1. The situation is clarified by
Fig. 6.2.

(f) Let a > 1. We will show, that limx→0 a
x = 1. Let ϵ > 0 and x > 0. We

thus have ax > 1. Let n0 ∈ N be such, that n
√
a− 1 < ϵ for n ≥ n0. We use

the fact that n
√
a→ 1. Let δ0 =

1
n0
. Then, if

0 < x < δ0 ⇒ 1 < ax < a
1
n0 ⇒ 0 < ax − 1 < n0

√
a− 1 < ϵ.
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Let now x < 0. We know that

n

√
1

a
=

1
n
√
a
→ 1,

and thus let n1 ∈ N be such, that for n ≥ n1 we have 0 < 1 − n
√

1/a < ϵ.
Let δ1 =

1
n1
, then for −δ1 < x < 0 it follows that

a
− 1

n1 < ax < 1 ⇒ n

√
1

a
< ax < 1 ⇒ 0 < 1− ax < 1− n1

√
1

a
< ϵ.

Finally let δ = min{δ0, δ1}, then 0 < |x| < δ implies |1− ax| < ϵ.

(g) Let a > 1, then limx→x0 a
x = ax0 . This is because we have

lim
x→x0

ax = lim
x→0

ax+x0 = lim
x→0

ax · ax0 = ax0 · lim
x→0

ax = ax0 .

10 cosx

r
=
1

x

(cosx, sinx)

h2 = sin xcos x

h1 = sinx

Figure 6.3: Further estimates for sinx.

(h) Let us again recall the definition of the function sinx, and let us compare
the area of sector of the unit circle, cut out by the central angle x, and the
area of the large triangle (Fig. 6.3). The area of the sector is equal to x

2
,

while the large triangle has height h2 = sinx
cosx

and base 1, so the area equal
to 1

2
· sinx
cosx

. The formula for h2 follows from the comparison with the small
triangle, which is built on the same angle x, which has the height h1 = sinx
and the base cos x. For 0 ≤ x ≤ π

2
we thus have

x

2
≤ sin x

2 cos x
,
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so, combining this with (6.2) we obtain the double estimate

cos x ≤ sinx

x
≤ 1. (6.3)

Considering the fact that all functions above are even, we get (6.3) also for
|x| ≤ π

2
. The functions on the sides have limit 1 at zero, so

lim
x→0

sin x

x
= 1.

It is one of the important limits, which we will use repeatedly in the future.

One sided limits

If we restrict the definition only to x > x0 (or x < x0) and the condition
holds, we say that the function has at x0 a right-hand limit (or left-hand
limit). For example, for proper (finite) limits the condition for the existence
of the right-hand limit is the following

∀ ϵ > 0 ∃ δ > 0 ∀ x ∈ Df 0 < x− x0 < δ ⇒ |f(x)− g| < ϵ.

For the left-hand limit it is the following

∀ ϵ > 0 ∃ δ > 0 ∀ x ∈ Df 0 < x0 − x < δ ⇒ |f(x)− g| < ϵ.

The one sided limits are denoted respectively

lim
x→x+

0

f(x), and lim
x→x−

0

f(x).

For improper limits these conditions have to be modified in the usual way.

Corollary 6.4. (i) g = limx→x±
0
f(x) if for arbitrary sequence {xn} ⊂ Df ,

xn > x0 (or respectively xn < x0) and xn → x0 we have f(xn) → g. The
situation is in complete analogy to Theorem 6.2.

(ii) The function f(x) has at a point x0 the limit g (proper or improper) if
and only if it has at x0 both one-sided limits, and they are both equal. This
follows directly from the definition.

(iii) Theorems concerning arithmetic operations on limits apply to one-sided
limits. For example

lim
x→x+

0

(f + g)(x) = lim
x→x+

0

f(x) + lim
x→x+

0

g(x).
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Examples: (a) f(x) = [x]. If x0 ∈ Z then, as can be checked easily

lim
x→x+

0

f(x) = x0, and lim
x→x−

0

f(x) = x0 − 1.

In points x0 ∈ Z the function f(x) thus has different one-sided limits, and
therefore does not have a normal (both-sided) limit. At other points the
function f(x) does have the normal limit.

0 1 2 3

1

2

Figure 6.4: One sided limits of the function [x].

(b) f(x) = 2
1
x . The domain Df = {x : x ̸= 0}, and so 0 ∈ Df . We have

lim
x→0+

f(x) = +∞ and lim
x→0−

f(x) = 0.

The first limit follows from the fact that the function 2y is increasing and
unbounded.

Limits at infinities

If the domain of the function allows this, we can consider the limits of the
function at +∞ and −∞. These limits can be proper (finite), or improper
(infinite).

Definition 6.5. We say that a function f(x) has at +∞ (or −∞) a limit
g, if

∀ ϵ > 0 ∃M ∀ x ∈ Df x > M ⇒ |f(x)−g| < ϵ (x < M ⇒ |f(x)−g| < ϵ).
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Figure 6.5: The limits at 0 of function 2
1
x .

In such case we write

g = lim
x→±∞

f(x).

Similarly we define the improper limits. For example, limx→+∞ f(x) = +∞
if

∀ M ∃ K ∀ x ∈ Df x > K ⇒ f(x) > M.

Corollary 6.6. The above definition can be also expressed in the language
of sequences. For example, limx→+∞ f(x) = +∞ if and only if for every se-
quence {xn} from the domain of f(x), diverging to +∞ the sequence {f(xn)}
also diverges to +∞.

Examples: (a) We will find the limit at +∞ of the function f(x) = ex

x
. Of

course, this function has limit 0 at −∞. On the other hand, if x → +∞
both the numerator and the denominator tend to +∞. First we consider the
sequence

en

n
=

(
e

n
√
n

)n

.

Since n
√
n→ 1, Thus

e
n
√
n
→ e.

Therefore,

∃ n0 ∈ N ∀ n ≥ n0
e

n
√
n
> 2 ⇒ en

n
> 2n.
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The sequence 2n diverges to +∞, we thus have the improper limit

lim
n→∞

en

n
= +∞.

We also have the following estimates. Let us momentarily denote ϵ = x− [x],
so 0 ≤ ϵ < 1, and so

ex

x
=

e[x]+ϵ

[x] + ϵ
≥ e[x]

[x] + 1
=

1

e

e[x]+1

[x] + 1
.

Let xn → +∞ and let M > 0. Then

∃ n0 ∈ N ∀ n ≥ n0
en

n
≥ e · M,

and
∃ n1 ∈ N ∀ n ≥ n1 xn ≥ n0 ⇒ [xn] ≥ n0.

So, for n ≥ n1 we have

exn

xn
≥ 1

e

e[xn]+1

[xn] + 1
≥ 1

e
· e · M =M.

We have thus proved, that

lim
x→+∞

ex

x
= +∞.

This can be understood in the following way. When x increases to∞ then the
exponential function ex grows faster than x. Let us observe, that the above
reasoning can be easily modified to show that the exponential function grows
faster than any polynomial.

(b) Let us consider the limit

lim
x→+∞

(
1 +

1

x

)x

.

We know the limit of the respective sequence (when x = n), it is, by defini-
tion, the number e. Now we would like to adapt the reasoning from example
(a), and estimate the values of the function at points x by its values in some
natural points n. We will use various estimates, but the idea is simple. Let
ϵ > 0, the sequence xn → ∞, and let us denote kn = [xn]. Let us observe,
that kn →∞ and that they satisfy

kn ≤ xn < kn + 1
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1

kn + 1
<

1

xn
≤ 1

kn
,

(enough that xn ≥ 1), so further

1 +
1

kn + 1
< 1 +

1

xn
≤ 1 +

1

kn(
1 +

1

kn + 1

)kn

<

(
1 +

1

xn

)xn

<

(
1 +

1

kn

)kn+1

(
1 +

1

kn + 1

)kn+1
1

1 + 1
kn+1

<

(
1 +

1

xn

)xn

<

(
1 +

1

kn

)kn (
1 +

1

kn

)
We know that the sequences(

1 +
1

n

)n

·
(
1 +

1

n

)
and

(
1 +

1

n+ 1

)n+1

· n+ 1

n+ 2

converge to e, so there exists n1 ∈ N such that for n ≥ n1(
1 +

1

n

)n

·
(
1 +

1

n

)
< e+ϵ and

(
1 +

1

n+ 1

)n+1

· n+ 1

n+ 2
> e−ϵ.

Let n0 ∈ N be such, that for n ≥ n0 there is xn ≥ n1 so kn = [xn] ≥ n1.
Then

e− ϵ <
(
1 +

1

kn + 1

)kn+1
1

1 + 1
kn+1

<

<

(
1 +

1

xn

)xn

<

(
1 +

1

kn

)kn (
1 +

1

kn

)
< e+ ϵ,

which implies ∣∣∣∣( 1 +
1

xn

)xn

− e
∣∣∣∣ < ϵ.

Similarly we can show, that the limit of this function at −∞ is also equal to
e. The proof is analogous, and uses the limit

lim
n→∞

(
1− 1

n

)n

=
1

e
,

which was on the exercise list.
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Chapter 7

Continuous functions

Definition 7.1. We say that the function f(x) is continuous at a point x0
from its domain, if

f(x0) = lim
x→x0

f(x).

We say, that a function is continuous on a set A ⊂ Df if it is continuous at
every point x0 ∈ A. If a function is continuous at every point of its domain,
we simply say that it is continuous.

Speaking informally we may say, that a function is continuous, if one can
“enter” with a limit “under” such function. Intuitively, a continuous function
is such whose graph is an unbroken curve.

Remarks: (i) Using the definition of the limit at a point we obtain the
following condition for continuity of a function at a point x0

∀ ϵ > 0 ∃ δ > 0 ∀ x ∈ Df |x− x0| < δ ⇒ |f(x)− f(x0)| < ϵ.

Using the language of sequences, that is Theorem 6.2 we obtain the condition

∀ {xn} ∈ Df , xn → x0 ⇒ f(xn)→ f(x0).

(ii) If x0 ∈ Df is an isolated point of the domain, then the limit of the
function at such point is not defined. Let us settle, that at each isolated point
of the domain the function is, by definition, continuous. Of course, isolated
points of the domain are rare, but they actually can appear. For example
the function f(x) =

√
x3 − x2 has the natural domain Df = {0} ∪ [1,∞).

Corollary 7.2. All elementary functions, that is polynomials, rational func-
tions, the exponential, power, trigonometric functions, and the logarithm are
continuous.
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Theorem 7.3. The sum, difference, product, fraction and the composition
of continuous functions are continuous at each point at which the given op-
eration can be performed.

Proof. We will prove the case of composition. All other operations on con-
tinuous functions are an immediate consequence of the theorem about arith-
metic operations on limits of functions. Thus, let for each x ∈ Df f(x) ∈
Dg, and let both functions f(x) and g(x) be continuous. The composi-
tion (g ◦ f)(x) = g(f(x)) is then defined for every x ∈ Df . Let xn → x0,
xn, x0 ∈ Df . Then f(xn) → f(x0) (this follows from the continuity of f(x)
at x0) and g(f(xn)) → g(f(x0) (this follows from the continuity of g(x) at
f(x0)). The composition is thus continuous.

Example: Let f(x) = xx for x > 0 and let f(0) = 1. We will show, that
f(x) is continuous at 1, that is

lim
x→0+

xx = 1.

We will use the limits we already know

lim
x→∞

ex

x
=∞ ⇒ lim

x→∞

x

log x
=∞.

The above follows directly from the definition of a limit, and from the fact
that xn →∞⇔ log xn →∞. Passing to inverses we obtain

lim
x→∞

log x

x
= 0 ⇒ lim

x→0+
x log x = 0.

The last limit follows from the previous one, since xn → ∞ ⇔ 1
x
→ 0+. At

last we get

lim
x→0+

xx = lim
x→0+

ex log x = elimx→0+ x log x = e0 = 1.

As can be easily observed, the continuity of the function f(x) at other points
of its domain can be easily obtained, once we prove the continuity of the
function log x. This, in turn, will follow from the theorem about the conti-
nuity of the inverse function, which we will soon prove (recall, that log x is
an inverse to ex).

Remark: A function may be discontinuous from various reasons. For ex-
ample, the limit of a function at a point may exists

g = lim
x→x0

f(x),
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but g ̸= f(x0). This is the situation we encounter in the case of f(x) = [−|x|].
If 0 < |x| < 1 then −1 < −|x| < 0 that is f(x) = −1 and thus

lim
x→0

f(x) = −1.

On the other hand f(0) = 0. This type of discontinuity is called removable.
It is enough to redefine the value of the function at a single point to obtain
continuity at that point.

A different type of discontinuity is the so-called jump discontinuity. If
the one-sided limits of a function exist at a point, but are not equal, we say
that the function has a jump discontinuity. An example can be seen with
f(x) = [x], which has jump discontinuities at integers

lim
x→k−

f(x) = k − 1, lim
x→k+

f(x) = k, k ∈ Z.

−1 0 1

−1

0

−1 0 1

−1

0

1

Figure 7.1: Removable discontinuity and jump discontinuity.

The function

f(x) =

{
sin 1

x
: x ̸= 0

0 : x = 0,

has a discontinuity of another type, the limit of f(x) at zero does not exist,
not even one-sided limits.
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Properties of continuous functions

Continuous functions have a number of important properties, some of which
we will now prove. Namely, we will prove, that a continuous function on
a finite closed interval [a, b] is bounded, and reaches its highest and lowest
values, and also assumes all intermediate values. We will use our knowledge of
sequences, and the main tool, as we will see, will be the Bolzano-Weierstrass
theorem (theorem 4.12). The properties that we will prove lead to numerous
numerical algorithms, for example in root-finding. The continuity of the
function is the basic required condition.

Theorem 7.4. A function f(x), continuous on the interval [a, b] (finite and
closed), is bounded.

Proof. We will prove that f(x) is bounded from above. The proof that it is
also bounded from below we leave as an exercise. Observe, that this can be
done either by appropriately adapting the proof of bound from above, or by
observing that the function −f(x) is bounded from above if and only if f(x)
is bounded from below. We now proceed with the proof that f(x) is bounded
from above, and we will do that indirectly. Suppose then, that f(x) is not
bounded from above. Then there exists a sequence of points {xn} ⊂ [a, b],
for which

f(xn) > n, n = 1, 2, . . . .

This sequence is constructed by using the fact, that f(x) is not bounded
from above by 1 - this gives us x1 such, that f(x1) > 1, then we use that the
function is not bounded by 2, 3, and so on. The sequence lies within [a, b], so
it is bounded, and thus we can extract a subsequence {xnk

} which converges
to some c ∈ [a, b] (Theorem 4.12):

xnk
→ c.

From the definition of continuity we have f(xnk
)→ f(c), which is a contra-

diction, because the sequence {f(xnk
)} is not bounded.

Remark: It is crucial, that the interval [a, b] is finite, and contains the
endpoints. Without these assumptions the function might be unbounded.
For example, f(x) = x is continuous on [0,∞), while f(x) = 1

x
is continuous

on (0, 1], and neither is bounded. The same remark applies to the following
theorem.

Theorem 7.5. The function f(x) which is continuous on the interval [a, b]
(finite and closed) assumes its maximal and minimal values.
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Proof. Again, we will only show that f(x) assumes its maximal value, and
leave the rest as an exercise. Let

M = sup{y : y = f(x), x ∈ [a, b]}.

We know that the set of values is bounded, so the above supremum is finite.
Form the definition of supremum there exists a sequence {xn} ⊂ [a, b] such
that f(xn) → M . The sequence {xn} is bounded, so we can extract a sub-
sequence {xnk

} convergent to some c ∈ [a, b] (again, theorem 4.12). We thus
have f(xnk

)→ f(c), so f(c) =M .

Theorem 7.6 (The Darboux property). A function f(x) continuous on an
interval [a, b] assumes all intermediate values between its minimal value m,
and its maximal value M . In other words, the set of values of the function
continuous on an interval [a, b] is a closed and finite interval [m,M ].

Proof. We know, that the function f(x) assumes its extremal values, that
is there exist numbers c, d ∈ [a, b] such that f(c) = m and f(d) = M . Let
us assume c < d. Observe, that we do not actually lose any generality,
since if c = d the function is clearly constant, and in the case c > d we
can consider −f(x) in the place of f(x), or, alternately, we may modify the
present argument. Also, assume m < M , since otherwise the function is
constant, and there is nothing to prove. So, suppose c < d. Let y0 ∈ (m,M),
that is y0 is an intermediate value, between the minimal and the maximal.
Let

x0 = sup{t ∈ [c, d] : f(x) < y0 for x ∈ [c, t]}.
We know that the above set is non-empty because it contains at least c (recall,
that f(c) = m < y0), and it is bounded. The supremum thus exists. We will
now show, that the following must hold

f(x0) = y0, (7.1)

so, indeed, y0 is a value of the function f(x). Let us assume, that f(x0) < y0.
Then, since f(x) is continuous, there exists δ > 0 such, that f(x) < y0 for x ∈
[x0−δ, x0+δ]. We thus see, that f(x) < y0 on a larger interval [c, x0+δ], which
contradicts the definition of x0. Therefore, it cannot happen that f(x0) < y0.
Let us then assume that f(x0) > y0. This time, from the continuity of f(x)
at x0 we have, that f(x) > y0 on some interval [x0−δ, x0+δ], for some δ > 0.
But it follows from the definition of x0 that f(x) < y0 for x < x0, which is a
contradiction. Thus the only possibility for the value of f(x0) is (7.1).

Remark: The above theorem can be used to find approximate roots of
equations. If we know, that a function f(x) is continuous, and that f(a) ·
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f(b) < 0 (f(a) and f(b) have opposite signs), then f(x) has a root in the
interval (a, b):

f(x) = 0 for some x ∈ (a, b).

The algorithm of approximating this root, the so-called “halving” method
is recursive. Let c = a+b

2
. Either f(c) = 0, and then the root is found, or

f(c) ̸= 0 and then we must have f(a) · f(c) < 0 or f(c) · f(b) < 0. In other
words, the root must be either in the left half of the interval [a, b], or in the
right half. We are thus in the starting point again (that is we have a root
localized in some interval), but with the interval half shorter. For example,
to numerically compute

√
2 we can seek the root of the equation

f(x) = x2 − 2 = 0.

We have f(1) · f(2) = −2 < 0, and the function f(x) is continuous, so there
exists a root in the interval (1, 2) (big deal :-)). It is easy to see, that using
the halving method we acquire 3 additional decimal digits of accuracy of
the approximation for every 10 iterations. Each iteration (in the current
example) reduces to 1 multiplication, so the algorithm is rapidly convergent
– 3 digits of accuracy per 10 multiplications.

Theorem 7.7. If a function f(x) is continuous on the interval [a, b] and
bijective (each value assumed only once), then the function g(y), inverse to
f(x), is continuous on the set of values of f(x), that is on the interval [m,M ],
where the constants m andM denote, as in the previous theorem, the minimal
and maximal values of the function f(x) on [a, b].

Proof. The range – the set of values of the function f(x), according to the-
orem 7.6, is an interval [m,M ], so it is the domain of the inverse function
g(y). If m ≤ y0 ≤ M then g(y) is defined at the point y0, by the formula
g(y0) = x0, where x0 is the unique point for which f(x0) = y0 (recall that
f(x) is bijective). Let yn → y0 and yn ∈ [m,M ] for n = 1, 2, . . . . Since yn
and y0 are in the set of values of f(x), then there are x0, xn ∈ [a, b] such,
that f(xn) = yn and f(x0) = y0. The sequence {xn} is bounded. Denote
its upper limit by x′0, and the lower limit by x′′0. Suppose the subsequences
{xn′

k
} and {xn′′

k
} converge to x′0 and x′′0 respectively. From the continuity of

f(x) it follows that

f(x′0) = lim
k→∞

f(xn′
k
) = lim

k→∞
yn′

k
= y0,

and similarly

f(x′′0) = lim
k→∞

f(xn′′
k
) = lim

k→∞
yn′′

k
= y0.
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We thus have f(x′0) = f(x′′0) = y0 = f(x0). But since f(x) was bijective, we
must have x0 = x′0 = x′′0. The upper and the lower limits of the sequence
{xn} are both equal to x0, and so the sequence actually converges to x0. We
thus have

g(yn) = xn
n→∞−−−→ x0 = g(y0),

so g(y) is continuous at y0.

Corollary 7.8. The function loga x is continuous on (0,∞), since it is the
inverse function of the continuous function ax (a > 0, a ̸= 1).

Remark: A function continuous, bijective on the interval [a, b] must be
strictly monotonic. We leave the proof of this simple fact as an exercise.

−2 0 2

−1

0

1

−1 0 1

−2

−1

0

1

2

Figure 7.2: Functions sinx and arcsinx.

Inverse trigonometric functions

Functions sin x i cos x are not bijective, and thus are not invertible. We can,
however consider them on a restricted domain, on which they are bijective.
The function sinx with its domain restricted to [−π

2
, π
2
] is strictly increasing

−1 do 1, and thus bijective and invertible.
The inverse function, defined on [−1, 1] is called arcsinx, and according to

the above theorem is continuous. Similarly, cosx, with its domain restricted
to the interval [0, π] is strictly decreasing from 1 to −1, and thus invertible.
The inverse function, defined on the interval [−1, 1] is called arccos x, and is
also continuous.

The function tan x is periodic, with period π, and consists of separated
“branches”. With its domain restricted to (−π

2
, π
2
) it is strictly increasing
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Figure 7.3: Functions cos x and arccos x.
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Figure 7.4: A branch of tanx and its inverse arctan x.

and invertible. The inverse function, defined on the entire real line R is
called arctanx and is continuous.
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Chapter 8

The derivative

The derivative of a function is the momentary speed with which it changes .

Definition 8.1. The derivative of a function f(x) at a point x0 is the limit

lim
h→0

f(x0 + h)− f(x0)
h

, (8.1)

provided this limit exists. If it does, we say that f(x) is differentiable at the
point x0 (or that it has a derivative at the point x0). The derivative of the
function f(x) at a point x0 is denoted by

f ′(x0) (“f prime”) or
df

dx
(x0) (“df with respect to dx at x0”).

Remarks: (i) The derivative of the function f(x) is also a function, with the
domain consisting of these points, at which f(x) is differentiable. Computing
the derivative is called “differentiating” a function.

(ii) The quotient appearing in the limit (8.1) is called the “differential quo-
tient”. The differential quotient, that is the increase of the function divided
by the increase of the argument determines the average rate of increase of
the function f(x) over the interval [x, x+ h] (if h > 0, otherwise this has to
be reformulated). Thus the interpretation of the derivative as the momen-
tary rate of change of the given function. The derivative also has geometric
interpretation. The differential quotient in (8.1) is the tan of the angle of
inclination φ of the secant to the graph of f(x). This secant intersects the
graph in two points (x, f(x)) and (x + h, f(x + h)). As h → 0 the secant
turns into the tangent, and thus geometrically the derivative is the tan of
the angle of inclination of the tangent to the graph at a given point. The
existence of the derivative means simply the existence of the tangent to the
graph.
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x x+h

f(x+h)

f(x)

f(x+h)−f(x)

h

Figure 8.1: The differential quotient and the secant.

(iii) The derivative may fail to exist. For example, for the function f(x) = |x|
we have

lim
h→0+

f(0 + h)− f(0)
h

= lim
h→0+

h

h
= 1, lim

h→0−

f(0 + h)− f(0)
h

= lim
h→0−

−h
h

= −1

The differential quotient has different one-sided limits at zero, and thus f(x)
is not differentiable at 0. The geometric interpretation of this lack of dif-
ferentiability at 0 is particularly suggestive: the graph of f(x) at the point
(0, 0) has an “angle”, and thus has no tangent.

−1  0   1   

0

1

2

Figure 8.2: The graph of f(x) = |x| and the non-differentiable “angle”.

(iv) The derivative ot the function f(x) is defined at the “internal” points

86



of the domain, that is these points from x ∈ Df , for which some interval
(x− δ, x+ δ) ⊂ Df .

Theorem 8.2. If the function f(x) is differentiable at a point x0 then it
must be continuous at x0.

Proof. Let us observe that

lim
x→x0

f(x)− f(x0) = lim
x→x0

(f(x)− f(x0))

= lim
x→x0

f(x)− f(x0)
x− x0

· (f(x)− f(x0))

= lim
x→x0

f(x)− f(x0)
x− x0

· lim
x→x0

(f(x)− f(x0))

= f ′(x0) · 0 = 0.

Theorem 8.3. If functions f(x) and g(x) are both differentiable at a point
x0, then the following functions are also differentiable at x0, and we have the
formulas

• (f ± g)′(x0) = f ′(x0)± g′(x0),

• (f · g)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0) (the Leibniz rule),

• (f
g
)′(x0) =

f ′(x0)g(x0)−f(x0)g′(x0)
g2(x0)

, provided g(x0) ̸= 0.

Proof. We will show the product and the fraction, while the sum and the
difference are left to the enthusiastic reader. Let us start with the product.

lim
h→0

f(x0 + h)g(x0 + h)− f(x0)g(x0)
h

= lim
h→0

f(x0 + h)g(x0 + h)− f(x0)g(x0 + h) + f(x0)g(x0 + h)− f(x0)g(x0)
h

= lim
h→0

(
(f(x0 + h)− f(x0))g(x0 + h)

h
+

(g(x0 + h)− g(x0))f(x0)
h

)
= lim

h→0

f(x0 + h)− f(x0)
h

· g(x0 + h) + lim
h→0

f(x0) ·
g(x0 + h)− g(x0)

h
= f ′(x0)g(x0) + f(x0)g

′(x0),

provided the derivatives on the right both exist. Let us recall, that if g(x) is
differentiable at a point x0 then it is also continuous at that point, and thus,
a wic g(x0+h)→ g(x0) as h→ 0. Now the quotient. If g(x0) ̸= 0 and g(x) is
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continuous at x0, then g(x0 + h) ̸= 0 for sufficiently small h. Computing the
limits when h → 0 we can restrict ourselves to h from an arbitrarily small
interval around 0.

lim
h→0

f(x0+h)
g(x0+h)

− f(x0)
g(x0)

h
= lim

h→0

f(x0 + h)g(x0)− f(x0)g(x0 + h)

h g(x0 + h) g(x0)

= lim
h→0

f(x0+h)g(x0)−f(x0)g(x0)−(f(x0)g(x0+h)−f(x0)g(x0))
h

g(x0 + h) g(x0)

=
limh→0

f(x0+h)−f(x0)
h

· g(x0)− f(x0) · limh→0
g(x0+h)−g(x0)

h

g2(x0)

=
f ′(x0)g(x0)− f(x0)g′(x0)

g2(x0)
.

Examples: (a) The constant function f(x) = c. f ′(x) = limh→0
c−c
h

= 0.
The derivative of a constant function is a constant 0.

(b) f(x) = x. We have f ′(x) = limh→0
x+h−x

h
= 1.

(c) f(x) = xn, for n ∈ N. We have f ′(x) = nxn−1, (the Leibniz rule plus the
induction, or alternately the binomial expansion).

(d) A polynomial of degree n: f(x) = anx
n + · · · + a1x + a0. f ′(x) =

nan−1
n + · · ·+ a1, a polynomial of degree n− 1.

(e) f(x) = sinx. We have

f ′(x) = lim
h→0

sin(x+ h)− sin(x)

h

= lim
h→0

2 sin(1
2
h) cos(x+ 1

2
h)

h

= lim
h→0

sin(1
2
h)

1
2
h

· lim
h→0

cos(x+
1

2
h)

= cos x.

We have used a trigonometric identity

sin(a+ b)− sin(a− b) = 2 sin b cos a,

with a = x+ 1
2
h and b = 1

2
h. Similarly, in the next example we will use the

identity
cos(a+ b)− cos(a− b) = −2 sin a sin b.
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(f) f(x) = cosx. Similarly as in (e)

f ′(x) = lim
h→0

cos(x+ h)− cos(x)

h

= lim
h→0

−2 sin(1
2
h) sin(x+ 1

2
h)

h

= − lim
h→0

sin(1
2
h)

1
2
h

· lim
h→0

sin(x+
1

2
h)

= − sin x.

(g) f(x) = log x.

f ′(x) = lim
h→0

log(x+ h)− log(x)

h

= lim
h→0

1

h
log

(
x+ h

x

)
= lim

h→0
log

(
x+ h

x

) 1
h

.

As we know, the logarithm is a continuous function (Corollary 7.8), so we
can “take the limit” under the logarithm. Let us see then, what is the limit
under the logarithm.

lim
h→0

(
x+ h

x

) 1
h

= lim
h→0

(
1 +

h

x

) 1
h

= lim
h→0

((
1 +

1
x
h

) x
h

) 1
x

.

We also know, that we can “take the limit” under an arbitrary power. Let
us observe, that as h→ 0+ then x

h
→ +∞, and while h→ 0− then x

h
→ −∞

(we only consider x ∈ Dlog, that is x > 0). We remember that

lim
t→±∞

(
1 +

1

t

)t

= e, and thus lim
h→0

(
1 +

1
x
h

) x
h

= e,

(both 1-sided limits are equal to e). Putting together the pieces we obtain

f ′(x) = log e
1
x =

1

x
log e =

1

x
.

Theorem 8.4 (Differentiating the inverse function). Let f : [a, b] → R be
continuous and 1-1, and also differentiable at the point x0 ∈ (a, b), with
f ′(x0) ̸= 0. Let g(y) be the function inverse to f(x) f(x), that is defined on
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the interval [m,M ], where m and M are the extremes of the set of values of
f(x). Let y0 = f(x0). Then g(y) is differentiable at the point y0 and

g′(y0) =
1

f ′(x0)
.

Proof. Let us denote k = f(x0+h)−f(x0) (k depends on h). So g(y0+k) =
x0 + h. For k → 0 we thus have h→ 0, since g(y) is continuous. Therefore

g′(y0) = lim
k→0

g(y0 + k)− g(y0)
k

= lim
k→0

h

f(x0 + h)− f(x0)

=
1

lim
h→0

f(x0 + h)− f(x0)
h

=
1

f ′(x0)
.

Corollary 8.5. For f(x) = ex and y0 = ex0 we have

f ′(x0) =
1

log′(y0)
=

1
1
y0

= y0 = ex0 .

The derivative of the function ex is the same function ex.

Function extrema

We say that a function f(x) has at a point x0 a maximum (or local maxi-
mum), if

f(x) ≤ f(x0),

for x ∈ Df , in some neighborhood of x0. Similarly, we say that it has at x0
a minimum (local minimum), if

f(x) ≥ f(x0),

for x ∈ Df , in some neighborhood of x0. In general, we say that f(x) has at
x0 an extremum, if it has at this point a maximum or a minimum.

Theorem 8.6. If a function f(x) has at the point x0 an extremum, and is
differentiable at that point, then

f ′(x0) = 0.

90



x
0

x
0

Figure 8.3: Local maximum and minimum.

Proof. Let us consider the case when f(x) has at x0 a maximum. The case
of a minimum is similar. For h from some neighborhood of 0 we thus have

f(x0 + h) ≤ f(x0),

that is for h > 0 we have f(x0+h)−f(x0)
h

≤ 0, and for h < 0 we have f(x0+h)−f(x0)
h

≥
0. The right-hand limit of the differential quotient at zero thus cannot be
positive, while the left-hand limit cannot be negative. Since they are equal,
their common value is necessarily zero.

Remarks: (i) If f(x) has an extremum at the point x0, then f ′(x0) = 0,
but not the other way around. For example, the function f(x) = x3 satisfies
f ′(0) = 0, but does not have an extremum at 0.

(ii) The above theorem is useful in finding the maximum and minimum values
of a function. The maximal and minimal values of a function can be attained
at a point where it is not differentiable (for example at an end-point of the
interval where the function is defined), or otherwise at a point where the
derivative is 0. This narrows down the search.

(iii) The theorem 8.6 is obvious geometrically. If a function has at a given
point an extremum, then the tangent to the graph of this function (if it
exists) is necessarily horizontal.

Theorem 8.7 (Rolle’s theorem). Let f(x) be continuous over the inter-
val [a, b] (including the endpoints), and differentiable in (a, b). Assume that
f(a) = f(b). Then there exists a c ∈ (a, b) such that f ′(c) = 0.
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Proof. The function f(x) attains its maximal and minimal values. If both
are attained at the end-points a, b, then the function is a constant, and its
derivative is a constant f ′(x) ≡ 0 over the entire interval (a, b). Otherwise,
one of the extrema, the minimum or the maximum, has to be attained at an
inside point c ∈ (a, b). By theorem [?] we must have f ′(c) = 0.

The following theorem is important from the point of view of both, the
theory and the applications.

Theorem 8.8 (the mean value theorem). If the function f(x) is continuous
on [a, b], and differentiable in (a, b), then there exists a point c ∈ (a, b) such,
that

f(b)− f(a)
b− a

= f ′(c).

Proof. Let us observe, that an auxiliary function

g(x) = f(x)−
(
f(a) + (x− a) f(b)− f(a)

b− a

)
satisfies the assumptions of the Rolle’s theorem: g(a) = g(b) = 0. Simply
speaking, we have subtracted from f(x) a linear function with the same
value as f(x) at a, and with the same increase over the interval [a, b]. It thus
follows from the Rolle’s theorem, that there exists a point c ∈ (a, b) such,

that g′(c) = 0. But g′(x) = f ′(x)− f(b)−f(a)
b−a

, which finishes the proof.

From the mean value theorem we immediately obtain the following corol-
lary.

Corollary 8.9. If, over an interval (a, b) we have

• f ′(x) ≥ 0 then the function f(x) is increasing on (a, b),

• f ′(x) ≤ 0 then the function f(x) is decreasing on (a, b),

• f ′(x) = 0 then the function f(x) is constant on (a, b),

If the inequalities are sharp, then the monotonicity is strict.

Remarks: (i) Let us observe, that in the above corollary we assume an
inequality on the entire interval. This is important since, for example the
function 1

x
has a derivative, which is strictly negative on its entire domain,

while the function itself is not decreasing. It is decreasing on each of the
intervals (−∞, 0) and (0,∞) which together make up the domain, but not
decreasing on the entire domain.

92



(ii) It follows directly from the definition of the derivative, that if in some
neighborhood of x0 the function f(x) is increasing, then f ′(x0) ≥ 0 if it
exists). Similarly for a decreasing function. We thus see, that monotonicity
is closely related to the sign of the derivative.

We state the following theorem without proof.

Theorem 8.10 (Chain rule). Let functions f(x) and g(x) be differentiable,
and let their composite g ◦ f be defined, that is the values of f(x) fall into
the domain of g(x). Then the composite (g ◦ f)(x) is differentiable, and

(g ◦ f)′(x) = g′(f(x)) f ′(x).

It is not hard to see how to proceed with the proof:

g(f(x+ h))− g(f(x))
h

=
g(f(x+ h))− g(f(x))
f(x+ h)− f(x)

· f(x+ h)− f(x)
h

.

We omit the technical details.

Corollary 8.11. Let f(x) = xa, x > 0, where a is an arbitrary real power.
We then have

xa = ea log x ⇒ (xa)′ = ea log x(a log x)′ = xa · a
x
= a xa−1.

We have proved this formula earlier in the case of a natural power.

The following theorem is the so called de l’Hôspital’s rule. It is a very
simple theorem, which is surprisingly useful. We will use it repeatedly. It
allows to find limits (if they exist) of expressions of the form

lim
x→x0

f(x)

g(x)
,

where both functions have limits 0. A limit of this kind is referred to, for
obvious reasons, as an indeterminate expression of type 0

0
.

Theorem 8.12 (de l’Hôspital’s rule). If functions f(x) and g(x) are differ-
entiable in an interval (a, b), and satisfy

lim
x→a+

f(x) = lim
x→a+

g(x) = 0,

then if the limit

lim
x→a+

f ′(x)

g′(x)
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exists (proper or improper), then the limit

lim
x→a+

f(x)

g(x)

also exists, and both limits are equal:

lim
x→a+

f(x)

g(x)
= lim

x→a+

f ′(x)

g′(x)
.

Proof. If we let f(a) = g(a) = 0, then both functions by assumption are
continuous on [a, b). Analogously as in the proof of the mean value theorem
we will introduce an auxiliary function, and apply the Rolle’s theorem. Let
h > 0 such that a+ h < b be fixed, and for x ∈ [a, a+ h] let

Φ(x) = f(x)− g(x) f(a+ h)

g(a+ h)
.

We have Φ(a) = Φ(a + h) = 0, so there exists c ∈ (a, a + h) such, that
Φ′(c) = 0. This means that

f ′(c)− g′(c) f(a+ h)

g(a+ h)
= 0 ⇒ f ′(c)

g′(c)
=
f(a+ h)

g(a+ h)
.

Observe also that when h→ 0 then also c→ 0. If the limit

lim
x→a+

f ′(x)

g′(x)
, (8.2)

exists, then also the limit

lim
h→0+

f ′(c)

g′(c)
,

necessarily exists, and is equal to the limit (8.2). We thus have

lim
x→a+

f(x)

g(x)
= lim

h→0+

f(a+ h)

g(a+ h)
= lim

h→0+

f ′(c)

g′(c)
= lim

x→a+

f ′(x)

g′(x)
,

provided the limit on the right exists.

Remarks: (i) The theorem remains true if instead of right-hand limits at
a we consider left-hand limits at b. The same thus follows for both-sided
limits.

(ii) The de l’Hôspital’s rule can be iterated. For example, let us consider the
limit

lim
x→0

sin x− x
x3

.
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Let us observe right away, that this is, indeed, and indeterminate expression
of the type 0

0
. Differentiating the numerator and the denominator we again

arrive at an indeterminate expression of the type 0
0
: cosx−1

3x2 . Differentiating
the numerator and the denominator again we obtain − sinx

6x
, which is still 0

0
,

but this time we happen to know this limit, it is equal to −1
6
. We then go

back, applying the de l’Hôspital’s rule twice.

lim
x→0

− sinx

6x
= −1

6
⇒ lim

x→0

cosx− 1

3x2
= −1

6
⇒ lim

x→0

sin x− x
x3

= −1

6
.

(iii) We can apply the de l’Hôspital’s rule to limits of other “types”, trans-
forming them appropriately. For example, let us consider the limit

lim
x→+∞

f(x)

g(x)
,

where f(x)→ 0 and g(x)→ 0 as x→ +∞. Let us introduce the notation

φ(t) = f

(
1

t

)
and ψ(t) = g

(
1

t

)
,

then φ(t)→ 0 and ψ(t)→ 0 as t→ 0+, and additionally

φ′(t) = f ′
(
1

t

)
·
(
−1
t2

)
, and ψ′(t) = g′

(
1

t

)
·
(
−1
t2

)
.

We thus obtain
φ′(t)

ψ′(t)
=
f ′(1

t
)(− 1

t2
)

g′(1
t
)(− 1

t2
)
=
f ′(1

t
)

g′(1
t
)
.

It follows from the above, that

lim
x→+∞

f ′(x)

g′(x)
, and lim

t→0+

φ′(t)

ψ′(t)

are the same limits, the existence of one is equivalent to the existence of the
other, and they are both equal. We thus have

A = lim
x→+∞

f ′(x)

g′(x)
⇒ A = lim

t→0+

φ′(t)

ψ′(t)

⇒ A = lim
t→0+

φ(t)

ψ(t)
⇒ A = lim

x→+∞

f(x)

g(x)
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(iv) One can also prove (in a roughly similar fashion) a version of the de
l’Hôspital’s rule for indeterminate expressions of the type ∞

∞ : if limx→a+ f(x) =

limx→a+ g(x) = ∞ and limx→a+
f ′(x)
g′(x)

= A (proper or improper) then also

limx→a+
f(x)
g(x)

= A. Similarly for a = ∞ (an indeterminate expression of the

type ∞
∞ at ∞).

Examples: (a) limx→0
log(1+x)

x
. It is clearly an indeterminate expression of

the type 0
0
, so we have

lim
x→0

log(1 + x)

x
= lim

x→0

1
1+x

1
= 1.

(b) limx→0+ x log x. It is an expression of the “type” 0 · ∞, but moving x to
the denominator we obtain an expression of the type ∞

∞ . We thus have

lim
x→0+

x log x = lim
x→0+

log x
1
x

= lim
x→0+

1
x
−1
x2

= − lim
x→0+

x = 0.

(c) limx→0+(cosx)
1
x . It is an expression of the “type” 1∞. We transform it

in the usual way

(cosx)
1
x = e

1
x
log cosx = e

log cos x
x .

In the exponent we have an expression of the type 0
0
, so we compute the limit

in the exponent

lim
x→0+

log cos x

x
= lim

x→0+

1
cosx

(− sin x)

1
= 0 ⇒ lim

x→0+
(cosx)

1
x = e0 = 1.

(d) limx→+∞
log x√

x
. It is an expression of the type ∞

∞ at ∞, so we have

lim
x→+∞

log x√
x

= lim
x→+∞

1
x

1
2

1√
x

= lim
x→+∞

2√
x
= 0.

The logarithm increases to ∞ less rapidly than the square root.

Derivatives of the inverse trigonometric functions

(a) f(x) = arcsinx. f(x) is defined on the interval [−1, 1], and is a function
inverse to the function sin x restricted to the interval [−π

2
, π
2
]. Let x0 ∈ (−1, 1)
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and x0 = sin(t0) for some t0 ∈ (−π
2
, π
2
). From Theorem 8.4 we know, that

f(x) is differentiable at x0 and

f ′(x0) =
1

sin′ t0
=

1

cos t0
=

1

cos arcsinx0
.

The last expression can be simplified. For t0 ∈ (−π
2
, π
2
) we have cos t0 > 0,

and so cos t0 =
√
1− sin2 t0. We thus have

f ′(x0) =
1

cos arcsinx0
=

1√
1− x20

.

(b) f(x) = arccos x. It is a function defined on [−1, 1], inverse to the function
cos x restricted to the interval [0, π]. Let x0 ∈ (−1, 1), and x0 = cos t0 for
some t0 ∈ (0, π).

f ′(x0) =
1

cos′ t0
=

1

− sin t0
=

−1
sin arccos x0

.

Similarly as above, sinx is positive on (0, π), so sin t0 =
√
1− cos2 t0, thus

f ′(x0) =
−1

sin arccosx0
=

−1√
1− x20

.

(c) f(x) = arctanx. Function f(x) is defined on the entire real line R, and
is the inverse to the function tan x restricted to the interval (−π

2
, π
2
). Let

x0 = tan t0 for some t0 ∈ (−π
2
, π
2
). We have

f ′(x0) =
1

tan′ t0
=

1
1

cos2 t0

= cos2 t0.

On the other hand

cos2 t0 =
cos2 t0

cos2 t0 + sin2 t0
=

1

1 + ( sin t0
cos t0

)2
=

1

1 + tan2 t0
=

1

1 + x20
.

We finally get

f ′(x0) =
1

1 + x20
.
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Derivatives of higher orders

If the derivative f ′(x) is itself differentiable, then we can compute its deriva-
tive, the so called second derivative, or derivative of the second order of the
function f(x)

(f ′)′(x) = f ′′(x) = f (2)(x).

Similarly, we can compute derivatives of arbitrary orders f (n)(x) (provided
the function f(x) is differentiable sufficiently many times). We write f (0)(x) =
f(x).

Examples: (a)

sin(n)(x) =

{
(−1)n−1

2 cos x n – odd,

(−1)n
2 sinx n – even.

(b)

f(x) =

{
x3 x ≥ 0,

0 x < 0.

The function f(x) is differentiable at each point x ̸= 0 and f ′(x) = 3x2 for
x > 0 and f ′(x) = 0 for x < 0. The function is also differentiable at zero,
and f ′(0) = 0:

lim
x→0+

f(x)− 0

x
= lim

x→0+

x3

x
= 0, lim

x→0−

f(x)− 0

x
= lim

x→0−

0

x
= 0.

f(x) is thus differentiable everywhere, and

f ′(x) =

{
3x2 x ≥ 0,

0 x ≤ 0.

We now compute the derivative of f ′(x). For x > 0 f ′′(x) = 6x, and for
x < 0 f ′′(x) = 0. At zero f ′(x) is again differentiable, and f ′′(0) = 0:

lim
x→0+

f ′(x)− 0

x
= lim

x→0+

3x2

x
= 0, lim

x→0−

f ′(x)− 0

x
= lim

x→0−

0

x
= 0.

f(x) is thus differentiable everywhere twice, and

f ′′(x) =

{
6x x ≥ 0,

0 x ≤ 0.
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Figure 8.4: Functions f(x), f ′(x) and f ′′(x) from Example (b).

Observe, that f ′′(x) is not differentiable at zero:

lim
x→0+

f ′′(x)− 0

x
= lim

x→0+

6x

x
= 6, lim

x→0−

f ′′(x)− 0

x
= lim

x→0−

0

x
= 0.

f(x) therefore has derivatives of order 2 everywhere, but not of order 3 at
zero.

Remark: All elementary functions have derivatives of all orders at each
point of their respective domains.

Examining functions’ behavior

We will now discuss a procedure to examine a function’s behavior. Such
examination is a typical subject in applications.

Remark: The procedure we will discuss now assumes the function is suf-
ficiently regular. There are functions whose graphs could hardly be even
sketched. For example

f(x) =

{
1 x ∈ Q,

0 x /∈ Q.

The functions we will consider will usually be at least piecewise continuous.
Attempting to analyse a function we usually proceed as follows.

(1) We establish the domain of the function, if it is not given. We establish
points of continuity, discontinuity and differentiability. Usually the function
is piecewise continuous and piecewise differentiable, that is its domain an be
split into adjacent intervals in which it is continuous and differentiable. We
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thus establish these intervals.

(2) We check for oddness and parity. If f(x) is even, that is f(−x) = f(x)
or odd, that is f(−x) = −f(x), then it is enough to analyse it for x ≥ 0 and
then transfer the results appropriately to x < 0. If the function is periodic,
that is there exists a T such, that f(x + T ) = f(x), then it is enough to
analyse the function over its period, for example the interval [0, T ].

(3) We find the roots of f(x), that is points x0 at which

f(x0) = 0,

and we establish intervals over which the function preserves its sign.

(4) We find intervals of monotonicity and the local extrema. We test the sign
of the derivative. This can give hints about the extrema. Sometimes we find
useful the following theorem.

Theorem 8.13. If f ′(x0) = 0 and f ′′(x0) ̸= 0 then f(x) has an extremum
at x0. If f ′′(x0) < 0 then it is a maximum, and if f ′′(x0) > 0 then it is a
minimum.

Proof. If f ′′(x0) > 0 then there exists a neighborhood of x0 where the dif-
ferential quotients are positive, that is there exists a δ > 0 such that for
h ∈ (−δ, δ) we have

0 <
f ′(x0 + h)− f ′(x0)

h
=
f ′(x0 + h)

h
.

From this we see, that on the interval (x0 − δ, x0) f
′(x) is negative (f(x)

decreases), and on the interval (x0, x0 + δ) f ′(x) is positive (f(x) increases).
At x0 the function therefore has a minimum. A similar analysis applies to
the case f ′′(x0) < 0 (maximum).

One has to remember, that extrema can be located at points where the
function is not differentiable. Such points require special attention.

(5) If the function f(x) is twice differentiable, and in some interval we have
f ′′(x) > 0, then we say that the function is convex in this interval. If on some
interval f ′′(x) < 0 then we say that the function is concave. If at some point
the function changes from convex to concave or the other way around, then
we say that there it has an inflection point. Such point is an extremum of the
first derivative. We try to localize the inflection points, and determine the
intervals of convexity/concavity. The convexity and concavity have a clear
geometric interpretation. If a function is convex on some interval, then the
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tangents to its graph all lie below the graph, while the secants lie above the
graph. If the function is concave, the opposite holds, the tangents are above,
and the secants are below.

(6) We find eventual asymptotes. The asymptotes can be of different kinds.
(a) If at some point x0 we have limx→x±

0
f(x) = ±∞, then the vertical line

with an equation x = x0 is called a vertical asymptote.
(b) If there exists a proper (finite) limit limx→±∞ f(x) = A, then the hor-
izontal line y = A is called a horizontal asymptote of f(x) at +∞ (or at
−∞).
(c) If there exists a constant m such that a proper limit limx→±∞(f(x) −
mx) = c exists, then the line y = mx+c is called an asymptote at +∞ (or at
−∞). The horizontal asymptote is thus a particular kind of an asymptote,
corresponding to m = 0. The asymptotes at +∞ and −∞ are independent,
we check for asymptotes at both infinities, and at each an asymptote can
exist or not. If at +∞ or −∞ the function f(x) does have an asymptote,
then the constant m is necessarily equal to either of the limits (which then
must exist)

lim
x→±∞

f(x)

x
, lim

x→±∞
(f(x+ 1)− f(x)), lim

x→±∞
f ′(x),

(the last limit might not exist, even if the asymptote exists). One has to
remember, that the existence of any of the above limits does not guarantee
the existence of an asymptote. For the asymptote to exist the following limit
has to exist too

lim
x→±∞

(f(x)−mx) = c.

Examples: (a) f(x) = 1
x
has a vertical asymptote x = 0 and horizontal

asymptotes y = 0 at both infinities (Fig. 8.5).

(b) f(x) = x3−2x2+3
2x2 . The function clearly has a vertical asymptote x = 0.

We will look for other asymptotes.

f(x)

x
=
x3 − 2x2 + 3

2x3
=

1

2
− 1

x
+

3

2x3
x→±∞−−−−→ 1

2
,

f(x)− 1

2
x =

x3 − 2x2 + 3

2x2
− x

2
=
x3 − 2x2 + 3− x3

2x2

=
−2x2 + 3

2x2
= −1 + 3

2x2
x→±∞−−−−→ −1.

The function f(x) thus has an asymptote y = 1
2
x − 1 at both infinities

(Fig.8.6).
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Figure 8.5: Asymptotes of the function f(x) = 1
x
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Figure 8.6: Asymptotes of the function from Example (b).

(c) Let us examine the function

f(x) =
2

3
√
x2

x+ 1
.

Its natural domain is Df = R \ {−1}, and the function is clearly continuous
at each point of the domain, and differentiable at each point x ̸= 0. The
intervals of continuity are (−∞,−1) and (−1,+∞), while the intervals of
differentiability are (−∞,−1), (−1, 0) and (0,+∞). The function is neither
odd nor even nor periodic. Its only root is the root of the numerator, that is
x0 = 0. f(x) is positive for x > −1, x ̸= 0 and negative for x < −1. Let us
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compute the derivative

f ′(x) =
2 2

3
x−

1
3 (1 + x)− 2x

2
3

(x+ 1)2

=
2 x

2
3

(x+ 1)2
·
(

2

3

1 + x

x
− 1

)
=

2 x
2
3

3 (x+ 1)2

(
2

x
− 1

)
.

The firs term is always positive, so the sign of the derivative is determined by
the sign of ( 2

x
−1). After easy computations we conclude that the derivative is

positive on the interval (0, 2) and negative on the intervals (−∞,−1), (−1, 0)
and (2,+∞). The function f(x) therefore increases on the interval (0, 2), and
decreases on all of the other intervals. We thus see, that it has a minimum
at zero (it is a point of non-differentiability), and a maximum at 2. We see,
that it has a vertical asymptote x = −1, and a horizontal y = 0 at ±∞. Let
us now examine the convexity. Let us compute the second derivative.
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Figure 8.7: The graph of the function from Example (c).

f ′′(x) =

(
4
3
x−

1
3

x+ 1
− 2 x

2
3

(x+ 1)2

)′

=
−4

9
x−

4
3 (x+ 1)− 4

3
x−

1
3

(x+ 1)2
−

4
3
x−

1
3 (x+ 1)2 − 2x

2
3 2 (x+ 1)

(x+ 1)4

=
−4

9
x−

4
3 (x+ 1)2 − 8

3
x−

1
3 (x+ 1) + 4 x

2
3

(x+ 1)3
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= −4

9
x−

4
3
(x+ 1)2 + 6 x (x+ 1)− 9 x2

(x+ 1)3

=
4

9
x−

4
3
2x2 − 8x− 1

(x+ 1)3
.

The expression 4
9
x−

4
3 is always positive, and the denominator is < 0 for

x < −1 and > 0 for x > −1. On the other hand the numerator is positive
for x /∈ (2− 3√

2
, 2+ 3√

2
) and negative for x ∈ (2− 3√

2
, 2+ 3√

2
). Let us further

observe, that −1 < 2− 3√
2
< 0, and so f(x) is:

• concave on (−∞,−1), (2− 3√
2
, 0) and (0, 2 + 3√

2
),

• convex on (−1, 2− 3√
2
) and (2 + 3√

2
,+∞),

• has inflection points in 2± 3√
2
.

We know everything we wanted to know, and we may sketch the graph of
the function (Fig. 8.7).

Proving inequalities

The methods of examining functions that we described above can be applied
to proving inequalities.

Examples: (a) We will prove the inequality (1 + x)p ≥ 1 + px for x > −1.
We have proved such an inequality earlier for a natural exponent p. Now we
will prove it for an arbitrary p ≥ 1. Let us consider the function

f(x) = (1 + x)p − 1− px, x ≥ −1.

We have
f ′(x) = p (1 + x)p−1 − p.

For x ≥ 0 1 + x ≥ 1 and p − 1 ≥ 0, so (1 + x)p−1 ≥ 1 that is f ′(x) ≥ 0.
On the other hand for x ≤ 0 we have 1 + x ≤ 1 so (1 + x)p−1 ≤ 1, and thus
f ′(x) ≤ 0. The function f(x) therefore decreases for x < 0 and increases for
x > 0, and therefore attains its minimal value at zero

f(x) ≥ f(0) = 0.

The function is thus always ≥ 0, that is

(1 + x)p ≥ 1 + p x.
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(b) For x ≥ 0 we have x− x3

6
≤ sin x ≤ x. The right part of the inequalities

is obvious, and was proved earlier. We will prove the left part. Let

f(x) = sinx− x+ x3

6
.

We have f ′(x) = cos x − 1 + x2

2
, f ′(0) = 0, f ′′(x) = − sinx + x. f ′′(x) ≥ 0

for x ≥ 0, so f ′(x) increases for x ≥ 0, and since f ′(0) = 0, then f ′(x) ≥ 0
for x ≥ 0. The function f(x) itself therefore increases for x ≥ 0, and so

f(x) ≥ f(0) = 0, for x ≥ 0.

Taylor’s formula

The mean value theorem con be written in the form

f(b) = f(a) + (b− a)f ′(c), for some c ∈ (a, b).

Introducing h = b− a, the formula becomes

f(a+ h) = f(a) + h f ′(a+ θ h), for some θ ∈ (0, 1).

The mean value theorem written in this form is a special case of the so called
Taylor’s formula.

Theorem 8.14 (Taylor’s formula). Suppose the function f(x) is n – times
differentiable in an interval (a − δ, a + δ) around a, for some δ > 0. Then,
for any h, |h| < δ there exists a θ ∈ (0, 1) such, that

f(a+ h) = f(a) +
h

1!
f ′(a) +

h2

2!
f ′′(a) + · · ·+ hn−1

(n− 1)!
f (n−1)(a) +Rn

=
n−1∑
k=0

hk

k!
f (k)(a) +Rn,

where

Rn =
hn

n!
f (n)(a+ θh).

Proof. Suppose h is given, and |h| < δ. Let us denote b = a + h, and let us
introduce auxiliary functions

φ(x) =f(b)− f(x)− (b− x)
1!

f ′(x)− · · · − (b− x)n−1

(n− 1)!
f (n−1)(x)

= f(b)−
n−1∑
k=0

(b− x)k

k!
f (k)(x),
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Φ(x) = φ(x)− φ(a)

(b− a)n
(b− x)n.

Notice, that Φ(x) satisfies the assumptions of the Rolle’s theorem on the
interval with endpoints a, b ([a, b] or [b, a] depending on the sign of h).

Φ(a) = φ(a)− φ(a)

(b− a)n
(b− a)n = 0, Φ(b) = φ(b)− 0 = 0.

We thus deduce that there exists a point c inside the interval with endpoints
a, b, such that

Φ′(c) = 0.

The point c can be written in the form a + θ (b − a) = a + θ h for some
θ ∈ (0, 1). We thus have

Φ′(a+ θ h) = φ′(a+ θ h)− φ(a)

(b− a)n
n (h− θ h)n−1 (−1) = 0. (8.3)

We have to compute the derivative φ′(x):

φ′(x) = −f ′(x)−

(
n−1∑
k=1

(b− x)k

k!
f (k)(x)

)′

= −f ′(x)−
n−1∑
k=1

(
(b− x)k

k!
f (k)(x)

)′

= −f ′(x)−
n−1∑
k=1

(
− (b− x)k−1

(k − 1)!
f (k)(x) +

(b− x)k

k!
f (k+1)(x)

)

= −f ′(x) +
n−2∑
k=0

(b− x)k

k!
f (k+1)(x)−

n−1∑
k=1

(b− x)k

k!
f (k+1)(x)

= −f ′(x) + f ′(x)− (b− x)(n−1)

(n− 1)!
f (n)(x)

= −(b− x)(n−1)

(n− 1)!
f (n)(x).

Plugging this into (8.3) we obtain

−(h− θ h)(n−1)

(n− 1)!
f (n)(a+ θ h) +

φ(a)

(b− a)n
n (h− θ h)n−1 = 0,

that is

φ(a) =
(b− a)n

n!
f (n)(a+ θ h) =

hn

n!
f (n)(a+ θ h).
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It remains to observe that φ(a) is precisely the remainder Rn:

f(b) =
n−1∑
k=0

hk

k!
f (k)(a) + φ(a)

= f(a) +
h

1!
f ′(a) +

h2

2!
f ′′(a) + · · ·+ hn−1

(n− 1)!
f (n−1)(a) +

hn

n!
f (n)(a+ θ h).

Remarks: (i) Rn is the so-called remainder. The Taylor’s formula can be
viewed as an approximation of the function f(x) by a polynomial, in the
neighborhood of the point a (the so-called Taylor’s polynomial at a), and
then Rn is the error of this approximation.
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Figure 8.8: Taylor’s polynomials of the function sin x.

(ii) The accuracy of this approximation depends on the magnitude of Rn in
the neighborhood of a (Rn of course depends on h). The more derivatives
the function f(x) has in the neighborhood of the point a (as we say, the more
“smooth” f(x) is near the point a) the more accurate the approximation is.

(iii) The reaminder Rn in the Taylor’s formula can be expressed in various
forms. The form given in the above theorem is the so-called Lagrange form.
Various forms of the remainder come useful, when we want to estimate the
error of the Taylor’s approximation. Later we will see another simple proof
of the above theorem, where the remainder will take the so-called integral
form.

(iv) Let us observe, that if our function f(x) has derivatives of all orders,
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and sup{|f (n)(x)|;x ∈ (a − δ, a + δ), n ∈ N} exists, then for any h, |h| < δ
we have Rn → 0 as n→∞, that is

f(a+ h) =
∞∑
k=0

hk

k!
f (k)(a). (8.4)

This is the so-called Taylor’s series of the function f(x) at a point a. Let us
remember, that in general the Taylor’s series need not converge, and even if
it does converge, it might happen that

f(a+ h) ̸=
∞∑
k=0

hk

k!
f (k)(a).

On each occasion we need to verify the convergence of the remainderRn to
zero. It is only this convergence that gives the convergence of the Taylor’s
series, and the formula (8.4).

(v) If a = 0 we obtain the particular case of the Taylor’s series, the so-called
Maclaurin’s series

f(x) =
∞∑
n=0

xn

n!
f (n)(0).

Examples: (a) f(x) = sinx, a = 0. We know that

f (n)(0) =

{
(−1)n−1

2 n− odd

0 n− even.

We know also, that |f (n)(x)| ≤ 1 for all x, n. We thus have Rn → 0 for any
h, and we obtain the expansion of the function sinx into a Maclaurin’s series

sin x =
∞∑
n=0

n-odd.

(−1)
n−1
2
xn

n!
=

∞∑
n=0

(−1)n x2n+1

(2n+ 1)!

= x− x3

3!
+
x5

5!
− x7

7!
+ . . . .

(b) f(x) = ex, a = 0. f (n)(x) = ex, therefore f (n)(0) = 1. Let us observe,
that if |h| ≤M then |f (n)(θ h)| ≤ eM . The remainders converge to zero, and
so

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ . . . .
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(c) f(x) = log(1 + x), a = 0. Let us compute the derivatives

f ′(x) =
1

1 + x
, f ′′(x) = (−1) 1

(1 + x)2
,

f ′′′(x) = 2
1

(1 + x)3
, f (4)(x) = (−1) 2 · 3 1

(1 + x)4
.

We obtain

f (n)(x) = (−1)n+1 (n− 1)!

(1 + x)n
⇒ f (n)(0) = (−1)n+1 (n− 1)!.

We have to estimate the remainder

|Rn| ≤
|h|n

n!
· (n− 1)!

(1− |h|)n
=

1

n

(
|h|

1− |h|

)n

,

so for |h| ≤ 1
2
we have

|h|
1− |h|

≤ 1⇒ |Rn| → 0.

We thus have, for |x| ≤ 1
2

log(1 + x) =
∞∑
n=1

(−1)n+1 x
n

n
= x− x2

2
+
x3

3
− x4

4
+ . . . .

Remark: Using sharper estimates we may show, that the above formula
remains true for x ∈ (−1, 1].

Computing approximate values of functions

We will use the Taylor’s formula for approximate computations
medskip
(a) We will compute the approximate value of e

e =
n−1∑
k=0

1

k!
+
eθ

n!
⇒ e ≃

n−1∑
k=0

1

k!
and the error ≤ 3

n!
.

By the way: e is not rational. Let us suppose that it actually is rational, and
e = m

n
, for some m,n ∈ N. Then

e =
m

n
= 1 + 1 +

1

2!
+

1

3!
+ · · ·+ 1

n!
+

eθ

(n+ 1)!
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⇒
(
m

n
− 1− 1− 1

2!
− · · · − 1

n!

)
· n! = eθ

n+ 1
.

Let us observe, that the left hand side is an integer, that is eθ

n+1
also has to

be an integer. But this is clearly impossible, since 1 < eθ < 3, so we would
have

1

n+ 1
<

eθ

n+ 1
<

3

n+ 1
.

The only possibility is n = 1, so e would have to be a natural number, and
it is easy to check that it is not (it is strictly between 2 and 3).

(b) We will compute an approximate value of 3
√
9. Let f(x) = x

1
3 , and

observe that f(9) = f(8 + 1), while f(8) = 2. We compute a few derivatives

f ′(x) =
1

3
x−

2
3 , f ′′(x) = (−1) 1

3

2

3
x−

5
3 ,

f ′′′(x) =
1

3

2

3

5

3
x−

8
3 , f (4)(x) = (−1)1

3

2

3

5

3

8

3
x−

11
3 .

It is easy to notice that

f (n)(x) = (−1)n+1 1

3

2

3

5

3
. . .

3n− 4

3
x−

3n−1
3 .

In that case

f (n)(8) = (−1)n+12 · 5 . . . (3n− 4)

3n
8−

3n−1
3 = (−1)n+12 · 5 . . . (3n− 4)

3n 8n
2.

Plugging this into Taylor’s formula, with n = 3 we obtain

3
√
9 = f(8 + 1) = f(8) + f ′(8) +

f ′′(8)

2
+R3

= 2 +
1

12
− 2

2 · 3 · 3 · 32
+R3

= 2 +
1

12
− 1

288
+R3.

We estimate the error of the approximation

|R3| ≤
2 · 5

3!3 · 3 · 3
1

(8 + θ)
8
3

<
10

162

1

8
8
3

=
10

162 · 256

=
10

41472
<

10

40000
=

1

4000
= 0, 00025.
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Chapter 9

Integrals

The antiderivative

Definition 9.1. A function F (x) is called an antiderivative of the function
f(x) (or a primitive of f(x)), if F (x) is differentiable and F ′(x) = f(x) for
each x ∈ Df .

Remark: (i) A function f(x) might not have an antiderivative. If it does,
then it has infinitely many of them:

F ′(x) = f(x) ⇒ (F (x) + c)′ = F ′(x) = f(x).

In other words, if F (x) is an antiderivative of the function f(x), then for any
constant c the function F (x) + c is also an antiderivative of f(x).

(ii) If both F (x) and G(x) are antiderivatives of the same function f(x),
then (F −G)′(x) = F ′(x)−G′(x) = 0, for all x ∈ Df . Thus on each interval
contained in Df the antiderivatives F (x) and G(x) differ by a constant. This
constant can, however, be different on different intervals. If the domain of
the function f(x) is comprised of only one interval (for example, the entire
real line)m then any two antiderivatives of f(x) differ by a constant.

Indefinite integral

Definition 9.2. If a function f(x) has an antiderivative, then we say that
it is integrable. Any of the antiderivatives of an integrable function f(x) is
called its indefinite integral, and is denoted∫

f(x) dx.
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The term “indefinite integral of f(x)” refers to a whole family of func-
tions, which on different (separated) intervals of Df differ by a constant. We
often stress that, by adding a constant c to any formula for the indefinite
integral that we obtain. In the notation for the integral

∫
. . . dx is one whole

inseparable symbol, which always goes together. The part dx of the symbol
underscores the variable with respect to which the antiderivative has been
computed. Sometimes, in the case when the formula for the “integrated”
function contains a fraction the symbol dx is placed in the numerator, for
example ∫

1

x
dx =

∫
dx

x
.

Examples:

(a)

∫
0 dx = c,

(b)

∫
a dx = ax+ c, for any constant a,

(c)

∫
xa dx =

1

a+ 1
xa+1 + c a ̸= −1, x > 0,

(d)

∫
cos x dx = sin x+ c,

(e)

∫
sin x dx = − cosx+ c,

(f)

∫
dx

cos2 x
= tanx+ c,

(the constant c can be taken different on different intervals ),

(g)

∫
dx

x
= log |x|+ c, (similar comment about the constant),

(h)

∫
ex dx = ex + c.

The proof of any of the above formulas comes down to computing the deriva-
tive of the right hand side, and comparing it to the integrated function. The
constants c introduced on the right hand sides are not very important (we
know, that adding a constant does not change the derivative), but it is good
to remember about them. Also, it is good to remember, that if the domain
Df is comprised of more than one connected intervals (like, for example, for
1
x
we have D1/x = (−∞, 0) ∪ (0,∞)) the notation +c in the formula for the

integral is understood as that the constant can be different of any of the
separate intervals of the domain.

112



From the formulas for derivatives we obtain the following formulas for the
indefinite integrals:

(a)

∫
(f(x)± g(x)) dx =

∫
f(x) dx±

∫
g(x) dx,

(b)

∫
a f(x) dx = a

∫
f(x) dx, a - arbitrary constant

(c)

∫
f ′(x)g(x) dx = f(x)g(x)−

∫
f(x)g′(x) dx,

(the so-called formula for integrating by parts)

(d)

∫
(g ◦ f)(x)f ′(x) dx =

∫
g(y) dy where y = f(x),

(the so-called formula for integration by substitution).

Examples: (a) The integral of a polynomial is also a polynomial, of degree

higher by 1:∫
(anx

n + an−1x
n−1 + · · ·+ a1x+ a0) dx =

=
an

n+ 1
xn+1 +

an−1

n
xn + · · ·+ a1

2
x2 + a0 x+ c.

(b) We will apply the formula for inegration by parts:∫
log x dx =

∫
(x)′ log x dx

= x log x−
∫
x (log x)′ dx

= x log x−
∫
x · 1

x
dx

= x log x−
∫

1 · dx

= x log x− x+ c.

Let us verify: (x log x− x+ c)′ = log x+ x · 1
x
− 1 = log x.

(c) We use the formula for integration by substitution:∫
x

1 + x2
dx =

1

2

∫
1

1 + x2
· 2x dx let f(x) = 1 + x2
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=
1

2

∫
1

f(x)
f ′(x) dx

=
1

2

∫
1

y
dy f(x) = y

=
1

2
log |y|+ c

=
1

2
log |1 + x2|+ c

= log
√
1 + x2 + c.

Let us observe, that (log |x|)′ = 1
x
. For x > 0 this is clear, and for x < 0 we

have |x| = −x, so

(log |x|)′ = (log(−x))′ = 1

(−x)
· (−x)′ = −1

−x
=

1

x
.

In our example 1 + x2 > 0, so the absolute value does not change anything.
Let us verify: (log

√
1 + x2)′ = 1√

1+x2 · 12 ·
1√

1+x2 · 2 x = x
1+x2 , so everything

agrees.

(d) Once more integration by substitution:∫
tanx dx =

∫
sin x

cos x
dx

= −
∫
− sin x

cosx
dx

= −
∫

1

f(x)
f ′(x) dx f(x) = cos x

= −
∫

1

y
dy y = cos x

= − log |y|+ c

= − log | cosx|+ c.

(e) The following integral is immediate, if we remember the derivatives of
the inverse trigonometric functions:∫

1√
1− x2

dx = arcsinx+ c, |x| < 1.

If we happen not to remember these important formulas, we can still compute
the integral, using substitution:∫

1√
1− x2

dx =

∫
1√

1− f(t)2
f ′(t) dt, x = f(t)
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Figure 9.1: The graph of the function f(x) = − log | cosx|.

=

∫
1√

1− sin2 t
cos t dt, f(t) = sin t, t ∈ (−π

2
,
π

2
)

=

∫
1

cos t
cos t dt

=

∫
1 dt

= t+ c

We have used the fact that for t ∈ (−π
2
, π
2
) we have cos t > 0 and so√

1− sin2 t = cos t. Since x = sin t, then t = arcsin x, and we obtain the
same formula as before.

(f) We will compute the integral of the function sin2 x in two ways. We can
apply the trigonometric identity

cos 2x = 1− 2 sin2 x ⇒ sin2 x =
1− cos 2x

2
.

Then we obtain ∫
sin2 x dx =

1

2

∫
(1− cos 2x) dx

=
1

2

(
x− sin 2x

2

)
+ c

=
x

2
− sin 2x

4
+ c.

Alternately, we can apply integration by parts. Integrating by parts we do
not obtain an integral which is easier to compute, but rather an equation for
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the integral we want to compute, which can be then solved.∫
sin2 x dx =

∫
sinx · sinx dx

=

∫
sinx · (− cos x)′ dx

= − sin x cos x+

∫
(sinx)′ cos x dx

= − sin x cos x+

∫
cos x · cosx dx

= − sin x cos x+

∫
cos2 x dx

= − sin x cos x+

∫
(1− sin2 x) dx

= − sin x cos x+ x−
∫

sin2 x dx.

What we have obtained is an equation for our integral. Shifting the integral
from the right hand side to the left, and dividing by 2 we obtain∫

sin2 x dx =
− sin x cos x+ x

2
.

Integrability of functions

Integrating rational functions

Recall, that rational functions are functions of the form f(x) = P (x)
Q(x)

, where

P (x) andQ(x) are polynomials. Simple fractions are a special kind of rational
functions, having the form

A

(x− a)n
,

Bx+ C

(x2 + px+ q)n
, n = 1, 2, . . . , (9.1)

where A,B,C, a, p and q are arbitrary constants, and the quadratic expres-
sion x2 + px + q has no real roots, that is p2 − 4q < 0. It turns out that
any rational function can be decomposed as a sum of simple fractions, plus,
eventually, a polynomial. On the other hand there are formulas for indefinite
integrals of simple fractions. These two facts together give us a procedure to
compute indefinite integrals of arbitrary rational functions.

Theorem 9.3. Any rational function can be decomposed as a sum of simple
fractions and a polynomial.
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The decomposition procedure: Rather than the technical proof we will
sketch a procedure to decompose a function. This sketch can be refined
to become the rigorous proof, but we leave that to the reader. Given a
particular function f(x) = P (x)

Q(x)
we first divide polynomials P (x) by Q(x)

“with the remainder”, that is we find polynomials W (x) (the quotient) and
R(x) (the remainder) such that

P (x) = W (x) ·Q(x) +R(x), ⇒ P (x)

Q(x)
=W (x) +

R(x)

Q(x)
,

and the degree of the remainder is less then the degree of Q(x). We perform
the division using the usual procedure of “long division”, exactly the same
way as we divide natural numbers.

Examples: (a) x3−2x2−1
x2−1

= (x− 2) + x−3
x2−1

(b) x4−2x3−35
x3−2x2+3x−6

= x+ −3x2+6x−35
x3−2x2+3x−6

.

After dividing out the polynomial part (which we know how to integrate),

we are left with a fraction R(x)
Q(x)

, in which the numerator has the degree lower
that the denominator. In the next step we factorize the denominator, that is
we decompose it as a product of polynomials which cannot be decomposed
any further. The indecomposable polynomials are linear terms (x− a), and
quadratic terms (x2 + px+ q), which have no real roots, that is p2 − 4q < 0.
Let us recall, that in the case of polynomials in which we allow complex coef-
ficients the only indecomposable terms are linear. Each polynomial of degree
higher than 1 can be further factorized. In the case of polynomials with only
real roots there can happen indecomposable factors (by the Bezout’s theo-
rem these can have no real roots) but it turns out that such indecomposable
terms may have degree at most 2. In our procedure we now express the
denominator Q(x) as a product of expressions of the form

(x− a)n and (x2 + px+ q)n. (9.2)

The factorization of the denominator into indecomposable terms is, in prac-
tice, the main problem in the proedure of integrating rational functions. We
know that such factorization exists, but in general we have no one way to
find it. In the we will deal with either the factorization will be more or less
obvious, or it will be provided. In our examples the factorization is rather
simple: x2 − 1 = (x − 1)(x + 1) and x3 − 2x2 + 3x − 6 = (x − 2)(x2 + 3).
If the polynomial has integer coefficients, and the coefficient of the leading
power is 1 then first of all we look for its roots among the integer divisors
of the free term. If we happen to hit upon a root, we divide the polynomial
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by the appropriate linear term, and we are left with a polynomial of a lower
degree to factorize. We then repeat our attempts on finding a root. If the
polynomial has no roots we try something else. For example let us consider
the polynomial Q(x) = x4 + 1, which clearly has no roots, so there is no lin-
ear factor to look for. We know this polynomial decomposes into a product
of quadratic terms. The only thing to do is to find the coefficients of these
quadratic terms. Start with two arbitrary quadratic polynomials with lead-
ing coefficients equal to 1 (we start with polynomial to fatorize with leading
coefficient 1). We write such decomposition, with so far unknown coefficients,
and multiply everything out:

x4+1 = (x2+ax+b)(x2+cx+d) = x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd.

Comparing terms on both sides we obtain a system of equations with a
number of unknowns, which we will try to solve. In our example the solution
is simple:

x4 + 1 = (x2 −
√
2x+ 1) · (x2 +

√
2x+ 1).

Once we have factored the denominator into undecomposable factors of
the form (9.2) we can write a prototype of the decomposition of our rational
function into simple fractions. As a first step we write out all simple fractions
of the form (9.1) that will need to appear. For each factor of the form (x−a)n
in our factorization we write out n simple fractions

A1

(x− a)
+

A2

(x− a)2
+ · · ·+ An

(x− a)n
,

and for each factor of the form (x2 + px + q)n in the factorization of the
determinant we write n fractions

B1x+ C1

(x2 + px+ q)
+

B2x+ C2

(x2 + px+ q)2
+ · · ·+ Bnx+ Cn

(x2 + px+ q)n
.

Let us observe, that in writing out the necessary simple fractions we have in-
troduced exactly as many unknowns Ai, Bi and Ci (to be determined shortly)
as the degree of the original denominator. Now let us illustrate the just de-
scribed step on our examples:

(a):
x− 3

x2 − 1
=

x− 3

(x− 1)(x+ 1)
=

A

x− 1
+

B

x+ 1
,

(b):
−3x2 + 6x− 35

x3 − 2x2 + 3x− 6
=
−3x2 + 6x− 35

(x− 2)(x2 + 3)
=

A

x− 2
+
Bx+ C

x2 + 3
.
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As the second step we determine all the constants in the numerators of
the introduced simple fractions. To do that, we bring the sum of simple
fractions we have obtained to a common denominator. It is easy to observe,
that this common denominator is exactly the original denominator we have
factorized. After bringing all simple fractions to the common denominator
and combining them we compare the resulting numerator with the original
numerator of the rational function. Both are polynomials of degree at most
one less than the degree of the original denominator Q(x). Sine both numer-
ators have to agree, the coefficients of like powers of x must be equal. This
gives us a number of equations, which is exactly the same as the number of
unknowns. It turns out this system of equations can be solved. We will not
prove this, but let us see how it works on our examples.

(a):

x− 3

x2 − 1
=

A

x− 1
+

B

x+ 1
=

(A+B)x+ (A−B)

(x− 1)(x+ 1)
,

thus we must have A + B = 1 and A − B = −3, which gives A = −1 and
B = 2, and so finally

x− 3

x2 − 1
=
−1
x− 1

+
2

x+ 1
.

(b):

−3x2 + 6x− 35

x3 − 2x2 + 3x− 6
=

A

x− 2
+
Bx+ C

x2 + 3

=
A(x2 + 3) + (Bx+ C)(x− 2)

(x− 2)(x2 + 3)

=
(A+B)x2 + (−2B + C)x+ (3A− 2C)

(x− 2)(x2 + 3)
,

thus A + B = −3, −2B + C = 6 and 3A − 2C = −35. Solving this we get
A = −5, B = 2 and C = 10, so finally

−3x2 + 6x− 35

x3 − 2x2 + 3x− 6
=
−5
x− 2

+
2x+ 10

x2 + 3
.

After we have determined all unknowns our decomposition of a rational func-
tion into a sum of simple fractions is complete. The procedure we have de-
scribed is almost a proof of Theorem [?]. The only point which has not been
made precise is that the final system of equations with unknowns indeed
must have a solution. We leave this justification to the interested reader.
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Integrating simple fraction

So far we have described how a rational function can be split into a sum of
a polynomial and simple fractions. We know how to integrate a polynomial,
and now we will show how to integrate simple fractions. The first type can
be integrated easily. We have the following formulas:∫

dx

x− a
= log |x− a|+ c,∫

dx

(x− a)n
=
−1
n− 1

· 1

(x− a)n−1
+ c, n > 1.

A simple fraction of the second type can be written as a sum:

Bx+ C

(x2 + px+ q)n
=
B

2
· 2x+ p

(x2 + px+ q)n
+

D

(x2 + px+ q)n
, D = C − 1

2
B p.

(9.3)
The first of the fractions on the right hand side can be integrated using the
substitution t = x2 + px+ q,∫

2x+ p

(x2 + px+ q)n
dx =

∫
dt

tn
=

 log(x2 + px+ q) + c : n = 1,
−1

(n− 1)(x2 + px+ q)n−1
+ c : n > 1.

Let us observe that since the polynomial x2+px+q has no real roots, thus it
is always positive, so the absolute value under the logarithm is not necessary.
We are left with one final fraction to integrate, that is the second fraction on
the right hand side of (9.3). We perform asimple transformation and then
substitution:∫

dx

(x2 + px+ q)n
=

∫
dx(

(x+ p
2
)2 + (q − p2

4
)
)n =

√
a

an

∫
dt

(t2 + 1)n
,

where

t =
x+ p

2√
a
, a = q − p2

4
> 0.

If n = 1 we have ∫
dt

t2 + 1
= arctan t+ c,

while if n > 1 we have a recurrence relation. Let k > 0, then integrating by
parts we get∫

dt

(t2 + 1)k
= (t2 + 1)−k · t′ dt
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=

∫
t

(t2 + 1)k
−
∫

(−k) 2t

(t2 + 1)k+1
· t dt

=
t

(t2 + 1)k
+ 2 k

∫
t2

(t2 + 1)k+1
dt

=
t

(t2 + 1)k
+ 2 k

∫ (
t2 + 1

(t2 + 1)k+1
− 1

(t2 + 1)k+1

)
dt

=
t

(t2 + 1)k
+ 2 k

∫
dt

(t2 + 1)k
− 2 k

∫
dt

(t2 + 1)k+1
.

We thus have

2 k

∫
dt

(t2 + 1)k+1
=

t

(t2 + 1)k
+ (2 k − 1)

∫
dt

(t2 + 1)k
,

so, for n > 1∫
dt

(t2 + 1)n
=

t

2 (n− 1) (t2 + 1)n−1
+

2n− 3

2n− 2

∫
dt

(t2 + 1)n−1
.

We are now ready to integrate functions from both of our examples.

Examples: (a):∫
x3 − 2x2 − 1

x2 − 1
dx =

∫ (
(x− 2) +

2

x+ 1
− 1

x− 1

)
dx

=
x2

2
− 2x+ 2 log |x+ 1| − log |x− 1|+ c.

(b):

∫
x4 − 2x3 − 35

x3 − 2x2 + 3x− 6
dx =

∫ (
x− 5

x− 2
+

2x+ 10

x2 + 3

)
dx

=
x2

2
− 5 log |x− 2|+

∫
2x

x2 + 3
dx+

10

3

∫
dx

( x√
3
)2 + 1

=
x2

2
− 5 log |x− 2|+ log(x2 + 3) +

10√
3

∫ 1√
3
dx

( x√
3
)2 + 1

=
x2

2
− 5 log |x− 2|+ log(x2 + 3) +

10√
3
arctan

(
x√
3

)
+ c.
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Chapter 10

Definite integral

The definite integral, intuitively, measures the “size” of the function, in a
sense similarly to the way in which the surface area measures the size of
a region in the plane. Let a function f(x) be given, non-negative on the
interval [a, b] and let us consider the region under the graph of f(x). We
will try to measure the surface area of this region. We will use properties
of surface area, which are intuitively clear, for example the property that a
larger region has a greater surface area. Let f(x) = x and we consider the
region bounded from above by the graph of f(x), over the interval [0, a]. The
region is a triangle with both height and base equal to a. The surface area of
such triangle is equal to P = 1

2
a2. Let us now consider the region under the

graph of f(x) = x2, over the same interval [0, a]. We will build two polygons,
one contained inside our region, and the other containing the region.

ba

Figure 10.1: Region under a graph of a function.

The surface area of the region under the graph must be a number between
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the areas of the smaller and larger polygons. Thus to compute the surface
area of the region under the graph we need to construct pairs of polygons
which fit the region more and more tightly. We now describe this this con-
struction. Let n ∈ N and let us divide the interval [0, a] into n subintervals
of equal length:

[0, a] = [0,
a

n
] ∪ [

a

n
, 2
a

n
] ∪ · · · ∪ [(n− 2)

a

n
, (n− 1)

a

n
] ∪ [(n− 1)

a

n
, a].

Over each of the subintervals of the partition [k a
n
, (k+1) a

n
] we construct two

rectangles, a smaller one with height f(k a
n
) and a larger one with the height

f( (k+1) a
n

). Our function f(x) is increasing, so indeed the second rectangle is
larger. Let Ln be the combined surface area of all smaller rectangles, and Un

the combined surface area of all larger rectangles.

Ln =
n−1∑
k=0

f

(
k a

n

)
a

n
=

n−1∑
k=0

(
k a

n

)2
a

n
=

n−1∑
k=1

(
k a

n

)2
a

n
,

Un =
n−1∑
k=0

f

(
(k + 1) a

n

)
a

n
=

n−1∑
k=0

(
(k + 1) a

n

)2
a

n
=

n∑
k=1

(
k a

n

)2
a

n
.

Each smaller rectangle is completely included within the region under the
graph, and thus the polygon, which is made up of all of them is included in
the region under the graph. On the other hand the polygon made up of the
larger rectangles clearly contains the region under the graph. The surface
area of the smaller polygon is Ln, and the surface area of the larger polygon
is Un. If we denote the surface area of the region under the graph by A, we
must then have

Ln ≤ A ≤ Un,

for every n ∈ N. Let us observe, that Ln and Un have a common limit as
n→∞. To show this we use the formula

12 + 22 + 32 + · · ·+m2 =
m(m+ 1)(2m+ 1)

6
,

which can be proved inductively.We thus have

Ln =
n−1∑
k=1

(
k a

n

)2
a

n

=
a3

n3

n−1∑
k=1

k2
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0 0a a

Figure 10.2: The two polygons with areas Ln and Un.

=
a3

n3

(n− 1) · n · (2n− 1)

6

= a3
2n3 − 3n2 + n

6n3

n→∞−−−→ a3
1

3
.

Similarly,

Un = Ln + a2 · a
n

n→∞−−−→ a3
1

3
.

We see, that the surface area of the region under the graph must be equal to
A = a3

3
. The construction of the definite integral is exactly analogous.

Lower and upper sums

Let the function f(x) be bounded on the interval [a, b], and let us denote by
m and M the lower and upper bounds of f(x) respectively. In other words
we have

m ≤ f(x) ≤M, x ∈ [a, b].

Let P be a partition of the interval [a, b] into subintervals, that is let P =
{a = x0 < x1 < · · · < xn−1 < xn = b} (this is the set of partition points),

[a, b] = [a, x1] ∪ [x1, x2] ∪ · · · ∪ [xn−2, xn−1] ∪ [xn−1, b].

On each of the subintervals [xi, xi+1] we introduce the notation

mi = inf{f(x); x ∈ [xi, xi+1]}, Mi = sup{f(x); x ∈ [xi, xi+1]}, i = 0, 1, . . . , n−1.

We thus have m ≤ mi ≤Mi ≤M .
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xi+1xi

Mi

mi

Figure 10.3: mi and Mi.

Given the partition P we write the sums

L(P, f) =
n−1∑
i=0

mi (xi+1 − xi), U(P, f) =
n−1∑
i=0

Mi (xi+1 − xi).

L(P, f) is called the lower sum and U(P, f) is called the upper sum based
on the partition P . Let us observe that these sums depend on the function
f(x), the interval [a, b], and the partition P of that interval. Comparing this
with the example above, in which we were computing the area of the region
under the graph we see, that if f(x) is non-negative, then the surface area
of the region under the graph is a number between every lower sum, and
every upper sum, regardless of the respective partitions. Observe that we
obviously have

m(b− a) ≤ L(P, f) ≤ U(P, f) ≤M(b− a). (10.1)

The lower integral of the function f(x) over the interval [a, b] is defined as∫ b

a

f(x) dx = sup{L(P, f); P - a partition of [a, b]},

and the upper integral as∫ b

a

f(x) dx = inf{U(P, f); P - a partition [a, b]}.
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Definition 10.1. Because of (10.1) the sup and inf make sense as numbers.
If the lower integral of f(x) is equal to its upper integral we say that the
function f(x) is integrable in the sense of Riemann, and the common value
of the upper and lower integrals is called the Riemann integral of the function
f(x) over the interval [a, b], and denoted∫ b

a

f(x) dx.

Remarks: (i) Let us observe, as in (10.1), that for any partition P we have

L(P, f) =
n−1∑
i=0

mi (xi+1 − xi) ≥ m
n−1∑
i=0

(xi+1 − xi) = m(b− a),

U(P, f) =
n−1∑
i=0

Mi (xi+1 − xi) ≤M
n−1∑
i=0

(xi+1 − xi) =M(b− a).

Thus the integral, if it exists, satisfies

m(b− a) ≤
∫ b

a

f(x) dx ≤M(b− a).

(ii) Let us recall, that the definition we gave requires that the function f(x) be

bounded, and that a < b. We will later introduce additional notation, which
will allow the integration limits a and b to be arbitrary numbers, and we will
describe how, sometimes one can integrate unbounded functions (these will
be the so-called improper integrals).

(iii) The integral can fail to exist. As an example let f(x) be given by the
formula

f(x) =

{
1 : x ∈ Q,

0 : x /∈ Q.

Then, for each partition P and for each i we have mi = 0 and Mi = 1, so
always L(P, f) = 0 and U(P, f) = (b− a), and so∫ b

a

f(x) dx = 0, and

∫ b

a

f(x) dx = b− a.

(iv) The Riemann integral is closely related with the notion of surface area.

If the function f(x) is non-negative, then the integral is the surface area of
the region under the graph. If the function f(x) is non-positive, then the
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integral is the surface area of the region over the graph, under the axis OX,
taken with the minus sign.

(v) We call the Riemann integral the definite integral. In the literature one
can find other constructions of definite integral, but we restrict ourselves
to the above Riemann construction. It will be our goal now to prove that
continuous functions are integrable in the sense of Riemann. To do this we
will now prove a number of simple theorems.

Theorem 10.2. The lower integral is less than or equal to the upper integral:∫ b

a

f(x) dx ≤
∫ b

a

f(x) dx.

Proof. We have to show, that any lower sum is less than or equal to any upper
sum, even if they are based on different partitions. Let then L(P1, f) be the
lower sum based on the partition P1, and U(P2, f) be the upper sum based
on the partition P2. Let P

∗ be the common refinement of both partitions P1

and P2, that is
P ∗ = P1 ∪ P2.

Let us denote the point of respective partitions as follows: P1 = {a =
x0, . . . , xn = b}, P2 = {a = y0, . . . , yk = b} and P ∗ = {a = z0, . . . , zm = b}.
From the definition of P ∗ it follows, that each point xi and each point yj are
also points of P ∗. Let us notice then, that each subinterval [xi, xi+1] of the
partition P1 and each subinterval [yj, yj+1] of the partition P2 is a union of
some subintervals of the refined partition P ∗. It follows, that

L(P1, f) ≤ L(P ∗, f) ≤ U(P ∗, f) ≤ U(P2, f).

The two outside inequalities are a consequence of the fact that P ∗ is a refine-
ment of both P1 and P2, while the middle inequality is a simple observation
that the lower sum is no greater than the upper sum, if they are based on
the same partition.

We then have the following corollary:

Corollary 10.3. If for each ϵ > 0 there exists a partition P such, that

U(P, f)− L(P, f) < ϵ, (10.2)

then f(x) is integrable, and for such partition P we have estimates

U(P, f)− ϵ <
∫ b

a

f(x) dx < L(P, f) + ϵ. (10.3)
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Proof. From the definition of the lower and upper integrals we have, for
arbitrary partition P∫ b

a

f(x) dx−
∫ b

a

f(x) dx ≤ U(P, f)− L(P, f).

If the condition (10.2) is satisfied, then

0 ≤
∫ b

a

f(x) dx−
∫ b

a

f(x) dx < ϵ.

Since this is satisfied for any ϵ > 0, the difference must be zero. The function
f(x) is thus integrable. On the other hand∫ b

a

f(x) dx ≥ L(P, f) > U(P, f)− ϵ,

and similarly for the other inequality in (10.3).

We can now prove the following fundamental theorem:

Theorem 10.4. If the function f(x) is continuous on [a, b], then it is inte-
grable in the sense of Riemann on [a, b].

Proof. We first show that f(x) satisfies the following condition:

∀ ϵ > 0 ∃ δ > 0 ∀ x, y ∈ [a, b] |x− y| < δ ⇒ |f(x)− f(y)| < ϵ. (10.4)

Let us observe, that this condition is stronger than just continuity at each
point of the domain [a, ]. The condition for continuity at a point x0 allows
one to match δ for given ϵ and given x0. However in the above condition δ
only depends on given ϵ, and should be good enough for all points in [a, b].
A function that satisfies (10.4) is called “uniformly continuous” on [a, b],
for obvious reasons. Therefore, using this language, we will now show, that
a function that is continuous on an interval [a, b] (including endpoints) is
necessarily uniformly continuous on [a, b], that is satisfies (10.4).

To appreciate the difference between continuity and uniform continuity
let us consider a function f(x) = 1

x
on he interval (0, 1]. We know, that

this function is continuous at each point of the interval (0, 1]. It is not,
however uniformly continuous, that is it does not satisfy (10.4). This is easy
to observe. Let δ > 0 be arbitrary, and let n ∈ N be also arbitrary, n > 4.
Let x = δ

n
and y = x+ δ

2
. Then |x− y| = δ/2 < δ, while

f(x)− f(y) = 1

x
− 1

y
=
n

δ
− 1

δ
n
+ δ

2

=
n

δ

(
1− 2

n+ 2

)
>

n

2δ
,
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0 1

Figure 10.4: A function that is continuous but not uniformly continuous.

since for n > 4 we have 2
n+2

< 1
2
. We thus see, that regardless of δ the

difference |f(x) − f(y)| can be arbitrarily large, despite |x − y| < δ. Thus,
as we see, a function continuous at every point of its domain might not be
uniformly continuous. In the situation we have in this theorem it is crucial,
that the function in question is continuous on an interval, which is finite and
contains endpoints. Thus, returning to the proof recall, that the function
f(x) is by assumption continuous on the interval [a, b]. Let us assume that
f(x) is not uniformly continuous, that is the condition (10.4) does not hold:

∃ ϵ0 > 0 ∀ δ > 0 ∃ x, y ∈ [a, b], |x− y| < δ ∧ |f(x)− f(y)| ≥ ϵ0. (10.5)

We will apply the above to δ = 1
n
, n = 1, 2, . . . . For each n we thus obtain a

pair of numbers xn, yn ∈ [a, b] satisfying |xn− yn| < 1
n
, and |f(xn)− f(yn)| ≥

ϵ0. We know, that since {xn} ⊂ [a, b] we can extract a subsequence {xnk
}

converging to some x0 ∈ [a, b]. As a consequence, the subsequence {ynk
} also

must converge to x0:

xnk
− 1

nk

< ynk
< xnk

+
1

nk

.

Thus, by the continuity of f(x) we have f(xnk
)→ f(x0) and f(ynk

)→ f(x0),
therefore f(xnk

) − f(ynk
) → 0, which contradicts the condition |f(xnk

) −
f(ynk

)| ≥ ϵ0 > 0. Since we arrived at a contradiction the assumption (10.5)
must be false, and thus its converse, (10.4) must hold.

We will show the integrability using Corollary 10.3. Let ϵ > 0 be arbitrary,
and let δ > 0 be given by (10.4), but for some ϵ′ < ϵ

b−a
. Let n ∈ N be given
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by n = [ b−a
δ
] + 1. We subdivide the interval [a, b] into n subintervals of equal

length using partition points

P =

{
xi = a+ (b− a) i

n
; i = 0, 1, . . . , n

}
.

Observe, that the length of each of the subintervals, which is equal to (b−a)/n
is smaller than δ, since n > (b−a)

δ
. Thus, if x, y ∈ [xi, xi+1], then |x− y| ≤ δ

so |f(x) − f(y)| < ϵ′. The extremes of f(x) over [xi, xi+1] must also satisfy
Mi −mi ≤ ϵ′ < ϵ

(b−a)
. It follows, that

U(P, f)− L(P, f) =
n−1∑
i=0

Mi(xi+1 − xi)−
n−1∑
i=0

mi(xi+1 − xi)

=
b− a
n

n−1∑
i=0

(Mi −mi)

<
b− a
n
· ϵ

b− a
· n

= ϵ.

Since ϵ was arbitrary, then from Corollary 10.3 we conclude that f(x) is
integrable.

Remark: The above proof can be strengthened somewhat, and can be used
to show that if f(x) has only finitely many discontinuities in [a, b] (and is
bounded) then it is still integrable.

Riemann sums

Suppose we have a function f(x) on the interval [a, b], a partition of this
interval P = {a = x0 < x1 < x2 < · · · < xn = b}, and suppose in each of the
subintervals of the partition we have a chosen point ti:

ti ∈ [xi, xi+1], i = 0, 1, . . . , n− 1.

Let us construct a sum

R =
n−1∑
i=0

f(ti)(xi+1 − xi). (10.6)

A sum like this is called a Riemann sum. It depends on a particular partition,
an also on the choice of points ti. Let us observe, that we always have

L(P, f) ≤ R ≤ U(P, f),
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if the Riemann sum is based on the partition P . This follows from the fat
that ti ∈ [xi, xi+1], i = 0, 1, . . . , n− 1, and

mi = inf{f(x) : x ∈ [xi, xi+1]} ≤ f(ti) ≤ sup{f(x) : x ∈ [xi, xi+1]} =Mi.

For a partition P = {a = x0 < x1 < · · · < xn = b} we define its diameter
d(P ):

d(P ) = max{(xi+1 − xi); i = 0, . . . , n− 1}.
We then have the following theorem:

Theorem 10.5. Let the function f(x) be continuous on [a, b], and suppose
we have a sequence of partitions {Pn} of the interval [a, b] such, that the
diameters converge to zero: d(Pn) → 0 as n → ∞. Let Rn be a sequence of
Riemann sums based on partitions Pn. In other words for each partition Pn

we have chosen points ti ∈ [xi, xi+1], and a sum is formed as in (10.6). Then

lim
n→∞

Rn =

∫ b

a

f(x) dx.

Remark: This theorem gives us the freedom to interpret the integral as
a limit of sums. Very often as ti we pick the left or right endpoint of the
subinterval [xi, xi+1], or perhaps its midpoint, not worrying about where
the function assumes its maximal and minimal values. But be careful: the
function f(x) must be continuous.

Proof of the theorem. Similarly as in the proof of Theorem 10.4 we observe,
that the function f(x) continuous on [a, b] must be uniformly continuous,
that is mus satisfy (10.4). Pick arbitrary ϵ > 0 and let δ > 0 be given by
(10.4) for some ϵ′ < ϵ

(b−a)
(similarly as in the proof of theorem 10.4), and let

n0 ∈ N be sufficiently large, so that

∀ n ≥ n0 d(Pn) < δ.

Then for n ≥ n0 we have

U(Pn, f)− L(Pn, f) < ϵ.

From (10.3) we have∫ b

a

f(x) dx− ϵ < L(Pn, f) ≤
∫ b

a

f(x) dx,

and ∫ b

a

f(x) dx ≤ U(Pn, f) <

∫ b

a

f(x) dx+ ϵ,
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that is ∣∣∣∣L(Pn, f)−
∫ b

a

f(x) dx

∣∣∣∣ < ϵ,

∣∣∣∣U(Pn, f)−
∫ b

a

f(x) dx

∣∣∣∣ < ϵ.

Since the ϵ was arbitrary, and the above inequalities hold for all n ≥ n0, thus

lim
n→∞

U(Pn, f) = lim
n→∞

L(Pn, f) =

∫ b

a

f(x) dx.

On the other hand, ans we know

L(Pn, f) ≤ Rn ≤ U(Pn, f),

so also

lim
n→∞

Rn =

∫ b

a

f(x) dx.

Example: we will compute the following limit:

lim
n→∞

(
1√
n
+

1√
n+ 3

+
1√
n+ 6

+
1√
n+ 9

+ · · ·+ 1√
7n

)
1√
n
.

We will try to transform this expression to recognize it as a Riemann sum
for some function, interval, partition, and choice of points ti.(

1√
n
+

1√
n+ 3

+
1√
n+ 6

+
1√
n+ 9

+ · · ·+ 1√
7n

)
1√
n

=
2n∑
i=0

1√
n+ 3 i

1√
n

=
2n∑
i=0

√
n√

n+ 3 i

1

n

=
2n∑
i=0

1√
1 + 3 i

n

1

n

=
1

n
+

1

n

2n∑
i=1

1√
1 + 3 i

n

Now everything becomes clear: This is the Riemann sum for function f(x) =
1√

1+3x
, for interval [0, 2], uniform partition in to 2n subintervals of equal
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length 1
n
, and points ti being the right endpoints of the subintervals. Outside

of the sum we threw the term 1
n
, which is not part of the Riemann sum,

but converges to zero nevertheless. Since the terms of our sequence were
identified as Riemann sums, and the associated partitions have diameters
converging to zero, then the sequence converges to the definite integral∫ 2

0

dx√
1 + 3x

.

Soon we will see, how to easily compute this definite integral.

Theorem 10.6. (i) If the functions f(x), f1(x) and f2(x) are integrable on
[a, b] and c is a constant, then (f1+ f2)(x) and cf(x) are also integrable, and∫ b

a

(f1(x) + f2(x)) dx =

∫ b

a

f1(x) dx+

∫ b

a

f2(x) dx∫ b

a

c f(x) dx = c

∫ b

a

f(x) dx.

(ii) If the functions f1(x) and f2(x) are integrable on [a, b] and f1(x) ≤ f2(x)

then ∫ b

a

f1(x) dx ≤
∫ b

a

f2(x) dx. (10.7)

(iii) If the function f(x) is integrable on [a, b] and a < c < b, then f(x) is

also integrable on each of the subintervals [a, c] and [c, b], and∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx. (10.8)

Also the other way around: if f(x) is integrable on intervals [a, c] and[c, b]
(a < c < b), then it is also integrable on [a, b], and (10.8) holds.

(iv) If the function f(x) is integrable on [a, b], then |f(x)| is also integrable
on [a, b], and ∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx.

Remark: Part (ii) can be strengthened somewhat, and we can prove,
that if actually f1(x) < f2(x) in all but a finite number of points of [a, b]
(a < b), then the inequality (10.7) is actually sharp. The proof basically
remains the same.
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Proof of the theorem. (i) Suppose a partition P of the interval [a, b] is given.
Then

L(P, f1) + L(P, f2) ≤ L(P, f1 + f2) ≤ U(P, f1 + f2) ≤ U(P, f1) + U(P, f2).

So

U(P, f1+f2)−L(P, f1+f2) ≤ U(P, f1)−L(P, f1)+U(P, f2)−L(P, f2). (10.9)

Since f1(x) and f2(x) were integrable, then for any ϵ > 0 there exist partitions
P1 and P2 such, that

U(P1, f1)− L(P1, f1) < ϵ/2, U(P2, f2)− L(P2, f2) < ϵ/2.

If P ∗ is the common refinement of partitions P1 and P2, then the inequalities
also hold for P ∗, and so from (10.7)

U(P ∗, f1 + f2)− L(P ∗, f1 + f2) < ϵ.

Since ϵ > 0 was arbitrary, then f1(x) + f2(x) is integrable (Corollary 10.3)
and in addition∫ b

a

(f1(x) + f2(x)) dx ≤ U(P ∗, f1 + f2)

≤ U(P ∗, f1) + U(P ∗, f2)

≤
∫ b

a

f1(x) dx+ ϵ/2 +

∫ b

a

f2(x) dx+ ϵ/2

=

∫ b

a

f1(x) dx+

∫ b

a

f2(x) dx+ ϵ.

Again, since ϵ > 0 was arbitrary, then∫ b

a

(f1(x) + f2(x)) dx ≤
∫ b

a

f1(x) dx+

∫ b

a

f2(x) dx.

We can prove the converse inequality in a similar way, using L(P ∗, f1 + f2).
Now, let c > 0. Then, of course L(P, cf) = c L(P, f) and U(P, cf) =

c U(P, f). Therefore

U(P, cf)− L(P, cf) = c (U(P, f)− L(P, f)).

Similarly, if c < 0 then L(P, cf) = c U(P, f) and U(P, cf) = c L(P, f), and
so

U(P, cf)− L(P, cf) = c (L(P, f)− U(P, f)) = |c| (U(P, f)− L(P, f)).
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In both cases for ϵ > 0 we find a partition P such that

U(P, f)− L(P, f) < ϵ

|c|
⇒ U(P, cf)− L(P, cf) < ϵ.

Of course, if c = 0 then cf(x) ≡ 0, so it is integrable, and the integral is
zero. In each case we obtain the claim. Observe, that as a corollary of the
above we also obtain∫ b

a

(f1(x)− f2(x)) dx =

∫ b

a

f1(x) dx−
∫ b

a

f2(x) dx.

(ii) We have∫ b

a

f2(x) dx−
∫ b

a

f1(x) dx =

∫ b

a

(f2(x)− f1(x)) dx. (10.10)

It is easy to see, that if f(x) ≥ 0 for each x ∈ [a, b] then for each partition
P the lower sum L(P, f) ≥ 0, and so if the function f(x) is integrable, its
integral must be ≥ 0. So, if f1(x) ≤ f2(x) for each x ∈ [a, b], then the
quantity (10.10) is ≥ 0, and we obtain∫ b

a

f1(x) dx ≤
∫ b

a

f2(x) dx.

(iii) Let ϵ > 0, and let P be the partition of [a, b] such, that

U(P, f)− L(P, f) < ϵ (10.11)

Let us add the point c to the partition P , and call the refinement that we
obtain P ∗. Since P ∗ is a refinement of P , then (10.11) remains true for P ∗.
Let P1 and P2 be the parts of the partition P ∗ which fall into [a, c] and [c, b]
respectively. P1 and P2 are thus partitions of the intervals [a, c] and [c, b].
Observe that

L(P ∗, f) = L(P1, f) + L(P2, f), and U(P ∗, f) = U(P1, f) + U(P2, f).

Plugging this to (10.11) we obtain

(U(P1, f)− L(P1, f)) + (U(P2, f)− L(P2, f)) = U(P ∗, f)− L(P ∗, f) < ϵ.

Each of the quantities on the left hand side is nonnegative, so each separately
is less than ϵ. Since ϵ > 0 was arbitrary, then the function f(x) is integrable
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on both intervals [a, c] and [c, b]. Using the estimate in Corollary 10.3 we
also obtain ∫ b

a

f(x) dx < U(P ∗, f) = U(P1, f) + U(P2, f)

<

∫ c

a

f(x) dx+ ϵ+

∫ b

c

f(x) dx+ ϵ

=

∫ c

a

f(x) dx+

∫ b

c

f(x) dx+ 2ϵ.

The above holds for any ϵ > 0, so we must have∫ b

a

f(x) dx ≤
∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

The inequality in the other direction can be proved in the same way, using
the lower sums, and the estimate from Corollary 10.3. We must thus have
the equality of integrals.

(iv) Let c = ±1, depending on the sign of the integral. Then∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ = c

∫ b

a

f(x) dx =

∫ b

a

c f(x) dx ≤
∫ b

a

|f(x)| dx,

since c f(x) ≤ |c f(x)| = |f(x)|.

So far we have constructed the Riemann integral, but have no effective
way to compute these integrals. Moreover, so far we have not seen any rela-
tions between the definite and indefinite integrals, that are suggested by the
similarities in terminology and notation. The following two theorems address
both issues. They show the relation between integration and differentiation,
and provide way to effectively compute definite integrals.

Theorem 10.7. Let the function f(x) be integrable on the interval [a, b]. For
x ∈ [a, b] we let

F (x) =

∫ x

a

f(t) dt.

Then the function F (x) is continuous on [a, b] and differentiable at each point
x0 where the integrand f(x) is continuous. In every such point we have

F ′(x0) = f(x0).
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Proof. Since f(x) is integrable, then, in particular, it must be bounded
|f(x)| ≤M . Thus, for any x, y ∈ [a, b], x < y we must have the estimate

|F (y)− F (x)| =
∣∣∣∣∫ y

x

f(t) dt

∣∣∣∣ ≤ ∫ y

x

|f(t)| dt ≤M(y − x).

It follows, that F (x) is continuous, and even uniformly continuous on [a, b]
(δ = ϵ/M is always sufficient). Now, let x0 ∈ (a, b) be the point of continuity
of f(x). Suppose ϵ > 0 is arbitrary, and let δ > 0 be such, that for |t−x0| < δ
we have

|f(t)− f(x0)| < ϵ.

Observe, that since f(x0) is a constant, independent of t, we may write

f(x0) =
1

h

∫ x0+h

x0

f(x0) dt,

for any h > 0 such that [x0, x0 + h] ⊂ [a, b]. We have used the obvious
observation, that for a constant function the Riemann integral is easy to
compute from the definition:∫ x0+h

x0

f(x0) dt = f(x0)

∫ x0+h

x0

dt = f(x0) · h.

For 0 < h < δ we can then write∣∣∣∣F (x0 + h)− F (x0)
h

− f(x0)
∣∣∣∣ = ∣∣∣∣1h

∫ x0+h

x0

f(t) dt− f(x0)
∣∣∣∣

=

∣∣∣∣1h
∫ x0+h

x0

f(t) dt− 1

h

∫ x0+h

x0

f(x0) dt

∣∣∣∣
=

∣∣∣∣1h
∫ x0+h

x0

(
f(t)− f(x0)

)
dt

∣∣∣∣
≤ 1

h

∫ x0+h

x0

|f(t)− f(x0)| dt

≤ 1

h
· h · ϵ

= ϵ.

Similarly, for −δ < h < 0∣∣∣∣F (x0 + h)− F (x0)
h

− f(x0)
∣∣∣∣ = ∣∣∣∣−1h

∫ x0

x0+h

f(t) dt− f(x0)
∣∣∣∣
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=

∣∣∣∣−1h
∫ x0

x0+h

f(t) dt− −1
h

∫ x0

x0+h

f(x0) dt

∣∣∣∣
=

1

|h|

∣∣∣∣∫ x0

x0+h

(
f(t)− f(x0)

)
dt

∣∣∣∣
≤ ϵ.

We see, that the limit

lim
h→0

F (x0 + h)− F (x0)
h

exists, and is equal to f(x0).

From the above theorem we get the following corollary, for which we have
been waiting ever since we begun to talk about integrals:

Corollary 10.8. A function, continuous on an interval [a, b], has in this
interval an antiderivative (an indefinite integral).

The following theorem is the main tool to compute definite integrals. The
theorem itself is simple, and quite obvious, and is known as the “fundamental
theorem of calculus”.

Theorem 10.9 (Fundamental theorem of calculus). If a function f(x) is
integrable over an interval [a, b] (in the sense of Riemann), and if there exists
an antiderivative F (x) to f(x), that is

F ′(x) = f(x) x ∈ (a, b),

(which means that f(x) is integrable in the sense of Definition 9.2), then∫ b

a

f(x) dx = F (b)− F (a) = F (x)|ba .

Let us observe the symbol F (x)|ba, it denotes the increase of the function
F (x) between a and b, and we will use it in the future.

Proof. Let P = {a = x0 < x1 < · · · < xn = b} be an arbitrary partition of
the interval [a, b]. For each subinterval [xi, xi+1] of the partition we use the
mean value theorem, and so there exists ti ∈ (xi, xi+1) such that

f(ti) =
F (xi+1)− F (xi)

xi+1 − xi
, i = 0, . . . , n− 1.

Therefore

n−1∑
i=0

f(ti)(xi+1−xi) =
n−1∑
i=0

(
F (xi+1)−F (xi)

)
= F (xn)−F (x0) = F (b)−F (a).
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For each partition P we thus have the inequalities

L(P, f) ≤ F (b)− F (a) ≤ U(P, f).

F (b) − F (a) is thus a number between the lower and upper integrals of the
function f(x) on [a, b]. Since the function is integrable, then this number
must be equal to the integral.

Limits of integration

The definite integral has been defined for intervals [a, b], for a < b. The lower
limit of integration was smaller than the upper limit. We will need to extend
this definition. Let us introduce the following notation. If a < b then∫ a

b

f(x) dx = −
∫ b

a

f(x) dx,

and for any c ∫ c

c

f(x) dx = 0.

With this notation the formula (10.8) holds regardless of mutual relations
between the numbers a, b, c∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx. ∀ a, b, c,

Provided all of the integrals exist. The proof reduces to considering cases.

Integration by parts

Theorem 10.9 gives us the following formula for definite integrals. If F ′(x) =
f(x) and G′(x) = g(x) on an interval [a, b], then∫ b

a

f(x)G(x) dx = F (x)G(x)|ba −
∫ b

a

F (x)g(x) dx.

This formula holds whenever any of the two integrals exist, (both then exist).

Example:∫ e

1

log x dx =

∫ e

1

x′ log x dx = x log x|e1−
∫ e

1

x· 1
x
dx = e−x|e1 = e−e+1 = 1.
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Integration by substitution

If the function f(x) is differentiable on the interval [a, b], then∫ b

a

g(f(x)) f ′(x) dx =

∫ f(b)

f(a)

g(y) dy, (10.12)

and, as before, the formula holds if any of the two integrals exist, which
implies that both exist.

Example: In the following integral we will let g(x) = sin x f(x) = x2∫ π

0

x sinx2 dx =
1

2

∫ π

0

sin(x2) 2 · x dx =

=
1

2

∫ π2

02
sin y dy = − 1

2
cos y|π

2

0 =
1− cos(π2)

2
.

Often we use the above formula in the following way, using the formula
(10.12) “backwards”:∫ 9

4

√
x√

x− 1
dx =

{
x = (t+ 1)2 ⇒ dx = 2(t+ 1) dt

}
=

=

∫ √
9−1

√
4−1

t+ 1

t
· 2 · (t+ 1) dt = 2

∫ 2

1

t2 + 2t+ 1

t
dt.

The last integral can be easily computed, finding the antiderivative. The
notation dx = 2(t + 1) dt customarily stands for dx

dt
= 2(t + 1). Let us

observe, that the above calculation is justified, and follows from formula
(10.12). It is enough to observe, that the function x = (t + 1)2 is invertible
on the interval [1, 2], and the inverse is the function t =

√
x−1 on the interval

[4, 9]. Sometimes, applying the substitution in this way one falls into a trap.
For example∫ 2

−2

x2 dx =

{
x2 = t ⇒ 2x dx = dt

}
=

∫ 4

4

1

2

√
t dt = 0,

although we know that the integral on the left is equal to 16
3
> 0. In actual

problems the situation might not be as obvious, so it is always worthy to check
the computations carefully, especially in the situation, when the substituted
function is not invertible.
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Chapter 11

Applications of integrals

Many physical, “real life” intuitively obvious quantities can be described as
limits of sums. Such a limit can often be interpreted as a limit of Riemann
sums of some function. In such case a physical quantity can be interpreted
as a definite integral of some function. Such an integral can then be com-
puted using one of the known methods of integration. We will discuss some
examples.

Arclength

Let a function f(x), defined on the interval [a, b] be continuous, differentiable,
and let its derivative again be continuous on (a, b), with finite limits at the
endpoints a, b. We will compute the length of the arc which is the graph
of the function f(x), that is the length of the curve {(x, f(x)); x ∈ [a, b]}.
The length of the arc is defined as the limit of the lengths of the broken
lines, approximating appropriately the curve. In other words, we will choose
a number of points along our curve, and then connect the adjacent points
with a line segment. We obtain a broken line, whose length we compute.
Then we increase the number of points along the curve, and compute the
length again. We obtain a sequence of lengths, which should have a limit,
provided the knots of the consecutive broken lines get progressively closer.
Such a limit can obviously be interpreted as the length of the curve. Such
length might not exist. In the case we consider, that is the curve being the
graph of sufficiently regular function the length exists, and can be expressed
as an integral.

In our case any broken line with knots on the graph of f(x) over the
interval [a, b] determines a partition of the interval P = {a = x0 < x1 <
· · · < xn = b}. Points of the partition are the projections onto the axis OX
of the knots of the broken line. The length of such broken line, associated
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Figure 11.1: Approximating a curve with a broken line.

with the partition P is given by the formula

Ln =
n−1∑
i=0

√
(xi+1 − xi)2 + (f(xi+1 − f(xi))2 =

=
n−1∑
i=0

(xi+1 − xi)

√
1 +

(
f(xi+1)− f(xi)

xi+1 − xi

)2

.

The function f(x) is differentiable in each of the subintervals [xi, xi+1], and
so from the mean value theorem in each of these subintervals there is a point
ti such that

f(xi+1)− f(xi)
xi+1 − xi

= f ′(ti).

We thus have

Ln =
n−1∑
i=0

(xi+1 − xi)
√

1 + f ′(ti)2.

The length of the broken line is thus a Riemann sum of a continuous function√
1 + f ′(x)2. Increasing the number of knots of the broken line leads to the

refinement of the associated partition, and if the knot to knot distance tends
to zero, then also the diameter of the partitions tends to zero. Thus, using
Theorem 10.5 The Riemann sums converge to the integral

L =

∫ b

a

√
1 + f ′(x)2 dx. (11.1)

The integral L represents the length of the graph of f(x). As we have men-
tioned earlier, a curve might not have the length. As we have justified now,
a graph of a function which is differentiable, and has continuous derivative
does in fact have length, and this length is given by the integral (11.1).

142



Example: f(x) = cosh x = ex+e−x

2
, x ∈ [−1, 1]. The graph of f(x) is the

so-called catenary curve. A flexible non-expandable rope (a chain is a good
example) attached on its ends, and hanging freely will assume the shape of
the graph of cosh x, of course appropriately adjusted vertically and horizon-
tally. This shape is considered to be structurally strong. For example, the
famous “Gateway arch” in St. Louis on the banks of the Mississippi River
has the shape of the catenary curve (upside down).

1

Figure 11.2: The catenary curve and the arch in St. Louis.

For our function cosh x we have

f ′(x) =
ex − e−x

2
= sinh x.

We also know, and this is easy to verify, that sinh′ x = cosh x and that these
“hyperbolic” functions satisfy the “hyperbolic unity”

cosh2 x− sinh2 x = 1.

We can then compute the length of the graph

L =

∫ 1

−1

√
1 + f ′(x)2 dx =

∫ 1

−1

√
1 + sinh2 x dx =

∫ 1

−1

√
cosh2 x dx =

=

∫ 1

−1

coshx dx = sinhx|1−1 =
e1 − e−1

2
− e−1 − e1

2
= e− 1

e
.
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The volume of the solid of revolution around OX

Suppose we have a function f(x) on an interval [a, b], continuous and non-
negative. Let us revolve the region under the graph of f(x) around the OX
axis. What we obtain is the co-called solid of revolution

region under
the graph

Figure 11.3: The solid of revolution.

The volume of such solid can be approximated by the combined volume of
cylinders, obtained by the revolution around OX rectangles over subintervals
of [a, b].

Figure 11.4: Approximating a solid with cylinders.

Let us pick a partition P = {a = x0 < x1 < · · · < xn = b} of the interval
[a, b]. Let, for i = 0, . . . , n− 1

mi = inf{f(x); xi ≤ x ≤ xi+1}, Mi = sup{f(x); xi ≤ x ≤ xi+1}.

Let us consider the “slice” of the solid of revolution which is around the
subinterval [xi, xi+1]. The cylinder with radius mi is completely contained
in this slice, while the cylinder with radius Mi completely contains our slice.
It follows, that the volume of such slice (let us denote it by Vi) must be a
number between the volumes of these two cylinders, that is

(xi+1 − xi) πm2
i ≤ Vi ≤ (xi+1 − xi)πM2

i .
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The volume V of the entire solid of revolution, which is comprised of all the
“slices” thus satisfies

n−1∑
i=0

(xi+1 − xi)πm2
i ≤ V ≤

n−1∑
i=0

(xi+1 − xi) πM2
i . (11.2)

The sums on the left and right of the above double inequality are the lower
and upper sums of the function πf 2(x), for the partition P . Since the in-
equalities (11.2) hold for all partitions, and the function πf 2(x) is integrable
(since it is continuous), thus V must be equal to the integral

V = π

∫ b

a

f 2(x) dx.

R

r

Figure 11.5: A torus.

Example: Let us consider a torus with its major (larger) radius R and the
minor radius r (0 < r < R). A torus like that can be represented as a solid
of revolution of the circle

x2 + (y −R)2 ≤ r2 (11.3)

around the OX axis. The region (11.3) is not a region under the graph of
a non-negative function, but we can present it as a difference of two such
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regions, and thus present the torus as a difference of two solids of revolution,
whose volumes we know how to compute using the integrals. The larger
body is obtained by revolving the region bounded by the upper semicircle,
and the smaller solid is obtained by revolving the region bounded by the lower
semicircle. The upper and the lower semicircles are the graphs of functions

f1(x) = R +
√
r2 − x2, f2(x) = R−

√
r2 − x2, −r ≤ x ≤ r.

R+
√
r2 − x2 R−

√
r2 − x2

−r r

R

−r r

R

−r r

R

Figure 11.6: The region (11.3) as a difference of two regions.

We thus have the formula for the volume of the torus:

V = π

∫ r

−r

f 2
1 (x) dx− π

∫ r

−r

f 2
2 (x) dx

= π

∫ r

−r

(f 2
1 (x)− f 2

2 (x)) dx

= π

∫ r

−r

(f1(x)− f2(x))(f1(x) + f2(x)) dx

= π

∫ r

−r

2
√
r2 − x2 · 2 ·Rdx

= 4Rπ

∫ r

−r

√
r2 − x2 dx.

The last integral can be computed using the substitution x = sin t, but let
us quickly observe, that the graph of the integrand is the upper semicircle
with center at (0, 0) and with radius r. The integral, which is the area under
the graph, is thus half the surface area of a disc with radius r, which comes
down to πr2

2
. We have thus obtained the following formula for the volume of

a torus:
V = 2 π2Rr2.
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The surface area of the solid of revolution around OX

Let us now consider the surface area of the solid of revolution described in
the previous section. Let us assume in addition that the function f(x) is
differentiable, and its derivative is continuous on (a, b), and has finite one-
sided limits at the end-points a, b (to compute the volume it sufficed that
f(x) be continuous). Let us again consider the partition P = {a = x0 <
· · · < xn = b} of the interval [a, b], and a “slice” of the solid of revolution
around the subinterval [xi, xi+1]. The lateral surface of this slice can be
approximated by the lateral surface of a cone (not cylinder), obtained by
revolving the region under the secant to the graph around the OX axis.

xi xi+1 xi xi+1

Figure 11.7: A cone approximating the solid of revolution.

The cone we obtain has the radii of its bases equal to f(xi) and f(xi+1),
and it has the height xi+1 − xi. As we know from geometry the area of the
lateral surface of such cone is equal to the length of the cone’s “element”
multiplied by the mean of the circumferences of bases.

If one does not remember this formula, then it can be derived in the
following way. Let us slice the cone along its element, and let us flatten the
lateral surface. The area should be preserved. What we obtain is a sector of
the circle. We can deduce the appropriate formula analysing this sector. In
our case of the cone around the subinterval [xi, xi+1] the mean circumference,
that is the circumference in the middle of the height is equal to

2π
f(xi+1) + f(xi)

2
,

and the length of the “element” is equal to√
(xi+1 − xi)2 + (f(xi+1)− f(xi))2.

The combined lateral surface of all cones approximating our solid of revolu-
tion is therefore given by the formula
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mean circumference
element

Figure 11.8: The cone’s element and the mean circumference.

Sn =
n−1∑
i=0

2π

(
f(xi+1) + f(xi)

2

)
×

× (xi+1 − xi) ·

√
1 +

(
f(xi+1) + f(xi)

xi+1 − xi

)2

. (11.4)

Using the mean value theorem we can write this sum as

n−1∑
i=0

2π

(
f(xi+1) + f(xi)

2

)
· (xi+1 − xi) ·

√
1 + f ′(ti)2, (11.5)

for appropriately chosen points ti ∈ (xi, xi+1). This is not immediately a Rie-
mann sum for any function, so we have to resort to one more approximation.
Since f(x) is uniformly continuous (this was discussed at length in the proof
of Theorem 10.4) then for each ϵ > 0∣∣∣∣f(xi+1) + f(xi)

2
− f(ti)

∣∣∣∣ < ϵ

provided the diameter of the partition P is sufficiently small. From our
assumptions it also follows that f ′(x) is bounded, and so the sum (11.4),
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which is equal to (11.5) can be replaced by the sum

n−1∑
i=0

2π f(ti) · (xi+1 − xi) ·
√
1 + f ′(ti)2, (11.6)

with error converging to 0 as the diameter of the partition tends to 0. The
sum (11.6) is a Riemann sum of a continuous function 2πf(x)

√
1 + f ′(x)2,

and so as the diameters of the partition converge to zero, these converge to
the integral of this function. Thus the area S of the lateral surface of the
solid of revolution is given by

S = 2π

∫ b

a

f(x)
√
1 + f ′(x)2 dx.

Example: Let us compute the surface of the torus whose volume we have
computed in the previous section. We know, that the torus can be presented
as the solid obtained by the revolution of the disc

x2 + (y −R)2 ≤ r2

around the OX axis, and so its surface is the union of the lateral surfaces of
solids of revolution of two regions under the graphs of the upper and lower
semicircles:

S = 2π

∫ r

−r

f1(x)
√
1 + f ′

1(x)
2 dx+ 2π

∫ r

−r

f2(x)
√

1 + f ′
2(x)

2 dx,

where, as before

f1(x) = R +
√
r2 − x2, f2(x) = R−

√
r2 − x2.

We thus have

f ′
1(x) =

1

2

1√
r2 − x2

· (−2 x) = −x√
r2 − x2

,

and similarly

f ′
2(x) =

x√
r2 − x2

.

Both derivatives only differ by a sign, so we have√
1 + f ′

1(x)
2 =

√
1 + f ′

2(x)
2 =
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=

√
1 +

x2

r2 − x2
=

√
r2 − x2 + x2

r2 − x2
=

r√
r2 − x2

.

Finally, we obtain

S = 2 π

∫ r

−r

(
(R +

√
r2 − x2) r√

r2 − x2
+ (R−

√
r2 − x2) r√

r2 − x2

)
dx

= 4 π R r

∫ r

−r

dx√
r2 − x2

= 4 π R

∫ r

−r

dx√
1− (x

r
)2

= 4 π R r

∫ r

−r

1
r
dx√

1− (x
r
)2

y =
x

r

= 4 π R r

∫ 1

−1

dy√
1− y2

= 4 π R r arcsin y|1−1

= 4 π2Rr.

The surface area of the torus is the main circumference 2πR times the minor
circumference 2πr.
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Chapter 12

Improper integrals

The definite integral has been introduced for functions which are bounded,
and for finite intervals [a, b]. Now we extend this definition to functions
which are not necessarily bounded, and to infinite intervals. Such integrals
are called improper integrals. Let us first consider the case of a function
which is not bounded on the interval [a, b], but is bounded and integrable on
every subinterval [c, b], a < c < b. We can compute the integral over each of
these subintervals and ask, what happens with these integrals as c→ a+. If
the limit

g = lim
c→a+

∫ b

c

f(x) dx, (12.1)

exists we say that the function f(x) is integrable in the improper sense on
the interval [a, b], or that the improper integral of f(x) on [a, b] converges.
The limit g is, of course, denoted by∫ b

a

f(x) dx = g = lim
c→a+

∫ b

c

f(x) dx,

and is called the improper integral of f(x) on [a, b]. Similarly we can define
the improper integral when the function f(x) has “singularity” on the right
end of the interval of integration (that is is not bounded around this end-
point, and usually is not even defined there). The improper integral exists
(converges) if f(x) is integrable on each subinterval [a, c], where a < c < b,
and the limit exists

g = lim
c→b−

∫ c

a

f(x) dx. (12.2)

Remark: If the function f(x) is integrable on [a, b] to begin with, then the
limits (12.1) and (12.2) obviously exist, and are equal to the integral in the
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normal (proper) sense. The improper integral is therefore an extension of
the normal definition of the definite integral.

The improper integral can also be defined in situations where the function
f(x) has “singularities” on bot ends of the interval of integration [a, b], or
at one or few points inside the interval. To define such integral we first
split the integral [a, b] into subintervals so that the function f(x) has only
one “singularity”, and at only one end of the subinterval. Then the improper
integral is defined as a sum of improper integrals over each of the subintervals
of the partition, provided each of these improper integrals exists separately.
For example, if we want to check the existence of the improper integral of
the function f(x) = 1

x
on the interval [−1, 1], we consider the convergence of

two improper integrals ∫ 0

−1

dx

x
and

∫ 1

0

dx

x
, (12.3)

and if both of these integrals converges (both are improper) we say thet the
improper integral on the interval [−1, 1] exists. Let us observe, that in this
particular case neither of the above integrals converges (example (b).

Examples: (a) Let us consider f(x) = 1√
x
on the interval [0, 1]. The function

is continuous on (0, 1], but has singularity (sometimes we say it “explodes”)
at 0. We thus check∫ 1

ϵ

dx√
x
=

∫ 1

ϵ

x−
1
2 dx =

x
1
2

1
2

∣∣∣∣∣
1

ϵ

= 2 (1−
√
ϵ)

ϵ→0+−−−→ 2,

so the improper integral converges, and∫ 1

0

dx

x
= 2.

(b) Let us consider the function f(x) = 1
x
on the interval [−1, 1]. This

function has the sole singularity at 0, which is the interior point of the interval
of integration. We have to check the convergence of each of the improper
integrals (12.3) separately. First let us check the integral over [0, 1]∫ 1

ϵ

dx

x
= log x|1ϵ = 0− log ϵ = log

1

ϵ

ϵ→0+−−−→ ∞.

There is no need to check the other integral from (12.3) (which does not
converge either). Since one of the integrals does not converge (12.3) the
integral over the entire interval [−1, 1], by definition, fails to exist.
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The second type of improper integrals arises on infinite intervals. Suppose
the function f(x) is integrable on all intervals of the form [a,M ], for some a
and every M > a. If the limit

g = lim
M→∞

∫ M

a

f(x) dx,

exists, then we say that f(x) is integrable in the improper sense on [a,∞)
and we write ∫ ∞

a

f(x) dx = g = lim
M→∞

∫ M

a

f(x) dx.

Similarly we define the improper integral on the interval (−∞, b]:∫ b

−∞
f(x) dx = lim

M→−∞

∫ b

M

f(x) dx,

provided the integrals on the right hand side exist (in the proper sense),
and the limit exists. Finally the integral on the entire real axis (−∞,∞) is
defined as the sum∫ ∞

−∞
f(x) dx =

∫ b

−∞
f(x) dx+

∫ ∞

b

f(x) dx,

provided both integrals on the right exist independently. Let us observe, that
this definition does not depend on the point b, which is chosen to separate
the half-axes.

Finally, we can combine both types of improper integrals, and define an
integral on an infinite interval of a function that has singularities at a finite
number of points. To define such integral we proceed as follows. The interval
of integration is divided into subintervals so that the function in each of the
subintervals has only one singularity, only at one endpoint, and so that in
the eventual infinite subintervals the function has no singularities. Then
we check the convergence of the resulting improper integrals separately on
each of the subintervals. For example, let us consider the function f(x) =
1
x2 on the entire real axis (−∞,∞). To determine the existence of this
improper integral we have to independently check the convergence of each of
the following 4 improper integrals∫ −1

−∞

dx

x2
,

∫ 0

−1

dx

x2
,

∫ 1

0

dx

x2
,

∫ ∞

1

dx

x2
.

In this case the first and the last of the integrals converge, while the second
and third do not. Hence the improper integral∫ ∞

−∞

dx

x2
does not exist.
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Examples: (a) The functions sinx
x

and | sinx|
x

are continuous on [0,∞) (the
value at 0 is set at 1). The first is integrable in the improper sense, while
the second is not.

0
π 2π 3π 4π

0
π 2π 3π 4π

Figure 12.1: Functions sinx
x

and | sinx|
x

.

Let au pick arbitrary M > 0, and consider∫ 2πM

0

sin x

x
dx =

∫ 2π[M ]

0

sin x

x
dx+

∫ 2πM

2π[M ]

sin x

x
dx.

As M → ∞ the second integral on the right hand side has limit 0. This is
easy to observe, sine the length of the interval of integration does not exceed
2π, and the integrand is bounded in the absolute value by 1

2π[M ]
which tends

to 0 as M →∞. So, we have

lim
M→∞

∫ 2πM

0

sinx

x
dx = lim

M→∞

∫ 2π[M ]

0

sin x

x
dx, (12.4)

and the existence of one of these limits implies the existence of the other.
We now consider the limit on the right hand side, and we will show that it
exists. Let us decompose the integral:∫ 2π[M ]

0

sinx

x
dx =

[M ]−1∑
k=0

∫ 2π(k+1)

2πk

sinx

x
dx. (12.5)

Let us examine the terms of the sum:∫ 2π(k+1)

2πk

sinx

x
dx =

∫ 2πk+π

2πk

sin x

x
dx+

∫ 2π(k+1)

2πk+π

sin x

x
dx
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=

∫ π

0

sin x

x+ 2kπ
dx−

∫ π

0

sinx

x+ (2k + 1)π
dx,

where we have used the fact that sin(x+2kπ) = sin(x) and sin(x+(2k+1)π) =
− sin(x). Continuing, we obtain∫ 2π(k+1)

2πk

sin x

x
dx =

∫ π

0

sin x

(
1

x+ 2kπ
− 1

x+ (2k + 1)π

)
dx

Observe, that the integral is positive, since the integrand is positive within
the interval of integration. The sums (12.5) thus have positive terms, so they
converge as M →∞ when they are bounded. To show this boundedness, let
us examine the last integral. For k > 0 we have∫ π

0

sin x

(
1

x+ 2kπ
− 1

x+ (2k + 1)π

)
dx =

=

∫ π

0

sinx
π

(x+ 2kπ) · (x+ (2k + 1)π)
dx ≤

≤ π

4π2k2

∫ π

0

sinx dx =
1

2πk2
,

while for k = 0 we may estimate brutally∫ 2π

0

sinx

x
dx ≤

∫ 2π

0

∣∣∣∣sinxx
∣∣∣∣ dx ≤ 2π.

We thus arrive at ∫ 2π[M ]

0

sin x

x
dx ≤ 2π +

[M ]−1∑
k=1

1

2πk2

= 2π +
1

2π

[M ]−1∑
k=1

1

k2

< 2π +
1

2π

∞∑
k=1

1

k2
.

As we have already mentioned the left hand side in a non-decreasing function
of M , and is bounded, so it has a limit as M →∞. The limits in (12.4) thus
exist, and so the improper integral∫ ∞

0

sinx

x
dx
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converges. It can be proved (but this requires completely different tools)
that this integral is equal to

√
π
2
.This integral is important, and appears in

applications. Its existence relies on the fact that the “hills” of the sin function
appear alternately above and below the OX axis, and their areas cancel for
most part. The combined area of all these “hills” is infinite, which we will
now show. If we apply the absolute value to the integrand the improper
integral is no longer convergent. To see this, let us pick any M > 0, and let
us compute ∫ πM

0

| sin x|
x

dx ≥
∫ π[M ]

0

| sin x|
x

dx

=

[M ]−1∑
k=0

∫ (k+1)π

kπ

| sin x|
x

dx

=

[M ]−1∑
k=0

∫ π

0

sin x

x+ kπ
dx

>

[M ]−1∑
k=0

1

kπ + π

∫ π

0

sin x dx

=

[M ]∑
k=1

2

kπ
.

As M →∞ then [M ]→∞ and so∫ πM

0

| sinx|
x

dx→∞,

thus the improper integral indeed diverges.

(b) We will show that the improper integral of the function f(x) = e−x2
on the

entire real axis (−∞,∞) converges. We first show, that the improper integral
on the positive half-axis [0,∞) exists. Let M > 0. Since the integrand e−x2

is positive, the integral ∫ M

0

e−x2

dx (12.6)

increases with M , so the limit as M →∞ exists, if the above integrals have
a common bound from above, for all M .∫ M

0

e−x2

dx =

∫ 1

0

e−x2

dx+

∫ M

1

e−x2

dx
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≤
∫ 1

0

e−x2

dx+

∫ M

1

e−M dx

=

∫ 1

0

e−x2

dx− e−x
∣∣M
1

=

∫ 1

0

e−x2

dx+ e−1 − e−M

<

∫ 1

0

e−x2

dx+ e−1.

The integrals (12.6) form an increasing and bounded function of M , so they
have a limit as M → ∞. We now take up the other improper integral, on
the negative half-axis. We will simply use the parity of the integrand. Let
M > 0. ∫ 0

−M

e−x2

dx = −
∫ 0

M

e−x2

dx =

∫ M

0

e−x2

dx.

Thus, the improper integral on (−∞, 0] exists precisely when the improper
integral on [0,∞) exists, which we have already shown. Since both improper
integrals exist we conclude that the improper integral on the entire real axis
exists. It can be shown that ∫ ∞

−∞
e−x2

dx =
√
π,

but, again, this requires additional tools. The function e−x2
is the so-called

Gauss function, and is one of the most important functions in mathematics
and in applications.

(c) Let f(x) = 1
x
, x ≥ 1. If we revolve the graph of this function around

the OX axis we obtain an infinite “funnel”. We will compute the volume of
this infinite funnel and its surface area. The funnel is infinite, and thus fits
well into our study of integrals on infinite intervals. Both the volume of the
funnel and its surface area is clearly the limit of volumes and areas of funnels
with their “mouth” truncated further and further to the right. We thus see,
that these quantities are expressed by improper integrals.

V = π

∫ ∞

1

1

x2
dx, S = 2π

∫ ∞

1

1

x

√
1 +

(
1

x

′)2

dx.

Let us compute these integrals.

V = lim
M→∞

π

∫ M

1

1

x2
dx = π lim

M→∞
− 1

x

∣∣∣∣M
1

= π lim
M→∞

(
− 1

M
+ 1

)
= π.
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Figure 12.2: Infinite “funnel”.

We thus see, that the improper integral converges, and the volume of the
infinite funnel is finite, and equals to π. Let us now compute the lateral
surface area.

2π

∫ M

1

1

x

√
1 +

(
1

x

′)2

dx = 2π

∫ M

1

1

x

√
1 +

1

x4
dx ≥

≥ 2π

∫ M

1

1

x
dx = 2π log x|M1 = 2π logM

M→∞−−−−→ ∞.

We see, that this improper integral does not exist. So, the lateral surface
area of the funnel is infinite. Let us end with the following observation. The
funnel’s surface has infinite area, but can still be painted with finite amount
of paint. How to do this? You need π liters of paint, which you pour into
the funnel. The inside – of infinite area – will obviously all get painted.
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Chapter 13

Wallis’ and Stirling’s formulas

We will use this opportunity to prove the important Stirling’s formula. This
formula is used in applications, in statistics for example, to approximately
compute the factorial. The factorial only appears to be easy to compute. In
practice computing factorial from the definition is impossible, it involves too
many operations.

The Wallis’ formula

We first compute the following formula, which is known as the Wallis’ for-
mula:

π = lim
n→∞

1

n

(
2 · 4 · · · · · 2n

1 · 3 · · · · · (2n− 1)

)2

= lim
n→∞

1

n

(
(2n)!!

(2n− 1)!!

)2

.

The above Wallis’ formula will be used as a step in the proof of Stirling’s
formula. We have, for n ≥ 2∫ π

2

0

sinn x dx =

∫ π
2

0

sinx sinn−1 x dx

=

∫ π
2

0

(− cosx)′ sinn−1 x dx

= − cosx sinn−1 x
∣∣π2
0
+

∫ π
2

0

cos x (n− 1) sinn−2 x cos x dx

= (n− 1)

∫ π
2

0

cos2 x sinn−2 x dx

= (n− 1)

∫ π
2

0

(1− sin2 x) sinn−2 x dx
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= (n− 1)

∫ π
2

0

sinn−2 x dx− (n− 1)

∫ π
2

0

sinn x dx.

We deduce that ∫ π
2

0

sinn x dx =
n− 1

n

∫ π
2

0

sinn−2 x dx.

Iterating this we get∫ π
2

0

sin2k x dx =
1 · 3 · 5 · · · · · (2k − 1)

2 · 4 · 6 · · · · · (2k)

∫ π
2

0

dx =
(2k − 1)!!

(2k)!!
· π
2
,∫ π

2

0

sin2k+1 x dx =
2 · 4 · 6 · · · · · (2k)

3 · 5 · 7 · · · · · (2k + 1)

∫ π
2

0

sin x dx =
(2k)!!

(2k + 1)!!
,

that is

π

2
=

∫ π
2

0
sin2k x dx
(2k−1)!!
(2k)!!

=
(2k)!!

(2k − 1)!!

∫ π
2

0
sin2k x dx

(2k+1)!!
(2k)!!

∫ π
2

0
sin2k+1 x dx

=

=

(
(2k)!!

(2k − 1)!!

)2
1

(2k + 1)

∫ π
2

0
sin2k x dx∫ π

2

0
sin2k+1 x dx

. (13.1)

Let us observe, that we have

0 <

∫ π
2

0

sin2k+1 x dx ≤
∫ π

2

0

sin2k x dx ≤
∫ π

2

0

sin2k−1 x dx,

so

1 ≤
∫ π

2

0
sin2k x dx∫ π

2

0
sin2k+1 x dx

≤
∫ π

2

0
sin2k−1 x dx∫ π

2

0
sin2k+1 x dx

=

=
(2(k − 1))!!

(2k − 1)!!
· (2k + 1)!!

(2k)!!
=

2k + 1

2k
.

The expressions on the beginning and on the end of these inequalities both
tend to 1, so from the 3 sequence theorem we see, that the fraction of integrals
in (13.1) also tends to 1, and thus

π

2
= lim

k→∞

1

(2k + 1)

(
(2k)!!

(2k − 1)!!

)2

=
1

2
lim
k→∞

1

k

(
(2k)!!

(2k − 1)!!

)2

.

We have thus obtained the announced Wallis’ formula. Now we will use it in
the proof of the Stirling’s formula.
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The Stirling’s formula

The Stirling’s formula is the following:

lim
n→∞

n! en√
2π nnn

= 1.

Let

an =
n! en√
nnn

.

Obviously, an > 0, and we will also show, that the sequence {an} is decreas-
ing. First let us observe, that

an
an+1

=
n! en√
nnn

·
√
n+ 1 (n+ 1)n+1

(n+ 1)! en+1
=

1

e

(
n+ 1

n

)n+ 1
2

(13.2)

We want to show, that the above quantity is greater than 1. Introduce 1
x

for n, and consider the function being the logarithm of the expression (13.2),
multiplied by e.

f(x) =

(
1

x
+

1

2

)
log(1 + x), x > 0. (13.3)

We will show, that the function f(x) is always greater than 1, so the function
ef(x) is always greater than e, and in particular is greater than e at points of
the form x = 1

n
. This obviously implies that the expression (13.2) is greater

than 1 for every n = 1, 2, 3, . . . , that is the sequence {an} is decreasing. Let
us thus return to the function (13.3), and let us show that f(x) > 1 for x > 0.
This is a typical exercise involving analysing the function. Firstly we have

lim
x→0+

f(x) = lim
x→0+

1

x
log(1 + x) +

1

2
lim
x→0+

log(1 + x) = 1

(the first limit we computed in the past, we use the de l’Hôspital’s rule to
show that it is equal to 1, while the second limit is simply the continuity of the
logarithm). We now compute the derivative, and show that f(x) increases
on x > 0.

f ′(x) = − 1

x2
log(1 + x) +

(
1

x
+

1

2

)
1

1 + x
.

We want to show, that for x > 0 the above is positive, that is

− 1

x2
log(1 + x) +

(
1

x
+

1

2

)
1

1 + x
> 0,
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−(1 + x) log(1 + x) + x+
x2

2
> 0.

Consider the auxiliary function

g(x) = −(1 + x) log(1 + x) + x+
x2

2
.

We have g(0) = 0, and g′(x) = − log(1+ x)− 1+ 1+ x = x− log(1+ x) > 0,
(the last inequality is simply ex > 1 + x for x > 0). Function g(x) is thus
increasing, and since it “takes off” form 0, it must be greater than 0 for
x > 0. We thus have f ′(x) > 0 so indeed f(x) is increasing, and so

f(x) > lim
t→0+

f(t) = 1.

We have thus shown that f(x) is greater than 1, and so, as was announced
earlier, the expression (13.2) is greater than 1 for all n ∈ N, and so the
sequence {an} is decreasing. A sequence that is decreasing, with positive
terms must be convergent. Let us denote its limit by g.

g = lim
n→∞

an.

Clearly, since the terms of the sequence are positive, we must have g ≥ 0.
We will show, that this inequality is actually sharp: g > 0. We will do this
by showing that the terms of the sequence are not only positive, but are all
greater than some strictly positive number. We have

log
an
an+1

=
(
n+

1

2

)
log
(
1 +

1

n

)
− 1. (13.4)

We will need the following inequality:

log

(
1 +

1

n

)
≤ 1

2

(
1

n
+

1

n+ 1

)
. (13.5)

In Fig. 13.1 the area of the region under the graph, from n to n+1 is the
integral of the function 1

x
, on the interval [n, n+1], that is log(n+1)−log n =

log(1+ 1
n
). On the other hand, the area of the trapezium is equal to 1

2
( 1
n
+ 1

n+1
).

The function 1
x
is convex: ( 1

x
)′′ = 2

x3 > 0. The graph thus lies under any
secant between the section points, and therefore the region under the graph is
contained within the trapezium. So, the area under the graph is no larger that
the area of the trapezium, and this is exactly the estimate (13.5). Plugging
(13.5) to (13.4) we get

log
an
an+1

≤ 1

2

(
n+

1

2

)(
1

n
+

1

n+ 1

)
− 1
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the secant

the graph of f(x) = 1x

n n+ 1

Figure 13.1: The estimate (13.5).

=
1

2

(
1 +

n

n+ 1
+

1

2n
+

1

2n+ 2

)
− 1

=
1

4n
− 1

4n+ 4
.

Adding the above estimates together for n = 1, . . . , k − 1 we get

log
a1
ak

= log
a1
a2

+ log
a2
a3

+ · · ·+ log
ak−1

ak

≤
k−1∑
i=1

1

4

(
1

i
− 1

i+ 1

)
=

1

4

(
1− 1

k

)
<

1

4
.

So, we have obtained

a1
ak

< e
1
4 ⇒ ak > a1 e

− 1
4 = e

3
4 ,

because a1 = e. All terms of the sequence are thus greater than e
3
4 , and so

also g ≥ e
3
4 > 0. Now we only need some more manipulations.

a2n =
(n!)2 e2n

nn2n
, a2n =

(2n)! e2n√
2n (2n)2n

,

so
a2n

a2n
√
2
=

(n!)2

nn2n
√
2
·
√
2n (2n)2n

(2n)!
=

(n!)2 22n

(2n)!
√
n
.
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Notice the relation with the Wallis’ formula, which can be written as

1√
n

(2n)!!

(2n− 1)!!
→
√
π.

Also observe the following

(2n)!! = 2 · 4 · · · · · 2n = 2n n!,

(2n− 1)!! = 1 · 3 · · · · · (2n− 1) =
(2n)!

(2n)!!
=

(2n)!

2n n!
.

Putting these together

1√
n

(2n)!!

(2n− 1)!!
=

1√
n

2n n! 2n n!

(2n)!
=

(n!)2 22n

(2n)!
√
n
=

a2n
a2n
√
2
.

Finally,

√
π = lim

n→∞

a2n
a2n
√
2
=

g2

g
√
2
⇒ g2 −

√
2π g = 0 ⇒ g =

√
2 π,

since g > 0. Let us observe, that we have this way proved the Stirling’s
formula.
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Chapter 14

Numerical integration

There are a few typical algorithms for numerical integration. We will now
describe the method of trapezia, the Simpson’s method, and, as a curiosity
the Monte Carlo method. In each case we approximate the area of the region
under the graph.

The method of trapezia

We want to compute the integral of a function f(x) on an interval [a, b].
Function f(x) is approximated by a linear function, which agrees with f(x)
on endpoints, and the the integral of f(x) is approximated by the integral
of this linear function. Let y0 = f(a) and y1 = f(b). The linear function
which at points a and b assumes values y0 and y1 respectively is given by the
formula

w(x) = y0 +
y1 − y0
x1 − x0

(x− x0),

and its integral on [a, b] is given by∫ b

a

w(x) dx = (b− a) y0 + y1
2

.

On Fig. 14.1 we see why this method is called the method of trapezia. If
the function f(x) has bounded second derivative on [a, b], |f ′′(x)| ≤ M for
x ∈ (a, b), then the error in the method of trapezia is no greater than

R ≤ M(b− a)3

12
.

To increase the accuracy of the approximation of the interval we divide the
interval into n subintervals a = x0 < x1 < · · · < xn = b, we let yi = f(xi)
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a = x0 x1 b = x2

Figure 14.1: The method of trapezia, n = 2.

and we write

S =
b− a
2n

n−1∑
i=0

(yi + yi+1) =
b− a
2n

(y0 + 2 y1 + 2 y2 + · · ·+ 2 yn−1 + yn).

The Simpson’s method

This method is similar the the method of trapezia. The integrand f(x) is
approximated by a quadratic function, which agrees with f(x) on the end-
points, and in the mid-point of the interval of integration [a, b]. Let x0 = a,
x1 = a+b

2
, x2 = b, and let yi = f(xi) for i = 0, 1, 2. The quadratic function

we are talking about has the form

w(x) = αx2 + β x+ γ,

and satisfies w(xi) = yi, i = 0, 1, 2, that is satisfies the following 3 conditions

α a2 + β a+ γ = y0,

α

(
a+ b

2

)2

+ β
a+ b

2
+ γ = y1,

α b2 + β b+ γ = y2.

We do not have to compute α, β nor γ we are going to express the integral
of w(x) in terms of y0, y1 and y2.∫ b

a

w(x) dx =

∫ b

a

(αx2 + β x+ γ) dx

=

(
α
x3

3
+ β

x2

2
+ γ x

)∣∣∣∣b
a
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= α
b3

3
+ β

b2

2
+ γ b− α a

3

3
− β a

2

2
− γ a

=
α

3
(b3 − a3) + β

2
(b2 − a2) + γ (b− a)

=
b− a
6

(2αb2 + 2αab+ 2αa2 + 3βb+ 3βa+ 6γ)

=
b− a
6

(αa2 + βa+ γ + αb2 + βb+ γ + α(b2 + 2ab+ a2) + 2β(b+ a) + 4γ)

=
b− a
6

(
y0 + y2 + 4α

(
b+ a

2

)2

+ 4 β
b+ a

2
+ 4 γ

)
=
b− a
6

(y0 + 4 y1 + y2).

a = x0 x1 b = x2

Figure 14.2: The Simpson’s method, n = 2.

If the function f(x) that we integrate has bounded derivative of order 4,
|f (4)(x)| ≤ M for x ∈ (a, b), then the error of the Simpson’s method is no
greater than

R ≤ M(b− a)5

180
.

Again, in applications we subdivide the interval [a, b] into subintervals of
equal length to increase accuracy. Suppose we have n such subintervals, and
let a = x0 < x1 < · · · < x2n = b be the partition points, and also the
midpoints of subintervals. Let yi = f(xi) and write

S =
b− a
6n

n−1∑
i=0

(y2i + 4 y2i+1 + y2i+2)

=
b− a
6n

(y0 + y2n + 2 (y2 + y4 + · · ·+ y2n−2) + 4 (y1 + y3 + · · ·+ y2n−1)).
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The method of trapezia and the Simpson’s method are the generic methods
of choice in computing integrals numerically. We also sketch a completely
different approach, known as the Monte Carlo method.

Monte Carlo

Suppose we have a non-negative, bounded function f(x) on [a, b]. We es-
tablish the upper bound, say f(x) ≤ M . We then generate in random n
points (xi, yi) in the rectangle [a, b]× [0,M ] (we say that we randomly “toss”
n points into the rectangle). The probability distribution should be uniform
(that is the probability that a point falls into any given region should be pro-
portional to its area), and all the random numbers xi, yi, i = 1, . . . , n should
be generated independently (they should be independent random variables).
Then we count all the instances in which yi < f(xi). These are the points
“tossed”, which happened to fall into the region under the graph of f(x).
Suppose we have counted m of them. Then the proportion m

n
should be the

same as the proportion of the area under the graph to the entire area of the
target recatngle

m

n
≃
∫ b

a
f(x) dx

(b− a) ·M
.

This is the Monte Carlo method for computing the integral.
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Chapter 15

Function sequences and series

Let fn(x), n = 1, 2, . . . be functions defined on some set E. We say that they
for a function sequence on E. Let us observe, that for each fixed point x ∈ E
we have a usual, numerical sequence {fn(x)}. Such sequence may converge,
or it might not. If for each x ∈ E there exists a limit limn→∞ fn(x), we say
that the function sequence {fn(x)} is pointwise convergent on E. Similarly,
if for each x ∈ E the ordinary series

∑∞
n=1 fn(x) converges, we say that the

function series
∑∞

n=1 fn(x) converges pointwise on E.
Our goal is to investigate the possibility of interchanging the order of

analytic operations on function sequences and series. For example, whether
a function series can be differentiated term by term. In other words, whether
we can “enter” with the derivative “under” the summation sign. For finite
sums we can, but how about series?

Examples: (a) Consider the series

∞∑
n=1

n qn.

This series converges for |q| < 1 (we may check with d’Alembert’s criterion)),
but can we compute its sum? Let us write

f(x) =
∞∑
n=0

xn =
1

1− x
, for x ∈ (−1, 1).

The derivative of the function f(x) is easy to compute: f ′(x) = 1
(1−x)2

. If we

could differentiate the series
∑∞

n=0 x
n term by term, we would obtain

1

(1− x)2
= f ′(x) =

∞∑
n=0

(xn)′ =
∞∑
n=1

nxn−1 =
1

x

∞∑
n=1

nxn.
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Thus we would have

∞∑
n=1

n qn =
q

(1− q)2
, for |q| < 1.

(b) Suppose we are looking for a function f(x) for which

f ′(x) = α f(x). (15.1)

Let us try to find a function f(x) like this in the form of a power series
f(x) =

∑∞
n=0 anx

n. If we could differentiate a series like this term by term,
we would have, plugging this into the equation (15.1)

f ′(x) =
( ∞∑

n=0

anx
n
)′
=

∞∑
n=1

n an x
n−1 =

∞∑
n=0

(n+ 1) an+1 x
n =

∞∑
n=0

α an x
n.

We see, that it is enough to find coefficients an, which satisfy the recurrence
relation

(n+ 1) an+1 = α an, for n = 0, 1, . . . .

This recurrence relation can be solved easily:

an+1 = α
an

n+ 1
⇒ an = αn a0

n!
.

We would then have a solution

f(x) =
∞∑
n=0

a0
αn

n!
xn = a0 e

αx. (15.2)

Let us observe, that even though we do not know for a while whether the
above reasoning is correct that is whether in the above situation we may
indeed differentiate a power series term by term, nevertheless the function
given by (15.2) indeed satisfies the equation (15.1)

(c) Let the function series be given by

fn(x) =
sinnx√

n
.

Observe, that for each fixed x ∈ R the sequence converges to zero: fn(x)→ 0,
as n → ∞. The terms of the sequence are differentiable functions, and
f ′
n(x) =

√
n cosnx. The sequence of derivatives does not converge to the

zero function. For example, f ′
n(0) =

√
n 9 0. We see, that in this case the

limit of derivatives is not the derivative of the limit.
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(d) Let us consider the function sequence

fn(x) = nx (1− x2)n, for 0 ≤ x ≤ 1.

This sequence has a limit at each point, and this limit is the zero function
f(x) ≡ 0:

fn(0) = 0, lim
n→∞

fn(x) = 0 for x ∈ (0, 1].

On the other hand ∫ 1

0

fn(x) dx = n

∫ 1

0

x (1− x2)n dx

= − n
2

∫ 0

1

tn dt

=
n

2

∫ 1

0

tn dt

=
n

2

tn+1

n+ 1

∣∣∣∣1
0

=
n

2n+ 2
→ 1

2
,

even though
∫ 1

0
0 dx = 0. In this case the integral of the limit is not equal to

limit of integrals.
Examples (a) and (b) show that the interchange of the order of analytic

operations like integrating a function series term by term can be useful,
while examples (c) and (d) show that the issue is delicate, and sometimes
such interchange is not possible. We will now investigate the issue in detail
and, for example will show that the power series can indeed be differentiated
term by term.

Definition 15.1. A function sequence {fn(x)} converges uniformly to a
function f(x) on the set E, if

∀ ϵ > o ∃ n0 ∈ N ∀ n ≥ n0 ∀ x ∈ E |fn(x)− f(x)| < ϵ,

In other words, not only the sequence is convergent at every point, that is
pointwise, but n0 can be chosen independently of x ∈ E. Similarly, the series∑∞

n=1 fn(x) converges uniformly on E, if the sequence of partial sums

sn(x) =
n∑

i=1

fi(x)

converges uniformly.
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It is worthwhile to think a little about this definition. Uniform conver-
gence on a set E means that the sequence converges at each point, and,
additionally the rate of convergence is uniform at all points. Having a given
ϵ > 0 we can choose n0 ∈ N, which will be sufficient at all points x ∈ E.

Theorem 15.2. A function sequence {fn(x)} is uniformly convergent on set
E if and only if it uniformly satisfies the Cauchy’s condition, that is when

∀ ϵ > 0 ∃ n0 ∈ N ∀ m,n ≥ n0 ∀x ∈ E |fn(x)− fm(x)| < ϵ.

Proof. If fn(x) converges uniformly to f(x), then for ϵ > 0 we can find
n0 ∈ N such, that ∀ m,n ≥ n0 ∀ x ∈ E

|fn(x)− f(x)| <
ϵ

2
, |fm(x)− f(x)| <

ϵ

2
.

Then

|fn(x)− fm(x)| ≤ |fn(x)− f(x)|+ |fm(x)− f(x)| <
ϵ

2
+
ϵ

2
= ϵ,

so we see, that the uniform convergence indeed implies the uniform Cauchy’s
condition. Now the other way. If the uniform Cauchy’s condition is satisfied,
then in particular we have a Cauchy’s condition at each point x ∈ E. In that
case at each point there exists a limit f(x):

f(x) = lim
n→∞

fn(x), ∀ x ∈ E.

We have to show that the function sequence converges to f(x) not only
pointwise, but uniformly. Let ϵ > 0 be arbitrary, and n0 ∈ N be such, that
for m,n ≥ n0 and x ∈ E

|fn(x)− fm(x)| < ϵ.

Asm→∞ the the numerical sequence on the left converges to |fn(x)−f(x)|,
an so also

|fn(x)− f(x)| < ϵ.

Since the above holds for all n ≥ n0 and x ∈ E, while ϵ > 0 was arbitrary,
thus fn(x)→ f(x) uniformly.

Theorem 15.3. A limit of a uniformly convergent sequence of continuous
functions is also a continuous function.
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Proof. Let fn(x) → f(x) uniformly on the set E, and suppose all functions
fn(x) are continuous on E. Let x0 ∈ E, and let an arbitrary ϵ > 0 be given.
Then using the uniform convergence fn(x)→ f(x) there exists n0 ∈ N such
that

∀ n ≥ n0 ∀ x ∈ E |fn(x)− f(x)| <
ϵ

3
.

Then, since the function fn0(x) is continuous, there exists δ > 0 such, that

∀ x ∈ E |x− x0| < δ ⇒ |fn0(x)− fn0(x0)| <
ϵ

3
.

Then, if |x− x0| < δ we have

|f(x)− f(x0)| ≤ |f(x)− fn0(x)|+

+ |fn0(x)− fn0(x0)|+ |fn0(x0)− f(x0)| <
ϵ

3
+
ϵ

3
+
ϵ

3
= ϵ.

We have found the required δ > 0, so the limit function f(x) is continuous
at x0.

Example: Let fn(x) = xn on [0, 1]. Each of the functions fn(x) is continuous
on the interval [0, 1]. It is easy to see, that

lim
n→∞

fn(x) =

{
1 : x = 1

0 : x < 1.

The limit of the given function sequence is not continuous (at the point 1),
and so fn(x) cannot converge to f(x) uniformly. This function sequence pro-
vides thus an example of a sequence converging pointwise, but not uniformly.

Theorem 15.4. Let {fn(x)} be a sequence of functions which are integrable
on [a, b] in the sense of Riemann, and suppose fn(x) → f(x) uniformly on
[a, b]. Then f(x) is also integrable on [a, b] in the sense of Riemann, and∫ b

a

f(x) dx = lim
n→∞

∫ b

a

fn(x) dx. (15.3)

Proof. Let ϵ > 0 be given. From the uniform convergence of the sequence
{fn(x)} it follows, that there exists an n0 ∈ N such, that

∀ n ≥ n0 ∀ x ∈ [a, b] |fn(x)− f(x)| < ϵ′ =
ϵ

2 (b− a)
.

It follows that

∀ n ≥ n0 ∀ x ∈ [a, b] fn(x)−
ϵ

2 (b− a)
< f(x) < fn(x) +

ϵ

2 (b− a)
,
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and so, in particular the limit function f(x) is bounded. Let us pick a
partition P of the interval [a, b], and then

U(P, f) ≤ U

(
P, fn +

ϵ

2 (b− a)

)
,

and so ∫ b

a

f(x) dx ≤
∫ b

a

(
fn(x) +

ϵ

2 (b− a)

)
dx =

∫ b

a

fn(x) dx+
ϵ

2
.

Similarly,

L(P, f) ≥ L

(
P, fn −

ϵ

2 (b− a)

)
⇒

∫ b

a

fn(x) dx ≥
∫ b

a

fn(x) dx−
ϵ

2
.

We thus have

0 ≤
∫ b

a

f(x) dx−
∫ b

a

fn(x) dx ≤
ϵ

2
+
ϵ

2
= ϵ.

Since ϵ was arbitrary, then the upper and lower integrals coincide, and thus
the function f(x) is integrable in the sense of Riemann. Let us prove now
the equality (15.3). Let, again, ϵ > 0 be arbitrary, and let n0 ∈ N be such,
that

∀ n ≥ n0 ∀ x ∈ [a, b] |fn(x)− f(x)| <
ϵ

(b− a)
.

Then∣∣∣∣∫ b

a

f(x) dx−
∫ b

a

fn(x) dx

∣∣∣∣ =
=

∣∣∣∣∫ b

a

(
f(x)− fn(x)

)
dx

∣∣∣∣ ≤ ∫ b

a

|f(x)− fn(x)| dx ≤ ϵ.

Since the above estimate holds for every n ≥ n0 we obtain (15.3).

Remark: The above theorem was proved for proper integrals. It is not
necessarily true for improper integrals. For example, let

fn(x) =

{
1
n
cos
(
x
n

)
: |x| ≤ nπ

2

0 : |x| > nπ
2
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Clearly, fn(x)→ 0 uniformly on the entire real axis(−∞,∞), but∫ ∞

−∞
fn(x) dx =

∫ nπ
2

−nπ
2

1

n
cos

(
x

n

)
dx =

{x
n
= t
}
=

∫ π
2

−π
2

cos t dt = sin t|
π
2

−π
2
= 2.

Therefore we see, that∫ ∞

−∞
fn(x) dx9

∫ ∞

−∞
0 · dx = 0.

In the case of improper integrals, to pass to the limit under the integral sign
we have to assume something extra than just the uniform convergence.

Corollary 15.5. If the functions fn(x) are integrable in the sense of Rie-
mann on the interval [a, b], and

f(x) =
∞∑
n=1

fn(x) uniformly on [a, b],

then ∫ b

a

f(x) dx =

∫ b

a

∞∑
n=1

fn(x) dx =
∞∑
n=1

∫ b

a

fn(x) dx.

The next theorem theorem provides conditions under which one can “en-
ter” with differentiation “under” a limit.

Theorem 15.6. Let {fn(x)} be a sequence of differentiable functions on an
interval (a, b), such that the sequence of derivatives {f ′

n(x)} converges uni-
formly on (a, b). If the sequence {fn(x)} itself converges in at least one point
x0 ∈ (a, b), then it converges uniformly to some function f(x), differentiable
on (a, b), and we have

f ′(x) = lim
n→∞

f ′
n(x).

Proof. By assumption the sequence {fn(x)} converges at a point x0 ∈ (a, b).
Let ϵ > 0 and let n0 ∈ N be such, that for all m,n ≥ n0 we have

|fn(x0)− fm(x0)| <
ϵ

2
,

(this is the Cauchy’s condition for the sequence {fn(x0)}) and

|f ′
n(x)− f ′

m(x)| <
ϵ

2 (b− a)
, x ∈ (a, b),
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(this is the uniform Cauchy’s condition for {f ′
n(x)}). Next we fix somem,n ≥

n0, and introduce an auxiliary function

Φ(x) = fn(x)− fm(x).

The function Φ(x) is clearly differentiable, and we apply to it the mean value
theorem.

|Φ(x)| = |Φ(x)− Φ(x0) + Φ(x0)|
≤ |Φ(x)− Φ(x0)|+ |Φ(x0)|
< |Φ′(θ)| · |x− x0|+ |Φ(x0)| (for some θ between x and x0)

<
ϵ

2 (b− a)
|x− x0|+

ϵ

2
(15.4)

≤ ϵ

2
+
ϵ

2
= ϵ.

The above estimate holds for all m,n ≥ n0 and for all x ∈ (a, b). ϵ was
arbitrary, so the function sequence {fn(x)} satisfies the uniform Cauchy’s
condition, so by Theorem 15.2 is uniformly convergent to some function f(x).
The limit function f(x) as the uniform limit of a sequence of continuous
functions is itself continuous. We will now show that it is also differentiable,
and that its derivative is actually the limit of the sequence of derivatives
{f ′

n(x)}. Let us fix a point x1 ∈ (a, b) and consider two auxiliary functions

φ(x) =

{
f(x)−f(x1)

x−x1
: x ̸= x1,

A = limn→∞ f ′
n(x1) : x = x1,

φn(x) =

{
fn(x)−fn(x1)

x−x1
: x ̸= x1,

f ′
n(x1) : x = x1.

Let us observe, that at each point x ∈ (a, b) we have φn(x)→ φ(x). Also, it
follows immediately from the definition that functions φn(x) are continuous
everywhere, and the function φ(x) is continuous at every point other than
x1. We now want to prove the continuity of φ(x) at this one remaining point
x1. The continuity at x1 would mean precisely that f(x) is differentiable at
x1, and its derivative at that point is the limit of the derivatives of functions
fn(x). Our goal now is to prove, that the convergence φn(x) → φ(x) is
uniform on (a, b), and as a consequence the function φ(x) must be continuous
(as a uniform limit of continuous functions). Let m,n ∈ N be arbitrary,
x ̸= x1 and let us compute

φn(x)− φm(x) =

(
fn(x)− fm(x)

)
−
(
fn(x1)− fm(x1)

)
(x− x1)
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=

(
f ′
n(θ)− f ′

m(θ)
)
(x− x1)

(x− x1)
,

where in the numerator we used the mean value theorem for the function
Φ(x) = fn(x) − fm(x), and θ is an intermediate point between x and x1.
According to (15.4) we thus have

|φn(x)− φm(x)| = |f ′
n(θ)− f ′

m(θ)| < ϵ,

provided n0 ∈ N is sufficiently large, m,n ≥ n0, and x ̸= x1. Therefore we
see, that the sequence {φn(x)} satisfies the uniform Cauchy’s condition on
the set E = (a, b) \ {x1}, and is thus uniformly convergent on this set. The
sequence is also convergent at the point x1:

φn(x1) = f ′
n(x1)→ A = φ(x1). (15.5)

Of course, since the sequence {φn(x)} converges uniformly on (a, b) \ {x1}
and additionally converges at the point x1, then it is uniformly convergent on
the entire interval (a, b). It follows immediately from the simple observation,
that if a function sequence converges uniformly on set E1 and also converges
uniformly on the set E2, then it also converges uniformly on the union E1∪E2.
The interval (a, b) is a union of two sets (a, b) \ {x1} and an one-element
set {x1}. The uniform convergence on the first component has just been
proved, and on an one-element set the pointwise convergence and the uniform
convergence mean the same thing, that is (15.6).

As we have mentioned before, the uniform limit {φ(x)}, must be contin-
uous, and in particular continuous at x1. This means, that

lim
n→∞

f ′
n(x1) = A = φ(x1) = lim

x→x1

φ(x) = lim
x→x1

f(x)− f(x1)
x− x1

= f ′(x1).

The point x1 ∈ (a, b) was arbitrary, so we have shown that at each point
x ∈ (a, b) we have

f ′(x) = lim
n→∞

f ′
n(x).

This finishes the proof.

We have the following immediate corollary.

Corollary 15.7. Let the sequence {fn(x)} converge to f(x) uniformly on the
interval (a, b), and let F ′

n(x) = fn(x), that is let Fn(x) be the antiderivatives
of functions fn(x). Let us assume additionally that for some x0 ∈ (a, b)
the sequence Fn(x0) converges. Then the sequence of antiderivatives {Fn(x)}
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converges uniformly to some function F (x), and the function F (x) is the
antiderivative of the function f(x):

F ′(x) = f(x)

We can formulate this in the notation of indefinite integrals. Let fn(x) →
f(x) uniformly on (a, b), and let the sequence∫

fn(x) dx (15.6)

converge at some point of the interval (a, b). Then the sequence (15.6) con-
verges at every point of the interval (a, b) (even uniformly on (a, b)), and

lim
n→∞

∫
fn(x) dx =

∫
lim
n→∞

f(x) dx.

Let us stress, that the assumption that the sequence (15.6) converges in at
least one point of the interval (a, b) is important, and in fact comes down to
the choice of constants of integration for the sequence of indefinite integrals.

The following theorem is a very useful in practice criterion for uniform
convergence.

Theorem 15.8 (The Weierstrass’ criterion). If |fn(x)| ≤ an for n = 1, 2, . . .
and x ∈ E, and if the series

∑∞
n=1 an converges, then the function series

∞∑
n=1

fn(x)

converges uniformly on the set E.

Proof. The sequence of partial sums sn =
∑n

k=1 ak converges, and therefore
satisfies the Cauchy’s condition:

∀ ϵ > 0 ∃ n0 ∈ N ∀ m > n ≥ n0 |sm − sn| =
m∑

k=n+1

ak < ϵ.

We have, for every x ∈ E∣∣∣∣∣
n∑

k=1

fk(x)−
m∑
k=1

fk(x)

∣∣∣∣∣ =
∣∣∣∣∣

m∑
k=n+1

fk(x)

∣∣∣∣∣ ≤
m∑

k=n+1

|fk(x)| ≤
m∑

k=n+1

ak < ϵ.

The sequence of partial sums of the function series
∑∞

k=1 fk(x) satisfies thus
the uniform Cauchy’s condition, and therefore the series converges uniformly.
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Power series

We will now apply the theorems that we proved above to he power series,
which are a typical example of function series. We know, that a series of the
form

∞∑
n=0

an(x− x0)n (15.7)

converges on the interval (x0−R, x0 +R) (convergence is not guaranteed on
the end-points x0 ± R), where R > 0 is the radius of convergence. A series
of the form (15.7) is called a power series about x0. We have so far studied
power series about x0 = 0, and the entire theory applies to the current case,
simply by the shift of variable x 7→ x− x0. We have

R =
1

lim
n→∞

n
√
|an|

,

with R = ∞ if limn→∞
n
√
|an| = 0, and R = 0 if limn→∞

n
√
|an| = +∞, in

which case the series (15.7) only converges for x = x0. A power series defines
a function, its sum, with the domain being the interval of convergence of the
series:

f(x) =
∞∑
n=0

an(x− x0)n (15.8)

We now elaborate on the theorems we proved before on convergence of power
series

Theorem 15.9. 1. A power series (15.8) converges uniformly on every
closed subinterval [x0 − r, x0 + r] contained inside the interval of con-
vergence, that is r < R:

[x0 − r, x0 + r] ⊂ (x0 −R, x0 +R).

2. The series of derivatives

∞∑
n=1

n an (x− x0)n−1 =
∞∑
n=0

(n+ 1) an+1(x− x0)n (15.9)

has the same radius of convergence R as the original series (15.8),
and therefore is also uniformly convergent on each closed interval [x0−
r, x0 + r], for r < R.

3. A power series can thus be differentiated and integrated term by term
inside the interval of convergence (x0 −R, x0 +R).

179



Proof. The proof in fact repeats the proof of Theorem 5.11. Let

sn(x) =
n∑

k=0

ak(x− x0)k

be the sequence of partial sums. Then for x ∈ [x0 − r, x0 + r] we have

|ak(x− x0)k| = |ak| |x− x0|k ≤ |ak| rk. (15.10)

Let us observe, that the series

∞∑
n=0

|an| rn

converges, which follows from the Cauchy’s criterion:

lim
n→∞

n
√
|an| rn = r · lim

n→∞
n
√
|an| =

r

R
< 1.

Therefore, applying (15.10) and the Weierstrass’ criterion we conclude that
the power series (15.8) converges uniformly on the interval [x0 − r, x0 + r].
We have thus proved the first part of the theorem.
Second part: We have

n
√
|an+1|(n+ 1) = n

√
|an+1| n

√
n+ 1. (15.11)

It is a simple observation, that the upper limit (finite or not) of the se-
quence (15.11) is the same as the upper limit limn→∞

n
√
|an|, so the radius

of convergence of the series of derivatives (15.9) is the same as the radius
of convergence R of the original series (15.8). The series of derivatives is
therefore also uniformly convergent on every interval [x0−r, x0+r], if r < R.
Third part: The term by term differentiation and integration of a power se-
ries inside the interval of convergence now follows from Theorems 15.4 and
15.6, from the fact that for each x1 ∈ (x0−R, x0+R) we can find r < R such
that x1 ∈ [x0 − r, x0 + r], and from already proved parts of the theorem.

We have the following corollary.

Corollary 15.10. A power series
∑∞

n=0 an (x−x0)n with a positive radius of
convergence R > 0 defines on the interval (x0 −R, x0 +R) a function which
is differentiable infinitely many times

f(x) =
∞∑
n=0

an (x− x0)n. (15.12)

We also have
f (n)(x0) = n! an.
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Proof. Differentiability once follows from the above theorem, and then we
reiterate the theorem, sice the series of derivatives is also a power series of
the same type, with the same radius of convergence. Differentiating the series
(15.12) n-times term by term we obtain, for x ∈ (x0 −R, x0 +R)

f (n)(x) =
∞∑
k=n

k (k − 1) · · · · · (k − n+ 1) ak (x− x0)k−n.

Plugging in x = x0 we get

f (n)(x0) = n (n− 1) · · · · · 1 an = n! an.

Corollary 15.11. The Taylor series of the series (15.12) is the same series.

Example: Let us develop into Taylor series the function f(x) = 1
1−x

about

the point x0 =
1
2
. We can do it simply

1

1− x
=

1
1
2
− (1− 1

2
)
= 2

1

1− 2(x− 1
2
)
=

∞∑
n=0

2n+1

(
x− 1

2

)n

.

We know that the power series on the right-hand side converges for |x− 1
2
| <

1
2
, and its sum is equal to 1

1−x
. In that case, according to the above corollary,

the series on the right is the Taylor’s series of the function on the left. There
is no need to compute even one derivative.

Corollary 15.12. If two power series with strictly positive radii of conver-
gence

∞∑
n=0

an (x− x0)n and
∞∑
n=0

bn (x− x0)n

are equal in some interval (x0 − ϵ, x0 + ϵ), then they must be identical:

an = bn n = 0, 1, . . . .

Examples: (a) Let f(x) = arctanx. We will develop the function f(x) into
Maclaurin’s series (x0 = 0).

arctan(x) =

∫
dx

1 + x2

=

∫ ∞∑
n=0

(
−x2

)n
dx
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=
∞∑
n=0

(−1)n
∫
x2n dx

=
∞∑
n=0

(−1)n x2n+1

2n+ 1

= x− x3

3
+
x5

5
− . . . .

The above follows from the fact, that the power series
∑∞

n=0(−x2)n can
be integrated term by term. Choosing for the integrals the constants of
integration equal to 0 (as in the above computations), the series of integrals
converges, for example at the point x0 = 0 to function arctan(x). Therefore
it has to converge to arctan(x) everywhere insider the interval of convergence.
Observe that the resulting series only converges in (−1, 1], even though the
domain of arctan(x) is the entire real axis. As a consequence we have the
formula for the derivatives

arctan(n)(x) =

{
(−1)n−1

2 (n− 1)! : n - odd

0 : n - even.

Observe, again, that we did not have to compute any derivatives of arctan(x).

(b) In the same way we will find an expansion into Maclaurin’s series of the
function f(x) = log(1 + x).

log(1 + x) =

∫
dx

1 + x

=

∫ ∞∑
n=0

(−x)n dx

=
∞∑
n=0

(−1)n
∫
xn dx

=
∞∑
n=0

(−1)n xn+1

n+ 1

= x− x3

3
+
x5

5
− . . .

(c) The Taylor’s series of a function may be convergent, but to a different
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function. This is a particularly rare pathology, but it may happen neverthe-
less. For example, let

f(x) =

{
e−

1
x2 : x ̸= 0

0 : x = 0.

Figure 15.1: The function from example (c).

The function f(x) is differentiable at every point. At points different
from 0 it follows directly from the formula for f(x), while at 0 it requires
computation. Let us compute the limit of the differential fraction at 0, the
left-hand and right-hand limits separately.

lim
x→0+

e−
1
x2 − 0

x
= lim

y→+∞

e−y2

1
y

= lim
y→+∞

y

ey2
= lim

y→+∞

1

2 y ey2
= 0.

We similarly compute the left-hand limit, as x → 0−. The derivative f ′(0)
thus exists, and is equal to 0. Outside zero, from the definition of f(x) we
have

f ′(x) =
2

x3
e−

1
x2 , x ̸= 0.

Similarly as the first derivative,using the de l’Hôspital’s rule we check that
f ′′(0) = 0. It is not hard to see, that the derivative of an arbitrary order

f (n)(x), at x ̸= 0 is a sum of terms of the form 1
xk e

− 1
x2 , and we can prove

inductively that f (n)(0) exists for every n ∈ N, and is equal to 0. The
function f(x) is thus differentiable infinitely many times, and its Taylor’s
series at 0 (Maclaurin’s series) is the zero series

0 + 0 · x+ 0 · x2 + · · · = 0.

On the other hand clearly f(x) ̸= 0 for x ̸= 0, so the function nowhere,
except for 0, equals to its Taylor’s series.
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(d) We will find the formula for the sum of the series
∑∞

n=1 n
2xn. The interval

of convergence of this series is, as can be easily checked, the interval (−1, 1).
We have

∞∑
n=1

n2 xn =
∞∑
n=1

(n+ 2) (n+ 1)xn −
∞∑
n=1

3nxn −
∞∑
n=1

2xn

=
∞∑
n=1

(
xn+2

)′′

− 3
∞∑
n=1

(n+ 1)xn +
∞∑
n=1

xn

=
∞∑
n=1

(
xn+2

)′′

− 3
∞∑
n=1

(
xn+1

)′

+
∞∑
n=1

xn

=

(
∞∑
n=1

xn+2

)′′

− 3

(
∞∑
n=1

xn+1

)′

+
∞∑
n=1

xn

=

(
∞∑
n=3

xn

)′′

− 3

(
∞∑
n=2

xn

)′

+
∞∑
n=1

xn

=

(
x3

∞∑
n=0

xn

)′′

− 3

(
x2

∞∑
n=0

xn

)′

+ x

∞∑
n=0

xn

=

(
x3

1− x

)′′

− 3

(
x2

1− x

)′

+
x

1− x

=
2x3 − 6x2 + 6 x

(1− x)3
− 6x− 3x2

(1− x)2
+

x

1− x

=
2x3 − 5x2 + 5 x

(1− x)3
.

Testing for uniform convergence

Let us write down simple facts, which in most cases will allow us to determine
whether the convergence of a function sequence is uniform. Let fn(x)→ f(x)
at each point x ∈ E.

(a) If |fn(x) − f(x)| ≤ αn for each x ∈ E and αn → 0, then fn(x) → f(x)
uniformly on E.

(b) If there exists a sequence {xn} ⊂ E such that |fn(xn)− f(xn)| does not
converge to 0, then fn(x) is not uniformly convergent to f(x) on E.

(c) If E = E1 ∪ E2 and fn(x) → f(x) uniformly on both E1 and E2, then
fn(x) → f(x) uniformly on E. In practice this means, that the uniform
convergence can be verified separately on subintervals. This might apply to
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situations, where the functions are defined by different formulas on different
subintervals, or estimates are different on different subintervals.

185


