
Notes on Category Theory

Robert L. Knighten

November 9, 2007



c© 2004–2007 by Robert L. Knighten
All rights reserved



Preface

There are many fine articles, notes, and books on category theory, so what is
the excuse for publishing yet another tome on the subject. My initial excuse
was altruistic, a student asked for help in learning the subject and none of
the available sources was quite appropriate. But ultimately I recognized the
personal and selfish desire to produce my own exposition of the subject. Despite
that I have some hope that other students of the subject will find these notes
useful.

Target Audience & Prerequisites
Category theory can sensibly be studied at many levels. Lawvere and

Schanuel in their book Conceptual Mathematics [47] have provided an intro-
duction to categories assuming very little background in mathematics, while
Mac Lane’s Categories for the Working Mathematician is an introduction to
categories for those who already have a substantial knowledge of other parts
of mathematics. These notes are targeted to a student with significant “math-
ematical sophistication” and a modest amount of specific knowledge. The
sophistication is primarily an ease with the definition-theorem-proof style of
mathematical exposition, being comfortable with an axiomatic approach, and
finding particular pleasure in exploring unexpected connections even with un-
familiar parts of mathematics

Assumed Background: The critical specific knowledge assumed is a basic
understanding of set theory. This includes such notions as subsets, unions and
intersections of sets, ordered pairs, Cartesian products, relations, and functions
as relations. An understanding of particular types of functions, particularly bi-
jections, injections, surjections and the associated notions of direct and inverse
images of subsets is also important. Other kinds of relations are important
as well, particularly equivalence relations and order relations. The basic ideas
regarding finite and infinite sets, cardinal and ordinal numbers and induction
will also be used.

All of this material is outlined in Appendix A on informal axiomatic set
theory, but this is not likely to be useful as a first exposure to set theory.

Although not strictly required some minimal understanding of elementary
group theory or basic linear algebra will certainly make parts of the text much
easier to understand.

There are many examples scattered through the text which require some
knowledge of other and occasionally quite advanced parts of mathematics. In
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particular Appendix B (Catalog of Categories) contains a discussion of a large
variety of specific categories. These typically assume some detailed knowledge
of some parts of mathematics. None of these examples are required for under-
standing the body of the notes, but are included primarily for those readers
who do have such knowledge and secondarily to encourage readers to explore
other areas of mathematics.

Notation: The rigorous development of axiomatic set theory requires a very
precise specification of the language and logic that is used. As part of that there
is some concise notation that has become common in much of mathematics and
which will be used throughout these notes. Occasionally, often in descriptions
of sets, we will use various symbols from sentential logic particularly logical
conjunction ∧ for “and”, logical disjunction ∨ for “or”, implication ⇒ for
“implies” and logical equivalence ⇐⇒ for “if and only if”. We also use ∀ and
∃ from existential logic with ∀ meaning “for all” and ∃ meaning “there exists”.

Here is an example of the usage: For any sets A and B

∀A ∀B, A+B = {x : (x ∈ A ∧ x /∈ B) ∨ (x /∈ A ∧ x ∈ B)}

from which we conclude

∀A ∀B, A+B = A⇒ A ∩B = ∅

We have adopted two of Halmos’ fine notational conventions here as well:
the use of “iff” when precision demands “if and only if” while felicity asks for
less; and the end (or absence) of a proof is marked with .

Note on the Exercises
There are 170 exercises in these notes, freely interspersed in the text. A list

of the exercises is included in the front matter, just after the list of definitions.
Although the main purpose of the exercises is to develop your skill working with
the concepts and techniques of category theory, the results in the exercises are
also an integral part of our development. Solutions to all of the exercises are
provided in Appendix C, and you should understand them. If you have any
doubt about your own solution, you should read the solution in the Appendix
before continuing on with the text. If you find an error in the text, in the
solutions, or just have a better solution, please send your comments to the
author at notes@knighten.org. They will be much appreciated.

Alternative Sources
There are many useful accounts of the material in these notes, and the study

of category theory benefits from this variety of perspectives. In Appendix D are
included brief reviews of the various books and notes, along with an indication
of their contents.

Throughout these Notes specific references are included for alternative dis-
cussions of the material being treated, but no attempt has been made to provide
attribution to original sources.
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Introduction

Over the past century much of the progress in mathematics has been due to
generalization and abstraction. Groups arose largely from the study of sym-
metries in various contexts, and group theory came when it was realized that
there was a general abstraction that captured ideas that were being developed
separately. Similarly linear algebra arose initially by recognizing the common
ground under the development of linear equations, matrices, determinants and
other notions. Then as linear algebra was codified it was recognized that it
applied to very different situations and so, for example, its relevance to func-
tional analysis was recognized and powerfully shaped the development of that
field.

Topology, as the study of topological spaces, began around the middle of
the 19th century. What we now call Algebraic Topology largely began with the
work in Poincaré’s series of papers called Complénts à l’Analysis Situs which
he began publishing in 1895. Over the next 30 years Algebraic Topology de-
veloped rather slowly, but this was the same time that abstract algebra as
was coming into being (as exemplified by van der Waerden’s still well-named
Moderne Algebra published in 1931.) About 1925 homology groups began to
appear in all of their glory, and over the next twenty years much of the basics
of modern algebraic topology appeared. But a basic insight was still missing
– the recognition that in algebraic topology the important operations not only
assign groups to topological spaces but also assign group homomorphisms to
the continuous maps between the spaces. Indeed in order to axiomatize homol-
ogy and cohomology theory the notion of equivalence between such operations
was also needed. That was provided by Eilenberg and Mac Lane in their
ground breaking paper “General theory of natural equivalences” [20], where
the definitions of categories, functors and natural equivalences were first given.
(A very good and extensive book on all of this and a very great deal more is
Dieudonné’s A History of Algebraic and Differential Topology 1900-1960 [15].)

X
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Chapter I

Mathematics in Categories

I.1 What is a Category?

Definition I.1: A category C has objects A,B,C, · · · , P,Q, . . . , and mor-
phisms f, g, h, i, · · · , x, y, · · · . To each morphism is associated two objects, its
domain and codomain. If f is a morphism with domain A and codomain B,
this is indicated by f : A // B. Each object, A, has an associated identity
morphism written 1A : A // A. Finally if f : A // B and g : B // C,
there is a composition gf : A // C, and these all satisfy the following rela-
tions:

1. (Associativity) If f : A // B, g : B // C and h : C // D, then
h(gf) = (hg)f : A // D.

2. (Identity Morphisms) If f : A // B, then f1A = f = 1Bf .

Sometimes gf is unclear and g ◦ f will be used instead. These are both read
as “f composed with g” or as “g following f”.

Relations such as these are indicated by saying diagrams of the following
sort commute, meaning that any sequence of compositions of morphisms in the
diagram that start and end at the same nodes in the diagram are equal.

1.

A

B
f

??��������
A

C

gf

��????????

B

C

g

��

B

D

hg

��????????

C

D

h

??��������

3
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2.

A A
1A //A

B

f

��??????????????A

B

f

''OOOOOOOOOOOOOOOOOOOOOOOO A

B

f

��??????????????

B B
1B //

For example in diagram (1.) commutativity of the left triangle says that gf
is the g following f and the left triangle says that hg is h following g, which
is certainly true but just the meaning of gf and hg. More interesting the top
composite, (hg)f , is equal to the bottom composite, h(gf), which is exactly
Associativity. There is also h following g following f , and what Associativity
allows us to say is that this is equal to both (hg)f and h(gf), i.e., the order
matters, but parenthesis are unneeded.

In diagram (2.), commutativity of the top triangle says f1A is equal to f,
while commutativity of the lower triangle say f if equal to 1Bf . And these are
exactly the requirements on the identify morphisms.

Note: Because category theory is applicable to so many diverse areas which
have their own terminology, often well established before categories intruded, it
is common even when discussing category theory to use a variety of terminology.
For example while morphism is the most commonly used term, these elements
of a category are also called “maps”,and sometimes “arrows”.Indeed we will
occasionally use the word “map” as a synonym for morphism. Similarly what
we called the domain of a morphism is sometimes called the “source”,while
“target”is an alternative for codomain.

Note: Throughout these notes script capital letters such as A , B, C , . . . ,
X , Y , Z will be used without further comment to denote categories.

Examples of categories, familiar and unfamiliar, are readily at hand, but
rather than listing them here Appendix B provides a Catalog of Categories
where many examples are listed, together with detailed information about each
of them. Each time a new concept or theorem appears it will be worthwhile to
browse that Appendix for relevant examples.

There are two extreme examples of categories that are worthy of mention
here. The first is the category Set of sets. Set has as objects all sets, and
as morphisms all functions between sets. (For details see Section B.1.1 in the
Catalog of Categories.) It is common in the development of the theory of sets
to identify a function with its graph as a subset of the Cartesian product of its
domain and its codomain. (See definition A.30 in Section A.8.) One result of
this is that from the function (considered just as a set) it is possible to recover
the domain of the function, but not in general its codomain. So when we say
the morphisms are “all functions between sets” we actually consider a function
as including a specification of its codomain. This same remark applies to many
of the other “familiar” categories that we consider such as the categories of
groups, Abelian groups, vector spaces, topological spaces, manifolds, etc.
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By contrast suppose that (M,µ) is a monoid, that is a set M together an
associative binary operation on M that has identity element (which we call 1.)
Using M we define a category M which has only one object, which has M as
its set of morphisms, all with the one object as both domain and codomain,
with the identity of the monoid as the identity morphism on the unique object,
and composition defined by the multiplication µ. We will usually refer to the
category M by writing “consider the monoid M as a category with one object”
without using any special name.

Conversely if C is any category with only one object, the morphisms with
composition as multiplication form a monoid – save for one significant caveat,
the definition of a monoid stipulates that M is a set.

For more information on monoids, look at the material in Section B.2.3 of
the Catalog of Categories.

Our basic reference for topics in algebra is Mac Lane and Birkhoff’s Alge-
bra [55]. In particular for the definition and basic properties of a monoid see
[55, I.11].

As an algebraic gadget the expected definition of a category is probably
something like: A category, C , consists of two sets Objects and Morphisms
and functions:

domain : Morphisms // Objects,
codomain : Morphisms // Objects,

id : Objects // Morphisms

and a partial function

composition : Morphisms×Morphisms // Morphisms

such that . . . .
The reason the definition we’ve given makes no mention of sets at all is

because the most familiar categories, such as Set, do not have either a set of
objects or a set of morphisms.

The connection between set theory and category theory is an odd one.
Exactly how category theory should be explained in terms of set theory is still
a topic of controversy, while at the same time most writers on either set theory
or category theory give the subject scant attention. And that is what we will
do as well. For those who are interested in more information about these issues,
consult [50], [51] and [24] as a start.

There is also an active effort to use category theory as alternative founda-
tion for set theory or even all of mathematics. Some references for these topics
include Lawvere’s “An Elementary Theory of the Category of Sets” [41, 44]
and “The category of categories as a foundation for mathematics” [42], a cou-
ple of efforts to correct some errors, “Lawvere’s basic theory of the category of
categories” [7, 6]. A later discussion of axiomatizing the category of categories
is McLarty’s “Axiomatizing a Category of Categories” [57] , and a later dis-
cussion of axiomatizing the category of sets is Osius’ “Categorical Set Theory:
a Characterisation of the Category of Sets” [60].



6 CHAPTER I. MATHEMATICS IN CATEGORIES

With the arrival of the theory of topoi, that became the most important
tool for discussing category theory and foundations. See Joyal and Moerdijk,
[34], Mac Lane and Moerdijk, [56] and Lawvere and Rosebrugh [46] .

After that digression, we make the following definitions.

Definition I.2: A small category is one in which the collection of morphisms
is a set. Note that as a consequence the collection of objects is a set as well.

Definition I.3: A large category is one in which the collection of morphisms
is not a set.

Definition I.4: A finite category is one in which the collection of morphisms
is a finite set. Note that as a consequence the collection of objects is finite as
well.

So now going back to the connection between categories and monoids, we see
that there is a natural correspondence between monoids and small categories
with a single object. This is sufficiently strong that we will usually just write
something like “consider the monoid as a category with one object.”

I.1.1 Hom and Related Notation

Definition I.5: For any two objects in a category Hom(A,B) is the collection
of all morphisms from A to B. If the morphisms are in the category C and we
need to emphasize this, we will write C (A,B).

In a small category, Hom(A,B) is a set. In some large categories Hom(A,B)
will not be a set, but in the familiar ones it is a set, so we make that a definition
and a convention.

Definition I.6: A locally small category is one in which Hom(A,B) is a
set for all objects A and B.

CONVENTION: Unless explicitly mentioned to the contrary, all cat-
egories considered in these notes are locally small.

With this convention every category with one object is a small category
and so “is” a monoid.

“Hom” comes from “homomorphism”, as does “morphism”. Other nota-
tions that are sometimes used in place of Hom include “Map”, “Mor”, “Arr”
and just parentheses – [A,B] or (A,B).

Notation: It is often convenient to have anonymous functions, i.e., ones to
which we give no special name. One common way of doing this is by writing
something like x 7→ x2 in place of say sq(x) = x2. If you are familiar with the



I.1. WHAT IS A CATEGORY? 7

elementary notation of the λ-calculus, this is equivalent to writing λx.x2. More
generally if φ(x) is some formula involving x, writing x 7→ φ(x), λx . φ(x),
and f(x) = φ(x) all have essentially the same effect except the expression
f(x) = φ(x) requires providing the name f .

Now to use this notation, the composition of morphisms gives us a function:

Hom(B,C)×Hom(A,B) // Hom(A,C)
(f, g) 7−→ fg

And that in turn allows the application of the following simple but important
observation. [Warning: For convenience we have f : B // C and g : A

// B rather than the other way round.]
For any sets X, Y and Z, if we have a function X × Y // Z (which we

will write (anonymously) as (x, y) 7→ xy), then each element x ∈ X defines a
function x∗ : Y // Z by x∗(y) = xy. Similarly each element y ∈ Y defines a
function y∗ : X // Z by y∗(x) = xy. We can go even further: write ZY for
the set of all functions from Y to Z, then from the function X × Y // Z we
get a function λ : X // ZY which is defined by λ(x) = x∗. There is a similar
function Y // ZX which we will leave for the reader to actually name and
describe.

As we noted above, the composition of morphisms gives us a function

Hom(B,C)×Hom(A,B) // Hom(A,C)
(f, g) 7−→ fg

to which we can apply this observation. So for each f : B // C, i.e., f ∈
Hom(B,C), we get a function f∗ : Hom(A,B) // Hom(A,C) defined by
f∗(g) = fg . Equally for each g : A // B we get g∗ : Hom(B,C) // Hom(A,C)
with g∗(f) = fg .

Notice the subscript ∗ on f∗ and the superscript ∗ on g∗. This use of
subscript and superscript ∗ has historical roots dating at least as far back as
tensor calculus and the use of subscripts and superscripts for covariant and
contravariant tensors.

Notation: It occasionally happens that we want to discuss Hom(A,B) where
we fix A but vary B. Usually the name B just confuses the issue, so in this
situation we will often write Hom(A, •) instead. This same thing applies for
many things besides Hom, and the meaning should be clear in all cases. Other
sources sometimes write Hom(A, ) with the same meaning as Hom(A, •) here.

In the language of computer science Hom(A, •) is polymorphic, i.e., Hom(A,B)
is defined for all objects B and is a set, while Hom(A, f) is defined for suitable
morphisms and is a function. As we will see in detail in Chapter III (Functors),
Hom(A, •) is a covariant functor, while Hom(•, C) is a contravariant functor,
with the words covariant and contravariant having historical roots in tensor
calculus.

As we’ll see when we discuss functors in general, the more general notation
for f∗ is the rather cumbersome Hom(A, f) and for g∗ it is Hom(g, C). We
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will commonly use f∗ and g∗, but sometimes fA∗ if we need to keep track
of the object A and sometimes the full Hom(A, f) or even C (A, f) if all the
information is needed. Similarly we will usually write g∗, but sometimes g∗C ,
Hom(g, C) or C (g, C).

We sometimes want to describe the functions f∗, and g∗ without using the
notation or even necessarily mentioning f or g specifically, so then we will write
of “the induced functions” on the Hom sets.

For the record, here are the formal definitions.

Definition I.7: For each morphism f : B // C, the formula f∗(g) = fg
defines the induced function f∗ : Hom(A,B) // Hom(A,C).

Definition I.8: For each morphism g : A // B, the formula g∗(f) = fg
defines the induced function g∗ : Hom(B,C) // Hom(A,C).

When we come to discuss functors in Chapter III (Functors), these will
be primary examples. In that context we want to note a few simple facts that
we will use often: (fg)∗ = f∗g∗ and (fg)∗ = g∗f∗; (1B)∗ = Hom(A, 1B) =
1Hom(A,B) and (1A)∗ = Hom(1A, B) = 1Hom(A,B).

We also want to note another connection between categories and monoids.
If C is any category and C is any object in C , then C (C,C) is a monoid with
composition as the binary operation and 1C as the identity.

This is sufficiently important that we have a couple of definitions.

Definition I.9: In any category, a morphism in which the domain and codomain
are equal is called an endomorphism.

Definition I.10: When C is an object of C as above, C (C,C) is the monoid
of endomorphisms, or the endomorphism monoid, of C.

I.1.2 Subcategories

The most convenient source of additional categories is through the notion of a
subcategory.

Definition I.11: A category S is a subcategory of category C provided:

1. Every object of S is an object of C .

2. If f ∈ S (A,B), then f ∈ C (A,B).

3. If f : A // B and g : B // C in S , then gf is also the composition
of g following f in C .

4. If 1A is the identity morphism for A in S , then 1A is also the identity
morphism for A in C .
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Examples of subcategories abound. A few of the examples that are discussed
in the Catalog of Categories (Appendix B) are: The category of finite sets,
FiniteSet, cf. Section B.1.2, as a subcategory of the category of sets; the
category of Abelian groups, Ab cf. Section B.2.7, as a subcategory of the
category of groups, Group (cf. Section B.2.5;) the category of lattices, Lattice
cf. Section B.6.3, as a subcategory of the category of partially ordered sets,
Poset cf. Section B.6.2; the category of compact Hausdorff spaces, Comp cf.
Section B.9.4, as a subcategory of the category of topological spaces, Top cf.
Section B.9.3; and the category of Hilbert spaces, Hilbert cf. Section B.13.4,
as a subcategory of the category of Banach spaces, cf. Section B.13.1.

In addition the notion of subcategory generalizes the notion of submonoid,
subgroup, etc. For if S is a submonoid of the monoid M , then, considered as
categories, S is a subcategory of the category M , etc.

For the moment our interest in subcategories will be entirely as a way
of specifying additional categories. To date all we have mentioned are just
gotten specifying some collection of objects in the containing category. That
is sufficiently common and important that we record it as:

Definition I.12: A subcategory S of C is full when for all objects A and B
of S we have S (A,B) = C (A,B).

Of course subcategories need not be full subcategories. As an example,
starting with the category of sets we define a new category Iso(Set) with the
same objects, i.e., sets, but as morphisms only the bijections. As every identity
function is a bijections and the composition of bijections is a bijection, Iso(Set)
is clearly a subcategory of Set. Not every function is a bijection, so Iso(Set)
is not a full subcategory. The notation Iso(Set) may appear odd, but this is
part of a general situation as we will see in Section I.2.1 (see page 11.)

I.1.3 Recognizing Categories

To practice recognizing categories, we start with some very small and somewhat
artificial examples.

The empty category 0 is the category with no objects and no morphisms.
All the requirements in the definition of a category are vacuously satisfied. It
is interesting and useful in much the same way the empty set is useful.

The one element category 1 is an essentially unique category with one object
and one morphism which must be the identity morphism on the one object.

The category we call 2 or the arrow category is illustrated by the following
diagram.

0
$$ ! // 1 dd

where all of the arrows represent distinct morphisms, and there are no
other morphisms. For this to be a category, the two circular arrows must be
the identity morphisms, and that completely determines composition, which is
easily seen to be associative.
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Next consider the following diagram:

∗
��

��???????

0
$$

??�������
// 1 dd

with each node representing an object and each arrow representing a distinct
morphism.

Exercise I.1. Verify that there is a unique fashion in which this is a category
with three objects and six morphisms. This category is named 3.

Although these examples may seem strange they will actually recur in var-
ious application later in these notes.

As the last little example look at the following diagram:

0
$$

1 dd0 1
��

0 1oo0 1??

Exercise I.2. If each arrow in the above diagram represents a distinct mor-
phism, can this be a category with two objects and five morphisms?

In the previous section we saw the example of Iso(Set) as a somewhat
unusual category. Let’s look at a few more.

Define a subcategory M of Set to have as objects all sets, but the only mor-
phisms are the injective functions, i.e., f : X // Y where f(x1) = f(x2) ⇒
x1 = x2. Clearly the identity function on any set is in M , and the composi-
tion of any two injective functions is again injective, so we see M is indeed a
subcategory, but not a full subcategory, of Set.

Exercise I.3. Define a subcategory E of Set to have as objects all sets, but the
only morphisms are the surjective functions, i.e., f : X // Y where for every
y ∈ Y there exists some x ∈ X with f(x) = y. Verify that E is a subcategory,
but not a full subcategory, of Set.

I.2 Special Morphisms

CONVENTION: In this section all the objects and morphisms are in
the one fixed category C Unless explicitly mentioned to the contrary.
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I.2.1 Isomorphisms

Besides the identity morphisms that exist in every category, there are other
morphisms that are important and interesting parts of mathematics in a cate-
gory. The first are isomorphisms.

Definition I.13: An isomorphism, f : A // B, is a morphism with an
inverse, f−1 : B // A, satisfying f−1f = 1A and ff−1 = 1B .

Note that if f has an inverse, then it is unique, justifying the notation f−1.
To see the uniqueness note that if g and h are both inverses, then g = 1Ag =
hfg = h1B = h.

Notation: As is often done in algebra, we will use the symbol ∼= to indicate

an isomorphism. So we will write f : A
∼= // B to indicate that f is an

isomorphism, and we will write A ∼= B and say “A is isomorphic to B” when
there is an isomorphism from A to B.

Just a bit earlier we introduced the endomorphism monoid of an object.
Now in any monoid M with identity element 1, there is the submonoid of
invertible elements: G = {m ∈ M | ∃m−1 such that mm−1 = 1 = m−1m}.
As every element of G has an inverse, G is actually a group called, unoriginally,
the group of invertible elements of M .

Applying this to the monoid of endomorphisms of any object in a cate-
gory, we get the group of automorphisms or automorphism group of the
object.

Here are the formal definitions.

Definition I.14: An automorphism is an endomorphism that is also an
isomorphism.

Definition I.15: The automorphism group of an object C is the group of
all automorphisms of C. This is usually denoted by Aut(C).

So Aut(C) is the group of invertible elements of the monoid of endomor-
phisms of C. In particular the identity morphism for any object C is an auto-
morphism of C and is the identity in the group Aut(C).

Back in Section I.1.2 we met Iso(Set), a subcategory of the categories of
sets that is not a full subcategory. As mentioned there this is an example of
a general construction. For any category C there is the subcategory Iso(C )
of C which has the same objects, but with the morphisms of Iso(C ) being
the isomorphisms of C (and that is the origin of the notation.) This is a full
subcategory of C only when every morphism of C is an isomorphism (and then,
of course, the two categories are the same.)

Categories such as this are actually of sufficient interest to deserve special
study in their own right – for example see Higgins [32]. As a start we note the
following definition.
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Definition I.16: A groupoid is a category in which every morphism is an
isomorphism.

Now just as a monoid is a category with just one object, a group is a
groupoid with just one object. More information, including examples and
applications, are in Appendix B.18 (Catalog of Categories).

A frequently useful technique in category theory is to connect properties of
morphisms with properties of the functions they induce on Hom sets. Isomor-
phisms provide our first example in the next two exercises.

Exercise I.4. For any category C , prove that if f : A // B is an isomor-
phism, then for every object C the functions

fC∗ : Hom(C,A) // Hom(C,B) and f∗C : Hom(B,C) // Hom(A,C)

are isomorphisms (i.e., bijections) as well.

Exercise I.5. Suppose f : A // B is a morphism where for every object C
the functions

fC∗ : Hom(C,A) // Hom(C,B) and f∗C : Hom(B,C) // Hom(A,C)

are bijections. Prove that f is an isomorphism.

Exercise I.6. Suppose that f : A // B is an isomorphism in C . Define a
function C (A,A) // C (B,B) by e ∈ C (A,A) 7→ fef−1 ∈ C (B,B). Show
that this function is a monoid homomorphism, and indeed an isomorphism.

In general an isomorphism of monoids is easily seen to also give rise to an
isomorphism of the group of invertible elements in the monoids, so in particular
whenever f : A // B is an isomorphism the function defined above also gives
an isomorphism between Aut(A) and Aut(B).

I.2.2 Sections and Retracts

The definition of an isomorphism has two parts which are really separable, and
that leads to the notions of sections and retracts which we define here.

Definition I.17: For any morphism f : A // B, a section of f is a mor-
phism s : B // A such that fs = 1B .

Definition I.18: For any morphism f : A // B, a retract (or retract) of
f is a morphism r : B // A such that rf = 1A.
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A section is also called a right inverse,while a retract is alternatively called
a left inverse.

Exercise I.7. Consider any morphism f . Verify the following:

1. f has a section iff f∗ always has a section.

2. f has a retract iff f∗ always has a section.

3. f has a retract implies f∗ always has a retract.

4. f has a section implies f∗ always has a retract.

It is a trivial observation that s is a section for r iff r is a retract for s.
Note the usage of “iff”as an abbreviation for “if and only if”. As noted in

the preface (p. iv) we will use that from time to time throughout these notes.
It is not an accident that we have iff in the first two parts of this exercise,

but only implication in the last two. Can you find examples where f∗ has a
retract, but f does not? What about where f∗ has a retract but f does not
have a section? [Warning : You won’t find such examples in the category of
sets.] We will return to this in exercises I.12 and I.18.

Exercise I.8. Clearly if f is an isomorphism, then f−1 is both a section and
a retract for f . Show that if s is a section for f and r is a retract for f , then
r = s and so f is an isomorphism.

Exercise I.9. In the category of sets, give examples of functions that have a
section but not a retract, and that have a retract but not a section. Also give
examples of functions that have neither a section nor a retract.

I.2.3 Epimorphisms and Monomorphisms

In the category of Sets, the categorical notions of having a section or having
a retract capture the essence of surjections and injections without any explicit
mention of the elements of the sets. But these notions do not work nearly so
well in other categories.

As one simple example consider the homomorphism q : Z // Z2 (in the
category of Abelian groups)defined by q(n) = n mod 2 (Z being the group of
integers, and Z2 the group of integers modulo 2.) Now q is a surjection, but it
certainly does not have a section - indeed the only homomorphism of Z2 to Z
takes both elements of Z2 to 0. [For more information see the section on the
category of groups see Section B.2.7 of the Catalog of Categories. The general
reference for information about Abelian groups, and other general topics in
abstract algebra, is Mac Lane and Birkhoff’s Algebra [55].]
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Fortunately there is a weaker property than having a right inverse, that
captures the notion of a surjection in a categorical fashion for a great many
categories. Moreover it turns out to be important and useful quite generally.
Note that in many “algebraic” categories such as the categories of groups,
Abelian groups, rings, etc, a surjective homomorphism is usually called an
epimorphism, and that is the name used throughout these notes.

Definition I.19: In any category, a morphism e : A // B is an epimor-
phism iff fe = ge implies f = g.

The equation fe = ge means that f and g are two morphisms with domain
B and the same codomain. The codomain wasn’t explicitly mentioned because
it’s name is irrelevant.

Note: As is common in mathematical writing, there is an implicit universal
quantifier in the definition of an epimorphism. We have an epimorphism e only
if for all morphisms f and g, ef = eg implies e=f. Even one exception and e
is not an epimorphism.

This is called a cancellation law, and we say that e is an epimorphism iff it
can be canceled on the right or has right cancellation. That “right cancellation”
is a weakened form of “having a right inverse” is the content of this next
exercise.

Exercise I.10. Prove that if a morphism f has a section, then f is an epi-
morphism.

This result can be restated as “every retract is an epimorphism” which
partly explains why retracts are also called split epimorphisms .

Notation: We often use the special arrow // // to indicate an epimorphism.
When writing about epimorphisms, other words are sometimes used – we

sometimes use the abbreviated form epi , and epic, particularly as an adjective
(“the map f is epic”.)

As with sections and retracts, let’s also connect this with the Hom sets.

Exercise I.11. Show that f : A // B is an epimorphism iff for every object
C, the functions f∗C are all injective.

Exercise I.12. Find an example where f : A // B is an epimorphism, but
for some object C the function fC∗ is not surjective. [Warning: You need to
use something other than the category of sets.]

The next three exercises ask you to work out the meaning of epimorphisms
in a few special cases where the categories are monoids.

There are two familiar binary operation on the set of natural numbers,
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addition and multiplication. Each of them gives us a monoid. The first is
called the additive monoid of natural numbers, while the second is called the
multiplicative monoid of natural numbers.

Exercise I.13. Consider N, the monoid of natural numbers with the binary
operation of addition as a category with one object. Show that every morphism
in Nis an epimorphism.

The next exercise asks you to consider epimorphisms in a more complicated
monoid.

Let A = {a, b} be a set with two elements. Define A∗ to be the set of all
finite sequences from A, i.e.,

A∗ = {(), (a), (b), (a, a), (a, b), (b, a), (b, b), (a, a, a), · · · }.

Define a binary operation onA∗ to be concatenation, i.e., if s = (s1, s2, · · · , sm)
and t = (t1, t2, · · · , tn) are in A∗, then st = (s1, s2, · · · , sm, t1, t2, · · · , tn). This
makes A∗ into a monoid with (), the empty sequence as the identity. [This is
the free monoid on A and is one example of many “free” structures that will
be discussed in these notes. More information on free monoids can be found in
Sections B.19.3 and III.2.12, and in Bourbaki’s Algebra (Part I) [10, I, §7].]

We will usually write just a or b rather than (a) and (b). And with that no-
tation (s1s2 · · · sm) = s1s2 · · · sm and we can think of that as either the product
of the elements s1, s2, . . ., or as composition of the morphisms s1, s2, . . ..

[In mathematical logic and theoretical computer science the monoid A∗ is
called the Kleene closure of A after the logician Stephen Kleene who used it
in his study of regular expressions. The construction actually make sense for
sets with any number of elements, and this is the more general context of the
Kleene closure.]

Exercise I.14. Show that every morphism in A∗ is an epimorphism.

And finally we look at a monoid where not every morphism is an epimor-
phism.

Let R be the compatible equivalence relation on A∗ generated by {a2, ab},
and consider the quotient monoid B = A∗/R. This means that in B we have
a2 = ab, a2b = ab2 = a3, and all other relations that follow from a2 = ab. By
contrast ba is not equal to anything else.

[More information about generated equivalence relations and the associated
quotients can be found in the Appendix on Set Theory (see Section A.7), and
in the material on the categories Monoid and Semigroup in the Catalog of
Categories (see Sections B.2.3 and B.2.2.) There is also a detailed treatment
in Bourbaki [10, I, §1.6].]

In B every element has a unique canonical form that is one of am, bn, or
bnam. There is nothing more complicated because any element of the form
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ambn = am+n and that in turn will simplify any expression that has an ab in
it somewhere.

Exercise I.15. Using the above show that b is an epimorphism in B considered
as a monoid with one object, but a is not an epimorphism.

Now the term epimorphism already has a meaning in a number of familiar
categories, so we would certainly like to know that the new definition we have
just given is actually the same as the usual one. In just a moment we’ll see this
is indeed true in some important examples, but there are other cases where it is
not at all easy to verify this and many more where it is false. More information
on this topic for the specific categories discussed can be found in the Catalog
of Categories in Appendix B.

In the category Ab of Abelian groups and group homomorphisms (see Sec-
tion B.2.7,) it is easy to see that every epimorphism in the usual sense, i.e., a
surjective group homomorphism, is an epimorphism in the the sense of defi-
nition I.19. Just note that if e is a surjective homomorphism and fe = ge,
then for each b ∈ B there is some a ∈ A so that b = e(a). But then
f(b) = f(e(a)) = g(e(a)) = g(b), and so f = g.

The converse uses some more information about Abelian groups. Recall
that for any homomorphism f : A // B of Abelian groups the image of f ,
Im(f) = {f(a)|a ∈ A} is a (normal) subgroup and there is a quotient group
B/Im(f) and a quotient map q : B // B/Im(f).

Now suppose that e : A // B has the cancellation property that is the
definition of an epimorphism in a category, and consider

A
e // B

0 //
q

// B/Im(e)

where q is the quotient map, and 0 maps every element to the zero element.
Surely 0e = 0, but also qe = 0. So q = 0! But that says B/Im(e) is the zero
group, i.e., that B = Im(e) and e is surjective.

Very much the same thing is true in the category Vect of vector spaces and
linear transformations (see Section B.4.3.) Every surjective linear transforma-
tion is an epimorphism as defined above with exactly the same argument as
above.

The proof of the converse is much the same as well. Every linear trans-
formation f : A // B has an image Im(f) = {f(a)|a ∈ A} which is a
subspace of B, and there is a quotient space B/Im(f) and a quotient map
q : B // B/Im(f). Just as with Abelian groups, if e : A // B has right
cancellation, then consider

A
e // B

0 //
q

// B/Im(e)

where q is the quotient map, and 0 maps every element to the zero element.
Surely 0e = 0, but also qe = 0. So q = 0! But that says B/Im(e) is the zero
vector space which only happens when B = Im(e), so e is surjective.
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In Chapter XIII we’ll see that there are a large variety of additional cate-
gories where very similar arguments apply.

By contrast, proving that a homomorphism in the category of groups (i.e., not
necessarily Abelian) which has the epimorphism cancellation property is actu-
ally surjective is not nearly so easy. See section B.2.5 on page 227 for more
detail.

Just as “having a right inverse” can be weakened to “right cancellation”,
“having a left inverse” can be weakened to “left cancellation”.

Definition I.20: In any category, a morphism m : A // B is a monomor-
phism iff mf = mg implies f = g.

This is another “cancellation law”,so we say that m is a monomorphism iff
it can be canceled on the left or has left cancellation.

That “left cancellation” is a weakened form of “having a left inverse” is the
content of this next exercise.

Exercise I.16. Prove that if a morphism f has a retract, then f is a monomor-
phism.

This result can be restated as “every section is a monomorphism” which
partly explains why sections are also called split monomorphisms .

Just as with epimorphisms, other words are sometimes used – we sometimes
say a morphism is monic or mono or is a monic.

Notation: We use the special arrow // // to indicate a monomorphism.
Again let’s connect this with the Hom sets.

Exercise I.17. Show that f : A // B is a monomorphism iff for all objects
C the functions fC∗ are always injective.

Exercise I.18. Find an example where f : A // B is an monomorphism,
but for some object C the function f∗C is not surjective. [Warning: You need
to use something other than the category of sets.]

Just as with epimorphism, monomorphism already has a meaning in a num-
ber of familiar categories and we would certainly like to know that the new
definition we have just given is actually the same as the usual one. In just a
moment we’ll see this is indeed true in some important examples, but there
are other cases where it is not at all easy to verify this. More information on
this topic for the specific categories discussed can be found in the Catalog of
Categories in Appendix B.

In the category Ab of Abelian groups and group homomorphism, it is easy
to see that every monomorphism in the usual sense, i.e., a group homomorphism
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that is injective or one-to-one, is a monomorphism in the the sense of definition
I.20. Just note that if e is an injective homomorphism and mf = mg, then for
each a ∈ A, mf(a) = mg(a) and so f(a) = g(a), i.e., f = g.

The converse uses some more information about Abelian groups. Recall
that for each homomorphism f : A // B of Abelian groups we have the
kernel of f , Ker(f) = {a ∈ A|f(a) = 0}, a subgroup of A with inclusion map
i : Ker(f) // A.

Now suppose that m : A // // B has the left cancellation property that is
the definition of an monomorphism in a category, and consider

Ker(m)
0 //
i

// A
f // B

where i is the inclusion map, and 0 maps every element to the zero element.
Now m0 = 0 = mi, so 0 = i! But that says Ker(m) = {0} and so m is injective.

This argument works equally well in the category of groups as in the cate-
gory of Abelian groups.

Essentially the same argument works in the category Vect of vector spaces
and linear transformation as well. The first part of the argument is exactly
the same, while there is just a small change of terminology in the second
part. Associated to a linear transformation f : A // B is its null space,
N(f) = {a ∈ A|f(a) = 0}, with inclusion map i : N(f) // A. The rest of the
argument is the same: if m : A // // B has left cancellation then consider

Ker(m)
0 //
i

// A
f // B

where i is the inclusion map, and 0 maps every element to the zero element.
Now m0 = 0 = mi, so 0 = i! But that says N(m) = {0} and so m is injective.

Before continuing we record as exercises some simple observations that will
be useful as we go along.

Exercise I.19. Show that in any category the composition of retracts is a
retract.

Exercise I.20. Show that in any category if gf is a retract, then g is a retract.

Exercise I.21. Show that in any category the composition of epimorphisms
is an epimorphism.

Exercise I.22. Show that in any category if gf is an epimorphism, then g is
an epimorphism.
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Exercise I.23. Show that in any category if s is an epimorphism and a section,
then s is an isomorphism.

Exercise I.24. Show that in any category the composition of sections is a
section.

Exercise I.25. Show that in any category if gf is a section, then f is a section.

Exercise I.26. Show that in any category the composition of monomorphisms
is a monomorphism.

Exercise I.27. Show that in any category if gf is an monomorphism, then f
is a monomorphism.

Exercise I.28. Show that in any category if r is a monomorphism and a
retract, then r is an isomorphism.

In many, though far from all, of the familiar categories discussed in the Cat-
alog of Categories (Appendix B) the epimorphisms are the surjective functions,
and the monomorphisms are the injective functions. As a result it is often the
case that morphisms that are both monic and epic are isomorphisms. Often,
but not always!

Exercise I.29. Give an example of a morphism in a category of “sets with
structure” that is an epimorphism, but not surjective. (Hint: Look in the
category of monoids or in the category of topological spaces.)

For reasons explained in it is considerably harder to give examples of monomor-
phisms which are not injective. The most common example is in the category
of divisible Abelian groups where the quotient homomorphism Q // Q/Z is
a monomorphism but clearly not an injection.

Exercise I.30. Give an example of a category and a morphism in the category
which is both a monomorphism and an epimorphism, but not an isomorphism.

This is sufficiently common that it deserves a name.

Definition I.21: A morphism that is both a monomorphism and an epimor-
phism is called a bimorphism.
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Of course every isomorphism is a bimorphism, while the last exercises ex-
hibits a bimorphism that is not an isomorphism. The interesting question is
“When is a bimorphism an isomorphism?”. There are categories where this is
always true, and others where the bimorphisms that are not isomorphisms are
of particular interest. This is a minor theme that will recur from time to time.

Again the situation where every bimorphism is an isomorphism has a name.

Definition I.22: A category is which every bimorphism is an isomorphism
is called a balanced category.

I.2.4 Subobjects and Quotient Objects

Although “surjective” and “injective” are defined in terms of elements and
so don’t quite fit our “arrows only” motto, we will investigate the relation
between these pairs of concepts (and sections and retracts as well) repeatedly.
In particular the relation between these concepts not just in a single category,
but between related categories.

As a start notice that in most familiar categories we have notions of sub-
objects and quotient objects. These are usually defined in terms of elements,
but we’ll do it with morphisms.

Definition I.23: A subobject of an object B is a monomorphism A // // B.

Before continuing on, let’s look at how meaningful this is in the category of
sets. We know that a monomorphism A // // B in Set is an injective function,
so certainly if A is a subset of B, then the inclusion function is a monomorphism
and so we have a subobject of B. But just because A // // B is an injection,
this does not mean that A is a subset of B. But any injection does factor as

A
∼= // S ↪→ B

with S the image of the monomorphism being an actual subset of B and S ↪→ B
the inclusion function. Moreover two injections m : A // // B and m′ : A′
// // B have the same image in B exactly when there is a bijection between A

and A′ so that
A

B

m

��???????????A

A′

OO

∼=

��
A′

B

m′

??�����������

commutes. The same is true in many categories of “structured sets”. Based
on this we make the following definition.
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Definition I.24: Two subobjects m : A // // B and m′ : A′ // // B of B are
equivalent when there is an isomorphism between A and A′ with

A

B

m

��???????????A

A′

OO

∼=

��
A′

B

m′

??�����������

commuting.

So in the category of sets a subset determines a subobject and a subobject
determines a subset with two different subobjects determining the same subset
iff they are equivalent. In many other familiar categories such as the cate-
gories of groups, rings, vector spaces, etc., there is the same correspondence
between equivalent subobjects and the familiar subgroups, subrings, etc. But,
as just one example, subobjects in the category Top does not well correspond
to subspaces of topological spaces. For the details see the various entries in the
Catalog of Categories (Appendix B).

It is tempting to define a subobject of an object to be an equivalence class of
equivalent monomorphisms into the object, and it is common to do so. But the
difficulty with this is that such an equivalence class need not exist! In Zermelo-
Fraenkel set theory as discussed in Appendix A, the “equivalence class” of all
injections into a one element set, say {0}, cannot exist as a set – it is too
large. Remember that for every set X there is the one element set {X} and
and a unique injection {X} // // {0}. Any two of these are equivalent, so if
this equivalence class were to exist as a set it would be equinumerous with the
(non-existent) set of all sets!

This issue will be dealt in a much more satisfying fashion when we discuss
subobject classifiers (see definition IX.1 and the following surrounding mate-
rial).

There is the dual notion of a quotient object.

Definition I.25: A quotient object of an object B is an epimorphism

B // // A.

Just as with subobjects we define equivalent quotient objects.

Definition I.26: Two quotient objects e : B // // A and e′ : B // // A′ are
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equivalent where there is an isomorphism between A and A′ with

A

B

____

e

???????????A

A′

OO

∼=

��
A′

B

����

e′
�����������

commuting.

Again let’s look at this in the category of sets. First what is a quotient
set? As described in the Appendix on Set Theory (see A.7 and also Mac Lane
and Birkhoff [55, Sec. 1.9]) a quotient set of B is the set of equivalence classes
of some equivalence relation on B. To connect that to the notion of quotient
object, any function f : B // A defines an equivalence relation on B via
b ≡f b′ iff f(b) = f(b′). This equivalence relation is written as b ≡ b′ mod f .

Exercise I.31. Verify that b ≡f b′ iff f(b) = f(b′) is an equivalence relation.

We write B/ ≡f for the quotient set of B by this equivalence relation, and
p : B // B/ ≡f for the projection that sends each element of B into the
equivalence class containing it. The projection function, p, is a surjection, and
p(b) = p(b′) iff b ≡f b′, i.e., iff f(b) = f(b′). The key result is in the following
exercise.

Exercise I.32. Show that in the above situation there is a unique function
f : B/ ≡f // A with f = fp. Moreover if f is a surjection, then f is a
bijection.

So in the category of sets quotient sets correspond precisely to equivalent
quotient objects. As with subobjects this is also true in many other familiar
categories such as the categories of groups, rings, vector spaces, etc., but not
always. For the details see the various entries in the Catalog of Categories
(Appendix B).

We will revisit quotient objects and subobjects from time to time in later
sections. For the moment we do not even have the notion of an equivalence
relation for general categories. This is one of the topics we will address in
Section VI.1. In particular see the definition VI.6.
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I.3 Special Objects

I.3.1 Products and Sums

Definition I.27: The product of a finite family C1, · · · , Cn of objects in
C is an object, P , together with a family of morphisms πi : P // Ci so that
for every family of morphisms fi : C // Ci there exists a unique morphism
〈f1, · · · , fn〉 : C // P with that πi〈f1, · · · , fn〉 = fi.

C P
〈f1,··· ,fn〉 //_________C

Ai

fi

''OOOOOOOOOOOOOOOOOOO P

Ai

πi

��

[We read this diagram as saying that 〈f1, · · · , fn〉 is the unique morphism
making the diagram commute. Note that implicitly there are n triangles in
this diagram featuring (π1, f1), . . . , (πn, fn) and all with the common edge
〈f1, · · · , fn〉.]

Similar situations occur constantly in the study of categories, under the
name Universal Mapping Property. The Universal Mapping Property for a
product ofA1, · · · , An is that every family of morphisms fi : C // Ai uniquely
factors through the family πi : P // Ai of projections. We will mention ex-
amples of other Universal Mapping Properties as they occur, and then discuss
the many ramifications in Chapter V (Universal Mapping Properties).

Note: The definition of a product is a template for universal mapping prop-
erty definitions throughout category theory, so it is important to understand
just what is required to prove that something is a product.

The important first part is that a product is not just an object. In set
theory there is the product of two sets, and it is a certain unique set. In
the category of sets by contrast, a product of two sets is a set together with
two projection functions. And while products in the category of sets are in a
important certain sense unique (see the next proposition), it is definitely not
the object that is unique.

The next crucial part of the definition is the requirement that for every
object C in the category, and for every family of morphisms fi : C // Ai a
morphism f : C // P exists such that for all i we have πif = fi.

And the final critical requirement is that the morphism f which is asserted
to exist in the previous paragraph is the unique morphism which satisfies those
equations, i.e., if we have both f and g with πif = fi = πig, then it must follow
that f = g.

And equally, these are exactly the properties that can be used when we
have the hypothesis that (P, πi : P // Ai) is a product of the family (Ai) of
objects.
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Proposition I.1 If P with πi : P // Ai and P ′ with π′i : P ′ // Ai are
both products of A1, · · · , An, then 〈π1, · · · , πn〉 : P // P ′ is an isomorphism
with 〈π′1, · · · , π′n〉 : P ′ // P as inverse.

Proof: Consider the commutative diagram

Ai Ai

P ′

Ai

π′j

��

P ′ P
〈π1,··· ,πn〉 //_____ P

Ai

πj

��
Ai Ai

P

Ai
��

P P ′
〈π′1,··· ,π

′
n〉 //_____ P ′

Ai

π′j

��
Ai Ai

P ′

Ai
��

P ′ P
〈π1,··· ,πn〉 //_____ P

Ai

πj

��

But 1′P is the unique morphism with π′j1P ′ = π′j , so 〈π1, · · · , πn〉〈π′1, · · · , π′n〉 =
1′P . And 1P is the unique morphism with πj1P = πj , so 〈π′1, · · · , π′n〉〈π1, · · · , πn〉 =
1P .

Note the use of to mark the end (or omission) of a proof. As noted
in the preface (p. iv) We will use it in this way from time to time throughout
these notes.

Notation: We will speak of “the” product of A1, · · · , An and will denote the
object as Πn

i=1Ai with the projection morphisms π1, · · · , πn, but it is important
to keep in mind that the product is only unique up to a unique isomorphism.

When there is no danger of confusion, we will for each morphism

f : C // Πn
i=1Ai

write fi for πif , so that f = 〈f1, · · · , fn〉. Notice the frequently useful obser-
vation that the identity morphism on the product Πn

i=1Ai is 〈π1, · · · , πn〉.
For a product of two objects we will usually write A × B for the (object

of the) product of the two objects A and B and will write the projection
morphisms as πA : A×B // A and πB : A×B // B. The diagram for the
definition is

A×B

B

πB

��

C A×B〈f,g〉___ //___C

B

g

''OOOOOOOOOOOOOOOOOOOO

A

C

77

f

oooooooooooooooooooo A

A×B

OO

πA

In particular note that 1A×B = 〈πA, πB〉.
When A = B the notation πA is ambiguous, so we must use the πi notation.

The special case where all the objects are the same is common and important,
so we have the special notation A2 for A×A, and generally An for Πn

i=1A.
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The Catalog of Categories (Appendix B) discusses products for all of the
categories there, but it seems worthwhile to at least note the situation in a few
familiar categories. In Set, A × B = {(a, b)|a ∈ A, b ∈ B} with πA(a, b) = a
and πB(a, b) = b. And given functions f : C // A and g : C // B,
〈f, g〉(c) = (f(c), g(c))

For most of the familiar categories of “structured sets”, e.g., categories of
groups, rings, vector spaces, topological spaces, etc., the same construction
works equally well.

Recalling that Hom(C,A)stands for the collection of morphisms from C to
A, we can also state the definition as: (Πn

i=1Ai, π1, · · · , πn) is a product iff

Hom(C,Πn
i=1Ai) // Πn

i=1Hom(C,Ai)
f 7−→ (π1f, · · · , πnf)

is a bijection with inverse

Πn
i=1Hom(C,Ai) // Hom(C,Πn

i=1Ai)
(f1, · · · , fn) 7−→ 〈f1, · · · , fn〉

Yet another way of saying this is that for every object C, the morphism
〈π1∗, · · · , πn∗〉 : Hom(C,Πn

i=1Ai) // Πn
i=1Hom(C,Ai) is an isomorphism in

the category of sets.
Note that (f1, · · · , fn) is an n-tuple of morphisms, while 〈f1, · · · , fn〉 is

just one morphism, the single unique morphism with πi〈f1, · · · , fn〉 = fi for
i = 1, · · · , n.

Now we want to look at an unfamiliar category to illustrate just what is
involved in showing we do or do not have a product.
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Exercise I.33. From exercise I.3 recall the category E with objects all sets,
but with morphisms only the surjections.
Let S be the set {0, 1} considered as object of E . Certainly the product (S×S,
π1, π2) exists in Set. Moreover S × S is an object of E and π1 and π2 are
morphisms in E .

(a) Show that if a product of S with itself exists in E , then it must be (S×S,
π1, π2).

(b) Consider the diagram

S × S

S

π2

��

S S × SS S × SS

S

1S

''OOOOOOOOOOOOOOOOOOOO

S

S

77

1S

oooooooooooooooooooo S

S × S

OO

π1

and confirm that there is no surjection S // S × S which makes this
diagram commute.

Why does this tell us that there is no product of S with itself in E ?

There are many objects and maps C, f and g in E where there is a mor-
phism from C // S × S in E making the following diagram commute:

S × S

S

π2

��

C S × S//________C

S

g

''OOOOOOOOOOOOOOOOOOOO

S

C

77

f

oooooooooooooooooooo S

S × S

OO

π1

Verify that whenever such a morphism exists, it is unique.

The following exercises are designed both to exercise your facility in working
with the definition, and also to develop the extent to which products do indeed
work as our intuition suggests.

Exercise I.34. For any family of two or more objects, A1, · · · , An, in C
prove that Πn

i=1Ai is isomorphic to (Πn−1
i=1 Ai)×An.
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Exercise I.35. Suppose f : P // A × Bis an isomorphism. Prove that
(P, π1f, π2f) is also a product of A and B.

Exercise I.36. Define t : A×B // B×Aby t1 = π2, t2 = π1, i.e., t = 〈π2, π1〉.
Prove that t is an isomorphism.

The morphism t of the above exercise will be used from time to time, usually
in connection with commutative operations of some sort. Because of that we
want the following definition.

Definition I.28: The morphism t as defined in exercise I.36 is the transpo-
sition isomorphism.

This exercise and definition is a special case of a more general one which is
harder only because of the bookkeeping involved in dealing with the indices.

Exercise I.37. With n a positive integer, let p : {1, · · · , n}
∼= // {1, · · · , n}

be a permutation. Define s : Πn
i=1Ai

// Πn
i=1Ap(i) by sp(i) = πi. Show that

s is an isomorphism with s−1 : Πn
i=1Ap(i)

// Πn
i=1Ai defined by s−1

i = πi

These two exercises are interesting, but can also be misleading. Notice that
the first exercise does not say that B × A is a productof A and B. Indeed it
cannot be overemphasized that a product of two objects is not just an object,
but rather an object together with two projection morphisms satisfying the
Universal Mapping Property for a product. The object that is part of the
product (B × A, πB , πA) is isomorphic to the object A × B and so, following
exercise I.35, there are suitable projections morphisms from B × A to A and
B that will give a product. But those projections are not the projections that
are part of (B ×A, πB , πA), even in the special case when A = B!

In many of the familiar categories the projection morphisms from a product
to each of its factors is surjective. That suggests that perhaps in categories they
are always surjective, so we ask the following question.

Exercise I.38. Does the projection π1 : A × B // A have to be an epi-
morphism? Prove or give a counter-example. (Hint: Carefully consider the
category of sets.)

There are many familiar constructions for sets that carry over quite readily
to products in arbitrary categories. We start with the following definition.

Definition I.29: Whenever we have fi : Ai // Bi, we define the product of
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the morphisms to be the unique morphism f = Πn
i=1fi : Πn

i=1Ai
// Πn
i=1Bi

such that πif = fiπi

Just as with the product of objects, if we have just two morphisms, say f
and g, we will write f × g for the product of the two. And sometimes we will
write f × g × h, etc.

These definitions make for a number of exercises.

Exercise I.39. In the category of sets, if f1 : A1
// B1 and f2 : A2

// B2

are two functions and (a1, a2) ∈ A1 ×A2, then what is (f1 × f2)(a1, a2)?

Exercise I.40. Show that Πn
i=11Ai = 1ΠAi .

Exercise I.41. Consider the families of morphisms fi : Ai // Bi and
gi : Bi // Ci. Verify that (Πigi)(Πifi) = Πi(gifi)

Exercise I.42. Show that if f and g have retracts f ′ and g′ respectively, then
f ′ × g′ is a retract for f × g.

Exercise I.43. Show that if f and g are monomorphisms, then f × g is a
monomorphism.

Exercise I.44. Show that if f and g have sections f ′ and g′ respectively, then
f ′ × g′ is a section for f × g

In most familiar categories the product of epimorphismsis an epimorphism
as well, but that is not universally true. But neither is it very easy to give an
example. See if you can find one!

Recall the induced function h∗ : Hom(A,B) // Hom(D,B) given by
h∗ (f) = fh when h : D // A and f : A // B. Look at what happens with
products:
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Exercise I.45. Suppose that f : A // B, g : A // C and h : D // A.
Verify that 〈f, g〉h = 〈fh, gh〉.
Hint: Here is the relevant diagram.

D

B

fh

77oooooooooooooooooooo
A

B

f

??�����������
B × C

B

πB

OO

D A
h // A B × C

〈f,g〉 //A

C

g

��??????????? B × C

C

πC

��

D

C

gh

''OOOOOOOOOOOOOOOOOOOO

Here is a simple but important example which is worthy of a formal defini-
tion.

Definition I.30: For every object A this is the diagonal morphism ∆ =
〈1A, 1A〉 : A // A×A.

This will be written as ∆A if we need to emphasize the particular object.

Exercise I.46. Verify that for any morphisms f, g : A // B, we have
〈f, g〉 = (f × g)∆.

Exercise I.47. Let X be any object of Set. What is ∆(x) for x ∈ X?

Exercise I.48. Let A be any Abelian group in Ab. What is ∆(a) for any
a ∈ A?

The answers for the two previous exercises are the same, and for general
reasons we will explain when we discuss Algebraic Categories in Chapter VII.

For every concept defined in a general category, there is a dual concept that
is gotten by “reversing all the arrows”. This notion of duality is itself a very
general and important concept that will be discussed at length in Section II.1.
Leading up to that we will give many example of dual definitions, theorems
and proofs, starting with the dual of products.

Definition I.31: For any finite family A1, · · · , An of objects in C , a coprod-
uct or sum of these objects is an object, S together with a family of morphism
ιj : Aj // S where for every family of morphisms fj : Aj // C there exists
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a unique morphism  f1

...
fn

 : S // C

such that  f1

...
fn

 ιj = fj

C Soo

0BBBB@
f1

...
fn

1CCCCA
_________C

Ai

gg

fi

OOOOOOOOOOOOOOOOOOO S

Ai

OO

ιi

[We read this diagram as saying that

 f1

...
fn


is the unique morphism that makes the diagram commute. Note that implicitly
there are n triangles in this diagram featuring (ι1, f1), . . . , (ιn, fn) and all with

the common edge

 f1

...
fn

.]

Note: In Section I.3.3 we’ll see the good reasons why we would like to write
the morphism from a sum into another object as a column vector, but space
considerations demands a more compact notation, so we will use [f1, · · · , fn]
as a synonym for  f1

...
fn


For reasons that we will explore more fully when we discuss dual cate-

gories and duality in Section II.1, for each result about products, there is a
corresponding result about sums. All of the following results in this section,
including the exercises, are examples.

Proposition I.2 If S with ιj : Ai // S and S′ with ι′j : Ai // S′ are
both sums of A1, · · · , An, then [ι1, · · · , ιn] : S′ // S is an isomorphism with
[ι′1, · · · , ι′n] : S // S′ as inverse.
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Proof: Consider the commutative diagram

S′ S0BBBB@
ι1
...
ιn

1CCCCA

//_____

Ai

S′

ι′j

��

Ai AiAi

S

ιj

��
S S′0BBBB@

ι′1
...
ι′n

1CCCCA

//_____

Ai

S
��

Ai AiAi

S′

ι′j

��
S′ S0BBBB@

ι1
...
ιn

1CCCCA

//_____

Ai

S′
��

Ai AiAi

S

ιj

��

But 1S′ is the unique morphism with 1S′ι′j = ι′j , so [ι′1, · · · , ι′n][ι1, · · · , ιn] = 1′S .
And 1S is the unique morphism with 1Sιj = ιj , so [ι1, · · · , ιn][ι′1, · · · , ι′n] = 1S .

Compare this solution with the proof of Proposition I.1. The two were
written carefully to make it clear that each can be transformed into the other
by “reversing the arrows” and exchanging sums and products. This is an
example of duality which is discussed formally in Section II.1.

Notation: We will speak of “the” sum or coproduct of A1, · · · , An and will
denote the object as Σni=1Ai with the injection morphisms

ιj : Aj // Σni=1Ai, j = 1, · · · , n,

but it is important to keep in mind that the sum is only unique up to a unique
isomorphism.

In the special case of two objects A and B we will usually write A+B for
the sum and write ιA : A // A + B, ιB : B // A + B for the injection
morphisms.

When A = B the notation ιA is ambiguous, so we must use the ιi notation.
The special case where all the objects are the same is common and important,
so we have the special notation 2 •A for A+A, and generally n •A for Σni=1A.

When there is no danger of confusion, we will for each morphism

f : Σni=1Ai // C

write fi for fιj , so that f = [f1, · · · , fn]. Remember the frequently useful
observation that the identity morphism on the sum Σni=1Ai is [ι1, · · · , ιn].

The Catalog of Categories (Appendix B) discusses sums for all of the cat-
egories there, and for some of them (such as the categories of Abelian groups
and of vector spaces) the sum is a familiar construction. But more commonly,
even in the category of sets, sums are not nearly so well known as products.
An initial discussion follows on page 34.

Recalling that Hom(A,C)stands for the set of morphisms from A to C, we
can also state the definition as: (Σni=1Ai, ι1, · · · , ιn) is a sum iff

Hom(Σni=1Ai, C) // Πn
i=1Hom(Ai, C)

f 7−→ (fι1, · · · , fιn)
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is a bijection with inverse

Πn
i=1Hom(Ai, C) // Hom(Σni=1Ai, C)

(fι1, · · · , fιn) 7−→ [f1, · · · , fn]

Exercise I.49. For any family of two or more objects A1, · · · , An in C prove
that Σni=1Ai is isomorphic to (Σn−1

i=1 Ai) +An. (Compare to exercise I.34.)

Exercise I.50. Suppose f : A + B // S is an isomorphism. Prove that
〈S, fι1, fι2〉 is also a sum of A and B. (Compare to exercise I.35.)

Exercise I.51. Define t : A+B // B+A by t1 = ι2, t2 = ι1, i.e., t = [ι2, ι1].
Prove that t is an isomorphism. (Compare to exercise I.36.)

Definition I.32: Write t for [ι2, ι1] : A+B // B +A. By the immediately
preceding exercise this is an isomorphism. Just as with the morphism defined
in exercise I.36, we call this the transposition isomorphism.

Just as with products, this last exercise (and the next) is interesting, but
can also be misleading. In particular the previous exercises does not say that
B + A is a sumof A and B. Indeed it cannot be overemphasized that a sum
of two objects is not just an object, but rather an object together with two
inclusion morphisms satisfying the Universal Mapping Property for a sum. The
object that is part of the product (B + A, ιB , ιA) is isomorphic to the object
A + B and so, following exercise I.50, there are suitable injection morphisms
from A and B to B + A that will give a sum. But those injections are not
the injections that are part of (B + A, ιB , ιA), even in the special case when
A = B!

Exercise I.52. With n a positive integer, let p : {1, · · · , n}
∼= // {1, · · · , n}

be a permutation. Define s : Σni=1Ap(i)
// Σni=1Ai by sp(i) = ιi. Show that

s is an isomorphism with s−1 : Σni=1Ai
// Σni=1Ap(i) defined by si

−1 = ιi.
(Compare to exercise I.37.)

Exercise I.53. Does the injection ι1 : A // A + B have to be a monomor-
phism? Prove or give a counter-example. (Compare to exercise I.38.)

Definition I.33: Whenever we have fi : Ai // Bi, we define the sum of
the morphisms f = Σnj=1fj : Σnj=1Aj

// Σnj=1Bj by the fιj = ιjfj
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Just as with the sum of objects, if we have just two morphisms, say f and
g, we will write f + g for the sum of the two. And sometimes we will write
f + g + h, etc.

And just as for products this makes for a number of exercises.

Exercise I.54. Show that Σni=11Ai = 1ΣAi . (Compare to exercise I.40.)

Exercise I.55. Consider the families of morphisms fi : Ai // Bi and gi : Bi
// Ci. Verify that (Σigi)(Σifi) = Σi(gifi). (Compare to exercise I.41.)

Exercise I.56. Show that if f and g have sections f ′ and g′ respectively, then
f ′ + g′ is a section for f + g. (Compare to exercise I.42.)

Exercise I.57. Show that if f and g are epimorphisms, then f + g is an
epimorphism. (Compare to exercise I.43.)

Exercise I.58. Show that if f and g have retracts f ′ and g′ respectively, then
f ′ + g′ is a retract for f + g. (Compare to exercise I.44.)

Just as with products of epimorphisms, in most familiar categories the sum
of monomorphism is a monomorphism as well, but that is not universally true.
(Indeed that follows from the discussion on duality in Section II.1.) But neither
is it very easy to give an example. See if you can find one!

Exercise I.59. Give an example where f and g are monomorphisms, but f+g
is not a monomorphism. (Compare with the remark on page 28.)

Recall the induced function h∗ : Hom(B,A) // Hom(B,D) given by
h∗(f) = hf when h : A // D and f : B // A. Look at what happens with
sums.
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Exercise I.60. Suppose that f : B // A, g : C // A and h : A // D.
Verify that h[f, g] = [hf, hg].
Hint: Here is the relevant diagram.

B

B + C

ιB

��

B

A

f

��??????????????B

D

hf

''OOOOOOOOOOOOOOOOOOOOOOOO

B + C A
[f,g] // A D

h //

C

D

hg

77oooooooooooooooooooooooo
C

A

g

??��������������
C

B + C

ιC

OO

(Compare to exercise I.45.)

Here is another simple but important example which is worthy of a formal
definition. This is the dual of the diagonal morphism from page 29.

Definition I.34: For every object A the codiagonal morphism or folding
morphism is ∇ = [1A, 1A] : A+A // A.

This will be written as ∇A if we need to emphasize the particular object.

Exercise I.61. Verify that for any morphisms f, g : B // A, we have
[f, g] = ∇(f + g). (Compare to exercise I.46.)

So we have a number of simple results about sums that are all dual to the
corresponding properties for products, but what categories actually have sums,
and what are sums in the categories where they exist? Most of the familiar
categories do have sums, and in many cases these are very well known, but in
the most basic category of sets the sum is unfamiliar.

If X and Y are disjoint sets, i.e., X ∩ Y = ∅ and f : X // Z and
g : Y // Z are any two functions, then we can define [f, g] : X ∪ Y // Z
by

[f, g](t) =

{
f(t) if t ∈ X
g(t) if t ∈ Y

Defining ιX : X // X ∪ Y and ιY : Y // X ∪ Y to be the inclusion
maps, it is clear that (X ∪ Y , ιX , ιY ) is a sum of X and Y . If X and Y
are not disjoint, there are nonetheless isomorphic sets X ′ and Y ′ which are
disjoint. (One common construction is X ′ = X×{0} and Y ′ = Y ×{1},) Then
with ιX and ιY as the compositions of the isomorphisms to X and Y with the
inclusions into X ′ ∪ Y ′, we have (X ′ ∪ Y ′, ιX , ιY ) as a sum of X and Y .
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Definition I.35: This above construction defines the disjoint union of two
sets.

It should be clear how to extend this to a arbitrary (finite) sums, and we
will leave the details for the reader.

Exercise I.62. If f0 : A0
// B0 and f1 : A1

// B1 are two functions, then
describe (f0 + f1) on the elements of A0 +A1.

The situation in both the category of Abelian groups and in the category
of vector spaces is very simple. Define (A + B = A × B, ιA(a) = (a, 0),
ιB(b) = (0, b)). Now for any two homomorphisms f : A // C and g : B

// C, define [f, g] by [f, g](a, b) = f(a) + g(b).

Exercise I.63. Verify that (A+B, ιA, ιB) is indeed a sum of A and B in Ab.

Exercise I.64. Let A be any Abelian group in Ab. What is ∇(a)for any
a ∈ A?

Exercise I.65. If f1 : A1
// B1 and f2 : A2

// B2 are two homomor-
phisms of Abelian groups, describe (f1 + f2) on the elements of A1 +A2.

Exercise I.66. Verify that (A + B, ιA, ιB) is indeed a sum of A and B in
Vect.

Exercise I.67. Let A be any vector space in Vect. What is ∇(a)for any
a ∈ A?

Exercise I.68. If f1 : A1
// B1 and f2 : A2

// B2 are two linear
transformations of vector spaces, describe (f1 +f2) on the elements of A1 +A2.

The same results hold true more generally in the categories of modules over
a ring. These are all examples of Abelian categories which are the topic of
Chapter XIII. In other well-known categories, such at the category of groups,
there are commonly sums, but the construction is less familiar. These are
discussed in the Catalog of Categories (Appendix B).
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I.3.2 Final, Initial and Zero Objects

In the category of sets there are several types of sets that play an important
role. The first of these are the one element sets!

Definition I.36: An object 1 is a final object or terminal object iff each
object A has exactly one morphism from A to 1. We will write this as ! : A

// 1 when we need to name the morphism.

Exercise I.69. Prove that any two final objects in C are isomorphic, and the
isomorphism is unique.

Notation: We will speak of “the” final object in a category and and will write
it as 1 and will write the unique morphism from any object to 1 as !, but it is
important to keep in mind that the final object is only unique up to a unique
isomorphism.

In Set the final objects are all the singletons, i.e., the sets with exactly one
element. These are useful objects in the category because it means there is a
bijection between functions f : 1 // A and the elements of A. Inspired by
this (and other examples we will see later) we make the following definition.

Definition I.37: For any category with a final object, a point in an object
A is a morphism 1 // A.

To see some of the value of these definitions, do the following exercise.

Exercise I.70. Show there is a bijection between the points of A × B and
pairs (a, b) where a is a point of A and b is a point of B.

Final objects capture some other properties of singletons as well.

Exercise I.71. If 1 is the final object in a category and A is any object in the

category, prove that A oo 1A
A

! // 1 exhibits A as the product of 1 and A.
So in any category with a final object, 1×A ∼= A.

Exercise I.72. Verify that every point is a monomorphism.

Unfortunately this is not as general as we would like. In the category Ab of
Abelian groups, the final object is the zero group, and for every Abelian group
A there is only one homomorphism from the zero group to any Abelian group.
So the set of “points” in an Abelian group has no correspondence with the
set of elements of the group. Although the final object in a category is in one
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sense very trivial, it is also another example of a Universal Mapping Property.
Even more, as we will see in section V.1, it is the fundamental example of

a Universal Mapping Property. We will also see that how it relates to each
particular category is important for distinguishing various types of categories.
(See Chapter IX.)

Definition I.38: A Cartesian category or category with finite prod-
ucts is one with a final object where every finite number of objects C1, . . . ,
Cn has a product.

A final object is sensibly considered to be the product of no objects: it has
no projection morphisms (there are no factors on which to project) but there
is the unique morphism from any object to the final object which has suitable
composition with all of those non-existent projections!

There is a dual notion (in a sense that will be explained in Section II.1)
which is also important.

Definition I.39: An object 0 is an initial object iff there is exactly one
morphism from 0 to each object A.

Exercise I.73. Prove that any two initial objects in C are isomorphic, and
the isomorphism is unique. (Compare to exercise I.69.)

In the category of sets there is exactly one initial object, the empty set,
and the unique function from the empty set to any set is the empty function.
And while functions from a singleton final object to other sets are quite useful,
functions from other sets to the empty set are very dull – there aren’t any! But
exercise I.71 does have a suitable dual.

Exercise I.74. If 0 is the initial object in a category and A is any object in

the category, prove that A
1A // A oo 1 0 exhibits A as the sum of 0 and A.

So in any category with a initial object, 0+A ∼= A. (Compare to exercise I.71.)

Definition I.40: A co-Cartesian category or category with finite sums
is one with an initial object where every finite collection of objects C1, . . . , Cn
has a sum.

Just as a final object is a product of no factors, an initial object is sensibly
considered to be the sum of no objects: it has no injection morphisms (there
is nothing to inject) but there is the unique morphism from the initial object
to any object which composes properly with all of the non-existent injections!

Initial objects are just as trivial and interesting as final objects. They,
too, provide another example of a Universal Mapping Property. Indeed in
Section V.1.) we will see they are a fundamental example.



38 CHAPTER I. MATHEMATICS IN CATEGORIES

Sometimes initial objects and final objects are the same, and this deserves
a special name.

Definition I.41: In a category that has both an initial object, 0, and a final
object, 1, there is a unique morphism ! : 0 // 1. If this is an isomorphism,
then we speak of a zero object and write it as 0.

Of course in a category with a zero object all initial objects, final objects
and zero objects are then uniquely isomorphic.

Definition I.42: If a category has a zero object, then for any objects A and

B we have A ! // 0 ! // B, i.e., there is a unique morphism which “factors
through” the zero object. All such morphisms are called zero morphisms
and are denoted by 0.

Although the category of sets does not have a zero object, there are very
many familiar categories that do. In the categories of monoids, of groups, of
Abelian groups, of vector spaces, and many others, there is a trivial object that
is the zero object in the category.

There are also interesting and natural categories that have a zero object
but which are not “algebraic”. One good example is the category of pointed
sets.

Definition I.43: A pointed set is a pair, (X,x0), consisting of a non-empty
set, X, together with an element (called the base point,) x0, of X.

Definition I.44: A morphism between pointed sets f : (X,x0) // (Y, y0) is
a function f : X // Y with f(x0) = y0.

Just as we have the category Set of sets and functions, we have the category
Set∗ of pointed sets together with their morphisms. For more details see B.1.7.

The category Set∗ has initial objects, final objects and zero objects: any one
element set with the single element being (necessarily) the base point element.

Set∗ has products and sums. The product of two pointed sets, (X,x0) and
(Y, y0) “is” (X × Y, (x0, y0)) with the usual projection maps.

The sum of two pointed sets is similar to but a bit simpler than the disjoint
union of arbitrary sets. Define (X,x0) + (Y, y0) = ((X × {y0}) ∪ ({x0} ×
Y ), (x0, y0)), ιX : (X,x0) // (X,x0) + (Y, y0) by ιX(x) = (x, y0) and ιY :
(Y, y0) // (X,x0) + (Y, y0) by ιY (y) = (x0, y)

Definition I.45: The above construction of the sum of two pointed sets is
usually called the join of the two pointed sets.

Now for any two morphisms f : (X,x0) // (Z, z0) and g : (Y, y0) // (Z, z0)
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we can define [f, g] : (X,x0) + (Y, y0) // (Z, z0) by

[f, g](t) =

{
f(t) if t ∈ X
g(t) if t ∈ Y

It is very easy to check the details to verify that this does indeed exhibit a
sum of (X,x0) and (Y, y0), so it will be left for the reader.

It should be clear how to extend this to a arbitrary (finite) sums, and we
will also leave those details for the diligent reader.

I.3.3 Direct Sums and Matrices

As an example of how this abstraction begins to connect back to more familiar
mathematics, and at the same time provides a bridge to new ideas we want to
look at morphisms from sums to products.

The recognition of the connections among direct sums, matrices of mor-
phisms and addition of morphisms first appeared in Mac Lane [49](though
much of the terminology has changed since then.) Most of the material in this
section in much this form appeared in Eckmann and Hilton [17].Treatments
can also be found in Chapter 5 of Blyth [8],section 1.591 of Freyd and Scedrov
[25]and Session 26 of Lawvere and Schanuel [47]

Throughout this section we suppose that C is a category that has
finite sums, finite products and a zero object.

Let A, B, C, and D be arbitrary objects in C and consider the question:
“What are the morphisms from A+B to C ×D?”

A

A+B

ιA

��
C ×D

C

πC

OO

A+B C ×D? // C ×D

D

πD

��
B

A+B

ιB

OO

To specify a morphism from any object into C×D requires giving two mor-
phisms from the object into C and D respectively. Specifying a morphism from
A+B to any object requires giving two morphisms from A and B, respectively,
into the object. So to give a morphism A + B // C × D is equivalent to
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giving four morphisms

f : A // C

g : A // D

h : B // C

k : B // D

and the morphism is

〈
(
f
h

)
,

(
g
k

)
〉

or, equivalently, (
〈f, g〉
〈h, k〉

)
As you probably suspect from the title of this sections, we are going to

write this morphism as (
f g
h k

)
We have done this for A + B // C × D just to avoid the additional

complication of indices, but that is really just a matter of bookkeeping. The
real result is the following proposition.

Proposition I.3 The morphisms Σni=1Ai
// Πm

j=1Bj are exactly the “ma-
trices”

M =


f11 f12 · · · f1m

f21 f22 · · · f2m

. . .
fn1 fn2 · · · fnm


where πjMιi = fij.

Exercise I.75. Prove Proposition I.3.

Just as in our initial discussion of morphisms A + B // C × D, it is
very well worth noting that this also says Mιi = 〈fi1, · · · , fim〉 and πjM =
[f1j , · · · , fnj ].

Another way of looking at this same information to to recall (see pages 25
and 32)that

Hom(C,Πm
j=1Bj) ∼= Πm

j=1Hom(C,Bj)

and
Hom(Σni=1Ai, C) ∼= Πn

i=1Hom(Ai, C)

Put those together and look at

Hom(Σni=1Ai,Π
m
j=1Bj) ∼= Πm

j=1Hom(Σni=1Ai, Bj) ∼= Πn
i=1Πm

j=1Hom(Ai, Bj)
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We started this section with the assumption that the category under consid-
eration has finite sums, finite products and a zero object. But the zero object
has as yet made no appearance. That changes when we consider morphisms

Σni=1Ai // Πn
j=1Aj

i.e., when we have the same objects in both the sum and product. Now in
general there is no distinguished morphism from Ai to Aj when i and j are
different, but when the category has a zero object this changes and we have the
zero morphism 0 : Ai // 0 // Aj . And as a result we have the morphism

I =


1A1 0 · · · 0
0 1A2 · · · 0

. . .
0 0 · · · 1An

 : Σni=1Ai // Πn
j=1Aj

Definition I.46: This matrix of morphisms is called the identity matrix
and is denoted by I.

This notation is deliberately very suggestive, and in some important cases
it is exactly right. For example consider the category FDVectK of finite di-
mensional vector spaces over a field K. In this category every vector space
of dimension n is isomorphic to Kn = Πn

i=1K. Moreover the morphisms, i.e.
linear transformations, L : K // K have the form L(x) = lx for some l ∈ K.
For good measure the morphism I : Σni=1K

// Kn that we constructed
above is an isomorphism. Even more every morphism Km // Kn can now
be identified with an ordinary matrix

a11 a12 · · · a1m

a21 a22 · · · a2m

. . .
an1 an2 · · · anm


of elements of K.

For more details, see Section B.4.4.
Of course in some cases the suggestion is misleading. For example consider

I =
(

1X 0
0 1Y

)
: X + Y // X × Y

in the category of pointed sets.
If X and Y are not singletons, then this is not an isomorphism, instead:

Exercise I.76. Show that I : X + Y // X × Y corresponds exactly to the
inclusion (X × {y0} ∪ {x0} × Y ) ⊆ X × Y .
Use this to show that if X and Y are not singletons, then I is not surjective.
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Categories where the morphism I : Σni=1Ai
// Πn
j=1Aj is an isomorphism

are both interesting and common. We will discuss this considerably more in
Chapter XIII on Additive and Abelian Categories, but there are interesting
consequences we can see right now.

The first simple observation is that when I is an isomorphism, then following
exercises I.35 and I.50 we can equip any sum or product with projections and
injections that make it both a sum and a product. Such an object equipped
with both injections and projections such as to make it a sum and product is
called a direct sum of the objects. We write this as

A oo πA

ιA
// A⊕B

πB //oo
ιB

B

for two objects, and as ⊕
Ai

πi //oo
ιi

Ai

in the general case.
Once we do this the morphism

I :
⊕

Ai

0BBBBBB@
1A1 0 · · · 0
0 1A2 · · · 0

. . .
0 0 · · · 1An

1CCCCCCA
//
⊕

Ai

really is the identity morphism.
This is sufficiently important that we make a formal definition.

Definition I.47: In a category with finite products, finite sums and a zero
object, a direct sum of objects A1, . . . , An is an object,

⊕n
i=1Ai, and mor-

phisms πi :
⊕n

i=1Ai
// Ai and ιi : Ai // ⊕n

i=1Ai for i = 1 to n such
that

i (
⊕n

i=1Ai, πi : i = 1, · · · , n) is a product of the Ai;

ii (
⊕n

i=1Ai, ιi : i = 1, · · · , n) is a sum of the Ai;

iii For each i, πiιi = 1Ai ; and

iv For each i and each j 6= i, πjιi = 0.

The name “direct sum” comes from its use for Abelian groups, modules
and vector spaces. Another term that is commonly used in the category theory
literature is biproduct.

Definition I.48: A category with direct sums is a category with a zero object
where every finite family of objects has a direct sum.



I.3. SPECIAL OBJECTS 43

There is no common name for this type of category, though Lawvere [43] has
argued for “linear category” largely because of results such as those expounded
in this section. That name is not adopted here because it is not commonly used,
and because linear category is also used in the literature for at least two other
types of categories.

Just as with products (I.38) and sums (I.40), the zero object in such a
category is sensibly considered to be the direct sum of zero objects. Contrast
this with exercises I.38 and I.53.

In direct analogy with products and sums we will write the direct sum of
two objects as (A⊕B, πA, πB , ιA, ιB).

Each projection πi :
⊕n

i=1Ai
// Ai has the corresponding injection

ιi : Ai // ⊕n
i=1Ai as a section (and the injection has the projection as

a retract), so the projections are always epimorphisms, and the injections are
always monomorphisms.

Now for any two morphisms f : A // B and g : C // D, we have
already defined f × g : A×B // C ×C and f + g : A+B // C +D. But
when we have direct sums, that means they both are morphisms from A⊕B to
C⊕D and so both are given by 2×2-matrices. So what is the matrix for f×g?
Well we know that f × g is the unique morphism with πB(f × g) = fπA and
πD(f × g) = gπB . To compute the matrix we need πC(f × g)ιA, πC(f × g)ιB ,
πD(f × g)ιA, and πD(f × g)ιB . But πC(f × g)ιA = fπAιA = f1A = f and
πC(f × g)ιB = fπAιB = f0 = 0. A similar computation for the other two
shows that the matrix is (

f 0
0 g

)

Exercise I.77. By means of a similar computation show that the matrix of
f + g is the same as the matrix of f × g, so f + g = f × g.

And so from now on we will write f⊕g : A⊕B // C⊕D in this situation.
Also we want to write

⊕n
i=1 fi :

⊕n
i=1Ai

// ⊕n
i=1Bi so we need the more

general result of the next exercise.

Exercise I.78. In a category with direct sums, verify that the matrix of both
Πn
i=1fi :

⊕n
i=1Ai

// ⊕n
i=1Bi and Σni=1fi :

⊕n
i=1Ai

// ⊕n
i=1Bi is

f1 0 · · · 0
0 f2 · · · 0

. . .
0 0 · · · fn


What makes ordinary matrices interesting is primarily that they can be

multiplied, and that multiplication of matrices corresponds to composition of
the corresponding maps, as is the case for the category of vector spaces. In
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order to define multiplication of these new matrices, we may be able to use
composition of morphisms in place of multiplication, but what is to take the
place of sum? We actually have a pair of candidates which we will see are actu-
ally the same. As we will see in a bit this has several important consequences,
and is not at all just a happy accident.

The two “sums” we define on Hom(A,B) are:
For f, g ∈ Hom(A,B), define

Definition I.49:

f M g = A
∆ // A⊕A

[f,g] // B

and

Definition I.50: fOg = A
〈f,g〉 // B ⊕B ∇ // B

Exercise I.79. In the category Ab of Abelian groups, what are (f M g)(a)
and (fOg)(a)?

Proposition I.4 In any category with direct sums M and O are the same bi-
nary operations on Hom(A,B)

Proof: For f , g in Hom(A,B),

f M g = [f, g]∆ by definition I.49
= ∇(f + g)∆ by exercise I.61
= ∇(f × g)∆ by exercise I.77
= ∇〈f, g〉 by exercise I.46
= fOg by definition I.50

Definition I.51: For any category with direct sums and any two morphisms
f, g : A // B in the category we define f + g = ∇(f ⊕g)∆. By the preceding
proposition f + g = f M g = fOg.
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Exercise I.80. In any category with direct sums, show that for any morphism
f , f + 0 = f = 0 + f .
Hint: Explain and use the following commutative diagram.

A 0
! // 0

B

!

��???????????

A

A

1

??�����������
A⊕A

A

πA

OO 0

0⊕A

ι0

��
A A⊕A∆ // A⊕A 0⊕A

!⊕1 // 0⊕A B
[!,f //]A

A

1

��??????????? A⊕A

A

πA

��
A

0⊕A

ιA

OO

A A
1 // A

B

f

??�����������

Exercise I.81. In any category with direct sums, consider morphisms where
hf , hg, f + g, fe and ge are all defined. Show that h(f + g) = hf + hg and
(f + g)e = fe+ ge.

Using this exercise you can readily verify a result that is quite familiar for
Abelian groups, vector spaces, etc.

Exercise I.82. In any category with direct sums, show that for any direct
sum A⊕B we have ιAπA + ιBπB = 1A⊕B

This exercise also allows us to get back to the motivation for the develop-
ment of the sum of morphisms: composition of matrices of morphisms.

Proposition I.5 In any category with direct sums, the composition

n⊕
i=i

Ai

0BBBBBB@
f11 f12 · · · f1m

f21 f22 · · · f2m

. . .
fn1 fn2 · · · fnm

1CCCCCCA
//
m⊕
j=1

Bj

0BBBBBB@
g11 g12 · · · g1p

g21 g22 · · · g2p

. . .
gm1 gm2 · · · gmp

1CCCCCCA
//
p⊕
k=1

Ck

is the n× p-matrix (hik) with hik =
g1k

g2k

...
gmk

 〈fi1, fi2, · · · , fim〉
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Proof: To simplify the notation, we will write F for the matrix (fij), G for
the matrix (gjk) and H for the matrix (hik). Remember that hik = πkHιi =
πkGFιi. But πkG is [g1k, · · · , gnk] and Fιi is 〈fi1, fi2, · · · , fim〉.

Now one more proposition will take us to our target.

Proposition I.6 In any category with direct sums, the composition

A
〈f1,··· ,fm〉 //

m⊕
j=1

Bj
[g1,··· ,gm] // C

is g1f1 + · · ·+ gmfm

Unfortunately there is a problem. We have not defined the sum of more
than two morphisms – well so what, we certainly know how to iterate sums
as (((f + g) + h) + k), etc. Unfortunately we don’t yet know that our “sum”
is associative! So we need a bit of a detour to fix these details, and the first
step is some convenient notation – for any object, A, we write An for

⊕n
1 A.

(Compare the notation An on page 24 and n •A on page 31.)

Definition I.52: In any category with direct sums and any finite number of
morphisms f1, · · · , fn, all from A to B we define f1 + · · ·+ fn to be

A
∆ // An

f1⊕···⊕fn // Bn
∇ // B

Now we have a definition, but we really want to know that this sum is
associative. The proof of that is tricky, and we will actually defer it to the
discussion preceding corollary 1 on page 54.

Proof of Proposition I.6 Now of course we have things arranged so that
the proof is trivial.

[g1, · · · , gm]〈f1, · · · , fm〉 = ∇(g1 ⊕ · · · ⊕ gm)(f1 ⊕ · · · ⊕ fm)∆
= ∇(g1f1 ⊕ · · · ⊕ gmfm)∆
= g1f1 + · · ·+ gmfm

With the first aspects of “matrix multiplication” in hand, there are many
additional developments possible, but this is a good point to change our point
of view a bit and consider doing various types of algebra in other categories.
Once we have some of that in hand we’ll revisit matrices of morphisms as an
application and see how it connects to what we have just done.

I.4 Algebraic Objects

A recurring theme in these notes is moving back and forth between investigating
what we can do using familiar concepts in general categories as a way to study
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categories (as in the previous section where we found that arbitrary categories
with finite direct sums have many familiar properties), and using categories
to investigate familiar concepts (as we are about to do in this section.) Many
familiar algebraic structures, such as groups and rings, can be defined in very
general categories. Specialized to familiar categories they then give us new
insights and connections.

We will actually return to this theme several times, particularly in Chap-
ter VII (Algebraic Categories). This first discussion is largely based on the
treatment given by Eckmann and Hilton [17, 18, 19].

I.4.1 Magmas in a Category

We start with the simplest of algebraic gadgets because it will serve as a useful
base for most of what follows, and because it usefully simplifies what we need
to do. Unfortunately the simplest algebraic gadget is also an unfamiliar one.
It is so simple that it really has little interesting theory of its own.

Following Bourbaki [10, I.1] we have the most basic definition.

Definition I.53: A magma is a set, M , together with a binary operation or
law of composition, µ : M ×M // M .

Most commonly the binary operation in a magma is written as µ(m,n) =
mn though in particular examples the operation may be written as m + n,
m ∗ n, mn or in some quite different fashion.

Here we make NO assumptions about the operation – it need not be as-
sociative, commutative, nor have any sort of identities. Stipulating that the
operation is associative, commutative or satisfies some other identities results
in other, often more familiar, objects.

Now as we are discussing categories we immediately want to define a suitable
morphism.

Definition I.54: A magma homomorphism is a function f : M // N
such that f(xy) = f(x)f(y).

Formally, if (M , µM ) and (N , µN ) are magmas, then a magma homo-
morphism f : (M,µM ) // (N,µN ) is a function f : M // N such that
f(µM (x, y)) = µN (f(x), f(y)) for x, y ∈M .

Now we have the category Magmaof magmas which has as objects all
magmas and as morphisms the magma homomorphisms. (You should convince
yourself that this is indeed a category.) And look at Section B.2.1 in the
Catalog of Categories (Appendix B) for more information about this category.

We could now go forward and define commutative magmas, and topological
magmas, smooth magmas and many other variations on this theme, thereby
getting a plethora of additional categories. But there is a better way.

Let C be any category with finite products.

Definition I.55: A magma in C is an object, M , together with a binary
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operation µ : M ×M // M .

And to go along we define the corresponding morphisms.

Definition I.56: A magma morphism, or morphism of magmas in C is
a morphism h : M // N such that

M N
h

//

M ×M

M

µM

��

M ×M N ×N
h×h // N ×N

N

µN

��

Exercise I.83. Show that there is a category, MagmaC , with objects the
magmas in C and as morphisms the magma morphisms.

Of course MagmaSet = Magma, as defined in Section B.2.1.
Now we have such categories as MagmaTop, the category of continuous

magmas, and MagmaManifold, the category of smooth magmas.
The category MagmaC directly inherits some properties from the mother

category C . First note that if 1 is a final object in C then the unique morphism
! : 1 × 1 // 1 exhibits 1 as an object in MagmaC . Moreover for any other
magma, (M,µ) in C clearly

M 1
!

//

M ×M

M

µM

��

M ×M 1× 1
!×! // 1× 1

1

!

��

commutes, so ! is the unique magma morphism from M to 1. Thus 1 (with its
unique binary operation) is also a final object in MagmaC .

Also if M1, . . . , Mn are magmas in C (with binary operations µ1, . . . , µn),
then we can use the µi to define a binary operation, µ, on Πn

1Mi. This is done
using the isomorphism between Πn

1Mi×Πn
1Mi and Πn

1 (Mi×Mi) which is given
by exercise I.37. Because we will use this particular isomorphism repeatedly it
is worthwhile to make it explicit. It is

〈〈π1, π1〉, · · · , 〈πn, πn〉〉 : Πn
i=1Mi ×Πn

i=1Mi
// Πn
i=1(Mi ×Mi)

While the inverse is
〈〈π1, · · · , πn〉, 〈π1, · · · , πn〉〉

.
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Now we define µ to be the composition of Πn
1Mi×Πn

1Mi

∼= // Πn
1 (Mi×Mi)

and Πn
1µi : Πn

1 (Mi × Mi) // Πn
1Mi. Some diagram chasing leads to the

conclusion that (Πn
1Mi, µ) is the product of the (Mi, µi) in MagmaC . The

details are in the following exercise.

Exercise I.84. Prove that if C is any category with finite products, then
MagmaC is a category with finite products.

Now we want to preview a bit of what we will start doing once we introduce
functors, the morphisms between categories (cf. Chapter III (Functors).)

Recall that we write Hom(A,B) for the set of morphisms from A to B(or
C (A,B) if we want to emphasize which category is being discussed.) More-
over we have Hom(C,A × B) ∼= Hom(C,A) × Hom(C,B) (look back at page
25.) Lets apply that to a magma (M , µ) and notice that for any object
C we get a binary operation, O, on Hom(C,M) defined by fOg = µ〈f, g〉
Even more, if h : M // N is a magma morphism, then the induced function
h∗ : Hom(C,M) // Hom(C,N)is a magma homomorphism.

Exercise I.85. Verify the above assertion that if h : M // N is a magma
morphism, then h∗ is a magma homomorphism.

Now if h : D // C is any morphism in the category, we also have the
induced function h∗ : Hom(C,M) // Hom(D,M).Recalling exercise I.45 we
have the following closely related exercise.

Exercise I.86. Verify that if M is a magma in C , and h : D // C is any
morphism, then h∗ : Hom(C,M) // Hom(D,M) is a magma homomorphism.

One of the motivating examples for this discussion of magmas is the codi-
agonal ∇ : A ⊕ A // A in any category with direct sums. In particular the
definition of O in Hom(A,B) given in Definition I.50 and several of the results
following that definition are special cases of the material in this section. And
pretty much all of them will be included once we combine the material here
with that in the next section.

Before we move on to that, we want to record the following theorem.

Theorem I.1 Let M be an object in C and suppose that for every object C in
C a binary operation, O, is defined on Hom(C,M) in such a way that for ev-
ery morphism h : C // D the function h∗ : Hom(D,M) // Hom(C,M) is a
magma homomorphism. Then there is a unique binary operation µ : M ×M // M
so fOg = µ〈f, g〉 for all f and g in Hom(C,M)

Proof: Consider µ = π1Oπ2 : M×M // M . Then for f and g in Hom(C,M)
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we have 〈f, g〉 : C × C // M and

µ〈f, g〉 = (π1Oπ2)〈f, g〉
= 〈f, g〉∗(π1Oπ2)
= 〈f, g〉∗(π1)O〈f, g〉∗(π2)
= π1〈f, g〉Oπ2〈f, g〉
= fOg

And if ν is some binary operation on M that induces O, then

µ = π1Oπ2

= ν〈π1, π2〉
= ν1M×M
= ν

Many interesting categories have the property that the Hom sets can be
naturally considered as objects in some category other than Set. The study of
such categories and the consequences of the additional structure is the subject
of Enriched Category Theory which is the topic of Chapter XII.

I.4.2 Comagmas in a Category

As with just about everything in category theory (and as we will explore more
fully in Section II.1)there is a dual to the concept of magma. We are going
straight to the “categorical” definition for reasons that should be clear very
quickly.

Let C be any category with finite sums. The dual of the magmas are
comagmas. Here is the definition.

Definition I.57: A comagma in C is an object, C, together with a co-
operationν : C + C // C.

And to go with it, here is the definition of the appropriate morphisms.

Definition I.58: A comagma morphism, or morphism of comagmas in
C is a morphism h : D // C such that

C Doo
h

C + C

C

OO

νC

C + C D +Doo h+h
D +D

D

OO

νD
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Exercise I.87. Show that there is a category, ComagmaC , with objects the
comagmas in C and as morphisms the comagma morphisms. (Compare to
exercise I.83.)

We now have, in particular, the category Comagma = ComagmaSet as
well as many others. Of course the reason that comagmas are actually inter-
esting is probably obscure at this point. For instance there are no interesting
comagmas from the category of sets in these notes! Indeed the first interesting
specialization of comagmas is to comonoids, the dual of monoids, But the only
comonoid in the category of sets is the empty set. (See page 62.) But in time
we will see interesting examples on other categories.

The primary reason that we are discussing comagmas here is because of
what happens with Hom.Recall that Hom(A+B,C) ∼= Hom(A,C)×Hom(B,C)
(look back at page 32.) Lets apply that to a comagma (C, ν) and notice that for
any object B we get a binary operation on Hom(C,B) defined by fOg = [f, g]ν
Even more, if h : C // D is a comagma morphism, then the induced function
h∗ : Hom(D,B) // Hom(C,B)is a magma homomorphism.

Exercise I.88. Verify the above assertion that if h : C // D is a comagma
morphism, then h∗ is a magma homomorphism. (Compare to exercise I.89.)

Now if h : A // B is any morphism in the category, we also have h∗ :
Hom(C,A) // Hom(C,B).Recalling exercise I.60 we have:

Exercise I.89. Verify that if C is a comagma in C , and h : A // B is any
morphism, then h∗ : Hom(C,A) // Hom(D,B)is a magma homomorphism.

The category of comagmas in a category directly inherits some properties
from the mother category. First note that if 0 is a initial object in C the unique

morphism 0 ! // 0 + 0 exhibits 0 as an object in ComagmaC . Moreover for
any other comagma, (C, ν) in C clearly

C 0oo
!

C + C

C

OO

νC

C + C 0 + 0oo !+!
0 + 0

0

OO

!

commutes, so ! is the unique comagma morphism from 0 to C. Thus 0 (with
its unique co-operation) is also a initial object in ComagmaC .

Also if C1, . . . , Cn are comagmas in C (with co-operations ν1, . . . , νn),
then we can use the νi to define a co-operation, ν, on Σn1Ci by taking ν to be
the composition of

Σni=1νi : Σn1Ci // Σn1 (Ci + Ci)
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and
Σn1 (Ci + Ci)

∼= // Σn1Ci + Σn1Ci
Some diagram chasing leads to the conclusion that (Σn1Ci, ν) is the sum of the
(Ci, νi) in ComagmaC . The details are in the next exercise.

Exercise I.90. If C is any category with finite sums, then ComagmaC is a
category with finite sums. (Compare to exercise I.84.)

The motivating example for this discussion of comagmas is the diagonal
morphism ∆ : C // C⊕C in any category with direct sums. In particular the
definition of M in Hom(A,C) given in I.50 and several of the results following
that definition are special cases of the material in this section. And pretty
much all of them will be included once we combine the material here with that
in the previous section on magmas.

Before we move on to that, we want to note that if Hom(•,M) is always a
magma and gives magma homomorphisms, then M “is” a magma. This easy
theorem has a multitude of ramifications.

Theorem I.2 Let C be an object in C and suppose that for every object A
in C a binary operation, M, is defined on Hom(C,A) in such a way that for
every morphism h : A // B the function h∗ : Hom(C,A) // Hom(C,B)is a
magma homomorphism. Then there is a unique co-operation ν : C // C +C
so f M g = [f, g]ν for all f and g in Hom(C,A). (Compare to Theorem I.1.)

Proof: Consider ν = ι1 M ι2 : C // C + C. Then for f and g in Hom(C,A)
we have [f, g] : C + C // A and

[f, g]ν = [f, g](ι1 M ι2)
= [f, g]∗(ι1 M ι2)
= [f, g]∗(ι1) M [f, g]∗(ι2)
= [f, g]ι1 M [f, g]ι2
= f M g

And if µ is some co-operation on M that induces M, then

ν = ι1 M ι2

= [ι1, ι2]µ
= 1M+Mµ

= µ

Again note the great similarity (or more precisely the duality) of everything
we’ve done to this point in this section with what was done in the preceding
section on magmas. This is yet another example of what we will formalize in
Section II.1.
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I.4.2.1 Comagmas and Magmas Together

In a category with direct sums, every object naturally has both a magma and a
comagma structure, and in Section I.3.3 we saw that the two magma structures
that were induced on the Hom sets are equal. Here we want to revisit that
material in the context of magmas and comagmas. So suppose that A is a
comagma in C with co-operation M (deliberately intended to remind us of the
diagonal ∆) and B is a magma in C with binary operation O (deliberately
intended to remind us of the codiagonal ∇). Then, as above, Hom(A,B) has
two binary operations M and O defined by

f M g = [f, g] M

hOk = O〈h, k〉

for f , g, h, and k all in Hom(A,B). And these are connected by this master
identity:

Proposition I.7 (f M h)O(g M k) = (fOg) M (hOk)

Proof:

(f M g)O(h M k) = O〈f M g, h M k〉 by definition of O
= O〈[f, g] M, [h, k] M〉 by definition of M
= O〈[f, g], [h, k]〉 M by exercise I.89
= O[〈f, h〉, 〈g, k〉] M by Proposition I.3
= [O〈f, h〉,O〈g, k〉] M by exercise I.86
= [fOh, gOk] M by definition of O
= (fOh) M (gOk) by definition of M

Now assume that C has a zero object and that the zero morphism in
Hom(A,B) is the identity for both M and O, i.e., f M 0 = f = 0 M f and
gO0 = g = 0Og for all f and g in Hom(A,B). This assumption combined with
the master identity has amazing consequences.

First, taking g = 0 and h = 0, we get

fOk = (f M 0)O(0 M k)
= (fO0) M (0Ok)
= f M k

i.e., the two binary operations M and O on Hom(A,B). And this means the
master identity can be rewritten as (f + h) + (g + k) = (f + g) + (h+ k)

where + stands for either/both of M and O.
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Part of the reason for using + as the name of the binary operation is because
taking f = 0 and k = 0 gives

h+ g = (0 + h) + (g + 0)
= (0 + g) + (h+ 0)
= g + h

i.e., the binary operation is commutative.
And finally, taking just h = 0 we get

f + (g + k) = (f + 0) + (g + k)
= (f + g) + (0 + k)
= (f + g) + k

Which is to say that the two (equal) binary operations on Hom(A,B) are also
associative.

Recall that a set together with a binary operation that is associative, com-
mutative and has an identity is a commutative monoid, so the above is sum-
marized in the following theorem.

Theorem I.3 Let C be a category with a zero object, (A,M) a comagma in
C and (B,O) a magma in C such that the zero morphism in Hom(A,B) is
the identity for the binary operations induced by M and O, then the two binary
operations are the same and make Hom(A,B) a commutative monoid.

As a first consequence we have the following corollary.

Corollary 1 If C is a category with finite direct sums, then for any two objects
A and B in the category, the binary operation on Hom(A,B) defined by the
diagonal morphism ∆ and the folding morphism ∇ makes it a commutative
monoid with the zero morphism as the identity.

As another interesting consequence notice that if every object in C admits
a comagma structure and a magma structure such that the 0 morphism is the
identity in the magma structure induced on the Hom sets, then these structures
are necessarily unique. This follows by combining the above proposition with
Theorems I.1 and I.2 which say that the magma structure on the Hom sets
determine the magma and comagmas in C .

In particular this applies to every category with finite direct sums – the
comagma and magma structures defined by ∆ and ∇ are unique!

As a direct lead-in to the next section we have the following summary result.

Proposition I.8 Let C be a category with a zero object, (A,M) a comagma in
C and (B,O) a magma in C such that the zero morphism in Hom(A,B) is the
identity for the common binary operation on Hom(A,B), then the following
diagrams commute:
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1. (B, O) has an identity:

B × 0 B ×B
〈π1,0〉 //B × 0

B

π1

$$JJJJJJJJJJJJJJ B ×B

B

O

��

B ×B 0×Boo 〈0,π2〉
B ×B

B
��

0×B

B

π2

zztttttttttttttt

2. (B, O) is associative:

B ×B BO
//

B ×B ×B

B ×B

〈O,1〉

��

B ×B ×B B ×B
〈1,O〉 // B ×B

B

O

��

3. (B, O) is commutative:

B ×B

B

O

��???????????B ×B B ×Bt // B ×B

B

O

�������������

4. (A, M) has a co-identity:

A+ 0 A+Aoo [ι1,0]
A+ 0

A

dd

ι1

JJJJJJJJJJJJJJ A+A

A

OO

M

A+A 0 +A
[0,ι2] //A+A

A

OO 0 +A

A

::

ι2

tttttttttttttt

5. (A, M) is co-associative:

A+A Aoo
M

A+A+A

A+A

OO

[M,1]

A+A+A A+Aoo [1,M]
A+A

A

OO

M
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6. (A, M) is co-commutative:

A+A

A

__

M
???????????A+A A+Aoo t

A+A

A

??

M

�����������

Notation: It occasionally happens that we want to discuss Hom(A,B) where
we fix B but vary A. Usually the name A just confuses the issue, so in this situa-
tion – the following proof is an example – we will often write Hom(•, B)instead.
(The notation Hom(−, B) is also sometimes used for the same purpose.) This
same thing applies for many things besides Hom, and the meaning should be
clear in all cases.
Proof: For (1.) note that O〈π1, 0〉 = π1 + 0 = π1 and O〈0, π2〉 = 0 + π2 = π2

as 0 is the identity for +, the induced binary operation on Hom(•, B)
For (2.) we see that O〈O, 1〉 = O + 1, while O〈1,O〉 = 1 + O. But we know

that + is commutative, so O + 1 = 1 + O.
For (3.) we observe that Ot is also a binary operation on B for which 0 is

the identity in the monoid Hom(•, B). But such a binary operation on B is
unique, so Ot = O.

We will leave parts (4.) – (6.) as the next exercise.

Exercise I.91. Complete the proof of Proposition I.8

In case they are not clear, the titles for each of the six parts of this propo-
sition will be explained in more detail in the next two sections.

I.4.3 Monoids in a Category

Throughout this section all categories are assumed to have finite
products.

Definition I.59: A monoid object, or usually just a monoid, in C is a
magma in C (M , µ : M ×M // M) plus an identity or unit ζ : 1 // M
for which the following diagrams commute:

identity

M × 1 M ×M
1M×ζ //M × 1

M

π1

$$JJJJJJJJJJJJJJ M ×M

M

µ

��

M ×M 1×Moo ζ×1M
M ×M

M
��

1×M

M

π2

zztttttttttttttt
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associativity

M ×M Mµ
//

M ×M ×M

M ×M

〈µ,1〉

��

M ×M ×M M ×M
〈1,µ〉 // M ×M

M

µ

��

This definition will likely make more sense when we see that a monoid in Set
is just a monoid in the usual sense. Write µ(m,n) = mOn and ζ(∗) = 1 ∈ M
where ∗ is the unique element in the singleton set 1. (The use of O for the
product is intended to remind of the codiagonal, see page 34.) Now the above
diagrams become:

1. identity
(m, ∗) (m, 1)� //(m, ∗)

m = mO1

�

��??????????
(m, 1)

m = mO1

_

��

(1,m) (∗,m)oo �(1,m)

1Om = m

_

��

(∗,m)

1Om = m

?

������������

2. associativity

(mOn, p) mO(nOp) = (mOn)Op� //

(m,n, p)

(mOn, p)

_

��

(m,n, p) (m,nOp)� // (m,nOp)

mO(nOp) = (mOn)Op

_

��

So the first says that 1 is an identity for the multiplication while the second
is just the associative law for multiplication, i.e., we have a monoid in the usual
sense.

In light of the last section we also want to define commutative monoids in
a category.

Definition I.60: Let t : M ×M // M ×M be the transposition isomor-
phism defined in exercise I.36. A monoid (M , µ, ζ) is commutative iff

M ×M

M

µ

��???????????M ×M M ×Mt // M ×M

M

µ

�������������

is commutative.
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Note that in Set this just says mOn = nOm, i.e., the multiplication is
commutative in the ordinary sense.

Now we can restate the first three parts of Proposition I.8 as saying that
the object B is a commutative monoid in the category. The last three parts say
that A is a co-commutative comonoid, and that will be explained and justified
in the next section.

As we are studying categories, we are, of course, looking for a category of
monoids, so we want the following definition.

Definition I.61: If (M , µM , ζM ) and (N , µN , ζN ) are two monoids in C ,
then a monoid morphism from M to N is a morphism h : M // N in C
for which the following diagrams commute:

M N
h

//

M ×M

M

µM

��

M ×M N ×N
h×h // N ×N

N

µN

��
M N

h
//

1

M

ζM

�������������
1

N

ζN

��???????????

The subscripts on µ and ζ will usually be omitted as the intended subscript
is usually clear from the context.

Again if we look at what this means in the category of sets, then the first
square is the familiar h(m M m′) = h(m) M h(m′), while the second is h(1) = 1,
exactly what it means for h to be a monoid homomorphism.

Exercise I.92. Show that there is a category, MonoidC , with objects the
monoids in C and with morphisms the monoid morphisms.

Of course MonoidSet = Monoid, as defined in Section B.2.3. Well, there
is a tiny issue: the definition of a monoid in Set isn’t exactly the usual definition
of a monoid which just asserts that some identity element exists. Fortunately
it is an easy theorem that a monoid has a unique identity and so the two
concepts really do coincide. For more details, see the material on monoids
in Section B.2.3 of the Catalog of Categories. Also look at Mac Lane and
Birkhoff [55, I.11].

Exercise I.93. Show that there is a category with objects the commutative
monoids in C and with morphisms the monoid morphisms between commuta-
tive monoids.

Of course you’ve already done much of the work for these last two exercises
in exercise I.83.
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This exercise is really about showing that the category of commutative
monoids in C is a subcategory of the category of monoids in C .

Just as with the category of magmas in a category, the category MonoidC

directly inherits various properties from C . Again you’ve already done most of
the next exercise in exercise I.84.

Exercise I.94. Prove that if C is any category with finite products, then
MonoidC is a category with finite products.

Similarly for the next two exercises, you did most of the work back in
exercises I.85 and I.86.

To start, for any monoid (M , µ, ζ) and any object C, the Hom set Hom(C,M)
is naturally a monoid with binary operation O defined by fOg = µ〈f, g〉. The
identity is e = ζ∗(!) ∈ Hom(C,M). [Remember that Hom(C, 1) has just the
one element ! as 1 is a final object in C .]

Of course we need to verify the identity and associativity relations for
Hom(C,M) and that is easily done by noting that the Hom(C, •) operation
applied to the diagrams for M become (writing H for Hom(C,M)):

1. identity

H × 1 H ×H
1H×ζ //H × 1

H

π1

$$JJJJJJJJJJJJJJ H ×H

H

µ∗

��

H ×H 1×Hoo ζ∗×1H
H ×H

H
��

1×H

H

π2

zztttttttttttttt

2. associativity

H ×H Hµ∗
//

H ×H ×H

H ×H

〈µ∗,1〉

��

H ×H ×H H ×H
〈1,µ∗〉 // H ×H

H

µ∗

��

and, as we saw on page 57 these really are the same as the ordinary definition
of a monoid.

Even more, if h : M // N is a monoid morphism, then the induced
function h∗ : Hom(C,M) // Hom(C,N)is a monoid homomorphism.

Exercise I.95. Verify the above assertion that if h : M // N is a monoid
morphism, then Hom(C, h) is a monoid homomorphism.

Exercise I.96. Verify that if M is a monoid in C , and h : D // C is
any morphism, then h∗ : Hom(C,M) // Hom(D,M) is a monoid homomor-
phism.
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Finally just as for magmas we have the reverse: If Hom(•,M) is always a
monoid and gives monoid homomorphisms, then M is a monoid.

Theorem I.4 Let M be an object in C . Suppose that for every object C in C
the Hom set Hom(C,M) is a monoid in such a fashion that for every morphism
h : C // D the induced function h∗ : Hom(D,M) // Hom(C,M) is a
monoid homomorphism. Then there are unique morphisms µ and ζ so that
(M , µ, ζ) is a monoid in C inducing the monoid structure in Hom(C,M)

Proof: The first part of this is Theorem I.1 which gives us the unique binary
operation µ on M inducing the binary operation on Hom(•,M).

To get the identity, ζ : 1 // M , note that if it exists it is in Hom(1,M)
and it must be the identity element in that monoid. So let us define ζ to be the
identity element in the monoid Hom(1,M) and prove that it is also the identity
for the binary operation µ. The next thing to notice is that as 1 is the final
object, for every object N the unique morphism ! : N // 1 induces a monoid
homomorphism !∗ : Hom(1,M) // Hom(N,M) which in particular takes the
identity element in Hom(1,M) to the identity element in Hom(N,M), i.e., ζ!
is the identity element in Hom(N,M).

Applying this to π2 : M × 1 // 1 we first notice that π2 is really !, so ζπ2

is the identity element in Hom(M × 1,M). And µ(1M × ζ) = π1Oζπ2 = π1.
The argument for the other half of ζ being an identity is essentially the

same and is left to the reader.
To verify the associativity of µ we need to make the diagram in the definition

a bit more fulsome:

M ×M

M

µ

��???????????M ×M2 M ×M
1M×µ //

M3

M ×M

〈π1,(π2Oπ3)〉

44jjjjjjjjjjjjjjjjjjjjjjjjjj
M3

M ×M2

〈π1,〈π2,π3〉〉

??����������
M3

M2 ×M

〈〈π1,π2〉,π3〉
��???????????M3

M ×M

〈(π1Oπ2),π3〉

**TTTTTTTTTTTTTTTTTTTTTTTTTT

M2 ×M M ×M
µ×1M

// M ×M

M

µ

??�����������

And finally µ〈π1, π2Oπ3〉 = π1O(π2Oπ3), while µ〈(π1Oπ2), π3〉 = (π1Oπ2)Oπ3.
But these two are equal because the binary operation O on Hom(M3,M) is
associative.

In this same situation, if Hom(•,M) is a commutative monoid, then the
corresponding monoid structure on M is commutative.

Theorem I.5 Let M be an object in C . Suppose that for every object C in
C the Hom set Hom(C,M) has a natural commutative monoid structure in
such a fashion that for every morphism h : C // D the induced function
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h∗ : Hom(D,M) // Hom(C,M) is a monoid homomorphism. Then there
are unique morphisms µ and ζ so that (M , µ, ζ) is a commutative monoid in
C inducing the monoid structure in Hom(C,M)

Exercise I.97. Prove Theorem I.5

As promised we now have an alternative proof of the first three parts of
Proposition I.8 on page 54. Indeed this can be recast as saying that when C is
a category with a zero object, (A, M) is a comagma in C , (B, O) a magma in
C , and the zero morphism in Hom(A,B) is the identity for the common binary
operation on Hom(A,B), then (B, O, 0) is a commutative monoid.

The last three parts say that (A, M, 0) is a co-commutative comonoid, and
the next section explains and justifies this claim.

I.4.4 Comonoids in a Category

Even though the definition of duality in categories is still to come in Section II.1,
the many examples to date should make it clear that every thing in the previous
section can be “dualized”. We will take advantage of that to leave all the results
in this section as exercises.

To start we make assume the dual of the presumption of section I.4.3.
Throughout this section all categories are assumed to have finite
sums.

If you find any of this confusing, you should be able to read ahead in Section II.1
as well as reading the solutions.

Definition I.62: Suppose C is a category with finite sums. A comonoid
object or usually just a comonoid in C consists of an object C and morphisms
ν : C // C+C and η : C // 0 so that (C, ν) is a comagma and the following
diagram commutes:

C + 0 C + Coo [ι1,η]
C + 0

C

dd

ι1

JJJJJJJJJJJJJJ C + C

C

OO

O

C + C 0 + C
[η,ι2] //C + C

C

OO 0 + C

C

::

ι2

tttttttttttttt

Terminology: We will often just speak of a comonoid or a comonoid object
if the category is clear. The morphism ν is, of course, called the comultipli-
cation,while η is called the co-unitof the comonoid.

While for monoids we were able to explain the definition of a monoid object
by pointing out that it was familiar in the category of sets, we don’t have that
advantage with comonoids. Comonoids are not familiar, and in the category
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of sets there is only one comonoid, namely the empty set! So for the moment
this is largely an exercise in formal manipulation, with a promise that this will
be more interesting later on

Definition I.63: Let t : C + C // C + C be the transposition isomorphis-
mdefined in definition I.32 on 32. A co-monoid (C, ν, η) is co-commutative
iff

C + C

C

__

ν
???????????C + C C + Coo t

C + C

C

??

ν

�����������

is commutative.

Now see that the second three parts of Proposition I.8 does just say that A
is a co-commutative comonoid.

As we are studying categories, we are, of course, looking for a category of
comonoids, so we want the following definition.

Definition I.64: If (C, ν, η) and (D, ν, η) are two comonoids in C , then
a comonoid morphism from C to D is a morphism h : C // D in C for
which the following diagrams commute:

C Doo
h

C + C

C

OO

ν

C + C D +Doo h+h
D +D

D

OO

ν

C Doo
h

1

C

??

η

�����������
1

D

__

η

???????????

Exercise I.98. Show that there is a category, ComonoidC , with objects the
comonoids in C and as morphisms the comonoid morphisms.

Exercise I.99. Show that there is a category with objects the co-commutative
comonoids in C and as morphisms the comonoid morphisms between co-
commutative comonoids.

Of course you’ve already done most of the work for these two exercises in
exercise I.87.

Just as with the category of comagmas in a category, the category ComonoidC

directly inherits various properties from C . Again you’ve already done most of
the next exercise in exercise I.90.
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Exercise I.100. Prove that if C is any category with finite sums, then
ComonoidC is a category with finite sums.

Back on page 59 we saw that for any monoid M and any object C the
Hom set Hom(C,M) is naturally a monoid. There is a similar dual result for
comonoids leading to the next few exercises.

For any comonoid (C, ν, η) and any object A the Hom set Hom(C,A)
is naturally a monoid with binary operation, O, on Hom(C,M) defined by
fOg = [f, g]ν, with identity ζ ∈ Hom(C,A) as the image of η∗ : Hom(0, A)

// Hom(C,A), i.e., ζ = η∗(!) =!η where ! is the unique morphism from an
initial object 0 to A.

Of course we need to verify the identity and associativity relations for
Hom(C,A) and that is easily done by noting that the Hom(•, A) operation
applied to the diagrams for C gives (writing H for Hom(C,A)):

1. identity

H × 1 H ×H
1H×η //H × 1

H

ι1

$$JJJJJJJJJJJJJJ H ×H

H

ν∗

��

H ×H 1×Hoo η∗×1H
H ×H

H
��

1×H

H

ι2

zztttttttttttttt

2. associativity

H ×H H
ν∗

//

H ×H ×H

H ×H

〈ν∗,1〉

��

H ×H ×H H ×H
〈1,ν∗〉 // H ×H

H

ν∗

��

and, as we saw on page 57 these really are the same as the ordinary definition
of a monoid.

Even more, if h : C // D is a comonoid morphism,then the induced
function h∗ : Hom(D,A) // Hom(C,A)is a monoid homomorphism as you
will verify in the next exercise. Note that most of the work in the next two
exercises was done in exercises I.88 and I.89.

Exercise I.101. Verify that if h : C // D is a comonoid morphism, then
for every object A the induced function h∗ : Hom(D,A) // Hom(C,A) is a
monoid homomorphism.

Exercise I.102. Verify that if C is a comonoid in C , and h : A // B is any
morphism, then h∗ : Hom(C,A) // Hom(C,B) is a monoid homomorphism.
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And finally we have the is dual of Theorem I.4 on page 60, the result
for Hom and monoids: If Hom(C, •) is always a monoid and gives monoid
homomorphisms, then C is a comonoid.

Theorem I.6 Let C be an object in C . Suppose that for every object A in C
the Hom set Hom(C,A) is a monoid in such a way that for every morphism
h : A // B the induced function h∗ : Hom(C,A) // Hom(C,B) is a monoid
homomorphism. Then there are unique morphisms ν and η so that (C, ν, η)
is a comonoid in C inducing the monoid structure in Hom(C,A)

Exercise I.103. Prove Theorem I.6

In this same situation, if Hom(C, •) is a commutative monoid, then the
corresponding comonoid structure on C is co-commutative.

Theorem I.7 Let C be an object in C . Suppose that for every object A in C
the Hom set Hom(C,A) is a commutative monoid in such a way that for every
morphism h : A // B the induced function h∗ : Hom(C,A) // Hom(C,B)
is a monoid homomorphism. Then there are unique morphisms ν and η so that
(C, ν, η) is a co-commutative comonoid in C inducing the monoid structure
in Hom(C,A)

Exercise I.104. Prove Theorem I.7

As promised we now have an alternative proof of the second part of Propo-
sition I.8. Indeed this can now be recast as saying that when C is a category
with a zero object, (A, M) is a comagma in C and (B, ν) a magma in C such
that the zero morphism in Hom(A,B) is the identity for the common binary
operation on Hom(A,B), then (A, M, 0) is a co-commutative comonoid.

Now as you may have guessed we could continue on to define monoids
acting on other objects, or rings or other algebraic gadgets in quite general
categories in much the same way we done with magmas and monoids. But
we’ll postpone that until we have more machinery that will simplify the process
considerably (see Chapter VII, Algebraic Categories.) But we do want to look
at the categorical generalization of one of the most familiar concepts: groups.

I.4.5 Groups in a Category

A group is a monoid in which every element has an inverse. The corresponding
definition in a category is the following.

Definition I.65: Suppose C is a category with finite products. A group
object or usually just a group in C consists of an object G and morphisms
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µ : G×G // G, ζ : 1 // G, and ι : G // G so that (G, µ, ζ) is a monoid
in C and ι is the inverse. This mean that the following diagrams commute:

1 G
ζ

//

G

1

!

��

G G×G
〈1G,ι〉 // G×G

G
��
G 1oo

ζ

G×G

G

µ

��

G×G Goo 〈ι,1G〉
G

1

!

��

Of course this is really just saying that a group object is a monoid object
together with an inverse, in particular in the category of sets ι : G // G is
just ι(g) = g−1.

Now we can go one step further and define the corresponding morphisms.

Definition I.66: If (G, µ, ζ, ι) and (H, µ, ζ, ι) are two groups in C , then a
group morphism from G to H is a morphism h : G // H in C for which
the following diagrams commute:

G H
h

//

G×G

G

µ

��

G×G H ×H
h×h // H ×H

H

µ

��
G H

h
//

1

G

ζ

�������������
1

H

ζ

��???????????

G H
h

//

G

G

ι

��

G H
h // H

H

ι

��

As you should expect this is a monoid homomorphism that also “carries
inverses to inverses”, the natural generalization from Set.

We call also easily define Abelian, i.e., commutative, groups.

Definition I.67: A group (G, µ, ζ, ι) is commutative or Abelian iff the
monoid (G, µ, ζ) is commutative.

In the next exercise you will show that there is a category of groups in C .
Of course most of the work was already done in exercise I.92

Exercise I.105. Show that there is a category, GroupC , with objects the
groups in C and as morphisms the group morphisms.
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Of course GroupSet = Group, as defined in Section B.2.5, right? Well,
there is actually a bit to be said here. The issue is that the definition of a group
in Set does not immediately translate into the usual definition of a group. For
example in their book Algebra [55], Mac Lane and Birkhoff give the definition:
“A group G is a set G together with a binary operation G×G // G, written
(a, b) 7→ ab such that

i This operation is associative.
ii There is an element u ∈ G with ua = a = au for all a ∈ G.
iii For this element u, there is to each element a ∈ G an element a′ ∈ G with

aa′ = u = a′a.
Now even though this was written by Saunders Mac Lane, one of the fathers

of category theory, there is no mention of the functions ζ and ι that are part
of our definition of a group in the category Set! Of course the existence of the
element u guaranteed by the above definition allows us to define the function
ζ : 1 // G by ζ(∗) = u. But a priori it appears that a group in the above
sense might allow several different such elements u and therefor several different
group objects in Set. Of course this is not the case as it is an easy theorem
that there is only one such element u.

Similarly the existence for each a ∈ G of a′ with aa′ = u = a′a allows us
(perhaps with the aid of the axiom of choice!) to define an ι : G // G so that
aι(a) = u = ι(a)a. Again there is an a priori possibility that there might be
many such functions leading to many different group objects in Set associated
to a particular group. But again this is not in fact the case as another easy
theorem shows that such an element a′ is unique for each a and so there is only
one such function ι (and the axiom of choice is not needed.)

For more details, see the material on groups in Section B.2.5 of the Catalog
of Categories. Also look at Mac Lane and Birkhoff [55, II].

This kind of issue comes up rather regularly when moving between the
standard set based definitions and those reformulated to fit category theory.
In these early stages we will usually write a bit about the issues, but then
we will leave it to the reader without comment unless there are particularly
interesting issues.

There is also the category of Abelian groups in C which is a subcategory
of the category of groups in C . That’s the content of the next exercise where
you’ve already done the work for in the last exercise and in exercise I.93.

Exercise I.106. Show that there is a category with objects the commutative
groups in C and as morphisms the group morphisms between commutative
groups.

This is an opportunity to point out a subtlety that occasionally confuses
newcomers to category theory. With the usual definition of groups and monoids
(that is as sets with a binary operation), it is quite true that the category of
groups is a subcategory of the category of monoids. But if we look at the
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definition we have given of monoid and group in the category Set, it is not
true that every group is a monoid! The reason for this is that each group has
the inverse function (ι) in addition to binary operation (µ) and the identity
(ζ). In principal it might be the case that we could have two group objects
(G, µ, ζ, ι) and (G, µ, ζ, γ) where the only difference is the inverse morphism.
In the category of sets this cannot happen – we know that if an element in a
monoid has an inverse, the inverse is unique – and that is why the category of
groups is a subcategory of the category of monoids. In a general category with
finite products there are no elements to have inverses, unique or no. Indeed
the role of objects in categories is a very secondary one, so the notion of a
subcategory is interesting primarily for the examples arising as subcategories
of familiar categories. Even more interesting is the situation illustrated by the
relations between magmas, monoids and groups in a category. Every group
object does have an underlying monoid object, and each monoid object has an
underlying magma object – in both cases the underlying object is gotten by
simply “forgetting” the extra structure, i.e., the underlying monoid of a group
is gotten by forgetting the inverse, while the underlying magma of a monoid
is gotten by forgetting the identity. Moreover the group morphisms between
two group objects is a subset of the monoid homomorphisms between the two
underlying monoids, and equally well a subset of the magma homomorphism
between the two underlying magmas. This is a very common situation and is
codified in the discussion of based categories and forgetful functors coming up
in Sections II.5 and III.2.6.

Just as with the categories of magmas and monoids in a category, the
category GroupC directly inherits various properties from C . Again you’ve
already done most of the next exercise in exercise I.94.

Exercise I.107. Prove that if C is any category with finite products, then
GroupC is a category with finite products.

For any object C and any monoid objectM , the set of morphisms Hom(C,M)
is naturally a monoid (see page 59.) Similarly for any group object G, the set
of morphisms Hom(C,G) is naturally a group – the multiplication and identity
come from the monoid structure that G gives as a monoid. The inverse on
Hom(C,G) is just ι∗ where ι is the inverse on G.

Exercise I.108. Verify that ι∗ is indeed the inverse on Hom(C,G) as claimed.

For the next two exercises, most of the work was back in exercises I.95 and
I.96.

Exercise I.109. Verify the above assertion that if h : G // H is a group
morphism, then for any C Hom(•, h) is a group homomorphism.
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Exercise I.110. Verify that if G is a group in C , and h : D // C is any
morphism, then h∗ : Hom(C,G) // Hom(D,G) is a group homomorphism.

Finally we see that, just as for magmas and monoids, if Hom(•, G) is always
a group and gives group homomorphisms, then G is a group.

Theorem I.8 Let G be an object in C . Suppose that for every object C in
C the Hom set Hom(C,G) is a group in such a way that for every morphism
h : C // D the function h∗ : Hom(D,G) // Hom(C,G) is a group homo-
morphism. Then there are unique morphisms µ, ζ, and ι so that (G, µ, ζ, ι)
is a group in C inducing the group structure in Hom(C,G)

Exercise I.111. Prove Theorem I.8.

Combining this proposition with Theorem I.5 gives us

Theorem I.9 Let G be an object in C . Suppose that for every object C in
C the Hom set Hom(C,G) is an Abelian group in such a way that for every
morphism h : C // D the function h∗ : Hom(D,G) // Hom(C,G) is
a group homomorphism. Then there are unique morphisms µ, ζ, and ι so
that (G, µ, ζ, ι) is an Abelian group in C inducing the group structure in
Hom(C,G)

To date we have some of the elementary definitions regarding monoids and
groups, but no actual development of any interesting information about these
categories themselves, not even such simple results as the isomorphism the-
orems for groups. We could in fact develop that material in a fairly direct
manner, but it is much more worth while to first develop some of the machin-
ery of category theory which we can then apply.



Chapter II

Constructing Categories

Examples of categories abound, and we saw that familiar notions in the cate-
gory of sets generalize to other bases categories to give even more categories.
But category theory also suggests other ways of getting more categories – prod-
ucts and sums of categories, subcategories, quotient categories, functor cate-
gories, etc. These are particularly important as a way of organizing complexity,
especially when we study functors and functor categories will come in the next
chapter.

II.1 Duality and Dual Category

Two points determine a line and, in the projective plane, two lines always
intersect in a point. This is an ancient example of the duality between lines
and points with Pappus’ Theorem (see [68]) on nine points and nine lines being
perhaps the first duality theorem. Today there are dozens if not hundreds of
duality theorems in mathematics, many of them key results.

Duality pairs up objects and relations in a complementary fashion so that
there are dual theorems with dual proofs. The simplest examples of duality
include negation of propositions in logic (where for example the “and” oper-
ation is dual to “or”), dual polyhedra (see [67]) where faces and vertices are
swapped (the dual of the cube is the octahedron; the dual of the dodecahedron
is the icosahedron; while the tetrahedron is its own dual), and pairing regions
and vertices in planar graphs.

More sophisticated examples include Poincaré Duality (see [4]) in algebraic
topology and Pontryagin Duality (see [69]) for topological groups.

Category theory is another area where duality plays an important role.
What makes it particularly interesting is that a great many of the other notions
of duality can be expressed by duality for categories. The starting point is the
definition of the dual of a category.

Definition II.1: Associated to any category C is a dual or opposite category
denoted C op. The objects and morphisms of C op are exactly the objects and

69
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morphisms of C , but f is a morphism from A to B in C iff f is a morphism
from B to A in C op. Finally composition is reversed in C op from what it is
in C . If h = gf in C , then h = fg in C op.

Clearly (C op)op is just C .
Although the definition of the dual category is a very simple formality, it has

a great deal of force. The first import is that it reduces the number of proofs
in category theory by a factor of 2! The reason for this is that when we prove
a theorem for all categories, it of course applies not only to each particular
category, but also to its dual category. But the theorem applied in the dual
category is (usually) another different theorem in the original category. Here
are some simple examples that where we have already done twice the work that
was needed.

First we note that section and retract are dual concepts. If f : A // B is
a section of g : B // A in C , then f : B // A is a retract of g : A // B
in C op.

CC C opC op

B

A

g

��???????????B B
1B // B

A

??

f

�����������
B

A

__

g

???????????B Boo 1B
B

A

f

�������������

Similarly epimorphism and monomorphism are dual concepts. If the mor-
phism f : A // // B is an epimorphism in C , then f : B // // A is a monomor-
phism in C op. If gf = hf ⇒ g = h in C , then fg = fh⇒ g = h in C op (and
conversely.)

Next note that final object and initial object are dual concepts, i.e., if X
is a final object in the category C , then X is an initial object in the category
C op:

CC C opC op

C X
! //____ C Xoo ! ____

For each object C there is the unique morphism C // X in C and the
unique morphism X // C in C op.

As our final examples for the moment we see that product and sum are
dual concepts. Suppose 〈X, a : X // A, b : X // B〉 is a product of A and
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B in C , then 〈X, a : A // X, b : B // X〉 is a sum of A and B in C op:

CC C opC op

X

B

b

��

C X//____C

B

g

��???????????

A

C

??

f

�����������
A

X

OO

a

X

B

OO

b

C Xoo ____C

B

__

g

???????????

A

C

f

�������������
A

X

a

��

For each pair of morphisms f : C // A and g : C // B in C there
is a unique morphism C // X in C making the left diagram commute, and
in C op for each pair of morphisms f : A // C and g : B // C there is a
unique morphism X // C making the right diagram commute. We’ve only
indicated this for pairs of objects, but you should easily see that it is true for
arbitrary products and sums as well.

Now consider the following pairs of propositions:

1. a) If a morphism f has a section, then f is an epimorphism. (See
exercise I.10.)

b) If a morphism f has a retract, then f is a monomorphism. (See
exercise I.16.)

2. a) (Proposition I.1) If P with πi : P // Ai and P ′ with π′i : P ′
// Ai are both products of A1, · · · , An, then 〈π1, · · · , πn〉 : P
// P ′ is an isomorphism with 〈π′1, · · · , π′n〉 : P ′ // P as inverse.

b) (Proposition I.2) If S with ιj : Ai // S and S′ with ι′j : Ai // S′

are both sums of A1, · · · , An, then [ι1, · · · , ιn] : S′ // S is an
isomorphism with [ι′1, · · · , ι′n] : S // S′ as inverse.

3. a) For any family of two or more objects, A1, · · · , An, in C prove that
Πn
i=1Ai is isomorphic to Πn−1

i=1 Ai ×An. (See exercise I.34.)

b) For any family of two or more objects, A1, · · · , An, in C prove that
Σni=1Ai is isomorphic to Σn−1

i=1 Ai +An. (See exercise I.49.)

4. a) Suppose f : P // A×B is an isomorphism. Prove that 〈P, π1f, π2f〉
is also a product of A and B. (See exercise I.35.)

b) Suppose f : A+B // S is an isomorphism. Prove that 〈S, fι1, fι2〉
is also a sum of A and B. (See exercise I.50.)

5. a) Define t : A×B // B ×A by t1 = π2, t2 = π1. Prove that t is an
isomorphism. (See exercise I.36.)
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b) Define f : A+B // B +A by f1 = ι2, f2 = ι1. Prove that f is an
isomorphism. (See exercise I.51.)

6. a) Any two final objects in C are isomorphic, and the isomorphism is
unique. (See exercise I.69.)

b) Any two initial objects in C are isomorphic, and the isomorphism
is unique. (See exercise I.73.)

7. a) In any category with a final object, 1×A = A. (See exercise I.71.)
b) In any category with an initial object, 0 + A = A. (See exercise

I.74.)

These are pairs of dual propositions. In all cases each proposition is a logical
consequence of the other because each applies equally well to dual categories.
In our proofs of these results (most being in the Solutions (Appendix C)), we
have tried to write the proofs to emphasize the duality.Going forward we will
prove only one of the dual theorems of interest, and indeed may use the dual
theorem without even explicitly stating it.

There are a number of well known results in mathematics that are truly
about dual categories. One of the simplest, and one of the motivating examples
in the development of the original definitions of category theory, is that the
category of finite dimensional vector spaces over a fixed field is self-dual, i.e., it
is “equivalent” to its own dual category. To justify that will be one of the early
goals of Chapter III (Functors).

II.2 Quotient Categories

Besides subgroups, subrings, subspaces, etc., there are also quotient groups,
quotient rings, quotient spaces, etc. Similarly there is the notion of a quotient
category.

The initial motivating examples of quotient categories are the various homo-
topy categories in algebraic topology. For more details look at in the Catalog of
Categories at the homotopy category of topological space (B.9.6), the category
of H-Spaces (B.9.7), the homotopy category of Kan complexes (B.10.2), and
the homotopy category of chain complexes (B.11.4).

As a preliminary to the definition of a quotient category, we need to specify
the kind of equivalence relation that is relevant.

Definition II.2: A congruence ∼on a category is an equivalence relation on
the morphisms in the category such that

i If f ∼ g, then f and g have the same domain and codomain.

ii If f ∼ g and h ∼ k and hf is defined, then hf ∼ kg.

If ∼ is a congruence on the category C , define C / ∼ as the category with
the same objects as C , and with the morphisms from A to B in C / ∼ the
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equivalence classes of C (A,B) with respect to the equivalence relation ∼. The
identity morphism on A is the equivalence class of 1A, and the composition
of equivalence classes is the equivalence class of the composition of any two
morphisms in the equivalence classes.

Exercise II.1. Verify that C / ∼ as described above is in fact a category.

Definition II.3: C / ∼ is called the quotient category of C by the congruence
∼.

II.3 Product of Categories

Along with subcategories and quotient categories, there are also products of
categories. Here is the definition.

Definition II.4: B are two categories, the product category A ×B has
as objects the pairs (A,B) with A an object of A and B an object of Band as
morphisms the pairs (f, g) with f a morphism in A and g a morphism in B.
The domains, codomains, composition, and identities are exactly as expected:
if f : A0

// A1 and f ′ : A1
// A2 in A while g : B0

// B1 and g′ : B1
// B2 in B, then (f, g) : (A0, B0) // (A1, B1) and (f ′, g′) : (A1, B1) //

(A2, B2) in A ×B. Moreover (f ′, g′)(f, g) = (f ′f, g′g) and 1(A,B) = (1A, 1B).
The domain of (f, g) is the pair (domain(f), domain(g)) and the cod while

the of objects from A and B respectively, while the morphisms are similar
pairs of morphisms.

Exercise II.2. Verify that A ×B is indeed a category.

We’ve only defined the product of two categories, but the definition actually
extends to the product of any indexed family of categories as follows:

Definition II.5: If (Ci : i ∈ I) is an indexed family of categories with I
any set, then we define the product category Πi∈ICi with the objects being
indexed families of objects (Ci : i ∈ I) and the morphisms being indexed
families of of morphisms (fi : i ∈ I).

The only (apparent) issue in this construction is that we are treading close
to foundational issues when the objects in these categories do not form a set.
This can be addressed, but we will just refer to the discussions mentioned
earlier, cf. page 5.



74 CHAPTER II. CONSTRUCTING CATEGORIES

II.4 Sum of Categories

Besides products of categories there are also sums of categories. Here is the
definition.

Definition II.6: If (Ci : i ∈ I) is an indexed family of categories with I any
set, then we define a category Σi∈ICi with the objects being pairs (C, i) with
i ∈ I and C an object of Ci. There are no morphisms from (C, i) to (D, j)
unless i = j in which case every morphism f : C // D in Ci gives a morphism
(f, i) : (C, i) // (D, i).

Exercise II.3. Verify that Σi∈ICi, as defined above, is indeed a category.

II.5 Concrete and Based Categories

The overwhelming majority of the familiar categories (see the Catalog of Cat-
egories (Appendix B)) come from the category of sets by defining the objects
of the new category as sets with some additional structure (e.g., a binary op-
eration [as with Monoid] or a family of subsets [as with Top]), while the new
morphisms are defined to be functions between the sets which in some fashion
preserve the structure.

Rather than trying to specify just what is meant by a structure we will
abstract this situation to get the following (tentative) definition.

Definition II.7: A concrete category is a category C and a specification of
the underlying sets and functions in Set. This last means that for each object
C of C there is specified a set U(C) and each morphism f : C // D of C
there is a function U(f) : U(C) // U(D). Moreover U has to satisfy some
consistency conditions:

1. U(1C) = 1U(C)

2. U(gf) = U(g)U(f)

3. if f, f ′ : C // D and U(f) = U(f ′), then f = f ′.

The image here is that U(C) is the underlying set of the object, i.e., the set
gotten by forgetting about the structure. Similarly U(f) is the function that
preserves the structure. The three consistency conditions say that the identity
function preserves the structure, that composition of the morphisms in the new
category is just composition of functions, and that the only morphisms in the
new category are indeed just suitable functions.

This is labeled a tentative definition because as soon as we have the defini-
tion of a functor we will restate this definition and see that U is just a faithful
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functor from C to Set, called the underlying or forgetful functor (details in
definition III.8 and Section III.2.6.)

Exercise II.4. There are many categories listed in the Catalog of Categories
(Appendix B) that are quite naturally concrete categories. The first and sim-
plest is the category of sets itself. There U is just the identity on objects and
morphisms.
Decide which of the categories in the Appendix are naturally concrete categories
and for those describe a forgetful functor. [This is a trivial exercise, particularly
as the answer in each case is in the article for the given category. It is just an
excuse to get you to review these categories and reflect on concrete categories.
Not all of the categories listed are concrete categories, but proving that there
is no forgetful functor can be non-trivial.]

This is also a special case of a more general phenomenon that we saw repeat-
edly in Section I.4. Much as with concrete categories, the various categories of
algebraic objects were constructed from some base category by defining the ob-
jects of the new category as objects in the base category with some additional
structure (e.g., a binary operation as with magmas in a category, MagmaC ),
while the new morphisms were defined to be morphisms in the base category
which respected the structure.

Again rather than trying to specify just what is meant by a structure we
will abstract this situation to get the following (tentative) definition.

Definition II.8: A based category on a base category B is a category C
and a specification of the objects and morphisms in B. This last means that for
each object C of C there is specified an object U(C) in B and each morphism
f : C // D of C there is a morphism U(f) : U(C) // U(D). Moreover U
has to satisfy the consistency conditions:

1. U(1C) = 1U(C)

2. U(gf) = U(g)U(f)

3. if f, f ′ : C // D and U(f) = U(f ′), then f = f ′.

This too is labeled a tentative definition because it also will be superseded
as soon as we have the definition of a functor and can restate this definition as
saying that U is just a faithful functor from C to B (details in definition III.8
and Section III.2.6.)

The next exercise is just looking at a very few of the multitude of examples
of based categories that will naturally occur in these notes.
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Exercise II.5. For each of the following situations, confirm that we do have
a based category as asserted. [Again this exercise is trivial and just intended
to get you to reflect on based categories.]

1. Group based on Set

2. Group based on Monoid

3. Monoid based on Magma

4. GroupC based on C

5. GroupC based on MonoidC

6. MonoidC based on MagmaC .

7. MagmaC based on C (see Section I.4.1, in particular exercise I.83.)

8. LieGroup based on Manifold

9. ModuleR based on Ab

II.6 Morphism Categories

For any category there are a variety of associated categories where the ob-
jects of the new category are certain morphisms from the original category.
Throughout this section let C be a fixed category.

• The first and simplest example is the case where we consider all the
morphisms as the objects of our new category. The category C 2, called
the morphism category of C , has as objects the morphisms of C , while
a morphism in C 2 from f : A // B to f ′ : A′ // B′ is a pair (h, k) of
C -morphisms so that

B B′
k

//

A

B

f

��

A A′
h // A′

B′

f ′

��

commutes.

The identity morphism on f is the pair (1A, 1B), while the composition
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of (h, k) : f // f ′ with (h′, k′) : f ′ // f” is (h′h, k′k) as in

B B′
k

//

A

B

f

��

A A′
h // A′

B′

f ′

��
B′ B”

k′
//

A′

B′

A′

B′

A′ A”
h′ // A”

B”

f”

��

That C 2 is a category follows immediately from the fact that C is a
category.

The explanation for the notation C 2 and the connection with the arrow
category 2 is in Section III.6.7 below.

• The next interesting case arises when we restrict our morphisms to have
a fixed domain. For C a fixed object of C , the Category of objects
under C, written (C ↓ C ) has as objects morphisms in C with domain
C, while a morphism in (C ↓ C ) is a C -morphism between the codomains
that makes the following triangle commute:

D D′
k

//

C

D

f

�������������
C

D′

f ′

��???????????

So here k is a morphism from f to f ′ in (C ↓ C ).

(C ↓ C ) is immediately seen to be the subcategory of C 2 consisting of
just those “objects” with domain C and just the “morphisms” of the form
(1C , k).

Both objects under C and the following definition of objects over C are
examples of the more general and useful construction of comma cate-
gories which will be discussed in Section IV.1 where the notation will be
expanded and discussed.

As an example, considering Set, the category of sets, and C to be a final
object 1, i.e., any fixed one element set, we see that (Set ↓ 1) is essen-
tially the same as the category Set∗ of pointed sets. (Cf. Section I.3.2,
especially page 38, and Section B.1.7.) For a function from 1 to any set
S is completely determined the point s0 ∈ S (the base point) that is the
image of the function, and a morphism in (Set ↓ 1) is exactly a function
that takes base point to base point. Formally what we see is that the
category (Set ↓ 1) is isomorphic to the category Set∗, and this will essen-
tially be a proof of that fact as soon as we actually define “isomorphism
of category” which we will do in definition III.6 on page 81.
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• The dual to the notion of the category of objects under C is of the
category of objects over C, written (C ↓ C). Here the objects are
morphisms in C with codomain C, and a morphism is a C -morphism
between the codomains that making the triangle commute:

B

C

g

��???????????B B′
h // B′

C

g′

�������������

Here h is a morphism (in (C ↓ C)) from g to g′.

Again (C ↓ C) is a subcategory of C 2 consisting of just those “objects”
with codomain C and just the “morphisms” of the form (h, 1C).

By contrast with (Set ↓ 1), the category (1 ↓ Set) is really the same as
Set itself. For any set S there is a unique function from S to 1, and for
any function f : S // S′, the triangle

S

1

!

��???????????S S′
f // S′

1

!

�������������

commutes.

This argument really is just using the fact that 1 is a final object in Set.
The same argument shows that for any category with final object the
category (C ↓ 1) is isomorphic to C .

Dually for any category with initial object 0, the category (0 ↓ C ) is
isomorphic to C .



Chapter III

Functors and Natural
Transformations

III.1 What is a Functor?

A functor is a morphism from one category to another. Here is the actual
definition.

Definition III.1: A functor F from C to D assigns to each object A in C
an object F (A) in D and to each morphism f : A // B in C a morphism
F (f) : F (A) // F (B). Moreover F (1A) = 1F (A) for every object in A in C ,

and whenever A
f // B

g // C in C , F (gf) = F (g)F (f) in D .

The canonical examples of functors are C (C, •) : C // Set, the Hom func-
tors.For each object A of C we have the set C (C,A) and for each morphism f :
A // B we have the function f∗ = Hom(C, f) : Hom(C,A) // Hom(C,B)
from Definition I.7. Clearly (1A)∗ is the identity function on C (A,A), and
(gf)∗ = g∗f∗ is exactly the associative law in C .

But we have another canonical example: C (•, C) : C // Set. For each
object A of C we have the set C (A,C) and for each morphism f : A //

B we have the function f∗ = Hom(f, C) : Hom(B,C) // Hom(A,C) from
Definition I.8. And this is not a functor because (gf)∗ = f∗g∗ rather than
(gf)∗ = g∗f∗.

This is sufficiently important that it too gets a definition.

Definition III.2: A contravariant functor F from C to D assigns to each
object A in C an object F (A) in D and to each morphism f : A // B in C a
morphism F (f) : F (B) // F (A). Moreover F (1A) = 1F (A) for every object

in A in C , and whenever A
f // B

g // C in C , F (gf) = F (f)F (g) in D .

Sometimes for emphasis a functor is called a covariant functor. To confuse
things a bit, a few authors have used the term cofunctor. for contravariant

79
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functor.
So we also have the contravariant Hom functors C (•, C) : C // Set.
As we would expect for “morphisms of categories”, there are identity func-

tors and composition of functors.

Definition III.3: The identity functor 1C : C // C has 1C (C) = C and
1C (f) = f for every object C and morphism f in C . This is clearly a functor.

Definition III.4: For two functors F : A // B and G : B // C , the
composition GF : A // C has GF (A) = G(F (A)) and GF (f) = G(F (f))
for every object A and morphism f in A . And again it is clear that the
composition is a functor.

The same definition applies equally well if either F , G or both are con-
travariant functors. Note that if just one is a contravariant functor, then the
composition is a contravariant functor, while if both are covariant or both are
contravariant, then the composition is covariant.

For every category we have the special, but unnamed, contravariant func-
tor C // C op which takes every object and every morphism to itself, but in
the dual category. More, every contravariant functor F : C // D uniquely
factors into C // C op // D with the first functor here being the special
contravariant functor and the second being a covariant functor. So every con-
travariant functor F : C // D can be considered as a functor from C op

// D which we will also call F .
Of course it is also the case that every contravariant functor F : C // D

when composed with the special canonical contravariant functor from D //

Dop gives a covariant functor from C to Dop. Again as no confusion should
result, this composite will also be called F .

Just as we have functions of several variables, we naturally have functors
of several variables as well. Our very first example is Hom : C × C // Set.
We’ll leave it as an exercise in choosing clear notation to verify that Hom is
indeed a functor of two variables, or, as it is often called, a bifunctor. Here
is the actual definition.

Definition III.5: A bifunctor from categories C and B to D is a functor from
C ×D to D . A bifunctor from categories C and B to D which is contravariant
in the first argument and covariant in the second is a functor from C op×D to
D .

There are similar definitions of a bifunctor which is covariant in the first and
contravariant in the second arguments, and of a bifunctor which is contravariant
in both arguments.

More generally a multifunctorfrom categories C 1, . . . , C n to D which is
covariant in some arguments and contravariant in the others is a functor from
a suitable product of the categories corresponding to covariant arguments and
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the duals of the categories corresponding to the contravariant arguments to D .
The full formal definition of a multifunctor would be long and tedious defi-

nition without providing additional insight, so we settle for this informal state-
ment.

The most basic example of a bifunctor is Hom.

Exercise III.1. Verify that Hom is a bifunctor from C and C to Set which
is contravariant in the first argument.

It is also possible to compose multifunctors in much the same way we can
compose functions of multiple variables, but the actual complicated definition
will not be spelled out but just used as needed.

Now that we have functors, composition of functors and identity functors,
we immediately get the notion of an isomorphism of categories.

Definition III.6: A functor F : A // B is an isomorphismof categories
iff there is an inverse functor F−1 : B // A so that F−1F = 1A and
FF−1 = 1B.

Applications of category theory within particular categories systematically
ignore the difference between isomorphic objects. Correspondingly two isomor-
phic categories are “the same” from the standpoint of category theory. But
isomorphism of categories is more stringent than is truly interesting. There
are many categories that are not isomorphic, perhaps because one has more
isomorphic copies of some object than the other, but are truly equivalent. The
interesting notion for functors is not that they be inverses, but only that they
be “naturally equivalent”, one of the original concepts introduced when Eilen-
berg and Mac Lane defined categories and functors. The definition and further
discussion is in section III.5.

Before we get there we need to record a couple of other definitions, and see
a small sampling of the diversity of functors in our universe.

Part of a functor, F , is a function

F : Hom(A,B) // Hom(F (A), F (B))

Definition III.7: A functor F is full iff the function between the Hom sets
is surjective for all objects.

This is, of course, closely connected to the notion of a full subcategory (see
definition I.12 and also the next section.)

Definition III.8: A functor F is faithful iff the function between the Hom
sets is injective for all objects.
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III.2 Examples of Functors

III.2.1 Subcategories and Inclusion Functors

Way back in Section I.1.2 we defined subcategories. Just as with other sub-
objects, there are inclusion morphisms associated with subcategories, but we
weren’t prepared to explain them because functors were not yet defined. Now
we can state the obvious definition.

Definition III.9: For any subcategory S of C the inclusion functorS // C
takes each object and morphism in S into the same object and morphism in
C .

The definition of a subcategory is exactly what is needed to ensure that the
inclusion functor is in fact a functor.

Every inclusion functor is faithful,and S is a full subcategory exactly if the
inclusion functor is full.

III.2.2 Quotient Categories and Quotient Functors

Definition III.10: If C / ∼ is the quotient category of C by the congruence
∼, there is the quotient functorwhich takes each object in C into the same
object in C / ∼ and each morphism into its equivalence class of morphisms.

The quotient functor is always full. It is only faithful when the quotient
functor is an isomorphism, that is when ∼ is the equality equivalence relation.

III.2.3 Product of Categories and Projection Functors

As this is category theory this definition is quite unsound – where is the Univer-
sal Mapping Property? That lacunae is rectified with the following definition.

Definition III.11: The projection functors πj : Πi∈ICi // Cj are πj(Ci :
i ∈ I) = Cj and πj(fi : i ∈ I) = fj .

Now for any family of functors Fi : C // Ci we have the functor F :
C // πj : Πi∈ICi defined on objects by F (C) = (Fi(C) : i ∈ I) and on
morphism by F (f) = (Fi(f) : i ∈ I). And the Universal Mapping Property ,
F is the unique functor such that πiF = Fi for all i ∈ I, is easily checked:

1. Each πi is a functor. The initial part of that, πi taking objects to objects
and morphisms to morphisms is clear. The other parts are:

a) That πi takes identity morphisms to identity morphisms is the ob-
servation that the identity morphism on (Ci : i ∈ I) is (1Ci : i ∈ I)
and πi applied to this gives 1Ci ;
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b) That πi preserves composition of morphisms is noting that (gi : i ∈
I)(fi : i ∈ I) = (gifi : i ∈ I) and πi((gi : i ∈ I)(fi : i ∈ I)) = gifi.

2. F is a functor. Again the initial part is clear. The rest is:

a) F takes identity morphisms to identify morphisms: The identity
morphism on (Ci : i ∈ I) is (1Ci : i ∈ I) and F applied to this is
(Fi(1Ci) : i ∈ I) = (1Fi(Ci) : i ∈ I) (because each Fi is a functor.)
And this is the identity on (Fi(Ci) : i ∈ I) which is F (Ci : i ∈ I).

b) F preserves composition of morphism:

F ((gi : i ∈ I)(fi : i ∈ I)) = F (gifi : i ∈ I)
= (Fi(gifi) : i ∈ I)
= (Fi(gi)Fi(fi) : i ∈ I)
= (Fi(gi) : i ∈ I)(Fi(fi) : i ∈ I)
= F (gi : i ∈ I)F (fi : i ∈ I)

c) That F is the unique functor whose composition with the πi is Fi
is immediate from the definition of Πi∈ICi and the πi.

Exercise III.2. Give examples to show that projection functors need not be
either faithful or full.
Remember this just means there is some situation where C (C1, C2)×D(D1, D2)

// C (C1, C2), (f, g) 7→ f , is not injective, and some possibly different situa-
tion where this function is not surjective.

III.2.4 Sum of Categories and Injection Functors

And here is the appropriate Universal Mapping Property.

Definition III.12: The injection functors ιj : Cj // Σi∈ICi are ιj(C) =
(C, j) and ιj(f) = (f, j).

Now for any family of functors Fi : C // Ci we have the functor F :
C // πj : Πi∈ICi defined on objects by F (C) = (Fi(C) : i ∈ I) and on
morphism by F (f) = (Fi(f) : i ∈ I). And the Universal Mapping Property,
that F is the unique functor such that πiF = Fi for all i ∈ I, is easily checked:

For any family of functors Fi : Ci // C we have the functor F : Σi∈ICi
// C defined on objects by F (C, i) = Fi(C) and on morphisms (f, i) : (C, i)
// (D, i) is Fi(f). The Universal Mapping Property, that F is the unique

functor such that Fιi = Fi for all i ∈ I is easily checked:

1. Each ιi is a functor. The initial part of that, ιi taking objects to objects
and morphisms to morphisms is clear. The other parts are:



84 CHAPTER III. FUNCTORS AND NATURAL TRANSFORMATIONS

a) That ιi takes identity morphisms to identity morphisms for ιi(1C) =
(1C , i) which is the identity morphism on ιi(C) = (C, i).

b) ιi preserves composition of morphisms for the only compositions to
be preserved are gf where g and f and in Ci, and then ιi(gf) =
(gf, i) = (g, i)(f, i) = ιi(g)ιi(f).

2. F is a functor. Again the initial part is clear. Here is the rest.

a) F takes identity morphisms to identify morphisms: The identity
morphism on (C, i) is 1C and F applied to this is (Fi(1C), i) =
(1Fi(C), i) (because each Fi is a functor.) And this is the identity on
F (C, i).

b) F preserves composition of morphism:

F ((g, i)(f, i)) = F (gf, i)
= Fi(gf)
= Fi(g)Fi(f)
= F (g, i)F (f, i)

c) That F is the unique functor with Fιi = Fi for all i in I is immediate
from the definition of Σi∈ICi and the ιi.

III.2.5 Constant Functors

The very simplest functors are the constant functors.

Definition III.13: Let D be any object in the category D . Then for any
category C the constant functor from C to Ddetermined by D is the functor
of the same name D : C // D where D(C) = D and D(f) = 1D for all
objects and morphisms in C .

When S : C // D is a constant functor there is a unique object D in D
with S = D and we say that D is the object selected by S.

There are constant contravariant functors as well, indeed every constant
functor is both covariant and contravariant!

Constant functors are so trivial that they may not seem worthy of consid-
eration, but in Sections IV.1 and V.1 we will see they are quite useful.

Recall from Section I.1.3 the category 1 with just one object and one mor-
phism. Constant functors are characterized by the fact that they factor through
1, i.e., F : C // D is constant iff there is a commutative triangle

C D
F

//

1

C

??

!

�����������
1

D

D

��???????????
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with D some object in D (the one selected by F .)

III.2.6 Forgetful Functors

Back in Section II.5 when discussing Concrete and Based Categories are ten-
tative definitions of concrete and based categories. We can now give the final
definitions.

Definition III.14: A based category on a base category B is a category C
together with a faithful functor U : C // B.

Definition III.15: A concrete category is a category based on Set.

In all cases the functor U to the base category is called the underlying
or forgetful functor. The commonly used phrase is “forgetful functor” rather
than “underlying functor” which would suggest using the letter F rather than
the nearly universal use of the letter U . The reason for using U even when
calling it the forgetful functor is the close association of forgetful functors with
free functors (cf. Sections III.2.12, III.4, V.4.1) for which the letter F will be
reserved.

If A is a subcategory of B, then the inclusion functor A ↪→ B (see Sec-
tion III.2.1) is faithful and so A together with the inclusion functor exhibits it
as a category based on B. While most inclusion functors do not fit our intuitive
notion of a forgetful functor, there are examples that do – Ab ↪→ Group, just
forget that an Abelian group is commutative; Group ↪→Monoid, just forget
that a group has inverses; Monoid ↪→ Semigroup, just forget that a monoid
has an identity element; Semigroup ↪→Magma, just forget that a semigroup
is associative – are all examples, as are all the of possible compositions.

III.2.7 The Product Functor

If C is a category with finite products, fix an object C of C and consider
×C : C // C where for each object A we have ×C(A) = A×C and for each
morphism f : A // B we have ×C(f) = f × 1C .

Exercise III.3. Show that ×C as defined in the previous paragraph is a
functor.

Duality applies here to give a sum functor with everything left as an exercise.

Exercise III.4. For C a category with finite sums and C an object of C , show
there is a functor +C : C // C which takes each object to its sum with C.
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III.2.8 The Sum Bifunctor

If C is a category with finite sums, define + : C × C // C by +(C1, C2) =
C1 + C2 and +([f1, f2]) = f1 + f2.

Exercise III.5. Confirm that + is a functor.

Duality applies here to give a product bifunctor with everything left as an
exercise.

Exercise III.6. For C a category with finite products, show there is a bifunc-
tor from C to itself which takes each pair of objects and each pair of morphisms
to their respective products.

III.2.9 Power Set Functor

In the category of sets, let P(X) denote the set of all subsets of X (cf. 185.)
And for any function f : X // Y and any S ⊆ X define P(f) to be the direct
image of f.

P(f)(S) = f(S) = {y|∃x ∈ S , y = f(x)}

P(X) is called the power set of X.

Notation: As mentioned in the Introduction, we will occasionally, as above,
use the two symbols ∃ and ∀ from mathematical logic. The symbol ∃ is short-
hand for “there exists”, while ∀ is used in place of “for all”.

Exercise III.7. Verify that P : Set // Set is a functor.

The power set actually gives rise to a contravariant functor as well. Let
P (X) denote the set of all subsets of X, but for any function f : X // Y
and any T ⊆ Y define P (f)(T ) = f−1(T ) = {x|f(x) ∈ T},

Exercise III.8. Verify that P : Set // Set is a contravariant functor.

III.2.10 Monoid Homomorphisms are Functors

Recall (see p. 5) that a monoid can be considered as a small category with
one object. If M and N are two monoids, then a monoid homomorphism
h : M // N takes the identity in M to the identity in N and satisfies
h(mm′) = h(m)h(m′). But that exactly says that h “is” a functor between
these two one object categories.
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III.2.11 Forgetful Functor for Monoid

Consider the category MonoidC of monoids in category C andrecall that a
monoid (M,µ, ζ) in C consists of an object, M , a binary operation, µ and an
identity, ζ. Define U : MonoidC

// C by U(M,µ, ζ) = M and U(f) = f
for f any monoid morphism.

Exercise III.9. Verify that U is a functor.

U is called the underlying or forgetful functor.
There are obvious variations on this for categories of magmas, categories of

Abelian monoids, categories of groups and categories of Abelian groups. You
should also see immediately how to define U : GroupC

// MonoidcatC
and U : MonoidC

// MagmaC . Indeed when we consider the category
of sets, there are also obvious forgetful functors from the categories of rings,
topological spaces, posets, etc.

III.2.12 Free Monoid Functor

Closely related to the forgetful functor U : Monoid // Set is the functor
F : Set // Monoid defined as follows: F (A) = A∗,the monoid of strings on
the alphabet A. A∗ consists of all finite sequences of elements of A, including
the empty sequence. (See exercise I.14 on page 15.) The binary operation in
A∗ is concatenation – if (a1, a2, · · · , an) and (b1, · · · , bm) are two such strings,
their product is (a1, a2, · · · , an, b1, · · · , bm). This product is clearly associative,
and the empty string is the identity.

For a function f : A // B, define F (f) : A∗ // B∗ by F (f)(a1, a2, · · · , an) =
f(a1)f(a2) · · · f(an) [NOTE: Writing g(x1, x2, · · · , xn) rather than g((x1, x2, · · · , xn))
is an extremely common abuse of notation that we will happily adopt without
further comment.]

F as so defined is clearly a functor.
Now suppose that f : A // U(M) is any function from a set A to (the

underlying set of) a monoid M . Then we can define a monoid homomorphism
f∗ : A∗ // M by f∗() = 1 and f∗(a1, a2, · · · , an) = f(a1)f(a2) · · · f(an).
[Note that () denotes the empty sequence and (a1, a2, · · · , an) is a sequence
of n elements, while f(a1)f(a2) · · · f(an) is the product of n elements in the
monoid M .]

Exercise III.10. Verify that f∗ is indeed a monoid homomorphism.

Clearly f∗ is the unique monoid homomorphism extending f , i.e., if h : A∗ // M
is a monoid homomorphism such that h(a) = f(a) for every a ∈ A, then h = f∗.

This is called the Universal Mapping Property for the free monoidA∗

generated by A. This is just one of a multitude of “free” gadgets that we will
encounter and systematize in Section V.4.1.
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Another way of stating this result is that we have a function

Set(A,U(M)) // Monoid(A∗,M)

which is a bijection.

Exercise III.11. Show that this function is in fact an isomorphism (i.e., a
bijection.)

We will see that this is an example, and a very important one, where U and
F are a pair of adjoint functors. (See section V.6, page 136)

III.2.13 Polynomial Ring as Functor

Consider the category, CommutativeRing, of commutative rings with iden-
tity. If R is a commutative ring, then we get a new commutative ring R[X],
the polynomial ring in one variable with coefficients in R. Moreover if h :
R // S is a homomorphism in CommutativeRing, then h can be ex-
tended to a homomorphism, H, from R[X] to S[X] by defining H(Σni=1aiX

i) =
Σni=1h(ai)Xi. This allows us to define a functor F : CommutativeRing

// CommutativeRing by F (R) = R[X] and F (h) = H.

Exercise III.12. Verify that F is indeed a functor.

III.2.14 Commutator Functor

For any group G, the commutatorof two elements g1, g2 ∈ G is [g1, g2] =
g1g2g

−1
1 g−1

2 . The commutator, [G,G], of G is {[g1, g2]|g1, g2 ∈ G}. Moreover
if f : G // H is any group homomorphism, then f([G,G]) ⊆ [H,H], so
f |[G,G] : [G,G] // [H,H] is a group homomorphism. (For more information,
see Mac Lane and Birkhoff [55, III.10,XII.4].)

Define C : Group // Group by C(G) = [G,G] and C(f) = f |[G,G] for
any group G and any group homomorphism f : G // H.

Exercise III.13. Prove that C as above is in fact a functor.

III.2.15 Abelianizer: Groups Made Abelian

Continuing where with the material in the previous section, [G,G] is a normal
subgroup of G, and G/[G,G] is an Abelian group. As noted, if f : G // H
is any group homomorphism, then f([G,G]) ⊆ [H,H], so there is a unique
homomorphism f : G/[G,G] // H/[H,H] with pHf = fpG where pG and
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pH are the projection homomorphisms to G/[G,G] and H/[H,H] respectively.
(For more information, see Mac Lane and Birkhoff [55, III.10, XII.4].)

Define A : Group // Ab as follows: for each group G, A(G) is G/[G,G],
while if f : G // H is a group homomorphism, then A(f) = f .

Exercise III.14. Prove that A as above is in fact a functor.

The functor A is called the Abelianizer, and A(G) = G/[G,G] is often
called “G made Abelian.”

Next let I : Ab // Group denote the inclusion functor of the subcategory
of Abelian groups into the category of groups. If f : G // I(H) is a group
homomorphism into an Abelian group H, then h([G,G]) ⊆ [H,H] = 0 as H is
commutative. So f : G/[G,G] // H/0 ∼= H. Thus we have a function from
Group(G, I(H)) // Ab(A(G), H).

Exercise III.15. Show that this function is in fact an isomorphism.

This is another example where A and I are a pair of adjoint functors. (See
Section V.6.) We’ll see that adjoint functorsare very common indeed.

III.2.16 Discrete Topological Space Functor

Recall that a topological space consists of a set X, and a topology T ⊆ P(X),
whose elements are called the open sets of the topology, satisfying certain
axioms. (For details see sections B.9.3 and B.19.5.) In particular SP (X) is a
topology on X, called the discrete topology.

The category Top has as objects topological spaces and as morphism con-
tinuous functions, i.e., functions for which the inverse of every open set is an
open set. If (X,P(X)) is a discrete topological space, then all functions from
X to any other topological space are continuous. So if we define F : Set

// Top by F (X) = (X,P(X)) and F (f) = f , then F is clearly a func-
tor. Moreover Top(F (X), Y ) ∼= Set(X,U(Y )) where U : Top // Set is
the forgetful functor. And this is yet another example of an adjoint pair of
functors.

Exercise III.16. Verify all of the details in the above two paragraphs.

The last few examples are going to be lacking crucial details, and are in-
cluded just to indicate a very few of the great many advanced topics where
functors arise.
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III.2.17 The Lie Algebra of a Lie Group

To every Lie group,i.e., a group object in the category of smooth manifolds,
we associate a Lie algebraas follows. (Details will be found in most modern
books on differential geometry, for example Lang’s Differential and Riemannian
Manifolds [40],though the way we introduce the Lie product is different but
equivalent.)

As with any manifold,there is at each point g ∈ G a tangent space which
is a vector space ofthe same dimension as the group which we will denote by
Tg. For each element g ∈ G the function Lg : G // G given by Lg(x) = gx
is a smooth function with inverse Lg−1 , and so the differential of Lg is an
isomorphism between Te, the tangent space at the identity, and Tg.

Considering Te, the commutatorfunction G × G // G given by (g, h) 7→
ghg−1h−1sends (e, e) to e and so induces a bilinear function Te × Te // Te
which we denote by [u, v]. This makes Te into a Lie algebra, which is usually
denoted by g. Beyond that if f : G // H is any Lie group homomorphism,
then of course f(e) = e and df : Te(G) // Te(H) is not only a linear trans-
formation, it is also a Lie algebra homomorphism as well. The result is that
we have the basic functor LieGroup // LieAlgebra which is fundamental
in the study of Lie groups.

III.2.18 Homology Theory

As we mentioned back in the introduction a key impetus for the introduction
of categories and functors was the realization that a good description of the
homology and cohomology groups requires them. In particular Eilenberg and
Steenrod [22] define a homology theory by giving axioms for a sequence of
functors from an “admissible” topological category to the category of Abelian
groups. The admissible categories consists of certain pairs (X,A) with A ⊆ X
of topological spaces, while the morphisms f : (X,A) // (Y,B) (homotopy
classes) are continuous functions f : X // Y with f(A) ⊆ B. There is
more, involving natural transformations (topic of the next section) and exact
sequences which we will finally discuss in Chapter XIV.

III.3 Categories of Categories

We now have the makings of a category: objects, namely categories, and mor-
phisms, namely functors, but as we noted near the beginning (cf. page 5) there
is no category of all categories, for much the same reason there is no set of all
sets. We can make the following definition.

Definition III.16: Cat, the category of small categories, has as objects
all small categories, and as morphisms all functors between small categories.

Recall that monoids can be regarded as small categories with one object (cf.
page 5), and as we note below monoid homomorphisms are exactly functors
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between such categories. This tells us that Monoid, the category of monoids,
is a subcategory of Cat. A better way of saying this is that we have a functor
Monoid // Cat which takes each monoid to the corresponding category
with a single element, and each monoid homomorphism to the corresponding
functor. This functor is faithful, and produces an isomorphism of categories
between Monoid and the full subcategory of all small categories with a single
object.

The use of monoids was essentially arbitrary. For any of the other struc-
tures which can be regarded as categories and the morphisms between them
as functors we have the same situation – a faithful functor from the category
of structures into Cat which gives an isomorphism with a full subcategory of
Cat. In particular Set “is” a subcategory of Cat, the full subcategory of all
small discrete categories.

For more details look at the examples in Section B.19 in the Catalog of
Categories (Appendix B).

The discussion of product of categories back in Section II.3 shows that Cat
has products and we include that proposition here for the record.

Proposition III.9 The category Cat of small categories has products.

The result just proved is actually stronger. It says that products (and not
just finite products) of arbitrary families of small categories have the Universal
Mapping Property for products.

In the same way, the discussion of sum of categories back in Section II.4
shows that Cat has sums. Which we formally note here.

Proposition III.10 The category Cat of small categories has sums.

The result just proved is actually stronger. It says that sums (and not
just finite sums) of arbitrary families of small categories have the Universal
Mapping Property for sums.

The best known difficulty in naive set theory is Russell’s Paradox: If
there were a set of all sets, Ω, then there would be a set of all ordinary sets
O = {S|S ∈ Ω&S /∈ S}. But this is not possible as O /∈ O implies O ∈ O and
O ∈ O implies O /∈ O. So from this we conclude that Ω cannot exist.

There is an analogous argument that can be made about a category of all
categories: If there were a category of all categories, C , then consider the full
subcategory O of all ordinary categories where an ordinary category is one
which is not an object in itself. Just as in Russell’s Paradox, the category O
is ordinary iff it is not ordinary. So we conclude that O cannot exist and so C
cannot exist.

Reflection on this analogy reveals a significant issue. The most fundamental
principle of set theory is the Axiom of Specification: If A is any set and P (x)
is a boolean predicate on the elements of A (i.e., P (x) is either true or false for
every element of A), then there exists a set B whose elements are exactly those
elements x of A for which P (x) is true. (For more detail see section A.2 in the
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Appendix on Set Theory. Also read the discussion in Halmos’ Naive Set Theory
[29, Section 2].) By contrast it is not clear we can select a full subcategory
from the objects of an arbitrary category using an arbitrary boolean predicate.
Tacitly we have been freely assuming that we can do this, and we will continue
to do so. It appears that we can always find a way to deal with this issue using
a suitable choice for our foundations, but in these notes we have been and will
continue to blithely ignore all these foundational details.

III.4 Digraphs and Free Categories

Back in Section I.1.3 we considered two small categories by looking at the
following diagrams.

0
$$ // 1 dd

∗
��

��???????

0
$$

??�������
// 1 dd

But these are also two just two small digraphs (see Section B.8.2.) There is
a close connection between digraphs and categories that will be explored here.
Indeed one approach to defining categories is to start with directed graphs as
precursors and define categories as graphs with additional structure – see Barr
and Wells [3, Secs. 1.3, 1.4, 2.1] and Mac Lane [53, Sec. II.7]

From Section B.8.2 in the Catalog of Categories we recall the two basic
definitions.

Definition III.17: A directed graph or digraphG consists of a pair (V ,
E) of sets together with a two functions init:E // V and ter:E // V .

The elements of V are the vertices or nodes of G, while the elements of
E are the edges or arcs. The vertex init(e) is the initial vertex of the edge,
and ter(e) is the terminal vertex. The edge e is said to be directed from init(e)
to ter(e).

Definition III.18: Let G and H be digraphs. A homomorphism from G
to H, f : G // H is a pair of functions fV : V (G) // V (H) and fE : E(G)

// E(H) init(fE(e)) = fV (init(e)) and ter(fE(e)) = fV (ter(e)).

And with them we also have the category Digraph of digraphs
This is sufficiently reminiscent of the domain/codomain aspect of cate-

gories that it it is no surprise to have the forgetful functor from U : Cat
// Digraph that just forgets the identities and composition of a category.

In more detail, U sends each small category C to the digraph with vertices the
objects of C , edges the morphisms of C , init(e) the domain of e, and ter(e)



III.4. DIGRAPHS AND FREE CATEGORIES 93

the codomain of e. Each functor F takes objects to objects and morphisms to
morphisms, thereby producing a digraph homomorphism.

Definition III.19: The graph U(C ) is called the (underlying) graph of
the category C .

Of course for consistency this should be called the digraph of the cate-
gory, but the phrase “graph of the category” is the one commonly used in the
category theory literature. The reason for the discrepancy is that there are
many varieties of graphs and usually the most common type under discussion
is blessed with the name “graph”, while other get various adjectives attached.
So many books on graph theory would use the phrase “directed multigraph
with loops” for what is here called a digraph, while books on category theory
such as Barr and Wells [3] and MacLane [53] use just “graph”, but don’t dis-
cuss other types of graphs. Here both digraphs and ordinary graphs will be
considered, whence both names.

The view of categories by diagrams of arrows as at the beginning of this
section or in Section I.1.3 is actually just looking at the graph of the category.
In particular we saw that there are some digraphs which are uniquely the graph
of a category, while there are other digraphs which are not the graph of any
category.

There is no composition of edges in a digraph, but there is a closely related
notion in graph theory.

Definition III.20: A path in a digraph G is a finite sequence (e1, · · · , en) of
edges with ter(ej) = init(ej+1) for j = 1, . . . , n − 1. This is called a path of
length n from init(e1) to ter(en). In addition, for each vertex v there is a path
of length 0 from v to itself. For convenience we will write this as 1v.

And paths lead from the forgetful functor U : Cat // Digraph to the free
category functor F : Digraph // Cat defined as follows: For each digraph
G, F (G) is the category with objects the vertices of G, while the morphisms are
are all the paths in G. The identity morphism on the vertex v is the zero length
path 1v introduced above. If p = (e1, · · · , en) is a path from v0(= init(e1)) to
vn(= ter(en)), then we define the domain of p to be v0 and the codomain to be
vn. In particular the domain and codomain of 1v is v. Composition is concate-
nation of sequences, i.e., if p is a path from v0 to vn and q = (en+1, · · · , em)
is a path from vn to vn+m, then qp = (e1, · · · , en, en+1, · · · , em). Clearly com-
position is associative and the zero length paths are identities for composition,
so F (G) is a category as desired.

Now if f : G // H is a digraph homomorphism, then F (f) must be a func-
tor from F (G) to F (H). It is defined to be fV on the objects, i.e., the vertices,
while on the morphisms, i.e., the paths, F (f)(1v) is defined to be 1fV (v) while
for p = (e1, · · · , en) a path from v0 to vn we define F (f)(p)tobethepath(fE(e1), · · · , fE(en)).
The definition of a digraph homomorphism ensures that F (f)(p) is indeed a
path that goes from F (f)(v0) to F (f)(vn). Clearly F (f)(qp) = F (f)(q)F (f)(p),
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so F (f) is a functor as claimed.
For any digraph homomorphism f : G // U(C ) there is an associated

functor f̂ : F (G) // C . On objects, i.e., vertices of G, it is f̂(v) = fV (v),
while on morphisms, i.e., paths in G, it is f̂(e1, · · · , en) = fE(en) · · · fE(e1)
where this last is composition of morphisms in C .

Exercise III.17. Verify that f̂ is indeed a functor.

Clearly f∗ is the unique functor extending f , i.e., if h : F (G) // C is any
functor with h(v) = fV (v) for every vertex and h(e) = fE(e) for every edge,
then h = f̂ .

This is very similar to the Universal Mapping Property for the free monoid
generated by a set (see Section III.2.12), and leads to the following definition.

Definition III.21: A free category generated by a digraph G is a category
F together with a digraph homomorphism i : G // U(F ) with the following
Universal Mapping Property: For any digraph homomorphism f : G // U(C )
there is a unique functor f̂ : F // C such that U(f̂)i = f .

The definition of F (G) given above is the explicit construction of a free
category. To see that we need to define i : G // UF (G) which is just
iV (v) = v and iE(e) = (e), i.e., each edge goes into a path of length one. And
the above discussion gives us the following proposition.

Proposition III.11 For each digraph G, the category F (G) together with the
digraph homomorphism i : G // UF (G) defined above is a free category
generated by G.

This is yet another of the multitude of “free” gadgets that we will encounter
and systematize in Section V.4.1.

Just as with free monoids, another way of stating this result is that we have
a function Digraph(G,U(C )) // Cat(F (G),C ) which is a bijection.

Exercise III.18. Show that this function is in fact an isomorphism.)

We will see shortly that this is another example where U and F are a pair
of adjoint functors. (See section V.6.)

Here are some simple examples of digraphs and the associated free category.
First note that there is an empty digraph with no vertices and no edges. The
associated free category in this case is the empty category 0. In this case the
graph of the category 0 is just the empty graph as well.

Next consider the digraph with one vertex and no edges. The associated
free category is the category 1 with the one object and just the single identity
morphism on that object.
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Slightly more generally, there is the discrete digraph with an arbitrary set
V of vertices, but no edges. Then the associated free category is the category
with V as the set of objects and with no morphisms other than the identity
morphism for each object, i.e., the discrete categoryassociated to the set V (cf.
Section B.19.1 in the Catalog of Categories.)

Now look at the digraph

∗

e

��

with one vertex and one edge from ∗ to itself (called a loop in the digraph.)
This is the graph of the category 1 which we just saw is the free category on
the digraph with one vertex and no edges. In this case the free category on
this digraph, which we will call F , has, of course, just the one object ∗, but
an infinity of morphisms, namely 1, (e), (e, e), (e, e, e), · · · . For convenience we
will rewrite these as 1, e, e2, e3, · · · . Of course the exponent is the number of
terms in the composition. On reflection this is seen to be the free monoid on
one generator (considered as a category with one object.)

Note the large difference between the free category generated by that di-
graph and the category 1 that produced the digraph. This free category is ac-
tually F (U(1)), i.e., the free category generated by the underlying graph of 1.
Exercise III.18 shows there is a bijection Digraph(G,U(C )) ∼= Cat(F (G),C )
for any digraph G and category C . Taking C = 1 and G = U(1) we see there
is a distinguished functor ε : F (U(1)) // 1 corresponding to the identity
homomorphism on U(1). In this particular case ε is clear: it takes the unique
object in F into the unique object in 1 and takes all the morphisms in F into
the unique morphism in 1.

There is an easy generalization which is worth doing in stages. Look at the
digraph

∗

e

��

f

DD

with one vertex and two distinct loops on that edge. In this case the free cate-
gory has a much greater variety of morphisms: 1, (e), (f), (e, e), (e, f), (f, e), (f, f), (e, e, e), (e, e, f), · · · ,
but this is just the free monoid generated by the set {e, f} (cf. Section III.2.12.)
More generally we have the following proposition.

Proposition III.12 The free category generated by the digraph having just
one vertex, v, and as edges a set E of loops is the free monoid generated by E
(considered as a category with one object.)

There is another way of viewing this which is helpful. Recall that in any
category C we always have the monoid of endomorphisms C (C,C) for each
object C. For the free category F generated by the digraph having just one
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vertex, v, and a set E of loops on that vertex we see that F (v, v) is the free
monoid generated by E.

Next look at the following digraph.

0e0
$$ f // 1 e1dd

which is the graph of the category 2 (cf. Sections I.1.3 and B.20.3.)
Writing F for the associated free category, we immediately see from the

description of the construction of a free category that F (0, 0) is the free monoid
generated by e0 (i.e., the elements of F (0, 0) are the morphisms em0 for some
natural number m), while F (1, 1) is the free monoid generated by e1, F (1, 0)
is empty, and the morphisms in F (0, 1) all have the form em0 fe

n
1 for natural

numbers m and n.
Here F is F (U(2)), the free category generated by the underlying graph

of 2. Again exercise III.18 shows there is a bijection Digraph(U(2), U(2)) ∼=
Cat(F (U(2)),2), so there is a distinguished functor ε : F (U(2)) // 2 corre-
sponding to the identity homomorphism on U(2). The next exercise asks you
to describe this functor.

Exercise III.19. Describe the canonical functor ε : F (U(2)) // 2 in detail.

As a last example, in exercise I.2 the following diagram

0
$$

1 dd0 1
��

0 1oo0 1??

was seen, in the terminology of this section, not to be the graph of any category.

Exercise III.20. Describe in detail the free category generated by the above
digraph.

III.5 Natural Transformations

As Eilenberg-Mac Lane first observed, “category” has been defined
in order to define “functor” and “functor” has been defined in order
to define “natural transformation”.
Saunders Mac Lane [53, p. 18]

Definition III.22: For two functors F,G : A // B. A natural transfor-
mation τ : F // G, assigns to each objectA of A a morphism τA : F (A) // G(A)
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in B such that the diagrams

F (B) G(B)τB
//

F (A)

F (B)

F (f)

��

F (A) G(A)
τA // G(A)

G(B)

G(f)

��

A natural transformation is more naturally called a morphism of functors
or a functor morphism. We will use all of these on various occasions. As the
subscript on the name of a natural transformation, e.g., the A on τA, is usually
redundant, we will often omit it.

Natural transformations compose: If F,G,H : A // B are functors
with τ : F // G and σ : G // H natural transformations, then στ : F

// H has (στ)A = σAτA. And for any functor there is, of course, an identity
morphism 1F : F // F with 1FA = 1F (A) and τ1G = τ , 1Gσ = σ.

Definition III.23: A natural transformation τ : F // G is a natural
equivalence or natural isomorphism iff there is a natural transformation
τ−1 : G // F with ττ−1 = 1G and τ−1τ = 1F .

It is equivalent simply to require that for each object A of A the morphism
τA be an isomorphism, for then the morphisms τ−1

A are the components of the
required τ−1.

As mentioned earlier isomorphism of categories (see definition III.6) is too
strict a notion. The useful alternative is the weaker notion of equivalence of
categories.

Definition III.24: The functor F : A // B is an equivalence of cate-
gories iff there is a functor G : B // A with GF naturally isomorphic to
1A and FG naturally isomorphic to 1B.

Examples of natural transformations abound. The simplest are those be-
tween constant functors.

Exercise III.21. Let D and D′ objects of D . Show that natural transfor-
mations between the constant functors D and D′ correspond to morphisms
between the objects.

The most common home for natural transformations is functor categories
which we will define and produce shortly, but first let’s see some stand alone
examples of natural transformations.
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III.6 Examples of Natural Transformations

III.6.1 Dual Vector Spaces

The first example of a natural equivalence to appear in print was that of finite
dimensional vector spaces and their double duals. It is hard to do better, so
we will continue the tradition.

Consider the category V of vector spaces over a field K. We have the
contravariant functor D(•) = V (•,K). For any vector space V , D(V ) is called
the dual space of V and is usually written as V ∗. If f : V // W is a linear
transformation, then we have the dual linear transformation D(f) : D(W )

// D(V ) which we will write as f∗ : W ∗ // V ∗. (Notice this is consistent
with definition I.8 and is part of the reason for that definition.) The elements
of V ∗ are called linear functionals on V .

The second dual or double dual is just gotten by iterating the dual
space construction DD(V ) = D(D(V )), and DD is a functor from V to itself.
τ : 1V

// DD is the familiar construction: each v ∈ V defines τ(v) ∈ V ∗∗ by
τ(v)(v∗) = v∗(v) for every v∗ ∈ V ∗.

All of the difficulty here is getting notation straight. To verify that τ
is a natural transformation we must show that if f : V // W is a linear
transformation and f∗∗ : V ∗∗ // W ∗∗ is its double dual, then f∗∗τ = τf .
And that is easy once you understand that if v∗∗ ∈ V ∗∗, then L∗∗(v∗∗)(w∗) =
v∗∗(w ∗ f) for w∗ : W // K, an element of W ∗.

Warning: Here we have v, v∗, v∗∗, w, w∗, and w∗∗. The only relations here
are that v ∈ V , v∗ ∈ V ∗, etc. In particular v∗ is not the result of applying
some ∗ operator to v.

Exercise III.22. Verify that τ : 1V
// DD as defined above is a natural

transformation. Also verify that τV is injective.

From this we see that when restricting to V 0, the full subcategory of finite
dimensional vector spaces, we find τ is a natural isomorphism. And this in
turn shows that D : V op

0
// V0 is an equivalence of categories. The category

of finite dimensional vector spaces is self-dual!

III.6.2 Free Monoid Functor

In Section III.2.12 we introduced the forgetful functor U : Monoid // Set
and the related free monoid functor F : Set // Monoid. Here we will meet
a related natural transformation. This is leading up to the material on adjoint
functors in section V.6

First, there is a natural transformation η : 1Set
// UF with ηA(a) = (a).

[Here (a) is the sequence with just one term, a.]

Exercise III.23. Verify that η : 1Set
// UF is indeed a natural transfor-

mation.
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Second, there is a natural transformation ε : FU // 1Monoid with ε(m1,m2, · · · ,mn) =
m1m2 · · ·mn. [Here (m1,m2, · · · ,mn) is a sequence of n elements from the
monoid M (considered as a set), while m1m2 · · ·mn is the product of those
elements in the monoid.]

Exercise III.24. Verify that ε : FU // 1Monoid is indeed a natural trans-
formation.

In that earlier discussion we presented a function Set(A,U(M)) // Monoid(F (A),M).
Let’s get that in another way. If f : A // U(M) is any function from the set
A into the underlying set of the monoid M , then we have the homomorphism
F (f) : F (A) // FU(M). We compose that with εM to get εMF (f) : F (A)

// M .

Exercise III.25. Show that the function Set(A,U(M)) //

Monoid(F (A),M) given by f 7→ εF (f) is the same function specified in Sec-
tion III.2.12.

Finally, we can get the inverse function explicitly. If h : F (A) // M is a
monoid homomorphism, then we can forget that and consider it just as a func-
tion between sets, i.e., U(h) : UF (A) // U(M). But then U(h) composed
with ηA gives the function U(h)ηA : A // U(M), and this is the desired
inverse.

Exercise III.26. Show that the function Monoid(F (A),M) //

Set(A,U(M)) given by h 7→ U(h)η is the inverse of the function of the preced-
ing exercise.

Exercise III.27. Show that Monoid(F (•), •) is naturally equivalent to
Set(•, U(•)) with both considered as functors from Setop × Monoid to
Monoid.

This is the basic mojo for adjoint functors, but we will go through it a
couple more times before we finally make state the theorem.

III.6.3 Commutator and Abelianizer

Refer back to sections III.2.14 and III.2.15 for the basic information used here.
Recall that we have the commutator functor C : Group // Group, the
inclusion functor I : Ab // Group and the Abelianizer A : Group // Ab.
There are also a number of interesting natural transformations among them.

First define ι : C // 1Group by taking ιG : [G,G] // G to be the
inclusion of the subgroup.



100 CHAPTER III. FUNCTORS AND NATURAL TRANSFORMATIONS

Exercise III.28. Verify that ι as defined above is a natural transformation.

Next define π : 1Group
// IA by πG : G // G/[G,G] is the canonical

homomorphism from G to the quotient group G/[G,G].

Exercise III.29. Verify that π as defined above is a natural transformation.

Using this we define a function Ab(A(G), A) // Group(G, I(A)) as fol-
lows. If f : A(G) // A is a homomorphism of Abelian groups, then we
consider it as a group homomorphism and get I(f) : IA(G) // I(A), so we
get πA(f) : G // I(A).

Now observe that the functor AI : Ab // Ab is “take an Abelian group
and produce its quotient group modulo the commutator subgroup (which is
0)”, i.e., it is the identity functor. So of course we have the identity natural
transformation 1 : AI // 1Ab.

And that allows us to define a function from Group(G, I(A)) // Ab(A(G), A)
via: For g : G // I(A) we get

A(G)
A(g) // AI(A)

∼= // A

which is in Ab(A(G), A).

Exercise III.30. Show that the two functions just defined are inverse to one
another and give bijections between Ab(A(G), A) and Group(G, I(A)).

That and a tiny bit more work gives the following result.

Exercise III.31. Show that Ab(A(•), •) is naturally equivalent to
Group(•, I(•)) with both considered as functors from Groupop×Ab to Set.

R
This is another, simpler, example of the basic mojo for adjoint functors.

Also this factorization of G // A (G a group, A an Abelian group) through
G/[G,G] was understood and named “natural” before natural transformations
were defined. Indeed it was one of the examples that inspired Eilenberg and
Mac Lane to give the name to natural transformations.

III.6.4 The Discrete Topology and the Forgetful Functor

In Section III.2.16 on the Discrete Topology Functor we introduced the forgetful
functor U : Top // Set and the discrete topological space functor F : Set

// Top.
In direct analogy to what we did the the last two sections we first define a

natural transformation η : 1Set
// UF . Note that F equips a set with the
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discrete topology, while U just throws it away. So we take ηS = 1S . Clearly
that is a natural transformation.

From this trivial natural transformation we get a function Top(F (S), X)
// Set(S,U(X)): If f : F (S) // X is a continuous function, then we get

the plain old function U(f) : UF (S) // U(X). Composing that with ηS : S
// UF (S) we get U(f)ηS : S // U(X).

[Yes, this really is a lot of formalism for a trivial observation, but its best
to start with the easy cases!]

Second, there is a natural transformation ε : FU // 1Top with εT = 1T .
[ε is more interesting than η as FU takes a topological space, (X,T), and
produces the topological space (X,P(X)). So it is key to observe that 1X :
(X,P(X)) // (X,T) is always continuous.]

Exercise III.32. Verify that ε : FU // 1Top is indeed a natural transfor-
mation.

Again we can use this natural transformation to define a function Set(S,U(X))
// Top(F (S), X): If f : S // U(X) is any function, then we get F (f) :

F (S) // FU(X), and εXF (f) : F (S) // X is in Top(F (S), X).

Exercise III.33. Show that the two functions just defined are inverse to one
another and give bijections between Top(F (S), X) and Set(S,U(X)).

That and a tiny bit more work gives

Exercise III.34. Show that Top(F (•), •) is naturally isomorphic to
Set(•, I(•)) with both considered as functors from Setop ×Top to Set.

Yes, this is the basic mojo for adjoint functors once again. So the proof
of the theorem of which this is an example (which is coming in Section V.6)
should be old hat.

III.6.5 The Godement Calculus

We’ve noted that composition of functors, and also the composition of natural
transformations. But we can also form other composites of functors and natural
transformations. The Godementcalculus extends and codifies this. Although
The primary use of this material is in Chapter XV (2-Categories), definitions
III.25 (of βF ) and III.26 (of Gα) are used extensively not only throughout
these notes, but in the literature of category theory as a whole.

Godement’s 1958 book Topologie Algébrique et Théorie des Faisceaux [26]was
very influential in introducing the mathematical world to the importance of
sheaves which had been introduced by Leray and developed by Cartan, Lazard
and others a few years earlier. Part of this was also demonstrating that cate-
gory theory was more than just a convenient language. As an incidental aspect
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of this Godement presented “cinq règles de calcul fonctoriel” and these are now
commonly known as the Godement calculus of natural transformations.

Other discussions can be found in Barr and Wells [3]and Arbib and Manes
[1].Much of this can also be found in other sources, without mention of the
Godement calculus, under the names “vertical composition” and “horizontal
composition”, for example see Mac Lane [53, Sec. II.5].

Definition III.25: Suppose F : B // C and G,G′ : C // D are func-
tors and β : G // G′ is a natural transformation. Then βF is the natural
transformation from GF to G′F defined by βFB = βF (B)

Exercise III.35. Verify that βF as just defined is indeed a natural transfor-
mation from GF to G′F .

Definition III.26: Suppose F, F ′ : B // C and G : C // D are functors
and α : F // F ′ is a natural transformation. Then Gα is the natural
transformation from GF to GF ′ defined by GαB = G(αB).

Exercise III.36. Verify that Gα as just defined is indeed a natural transfor-
mation from GF to GF ′.

III.6.6 Functor Categories

Once again We have the makings of new categories: objects, now functors,
and morphisms, this time natural transformations. And again there are set
theoretic foundations place some limitations – we are not able to prove the
existence of the category of all functors between two arbitrary categories. But
if S is a small category, while C is any category, then we can make the

Definition III.27: The functor category C S has as objects all functors
from S to C , and as morphisms the natural transformations between them.

If C is a small category, then C S is also a small category. For details about
these set theoretic issues, see Mac Lane [53, Sec. II.4]

III.6.7 Examples of Functor Categories

The first example of a functor category is both universal and trivial. Every
category is a functor category! More precisely, let 1 be the category that has
exactly one object and one morphism (cf. Section B.20.2 in the Catalog of
Categories (Appendix B).)



III.6. EXAMPLES OF NATURAL TRANSFORMATIONS 103

Exercise III.37. Define the diagonal functor ∆ : C // C 1 so on objects
∆(C) = C, the constant functor selecting C and on morphisms ∆ just selects
the corresponding natural transformation between the relevant constant func-
tors. (See Section III.2.5 and exercise III.21.) Verify that ∆ is an isomorphism.

The category 1 is almost the simplest case of a discrete category, i.e., a
category that has only identity morphisms. (Cf. Section B.19.1 in the Catalog
of Categories (Appendix B) for more discussion.) And the above exercise is
just a special case of

Exercise III.38. If D is a discrete finite category with n objects, show that
C D ∼= C n where C n is the n-fold product of C with itself.

The very simplest case of a discrete category is the empty category 0. The
functor category C 0 is isomorphic to 1 as the only functor is the empty functor
and the only natural transformation of the empty functor is the identity natural
transformation.

Another simple example of a functor category is C 2 where 2 is the morphism
category discussed in Sections I.1.3 and B.20.3. The category 2 is illustrated
by

0
$$ ! // 1 dd

where the two circular arrows are the identity maps.
We introduced C 2 back in Section II.6 with a quite different definition:

the morphism category of C has as objects the morphisms of C , while a
morphism in C 2 from f : A // B to f ′ : A′ // B′ is a pair (h, k) of
C -morphisms so that

B B′
k

//

A

B

f

��

A A′
h // A′

B′

f ′

��

commutes.
But these are really the “same” or, more formally, the two categories are

isomorphic. To see this let us for the moment write M for the morphism
category of C as above and C 2 for the functor category.

Define a functor from M to C 2 as follows: An object f in M (i.e., a
morphism f : A // B in C ) goes to the object F in C 2 which is the functor
F : 2 // C with F (0) = A, F (1) = B and F (!) = f . And a morphism
(h, k) : f // f ′ in M to the morphism τ : F // F ′ in C 2 which is the
natural transformation τ0 : F (0) // F ′(0) = h : A // A′ and τ1 : F (1)

// F ′(1) = k : B // B′. The commuting square we must have to complete
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the verification that this is a natural transformation is

F (1) F ′(1)τ1
//

F (0)

F (1)

F (!)

��

F (0) F ′(0)
τ0 // F ′(0)

F ′(1)

F ′(!)

��

which is exactly the square

B B′
k

//

A

B

f

��

A A′
h // A′

B′

f ′

��

which is guaranteed to commute by the definition of a morphism in M . This
is clearly a functor.

And the inverse functor from C 2 to M takes each object F of C 2 to the
object F (!) of M , and each morphism τ : F // F ′ goes to the morphism
(τ0, τ1) in M . This is also clearly a functor and equally clearly the inverse of
the previous functor.

From now on we will always write C 2 for these categories and use whichever
description is convenient for the purpose at hand.

III.6.8 Discrete Dynamical Systems

The simplest type of discrete dynamical system consists of a set, S – the state
space, and a transition function t : S // S. The image is that this models
a system which starts in some initial state and then moves from state to state
by application of the function t. The items of interest are the “flows” in the
dynamical system which are the sequences (s0, s1, s2, · · · ) from S where s0 ∈ S
is some initial state and then s1 = t(s0), s2 = t(s1), etc.

If (R, tR) and (S, tS) are two discrete dynamical systems, then a morphism
f : (R, tR) // (S, tS) is a function f : R // S with tSf = ftR. Clearly such
a morphism produces a function taking the flows on (R, tR) to those on (S, tS)
by f(r0, r1, r2, · · · ) = (f(r0), f(r1), f(r2), · · · ). We will use D for the category
of discrete dynamical systems.

Next consider the category SetN where Nis the additive monoid of natural
numbers considered as a small category with one object. 0 is the identity
morphism of N, so we will also use it for the unique object as well.

We are going to define a functor from SetN to D , the category of discrete
dynamical systems. Observe that an element of SetN, i.e., a functor from Nto
Set, assigns to the object 0 some set S and to each n in Nsome function S

// S. Writing t : S // S for the function assigned to 1 ∈ N by the functor
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we note that the function assigned to an integer n ≥ 1 is fn, the composition
of f with itself n times. So an object in SetN is completely determined by
the pair (S, t) which is exactly an object in D ! And every such pair defines a
functor from Nto Set.

For good measure, if (R, tR) and (S, tS) are two such pairs defining functors
in SetN, a natural transformation between them is a function τ : R // S such
that τtnS = tnRτ which certainly includes the requirement that τtS = tRτ and
so is a morphism in D . Actually τtS = tRτ implies τtnS = tnRτ so in fact we
have an isomorphism of categories SetN ∼= D .





Chapter IV

Constructing Categories - Part II

IV.1 Comma Categories

An extremely versatile and useful construction of categories has the unenlight-
ening name “comma category”. In his thesis [45], Lawvere began a program
to develop category theory as a foundation for mathematics separate and in-
dependent of set theory. As part of that he associated with any two functors S
and T with common codomain another category (F, T ). Unfortunately he gave
this construction no name, but it’s value was soon recognized and, for lack of
anything better, the name comma category was soon attached. To this day no
good name has appeared even though the notation has changed. (The origin of
the original notation is explained in example 5 below. The use of the notation
(S, T ) is just so common that some alternative notation is essential.)

Definition IV.1: For any two functors S : A // C and T : B // C
with common codomain, define the category (S ↓ T ) whose objects are triples
(A, f,B) whereA is an object of A , B is an object of B, and f : S(A) // T (B)
is a morphism in C . A morphism from (A, f,B) to (A′, f ′, B′) is a pair of mor-
phisms (a, b) with a : A // A′, b : B // B′ and T (b)f = f ′S(a). This is
summarized in the following diagram:

object (A, f,B) :

S(A)

T (B)

f

��

morphism (a, b) :

T (B) T (B′)
T (b)

//

S(A)

T (B)

f

��

S(A) S(A′)
S(a) // S(A′)

T (B′)

f ′

��

Examples and Special Cases

1. (C ↓ C ) – Category of objects under C

107
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The first special case occurs with S being a constant functor C for some
object C in C , and T the identity functor on C . We then have the
category of objects under C and written (C ↓ C ). This is also known
as the coslice category with respect to C. The objects (C, f,B) can
be simplified to (B, f) as C is constant; and f : C // T (B) simplifies to
f : C // B. As well a morphism (c, b) : (B, f) // (B′, f ′) simplifies to
b : B // B′, (as c must be identity morphism on C) with the following
diagram commuting.

B B′
h

//

C

B

f

�������������
C

B′

f ′

��???????????

This example, as well as the next two, were presaged in Section II.6

2. (C ↓ C) – Category of objects over C

Similarly, S might be the identity functor and T a constant functor: this
is the category of objects over C (where C is the object of C selected
by T ), written (C ↓ C). This is also known as the slice category over
C. It is the dual concept to objects-under-C. The objects are pairs
(B, f) with f : B // C, while the morphisms are just morphisms b : B

// B′ in C with the following diagram commuting.

B

C

f

��???????????B B′
b // B′

C

f ′

�������������

3. (C ↓ C ) – Morphism Category of C

When both S and T are the identity functor 1C , the comma category
(C ↓ C ) is immediately seen to be the same as the category C 2 as
discussed in Sections II.6 and III.6.7.

4. (A ↓ T ) and (S ↓ B)

In either of the above two cases, the identity functor may be replaced
with some other functor; this yields a family of categories particularly
useful in the study of Universal Mapping Properties, the topic of the next
chapter. For example, if T is the forgetful functor carrying a monoid
to its underlying set, and S is a constant functor selecting the set A,
then (A ↓ T ) is the comma category whose objects are pairs (A, f : A

// T (M)) with f a function from the set A to the underlying set of
some monoid M .
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5. (A ↓ B)

Another special case occurs when both S and T are constant functors
with domain the category 1. If S selects A and T selects B, then the
comma category produced is equivalent to the set of morphisms between
A and B. (Strictly, it is a discrete category – all the morphisms are
identity morphisms – which may be identified with the set of its objects.)

6. (• ↓ Set)

The category of pointed sets is a comma category (• ↓ Set), with • being
(a functor selecting) any singleton set, and Set (the identity functor of)
the category of sets. Each object of this category is a set, together with a
function selecting some element of the set: the ”base point”. Morphisms
are functions on sets which map base points to base points. Similarly
there is the category of pointed spaces (• ↓ Top).

7. (Set ↓ D) – the category of graphs

The category of graphs is (Set ↓ D), with the functor D taking a set s
to s × s. The objects (a, b, f) then consist of two sets and a function; a
is an indexing set, b is a set of nodes, and f : a // b × b chooses pairs
of elements of b for each input from a. That is, f picks out certain edges
from the set of possible edges. A morphism in this category is made
up of two functions, one on the indexing set and one on the node set.
They must ”agree” according to the general definition above, meaning
that (g, h) : (a, b, f) // (a′, b′, f ′) must satisfy f ′g = S(h)f . In other
words, the edge corresponding to a certain element of the indexing set,
when translated, must be the same as the edge for the translated index.

In addition to providing a very general method of constructing additional
categories, comma categories are closely related to universal mapping proper-
ties which are the topic of the next chapter. In addition comma categories
themselves arise from a universal mapping property. The starting point for
this discussion is to note that there are “projection” functors πS and πT from
(S ↓ T ) to A and to B. On objects the functors are πS(A, f,B) = A and
πT (A, f,B) = B, while on morphisms they are πS(a, b) = a and πT (a, b) = b.
Of course this is equivalent to specifying the functor < πS , πT >: (S ↓ T )

// A ×B and we will use this in Proposition V.14 below.
There is also a canonical natural transformation α : SπA

// TπB defined
by α(A,f,B) = f . Verification that πA and piB are functors and that α is a
natural transformation consists of a simple use of the definition of (S ↓ T ) and
is left for the reader.

The more interesting result is that (S ↓ T ) is universal in this regard as
captured in the next proposition.

Proposition IV.13 Starting with functors S : A // C and T : B // C ,
suppose there is a category D together with functors PA : D // A and
PB : D // B and a natural transformation β : SPA

// TPB. Then there
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is a unique functor P : D // (S ↓ T ) such that PA = ΠA P , PB = ΠBP
and β = αP

Exercise IV.1. Unwind the conditions in the above proposition to see what
P must be, and thereby prove the proposition.



Chapter V

Universal Mapping Properties

Beyond the foundational concepts of category, functor and natural transfor-
mation, the most important idea in category theory is that of a “universal
mapping property”. We’ve mentioned various universal mapping properties
along the way to this point, without ever making the term precise. In this
chapter we will finally give precision to that term, but in many different ways
and still without giving a precise meaning to that phrase! Rather we will define
universal elements, universal arrows, representable functors, adjoint functors,
Kan extensions and a number of other concepts, and show that in some sense
that they are all equivalent. But they are also all useful in different ways and
important ways. This chapter is fundamental for everything that follows in
these notes.

The notion of universal mappings probably started with Poincaré’s study of
universal covering surfaces (see Dieudonné [15, Part 3, Sec. I.2]), and topology
is the source of a very large collection of important examples both many that
predate category theory and some that drove the development of category
theory itself.

Another important motivating source of universal mappings was the notion
of free structures in algebra. Indeed Pierre Samuel in “On universal map-
pings and free topological groups” [64] was probably the first to use the phrase
“universal mapping” in print. The approach that he used – in terms of sets
with structures – was then substantially developed by Bourbaki[9, IV.3] in his
Elements of Mathematics: Theory of Sets

Neither Samuel nor Bourbaki discussed categories, rather they wrote of
structures and species of structures, and in this context the problem of “uni-
versal mappings” becomes: Given a set E with a structure S and appropriate
mappings f : E // F into sets with a compatible structure T , find a “uni-
versal set” F0 and suitable mapping u : E // F0 so that every f : E // F

111
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factors uniquely as f = f0u.

(E,S) (F0, T )
u //(E,S)

(F, T )

f

""DDDDDDDDDDD
(F0, T )

(F, T )

f0

���
�
�
�

Nicely presented example applications of this approach are to be found in
Bourbaki[9, IV.3.] and include free algebraic structures, rings and fields of
fractions, tensor product of modules, completion of a uniform space, Stone-
Čech compactification, free topological groups, almost periodic functions on a
topological group and the Albanese variety of an algebraic variety.

The approach via category theory encompasses all of this and much more,
so all of these examples will be treated at some point in these notes, mostly in
Chapter VII. Refer to the index for specific locations

V.1 Universal Elements

The simplest of the many formalizations of the notion of “universal mapping
property” is the notion of a universal element for a functor to the category of
sets.

Definition V.1: A universal element for a functor H : C // Set is a pair
(F, u) with F an object of C and u ∈ H(F ) satisfying the following Universal
Mapping Property: For each pair (C, c) with C an object of C and c ∈ H(C)
there is a unique morphism c : F // C so that H(c)(u) = c.

F

C

c

���
�
�
�
�
�
� u

c

_

��

∈

∈

∈

∈

H(F )

H(C)

H(c)

��

This definition applies equally well to a contravariant functor considered as
a functor from C op to Set. Writing it out directly in terms of C , a universal
element for a contravariant functor H is a pair (F, u) with F an object of C and
u ∈ H(F ) satisfying the following Universal Mapping Property: for each pair
(C, c) with Cq an object of C and c ∈ H(C) there is a unique morphism c : C

// F so that H(c)(u) = c. The only change from the definition for a functor
is that the morphism c is reversed (and the functor reverses morphisms.)
Example: For any category C define the constant functor H : C // Set
to take every object to the final object 1 = {0} and every morphism to the
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unique function from 1 to itself. Then H has a universal element iff C has an
initial object,and the universal element consists of the initial object and the
unique element in one point set.

Equally well we have the constant contravariant functor H : C op // Set,
and it has a universal element iff C has a final object with the object in the
universal element being the final object.

Compare this discussion with the original discussion of the universal map-
ping properties of initial (37) and final (37) objects.
Example: The first example of a universal mapping property was for prod-
ucts, and that fits here very well. Fixing C1 and C2, two objects of the category
C , define the functor H : C // Set on an object C by H(C) = {(f1, f2) :
f1 : C1

// C,∧f2 : C2
// C} and on a morphism f : C // D by

H(f)(f1, f2) = (ff1, ff2). (The easy verification that H is a functor is left to
the reader.) Then a universal element for H consists of an object C1×C2 of C
and an element (π1, π2) ∈ H(C1 × C2) such that for every object C of C and
every (f1, f2) ∈ H(C) there is a unique morphism 〈f1, f2〉 : C1 × C2

// C
(using the notation for products) with H(〈f1, f2〉)(π1, π2) = (f1, f2). Of course
this is just another way of writing that 〈f1, f2〉 is the unique morphism such
that π1〈f1, f2〉 = f1 and π2〈f1, f2〉 = f2. We summarize thus by saying that
a product of C1 and C2 is a universal element for the functor H. This again
emphasizes very well that a product of two objects is not just an object.

Sums fit here equally well. For fixed objects C1 and C2 there is the con-
travariant functor K : C // Set defined by K(C) = {(f1, f2) : f1 : C

// C1,∧f2 : C // C2} and on a morphism f : D // C by H(f)(f1, f2) =
(f1f, f2f). Then a universal element for K consists of an object C1 + C2 and
an element (ι1, ι2) ∈ K(C1 + C2) such that for every object C of C and every
(f1, f2) ∈ K(C) there is a unique morphism [f1, f2] : C // C1 + C2 (us-
ing the notation for sums) with H([f1, f2])(ι1, ι2) = (f1, f2). Of course this
is just another way of writing that [f1, f2] is the unique morphism such that
[f1, f2]ι1 = f1 and [f1, f2]ι2 = f2. We summarize that by saying that a sum
of C1 and C2 is a universal element for the functor K. This again emphasizes
very well that a sum of two objects is not just an object.
Example: The other early example of a universal mapping property was
the free monoid (see 87.) It fits here by taking a fixed set A and defining
the functor H : Monoid // Set on a monoid M to be H(M) = {f : A

// U(M)} and on a homomorphism h : M // N to be H(h)(f) = fU(h).
(Here U is the forgetful functor from Monoid to Set. Again verification that
H is indeed a functor is left to the reader.) Now a universal element for H
is a monoid A∗ and an element of H(A∗), i.e., a function ε : A // U(A∗)
such that every monoid M and each function f : A // U(M) there is a
unique monoid homomorphism f∗ : A∗ // M extending f , i.e., the universal
mapping property of the free monoid generated by A.
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V.2 Universal Arrows

Definition V.2: For a functor U : C // B and an object B of B, a
universal arrow from B to U is a pair (F, u) where F is an object of C and
u : B // U(F ) satisfying the following Universal Mapping Property: For
each pair (C, f) with f : B // U(C) in B there is a unique f : F // C so
that f = U(f)u.

F

C

f

���
�
�
�
�

B

U(F )
u

77ooooooooo

U(F )

U(C)

U(f)

��

B

U(C)

f

''OOOOOOOOO

Again, this definition applies equally well to a contravariant functor con-
sidered as a functor from C op to B. Writing it out directly in terms of C , a
universal arrow for a contravariant functor U is a pair (F, u) with F an object
of C and u : D // U(F ) satisfying the Universal Mapping Property: for
each pair (C, c) with C an object of C and c : B // U(C) there is a unique
morphism c : C // F so that H(c)(u) = c. And again the only change from
the definition for a functor is that the morphism c is reversed (and the functor
reverses morphisms.)

Universal elements are really examples of universal arrows – there is a nat-
ural correspondence between the elements of a set S and the morphisms from
a final object, 1, and S. So a universal element for a functor H : C // Set
is “the same” as a universal arrow from a final object 1 in Set to H.

Universal arrows are equally well examples of universal elements! Starting
with a functor U : C // B and an object B of B, define a new functor
H : C // Set as H(•) = C (B,U(•)). Then a universal element for H is a
pair (F, u) where F is an object of C and u ∈ C (B,U(F )), i.e., a morphism
u : B // U(F ), and the universal mapping property for the universal element
is just another way of writing the universal mapping property of the universal
arrow.

V.3 Representable Functors

Definition V.3: A representable functor F : C // Set is one natu-
rally equivalent to a Hom functor Hom(C, •) : C // Set. Explicitly, F is
representable iff there is an object C and a natural equivalence η : Hom(C, •)
∼= // F .
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Proposition V.14 The functor F : C // Set is representable iff it has a
universal element. If (U, u) is a universal element for F , then

η : Hom(U, •)
∼= // F

is defined by ηC(f) = f∗(u). And if

η : Hom(U, •)
∼= // F

is a natural isomorphism, then (U, ηU (1U )) is a universal element for F .

Proof: With (U, u) a universal element for F we verify that ηC(f) = f∗(u)
does indeed define a natural transformation, i.e., that for any g : C // D
this square commutes:

Hom(U,D) F (D)ηD
//

Hom(U,C)

Hom(U,D)

g∗

��

Hom(U,C) F (C)
ηC // F (C)

F (D)

F (g)

��

Which, for each f ∈ Hom(U,C), requires

F (g)ηC(f) = F (g)F (f)(u)
= F (gf)(u)
= ηD(gf)
= ηD(g∗(f))
= ηDg∗(f)

Going the other way, to show that for each object C and each c ∈ F (C),
there is f : U // C with f(u) = c it suffices to show that for each morphism
c ∈ Hom(U,C) ∼= F (C) there is an f with f∗(1U ) = c, and for that we can take
f = c.

V.4 Initial and Final Objects

We’ve exhibited initial and final objects as universal elements, but we can
equally well see that universal arrows are special cases of initial and final ob-
jects! Given the datum for a universal arrow, i.e., a functor U : C // B and
an object B of B, we have the comma category (see Section IV.1) (B ↓ U)
which has as objects the pairs (C, f : B // U(C)) while a morphism from
(C, f : B // U(C)) to (C ′, f ′ : B // U(C ′)) is a morphism g : C // C ′
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in C so that

B

U(C)
f

77ooooooooo

U(C)

U(C ′)

U(g)

��

B

U(C ′)

f ′

''OOOOOOOOO

commutes.
In this category an initial object is an object (F, u : B // U(F )) where

for any other object (C, f : B // U(C)) there is a unique morphism f : F
// C in C so that

B

U(F )
u

77ooooooooo

U(F )

U(C)

U(f)

��

B

U(C)

f

''OOOOOOOOO

commutes. And that is exactly the definition of a universal arrow from B to
U . It is worthwhile to summarize this in a proposition.

Proposition V.15 Let U be a functor from C to Band B an object of B, then
a universal arrow from B to U is an initial object of (B ↓ U), and conversely.

V.4.1 Free Objects

As mentioned above the motivating source of the name “universal mappings”
was the notion of free structures in algebra. The context of based categories
seems to give the best home for this notion. So let U : C // B be a category
based on B and B and object of B.

Definition V.4: A free object in C generated by an object B of B is an
object F of C together with a morphism ι : B // U(F ) in B satisfying
the following Universal Mapping Property: For every object C in C and every
morphism f : B // U(C) there is a unique morphism f : F // C

F

C

f

���
�
�
�
�

B

U(F )
ι

77ooooooooo

U(F )

U(C)

U(f)

��

B

U(C)

f

''OOOOOOOOO
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V.5 Limits and Colimits

The most familiar and widely used universal mapping properties are limits and
colimits. Our very first examples of limits and colimits were products and
coproducts, with initial and final objects close behind. As with these, other
limits and colimits are most immediately associated with the internal structure
of a category. But the preservation and creation of limits is also an important
structural property of functors.

In various guises, and with various names, limits (and colimits) well predate
the introduction of categories and functors. In most cases the universal map-
ping property was not made explicit, often because it was essentially trivial.
For example the null space of a linear transformation has the following univer-
sal mapping property: For any linear transformation L : V // W between
two vector spaces over a field K there is the inclusion N(L) ↪→ V of the null
space of L, i.e., the subspace of V consisting of all vectors v with L(v) = 0. If
K : U // V is any other linear transformation with LK = 0, then there is a
unique linear transformation K : U // N(L) such that the following diagram
commutes:

V W
L

//

N(L)

V
��

N(L) 0
0 // 0

W

0

��

U

0

0

''OOOOOOOOOOOOOOOOOOOOU

N(L)

K

?
?

��?
?

U

V

K

��////////////////////

This is representative of a number of similar situations. For example L
might be a group homomorphism whereupon we similarly have the kernel of L,
a normal subgroup, in place of N(L). In the category of sets the situation is
more complicated as there is no direct analog of the kernel for functions, but
rather the equivalence relation

E = {(x1, x2) : x1, x2 ∈ X with f(x1) = f(x2)}

defined by the function (see exercise I.31 on page 22.) Here for any pair of
functions g1, g2 : Z // X with fg1 = fg2 there is a unique function g : Z

// E such that g1 = π1g and g2 = π2g. This is summarized in the following
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commutative diagram.

X Y
f

//

E

X

π2

��

E X
π1 // X

Y

f

��

Z

X

g1

''OOOOOOOOOOOOOOOOOOOOZ

E

g
?

?
?

��?
?

?

Z

X

g2

��////////////////////

Another similar construction occurs when discussing fiber spaces in topol-
ogy. A fiber space is a continuous surjection p : E // B. (Of course E and
B must be topological spaces, and there are usually additional conditions that
are imposed such as requiring that E is “locally a product”.) If f : A // B is
any continuous function, then there is a pullback of p along f which is a fiber
space p̃ : f∗E // A with the universal mapping property captured in the
following commutative diagram:

A B
f

//

f∗E

A

p̃

��

f∗E E
f̃ // E

B

p

��

X

E

gE

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTTX

f∗E

g
?

?
?

��?
?

?

X

A

gA

��////////////////////

This last universal mapping property is suitable and sufficiently important
to state in an arbitrary category.

Definition V.5: Given morphisms f : A // C and g : B // C, a pullback
of f and g is a pair of morphisms πA : A×C B // A and πB : A×C B // B
satisfying the universal mapping property:

A C
f

//

A×C B

A

πA

��

A×C B B
πB // B

C

g

��

D

B

k

''OOOOOOOOOOOOOOOOOOOOD

A×C B

<h,k>

?
?

��?
?

D

A

h

��////////////////////
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This is indeed a generalization of the previous examples – they are all special
cases for suitably chosen categories and morphisms.

Just as with products and final objects and universal mapping objects in
general, pullbacks need not exist, but when they do they are unique up to
a unique isomorphism. The statement and proof of this result for arbitrary
limits, not just pullbacks, is in Proposition V.16.

Exercise V.1. Verify that pullbacks always exist in Set. For functions
f : A // C and g : B // C, define

A×C B = {(a, b) : a ∈ A, b ∈ B ∧ f(a) = g(b)} ⊆ A×B

and define the two projection functions to be the restrictions of the projections
on A×B, then show that this has the requisite universal mapping property.

Products, final objects and all the versions of pullbacks are examples of
limits. Just as for products and final objects there are the dual notions of
coproducts and initial objects, there is a dual to the notion of pullbacks. These
are called pushouts and are a fundamental examples of colimits. We could just
say that a pushout is a pullback in the dual category, but it is worthwhile to
spell out the definition explicitly in the category itself.

Definition V.6: Given morphisms f : C // A and g : C // B, a pushout
of f and g is a pair of morphisms ιA : A // A+C B and ιB : B // A+C B
satisfying the universal mapping property:

A Coo
f

A+C B

A

OO

ιA

A+C B Boo ιB B

C

OO

g

D

B

gg

k

OOOOOOOOOOOOOOOOOOOOD

A+C B

__

[h,k]

?
?

?
?

D

A

WW

h

////////////////////

So again pushouts need not exist, but when they do they are unique up to
a unique isomorphism.

Various familiar constructions in various parts of mathematics are examples
of pushouts. For any linear transformation L : V // W between two vector
spaces over a field K there is the cokernel of L which is W/Im(L). This is the
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pushout of L and 0 as shown here.

0 Voo
0

Coker(L)

0

OO

0

Coker(L) Woo Q
W

V

OO

L

U

W

jj

K

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTU

Coker(L)

__

K

?
?

?
?

U

0

WW

0

////////////////////

The universal mapping property here is “KL = 0 implies there exists a unique
linear transformation K with K = KQ”.

Just as with pullbacks, this is representative of a number of similar situa-
tions. For example L might be a group homomorphism whereupon we similarly
have the cokernel of L, which is the quotient of W by the normal subgroup
generated by the image of L in place of N(L).

In the category of sets the situation is considerably less familiar, just as
coproducts of sets are less familiar than products. Also there is no direct
analog of the cokernel for functions, rather for f : X // Y there is the
“amalgamated sum” Y +X Y which is the quotient of the disjoint union of Y
with itself (Y + Y ) by the equivalence relation that identifies elements coming
from a common element of X. In detail,

Y + Y = {(yi, i) : i ∈ {0, 1} ∧ yi ∈ Y }

(see definition I.35) and Y +X Y is (Y + Y )/ ∼ where ∼ is the equivalence
relation generated by the requirement that (f(x), 0) ∼ (f(x), 1) for all x ∈ X
(see the discussion on page 192.)

Here for any pair of functions g0, g1 : Y // Z with g0f = g1f there is a
unique function g : Y +X Y // Z such that g0 = gι0 and g1 = gι1. This is
summarized in the following commutative diagram.

Y Xoo
f

Y +X Y

Y

OO

ι1

Y +X Y Yoo ι0
Y

X

OO

f

Z

Y

jj

g0

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTZ

Y +X Y

__

g
?

?
?

?
?

?

Z

Y

WW

g1

////////////////////

This construction is most commonly used in topology under the name “ad-
junction space”. When X and Y are topological spaces, A is a subspace of Y
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(with the inclusion function ι : A ↪→ Y ) and f : A // X is a continuous func-
tion (which is called the attaching map.) Then the pushout X +A Y is called
an adjunction space and is constructed by taking the disjoint union of X and
Y modulo the equivalence relation generated by requiring that a is equivalent
to f(a) for all a ∈ A. Intuitively we think of the spaces X and Y being glued
together along the subspace A, with the function f providing the glue.

A simple and important example arises when X and Y are each a closed
disk, A is the bounding circle and f is the inclusion. Then the adjunction
space is (homeomorphic to) the 2-sphere. This works equally well when X
and Y are both closed n-balls (or n-cells) and A is the bounding n-1-sphere to
give the (n+1)-sphere. Iteratively attaching cells of various dimensions leads
to the definition of CW-complexes, an important class of spaces much used in
algebraic topology. For information on CW-complexes look at Lundell [48] or
Hatcher [30].

V.5.1 Cones and Limits

All of the examples take the form of some common “diagram” of objects and
morphisms from the category C and then considering an object with a univer-
sal family of mappings into the diagram. A number of different ways have been
developed for specifying what is meant by a suitable diagram, using graphs, di-
agram schemes, free categories and, the method used here, arbitrary categories.
(For discussions of the various approaches see Barr and Wells [3], Popescu and
Popescu [63], and Mac Lane [54].)

For any small category D and arbitrary category C we have the diagonal
functor ∆ : C // C D which on objects has ∆(C) = C, the constant functor
selecting C, and on morphisms just selects the corresponding natural transfor-
mation between the relevant constant functors. For any functor F : D // C
we also have the constant functor 1 // C D which selects F , and from these
we can form the comma category (∆ ↓ F ). It is helpful to describe the objects
and morphisms somewhat more concretely. From the general definition, an
object (C, φ : C // F, 1) in (∆ ↓ F ) consists of an object C from C and the
unique object 1 in 1 together with a natural transformation φ from the con-
stant functor selecting C to the functor F . The object 1 being unvarying, this
is the same as saying an object C together with a natural transformation φ : C

// F . And this is, for each object D in D, a morphism φD : C // F (D)
(in C ) such that for every morphism f : D // D′ of D the diagram

F (D) F (D′)
F (f)

//

C

F (D)

φD

�������������
C

F (D′)

φD′

��???????????

is commutative.
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Definition V.7: Let F : D // C be a functor. A cone over F is an object
C of C and a natural transformation φ : C // F from the constant functor
C to F . This is the same as saying that for every morphism f : D // D′ of
D the triangle

F (D) F (D′)
F (f)

//

C

F (D)

φD

�������������
C

F (D′)

φD′

��???????????

commutes.
A morphism from the cone (C, φ) to the cone (C ′, φ′) is a morphism f : C
// C ′ with φ′f = φ. (NB the morphism f : C // C ′ can be considered

equally well as a morphism in C and as a natural transformation between the
two constant functors.)

Clearly there is a category of cones over F with objects and morphism as
in the preceding definition. We write this category as C /F .

When the category D is very small a functor can be conveniently specified
by giving the objects and morphisms that are the values of the functor. For
example we will speak of “a pair of morphisms” instead of talking about “the
functor that maps the two non-trivial morphisms in D to the pair of morphisms
of interest”. We will be equally casual when we actually need to talk about
that category D and just describe it as

• •//
• •//

This category has four distinct objects with the corresponding four identity
morphisms, the two morphisms indicated and no other morphisms.

This is all preliminary to giving the actual definition of a limit.

Definition V.8: Let F : D // C be a functor. A limit for F is a final
object (L, φ) in C /F . This is also called a universal cone over F and is a cone
φ : L // F with the universal mapping property that for any cone ψ : N

// F there is a unique morphism u : N // L such that for every object D
of D φDou = ψD. Explicitly, this says for for every morphism f : D1

// D2
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in D this diagram is commutative:

F (D1) F (D2)
F (f)

//

N

F (D1)

ψD1

����������������������
N

F (D2)

ψD2

��////////////////////N

L

u

���
�
�
�

F (D1) F (D2)
F (f)

//

L

F (D1)

φD1

�������������
L

F (D2)

φD2

��???????????

As with all universal mapping objects limits are essentially unique.

Proposition V.16 Let F : D // C be a functor. If φ : L // F and φ′ : L′
// F are both limits of F , then there is a unique isomorphism u : L // L′

such that φ′u = φ.

Proof: The proof is much the same as every other uniqueness proof for
universal mapping properties. As L′ is a limit of F and φ is a cone over F
there is a unique morphism u : L′ // L such that φ′u = φ. And as L is a
limit of F and φ′ is a cone over F there is a unique morphism v : L′ // L
such that φv = φ′. Next we note that φ′uv = φv = φ′ whence uv must be
1L as that is the unique morphism which composed with φ gives φ. Finally as
φvu = φ′u = φ we equally well conclude that vu = 1L′ .

As with other universal mapping objects we will use this to justify referring
to the limit of the functor F , and we will write lim←−F for the object of the
cone over F that is its limit. For each object D of D we will write πD : lim←−F

// F (D) for the component of the natural transformation π : lim←−F
// F

that is the remaining part of the limit.
Examples

1. Final Object

The 0 empty category is the initial category, i.e., there is a unique
(empty!) functor from 0 to any other category C . A cone over the
empty functor is nothing but an object of C as a natural transformation
from C to that empty functor is vacuous. So a universal cone in this case
is just an object 1 where there is a unique morphism from every object
to 1, i.e., a final object in C .

2. Initial Object

Curiously initial objects are also limits in an even more extreme manner,
as the limit of the identity functor 1C .
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Proposition V.17 If lim←−1C exists in C , then lim←−1C is an initial object
in C , and if C has an initial object then it is a limit for 1C .

Proof: Recall that a cone over the identity functor 1C is a natural
transformation ψ : D // 1C from some constant functor D selecting
the corresponding object in C . This is a family of morphisms ψC : D

// C having the property that for every morphism f : C // C ′ the
triangle

C C ′
f

//

D

C

φC

�������������
D

C ′

φC′

��???????????

commutes. A limit for 1C is a universal cone (L, φ) which is final in
C /1C . Consider in particular the triangle

L C
φC

//

L

L

φL

�������������
L

C

φC

��???????????

For every object C this commutes just because φ is a cone over 1C . But
this says that φφL is not only a cone over 1C but is the same cone as φ
from which we conclude that φL must be 1L. Now considering

L C
f

//

L

L

φL

�������������
L

C

φC

��???????????

with f an arbitrary morphism from L to C we see that φC = fφL = f as
φL = 1L. So for each object C there is exactly one morphism (φC) from
L to C which is just what it means for L to be an initial object of C .

For the other direction, if 0 is an initial object of C , then we certainly
have a cone over 1C given by ! : 0 // 1C with !C being the unique
morphism from 0 to C. We also see that !0 must be 10 as there is exactly
one morphism from 0 to 0.

Now suppose ψ : D // 1C is a cone over 1C , then in particular we have
ψ0 : D // 0 which is a cone morphism from ψ to !, i.e., the following
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diagram commutes:

C C ′C C ′

D

C

ψC

����������������������
D

C ′

ψC′

��////////////////////D

0

ψ0

��

C C ′C C ′

0

C

!C

�������������
0

C ′

!C′

��???????????

In order to show that 0 is the limit of 1C we have to verify that ψ0 is the
unique such morphism. But if g : D // 0 is such a morphism then in
particular we have ψ0 =!0g = g.

3. Product

When D is a finite discrete category with objects 1, · · · , n, a functor from
D to C simply selects n objects C1, · · · , Cn. A cone over the functor
selecting (C1, · · · , Cn) is just a family of morphisms fi : C // Ci and
a limit (universal cone) is an object Πn

i=1Ci and a family of morphisms
π1, · · · , πn satisfying the universal mapping property that for any family
of morphisms fi : C // Ci there exists a unique morphism 〈f1, · · · , fn〉 :
C // Πn

i=1Ci with πi〈f1, · · · , fn〉 = fi.

C Πn
i=1Ci

〈f1,··· ,fn〉 //________C

Ci

fi

''OOOOOOOOOOOOOOOOOOO Πn
i=1Ci

Ci

πi

��

Of course as advertised this is exactly the universal mapping property for
the product of C1, · · · , Cn in C .

The empty category is actually the discrete category with zero objects,
so this is yet again reinforcing the remark that the final object is just the
empty product!

While the above discussion assumed that D was a finite discrete category,
that was relevant only to connecting the limit of a functor from D to C
with the prior discussion of products. This allows us to define the product
of an arbitrary family of objects in C to be the limit of a functor from
some discrete category which selects those objects. From this point on



126 CHAPTER V. UNIVERSAL MAPPING PROPERTIES

we will freely use diagrams such as the following:

C Πi∈DCi
〈fi:i∈D〉 //________C

Cj

fj

''OOOOOOOOOOOOOOOOOOO Πi∈DCi

Cj

πj

��

Of course just because we can define products of arbitrary families of
objects, that says noting about existence of such product. In particular
while assuming all products of two objects exists guarantees that all finite
products exists, it says nothing about existence of products of infinite
families. This will be discussed further in section V.5.3

Proposition V.18 Suppose that in the category C all products exist,
i.e., for every functor F : D // C with D any discrete category, the
product lim←−F exists, then C is preordered.

Proof: Suppose that f, g : B // C in C , and consider product P =
ΠDC where D is a proper class. For each D in D take fD : B // P to
be the unique morphism such that πDfD = f and πD′fD = g for D′ 6= D.
If g is not equal to f , then each of the fD is distinct and so Hom(B,P )
is a proper class contrary to the definition of a category. Whence we
conclude that any parallel morphisms are equal, which is the definition
of a preordered category!

4. Kernel

Whenever C is a category with a zero object, we can define the kernel of
a morphism.

Definition V.9: A kernel of f : C // D is a morphism k : K // C
with

a) fk = 0, and

b) If g is any morphism with fg = 0, then there is a unique morphism
g so that g = kg.

As always with universal mapping properties the item of interest is the
morphism k (which determines K), but it is K which is named as Ker(f).
Following the usual practice we will often write of “the kernel Ker(f)
of f”, but it must be understood that this tacitly includes the specific
morphism k : Ker(f) // C. Of course the reason for this is that in
the most familiar categories the kernel of a morphism is a subset of the
domain and the morphism k is just the inclusion
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In general a morphism may not have a kernel, but if it does it is unique
in the strong sense that when k : K // C and k′ : K ′ // C are two
kernels of f : C // D, there is a unique isomorphism k : K // K ′

with k′k = k. The inverse being k′ : K ′ // K.

An easy but important observation is that every kernel is a monomor-
phism.

Proposition V.19 In any category with zero object, if k : Ker(f) // C
is a kernel, then it is a monomorphism.

Proof: Suppose g1 and g2 are morphisms to Ker(f) and kg1 = kg2. Then
fkg1 and fkg2 are both zero morphisms, so there is a unique morphism
g so that kg = kg1. But both g1 and g2 have that property so they must
be equal.

While every kernel is a monomorphism, the converse is not true.

Exercise V.2. Give an example of a monomorphism that is not a kernel.
(Hint: Consider the inclusion of N into Z in the category of monoids.)

We’ve previously noted that the category theory notion of monomor-
phism does not capture all the meaning associated with injective homo-
morphisms. This is part of that and leads to the following definitions.

Definition V.10: In a category with zero, a normal monomorphism
is a morphism that is the kernel of some morphism.

Definition V.11: A normal category is a category with zero in which
every monomorphism is normal.

The most familiar examples of normal categories are the categories of
modules, including the category of Abelian groups and the category of
vector spaces over a particular field. These are all example of Abelian
categories and will be discussed at length in Chapter XIII.

Examples of kernels abound. In the category of groups there is the usual
notion of the kernel of a group homomorphism h : G // G′, namely
Ker(h) = {g ∈ G : h(g) = 1} where 1 is the identity element in G′. Then
the inclusion morphism i : Ker(h) // G is a kernel of h according to
the above definition.

Similarly in the category of modules over a particular ring there is again
the usual notion of the kernel of a module homomorphism h : M // M ′

as Ker(h) = {m ∈ M : h(m) = 0} where 0 is the zero element in M ′.
Again the inclusion morphism i : Ker(h) // M is a kernel of h as above.
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This last includes kernels for homomorphisms of Abelian groups (Z-
modules) and null spaces for linear transformations (K-modules for the
base field K.) At the same time it is really a special case of the kernel
of a group homomorphism as all that is being used here is the kernel of
the module homomorphism considered as a homomorphism of (Abelian)
groups. In Chapter XIII on Abelian Categories, we will see that in a
certain sense these are all the interesting cases, but we will also see the
value of the abstraction.

A more general case is the category of monoids. Again conventionally the
kernel of a monoid homomorphism h : M // M ′ is Ker(h) = {m ∈M :
h(m) = 1} where 1 is the identity element in M ′. Again the inclusion
morphism i : Ker(h) // M is a kernel of h as above. This includes the
kernel of group homomorphisms as a special case, but we will see later
that this illustrates that the notion of a kernel is only useful in special
cases.

There are numerous other cases in algebra where it is common to speak
of kernels that are not captured by this definition. For example in
the category of commutative rings it is usual to define the kernel of a
ring homomorphism f : R // S as Ker(f) = {r ∈ R : f(r) = 0}.
But this is an ideal of R rather than a subring. Indeed the category
CommutativeRing has no zero object (as the rings in CommutativeRing
all have 1 different from 0), so the definition of a kernel given in this sec-
tion simply does not apply.

5. Equalizer

Kernels are specializations of the more general notion of equalizers which
concerns two morphisms between the same objects.

Definition V.12: Two morphisms are parallel if they have the same
domain and the same codomain. This is usually written symbolically as

•
f //
g

// • or just
f //
g

//.

Definition V.13: An equalizer of parallel morphisms f and g is a
morphism k with

a) fk = gk, and

b) If h is any morphism with fh = gh, then there is a unique morphism
h so that h = kh.

Kernels are special cases of equalizers where one of the two parallel mor-
phisms is a zero morphism. Just as with kernels, equalizers need not
exist, but if they do exists any two equalizers of the same parallel pair
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are isomorphic via the unique morphisms between guaranteed by the def-
inition.

Besides the examples of kernels, equalizers also arise in the category of
sets and related categories. In Set if f, g : X // Y are two parallel
functions, then taking K // {x ∈ X : f(x) = g(x)} and k : K //

X the inclusion function exhibits k as an equalizer of f and g. This
same construction serves in the category Top of topological spaces and
continuous maps where K is simply considered as a subspace of X.

Equalizers are also called difference kernels because in certain situations
they arise as the kernel of the difference of two morphisms. For example
in all categories of modules the Hom-set natural structure of an Abelian
group, so for any pair of morphisms f, g : M // N there is the mor-
phism f − g : M // N with f − g(m) = f(m)− g(m). And in this case
the kernel of f − g is an equalizer of f and g. This situation prevails in
all preadditive categories as will be discussed in Chapter XIII.

Just as every kernel is a monomorphism, so is every equalizer and with
essentially the same proof. Suppose that k : K // C is an equalizer
of f, g : C // D and h1, h2 are morphisms to Ker(f) with kh1 = kh2.
Then fkh1 = gkh1, so there is a unique morphism h so that kh = kh1.
But both h1 and h2 have that property so they must be equal.

6. Pullback

Pullbacks were defined back on page 118 as examples of limits, and here
is that remark made precise. When D is the category

• •// •

•

��

a functor F from D to C selects three objects A, B and C in C together
with two morphisms f : A // C and g : B // C, i.e., the diagram

A C
f // C

B

��

g

and the limit of F is exactly the pullback of f and g as previously defined.

Equalizers are just pullbacks where the morphisms are parallel, i.e., they
have the same domain as well as the same codomain.

In the category of sets the canonical pullback of f and g is the subset

A×C B = (a, b) ∈ A×Bsuchthatf(a) = g(b),
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of A×B together with the restrictions of the projection maps π1 and π2

to A×C B .

This example motivates another way of characterizing the pullback: as
the equalizer of the morphisms fπ1, gπ2 : A× CB

// // C.

Exercise V.3. Verify that in any category with finite products, pullbacks and
equalizers, the pullback of f : A // C and g : B // C is the equalizer of
fπ1 and gπ2.

This shows that pullbacks exist in any category with binary products and
equalizers.

Clearly in any category with a terminal object 1, the pullback A× 1B is
just the product A×B.

Every square

Y Zg
//

P

Y

q

��

P X
p // X

Z

f

��

where (P, p, q) is a pullback of (f, g) is called a Cartesian square.

Proposition V.20 Any morphism f : X // Y is a monomorphism iff the
commutative square

X Y
f

//

X

X

1X

��

X X
1X // X

Y

f

��

is Cartesian.

V.5.2 Cocones and Colimits

Everything in the previous section has a dual, but these dual notions are suffi-
ciently common and important that this section provides all of the definitions
and results explicitly, though the proofs follow from the dual results so nothing
further need be said.

The dual of a cone is a cocone, again a family of commuting triangles but
now pointing down.

Definition V.14: Let F : D // C be a functor. A cocone over F is
an object C of C and a natural transformation φ : F // C from F to the
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constant functor C. This is the same as saying that for every morphism f : D
// D′ of D this triangle commutes:

F (D)

C

φD
��??????????

F (D) F (D′)
F (f) // F (D′)

C

φD′

������������

A morphism from the cocone (C, φ) to the cocone (C ′, φ′) is a morphism
f : C // C ′ with φf = φ′.

Clearly there is a category of cocones over F with objects and morphism
as in the preceding definition. We will denote this category by F/C .

Dual to the notion of a limit is a colimit which is a universal cocone just as
a limit is a universal cocone..

Definition V.15: Let F : D // C be a functor. A colimit for F is an
initial object (C, φ) in F/C . This is also called a universal cocone over F and
is a cocone φ : F // C with the universal mapping property that for any
cocone ψ : F // B there is a unique morphism u : C // B so uφ = ψ.
Explicitly, this says for for every morphism f : D // D′ in D this diagram is
commutative:

F (D)

C

φD

''OOOOOOOOOOOOOOOOOOF (D) F (D′)
F (f) // F (D′)

C

φD′

wwoooooooooooooooooo

C

B

u

���
�
�
�

F (D)

B

ψD

��????????????????????????
F (D′)

B

ψD′

��������������������������

Proposition V.21 Let F : D // C be a functor. If φ : F // C and ψ : F
// B are both colimits of F , then there is a unique isomorphism u : B // C

such that uφ = ψ.

As with other universal mapping objects we will use this to justify referring
to the colimit of the functor F , and we will write lim−→F for the object of the
cocone over F that is its limit. We will write ι : F // lim−→F for the natural
transformation that is the remaining part of the colimit.

Examples
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1. Initial Object

The 0 empty category is the initial category, i.e., there is a unique
(empty!) functor from 0 to any other category C . A cocone over the
empty functor is nothing but an object of C as a natural transformation
from C to that empty functor is vacuous. So a universal cocone in this
case is just an object 0 where there is a unique morphism from every
object to 0, i.e., an initial object in C .

2. Final Object

A final objects is the colimit of the identity functor 1C , and conversely.

Proposition V.22 If lim−→1C exists in C , then lim−→1C is a final object in
C , and if C has a final object 1 then it is the colimit of 1C .

3. Sum

Sums are the duals of products, and they occur as colimits of functors on
discrete categories.

When D is a finite discrete category with objects 1, 2, · · · , n, a functor
from D to C simply selects n objects C1, . . . , Cn. A cocone over the
functor selecting (C1, · · · , Cn) is just a family of morphisms fi : Ci // C
and a colimit (universal cocone) is an object Σni=1Ci and a family of
morphisms ι1, · · · , ιn satisfying the universal mapping property that for
any family of morphisms fi : Ci // C there exists a unique morphism
[f1, · · · , fn] : Σni=1Ci

// C with [f1, · · · , fn]ιi = fi.

C Σni=1Ci
oo [f1,··· ,fn] ________C

Ci

gg

fi

OOOOOOOOOOOOOOOOOOO Σni=1Ci

Ci

OO

ιi

Of course as advertised this is exactly the universal mapping property for
the sum of C1, · · · , Cn in C .

The empty category is actually the discrete category with zero objects,
so this is yet again reinforcing the remark that the initial object is just
the empty sum!

While the above discussion assumed that D was a finite discrete category,
that was relevant only to connecting the colimit of a functor from D to
C with the prior discussion of sums. This allows us to define the sum of
an arbitrary family of objects in C to be the colimit of a functor from
some discrete category which selects those objects. From this point on
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we will freely use diagrams such as the following:

C Σi∈DCioo [fi:i∈D] ________C

Cj

gg

fj

OOOOOOOOOOOOOOOOOOO Σi∈DCi

Cj

OO

ιj

Of course just because we can define sums of arbitrary families of objects,
that says noting about existence of such product. In particular while
assuming all sums of two objects exists guarantees that all finite sums
exists, it says nothing about existence of sums of infinite families. This
will be discussed further in section V.5.3.

4. Cokernel

Dual to kernels are cokernels, and just as with kernels they can be defined
in any category that has a zero object (a self-dual notion.)

Definition V.16: In a category with a zero object, a cokernel of f : E
// D is a morphism c : D // C with

a) cf = 0, and

b) If g is any morphism with gf = 0, then there is a unique morphism
g so that g = gc.

As always with universal mapping properties the item of interest is the
morphism c (which determines C), but it is C which is named as Coker(f).
Following the usual practice we will often speak of “the cokernel Coker(f)
of f”, but it must be understood that this tacitly includes the specific
morphism c : D // Coker(f).

In general a morphism may not have a cokernel, but if it does it is unique
in the strong sense that when c : D // C and c′ : D // C ′ are two
cokernels of f : E // D, there is a unique isomorphism c : C // C ′

with cc′ = c. The inverse being c′ : C ′ // C.

Of course just as every every kernel is a monomorphism, every cokernel
is an epimorphism, a fact we record as a proposition.

Proposition V.23 In any category with zero object, if c : B // Coker(f)
is a cokernel, then it is an epimorphism.

While every cokernel is an epimorphism, the converse is not true.

Exercise V.4. Give an example of an epimorphism that is not a cokernel.
(Hint: Consider the inclusion of N into Z in the category of monoids.)
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We’ve previously noted that the category theory notion of epimorphism
does not capture all the meaning associated with surjective homomor-
phisms. This is part of that and leads to the following definitions.

Definition V.17: A morphism in a category with zero is a normal
epimorphism provided it is the cokernel of some morphism.

Definition V.18: A conormal category is a category in which every
epimorphism is conormal.

The most familiar examples of conormal categories are all categories of
modules, including the category of Abelian groups and the category of
vector spaces over a particular field. These are all example of Abelian
categories and will be discussed at length in Chapter XIII.

In the category of modules over a ring there is again the notion of the
cokernel of a module homomorphism being the quotient of the codomain
by the image. This includes cokernels for homomorphisms of Abelian
groups (Z-modules) and cokernel for linear transformations (K-modules
for the base field K.) At the same time it is really a special case of the
cokernel of a group homomorphism as all that is being used here is the
cokernel of the module homomorphism considered as a homomorphism
of (Abelian) groups. In Chapter XIII on Abelian Categories, we will see
that in a certain sense these are all the interesting cases.

5. Coequalizer

Cokernels are specializations of the more general notion of coequalizers
which concerns two parallel morphisms.

Definition V.19: An coequalizer of parallel morphisms f and g is a
morphism c with

a) cf = cg, and

b) If h is any morphism with hf = hg, then there is a unique morphism
h so that h = hc.

Cokernels are special cases of equalizers where one of the two parallel
morphisms is a zero morphism. Just as with cokernels, equalizers need
not exist, but if they do exists any two coequalizers of the same parallel
pair are isomorphic via the unique morphisms between guaranteed by the
definition.

Coequalizers are also called difference cokernels because in certain situ-
ations they arise as the kernel of the difference of two morphisms. For
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example in all categories of modules the Hom-set is naturally an Abelian
group, so for any pair of morphisms f, g : M // N there is the mor-
phism f − g : M // N with f − g(m) = f(m)− g(m). And in this case
the cokernel of f − g is an coequalizer of f and g. This situation prevails
in all preadditive categories as will be discussed in Chapter XIII.

Just as every cokernel is an epimorphism, so is every coequalizer.

6. Pushout

Pushout are the duals of pullbacks and provide a good example of the
value of alternative views of duality. The diagram category for a pullback
is

• •// •

•

��

so a pushout in the category C can be described as the limit of a functor
from this diagram category to C op. But that diagram can equally well
be considered as a functor from the dual of the diagram category to C ,
and usually we consider the diagram category D

• •//•

•
��

and specific diagrams like

C A
f //C

B

g

��

So the pushout A × CB of f and g is the colimit of the functor from D
to C that selects f and g.

By duality, exercise V.3 shows that in any category with finite sums and
coequalizers, the pushout A +C B of f : C // A and g : C // B is
the coequalizer of ι1f and ι2g.

This is the abstract justification of the construction of pushouts in Set
given on page 119.

Dual to the results for pullbacks, this shows that pushouts exist in any
category with binary sums and coequalizers, and that in a category with
an initial object 0, the pushout X +0 Y is just the sum X + Y .
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Every square

X Zg
//

Y

X

OO

f

Y P
i // P

Z

OO

j

where (P, p, q) is a pushout of (f, g) is called a coCartesian square.

Proposition V.24 Any morphism f : X // Y is an epimorphism iff the
commutative square

X Y
f

//

Y

X

OO

f

Y Y
1Y // Y

Y

OO

1Y

is coCartesian.

Of course this is the dual of proposition V.20, so no additional proof is
needed.

V.5.3 Complete Categories

Definition V.20: A category is complete if it has all small limits.

Theorem V.10 small products and kernels implies complete

Definition V.21: A category is cocomplete if it has all small colimits.

Theorem V.11 small sums and cokernels implies cocomplete

V.6 Adjoint Functors

“Adjoints are everywhere”

That slogan, useful for anyone studying categories, has already been re-
inforced by the examples of adjoint functors provided in a number of earlier
exercises. See exercises III.11, III.15, III.16, III.18, III.25, III.27, III.31, and
III.34.

No definition has been provided to this point, so this section will provide
the definition, including a number of alternative formulations, and some basic
theory about adjoint functors.
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The basic context for adjoints consists of two functors U : M // S and
F : S // M . [Throughout this section we will generally use these names
as they are intended to suggest the underlying and free functors between the
category of modules (or monoids) and the category of sets.]

The basic definition is in terms of natural transformations ε : 1S
// UF

and η : FU // 1M , while the memorable formulation is in terms of the
bifunctors M (F (•), •) and S (•, U(•)) both from S op ×M to Set.

As bifunctors these are both functors from S op ×M to Set. So for each
pair of morphisms (f : T // S, h : M // N) we have the induced functions
M (F (f), h) and S (f, U(h)). This notation is so cumbersome that we will
usually use the notation (F (f), h)∗ and (f, U(h))∗ in its place. Notice that
for example (f, U(h))∗(g) = U(h)gf so that this is a direct extension of the
notation first introduced in definitions I.7 and I.8. In particular in the case
that f is an identity morphism, we will write h∗ instead of M (F (S), h) and
U(h)∗ instead of S (S,U(h)). Similarly when h is an identity morphism, we
will write F (f)∗ instead of M (F (f),M) and f∗ instead of S (f, U(M)).

The first observation is that the natural transformations ε and η induce
natural transformations φ : M (F (•), •) // S (•, U(•)) and ψ : S (•, U(•))

// M (F (•), •) defined as follows.
If s ∈ S (S,U(M)), then φS,M (s) = ηMF (s)

F (S) FU(M)
F (s)//F (S)

M

φS,M (s)

��??????????
FU(M)

M

ηM

��

while for m ∈M (F (S),M), the definition is ψS,M (m) = U(m)ε

UF (S) U(M)
U(m)//UF (S)

S

OO

εS

U(M)

S

??

ψS,M (m)

����������

To verify that φ and ψ are natural transformations requires checking that
for all morphisms t : T // S in S and n : M // N in M the following are
commutative squares.

M (F (T ), N) S (T,U(N))
φT,N

//

M (F (S),M)

M (F (T ), N)

(F (t),n)∗

��

M (F (S),M) S (S,U(M))
φS,M // S (S,U(M))

S (T,U(N))

(t,U(n))∗

��
S (T,U(N)) M (F (T ), N)

ψT,N

//

S (S,U(M))

S (T,U(N))

(t,U(n))∗

��

S (S,U(M)) M (F (S),M)
ψS,M // M (F (S),M)

M (F (T ), N)

(F (t),n)∗

��
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This is easily done by explicit calculation. In the first square (t, U(n))∗φS,M (m) =
U(n)U(m)εSt and φT,N (F (t), n)∗(m) = U(n)U(m)UF (t)εT . But as ε is a nat-
ural transformation we have εSt = UF (t)εT and so the square is commutative.

Similarly in the second square (F (t), n)∗ψS,M (s) = nηMF (s)F (t) and ψT,N (t, U(n))∗(s) =
ηNFU(n)F (s)F (t). But as η is a natural transformation we have ηNFU(n) =
nηN and so the square is commutative.

The second result is that when (Uη)(εU) = 1U and (Fε)(ηF ) = 1F the
above natural transformations φ and ψ are natural isomorphisms that are in-
verse to one another. The first assumption gives the commutative diagram

S U(M)s
//

UF (S)

S

OO

εS

UF (S) UFU(M)
UF (s) // UFU(M)

U(M)

OO

εU(M)

UFU(M) U(M)
U(ηM ) //

U(M)

U(M)

1U(M)

77oooooooooooooooo

and shows that φS,MψS,M (s) = U(ηM )UF (s)εS = s, while the second assump-
tion gives the commutative diagram

F (S) Mm
//

FUF (S)

F (S)

ηF (S)

��

FUF (S) FU(M)
FU(m) // FU(M)

M

ηM

��

F (S) FUF (S)
F (εS) //F (S)

F (S)

1F (S)

''OOOOOOOOOOOOOOOOO

and shows that ψS,MφS,M (m) = ηMFU(m)F (εS) = m.
This result leads to the following definition and theorem.

Definition V.22: An adjunction between two functors U : M // S and
F : S // M consists of two natural transformations η : FU // 1M and
ε : 1S

// UF satisfying

U
εU // UFU

Uη // U = 1U

F
Fε // FUF

ηF // F = 1F

We write F a U when there is an adjunction between F and U . This is also
described by saying that F is the left adjoint of U and U is the right adjoint
of F . The natural transformation η is the unit of the adjunction, while ε is
the counit of the adjunction.

The notation adjoint and coadjoint has also been used, but it was never
generally agreed which was which, so the right/left terminology is dominant.

The discussion of the second result above is a detailed statement and proof
of the following theorem.
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Theorem V.12 An adjunction F a U induces a natural equivalence between
the bifunctors M (F (•), •) and S (•, U(•)).

The converse of this theorem is true as well.

Theorem V.13 If the bifunctors M (F (•), •) and S (•, U(•)). are naturally
equivalent, then F a U .

Proof: This is our third result and just as with the first two most of the
interest is in the details. Suppose that φ : M (F (•), •) // S (•, U(•)) is a
natural equivalence with ψ : S (•, U(•)) // M (F (•), •) its inverse. Then for
each object S of S we can define εS = φS,F (S)(1F (S)) ∈ S (S,UF (S)), and for
each object M of M we can define ηM = ψU(M),M (1U (M)) ∈M (FU(M),M).

Starting with h : F (S) // M , the commutative diagram

M (F (S),M) S (S,U(M))
φS,M

//

M (F (S), F (S))

M (F (S),M)

h∗

��

M (F (S), F (S)) S (S,UF (S))
φS,F (S) // S (S,UF (S))

S (S,U(M))

U(h)∗

��

gives us that φS,M (h) = U(h)εS by considering the image of 1F (S) ∈M (F (S), F (S))
along the two different paths from M (F (S), F (S)) to S (S,U(M)).

In the same way, starting with f : S // U(M), the commutative diagram

S (S,U(M)) M (F (S),M)
ψS,M

//

S (U(M), U(M))

S (S,U(M))

f∗

��

S (U(M), U(M)) M (FU(M),M)
ψU(M),M // M (FU(M),M)

M (F (S),M)

F (f)∗

��

gives us that ψS,M (f) = ηMF (f) by considering the image of 1U(M) ∈ S (U(M), U(M))
along the two different paths from S (U(M), U(M)) to M (F (S),M).

That ε is a natural transformation from 1S to UF and η is a natural
transformation from FU to 1M follows from the commutative square:

M (F (S), F (T )) S (S,UF (T ))
φS,F (T )

//

M (F (T ), F (T ))

M (F (S), F (T ))

F (f)∗

��

M (F (T ), F (T )) S (T,UF (T ))
φT,F (T ) // S (T,UF (T ))

S (S,UF (T ))

f∗

��

Just note that the path along the top and right takes 1F (T ) to εT and then
to fεT , while the path down and left take 1F (T ) to F(f) and then, using the
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above characterization of φ, to UF (f)εS . The equality of these two is exactly
what is needed to verify the naturality of ε.

The naturality of η : FU // 1M follows from the commutativity of the
following square in essentially the same fashion.

S (U(M), U(N)) M (FU(M), N)
ψU(M),N

//

S (U(M), U(M))

S (U(M), U(N))

U(h)∗

��

S (U(M), U(M)) M (FU(M),M)
ψU(M),M // M (FU(M),M)

M (FU(M), N)

h∗

��

While the natural equivalence “M (F (S),M) = S (S,M)” is much easier to
remember than the definition in terms of ε and η, the definition of an adjunction
has the advantage of applying to arbitrary categories, not just locally small
categories.

Lawvere introduced comma categories (see section IV.1) as a way of cap-
turing the “M (F (S),M) = S (S,M)” specification of adjoints without the
restriction to locally small categories. His treatment was done entirely inside
a suitable category of categories. A tainted version (because elements appear
here) follows.

For any functor F : S // M we also have the functor 1M : M // M
and so the comma category (F ↓M ) (i.e., (F ↓ 1M ). Recall that the objects
of the comma category are triples (S, f,M) where S is an object of S , M is
an object of M , and f : F (S) // M is a morphism in M . A morphism from
(S, f,M) to (S′, f ′,M ′) is a pair of morphisms (s,m) with s : S // S′, m : M

// M ′ and mf = f ′F (s). This is summarized in the following diagram:

object (S, f,M) :

F (S)

M

f

��

morphism (s,m) :

M M ′m
//

F (S)

M

f

��

F (S) F (S′)
F (s) // F (S′)

M ′

f ′

��

The comma category (F ↓ M ) is in many ways the bifunctor M (F (•), •)
made into a category.

Similarly for any functor U : M // S we also have the comma category
(S ↓ U) where the objects of the comma category are triples (S, g,M) where
S is an object of S , M is an object of M , and g : S // U(M) is a morphism
in S . A morphism from (S, g,M) to (S′, g′,M ′) is a pair of morphisms (s,m)
with s : S // S′, m : M // M ′ and U(m)g = g′s. This is summarized in
the following diagram:
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object (S, g,M) :

S

U(M)

g

��

morphism (s,m) :

U(M) U(M ′)
U(m)

//

S

U(M)

g

��

S S′
s // S′

U(M ′)

g′

��

Lawvere’s insight was that F a U is almost equivalent to (F ↓M ) ∼= (S ↓
U). There is one additional detail – requiring that the following diagram is
commutative

(F ↓M )

S ×M
��??????????

(F ↓M ) (S ↓ U)
θ // (S ↓ U)

S ×M
������������

where the two functors to S ×M are the canonical functors discussed in con-
nection with the Universal Mapping Property of comma categories (page 109).

In more detail, we have projection functors from (F ↓M ) to S and to M .
Taken together they define a canonical functor from (F ↓M ) to S ×M which
is given by taking each morphism (s,m) in (F ↓M ) to (s,m) as a morphism
in S ×M . Equally well there is again a canonical functor from (S ↓ U) to
S ×M and again it takes each morphism (s,m) in (S ↓ U) to the same pair
considered as a morphism in S ×M .

Here is the theorem.

Theorem V.14 An isomorphism θ : (F ↓M ) // (S ↓ U) for which

(F ↓M )

S ×M
��??????????

(F ↓M ) (S ↓ U)
θ // (S ↓ U)

S ×M
������������

commutes is equivalent to an adjunction between F and U . (The two functors
to S ×M are the canonical functors just defined.)

Proof: The proof of this theorem is gotten by adapting the proofs of Theo-
rems V.12 and V.13.
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A natural transformation η : FU // 1M gives rise to the functor θ : (F ↓
M ) // (S ↓ U) defined as taking the morphism

M M ′m
//

F (S)

M

f

��

F (S) F (S′)
F (s) // F (S′)

M ′

f ′

��

in (F ↓M ) to the morphism

UF (S) UF (S′)
UF (s)

//

S

UF (S)

ηS

��

S S′
s // S′

UF (S′)

η′S

��

U(M) U(M ′)
U(m)

//

UF (S)

U(M)

U(f)

��

UF (S) UF (S′)// UF (S′)

U(M ′)

U(f ′)

��

in (S ↓ U).
To check that θ is a functor, note that applying θ to (1S , 1M ), the identity

morphism on the object (S, f,M) of (F ↓M ), produces (1S , 1M ), the identity
morphism on the object θ(S, f,M) = (S,U(f)εS ,M) of (S ↓ U), while verifi-
cation that θ((s′,m′)(s,m)) = θ(s′,m′)θ(s,m) is easily seen by inspecting the
following commutative diagram which comes directly from the definitions:

UF (S) UF (S′)//

S

UF (S)

εS

��

S S′
s // S′

UF (S′)

εS′

��
UF (S′) UF (S′′)//

S′

UF (S′)
��

S′ S′′
s′ // S′′

UF (S′′)

εS′′

��

U(M) U(M ′)
U(m)

//

UF (S)

U(M)

U(f)

��

UF (S) UF (S′)
UF (s) // UF (S′)

U(M ′)

U(f ′)

��
U(M ′) U(M ′′)

U(m′)

//

UF (S′)

U(M ′)
��

UF (S′) UF (S′′)
UF (s′) // UF (S′′)

U(M ′′)

U(f ′′)

��

Clearly θ commutes with the projections to S ×M .
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Similarly a natural transformation ε : 1S
// UF gives rise to the functor

ξ : (S ↓ U) // (F ↓M ) which takes the morphism

U(M) U(M ′)
U(m)

//

S

U(M)

g

��

S S′
s // S′

U(M ′)

g′

��

in (S ↓ U) to the morphism

FU(M) FU(M ′)
FU(m)

//

F (S)

FU(M)

F (g)

��

F (S) F (S′)
F (s) // F (S′)

FU(M ′)

F (g′)

��

M M ′m
//

FU(M)

M

εM

��

FU(M) FU(M ′)// FU(M ′)

M ′

εM′

��

in (F ↓ M ). Checking that ξ is a functor is much the same as for θ, as is
verifying that ξ commutes with the projections to S ×M .

To see that θ and ξ are inverse to one another, we first show that the
equation (ηF )(Fε) = 1F implies ξθ is the identity on (F ↓M ), and then that
the equation (Uη)(εU) = 1U implies θξ is the identity on (S ↓ U).

Applying ξθ to the morphism (s,m) : (S, f,M) // (S′, f ′,M ′) gives
(s,m) : (S, ξθ(f),M) // (S′, ξθ(f ′),M ′) where ξθ(f) = ηMFU(f)F (εS)
As η is a natural transformation ηMFU(f)F (εS) = fηF (S)F (εS) and that to-
gether with the hypothesis (ηF )(Fε) = 1F gives ξθ(f) = f , which is the desired
result.

The similar verification that the equation (Uη)(εU) = 1U implies θξ =
1(S ↓U) is left as the next exercise.

The proof of the converse is in steps much as above. Starting with a functor
θ : (F ↓ M ) // (S ↓ U) commuting with the projections to S × M
consider for each object S of S the object θ(F (S), 1F (S), F (S)) of (S ↓ U). The
hypothesis that θ commutes with the two projections to S ×M guarantees this
has the form (S, εS , F (S)), and this defines the morphism εS : S // UF (S).

This actually defines a natural transformation ε : 1S
// UF with the

naturality coming by noting that

S′ UF (S′)εS′
//

S

S′

s

��

S UF (S)
εS // UF (S)

UF (S′)

UF (s)

��
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is commutative because it is the image under θ of the commutative square

F (S′) F (S′)
1F (S′)

//

F (S)

F (S′)

F (s)

��

F (S) F (S)
1F (S) // F (S)

F (S′)

F (s)

��

Next we notice that θ takes the morphism (1S , f) : (S, 1F (S), F (S)) //

(S, f,M) in (F ↓M ) to the morphism (1S , f) : (S, εS , F (S)) // (S, θ(f),M)
in (S ↓ U), and from that we see that θ(f) = U(f)εS .

Similarly starting with a functor ξ : (U ↓M ) // (F ↓M commuting with
the projections to S ×M , define, for each object M of M , the morphism ηM :
FU(M) // M by the formula ξ(U(M), 1U(M), U(M)) = (U(M), ηM ,M)

Again this defines the natural transformation η : FU // 1M with the
square

FU(M ′) M ′ηM′
//

FU(M)

FU(M ′)

FU(m)

��

FU(M) M
ηM // M

M ′

m

��

being commutative because it is the image under ξ of the commutative square

U(M ′) U(M ′)
1U(M′)

//

U(M)

U(M ′)

U(m)

��

U(M) U(M)
1U(M) // U(M)

U(M ′)

U(m)

��

And we see that ξ takes the morphism (g, 1M ) : (S, g,M) // (U(M), 1M ,M)
in (S ↓ U) to the morphism (g, 1M ) : (S, ξ(g),M) // (S, ηM ,M) in (F ↓M ,
and from that we see that ξ(g) = ηMF (g).

Now ξθ(f) = ηMFU(f)F (εS) = fηF (S)εF (S), so ξθ = 1(F↓M ) implies
(ηF )(Fε) = 1F .

Equally θξ(g) = U(ηM )UF (g)εS = U(ηM )εU(M)g, so θξ = 1(S ↓)U implies
(Uη)(εU) = 1U .

Exercise V.5. Complete the proof of the above theorem by showing that
(Uη)(εU) = 1U implies θξ = 1(S ↓U).



V.7. KAN EXTENSIONS 145

V.7 Kan Extensions

X MFoo
µ

RF

X

η

�������������
RF

MF

__

δF

?
?

?
?

?
?

X MFα
//

LF

X

??

ε

�����������
LF

MF

σF

��?
?

?
?

?
?

V.7.1 Ends and Coends

From wikipedia
a dinatural transformation α between two functors S, T : C op×C // X ,

written α : S ¨ //T , is a function which to every object c of C associates
an arrow αc : S(c, c) // T (c, c) of X and satisfies the following coherence
property: for every morphism f : c // c′ of C the diagram

S(c, c) T (c, c)
αc // T (c, c)

T (c, c′)

T (1,f)

��??????????

S(c′, c)

S(c, c)

S(f,1)

??����������
S(c′, c)

S(c′, c′)

S(1,f)

��??????????

S(c′, c′) T (c′, c′)
αc′ // T (c′, c′)

T (c, c′′)

T (f,1)

??����������

commutes.
From wikipedia
an end of a functor S : C op × C // X is a universal dinatural transfor-

mation from an object e of X to S.
More explicitly, this is a pair (e, ω), where e is an object of X ω : e ¨ //S

is a dinatural transformation, such that for every dinatural transformation
β : x ¨ //S there exists a unique morphism h : x // e of X with βa = ωa ◦ h
for every object a of C .

By abuse of language the object e is often called the end of the functor S
(forgetting ω) and is written e =

∫
c
S(c, c) or just

∫
C S.

Coend
The definition of the coend of a functor S : C op × C // X is the dual

of the definition of an end. Thus, a coend of S consists of a pair (d, ζ), where
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d is an object of X and ζ : S ¨ //d is a dinatural transformation, such that
for every dinatural transformation γ : S ¨ //x there exists a unique morphism
g : d // x of X with γa = g ◦ ζa for every object a of C .

The coend d of the functor S is written d =
∫ c
S(c, c) or

∫ C
S.



Chapter VI

More Mathematics in a Category

VI.1 Relations In Categories

When we discussed subobjects and quotient objects back in Section I.2.4 we
saw that in Set, the category of sets, equivalent quotient objects corresponds
exactly to the quotient sets with respect to an equivalence relation. We also
noted we did not even have the notion of an equivalence relation on an object
for general categories. As promised we will here give the needed definition and
relate it to quotient objects.

In Set a relation on a set S is defined as a subset of S×S. We could follow
that definition and define a relation on an object C as a subobject of C × C,
but that restricts the definition to those categories where C×C exists. Instead
we note that specifying a subobject R of C × C, i.e., a monomorphism d : R
// // C × C, is equivalent to giving a pair of morphisms (d0, d1) from R to C

where fd0 = fd1 and gd0 = gd1, implies f = g. That gives rise to the following
definitions.

[For convenience we will write (d0, d1) : R // C as shorthand for d0 : R
// C and d1 : R // C.]

Definition VI.1: A pair of morphisms (d0, d1) : R // C is jointly monic,or
is a monic pair provided d0f = d1f and d0g = d1g, implies f = g

Definition VI.2: A relation on an object C is a pair of morphisms (d0, d1) :
R // C which are jointly monic.

Exercise VI.1. Verify that if the product C×C exists, then d0, d1 are jointly
monic iff 〈d0, d1〉 : R // C × C is monic.

Recall that an equivalence relation on a set satisfies the three conditions
of being reflexive, symmetric, and transitive. (See Mac Lane and Birkhoff [55,
Sec. 1.11] for details.) So we want to translate these notions to the setting of

147



148 CHAPTER VI. MORE MATHEMATICS IN A CATEGORY

category theory.
For sets, a relation, R is reflexive iff (c, c) is always in R. That’s the same

as saying that the diagonal ∆ is a subset of R, and that in turn is the same
as requiring the diagonal morphism to factor through 〈d0, d1〉, i.e., there is a
function r : C // R with 〈d0, d1〉r = ∆ which is the same as saying that
d0r = 1C and d1r = 1C . And that gives us a definition of reflexive relation
which is valid in any category.

Definition VI.3: A relation d0, d1 : R // C is reflexive iff there is a
morphism r : C // R such that d0d = 1C = d1d.

Note this says d0 and d1 have r as a common retract.
As often, the Hom functors gives us a way of reflecting our knowledge of

Set to a general category. If d0, d1 : R // C is a relation, then for any
object X, the pair Hom(X, d0),Hom(X, d1) : Hom(X,R) // Hom(X,C) is a
relation on Hom(X,C) in Set. The next exercise shows that reflexive relations
are preserved (d0, d1 a reflexive relation implies Hom(•, d0), Hom(•, d1) is a
reflexive relation) and reflected (Hom(•, d0), Hom(•, d1) a reflexive relation
implies d0, d1 a reflexive relation.)

Exercise VI.2. Suppose that in C the pair d0, d1 (both morphisms from R
to C) is a relation on C. Show that it is a reflexive relation iff for every object
X, the pair Hom(X, d0) and Hom(X, d1) is a reflexive relation on Hom(X,C)
in Set.

Similarly, for sets a symmetric relation is one where (c, c′) ∈ R ⇐⇒
(c′, c) ∈ R. That’s the same as saying that the pair (d1, d0) defines the same
relation as the pair (d0, d1) which in turn is the same as saying there is an
isomorphism τ : R // R with d1 = d0τ , which gives us the general definition
we want.

Definition VI.4: A relation d0, d1 : R // C is symmetric iff there is an
isomorphism τ : R // R with d1 = d0τ .

Exercise VI.3. Suppose that in C the pair (d0, d1) : R // C is a relation
on C. Show that it is a symmetric relation iff for every object X, the pair
(Hom(X, d0),Hom(X, d1)) is a symmetric relation on Hom(X,C) in Set.

Definition VI.5: A relation d0, d1 : R // C is transitive iff

Exercise VI.4. Suppose that in C the pair (d0, d1) : R // C is a relation
on C. Show that it is a transitive relation iff for every object X, the pair
(Hom(X, d0),Hom(X, d1)) is a transitive relation on Hom(X,C) in Set.
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Definition VI.6: An equivalence relation on an object C is a relation on
C that is reflexive, symmetric, and transitive.

Of course we are usually interested in equivalence relations because they
allow us to define quotient objects, so our next definition makes that connec-
tion.

Definition VI.7: If (d0, d1) : R // C is an equivalence relation on C, then
a quotient of C by R is an object C/R and a morphism q : C // C/R
satisfying the following Universal Mapping Property:

1. qd0 = qd1, and

2. if f is any morphism with fd0 = fd1, then f factors uniquely through q,
i.e., there is a unique morphism f with fq = f .

R C
d0 //

R C
d1

// C

C/R

q

::tttttttttt

C/R

D

f

���
�
�
�
�
�
�

C

D

f

$$JJJJJJJJJJJ

The morphism q is called “the” quotient morphism and the object C/R
is called “the” quotient object of C modulo R. This common terminology is
misleading in that the equivalence relation is actually the pair of morphisms
(d0, d1), not their common domain R, while as with all universal mapping
properties, the object C/R and the morphism q are only determined up to a
unique isomorphism.

Of course we already have a definition of a quotient object, and in the cate-
gory of sets we know quotient objects (i.e., equivalence classes of epimorphisms,
see definition I.25) correspond to quotients modulo an equivalence relation. So
the next step is to see the extent that extends to general categories. The first
stage is observing that the quotient morphism q is always an epimorphism.

Treated in Popescu and Popescu [63, pp. 54–56].

Definition VI.8: A regular monomorphism is an equalizer of a pair.

Definition VI.9: A extremal monomorphism is a monomorphism that
cannot be factored by an epimorphism that is not an isomorphism.





Chapter VII

Algebraic Categories

Rhetorical algebra, as instructions written entirely with words and numbers for
solving various concrete arithmetic problems, appeared around four millenia
ago in Babylonia and Egypt.

How many apples are needed if four persons of six receive one-third, one-
eighth, one-fourth, and one-fifth, respectively, of the total number, while the
fifth receives ten apples, and one apple remains left for the sixth person?

(Eves, Great Moments in Mathematics (Before 1650), 1980, pp. 127-128.)
Algebra slowly changed to the geometric algebra of the classical Greek

mathematicians and the Vedic Indian mathematicians, and still later evolved
into syncopated algebra using abbreviations and some symbols. Finally in the
16th century symbolic algebra emerged with the use of symbols for addition,
subtraction, multiplication, exponents, coefficients, unknowns, radicals, etc.
By this time the primary preoccupation of algebra had become understanding
roots of polynomial equations, and this led to the acceptance of negative and
then complex numbers. After the invention of analytic geometry by Descartes
and Pascal, it also led increasingly to the intertwinning of algebra and geome-
try.

During the 17th and 18th centuries the Fundamental Theorem of Algebra
(FTA) slowly emerged along with an understanding of the complex numbers.
This culminated with the proof of the FTA at the end of the 18th century.
By this time abstract algebra was emerging as attention shifted from solving
polynomial equations to studying the number systems and other mathemati-
cal structures that arose while understanding the theory of equations. Euler,
Gauss, Cauchy, Abel and others all used groups in their work throughout the
18th and 19th centuries but without the name. Early in the 19th century
Galois explicitly recognized groups in his invention of Galois theory, and they
have been an important unifying concept every since. In addition Hamilton
(with the invention of Quaternions), Grassmann (in his study of vectors and
Grassmann algebras), Cayley (studying the Octonions) and Boole (with his
algebraic treatment of basic logic) developed the immediate precursors of ab-
stract algebra as we know it today.
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Although the axiomatic approach to mathematics was one of the impor-
tant contributions of classical Greek mathematics, its applicability to algebra
did not come to the fore until the latter part of the 19th century. At the
turn of the century the impact of non-Euclidean geometry, the antimonies of
axiomatic set theory, and the general recognition of the general value of the
axiomatic approach to algebra lead to the recognition of the subject called
Universal Algebra. Indeed the first book on this subject was published by A.
N. Whitehead [70] in 1898.

Whitehead clearly recognized and stated the basic goal of a comparative
study of various systems of finitary operations on a set, with the intention of
understanding the common properties of such varied algebraic structures as
monoids, groups, rings, Boolean algebra and lattices. When Whitehead pub-
lished his book, the knowledge of these structures was insufficiently developed
to provide the experience needed to develop a general theory. It was not until
the 1930s that Birkhoff began publishing results in the area that is the subject
of this chapter.

The first section here develops the basics of the theory in much the fashion
expounded by Birkhoff [5], while later sections discuss the approach through
category theory that was developed by Lawvere [45].

VII.1 Universal Algebra

As a first step into universal algebra consider a fixed set Ω (the set of operator
symbols) and a function arity : Ω // N giving the arity of the operator.
An Ω-algebra A is a set |A| (the carrier of A) and for each ω ∈ Ω of arity
n = arity(ω) an operator oω : |A|n // |A|

For general information on universal algebra consult the books of that title
by P. M. Cohn [13] and G. Grätzer [27].

VII.2 Algebraic Theories

The original source for this material is Lawvere’s thesis [45] which is available
in the Theory and Application of Categories Reprint Series.

See the article “Algebraic Categories” by Pedicchio and Rovatti [61].

VII.3 Internal Categories

One of the most fascinating aspects of the theory of categories is its reflective
nature. One aspect of that is that it is quite natural to define categories and
functors within a category, at least one that has finite limits. Throughout this
section we will take S to be a Cartesian category.

Definition VII.1: An internal category in S consists of
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Definition VII.2:

Definition VII.3:





Chapter VIII

Cartesian Closed Categories

Suppose that V is a Cartesian category, i.e., one with all finite products. Then
for each object C of V there is the functor •×C : V // V . When this functor
has a right adjoint it is written as •C A category where all such functors have
right adjoints is called a Cartesian closed category.

VIII.1 Partial Equivalence Relations and Modest Sets

Definition VIII.1: A partial equivalence relation ≈ on a set A is a binary
relation on A that is symmetric (a ≈ a′ ⇒ a′ ≈ a) and transitive (a ≈ a′ and
a′ ≈ a′′ ⇒ a ≈ a′′).

Note that the difference between a partial equivalence relation and an equiv-
alence relation (see definition A.24) is that a partial equivalence relation need
not be reflexive, i.e., a ≈ a is not guaranteed. So every equivalence relation
is a partial equivalence relation but the converse is not true with an example
being the relation {(0, 0)} on {0, 1}. In other words we have 0 ≈ 0 and nothing
more. Clearly this is symmetric and transitive, but it is not reflexive as 1 ≈ 1
is false.

The phrase “partial equivalence relation” will be used sufficiently often that
we will frequently use the abbreviation PER.

The reason for the word “partial” is because all PERs are similar to the
example. When ≈ is a PER on the set A, consider the subset D = {a ∈ A : a ≈
a}. Notice that if a and a′ are elements of A and a ≈ a′, then by symmetry
a′ ≈ a and by transitivity both a ≈ a and a′ ≈ a′ so both a and a′ are in
D. That means ≈ can be considered as a relation on D, and there it is an
equivalence relation. D is called the domain of definition of the PER ≈ and
we may write D(≈) to emphasize the relation, particularly when considering
more than one PER.

The converse is equally well true — if D is a subset of A and ≈ is an
equivalence relation on D, the ≈ may equally well be considered as a relation
on A and it is a partial equivalence relation on A. So an alternative description
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of a PER on A is an equivalence relation on some subset of A.
Equivalence relations on sets are closely related to quotient sets (see the

discussions in sections I.26 and A.27), so in a certain sense a PER on A is
much the same thing as a quotient of a subset of A, a perspective we will
explore further.

For ≈A a PER on A and ≈B is a PER on B, a function f : A // B is
compatible when a ≈A a′ ⇒ f(a) ≈B f(a′). This tells us that

f(D(≈A)) ⊆ D(≈B)

and so we can consider

f |D(≈A) : D(≈A) // D(≈B)

Going one step further we also have the quotient maps qA : D(≈A) //

D(≈A)/ ≈A and qB : D(≈B) // D(≈B)/ ≈B) (see page 196) and they all fit
into the commutative square:

D(≈A)/ ≈A D(≈B)/ ≈B
f

//____

D(≈A)

D(≈A)/ ≈A

qA

��

D(≈A) D(≈B)
f // D(≈B)

D(≈B)/ ≈B

qB

��

where f is the unique function with qBf = fqA (see exercise I.32.)
Writing f : (A,≈A) // (B,≈B) for a compatible function from A to B,

we can summarize this by saying that every compatible function f induces a
function f : D(≈A)/ ≈A // D(≈B)/ ≈B .

As an intermediate step to defining the PER category we define the cate-
gory of compatible functions to have as objects pairs (A,≈A) with A a set and
≈A a PER on A, and as morphisms the compatible functions between such
pairs. The identity morphisms are just the identity functions, and composition
is just composition of functions which works because the composition of two
compatible functions is again a compatible function.

The penultimate step here is to observe that we can define a congruence on
the category of compatible functions (recall definition II.2) by saying that two
compatible functions f and f ′ from (A,≈A) to (B,≈B) are congruent (f ∼ f ′)
when for all a ∈ A

a ≈A a⇒ f(a) ≈B f ′(a)

This is an equivalence relation on compatible functions from (A,≈A) to
(B,≈B) exactly because these are compatible functions and ≈B is a PER. The
other part of the congruence condition is:

f ∼ g ∧ h ∼ k ∧ hf defined ⇒ hf ∼ kg.
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Translated to this situation we must show

(∀a ∈ A, a ≈A a⇒ f(a) ≈B g(a) ∧ ∀b ∈ B, b ≈B b⇒ h(b) ≈C k(b))
⇒ ∀a ∈ A, a ≈A a⇒ hf(a) ≈C kg(a)

which comes from hf(a) ≈C hg(a) (because h is compatible) and h(g(a)) ≈C
k(g(a) (which follows from the second assumption because g(a) ≈B g(a).)

The point of this equivalence relation is exactly that two compatible mor-
phisms f and f ′ are equivalent iff they induce the same function from D(≈A
)/ ≈A to D(≈B)/ ≈B .

With all of this out of the way we are ready to define the PER category.

Definition VIII.2: The category PER is the quotient category (see defini-
tion II.3) of the category of compatible functions by the congruence described
above. So PER has as objects pairs (A,≈A) with A a set and ≈A a PER
on A, while a morphism f : (A,≈A) // (B,≈B) is an equivalence class of
compatible functions from (A,≈A) to (B,≈B).

As for all quotient categories, the identity morphisms are the equivalence
classes of identity functions and composition is defined by the equivalence class
of the composition of representative functions. As common in such situations
we will often abuse the notation and deliberately confuse compatible functions
with the equivalence class they represent.

The category PER was introduced as the inspiration and example of a
whole family of others. For C any Cartesian closed category we are going to
introduce the category PER(C ) which is based on following the construction
of PER except that the objects will be PERs on the points of an object in C .
We start with the following definition.

Definition VIII.3: When C is a CCC and A is an object of C , a partial
equivalence relation (PER) on A is a PER on the set of points of A, i.e., the
set C (1, A).

If ≈A is a PER on A (i.e., on C (1, A)) and ≈B is a PER on B, then a
morphism f : A // B in C is compatible when the induced function f∗ :
C (1, A) // C (1, B) is a compatible function. In full this means that ∀a, a′ ∈
C (1, A), a ≈A a′ ⇒ fa ≈B fa′.

As above we define the (anonymous) category of compatible morphisms on
C to have as objects pairs (A,≈A) with A an object of C and ≈A a PER on A,
and as morphisms the compatible morphisms between such pairs. The identity
morphisms are just the identity functions, and composition is just composi-
tion of morphisms which works because the composition of two compatible
morphisms is again a compatible morphism.

Of course the next step is to define a congruence on the category of com-
patible morphisms on C by saying that two compatible morphisms f and f ′
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from (A,≈A) to (B,≈B) are congruent (f ∼ f ′) when for all a ∈ C (1, A)

a ≈A a⇒ fa ≈B f ′a

This is an equivalence relation on compatible morphisms from (A,≈A) to
(B,≈B) exactly because these are compatible morphisms and ≈B is a PER.
The other part of the congruence condition is:

f ∼ g ∧ h ∼ k ∧ hf defined ⇒ hf ∼ kg.

Translated to this situation we must show

(∀a ∈ C (1, A), a ≈A a⇒ fa ≈B ga ∧ ∀b ∈ C (1, B), b ≈B b⇒ hb ≈C kb)
⇒ ∀a ∈ C (1, A), a ≈A a⇒ hfa ≈C kga

which comes from hfa ≈C hga (because h is compatible) and hga ≈C kga
(which follows from the second assumption because ga ≈B ga.)

And now we are ready to define the PER category.

Definition VIII.4: The category PER(C ) is the quotient category of the cat-
egory of compatible functions by the congruence described above. So PER(C )
has as objects pairs (A,≈A) with A an object of C and ≈A a PER on the set
C (1, A), while a morphism f : (A,≈A) // (B,≈B) is an equivalence class
of compatible morphisms from (A,≈A) to (B,≈B), this last meaning that the
induced function

f∗ : (C (1, A),≈C (1, A)) // (C (1, B),≈C (1, B))

is a compatible function.

Just as with the original PER, the identity morphisms are the equivalence
classes of identity functions and composition is defined by the equivalence class
of the composition of representative functions. As common in such situations
we will often abuse the notation and deliberately confuse compatible functions
with the equivalence class they represent.

Now we have both PER and PER(Set), but these are really the same
thing as the next exercise will have you verify.

Exercise VIII.1. Starting with the observation that the natural transfor-
mation

ε : Set(1, •) // 1Set(•)

given by ε(x) = x(0) is a natural equivalence, unwind all the details to verify
that PER and PER(Set) are isomorphic categories.

Definition VIII.5: A modest set is a triple (I, A, e) where I and A are sets
and e : I // P(A) defines an indexed family of subsets of A subject to:
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1. For all i in I, e(i) 6= ∅;

2. If i and j are distinct elements of I, then e(i) ∩ e(j) = ∅.

When (I, A, e) is a modest set, there is the subset
⋃
i∈I e(i) of A and the

partition {e(i) : i ∈ I} of this subset. So a modest set is equally well defined as
an indexed partition of some subset of X. Now partition and equivalence rela-
tions are intimately intertwined (see Section A.7), so specifying a partition of a
subset of A is equivalent to specifying an equivalence relation on the subset and
so is equivalent to specifying a PER on A. The reason for the apparently more
complicated definition is two-fold. First it provides flexibility when construct-
ing new modest sets, and second it is a form that will conveniently generalize
to other categories.

Definition VIII.6: A morphism of modest sets

f = (fi, fe) : (I, A, eA) // (J,B, eB)

is a pair of functions fi : I // J and fe : A // B with

∀i ∈ I, a ∈ A, a ∈ eA(i)⇒ fe(a) ∈ eB(fi(i))





Chapter IX

Topoi

Definition IX.1: If C is a category with a terminal object 1, the subobject
classifier in C is a morphism t : 1 // Ω with the following universal map-
ping property: for each monomorphism f : A // B in C there is a unique
morphism χf : A // Ω making

1 Ω
t

//

A

1

!

��

A B// f // B

Ω

χf

��

a pullback square.

The monomorphism χf is called the characteristic morphism of the monomor-
phism f (which is here considered as a subobject of B.) This is in analogy to
the characteristic function χA : B // 2 of a subset A of a set B where χA is
the constant function with value 1.

Exercise IX.1. As in Appendix A (Set Theory) we write 1 = {0} and 2 =
{0, 1}. As noted previously 1 is a terminal object in Set. Defining t : 1 // 2
by t(0) = 1, show that t is a subobject classifier in Set by verifying that if
A ⊆ B and i : A // B is the inclusion function, then the characteristic
function χA is the characteristic morphism for i.

Recall from definition I.24 that two subobjects m : A // // B and m′ : A′
// // B of B are equivalent when there is an isomorphism between A and A′
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with
A

B

m

��???????????A

A′

OO

∼=

��
A′

B

m′

??�����������

commuting.
This is captured by subobject classifiers as noted in the next exercise.

Exercise IX.2. If the category C has a subobject classifier t : 1 // Ω, then
m : A // // B and m′ : A′ // // B are equivalent subobjects of the object B in
C iff χm = χm′ .

As always with universal mapping properties if a subobject classifier exists
it is unique up to a unique isomorphism, and this is the result of the next
exercise.

Exercise IX.3. Verify that if t : 1 // Ω and t′ : 1toΩ′ are both subobject
classifiers in C , then there is a unique isomorphism χt′ : Ω′ // Ω so that

1 Ω′
t′

1

1
��

1 Ω// t // Ω

Ω′

χt′

��

commutes.



Chapter X

The Category of Sets
Reconsidered

This is largely a retelling of the story in Sets for Mathematics by Lawvere and
Rosebrugh [46].

Definition X.1: 1 is a separator in C if f, g : C // D, then f and g equal
on elements of C implies f = g.

In the following definition we consider only categories with a terminal ob-
ject.

Definition X.2: A morphism f : C // D is a surjection when for each
element d : 1 // D of D there is at least one element c : 1 // C with
d = fc.

The category of sets Set has the following properties:

1. Set has a final object, 1.

2. Set has an initial object, 0.

3. 1 separates morphisms in Set.

4. 0 is not isomorphic to 1.

5. Set has sums.

6. Set has products.

7. Set has finite (inverse) limits.

8. Set has finite colimits.

9. [Exponentiation] For all objects X and Y in Set there is a mapping object
Y X .
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10. There is a truth value object t : 1 // Ω in Set, i.e., there a natural
correspondence between parts of an object X and morphisms X // Ω.

11. [Set is Boolean] 〈t, f〉 : 1 // Ω is an isomorphism.

12. [Axiom of Choice] Every surjection in Set is a retract (and so an epimor-
phism.)

13. [Axiom of Choice] Every epimorphism is a retract (splits).
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Monoidal Categories

References: Kelly [37],
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Enriched Category Theory

See Kelly [37] and Dubuc [16].
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Appendix A

Set Theory

The category of sets is used as the basic example of a category throughout
theses notes. Understanding that category requires knowledge of the rudiments
of set theory. For convenient reference the necessary information is outlined
here.

This appendix is not intended to be an introduction to set theory, so al-
though all the concepts that are discussed will be formally defined, they will
on occasion be discussed informally before the actual definition is given.

Because the connection between category theory and the theory of sets
occasionally skirts the edge of the foundation of set theory, the treatment is an
informal axiomatic treatment which was inspired by Halmos’ Naive Set Theory,
[29]. though for reasons explained below the actual theory is different.

When set theory was first emerging as a part of mathematics there was
the belief that for any boolean predicate P (x) (i.e., where for every x the
predicate P (x) is either true or false) there is the set {x : P (x)} of all elements
x for which the predicate was true. That idea was demolished by Bertrand
Russell when he propounded his famous paradox: which expressed If S = {x :
x is a set and x /∈ x}, then S /∈ S ⇒ S ∈ S, while S ∈ S ⇒ S /∈ S.

Around 1900 a number of such paradoxes were found, all in some fashion
involving very “big” sets. Beginning with Zermelo in 1908 and continuing
down to the present day, a number of inequivalent approaches to set theory
have been advanced which avoid these problems and are strong enough to serve
as a foundation for almost all of mathematics.

The best known of these is Zermelo-Fraenkel set theory which is presented
very attractively in Halmos’ Naive Set Theory [29] . Bourbaki’s famous series of
books published under the general title Éléments de Mathématique developed a
large part of modern mathematics based on Zermelo-Fraenkel set theory which
is exposed in great detail in Book I – Theory of Sets [9] . This book also
contains a useful history.

Zermelo-Fraenkel set theory is commonly abbreviated ZFC (actually stand-
ing for Zermelo-Fraenkel set theory with the Axiom of Choice.) That notation
will occasionally occur in these notes.
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In Zermelo-Fraenkel set theory the problem of “big” sets is avoided by
changing the specification of sets to allow only {x : P (x) ∧ x ∈ S} with S a
pre-existing set and providing other “safe” constructions of sets with the result
that “big” sets are simply excluded from discussion. (For clarification, see
Halmos [29], particularly p. 11.) Unfortunately for the purpose of these notes
that means that most categories of interest cannot be considered within the
realm of set theory. Other approaches allow these “big” sets (formally called
classes ). The version outlined here is due to A. P. Morse and John Kelley . It
is sketched in the Appendix to Kelley’s General Topology [36] and presented in
detail in Morse [59]. While an introductory book length treatment is in Monk’s
Introduction to Set Theory [58] . The organization of this appendix is inspired
by Halmos’ book, while the theory presented is largely an amalgam of the
presentation by Monk and Kelley. Details, i.e., proofs, are almost completely
omitted.

Necessarily a key part of axiomatic set theory is a detailed specification of
the formal language and logic used in the theory, but we will leave out those
details. A discussion of what is needed is in the Introduction and Appendix of
Monk’s book.

A.1 Extension Axiom

Intuitively sets include a pack of wolves, a bunch of grapes or a flock of pigeons,
but in developing mathematics it is a wondrous fact that sets of sets are all
that is needed. So in set theory (as developed here) we have just two primitive
notions – class and membership. (Sets will be defined to be certain classes.)
Membership is a relationship between some, definitely not all, classes. The
membership relation is written as A ∈ B when the class A is a member of the
class B. Other phrases used include “A is an element of B” and “A belongs
to B”.

The negation, i.e., A is not an element of B, is written as A /∈ B.
Synonyms for class include collection, family and aggregate, but not set

which has the following special meaning.

Definition A.1: The class A is a set iff there is a class B with A ∈ B.

Definition A.2: A proper class is a class which is not a set, i.e., it does not
belong to any other class.

Lower case letters will usually be used to indicate sets, so the trivial theo-
rem:

∀a ∃B, a ∈ B
says that for every set a there exists a class B with a an element of B.

The theory of sets begins with the simple notion of sets as collections of
elements with two sets being equal exactly when they have the same elements.
This is the first of our axioms, but for classes rather than sets.
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Axiom of Extension: Two classes are equal iff they have the same elements.
Symbolically this is:

∀A ∀B [∀C (C ∈ A ⇐⇒ C ∈ B) ⇐⇒ A = B]

A.2 Axiom of Specification

At the moment this theory may be vacuous as the axiom of extension doesn’t
guarantee that there are any classes at all! While the simplistic use of predicates
to specify arbitrary sets leads to paradox, we can safely use them to specify
classes as in the following axiom schema.

Axiom of Specification: For every set theoretic boolean predicate ϕ(x)
(i.e., ϕ(x) is either true or false for every set x) in which A is not mentioned,
the following is an axiom:
There exists a class A so that for every x, x ∈ A ⇐⇒ x is a set and ϕ(x) or,
symbolically,

∃A ∀X, X ∈ A ⇐⇒ X is a set ∧ ϕ(X)

This is an axiom schema as there is an additional axiom for every predicate
ϕ(x) and every symbol A. Here we use capital letters to refer to classes, but
there is no limit on the actual symbols that can be used as long as they are all
understood to refer only to classes.

Using the axiom of extension it is easy to see that the class A where

∀X, X ∈ A ⇐⇒ X is a set and ϕ(X)

is unique; it will be written as {x : ϕ(x)}
A lack remains – what is a “set theoretic boolean predicate in which A is

not mentioned”? We will continue without giving a precise formulation, but
more detail and precision is required and for that we will refer to Monk [58,
page 15] for a informal discussion of the appropriate language.

Here are some interesting examples illustrating some simple choices for ϕ(x):

R = {x : x /∈ x}, V = {x : x = x}, ∅ = {x : x 6= x}

The first example is the starting point for Russell’s Paradox (see p. 179), but
now if and we ask if R ∈ R then we conclude that R /∈ R. While from R /∈ R
we simply conclude that R is a proper class and there is no contradiction.

The second example is simply the assertion that there is the class V of all
sets. (We will consistently use V for the universe of all sets in honor of God̈el
who used it in his ground breaking work The Consistency of The Axiom of
Choice and of The Continuum Hypothesis With The Axioms of Set Theory. In
the next section we will see that V is a proper class, not a set.

The third example has no elements and is called the empty class and is
denoted by ∅. Although it is part of the axiom of infinity (see p. 200), it is
convenient to postulate at this point that this is a set.
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Axiom of Existence: The empty class is a set. Symbolically this is

∃C(∅ ∈ C)

The empty set is a subset of every set, but at this stage ∅ is the only set
guaranteed to exist. Curiously, and usefully, for the purposes of mathematics it
seems to be enough to have just sets that can be built from the empty set, but
we do need axioms that guarantee the existence of more than just the empty
set. The axiom in next section is a start.

A.2.1 Boolean Algebra of Classes

The first two axioms are enough to prove some of the basic algebraic manipu-
lation of classes.

Definition A.3: A ∪B = {x : x ∈ A ∨ x ∈ B}
A ∪B is called the union of A and B.

Definition A.4: A ∩B = {x : x ∈ A ∧ x ∈ B}
A ∩B is called the intersection of A and B.

Notice that even if A and B are sets, the two axioms do not guarantee that
either A ∪B or A ∩B is a set.

Here are some basic facts about the union of classes which are easily proved:

• A ∪ ∅ = A

• A ∪ V = V , with V the class of all sets

• A ∪B = B ∪A

• A ∪ (B ∪ C) = (A ∪B) ∪ C

• A ∪A = A

And here are corresponding basic facts about the intersection of classes:

• A ∩ ∅ = ∅

• A ∩ V = A, with V the class of all sets

• A ∩B = B ∩A

• A ∩ (B ∩ C) = (A ∩B) ∩ C

• A ∩A = A

As algebraic operations we see that ∪ and ∩ are commutative, associative
and have identities. There are distributive laws as well:

• A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
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• A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

Besides union and intersection, there is a third basic operation, complement
or difference.

Definition A.5: A′ = {x : x /∈ A}
A′ is called the complement of A. The notation ∼ A is also often used for

the complement.

Definition A.6:
A−B = {x ∈ A : x /∈ B}

A − B is called the difference between A and B or the complement of
B in A. Writings that use ∼ A for the complement of A usually write A ∼ B
for the complement of B in A.

The connection between complement and difference is direct: A′ = V − A
and A−B = A ∩B′

The basic facts about complements include the following easy results:

• (A′)′ = A

• ∅′ = V ; V ′ = ∅

• V ′ = ∅; ∅′ = V

• A ∪A′ = V ; A ∩A′ = ∅

• De Morgan laws: (A ∪B)′ = A′ ∩B′; (A ∩B)′ = A′ ∪B′

• A−B = A ∩B′

• A− (A−B) = A ∩B

• A ∩ (B − C) = (A ∩B)− (A ∩ C)

An important thrust in the development of set theory was to show that
it was adequate for the development of all of mathematics. In axiomatic set
theory such as outlined here a key point is that there is nothing in the theory
other than sets (well, here, nothing but classes.) So in particular every set
is itself a collection of sets, i.e., a set whose elements are sets. But most
of the time in other parts of mathematics we write of sets whose elements
are numbers, or points in a space, or other irreducible items. The fact that
these can themselves be constructed as sets of some sort is irrelevant to the
mathematics being developed. As a result it is common to specifically single
out sets of sets (more commonly called collections of sets,) and to connect
with this convention we will follow suit. In particular we will often use special
notation such as C when we want to note that we are paying special attention
to the fact that the elements of the class C are themselves sets. Two very
common example are unions and intersections of collections of sets.
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Definition A.7:
⋃
C = {x : ∃c(x ∈ c ∧ c ∈ C}⋃

C is the union of the collection of sets C.

The notation
⋃
C is actually less common than more convoluted notation

such as ⋃
{x : x ∈ C} or

⋃
x∈C

x. (A.1)

Definition A.8:
⋂
C = {x : ∀c, c ∈ C ⇒ x ∈ c}⋂

C is the intersection of the members of C.

As with the union of collections, the notation
⋂
C is actually less common

than more convoluted notation such as⋂
{x : x ∈ C} or

⋂
x∈C

x.

Note that the elements of
⋂
C belong to the members of C and need not

(but may) belong to C itself. Similarly
⋃
C is the union of the members of

C. In particular x belongs to
⋂
C iff x belongs to every member of C, while x

belongs to
⋃
C iff x belongs to at least one member of C.

Two extreme cases are
⋃
∅ which is ∅, and

⋂
∅ which is the universe V of

all sets.
Besides equality of classes, there is also the fundamental notion of one class

being a subclass of another.

Definition A.9: A ⊆ B iff x ∈ A⇒ x ∈ B
A ⊆ B is read as A is a subclass of B, or A is contained in, or B includes

A.

In line with the notation in this definition, A ⊂ B means A is a subclass of
B but A is not equal to B. Be warned that in much of the set theory literature
⊂ is used where we use ⊆.

Basic facts about inclusion of classes include:

• ∅ ⊆ A and A ⊆ V .

• A = B iff A ⊆ B and B ⊆ A.

• If A ⊆ B and B ⊆ C, then A ⊆ C.

• A ⊆ B iff A ∪B = B.

• A ⊆ B iff A ∩B = A.

• If A ⊆ B, then
⋃
A ⊆

⋃
B and

⋂
B ⊆

⋂
A.

• If a ∈ A, then a ⊆
⋃
A and

⋂
A ⊆ a.
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• A ⊆ B iff B′ ⊆ A′.

• A ⊆ B iff A−B = ∅

• A ∩B ⊆ (A ∩ C) ∪ (B ∩ C ′)

• (A ∪ C) ∩ (B ∪ C) ⊆ A ∪B

The results in this subsection are used freely throughout these notes, usually
without overt mention.

A.3 Power-set Axiom

A very basic axiom is that every subclass of a set is actually a set, indeed this
axiom goes further and postulates that they are all elements of a common set.

Power-set Axiom: If a is a set, then there is a set b with every subclass of
a an element of b. Symbolically this is expressed as:

∀a ∃b ∀C (C ⊆ a⇒ C ∈ b)

This axiom doesn’t specify the set consisting of exactly the subsets of a
given set, but the axiom of specification rectifies this and so we can define the
power set of any set.

Definition A.10: P(a) = {s : s ⊆ a}
This is called power set of the set a.

Actually P(A) = {s : s ⊆ A} is perfectly well-defined for an arbitrary class
A but is of only passing interest when A is a proper class. In particular notice
that P(V ) = V (SP (V ) ⊆ V because P(V ) is a class; every element of V is a
set, therefore a subset of V and so an element of P(V ). )

There are at least a couple of reasons for the name “power set”. The first
is the observation that if a is a finite set with n elements, then the number of
elements in P(a) is 2n. The second will be explained in the next section where
we see the connection between P(a) and the set 2a of all functions from the
set a to a two element set.

As every subclass of a set is itself a set, and we will emphasize this by calling
them subsets.

In the previous section we noted that the intersection of two sets was not
guaranteed to be a set, but now we see that

a ∩ b = {x ∈ a : x ∈ b}

which is also equal to
{x ∈ b : x ∈ a}

and so equal to
{x : x ∈ a ∧ x ∈ b}
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is a subclass of the set a (and a subclass of the set b) and so is a set.
Essentially this same argument applies to any non-empty collection of sets.

If c ∈ C, then
⋂
C ⊆ c and so C is a set.

By contrast, as noted in the preceding section,
⋂
∅ = V .

We also have
⋂
V = ∅ and

⋃
V = V . The first comes from noting that as

∅ is a set it is an element of V and so
⋂
V ⊆ ∅ and so is equal to ∅. While

the second comes from noting that if x ∈ V , then x ∈ P(x) and P(x) ∈ V so
x ∈

⋃
V . But as with every class

⋃
V ⊆ V and so

⋃
V = V .

At this point in our development we still have a paucity of sets. Besides
the empty set we now have P(∅) which is the one element set {∅}, and we can
iterate to get P(P(∅)), etc. But, for example, we still have no guarantee that
the union of two sets is a set.

We can however exhibit various proper classes. In the previous section (see
p. 181) we saw that the Russell class R = {x : x /∈ x} is a proper class. But
now from that we can conclude that V is a proper class as well, for R ⊆ V and
if V were a set then R would be a subset, not a proper class.

A.4 Axiom of Pairs

For any set x we have the singleton class {x} that has just x as a member.
Following Kelley [36, p. 258], it is convenient to extend the definition of a
singleton to allow x to be a proper classes as follows.

Definition A.11: {X} = {y : X ∈ V ⇒ y = X}

So when X is a set, {X} is still the singleton class with just the one member,
but when X is a proper class {X} is the universe V .

Notice that when x is a set we have the set P(x) with {x} ⊆ P(x) and so
{x} is also a set. The next axiom extends this to pairs of sets.

Axiom of Pairs: If x and y are sets, then x ∪ y is a set.

Definition A.12: {X,Y } = {X} ∪ {Y }
And {X,Y } is called a pair (or, for emphasis, an unordered pair).

Note that if either X or Y is a proper class, then {X,Y } = V , while for
sets x and y we have {x, y} = {z : z = x ∨ z = y}.

This is another place where there is an inversion between the development of
set theory without mention of classes (e.g. ZFC) and the class based versions.
In ZFC pairs are introduced via an axiom of pairs and then singletons are
defined as pairs in which the two elements are the same, viz {a} = {a, a}, as
contrasted to the definition here of a pair as a union of singletons.

With three sets a, b, and c we can define: {a, b, c} = {a, b} ∪ {c}. The set
{a, b, c} is also equal to {a} ∪ {b, c}, and precisely because these are equal we
will freely write {a} ∪ {b} ∪ {c} for any and all of them. The definition and
notation for more terms is obvious and we will freely write {a1, a2, · · · , an}
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for the set which has as members exactly a1, a2, . . . , an. Also we will follow
common convention and write a1 ∪ a2 ∪ · · · ∪ an and⋃

n
i=1ai

for all of these.

A.5 Union Axiom

Even though we have not yet formally defined “finite”, we know from the
previous section that finite unions of sets, i.e.,

⋃
n
i=1ai, are also sets. The

Union Axiom extends this to unions of sets of sets.

Union Axiom: If x is a set, then so is
⋃
x.

In studying the algebraic properties of operations on sets, intersection be-
haves like a product, but we don’t yet have the appropriate “sum” of two sets.
It is usually called the “symmetric difference”.

Definition A.13: The symmetric difference (or Boolean sum) of two
classes A and B is

A+B = (A−B) ∪ (B −A)

When A and B are sets, A+B is a set as well.

Other common notation for A+B includes A4B and A⊕B.
This operation is commutative (A+B = B+A), associative (A+(B+C) =

(A + B) + C), has an identity (A + ∅ = A), and every class is its own inverse
(A+A = ∅). Also intersection distributes (A∩ (B +C) = (A∩B) + (A∩C)).
Finally A+ (B −A) = B. When a and b are subsets of a common set x, then
a+ b is also a subset of x.

Suitably translated this says that (P(x), +, ∩) is a Boolean ring with ∅ as
the zero and x as the multiplicative identity. For the details see Section B.6.5.

When dealing with subsets of a fixed set x it is convenient and common to
use the notation a′ to mean the complement of a in x. Then the basic facts
become the following:

• (a′)′ = a

• ∅′ = x; x′ = ∅

• x′ = ∅; ∅′ = x

• a ∪ a′ = x; a ∩ a′ = ∅

• De Morgan laws: (a ∪ b)′ = a′ ∩ b′; (a ∩ b)′ = a′ ∪ b′

• a− b = a ∩ b′

• a− (a− b) = a ∩ b
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• a ∩ (b− c) = (a ∩ b)− (a ∩ c)

where all of the sets are subsets of x.
With a little extension of the notation the De Morgan laws can be general-

ized to general unions and intersections.
For any sub-collection Cof P(x), define D = {a ∈ P(x) : a′ ∈ C}, and write⋃

a∈C
a′ and

⋂
a∈C

a′

for the union and intersection of D. Then the generalized De Morgan laws are:

(
⋃
a∈C

a)′ =
⋂
a∈C

a′

(
⋂
a∈C

a)′ =
⋃
a∈C

a′

and they are immediate from the definitions.
A few other simple facts include:

•
⋂
a∈C P(a) = P(

⋂
a∈C a)

•
⋃
a∈C P(a) ⊆ P(

⋃
a∈C a)

• if x ⊆ y, then P(x) ⊆ P(y)

• if ∅ ∈ C, then
⋂
a∈C = ∅

• if x ∈ C ⊆ P(x), then
⋃
a∈C = x

A.6 Ordered Pairs and Cartesian Products

In notable contrast to a set, which is entirely determined by its elements, a
list depends on the order of its elements. So the set {a, b, a, c} is exactly the
same as the set {c, a, c, b, b}, both being the three element set {a, b, c}, while
the lists (a, b, a, c) and (c, a, c, b, b) are entirely different, even having a different
number of elements. The special case of a list with two elements, usually called
an ordered pair, is particularly important. The characteristic property of an
ordered pair (a, b) is that it is equal to another ordered pair (c, d) iff a = c and
b = d. It is possible to enrich the theory of sets with an additional primitive
notion of an ordered pair, or even the more elaborate notion of a list, but
fortunately that is unnecessary – it is possible to define an ordered pair as a
particular kind of set.

Definition A.14: (a, b) = {{a}, {a, b}}
(a, b) is called the ordered pair of the sets a and b. From the Axiom of

Pairs it is certainly a set.
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Proposition A.25 (a, b) = (c, d) iff a = c and b = d

Halmos [29, Section 6] has a nice explanation as to how this definition arises,
and also proves the proposition. This proposition is also proved as Theorem
1.33 in Monk [58] and on page 259 of Kelley [36]. The proofs are all somewhat
different in interesting ways.

The primary reason for introducing ordered pairs is to allow the following
definition.

Definition A.15: A×B = {(a, b) : a ∈ A, b ∈ B}
A×B is called the Cartesian product of the classes A and B.

For any sets A and B, if a ∈ A and b ∈ B, then both {a} and {a, b} are
subsets of A ∪ B and so elements of P(A ∪ B). Thus (a, b) = {{a}, {a, b}} is
a subset of P(A ∪ B) and so an element of P(P(A ∪ B)). This makes it clear
that A× B = {(a, b) : a ∈ A, b ∈ B} is a subset of P(P(A ∪ B)).

The sole purpose of introducing the rather odd definition of an ordered
pair was to allow the construction of Cartesian products without introducing
an independent concept and additional axioms. The definition itself will not
be used going forward, but only the basic property that (a, b) = (c, d) iff a = c
and b = d. Thus, for example, the strange fact that {a, b} is an element of
(a, b) will not be used, and is a somewhat embarrassing artifact. It is one of
the reasons that fans of category theory are often annoyed by axiomatic set
theory as the modern foundation for mathematics. A good explanation of this
perspective is given in Barr [2].

As you should suspect this is not the only possible construction that will
serve as an ordered pair. For example defining [a, b] = {{∅, a}, {{∅}, b}} you
can readily prove that [a, b] is a set and that [a, b] = [c, d] iff a = c and b = d.
The choice of what to use as the actual definition of an ordered pair is largely
arbitrary.

As with previous constructions, we record some basic facts about Cartesian
products which will be used freely when needed: For A, B, X and Y any sets
we have

• A × B 6= ∅ iff A 6= ∅ and B 6= ∅.

• If A ⊆ X and B ⊆ Y, then A× B ⊆ X × Y.

• If A× B 6= ∅ and A× B ⊆ X × Y, then A ⊆ X and B ⊆ Y.

• (A ∪ B)×X = (A×X ) ∪ (B × X ).

• (A ∩ B)×X = (A×X ) ∩ (B × X ).

• (A− B)×X = (A×X )− (B × X ).

Products are a fundamental notion in category theory with the Cartesian
product of sets as the basic example, but we can not yet discuss the category
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of sets using axiomatic set theory as we do not yet have functions! Functions
will actually be defined via Cartesian products, and first we discuss the more
general notion of relations.

Even more, here in set theory the fundamental notion is really the ordered
pair and Cartesian products ARE particular sets of ordered pairs, while in
the category Set the particular object is not important, only the Universal
Mapping Property of the object together with its projection morphisms (which
we have not yet even defined!)

A.7 Relations

Throughout this section script letters such as A, B, X , Y and R, as well as
small letters, will denote sets so that we can conveniently write a ∈ A, etc.
with the implication that A is a set of sets.

Definition A.16: A relation from X to Y is a subclass of X × Y .

This is often called a binary relation, and ternary and even general n-ary
relations are defined as subsets of X×Y ×Z and of X1×· · ·×Xn respectively.
In this appendix we will restrict attention to binary relation and just refer to
them as relations.

There are other closely related definitions as well.

Definition A.17: If R is a relation from X to Y , the domain of definition
of R is the class

domain(R) = {x ∈ X : ∃y ∈ Y [(x, y) ∈ R]}

Definition A.18: The range of R is the class

range(R) = {y ∈ Y : ∃x ∈ X [(x, y) ∈ R]}

For every relation R from X to Y we have domain(R) ⊆ X and range(R) ⊆
Y , and both of these inclusions may be strict.

When X and Y are sets, any relation from X to Y is a set, as are the
domain of definition and range of the relation.

By contrast to the definition here it is usual to define a relation to be
any class of ordered pairs. It is then easy to see that a relation R will be a
subclass of domain(R)× range(R). The reason for the different definition here
is for convenience in discussing the category of relations (see Section B.1.3.)
A notational confusion arises as a result – usually the domain of definition of
a relation is simply called the domain, but in the category Rel a morphism
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from the set X to the set Y is a relation from X to Y so X is the domain
(and Y is the codomain of the relation.) Hence our use of the term domain of
definition even though we still write domain(R). In practice this seldom causes
confusion.

Examples of relations include:

• The empty set is a relation from any class to any other class.

• X × Y is a relation from X to Y .

• The equality relation or diagonal on any class X is the class {(x, x) :
x ∈ X}. We usually denote this by EX or ∆X . The subscript X will
be omitted if it is clear. In particular there is EV with V the universal
class. This is usually denoted by just E or ∆. Observe that for any class
X we have ∆X = ∆ ∩X.

• For any set X there is the relation E from X to P(X ) with E = {(x,A) :
x ∈ A}.

There is a variety of notation, terminology and definitions that we need to
record. If R is a relation, we usually write xRy instead of (x, y) ∈ R. If R is a
relation from X to itself we say that R is a relation on X.

In all of the following definitions, R is a relation on X.

Definition A.19: R is reflexive iff xRx for every x ∈ X.

Definition A.20: R symmetric iff xRy implies yRx.

Definition A.21: R is antisymmetric iff xRy and yRx implies x = y.

Definition A.22: R is connected iff always xRy or yRx.

Definition A.23: R is transitive iff xRy and yRz implies xRz.

Definition A.24: R is an equivalence relation iff it is reflexive, symmetric
and transitive.

The fundamental equivalence relation on any class is the equality relation.
As classes, relations from X to Y can be compared to see if they are sub-

classes of one another. A relation R is smaller or finer than a relation S when
R ⊆ S. Equally well we say that S is larger or coarser than R. With this
terminology, a relation R on X is reflexive iff it is coarser than the equality
relation.

Other important special types of relations, partial orders, are discussed at
length in Section A.12.
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Associated to each relation from X to Y is the opposite or inverse rela-
tion gotten by reversing the coordinates in each ordered pair in the relation.
Symbolically

Rop = R−1 = {(y, x) ∈ Y × X : (x, y) ∈ R}
Observe that a relation R on X is symmetric iff R = R−1.

Relations can also be composed as in the next definition.

Definition A.25: If R is a relation from X to Y and Sis a relation from Y
to Z then the composition of R followed by S is

S ◦R = {(x, z) ∈ X × Z : ∃y ∈ Y with (x, y) ∈ R ∧ (y, z) ∈ S}

As a trivial example, if R is any relation from X to Y and EX is the equality
relation on X, then R ◦EX = R. Of course if EY is the equality relation on Y,
then equally well EY ◦R = R.

A relation R on X is transitive iff R ◦R = R.
The intersection of any family of transitive relations on a set X is again

a transitive relation on X . For a particular relation R on X , the intersection
of the family of all transitive relations on X that include Rgives a smallest
transitive relation that is coarser thanR. This is called the transitive closure
of R. The same thing is true about reflexive relations and symmetric relations,
so we also have the reflexive closure and symmetric closure of any relation
R on X .

These closures can be described in other ways as well. The reflexive closure
of a relation R is E ∪ R, with E the identity relation, while the symmetric
closure of R is R ∪ R−1. The transitive closure of R can be described in
terms of R ◦R, R ◦(R ◦R) and so on, but the details will have to wait until
Section A.10. This alternative description actually allows us to define the
transitive closure on an arbitrary relation, not just a relation on a set.

In the same vein, the intersection of any family of equivalence relations
on X is an equivalence relation on X , so the intersection of the family of all
equivalence relations on X that are larger than R is the smallest equivalence
relation on X includingR. This is called the equivalence relation generated
by R. The alternative description of the transitive closure also allows us to
define the equivalence relation generated by an arbitrary relation, not just a
relation on a set.

Equivalence relations are tightly intertwined with two other basic notions
– partitions and quotient sets.

Definition A.26: When R is an equivalence relation on X and x ∈ X, the
equivalence class of x with respect to R is the class {y ∈ X : xRy}.

The basic property of equivalence classes is the following proposition.

Proposition A.26 With R an equivalence relation on X, x/R = y/R ⇐⇒
xRy.
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There is no really common notation for equivalence classes, but we will
usually write x/R. When X is a set the equivalence classes for any relation on
X are subsets of X. When X is a proper class, the status of the equivalence
classes is varied. For example on any classX and any element x, the equivalence
class for the equality relation is the set x/E = {x}. At the other extreme taking
R to be the equivalence relation X ×X on X, all elements are equivalent and
so the one equivalence class is X itself. So if X is a proper class, then so is this
equivalence class. All kinds of mixtures of sets and proper classes are possible.

Our primary interest in equivalence relations is because of their connection
with quotient sets (see I.26.)

Definition A.27: X/R = {y ∈ P(X ) : ∃x ∈ X (y = x/R)}
With R an equivalence relation on the set X , the set X/R is called the

“quotient of X by R.” It is also called “X modulo R” or “X mod R”. Such
sets in general are called quotient sets.

As a collection of sets X/R has three characteristic properties. First it is
disjoint.

Definition A.28: Two classes A and B are disjoint when A∩B = ∅. A class
X is disjoint provided any two distinct members of X are disjoint.

X/R is disjoint, for if y ∈ x/R∩ z/R, then xRy and zRy so also yRz and
then xRy. Whereupon x/R = y/R.

Second every element of X/R is non-empty for (x, x) is always in x/R.
Third the union of X/R is X for every x ∈ X belongs to exactly one

equivalence class, namely x/R.
The process can be reversed, and for that we start with the relevant defini-

tion.

Definition A.29: A partition of a set X is disjoint collection of non-empty
subsets of X whose union is X .

Given a partition P of X , define a relation R by saying

xRy iff ∃s ∈ R such that x ∈ s ∧ y ∈ s

Then R is an equivalence relation: X is the union of P, so each x ∈ X belongs
to some set in P. As x is certainly in the same set as itself, this says that R is
reflexive. R is symmetric for if x and y are in the same s ∈ P, then certainly
y and x are both in s. And finally R is transitive because this is just saying
that if x and y are in the same set and y and z are in the same set, then x and
z are in the same set.

So an equivalence relation R gives a partition P, while P in turn gives an
equivalence relation which is clearly seen to be R. In the other direction, any
partition P gives rise to an equivalence relation where the set of equivalence
classes is P.
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Just as with products, the quotient of a set X by an equivalence relation
Rreally IS a specific subset of P(X ), while in the category Set the particular
object is not important, only the universal mapping property of the quotient
function (which we’ll finally define in the next section!)

A.8 Functions

The mathematical term “function”, as a magnitude associated to a curve, was
introduced by Leibniz late in the 17th century. By the mid 18th century Euler
was using function to describe an analytic expression, e.g. sin(x3). During the
19th century many and varied “monster” functions were discovered: Dirichlet’s
example of a function that is continuous nowhere, or worse a function that is
continuous at the irrational numbers and discontinuous at the rational numbers;
Weierstrass’ function that is continuous everywhere but nowhere differentiable;
and various examples of space-filling curves. Cantor’s introduction of set theory
was motivated by his efforts to understand the variety of functions, particularly
those represented by Fourier series. His own first shocking result was in showing
that the unit interval was in one-to-one correspondence with the unit square.
Throughout this period the concept of function was gradually being clarified
and finally reached is current form in the early 20th century.

Because of this long history there are many other words such as map, map-
ping, transformation, correspondence, and operator that have been used as
synonyms for function. And even today we frequently find such definitions as
“A variable so related to another that for each value assumed by one there is a
value determined for the other”, “A correspondence in which values of one vari-
able determine the values of another”, or “A rule for associating a member of
one set with a member of another set.” Although the spirit of these definitions
is different, the actually utility is well captured by the following definition.

Definition A.30: A function from the class X to the class Y is a relation
F from X to Y with the property that for every x ∈ X there is a unique
y ∈ Y with (x, y) ∈ F . That unique y with (x, y) ∈ F is denoted by F (x). For
functions the notation y = F (x) is universally used in place of (x, y) ∈ F and
xFy

The notation F : X // Y means “F is a function from X to Y ”. As
with any relation, a function F : X // Y has a domain of definition and a
range. The domain of definition of F is X which is also the domain of F as a
morphism in the category of sets. The range may be a proper subclass of Y .
More, a function from X to Y does not determine Y . In the category of sets,
Y is the codomain of F . The fact that a function does not specify its codomain
is the reason that the morphisms in the category of sets are not just functions.

At times many of the words mentioned above will be used as synonyms for
function. In particular we will freely use the phrase binary operation on X for
a function from X ×X to X.
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Just as with relations in general, if X and Y are sets then every function
from X to Y is a set, being a subset of X × Y .

When the range of F is equal to Y , we say that F maps X onto Y or,
more commonly today, that F is surjective or is a surjection. We may also say
that F is an epimorphism though this is usually reserved for those cases where
the functions of interest are called homomorphisms.

When we write y = F (x) we will speak of the argument x and of y as the
value of F at x.

What we here define to be a function is what is often called the graph of the
function. For example in elementary mathematics it is common to distinguish
between the function sin(x) and it’s graph {(x, sin(x)) ∈ R2 : x ∈ R}. But
here no distinction is made between the two, as all the relevant properties of
the function are captured by its graph.

The range of F is also commonly called the image of F . When A is any
subset of X, the subset

F (A) = {y ∈ Y : ∃x ∈ A [y = F (x)]}

of Y is called the image of A under F . Of course F (X) is the image of F .
If Y is not empty, the simplest examples of functions are the constant

functions: if y ∈ Y , then X × {y} ⊆ X × Y is a constant function which has
the value y at every argument x.

For X a subset of Y , the set X × X is a function i :X // Y called the
inclusion or injection of X into Y . A far more common way of describing i is
to say it is the function defined by i(x) = x for all x ∈ X. The phrase “the
function F defined by . . . ” is the most common way of defining functions, and
is intended to imply there is a unique function defined by specifying the value
y of the function at each argument x. For example, we usually use y to name
a constant function what has always the value y.

In the special case ofX considered as a subset of itself, the inclusion function
is called the identity function: 1X : X // X is defined by 1X(x) = x. Of
course this is just another name for the equality relation on X.

If F : X // Y and G : Y // Z, then we have the composition G ◦F as a
relation from X to Z. This is again a function and is just called the composition
of the functions. It is often written as just GF . As noted earlier with regard
to relations F1X = F and 1Y F = F . Also if z is a constant function from Y

// Z, then zF = z, the second z being the constant function from X to Z.
And if y is a constant function from X to Y , then Gy = G(y), where G(y) is
the constant function from X to Z with value G(y).

When X is a subset of Y and F : Y // Z, we have the inclusion i : X
// Y and the composition Fi. This composition is called the restriction of

F to X and is written F |X . If G : X // Z and F |X = G, then F is called
an extension of G to Y .

For any two classes X and Y we have the Cartesian product X × Y . Two
very important functions in this situation are the coordinate projections
π1 : X × Y // X and π2 : X × Y // Y defined by π1(x, y) = x and
π2(x, y) = y.
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Here we are deliberately violating our notational convention and using the
lower case letter π for a function that may be a proper class. As in the notes
proper the capital letter Π will be reserved for products.

Looking at the actual definition of π1 as a subset of (X×Y )×X, especially
taking it all the way back to the definition of ordered pairs, illustrates the
importance of abstracting away the crucial properties. Getting away from
any such definitional complexity to the critical universal mapping property of
products in the category Set is another such step.

Another general example of a function comes from an equivalence relation.
For any equivalence relation R on the set X , define the quotient map q : X

// X/R by q(x) = x/R. Clearly q is surjective. [For the significance of this
in the categorical context, see 22.]

As shown in exercise I.31 every function f : X // Y defines an equivalence
relation on X via x ≡F x′ iff F (x) = F (x′). Now the projection map q : X

// X/ ≡f is always surjective, and as shown in exercise I.32 there is a unique
function f : X/ ≡f // Y with f = fq.

The function f has the important property that if f(x/ ≡f ) = f(x′/ ≡f ),
then x/ ≡f= x′/ ≡f .

A function F : X // Y is called one-to-one or, more commonly today,
injective or an injection when F (x) = F (x′) ⇒ x = x′. We may also say the
function is a monomorphism though this is usually reserved for those cases
where the functions of interest are called homomorphisms.

A function that is both an injection and a surjection (i.e., is one-to-one and
onto) is called a bijection.

Every function F : X // Y , considered as a relation, has an inverse
relation F−1. If the inverse relation is also a function, then F is a bijection.
Conversely if F is a bijection, then F−1 is a function. When F is a bijection,
then F−1 ◦F = 1X and F ◦F−1 = 1Y . If X and Y are two sets where there
exists a bijection between them, then we will write X ∼ Y and say the two sets
are bijective, equivalent, equinumerous, equipotent or have the same number of
elements. Of course we haven’t yet defined “number of elements”, so the last
phrase is a bit premature, but we will rectify that in Section A.9.

For sets X and Y, the class of all functions from X to Y is a subset of
P(X ×Y) and is denoted by YX . The reason this is written as an exponential
should become clear in Section A.11 when we actually define an exponential
function.

Some basic properties of YX include the following:

• For every set Y, including the empty set, Y∅ = {∅}.

• If X is not the empty set, then ∅X = ∅.

• P(X ) ∼ 2X : Let 2 denote a set with exactly two distinct elements (which
we will call 0 and 1). For any set X consider the set 2X . Whenever A is
a subset of X , define the characteristic function of A to be

χA : X // 2 with χA(x) = 1 if x ∈ A, χA = 0 otherwise
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From this we get the function from P(X ) to 2X defined by A 7→ χA, and
this function is a bijection. The inverse function is given by associating
to any map χ : X // 2 the subset {x ∈ X : χ(x) = 1}.

• (ZY)X ∼ Z(X×Y): The bijection from (ZY)X to Z(X×Y) is given by
φ 7→ Φ where Φ(x, y) = φ(x)(y). The inverse is just gotten by reading
this formula the other way – a function Φ of two variables defines a
function of the first variable (x) whose value is a function of the second
variable (y). In theoretical computer science this process of going from a
function of two variables to a function of one variable with values being
other functions is called currying in honor of the logician Haskell Curry,
though this observation long predates Curry.

• There are other variations on the idea that sending a function to its
value at a particular argument defines a function whose arguments are
functions. The simplest version of this is the function

eval : X // Y(YX )

defined by eval(x)(f) = f(x).

A.8.1 Families and Cartesian Products

There are many situations where functions are used in a fashion that leads
to very different notation and terminology. The most familiar examples are
sequences such as 1, 1/2, 1/3, 1/4, . . . where nearly all the details of the
function are at best implicit. (Sequences will be explicitly defined in the next
section.)

The functions of interest here are called indexed families or just families.
A family is a function x from an index set I to the indexed setX. An element
i of I is called an index, while the value of x at i is called the i − th term
and is denoted by xi. In this section we will be discussing families of sets, and
the common terminology is something like “a family {Ai} of subsets of X” by
which we understand a function from some index set I to P(X). It is even
more common to use just “a family {Ai} of sets” leaving both the index set
and the indexed set unspecified!

If {Ai} is a family of sets of X, then the union of the family, written⋃
i∈I

Ai or even
⋃
i

Ai,

is the union of the range of the family. From the definition of union we see
that x ∈

⋃
iAi iff x belongs to Ai for at least one i in I.

Similarly the intersection of a family {Ai} of sets, written⋂
i∈I

Ai or even
⋂
i

Ai,
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is the intersect of the range of the family. Unlike unions this only makes sense if
this is a non-empty family, i.e., the index set is non-empty. From the definition
of intersection we see that x ∈

⋂
iAi iff x belongs to Ai for every index i.

The basic identities about unions and intersections that were listed for three
sets in Section A.5 generalize immediately to families:

• B ∩
⋃
iAi =

⋃
i(B ∩Ai)

• B ∪
⋂
iAi =

⋂
i(B ∪Ai)

• (
⋃
iAi) ∩ (

⋃
j Bj) =

⋃
i,j(Ai ∩Bj)

• (
⋂
iAi) ∪ (

⋂
j Bj) =

⋂
i,j(Ai ∪Bj)

where {Ai} and {Bj} are families of sets and B is a set, and the notation
⋃
i,j

is shorthand for
⋃

(i,j)∈I×J .
In discussing unions and intersections of families, this is nothing but a

convenient if sloppy notation as the collections could be used equally well.
And the reverse is true as well as any collection can be considered as a family
indexed by itself. But when generalizing Cartesian products families, in one
guise or another, are essential.

Definition A.31: If {Xi} is a family of sets with index set I, the Cartesian
product is the set of all families {xi} with xi ∈ Xi for every i in I. It is
denoted by

Πi∈IXi or ΠiXi

As ΠiXi ⊆ (
⋃
iXi)I , so it is a set.

For each j ∈ I, the projection on the j-th coordinate is the function
πj : Πi∈IXi

// Xj defined by πj({xi}) = xj

If {Xi} is a family of sets with index set {1, 2} with 1 and 2 being two
unspecified but unequal elements, then we have both

X1 ×X2 and Πi∈{1,2}Xi

As these have been defined, they are very different sets, nonetheless it
is customary to identify the set Πi∈{1,2}Xi of functions with the Cartesian
product X1 ×X2 a set of ordered pairs as defined earlier. The justification is
a “natural” bijection between the two sets. In the category Set, both of these
sets together with their projections are products of X1 and X2, and the natural
bijection is just the unique function between the two that commutes with the
projections.

There are a pair of equations that relate unions, intersections and Cartesian
products:

• (
⋃
iAi)× (

⋃
j Bj) =

⋃
i,j(Ai ×Bj)

• (
⋂
iAi)× (

⋂
j Bj) =

⋂
i,j(Ai ×Bj)
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where, of course, the intersections must be of non-empty families.
All of the classes in this section were assumed to be sets, but much of

the discussion can be carried through for classes more generally. It is a good
exercise to verify just how much can be done.

A.8.2 Images

Every relation R from X to Y defines two functions between the power sets of
X and Y. The first is R : P(X ) // P(Y) defined by

R(A) = {y ∈ Y : ∃a ∈ A (aRy)}

for every subset A of X , while the second is R−1 : P(Y) // P(X ) defined by

R−1(B) = {x ∈ X : ∃b ∈ B (xRb)}

for B any subset of Y.

Definition A.32: R(A) is the image or direct image of A under R.

In Bourbaki’s useful phrase [9, p. VI] the use of R as the name of the
function as well as the relation which produces it is an abuse of notation, but
it improves readability while seldom creating confusion.

Definition A.33: R−1(B) is the inverse image of B under R.

R−1(B) has another possible meaning, the image of B under the relation
R−1. Happily the two meanings are the same.

A.9 Natural Numbers

In Section A.8 we said that two sets have the same number of elements when
they are bijective, i.e., there is a bijection between them. This equinumerous
relation between sets is an equivalence relation on the universe V :

1. Every set is equinumerous with itself – the identity function is a bijection
from the set to itself.

2. If X is equinumerous with Y , then Y is equinumerous with X – for if
there is a bijection from X to Y , then its inverse is a bijection from Y to
X.

3. If X is equinumerous with Y and Y is equinumerous with Z, then X is
equinumerous with Z – for if f is a bijection from X to Y and g is a
bijection from Y to Z, then gf is a bijection from X to Z with inverse
f−1g−1.
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This suggests defining the “number of elements” in a set to be the equinu-
merous equivalence class of that set. But with the exception of the equiva-
lence class of ∅ (which is {∅}) all of the equivalence classes are proper classes,
i.e., there is not even a class of “numbers”. An alternative approach is to define
numbers to be certain canonical sets, one from each such “equivalence class”
and that is what will be done here. Eventually we will associate to every set a
“cardinal number” as the number of elements in the set. But the first step is
to define the natural numbers 0, 1, 2, . . . within set theory.

The starting point is the number zero, and for that there is only one pos-
sibility.

Definition A.34: The number zero is the empty set. When we are speaking
of it as a number it will, of course, be written as 0.

The next step is to introduce a standard method for getting the next larger
number. The very natural idea is to define n + 1 = {0, 1, · · · , n}. Notice that
as n should be {0, 1, · · · , n − 1} we can equally write this as n + 1 = {n} ∪ n
which is very fortunate as we can make that a quite general definition.

Definition A.35: For any set x, the successor of x, written x+, is x ∪ {x}.

So 0+ = {0} and has a single element. Of course we are going to name it
1. Similarly 1+ = {0, 1} is a set with two elements, and it will be called 2.
We can keep going in this fashion as long as we want, but nothing we have yet
guarantees the existence of a set of all the successors of 0. For that we need
another axiom.

Axiom of Infinity: There exists a set containing 0 and containing the
successor of each of its elements.

Solely for the purposes of the following discussion, we say that a set Ω is
a successor set provided 0 ∈ Ω and x ∈ Ω ⇒ x+ ∈ Ω. The Axiom of Infinity
guarantees that at least one such set exists, and because Ω+ is also a successor
set there are many others. More importantly there is a smallest successor
set. The intersection of any family of successor sets is a successor set, so the
intersection of all successor sets in Ω is itself a successor set which is denoted by
ω. The set ω is actually a subset of every successor set (for if S is an successor
set, then S ∩ω is a both a subset and a superset of ω and so must be ω.) With
these preliminaries we make the following definition.

Definition A.36: The minimal successor set ω which is a subset of every
successor set is the set of natural numbers, and the elements of ω are called
natural numbers.

The justification for calling ω the set of natural numbers is in the next
two sections where the connection with the Peano Axioms and arithmetic are
explored.
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The use of ω to denote the set of natural numbers is common, but not
universal, in the literature of set theory, so it will be used throughout this
appendix. Elsewhere in these notes the notation N is used consistently for the
set of natural numbers.

Definition A.37: A family with index set ω is called an infinite sequence,
while a family with index set a natural number is called a finite sequence.

If {ai} is a finite sequence of sets indexed by the natural number n+, then
the union of the sequence is denoted by

n⋃
i=0

ai or a0 ∪ · · · ∪ an.

Similarly if {ai} is an infinite sequence of sets, then the union of the sequence
is denoted by

∞⋃
i=0

ai or a0 ∪ a1 ∪ · · · .

Similar notation is used for intersections and Cartesian products of se-
quences:

n⋂
i=0

ai or a0 ∩ · · · ∩ an.

Πn
i=0ai or a0 × · · · × an.

∞⋂
i=0

ai or a0 ∩ a1 ∩ · · · .

Π∞i=0ai or a0 × a1 × · · · .

There are a number of other uses of the word “sequence” which are all
variations on this. We will freely use such notation as

∞⋃
i=3

ai

with the expectation that the meaning is clear.



202 APPENDIX A. SET THEORY

A.10 Peano Axioms

This section is a digression from the development of axiomatic set theory to
justify calling ω the set of natural numbers, and also to indicate the initial part
of the development of (nearly) all of mathematics from set theory.

The starting point are the axioms for the foundation of arithmetic which
were introduced by Giuseppe Peano in his book Arithmetices principia, nova
methodo exposita published in 1889.

Recast in more modern language Peano showed the set N of natural numbers
could be specified by the following Peano axioms.

1. 0 ∈ N.

2. Every natural number n has a successor, denoted n′.

3. 0 is not the successor of any natural number.

4. If n′ = m′, then n = m.

5. (Induction Principle) If Q ⊆ N with

• 0 ∈ Q, and

• q ∈ Q⇒ q′ ∈ Q

then Q = N.

The successor on n is what we commonly call n+ 1 (but the Peano Axioms
allow us to define addition and prove that n′ = n+ 1.)

The Induction Principle captures what is often call the Principle of Math-
ematical Induction and stated as:

Let p(n) be a proposition depending on integer variable n. If p(0) is true
and ∀k ≥ 0[p(k)⇒ p(k + 1)], then p(n) is true for all n ≥ 0.

The Principle of Mathematical Induction follows from Peano’s Induction
Principle by taking Q = {n ∈ N : p(n)}. Q contains 0 because p(0) is true
by assumption, and k ∈ Q ⇒ k′ ∈ Q exactly because p(k) ⇒ p(k + 1). Of
course we are cheating a bit because we have identified k′ with k + 1 and the
justification for that will actually happen in the next section.

Prior to showing that the Peano Axioms are, suitably construed, theorems
of set theory, we will explore some of the basic consequences of these axioms.
To do that we first formalize the following variant concept.

Definition A.38: A Peano system consists of a set P together with a
distinguished element p0 ∈ P and a function S : P // P satisfying:

1. ∀p ∈ P [p0 6= S(p)].

2. S is injective, i.e., S(p) = S(q)⇒ p = q.

3. (Induction Principle) If Q ⊆ P with
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• p0 ∈ Q, and

• p ∈ Q⇒ S(p) ∈ Q,

then Q = P .

As so often in mathematics, we will usually name a Peano system (P, p0, S)
by just the set P . Of course this is an abuse of notation but is not likely to
cause confusion.

The most basic property of Peano systems is the ability to give recursive
definitions of functions as in the following theorem.

Theorem A.15 (Recursion Theorem) Let (P, p0, S) is any Peano system.
If x0 is an element of a set X, and f is a function from X to X, then there is a
unique function φ : P // X with φ(p0) = x0 and ∀p ∈ P [φ(S(p)) = f(φ(p))].

Proof: Uniqueness: Suppose we have φ : P // X with φ(p0) = x0 and
∀p ∈ P [φ(S(p)) = f(φ(p))] and ψ : P // X with ψ(p0) = x0 and ∀p ∈
P [ψ(S(p)) = f(ψ(p))] and consider the subset Q = {p ∈ P : φ(p) = ψ(p)}.
Certainly p0 ∈ Q as φ(p0) = x0 = ψ(p0). And if p ∈ Q, then φ(S(p)) =
f(φ(p)) = f(ψ(p)) = ψ(S(p)), i.e., S(p) ∈ Q. So Q = P and φ = ψ.

This type of proof based on appeal to the Induction Principle is called proof
by induction.

Existence: The proof of existence has two parts – construction φ as a rela-
tion and then verifying that it is actually a function.

Consider relations F from P to X which have the two properties that
(p0, x0) ∈ F and (p, x) ∈ F ⇒ (S(p), f(x)) ∈ F . The relation P × X is one
such, so the set F of all such relations is non-empty. Define φ =

⋂
F . Clearly

φ itself belongs to F , so if φ is a function the proof is complete.
So it remains to verify that if both (p, x) ∈ φ and (p, y) ∈ φ, then x = y.

Define Q = {p ∈ P : ∀x∀y[(p, x) ∈ φ ∧ (p, y) ∈ φ ⇒ x = y}. A proof
by induction will show that Q = P and complete the proof of the Recursion
Theorem.

First note that p0 ∈ Q, for if not there is some y ∈ X different from x0 with
(p0, y) ∈ φ. But then (p0, x0) is in the relation φ − {(p0, y)} because x0 6= y.
Also if (p, x) is in φ − {(p0, y)}, then so is (S(p), f(x)) for S(p) is guaranteed
not to be p0 and so (S(p), f(x)) is certainly not the removed element (p0, y).
This says that φ− {(p0, y)} is in F contradicting the definition of φ as

⋂
F .

A very similar argument shows that p ∈ Q ⇒ S(p) ∈ Q. For suppose that
p ∈ Q, but S(p) /∈ Q. Then there is a unique element x with (p, x) ∈ φ, The
pair (S(p), f(x)) is in φ but assuming that S(p) is not in Q there must be an
element y, different from f(x), so that (S(p), y) ∈ φ as well. So consider the
relation φ−{(S(p), y)}. As above (p0, x0) ∈ φ−{(S(p), y)} because S(p) 6= p0.
Similarly (q, z) ∈ φ − {(S(p), y)} ⇒ (S(q), f(z)) ∈ φ − {(S(p), y)}. To see
this consider two possibilities – q = p and q 6= p. When q = p, it must be
that z = x and so f(z) = f(x) 6= y. But if q 6= p, then S(q) 6= S(p) and so
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(S(q), f(z)) 6= (S(p), y). Thus φ− {(S(p), y)} ∈ F contradicting the definition
of φ =

⋂
F .

This completes the proof by induction that φ is a function, and so the proof
of the Recursion Theorem.

It is worth noting that the proof of the recursion theorem uses all three
parts of the definition of a Peano system. Indeed the theorem would not be
true were any of the conditions removed from the definition.

A first consequence of the Recursion Theorem is that Peano Sets are essen-
tial unique.

Theorem A.16 (Uniqueness of Peano Sets) If (P, p0, S) and (Q, q0, T ) are
two Peano systems, then there is a unique bijection f : P // Q such that
f(p0) = q0 and ∀p ∈ P (f(S(p)) = T (f(p))).

Proof: (Uniqueness Theorem) When (P, p0, S) and (Q, q0, T ) are two Peano
sets, the Recursion Theorem applies to guarantee there are functions f : P

// Q and g : Q // P satisfying f(p0) = q0, g(q0) = p0, f(S(p)) = T (f(p)),
and g(T (q)) = S(g(q)). So then gf : P // P and fg : Q // Q have the
properties gf(p0) = p0, gf(S(p)) = S(gf(p)), fg(q0) = q0, and fg(T (q)) =
T (fg(q)). But 1P satisfies same two properties as gf , while 1Q satisfies the
same two properties as fg. As the Recursion Theorem guarantees there is only
one function function from P to P and one function from Q to Q having these
properties we conclude that fg = 1P and gf = 1Q.

It is good to know that Peano systems are essentially unique, but this is
not very interesting unless at least one exists. That is the basic point of the
definition of the set ω in the last section.

Theorem A.17 The set ω with 0 (i.e., the empty set) as distinguished element
and S(n) = n+, is a Peano system.

Proof: To show that (ω, 0, S) is a Peano system we need to verify:

1. ∀n ∈ ω, 0 6= n+.

2. ∀n,m ∈ ω, n+ = m+ ⇒ n = m.

3. (Induction Principle) If Q ⊆ ω with

• 0 ∈ Q, and

• n ∈ Q⇒ n+ ∈ Q,

then Q = ω.

The first condition is clearly true as n ∈ n+, and so n+ 6= ∅. The Induction
Principle is essentially the definition of ω: Q ⊆ ω and Q is a successor set,
while by definition ω is contained in every successor set. Ergo Q = ω.

Curiously only the second condition (n,m ∈ ω(n+ = m+ ⇒ n = m)
requires significant work, and it requires a small detour into some of the arcane
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points of set theory. Most applications of set theory discuss only sets and their
elements. Occasionally discussion of families of sets is required, but discussion
involving long ∈-chains, i.e., a ∈ b ∈ c ∈ · · · just do not arise. By contrast they
do occur in the internals of set theory and this is the first illustration. This
discussion will recur in the discussion of well-ordering and ordinal numbers.
Recall that 0 ∈ 1 ∈ 2 ∈ · · · . That relationship is captured in the next definition.

Definition A.39: A set n is transitive provided ∀a∀b(a ∈ b∧b ∈ n⇒ a ∈ n).
Equivalently n is transitive when ∀b(b ∈ n⇒ b ⊆ n).

To prove the second condition we will use the following two technical lem-
mas.

Lemma 1 Every member of ω is transitive.

Lemma 2 ∀n ∈ ω(m ⊆ n⇒ m /∈ n)

Assuming the lemmas, suppose that n and m are natural numbers with
n+ = m+. As n ∈ n+ = m+, so n ∈ m+ and thus n ∈ m or n = m. By
symmetry we also have m ∈ n or n = m. If n 6= m, then n ∈ m and m ∈ n.
The first lemma tells us that n is transitive and so n ∈ n. But as n ⊆ n the
second lemma guarantees that n /∈ n. So we must have n = m.

Proof of Lemma 1: The proof is by induction. Consider the set S of all
transitive elements of ω. Trivially 0 ∈ S. If n ∈ S and k ∈ n+, then either
k ∈ n or k = n. By assumption n is transitive, so if k ∈ n, then k ⊆ n and
so k ⊆ n+. And if k = n, then certainly k ⊆ n+. So n+ ∈ S. The Induction
Principal now applies to say S = ω which is the lemma.

Proof of Lemma 2: Again the proof is by induction. Let S = {n ∈ ω :
n ⊆ m ⇒ m /∈ n}. Certainly 0 ∈ S as ∀m(m /∈ 0). Next assume n ∈ S. Note
first that n ⊆ n, so our assumption means n /∈ n. Now consider some set m
containing n+. This means n ⊆ m and n ∈ m. But then m /∈ n as n is in S,
and m 6= n because n /∈ n, so m /∈ n+. The Induction Principal now applies to
say S = ω thereby completing the proof.

The technicalities occurring in these two lemmas and their proofs have very
little to do with applications of set theory in other parts of mathematics, but
they will recur and be expanded in the development of the theory of ordinal
and cardinal numbers later in this appendix.

We now have both existence and uniqueness of a Peano system, but note
that even though ω provides a very elegant and natural example of a Peano
system it is not the only one. Indeed if (P, p0, S) is a Peano system, then so
too is (P − {p0}, S(p0), S|P−{p0}). This corresponds to the observation that
proof by induction can start with 1 (or any other integer) rather 0.

Here are some fundamental facts about natural numbers that are easily
established directly from the Peano axioms:

• If n is any natural number, then n 6= n+.
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• If n is a non-zero natural number, then there is a unique natural number
m so that n = m+.

• The set ω of natural numbers is transitive.

Of course the familiar facts about addition and multiplication of natural
numbers is still lacking, but those operations can be defined and their properties
proved from the Peano axioms as will be done in the next section.

A.11 Arithmetic

The intuition behind the definition of the natural numbers is that of sequen-
tially adding one more item. In that view natural numbers m and n are added
by starting with m and counting up by n. Formalizing that is easily done using
the Recursion Theorem. For each natural number m there exists a function
sm : ω // ω with sm(0) = m and sm(n+) = sm(n)+.

Definition A.40: ∀m ∈ ω∀n ∈ ω[m+ n = sm(n)]
Of course m+n is called the sum of m and n, and the binary operation +

is called addition.

Proposition A.27 For all natural numbers m, n and p,

(i) m+ 0 = m.

(ii) m+ 1 = m+.

(iii) 0 + n = n.

(iv) m+ + n = (m+ n)+.

(v) m+ n = n+m.

(vi) (m+ n) + p = m+ (n+ p).

(vii) m+ n = m+ p⇒ n = p.

(viii) n 6= 0⇒ m+ n 6= 0.

(ix) If m 6= n, then ∃k ∈ ω [m = n+ k] or ∃j ∈ ω [n = m+ j].

Proof:

(i) By definition m+ 0 = sm(0) = m.

(ii) m+ 1 = sm(0+) = sm(0)+ = m+.

(iii) While s0 is the unique function on ω with s0(0) = 0 and s0(n+) = s0(n)+,
the identity function 1ω has the same properties. Thus s0 = 1ω and so
0 + n = s0(n) = 1ω(n) = n.
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(iv) The function sm+ is characterized by the two conditions: sm+(0) = m+

and sm+(n+) = sm+(n)+. But the function tm defined by tm(n) =
sm(n+) satisfies those same two conditions. Therefore sm+ = tm and in
particular m+ + n = sm+(n) = tm(n) = sm(n+) = sm(n)+ = (m+ n)+.

(v) Consider S = {m ∈ ω : ∀n ∈ ω[m + n = n + m]}. Above saw that
0 + n = n = n+ 0, so 0 is an element of S. And if m ∈ S, then

m+ + n = (m+ n)+ part 2 of this proposition
= (n+m)+ because m in S
= n+m+ by definition of addition

and so m+ ∈ S as well. The Induction Principal now applies to tell us
that S = ω and thereby completes the proof of this part.

(vi) The proof that (m+n) + p = m+ (n+ p) works by induction on p. First
both (m+ n) + 0 and m+ (n+ 0) are equal to m+ n by the definition of
addition. For the induction step suppose that (m+ n) + p = m+ (n+ p)
for all m and n. Then

(m+ n) + p+ = ((m+ n) + p)+ by definition of addition
= (m+ (n+ p))+ by induction hypothesis
= m+ (n+ p)+ by definition of addition
= m+ (n+ p+) by definition of addition

and so the proof by induction is complete.

(vii) The proof thatm+n = m+p⇒ n = p is by induction onm. The assertion
is certainly true for m = 0 as 0+n = n. So suppose that m++n = m++p.
Then as m++n = m+n+, it follows that m+n+ = m+p+. The induction
hypothesis gives n+ = p+ and n = p follows from the fourth Peano Axiom
and the proof by induction is complete.

(viii) This is also proved by induction on m. Certainly n 6= 0 ⇒ 0 + n 6= 0.
Note that m+ +n = m+n+ and n+ is always non-zero, so the induction
hypothesis give m+ n+ 6= 0, so the proof by induction is complete.

(ix) Fix an arbitrary natural number n and consider the set

S = {m ∈ ω : ∃k ∈ ω m = n+ k ∨ ∃j ∈ ω n = m+ j ∨ }

Certainly 0 ∈ S, so now for the induction step suppose that m ∈ S. To
see that m+ is also in S the two cases:

(a) m = n + k – then m+ = n + k+. Note this includes the case that
k = 0 which is also the case n = m+ 0.

(b) n = m+ j with j 6= 0 – then there exists p ∈ ω with j = p+, and so
n = m+ j = m+ p+ = m+ + p.

So m+ ∈ S and so S = ω.
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At the same primitive level, multiplication of natural numbers can be con-
sidered as repeated addition which can again be formalized using the Recursion
Theorem: for each natural number there exists a m unique function pm : ω

// ω with pm(0) = 0 and pm(n+) = pm(n) +m.

Definition A.41: ∀m ∈ ω∀n ∈ ω[m · n = pm(n)]
The natural number m ·n is called the product of m and n, and the binary

operation · is call multiplication.
The · is often omitted with multiplication being indicated by juxtaposition

if no confusion will result. Other notation sometimes used in place of the · to
indicate multiplication includes × and ∗.

Proposition A.28 For all natural numbers m, n and p,

(i) m · 0 = 0.

(ii) 0 · n = 0.

(iii) m · 1 = m.

(iv) (m · n) · p = m · (n · p).

(v) m · n = n ·m.

(vi) m · (n+ p) = (m · n) + (m · p).

(vii) if m 6= 1, then m · n = m · p⇒ n = p.

(viii) if n 6= 1, then m · n 6= 1.

The proof of this proposition is very similar to that of the preceding propo-
sition and is omitted.

Finally the same process can be applied to exponents which arise from re-
peated multiplication. Using the Recursion Theorem, for each natural number
m there exists a function em : ω // ω with em(0) = 1 and em(n+) = em(n)·m.

Definition A.42: ∀m ∈ ω∀n ∈ ω[mn = em(n)]
The natural number mn is called the n-th power of m, and the operation

is called exponentiation.

Proposition A.29 For all natural numbers m, n and p,

(i) m0 = 1.

(ii) 0n = 0 except that 00 = 1.

(iii) m1 = m.
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(iv) (mn)p = m(np).

(v) m(n+p) = (mn) · (mp).

(vi) mn = mp ⇒ n = p except when mn is equal to 0 or 1.

(vii) mn = 1⇒ m = 1 ∨ n = 0.

The proof of this proposition is very similar to that of the preceding two
propositions and is omitted.

A.12 Order

The natural arithmetic operations (addition and multiplication) on the set
ω of natural numbers were developed in the previous section, but there is
another familiar and important aspect of the natural numbers that hasn’t yet
been mentioned: order. The order relation in ω is the familiar succession
0 < 1 < 2 < · · · . The first step is to make the order relation precise, and
that is based on the understanding that m is larger than n when m is gotten
by from n by successive increments, which is the same as adding some natural
number to n.

Definition A.43: For all n,m ∈ ω, n ≤ m iff there is some natural number k
so that m = n+ k.

In particular every natural number is equal to or greater than 0.

Proposition A.30 For all m, n and p in ω:

(i) (Reflexive) m ≤ m.

(ii) (Antisymmetric) m ≤ n ∧ n ≤ m⇒ m = n.

(iii) (Transitive) m ≤ n ∧ n ≤ p⇒ m ≤ p.

(iv) (Connected) Either m ≤ n or n ≤ m.

Proof: The proof is based on Proposition A.27. (i) is because m + 0 = m.
For (ii) note that if m = n+ k and n = m+ l, then m+ 0 = m = (m+ l) + k =
m + (l + k) and so l + k = 0 and so l = k = 0, i.e., m = n. (iii) comes from
noting that if n = m + k and p = n + l, then p = (m + k) + l = m + (k + l).
(iv) is just a restatement of the last part of Proposition A.27.

Order relations are both generally important and specifically important in
the study of infinite sets in set theory. The starting point here are some general
definitions and simple observations.

Definition A.44: A preorder on X is a relation R on X which is reflexive
(∀x ∈ X, xRx), and transitive (∀x, y, z ∈ X, xRy ∧ yRz ⇒ xRz).
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Clearly the order relation on the natural numbers defined above is a pre-
order.

Every preorder defines an equivalence relation: x ≡R y ⇐⇒ (xRy ∧ yRx).
[Proof: x ≡R x because the preorder R is reflexive; x ≡R y ⇒ y ≡R x by the
symmetry in the definition of ≡R; and ≡R is transitive because R is transitive.
]

The preorder also defines a preorder on the quotient set X/ ≡R in the
expected way: x/ ≡R Ry/ ≡R iff xRy. [Proof: If x ≡R x′ and y ≡R y′, and
xRy, then xRy ∧ yRy′ ⇒ xRy′, while x′Rx ∧ xRy′ ⇒ x′Ry′. ]

This preorder on the quotient set now is antisymmetric, i.e., xRy and yRx
implies x = y. An antisymmetric preorder is actually the usual basic object of
study in order theory and is formalized in the following definition.

Definition A.45: A partial order on X is a relation on X which is reflexive,
transitive and antisymmetric.

Commonly a partial order is denoted by ≤ or something reminiscent such
as �, ⊆, or v.

Proposition A.30 shows that the order relation on the natural numbers is
not just a pre-order, but a partial order.

Associated to a partial order ≤ on X are several other closely related rela-
tions on X just as is familiar for order relation(s) on various types of numbers.
For x and y in X, y ≥ x is the same as x ≤ y (i.e., ≥ is the inverse relation of
≤,) The relation ≥ is also a (usually different) partial order on X.

For x and y in X, x < y means x ≤ y and x 6= y, and y > x is the same
as x < y. When x < y we say x is less than y, or smaller than y or precedes
y. Similarly when y > x we say that y is greater than y, or larger than y or
succeeds or follows y.

The relation < is not a partial order, but gets its own definition.

Definition A.46: A strict order on X is a relation on X which is transitive,
and anti-reflexive.

Commonly a strict order is denoted by < or something reminiscent such as
≺, ⊂, or @.

Defining x < y to mean x ≤ y and x 6= y associates to a partial order ≤ a
strict order <. Conversely starting with a strict order < and defining x ≤ y to
mean x < y or x = y produces a partial order.

Definition A.47: A partially ordered set or, more commonly, a poset is
a set together with a partial order on it.

Note that this is really just another name for a partial order (with domain
a set) because a partial order determines the set on which it is a partial order!
Despite this it is nearly universal to use the name of the domain of the partial
order to refer to the poset. The restriction to a partially ordered set rather than
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a partially ordered class is inessential but customary. The trivial extension of
what follows is left to the interested reader.

As discussed above, every poset has associated with it two partial orders
and two strict orders. This relationship is so intimate and so familiar that we
will freely move among the four relations with no comment at all.

The generic example of a partially ordered set is a power set P(x) with the
subset relation ⊆ as the partial ordering. Indeed any subset y of P(x) is a
poset under the subset relation, and all posets are like that. Here is what that
means.

Definition A.48: If (a,≤) and (b,�) are posets, then a monotone function
from a to b is a function f : a // b such that a1 ≤ a2 implies f(a1) � f(a2).

Monotone functions are also called order preserving or isotone.

Definition A.49: An isomorphism between (a,≤) and (b,�) is a monotone
function from a to b with a monotone inverse f−1 : b // a.

Proposition A.31 If (a,≤) is a poset, then there is a subset b of P(a) with
(a,≤) isomorphic to (b,⊆).

Proof: Associate to each element x of a the subset f(x) = {y ∈ a : y ≤ x}
of a, and take b = {f(x) : x ∈ a}. This actually defines f as the desired
isomorphism. .

There are various special properties of partial orders that are of particular
interest.

Definition A.50: A connected partial order, i.e., for every x and y in X either
x ≤ y or y ≤ x, is called a total order. (This is also called a linear order or
a simple order.)

Definition A.51: A totally ordered set is a partially ordered set where the
partial order is a total order. A totally ordered set is often called a chain.

The full content of Proposition A.30 is that the order relation on the set of
natural numbers is a total order.

Examples: Every equivalence relation is a partial order. Every pair of distinct ele-
ments is incomparable. The only relation that is both a partial order and
an equivalence relation is equality. The Hasse diagram of an equivalence
relation is a discrete graph, i.e., there are no edges.

Special Elements.

Definition A.52: A least element, minimum element, or first element
in a partially ordered set (X,≤) is an element x0 ∈ X such that ∀x ∈ X (x0 ≤
x).
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Definition A.53: A greatest element, maximum element or last el-
ement in a partially ordered set (X,≤) is an element x1 ∈ X such that
∀x ∈ X (x ≤ x1).

A greatest element (X,≤) is a least element in (X,≥), and a least element
in (X,≤) is a greatest element in (X,≥). This is our first example of duality
for order.

Least and greatest elements may fail to exist. For instance with our usual
understanding of the ordering of the natural numbers, 0 is a least element
while there is no greatest element. But when they do exist least and greatest
elements are clearly unique.

There are also the closely related but distinct notions of minimal and max-
imal elements.

Definition A.54: A minimal element in a partially ordered set (X,≤) is
an element x0 ∈ X such that x ≤ x0 ⇒ x = x0.

If x0 is a least element in X, then it is certainly a minimal element in X,
but the converse is not true. Just as with least elements, minimal elements may
not exist in a particular poset. But, by contrast with least elements, minimal
elements may not be unique even when they do exist.

The dual notion is that of maximal elements which are the minimal elements
for the poset (X,≥). Here is the direct definition.

Definition A.55: A maximal element in a partially ordered set (X,≤) is
an element x0 ∈ X such that x ≥ x0 ⇒ x = x0.

When (X,≤) is a poset and Y is a subset of X we define the relation ≤ |Y
on Y to be ≤ ∩Y × Y . Usually we will just speak of the inherited order on Y
and use the same symbol for the partial order on Y as for the partial order on
X.

There are several special elements associated to subsets of a poset.

Definition A.56: An upper bound for a subset Y of a poset X is an element
x ∈ X with ∀y ∈ Y y ≤ x

Dually we have lower bounds.

Definition A.57: A lower bound for a subset Y of a poset X is an element
x ∈ X with ∀y ∈ Y y ≥ x

Of special interest are least elements among upper bounds and greatest
elements among lower bounds, so we have the following definitions.

Definition A.58: Associated to each subset Y of the poset X we have the
subset U consisting of all upper bounds of Y . A least element of U is called
a least upper bound of Y . As with least elements in general, this may not
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exist, but is unique when it does exist. A least upper bound is also commonly
called a supremum or a lub, and denoted lub(Y ) or

∨
(Y ).

Definition A.59: Associated to each subset Y of the poset X we have the
subset L consisting of all lower bounds of Y . A greatest element of L is called
a greatest lower bound of Y . As with greatest elements in general, this
may not exist, but is unique when it does exist. A greatest lower bound is also
commonly called an infimum or a glb, and denoted glb(Y ) or

∧
(Y ).

The order relations defined on the natural numbers were all defined using
the properties of the set of natural numbers as a Peano system. This process
can also be reversed and the Peano system structure defined in terms of the
order relation. The first part is simply that 0 is the least element of the ordered
set ω. The harder part is the definition of the successor function and proof of
the induction principal. That will be done in Section A.16. Beyond that there
is an alternative perspective on the order relation that is more directly tied to
the details on how ω and its elements are defined that will be considered there
as well.

Duality in Order
Several times above we have remarked on pairs of dual concepts in a posets.

Examples of dual pairs include “least” and “greatest”, “minimal” and “maxi-
mal”, “lower bound” and “upper bound”, and “lub” and “glb”.

Every order theoretic definition has its dual, obtained by applying the given
definition to the inverse relation. Equally every theorem in order theory also
has a dual theorem which does not require a separate proof.

The connection between posets and categories (see Section B.19.4) exposes
duality in order as yet another example of duality of categories.

A.13 Number Systems

There are several number systems besides the natural numbers that are com-
monly considered: integers, rational numbers, real numbers and complex num-
bers. All of these can be defined, there existence demonstrated and their prop-
erties proved within axiomatic set theory. One valuable classic on the topic is
Landau’s Foundations of analysis; the arithmetic of whole, rational, irrational,
and complex numbers [39], while two more recent treatments are The Struc-
ture of the Real Number System [12] by Cohen and Ehrlich and The Number
Systems: Foundations of Algebra and Analysis [23] by Feferman.

The discussion of number systems is not very close to the theory of sets,
but this is a convenient point to provide a précis of the material for reference
in the remainder of the notes.

From Section B.2.3 of the Catalog we recall that a monoid consists of a
set M and an associative binary operation on M that has an identity. If the
binary operation is commutative, then M is a commutative monoid
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Proposition A.32 The set of natural numbers with the binary operation of
addition is a commutative monoid with 0 as the identity.

This is just another way of stating parts of Proposition A.27.

Proposition A.33 The set of natural numbers with the binary operation of
multiplication is a commutative monoid with 1 as the identity.

This is just another way of starting parts of Proposition A.28.
As there are two natural and common ways in which the set of natural

numbers are a monoid it is sometimes necessary to distinguish them. The set
of natural numbers together with the binary operation of addition is called the
additive monoid of natural numbers, while when considering multiplication we

speak of the multiplicative monoid of natural numbers.

Proposition A.34 The additive monoid of natural numbers is a free monoid
generated by 1.

Proof: This means that if (M, ·, 1) is any monoid and m0 is an arbitrary
element of M , there there is a unique monoid homomorphism h : ω // M
with h(1) = m0.

As preparation to using the Recursion Theorem, define a function f : M
// M by f(m) = m0 ·m. Then there is a unique function h : ω // M so

that h(0) = 1 and h(S(n)) = m0 · h(n). Then h(1) = h(S(0)) = m0 · 1 = m0.
Next we use induction to prove that h is a homomorphism. Consider the

set Q = {n ∈ ω : ∀n′ ∈ ω [h(n + n′) = h(n) · h(n′)]}. Certainly 0 ∈ Q as
h(0+n′) = h(n′) = h(0) ·h(n′) for h(0) = 1. And if n ∈ Q, then h(S(n)+n′) =
h(S(n+n′)) = m0 ·h(n+n′) = m0 ·h(n) ·h(n′) = h(S(n)) ·h(n′), so S(n) ∈ Q.
By the Induction Principle Q = ω and so h is a homomorphism.

Proposition A.35 The multiplicative monoid of positive natural numbers is
a free monoid generated by the prime numbers.

The Abelian group of integers is constructed from the monoid of natural
numbers in a fashion that applies in the following generality.

Proposition A.36 For every commutative monoid N there is an Abelian group
Z and a monoid homomorphism i : N // Z so that for every monoid homo-
morphism h : M // A of M to an Abelian group A there is a unique group
homomorphism H : Z // M so that h = Hi.

N Z
i //N

A

h

��

Z

A

H

���
�

�
�

�
�

The pair (Z, i) is called Abelian group completion of the commutative monoid
N .
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For the proof see Proposition B.39.
Of course this is an example of a universal mapping property and as in all

such cases the Abelian group is unique up to isomorphism.

Definition A.60: The Abelian group of integers, Z, is the Abelian group
completion of the commutative monoid of natural numbers.

This “definition” has a problem. What exactly is the set Z? In particular
is the set ω of natural numbers a subset of Z? Common mathematical usage
certainly assumes that every natural number is an integer! But it is also com-
mon in the development of number systems from the axioms of set theory or
even from the Peano axioms to identify the set Z as a set of equivalence classes
of pair of natural numbers as in the proof of Proposition B.39 so that ω is not
a subset of Z. This is a minor but niggling annoyance which can be addressed
in several different ways.

One solution is to change the definition of the natural numbers or the
integers so that the set of natural numbers is a subset of the set of integers.
Again there are several possible ways of doing that with perhaps the simplest
being to define the integers by just adjoining suitable negative integers to ω as
is the common notation. Verifying that this works is a bit of a nuisance, but
it certainly works.

Another solution is to provide an axiomatic characterization of the integers
(for example as a certain type of ordered integral domain,) and show that
the system of integers must have a compatible Peano system as a subsystem
(which is, of course, isomorphic to the Peano system of natural numbers.) Then
arbitrarily fix one such as “the” integers and “the” natural numbers.

Still another approach is to incorporate additional axioms that define all of
the usual number systems (natural numbers, integers, and rational, real and
complex numbers) and ensure the expected inclusion relations. This involves
changing the approach used here so that there are elements (commonly called
urelements) besides those that are sets. Then the constructions here and in
Section A.11 serve to show that the more complex axiom systems that define
the number systems are equiconsistent with the limited set theory axioms in
this Appendix.

Introducing urelements seems to refute the remark that “for the purposes
of mathematics it seems to be enough to have just sets that can be built from
the empty set” (page 182) but the use or lack of other elements is entirely a
matter of convenience. (It is left as an exercise for the reader to decide where
the convenience lies!)

As remarked in Section A.6 the same thing is equally well true for or-
dered pairs. Rather than using the abstruse definition given in these notes
it is entirely feasible to introduce them as independent entities having their
characteristic property, and then allow ordered pairs of element as elements as
well. In the same vein it is also possible to introduce functions as new objects
subject to suitable axioms and then allow them to be elements of sets as well.
The reason this is seldom done is because of the complexity associated with



216 APPENDIX A. SET THEORY

having many different logical entities and the large complicated collection of
axioms needed to specify this complexity.

In this Appendix we will follow the same general approach we have used
throughout the notes of being somewhat cavalier in accepting these number
systems without completely specifying exactly the set at issue.

At this stage the set of integers as a mathematical object is defined as being
a certain Abelian group, while the set of integers so familiar to us all also has
multiplication and an order relation extending the same features of the natural
numbers.

A.14 Axiom of Choice

Axiom of Choice: The Cartesian product of a non-empty family of non-
empty sets is non-empty.

A.15 Zorn’s Lemma

A.16 Well Ordered Sets

Definition A.61: A well ordered set is a poset in which every non-empty
subset has a least element.

Definition A.62: For a well ordered set X and x an element of X, the
segment of X determined by x is the set {y ∈ X : y < x}

Theorem A.18 Let (X,≤) be a well ordered set. Suppose that S is a subset
of X such that:

1. the smallest element of X is an element of S, and

2. ∀x ∈ X [∀y ∈ X (y < x⇒ y ∈ S)⇒ x ∈ S]

Then S = X.

A.17 Transfinite Induction

A.18 Axiom of Substitution

Axiom of Substitution: If f is a function and the domain of f is a set,
then the image of f is a set.
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A.19 Ordinal Numbers and Their Arithmetic

A.20 The Schröder-Bernstein Theorem

A.21 Cardinal Numbers and Their Arithmetic

A.22 Axiom of Regularity

Axiom of Regularity:





Appendix B

Catalog of Categories

The purpose of this appendix is to catalog a variety of categories, together
with interesting properties and interrelations. It comes here at the end exactly
because we feel free to discuss all of the notions that occur earlier in these notes.
But the intention is that each section can be read only part way for information
relevant to early parts of the notes. So in particular the properties of these
categories are discussed in approximately the same order as those properties
are discussed in the notes.

There are a substantial variety of categories discussed here, and it is unlikely
that all of them will be familiar to any reader of these notes. For just that
reason each section is intended to be largely independent of the other sections.
Moreover we provide references for readers who want more information about
the particular categories. The references are not usually about the categories
per se, but usually to sources where the objects and morphisms that constitute
the category and discussed.

Each of the “big three” topics in Mathematics: Algebra, Topology and
Analysis contribute a large number of categories that are familiar, by which we
mean widely and commonly studied. Adding to those the categories associated
to the foundational topics of set theory, order and logic provides the source
of most of the categories listed in this chapter. That also is the organizing
principle, at least up to section B.16.

While the study of categories is fundamentally about morphisms, the fa-
miliar categories are named after their objects. This is a reflection that the
first level of abstraction was such objects as groups, rings, topological spaces,
etc. The study of the morphisms between suitable objects came later. Even
when morphisms began to be studied, the starting point was objects as “sets
with structure” and morphisms were just certain functions that “respected”
the structure.

In most of the categories described below the identity function on (the un-
derlying set of) an object is a clearly a morphism, and the function composition
of two morphisms is again a morphism and with these observations it is a trivial
formality to verify that the proposed category is indeed a category. So in most

219
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cases the verification will be omitted without comment.

B.1 Sets

B.1.1 Set – sets

The most fundamental category of all is the category of functions between sets.
Because this is so fundamental and because it is the first example the definition
will be given in pedantic detail. Such detail will be omitted in other examples.

Definition B.1: The objects of the category Set are all sets. The morphisms
of Set are triples (A, f,B) where A and B are sets and f is a function from A
to B (see definition A.30) with domain A and range a subset of B. The domain
of (A, f,B) is A, while the codomain is B. The identity morphism associated
to a set A is the morphism (A, 1A, A) where 1A is the identity function from
A to itself. Finally the composition of f : A // B with g : B // C is
(A, gf, C) where gf is the composition of the two functions.

To confirm that this does in fact define a category we need to check that
composition of morphisms is associative:

A
f // B

g // C
h // D ⇒ h(gf) = (hg)f

and the defining properties of the identity morphisms:

A
1A // f // B

1B // B ⇒ f1A = f ∧ 1Bf = f

both of which are follow from the corresponding facts about functions.
Already here we are following the nearly universal mathematical custom of

naming things using a small and ambiguous part of their full name. Here it is
naming a morphism such as (A, f,B) by just the function f . Notice that the
function f actually does determine its domain A, but not its codomain B. The
same function f is part of many different morphisms with different codomains.
And from here on the full detail (A, f,B) will be written as f : A // B or A
f // B.

An outline of the information about sets that is used in this section and
throughout these notes is collected in Appendix A (Set Theory). The Appendix
is not about the category of sets, but what is needed about set theory in these
notes is established there.

In Set the epimorphisms are exactly the surjective functions, or, more pre-
cisely, those morphisms where the range of the function is the codomain of
the morphism. The monomorphisms are the injective functions, and the iso-
morphisms are the bijective functions. In this category every epimorphism has
a section, while every monomorphism has a retract. As a consequence (cf.
exercise I.8) every morphism that is both monic and epic is an isomorphism.
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Set has an initial object, the empty set with the unique function ! from
the initial object to any other object being the empty function. Set has many
final objects, namely all of the singleton sets with !, the unique function from
any object to the final object, being the function that sends every element to
the single element.

Set has products and sums. The product of two sets X and Y “is” the
usual Cartesian product X×Y (see definition A.15) consisting of ordered pairs
of elements from the two sets, with π1(x, y) = x and π2(x, y) = y. Of course
as is true is any category, if there is an isomorphism (i.e., a bijection in this
context) from Z to X × Y then composing the bijection with π1 and π2 gives
two projections morphisms from Z to X and Y which makes Z a product of
the two sets as well.

The sum of sets is the less familiar disjoint union as discussed on page 35.
By contrast, Lawvere and Rosebrugh (Sets for Mathematics) [46] give an

informal axiomatic treatment of the category of sets which does not depend on
axiomatic set theory as treated in the appendix.

Barr [2] provides a fine polemic explaining why categorical set theory is
preferable to traditional axiomatic set theory.

B.1.2 FiniteSet – finite sets

The category FiniteSet of finite sets is the full subcategory of Set whose
objects are the finite sets.

Just as in Set the epimorphisms in FiniteSet are exactly the surjective
functions, or, more precisely, those morphisms where the range of the func-
tion is the codomain of the morphism. The monomorphisms are the injective
functions, and the isomorphisms are the bijective functions. In this category
every epimorphism has a section, while every monomorphism has a retract. As
a consequence (cf. exercise I.8) every bimorphism, i.e., one that is both monic
and epic, is an isomorphism.

The unique initial object in Set, namely the empty set, is also the unique
initial object in FiniteSet. And all of the many final objects in Set, namely
all of the singleton sets, are equally well the final objects in FiniteSet.

Also the products and sums in Set are equally well the products and sums
in FiniteSet, for the product and sum of two finite sets are also finite sets.

B.1.3 Rel – the category of sets and relations

The objects of Rel are sets, while the morphisms are relations between sets.
(See Section A.7 for the relevant definitions.)
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B.1.4 RefRel – the category of sets and reflexive relations

B.1.5 SymRel – the category of sets and symmetric relations

B.1.6 PSet – the category of sets and partial functions

Definition B.2: A partial function F from a set A to a set B is a function
f : S // B with S a subset of A. S is called the domain of definition or
support of F . When S = A, the partial function F is called a total function.

We will usually speak of a partial function f , confusing the partial function
with the function whose domain is a subset of A. If more detail is needed we
will write (f , S) or even (f , S): A // B.

Of course for any set A we have the total function (1A, A). And if (f, S) :
A // B and (g, T ) : B // C are partial functions, then we take the
composition (g, T )(f, S) : A // C to be the partial function with domain of
definition S ∩ g−1(T ) ⊆ A and function

gf |S∩g−1(T )

B.1.7 Set∗ – the category of pointed sets

The objects in the category Set∗are pointed sets (cf. definition I.43), and the
morphisms are morphisms of pointed sets. As noted above, Set∗ has epimor-
phisms, namely the surjective functions, while monomorphisms are the injective
functions, and the isomorphisms are the bijective functions. In this category
every epimorphism has a section, while every monomorphism has a retract.
Basically the arguments for Set carry over with little change.

Again, Set∗ has initial objects, final objects and zero objects: any one
element set with the single element being (necessarily) the base point.

Also Set∗ has both products and sums. The product of two pointed sets,
〈X,x0〉 and 〈Y, y0〉 “is” 〈X ×Y, 〈x0, y0〉〉 with the usual projection maps, while
the sum of two pointed sets is the join defined on 38.

B.1.8 Ord – the category of ordinal numbers

B.2 Semigroups, Monoids, Groups and Their Friends

B.2.1 Magma – the category of magmas

Actually this is not likely to be a familiar category, but it is included here
partly because it is the base for so many more familiar categories, but mainly
because it is a useful notion when we discuss algebraic objects in categories
(cf. Section I.4). A detailed treatment of magmas is to be found at the very
beginning of Bourbaki’s Algebra [10].

Recall the definitions from I.53 and I.54.
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Definition: A magmais a set, M , together with a binary operation or
law of composition, µ : M ×M // M .

Most commonly the binary operation in a magma is written as µ(m,n) =
mn though in particular examples the operation may be written in some quite
different fashion.

We make NO assumptions about the operation – it may not be associative,
commutative, nor have any sort of identities. All of those result in other, often
more familiar objects.

Definition: A magma homomorphism, or morphism of magmas is
a function f : M // N such that f(xy) = f(x)f(y). Notice that this is
equivalent to saying that µ(f × f) = fµ.

All of the categories discussed in this section are subcategories of Magma.
The selected objects that define a particular subcategory typically are those
which satisfy additional laws such as the associative, commutative or identity
laws.

B.2.2 Semigroup – the category of semigroups

Definition B.3: A semigroup is an associative magma, i.e., one in which
the binary operation satisfies the associative law: (ab)c = a(bc).

The category Semigroup is the full subcategory of Magma with objects
the semigroups. In particular a semigroup homomorphism is just a homomor-
phism of the magmas.

Definition B.4: A commutative semigroup or Abelian semigroup is a
semigroup in which the binary operation is commutative: ab = ba.

Of course there is the corresponding full subcategory of Semigroup with
objects the commutative semigroups. This subcategory will be denoted by
ASemigroup.

Let S be an Abelian semigroup. The Grothendieck group of S is K(S) =
S×S/∼, where ∼ is the equivalence relation: (s, t) ∼ (u, v) if there exists r ∈ S
such that s + v + r = t + u + r. This is indeed an Abelian group with zero
element (s, s) (any s ∈ S) and inverse −(s, t) = (t, s). It is common to use the
suggestive notation t− s for (t, s).

B.2.3 Monoid – monoids

Definition B.5: A monoid is a binary operation that is associative and has
an identity element.

In more detail a monoid (M, ·, 1) consists of a set M , a binary operation
· on that set, and a distinguished element 1 ∈ M satisfying the Associative
Law: ∀m,m′,m′′ ∈ M [(m ·m′) ·m′′ = m · (m′ ·m′′)]; and the Identity Law:
∀m ∈M, m · 1 = m = 1 ·m.
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As usual a monoid (M, ·, 1) is typically named only by the set M , and
no special name is given for the binary operation. Indeed, as in much of
these notes, the effect of the binary operation in a monoid is often shown by
juxtaposition.

Definition B.6: A monoid homomorphism is a magma homomorphism
that carries the identity to the identity, i.e., a monoid homomorphism f : M

// N is a function between the sets satisfying:

• ∀m,m′ ∈M, f(m ·m′) = f(m) · f(m′).

• f(1) = 1.

Definition B.7: The category Monoid has as objects all monoids and as
morphisms all monoid homomorphisms.

In Monoid as with all concrete categories the surjective morphisms are
epimorphisms, but there is no good characterization of all epimorphisms. The
example of the inclusion of the additive monoid of natural numbers into the
additive monoid of integers is an epimorphism that is not surjective.

The monomorphisms are the injective homomorphisms, and the isomor-
phisms are the bijective homomorphisms.

The category Monoid has initial, final and zero objects, all being the single
element monoids consisting of just the identity element.

This category also has products. The product of (M, ·, 1) and (N, ·, 1) is
(M × N, ·, (1, 1)) where (m,n) · (m′, n′) = (m ·m′, n · n′), and the projection
homomorphisms are just the set projection maps.

Verification that (M ×N, ·, (1, 1)) is indeed a monoid, that the projection
functions are homomorphism, and that the universal mapping property for the
product in Monoid does hold are all straight forward.

Just as the sum of sets is much less familiar and more complicated than the
product of sets, so it is with the sum of monoids. It is simplest to show that
the sum of monoids exists after a digression on free monoids.

Proposition B.37 Every set generates a free monoid. In detail this means
that if S is any set there is a monoid S∗ and a function i : S // S∗ so that
for every function f : S // M of S to a monoid M there is a unique monoid
homomorphism F : S∗ // M so that f = Fi.

S S∗
i //S

M

f

��

S∗

M

F

���
�

�
�

�
�

Proof: See Section III.2.12.
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Proposition B.38 F (S + T ) = F (S) + F (T ).
The details of just what this means are in the following proof.

Proof: We have the injections ιS : S // S + T and ιT : T // S + T , and
the canonical function iS+T : S+T // F (S+T ), which give us the functions
iS+T ιS and iS+T ιT which in turn induce monoid homomorphisms from F (S)
and F (T ) to F (S + T ) which we will call ιF (S) and ιF (T ) respectively. All
these morphisms, as well as all the rest discussed in this proof, are shown in
the diagram below.

The detailed claim is that F (S+T ) with the monoid homomorphisms ιF (S)

and ιF (T ) is a sum of F (S) and F (T ). To verify this, suppose hS : F (S) // M
and hT : F (T ) // M are any two monoid homomorphisms. Then we have the
function [hSiS , hT iT ] : S + T // M which in turn induces a unique monoid
homomorphism [hS , hT ] : F (S + T ) // M with [hs, hT ]iS+T = [hSiS , hT iT ]
But then hSiS = [hS , hT ]ιF (S)iS and hT iT = [hS , hT ]ιF (T )iT . From the first it
follows that [hS , hT ]ιF (S) = hS and from the second that [hS , hT ]ιF (T ) = hT ,
and that these are the unique such morphisms.

F (S) F (S + T )ιF (S)
//_____

S

F (S)

iS

��

S S + T
ιS // S + T

F (S + T )

iS+T

��
F (S + T ) F (T )oo

ιF (T )
_____

S + T

F (S + T )

S + T

F (S + T )

S + T Too ιT
T

F (T )

iT

��
F (S) F (S + T )//_____F (S)

M

hS

%%KKKKKKKKKKKKKK
F (S + T )

M

[hS ,hT ]

��

F (S + T ) F (T )oo _____F (S + T )

M
��

F (T )

M

hT

yyssssssssssssss

Definition B.8: An element p in a monoid M is right cancelable provided
mp = np⇒ m = n. It is left cancelable provided pm = pn⇒ m = n, and it
is cancelable provided it is right and left cancelable.

An element p is right cancelable iff it is an epimorphism in M considered
as a category with one object, and p is left cancelable iff it is a monomorphism
in that category.

Definition B.9: An element p in a monoid M is right invertible provided
there exists an element m such that mp = 1. It is left invertible provided
there exists an element n such that pn = 1, and it is invertible provided it is
right and left invertible.

Considering M as a category, a right invertible element is one that has
a section or, equivalently, is a retract, while a left invertible element is one
that has a retract or, equivalently, is a section. An invertible element is an
isomorphism.
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Suppose have monoid M and monoid homomorphism h : M // U . Let
S = {s ∈M : h(s) is invertible }. Then S is a submonoid.

Theorem B.19 For any subset S of a monoid M there is a monoid S−1M
and a monoid homomorphism h : M // S−1M with the following Universal
Mapping Property:

1. ∀s ∈ S, h(s) is invertible in S−1M .

2. If f : M // N is a monoid homomorphism with f(s) invertible for
all s ∈ S, then there exists a unique monoid homomorphism f : S−1M

// N with f = fh.

Corollary 2 For every monoid N there is a group Z and a monoid homo-
morphism i : N // Z with the universal mapping property that for every
monoid homomorphism h : N // G of N to a group G there is a unique
group homomorphism H : Z // G so that h = Hi.

N Z
i //N

G

h

��

Z

G

H

���
�

�
�

�
�

B.2.4 CMonoid – commutative monoids

Definition B.10: A commutative monoid is a monoid in which the oper-
ation is commutative.

Definition B.11: CMonoid is the full subcategory of Monoid whose objects
are the commutative monoids.

In CMonoid the epimorphisms are the surjective homomorphisms, the
monomorphisms are the injective homomorphisms, and the isomorphisms are
the bijective homomorphisms.

The category CMonoid has initial, final and zero objects, all being the
single element monoids consisting of just the identity element.

This category also has products. The product of (M, ·, 1) and (N, ·, 1) is
(M × N, ·, (1, 1) where (m,n) · (m′, n′) = (m · m′, n · n′), and the projection
homomorphisms are just the set projection maps.

Verification that (M ×N, ·, (1, 1)) is indeed a monoid, that the projection
functions are homomorphism, and that the universal mapping property for the
product in CMonoid does hold are all straight forward.

Just as the sum of sets is much less familiar and more complicated than the
product of sets, so it is with the sum of commutative monoids.
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Proposition B.39 For every commutative monoid N there is an Abelian
group Z and a monoid homomorphism i : N // Z so that for every monoid
homomorphism h : M // A of M to an Abelian group A there is a unique
group homomorphism H : Z // M so that h = Hi.

N Z
i //N
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h

��

Z

A

H
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�

�
�

Proof: The construction of Z is based on the intuition that the elements
of Z arise as differences of elements of N . Moreover n′ − n = m′ −m when
n′ + m = n + m′, so define Z = N × N/ ∼ where (n′, n) ∼ (m′,m) when
n′+m = n+m′ and i(n) is the equivalence class of (n, 0) which we will denote
for the duration of this proof as ((n′, n)). The binary operation on Z is defined
in the usual way: ((n′, n)) + ((m′,m)) = ((n′ + m′, n + m)) and this is well-
defined, i.e., not dependent of the particular representatives. Straight forward
computations show that Z is an Abelian group with ((0, 0)) as identity and the
inverse of ((n′, n)) is ((n, n′)).

Finally given the homomorphism h : N // A, if there is a group homo-
morphism H : Z // A with Hi = h, then because ((n′, n)) = i(n′) − i(n)
it follows that H((n′, n)) = h(n′) − h(n). Taking that as a definition, simple
computations show that H is a well-defined group homomorphism with Hi = h
and this guarantees uniqueness as well as existence.

Of course this is an example of a universal arrow (see Section V.2) from
the commutative monoid N to the forgetful functor from the category Ab of
Abelian groups to the category of commutative monoids.

B.2.5 Group – groups

Definition B.12: A group is a monoid in which every element has an inverse.

Definition B.13: A group homomorphism is just a monoid homomor-
phism.

It is natural to expect a requirement that a group homomorphism carries
inverses to inverses, but that is a formal consequence.

Definition B.14: The category Group has as objects all groups and as
morphisms the group homomorphisms between them.
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B.2.6 FiniteGroup – finite groups

The category FiniteGroup has as objects all groups and as morphisms the
group homomorphisms between them.

B.2.7 Ab – Abelian groups

Definition B.15: An Abelian group (also called a commutative group) is a
group in which the binary operation is commutative.

The category Ab has as objects all Abelian groups and as morphisms the
group homomorphisms between them.

B.2.7.1 TorAb – Torsion Abelian groups

B.2.7.2 DivAb – Divisible Abelian groups

B.2.7.3 TorsionFreeAb – Torsion Free Abelian groups

B.3 Rings

Rings are algebraic gadgets which have two binary operations, addition and
multiplication, that are connected in some approximation of the familiar sit-
uation with numbers. The most common type of ring is sometimes called an
associative ring with identity, but here the name ring is reserved for this type.

Definition B.16: A ring is a set R equipped with two binary operations +
and ·, called addition and multiplication, and distinguished elements 0 and 1
such that:

• (R,+, 0) is an Abelian group:

∀a, b, c ∈ R

– 0 + a = a = a+ 0

– (a+ b) + c = a+ (b+ c)

– a+ b = b+ a

– For each a ∈ R there is an element −a such that a+−a = 0 = −a+a

• (R, ·, 1) is a monoid:

– (a · 1) = a = 1 · a
– (a · b) · c = a · (b · c)

• Multiplication distributes over addition:

– a · (b+ c) = (a · b) + (a · c)
– (a+ b) · c = (a · c) + (b · c)
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As with groups the symbol · is usually omitted and multiplication is just
denoted by juxtaposition. Also the standard order of operation rules are used,
so that, for example, a+ bc is an abbreviation for a+ (b · c).

Although addition in a ring is commutative (i.e. a+ b = b+ a), multiplica-
tion is not assumed to be commutative. Rings in which multiplication is also
commutative (such as the ring of integers) are called commutative rings.

The category Ring of rings is discussed in Section B.3.3 below while its
subcategory of commutative rings is discussed in Section B.3.4.

There are a wide variety of interesting generalizations, most of them gotten
by eliminating one or more of the items in the above definition. For example
rngs are rings without identity. Here is the actual definition.

Definition B.17: A rng is a set R equipped with two binary operations +
and ·, called addition and multiplication, and a distinguished element 0 such
that:

• (R,+, 0) is an Abelian group.

• (R, ·) is a semigroup.

• Multiplication distributes over addition.

The category Rng of rings without identity is discussed in Section B.3.2.
Contrary to what the name suggests a rng may have a multiplicative identity,
in particular every ring is a rng.

The simplest examples of rngs are gotten by defining multiplication on any
Abelian group (A,+, 0) by a · b = 0 for all a, and b in A. The only case when
this has an identity is the zero ring which has only one element, 0.

The system (N,+, 0, ·, 1) satisfies almost all of the condition to be a com-
mutative ring – the only thing missing are negative numbers. Such gadgets are
called rigs (“rings without negatives”) or semirings and defined as follows.

Definition B.18: A rig is a set R equipped with two binary operations +
and ·, called addition and multiplication, and distinguished element 0 and 1
such that:

• (R,+, 0) is a commutative monoid.

• (R, ·, 1) is a monoid.

• Multiplication distributes over addition.

A particularly interesting class is the non-associative rings (remove the as-
sumption that multiplication is associative) and various specific variations such
as Lie rings and Jordan rings (which replace the associative law with a partic-
ular alternative).

Another direction is the class of rings called algebras. These are rings of
one or another of the various types already mentioned but where the additive
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Abelian group is assumed to be a vector space over some field or, more generally,
a module over some base ring. A variety of categories of algebras are discussed
in Section B.5.

B.3.1 Rig – rings without negatives

Recall that rigs were defined back in Section B.3.3 as follows.
A rig is a set R equipped with two binary operations + and ·, called addition

and multiplication, and distinguished elements 0 and 1 such that:

• (R,+, 0) is an commutative monoid group.

• (R, ·, 1) is a monoid.

• Multiplication distributes over addition.

Examples

• The most familiar example of a rig that is not a ring is N with the usual
addition and multiplication.

• If R is any rig and X is any non-empty set, then the set RX of all
functions from X to R is a rig – the operations in RX come from pointwise
operations: (f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x), 0(x) = 0, and
1(x) - 1.

Definition B.19: A rig homomorphism is a function from one rig to an-
other which is a group homomorphism between the additive monoids and a
semigroup homomorphism between the multiplicative semigroups.

In detail a rig homomorphism f : R // S satisfies:

(i) f(0) = 0.

(ii) f(r + r′) = f(r) + f(r′).

(iii) f(1) = 1.

(iv) f(r · r′) = f(r) · f(r′).

Definition B.20: The category Rig has as object all rigs (as defined above)
and as morphisms all rig homomorphisms.

The identity function on a rig is a rig homomorphism, and the function
composition of two rig homomorphism is again a rig homomorphism. With
those two observations it is a now familiar formality to verify that Rig is
indeed a category.

Theorem B.20 Given a rig (R,+, 0, ·, 1), there is a universal morphism from
R to a ring.
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Proof: On R × R define (a, b) (c, d) <=> ∃z ∈ R, a + d + z = c + b + z.
The quotient R(R) = (RR)/ is a ring and the map R // R(R) given by
x 7→ [(x, 0)]/ “(= ”x - 0”)” is a rig morphism. In general, the morphism R

// R(R) need not be injective.

B.3.2 Rng – rings without identity

Definition B.21: A rng homomorphism is a function from one rng to
another which is a group homomorphism between the additive groups and also
a semigroup homomorphism between the multiplicative semigroups.

In detail a rng homomorphism f : R // S satisfies:

(i) f(0) = 0.

(ii) f(r + r′) = f(r) + f(r′).

(iii) f(r · r′) = f(r) · f(r′).

The identity function on a rng is a rng homomorphism, and the function
composition of two rng homomorphism is again a rng homomorphism. With
those two observations it is a now familiar formality to verify that Rng is
indeed a category.

B.3.3 Ring – associative rings with identity

As with groups the symbol × is usually omitted and multiplication is just
denoted by juxtaposition. Also the standard order of operation rules are used,
so that, for example, a+ bc is an abbreviation for a+ (b× c).

Although ring addition is commutative (i.e. a + b = b + a), note that
the commutativity for multiplication (a × b = b × a) is not among the ring
axioms listed above. Rings that also satisfy commutativity for multiplication
(such as the ring of integers) are called commutative rings. Not all rings are
commutative.

Definition B.22: A ring homomorphism is just an rng homomorphism.
In detail a ring homomorphism f : R // S satisfies:

(i) f(0) = 0.

(ii) f(r + r′) = f(r) + f(r′).

(iii) f(1) = 1.

(iv) f(r · r′) = f(r) · f(r′).

The identity function on a ring is a ring homomorphism, and the function
composition of two ring homomorphism is again a ring homomorphism. With
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those two observations it is a now familiar formality to verify that Ring is
indeed a category.

B.3.4 CommutativeRing – commutative rings

CommutativeRing is the category of commutative rings with identity with
morphisms being the rings homomorphisms (which take 1 to 1.)

B.3.5 Field – fields

Definition B.23: A field is a commutative ring in which every non-zero
element has a multiplicative inverse.

B.4 Modules

B.4.1 Module – modules over a commutative ring

Throughout this section R is a commutative ring.

Definition B.24: An R-module M is an Abelian group (M,+, 0) together
with a function R×M // M (written as (r,m) 7→ rm) satisfying: For all m,
n in M and for all r, s in R

(i) r(m + n) = rm + rn.

(ii) 1m = m.

(iii) (r + s)m = rm + sm.

(iv) (rs)m = r(sm).

This is actually a family of categories. For each commutative ring R there
is the category ModuleR with objects all R-modules and morphisms all R-
module homomorphisms. In the case that R = Z, the category ModuleZ is the
same as Ab. As you should expect there is in general a great deal of similarity
between Ab and other categories of modules.

Much of the time the particular ring is not interesting, in which case
Module will be written to stand for ModuleR with R unspecified.

B.4.2 Matrices – matrices over a commutative ring

This is another parametrised family of categories. For each commutative ring
R, the category MatricesR has as objects all positive integers and as mor-
phisms matrices with entries in R. In particular an m×n matrix is a morphism
from n to m with the identity morphism on m being the m×m identity matrix,
and composition being the usual matrix multiplication.
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This category is actually equivalent to the full subcategory of all finitely
generated free R-modules in ModuleR.

B.4.3 Vect – vector spaces

For each field K we have the category VectK which has as objects all vector
spaces over K and as morphisms all linear transformations between them. This
is really just the category ModuleK , but it is sufficiently interesting and well
studied in its own right that we will treat it separately.

Much of the time the particular field is not interesting, in which case Vect
will be written to stand for VectK with K unspecified.

B.4.4 FDVect – finite dimensional vector spaces

The full subcategory FDVectK of FDVectK has as objects just the finite
dimensional vector spaces in VectK . This is is sufficiently interesting that it
deserves separate mention.

Much of the time the particular field is not interesting, in which case
FDVect will be written to stand for FDVectK with K unspecified.

B.5 Algebras

Algebras are rings in which the additive structure is not just an Abelian group,
but a module over a commutative ring. The most commonly discussed algebras
are associative algebras over fields, but here we will reserve the name algebra
for associative algebras over a commutative ring.

Throughout this section R will be a commutative ring.

Definition B.25: An R-algebra is both an R-module and a ring in such a way
that multiplication in the ring is an R-bilinear map. In detail an R-algebra

B.5.1 Algebra – associative algebras

This is actually a family of categories. For a fixed commutative ring (with iden-
tity), R, AlgebraR is the category with objects all R-algebras and morphisms
all the algebra homomorphisms. By an algebra we certainly mean a set with
both an operation of addition and an operation of multiplication. Moreover
each ring is an Abelian group with respect to addition.

And we require the algebra homomorphisms to take 1 to 1.
Much of the time the particular commutative ring is not interesting, in

which case Algebra will be written to stand for AlgebraR with R unspecified.

B.5.2 LieAlgebra – Lie algebras

This is actually a family of categories. For a fixed commutative ring (with
identity), R, LieAlgebra is the category with objects all R Lie algebras and
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morphisms all the Lie algebra homomorphisms.

B.6 Order

B.6.1 Preorder – preorders

The category Preorder has as objects all preorders and as morphisms all the
order preserving functions between them.

As the identity function on any preorder is certainly order preserving and
the composition of two order preserving functions is also order preserving, we
see that Preorder is indeed a category.

Proposition B.40 The category Preorder has products.

Proof: For partially ordered sets X and Y define a partial order on product
set X × Y by (x, y) ≤ (x′, y′) iff x ≤ x′ and y ≤ y′. The usual projection
functions πX and πY are certainly order preserving. Moreover if f : Z // X
and g : Z // Y are preorder morphisms, i.e., monotone functions, then the
function (f, g) : Z // X × Y is monotone and clearly has the universal
mapping property required for a product.

Proposition B.41 The category Preorder has sums.

B.6.2 Poset – partially ordered sets

Partially ordered sets, or posets, are those preorders where the order rela-
tion is antisymmetric:

∀x, y ∈ X,x ≤ y ∧ y ≤ x⇒ x = y.

The category Poset of partially ordered sets is the full subcategory of
Preorder with objects the posets.

For more information about posets, consult Mac Lane and Birkhoff [55,
II.8, IV.6, XIV].)

B.6.3 Lattice – lattices

The category Lattice has as objects all lattices and lattice morphisms between
them.

There are two quite different ways to describe lattices – as certain types of
partially ordered sets, and as certain types of algebraic structures. We start
with the poset approach.

Lattices as posets In any poset L we have the notions of upper and lower
bounds and from them the notions least upper bounds and greatest lower
bounds, the essential notions for defining a lattice.



B.6. ORDER 235

Recall from definition A.56 that if S is any subset of a poset L, then u ∈ L
is an upper bound for S provided s ∈ S ⇒ s ≤ u.

Equally well there is the dual notion of a lower bound: l is a lower bound
for S provided s ∈ S ⇒ s ≥ l.

A least upper bound is a minimum among upper bounds, while a greatest
lower bound is a maximum among lower bounds. The notion of glb is dual to
the notion of lub.

Now a lattice is a poset in which non-empty finite sets have lubs and glbs.

Definition B.26: A lattice is a poset in which every pair of elements has
both a lub and a glb. The lub of {x, y} is called the join of x and y and is
written as x ∨ y, while the glb of {x, y} is called the meet of x and y and is
written as x ∧ y.

So every lattice, L, has binary operations ∧ : L × L // L and ∨ : L × L
// L. The order relation can be retrieved from the meet and join: x ≤

y ⇐⇒ x ∧ y = y ∧ x ∨ y = x. This will be the connection between the order
and algebraic definitions.

The morphisms between lattices are not just order preserving, they are
required to preserve meets and joins as well.

Definition B.27: A lattice morphism f : L // L′ is a function with
f(x ∧ y) = f(x) ∧ f(y) and f(x ∨ y) = f(x) ∨ f(y).

While no requirement that a lattice morphism be order preserving was
explicitly mentioned, the connection between the order relation and the meets
and joins guarantees that a lattice morphism is a poset morphism as well.

Although the definition of a lattice only requires the existence of lubs and
glbs for two element sets, induction on the number of elements in a set easily
shows that lubs and glbs for all non-empty finite sets exists in every lattice.

For more information consult Mac Lane and Birkhoff [55, XIV].)
It will be stated explicitly whenever a lattice is required to have a least or

greatest element. If both of these special elements do exist, then the poset is
called a bounded lattice. An easy induction argument also shows the existence
of all suprema and infima of non-empty finite subsets of any lattice.

the above definition in terms of the existence of suitable Galois connections
between related posets – an approach that is of special interest for category
theoretic investigations of the concept.

Lattices as algebraic structures
Consider an algebraic structure in the sense of universal algebra, given by

(L,∨,∧), where ∨and ∧are two binary operations. L is a lattice if the following
identities hold for all elements a, b, and c in L:

• Idempotent laws: a ∨ a = a, a ∧ a = a

• Commutative laws: a ∨ b = b ∨ a, a ∧ b = b ∧ a

• Associative laws: a ∨ (b ∨ c) = (a ∨ b) ∨ c, a ∧ (b ∧ c) = (a ∧ b) ∧ c
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• Absorption laws: a ∨ (a ∧ b) = a, a ∧ (a ∨ b) = a

It turns out that the idempotency laws can be deduced from absorption
and thus need not be stated separately.

Bounded lattices include neutral elements 0 and 1 for the meet and join
operations in the above definition.

Connection between both definitions
Obviously, an order theoretic lattice gives rise to two binary operations

∨and ∧. It now can be seen very easily that this operation really makes (L,∨,∧)
a lattice in the algebraic sense. More surprisingly the converse of this result
is also true: consider any algebraically defined lattice (M,∨,∧). Now define a
partial order ≤ on M by setting

x ≤ y iff x = x ∧ y
or, equivalently,
x ≤ y iff y = x ∨ y
for all elements x and y in M. The above laws for absorption ensure that

both definitions are indeed equivalent. An easy check shows that the relation
≤ introduced in this way defines a partial ordering within which binary meets
and joins are given through the original operations ∨and ∧. Conversely, the
order induced by the algebraically defined lattice (L,∨,∧) that was derived
from the order theoretic formulation above coincides with the original ordering
of L.

Hence, the two definitions can be used in an entirely interchangeable way,
depending on which of them appears to be more convenient for a particular
purpose.

Examples

• For any set A, the collection of all finite subsets of A (including the empty
set) can be ordered via subset inclusion to obtain a lattice. The lattice
operations are intersection (meet) and union (join) of sets, respectively.
This lattice has the empty set as least element, but it will only contain
a greatest element if A itself is finite. So it is not a bounded lattice in
general.

• The natural numbers in their common order are a lattice, the lattice
operations given by the min and max operations. The least element of
this lattice is 0, but no greatest element exists.

• Any complete lattice (also see below) is a (rather specific) bounded lat-
tice. A broad range of practically relevant examples belongs to this class.

• The set of compact elements of an arithmetic complete lattice is a lattice
with a least element, where the lattice operations are given by restricting
the respective operations of the arithmetic lattice. This is the specific
property which distinguishes arithmetic lattices from algebraic lattices,
for which the compacts do only form a join-semilattice. Both of these
classes of complete lattices are studied in domain theory.
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Further examples are given for each of the additional properties that are
discussed below.

Morphisms of lattices
The appropriate notion of a morphism between two lattices can easily be

derived from the algebraic definition above: given two lattices (L,∨,∧) and
(M,∪,∩), a homomorphism of lattices is a function f : L // M with the
properties that

• f(x ∨ y) = f(x) ∪ f(y), and

• f(x ∧ y) = f(x) ∩ f(y).

In the order-theoretical formulation, these conditions just state that a ho-
momorphism of lattices is a function that preserves binary meets and joins. For
bounded lattices, preservation of least and greatest elements is just preservation
of join and meet of the empty set.

Note that any homomorphism of lattices is necessarily monotone with re-
spect to the associated ordering relation. For an explanation see the article on
preservation of limits. The converse is of course not true: monotonicity does
by no means imply the required preservation properties.

Using the standard definition of isomorphisms as invertible morphisms, one
finds that an isomorphism of lattices is exactly a bijective lattice homomor-
phism. Lattices and their homomorphisms obviously form a category.

Properties of lattices
The definitions above already introduced the simple condition of being a

bounded lattice. A number of other important properties, many of which lead
to interesting special classes of lattices, will be introduced below.

B.6.4 Full subcategories of equationally defined lattices

Complete Lattices Definition B.28: A lattice is complete provided all
of its subsets has both a least upper bound and a greatest lower bound.

Distributive Lattices Since any lattice comes with two binary operations,
it is natural to consider distributivity laws among them.

Definition B.29: A lattice (L,∨,∧) is distributive, provided x, y and z in
L implies

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

Surprisingly, this condition turns to be equivalent to its dual statement:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
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Modular Lattices Distributivity is too strong a condition for certain appli-
cations. A strictly weaker but still useful property is modularity.

Definition B.30: A lattice (L,∨,∧) is modular provided x, y, and z in L
implies

x ∨ (y ∧ (x ∨ z)) = (x ∨ y) ∧ (x ∨ z)
Another equivalent statement of this condition is as follows: if x ≤ z then

for all y
x ∨ (y ∧ z) = (x ∨ y) ∧ z

For example, the lattice of submodules of a module and the lattice of normal
subgroups of a group have this special property. Furthermore, every distribu-
tive lattice is indeed modular.

B.6.5 Boolean – the categories of Boolean algebras and
Boolean rings

There are two apparently quite different notions – Boolean rings and Boolean
algebras – that have been recognized as “equivalent” for a long time. For both
of these notions we have categories and the categories are naturally equivalent.

Definition B.31: A Boolean ring is a ring (cf. Section B.3.3 on Ring) in
which every element is idempotent, i.e., for every element b of a Boolean ring
B we have b2 = b.

The canonical example of a Boolean ring is Z2, the integers modulo 2.
The other basic example is the ring of subsets of a given set: For any set

X we have the set P(X) of all subsets of X (cf page 86.) Define the “sum” of
two elements of P(X) to be their symmetric difference (cf 187)), i.e., S + T =
(S − T ) ∪ (T − S) = (S ∪ T ) − (S ∩ T ) = {x : x ∈ S ∨ x ∈ T but not both}
and the product of two elements to be their intersection, i.e., S • T = S ∩ T .
In fact if X is a one element set, then

A Boolean algebra is a lattice (A,∧,∨) (considered as an algebraic struc-
ture) with the following four additional properties:

1. bounded below: ∃0 ∈ A ∀a ∈ A a ∨ 0 = a.

2. bounded above: ∃1 ∈ A ∀a ∈ A a ∧ 1 = a.

3. distributive law: ∀a, b, c ∈ A(a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c).

4. existence of complements: ∀a ∈ A ∃¬a ∈ A (a ∨ ¬a = 1 ∧ a ∧ ¬a = 0).

From these axioms, we find that the smallest element 0, the largest element 1,
and the complement ¬a of any element a are uniquely determined.

Like any lattice, a Boolean algebra (A,∧,∨) gives rise to a partially ordered
set (A,≤ ) by defining a ≤ b iff a = a∧ b (which is also equivalent to b = a∨ b).
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Equally well a Boolean algebra can be defined as distributive lattice (A,≤)
(considered as a partially ordered set) with least element 0 and greatest element
1, within which every element x has a complement ¬x such that x ∧ ¬x = 0
and x ∨ ¬x = 1.

Here ∧ and ∨ are used to denote the infimum (meet) and supremum (join)
of two elements. Again, if complements in the above sense exist, then they are
uniquely determined.

The algebraic and the order theoretic perspective as usual can be used in-
terchangeably and both are of great use to import results and concepts from
both universal algebra and order theory. In many practical examples an order-
ing relation, conjunction, disjunction, and negation are all naturally available,
so that it is straightforward to exploit this relationships.

Here are several other theorems valid in all Boolean algebras. For example,
for all elements a and b of a Boolean algebra, a ∧ 0 = 0 and a ∨ 1 = 1,
¬1 = 0 and ¬0 = 1, ¬¬a = a and that both de Morgan’s laws are valid, i.e.
¬(a ∧ b) = (¬a) ∨ (¬b) and ¬(a ∨ b) = (¬a) ∧ (¬b).

General insights from duality in order theory apply to Boolean algebras.
Especially, the order dual of every Boolean algebra, or, equivalently, the algebra
obtained by exchanging ∧ and ∨, is also a Boolean algebra. Thus the dual
version of the distributive law, (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c) also holds true.
In general, any law valid for Boolean algebras can be transformed into another
valid dual law by exchanging 0 with 1, ∧ with ∨, and ≤ with ≥.

A homomorphism between the Boolean algebras A and B is a function
f : A // B such that ∀a ∈ A ∀b ∈ A , f(a ∧ b) = f(a) ∧ f(b) and f(a ∨ b) =
f(a) ∨ f(b) and f(0) = 0, f(1) = 1.

It then follows that f(¬a) = ¬f(a) for all a ∈ A as well. The class of all
Boolean algebras, together with this notion of morphism, forms a category. An
isomorphism from A to B is a homomorphism from A to B which is bijective.
The inverse of an isomorphism is also an isomorphism, and we call the two
Boolean algebras A and B isomorphic. From the standpoint of Boolean algebra
theory, they cannot be distinguished; they only differ in the notation of their
elements.

Boolean rings, ideals and filters
Every Boolean algebra (A,∧,∨) gives rise to a ring (A,+, ∗) by defining

a+b = (a∧¬b)∨(b∧¬a) (this operation is called ”symmetric difference” in the
case of sets and XOR in the case of logic) and a∗b = a∧b. The zero element of
this ring coincides with the 0 of the Boolean algebra; the multiplicative identity
element of the ring is the 1 of the Boolean algebra. This ring has the property
that a ∗ a = a for all a ∈ A; rings with this property are called Boolean rings.

Conversely, if a Boolean ring A is given, we can turn it into a Boolean
algebra by defining x ∨ y = x + y − xy and x ∧ y = xy. Since these two
operations are inverses of each other, we can say that every Boolean ring arises
from a Boolean algebra, and vice versa. Furthermore, a map f : A // B
is a homomorphism of Boolean algebras if and only if it is a homomorphism
of Boolean rings. The categories of Boolean rings and Boolean algebras are
equivalent.
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An ideal of the Boolean algebra A is a subset I such that for all x, y ∈ I
we have x ∧ y ∈ I and for all a ∈ A we have a ∧ x ∈ I. This notion of ideal
coincides with the notion of ring ideal in the Boolean ring A. An ideal I of A
is called prime if I 6= A and if a∧b ∈ I always implies a ∈ I or b ∈ I. An ideal
I of A is called maximal if I 6= A and if the only ideal properly containing I
is A itself. These notions coincide with ring theoretic ones of prime ideal and
maximal ideal in the Boolean ring A.

The dual of an ideal is a filter. A filter of the Boolean algebra A is a subset
p such that for all x, y ∈ p we have x∧ y ∈ p and for all a ∈ A if a∨x = a then
a ∈ p.

A Boolean algebra (Boolean algebra) is a set A together with binary op-
erations + and × and a unary operation -, and elements 0, 1 of A such that
the following laws hold: commutative and associative laws for addition and
multiplication, distributive laws both for multiplication over addition and for
addition over multiplication, and the following special laws:

• x+ (x× y) = x

• x× (x+ y) = x

• x+ (−x) = 1

• x× (−x) = 0

These laws are better understood in terms of the basic example of a Boolean
algebra, consisting of a collection A of subsets of a set X closed under the
operations of union, intersection, complementation with respect to X, with
members ∅ and X. Many elementary laws follow from these axioms, keeping
in mind this example for motivation. Any Boolean algebra has a natural par-
tial order ≤ defined upon it by saying that x ≤ y if and only if x + y = y.
This corresponds in our main example to ⊆. Of special importance is the two-
element Boolean algebra, formed by taking the set X to have just one element.
An important elementary result is that an equation holds in all Boolean al-
gebras if and only if it holds in the two-element Boolean algebra. Next, we
define x ⊕ y = (x − y) + (y − x). Then A together with ⊕ and ×, along
with 0 and 1, forms a ring with identity in which every element is idempotent.
Conversely, given such a ring, with addition ⊕ and multiplication ×, define
x + y = x⊕ y ⊕ (x× y) and −x = 1⊕ x. This makes the ring into a Boolean
algebra. These two processes are inverses of one another, and show that the
theory of Boolean algebras and of rings with identity in which every element
is idempotent are definitionally equivalent. This puts the theory of Boolean
algebras into a standard object of research in algebra.

An atom in a Boolean algebra is a nonzero element a such that there is
no element b with 0 < b < a. A Boolean algebra is atomic if every nonzero
element of the Boolean algebra is above an atom. Finite Boolean algebras are
atomic, but so are many infinite Boolean algebras. Under the partial order ≤
above, x+y is the least upper bound of x and y, and x×y is the greatest lower
bound of x and y. We can generalize this: ΣX is the least upper bound of a
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set X of elements, and ΠX is the greatest lower bound of a set X of elements.
These do not exist for all sets in all Boolean algebras; if they do always exist,
the Boolean algebra is said to be complete.

2. The elementary algebraic theory
Several algebraic constructions have obvious definitions and simple prop-

erties for Boolean algebras: subalgebras, homomorphisms, isomorphisms, and
direct products (even of infinitely many algebras). Some other standard al-
gebraic constructions are more peculiar to Boolean algebras. An ideal in
a Boolean algebra is a subset I closed under +, with 0 as a member, and
such that if a ≤ b ∈ I, then also a ∈ I. Although not immediately obvi-
ous, this is the same as the ring-theoretic concept. There is a dual notion
of a filter (with no counterpart in rings in general). A filter is a subset F
closed under × , having 1 as a member, and such that if a ≥ b ∈ F , then
also a ∈ F . An ultrafilter on A is a filter F with the following properties:
0 /∈ F , and for any a ∈ A, either a ∈ F or −a ∈ F . For any a ∈ A, let
S(a) = {F : F is an ultrafilter on A∧ a ∈ F}. Then S is an isomorphism onto
a Boolean algebra of subsets of the setX of all ultrafilters on A. This establishes
the basic Stone representation theorem, and clarifies the origin of Boolean alge-
bras as concrete algebras of sets. Moreover, the sets S(a) can be declared to be
a base for a topology on X, and this turns X into a totally disconnected com-
pact Hausdorff space. This establishes a one-to-one correspondence between
the class of Boolean algebras and the class of such spaces. As a consequence,
used very much in the theory of Boolean algebras, many topological theorems
and concepts have consequences for Boolean algebras. If x is an element of
a Boolean algebra, we let 0x = −x and 1x = x. If (x(0), . . . , x(m − 1)) is a
finite sequence of elements of a Boolean algebra A, then every element of the
subalgebra of A generated by {x(0), . . . , x(m− 1)} can be written as a sum of
monomials e(0)x(0) × · · · × e(m − 1)x(m − 1) for e in some set of functions
mapping m = {0, . . . ,m − 1} into 2 = {0, 1}. This is an algebraic expression
of the disjunctive normal form theorem of sentential logic. A function f from
a set X of generators of a Boolean algebra A into a Boolean algebra B can be
extended to a homomorphism if and only if e(0)x(0) . . . e(m− 1)x(m− 1) = 0
always implies that e(0)f(x(0)) . . . e(m− 1)f(x(m− 1)) = 0. This is Sikorski’s
extension criterion. Every Boolean algebra A can be embedded in a complete
Boolean algebra B in such a way that every element of B is the least upper
bound of a set of elements of A. B is unique up to A-isomorphism, and is
called the completion of A. If f is a homomorphism from a Boolean algebra
A into a complete Boolean algebra B, and if A is a subalgebra of C, then f
can be extended to a homomorphism of C into B. This is Sikorski’s extension
theorem. Another general algebraic notion which applies to Boolean algebras
is the notion of a free algebra. This can be concretely constructed for Boolean
algebras. Namely, the free Boolean algebra on K is the Boolean algebra of
closed-open subsets of the two element discrete space raised to the K power.
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B.6.5.1 Boolean – the category of complete Boolean algebras

B.7 Ordered Algebraic Structures

B.7.1 OrderedMagma – Ordered Magmas

An ordered magma is both a magma and a poset where the order is respected
by the binary operation of the magma.

Definition B.32: An ordered magma is a magma (M, ·) which also has a
partial order ≤ with the property:

∀m,n, p ∈M [m ≤ n⇒ mp ≤ np ∧ pm ≤ pn]

The basic example of an ordered magma is the additive magma of natural
numbers with the usual ordering. In this case the defining property connecting
the order with addition reads:

∀m,n, p ∈ N [m ≤ n⇒ m+ p ≤ n+ p ∧ p+m ≤ p+ n]

The multiplicative magma of natural numbers with the usual ordering is
another quite different ordered magma where we have the familiar property:

∀m,n, p ∈ N [m ≤ n⇒ mp ≤ np ∧ pm ≤ pn]

B.7.2 OrderedMonoid – Ordered Monoids

Definition B.33: An ordered monoid is a monoid (M, 1, ·) which also has
a partial order ≤ with the property:

∀m,n, p ∈M [m ≤ n⇒ mp ≤ np ∧ pm ≤ pn]

The basic example of an ordered monoid is the additive monoid of natural
numbers with the usual ordering. In this case the defining property connecting
the order with addition reads:

∀m,n, p ∈ N [m ≤ n⇒ m+ p ≤ n+ p ∧ p+m ≤ p+ n]

The multiplicative monoid of natural numbers with the usual ordering is
another quite different ordered monoid.

B.7.3 OrderedGroup – Ordered Groups

Definition B.34: An ordered group is an ordered monoid in which every
element has an inverse.
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By contrast with an ordered monoid the order relation can be reduced to
comparison with the identity: g ≤ h iff 1 ≤ g−1h which is also equivalent to
1 ≤ hg−1. This can be carried a step further and the order specified in terms of
an invariant subset. When G is an ordered group, define G+ = {g ∈ G : 1 ≤ g}.
Then G+ has three characteristic properties:

(i) 1 ∈ G+.

(ii) g, h ∈ G+ ⇒ gh ∈ G+.

(iii) ∀g ∈ G [h ∈ G+ ⇒ g−1hg ∈ G+.

In the reverse direction, if G+ is a subset of a group G and has the above three
properties, then defining g ≤ h iff g−1h ∈ G+ makes ≤ a partial order on G in
such a way that it is an ordered group.

The basic example of an ordered group is the additive group of integers
with the usual ordering.

B.7.4 OrderedRig – Ordered Rigs

Definition B.35: An ordered rig is a rig R together with a partial order,
≤, which is an ordered monoid under addition and ∀r, s, t ∈ R, r ≤ s ∧ 0 ≤
t⇒ rt ≤ st ∧ tr ≤ ts.

Examples

• The most familiar example of an ordered rig is N with all the usual
structure.

• Every rig is an ordered rig for the trivial partial order where a ≤ b iff
a = b.

• If R is any rig and X is any non-empty set, then the set RX of all
functions from X to R is a rig (see Section B.3.1) and is an ordered rig
for the partial order f ≤ g ⇐⇒ ∀x ∈ X, f(x) ≤ g(x).

Definition B.36: A homomorphism of ordered rigs is a rig homomor-
phism that is also a monotone function between the two partially ordered sets.

Definition B.37: The category OrderedRig of ordered rigs has as objects
all ordered rigs and as morphisms the homomorphisms between them.

The identity function on an ordered rig is a homomorphism of ordered rigs,
and the function composition of two homomorphisms of ordered rigs is again a
homomorphism of ordered rigs, so it is a now familiar formality to verify that
OrderedRig is indeed a category.
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Proposition B.42 For every ordered commutative rig R there is an ordered
commutative ring S and a universal ordered rig homomorphism i : R // S,
i.e., if h : R // T is an ordered rig homomorphism to an ordered ring T ,
then there is a unique ordered ring homomorphism h : S // T with hi = h

Proof: There is an easy construction based on the perception that the ele-
ments of S are differences of elements of R.

Let S′ = R × R and define the relation on S′ by (r1, r2) (r′1, r
′
2) iff there

is some r′′ ∈ R such that

B.7.5 OrderedRing – Ordered Rings

Throughout this section only non-zero rings will be considered. This is the
same as saying that 0 6= 1 in all of these rings.

Definition B.38: A compatible order on a ring R is a subset R+ of R
satisfying: ∀r, s ∈ R ,

(i) r, s ∈ R+ ⇒ r + s ∈ R+ ∧ rs ∈ R+.

(ii) (Trichotomy Law) If r 6= 0, then either r ∈ R+ or −r ∈ R+, but not
both.

An ordered ring is a non-zero ring together with a compatible order.

B.8 Graphs

B.8.1 Graph – graphs

The category Graph has as objects all graphs and graph homomorphisms
between them.

Definition B.39: A graph is a pair of sets G = (V , E) with each element
of E a 2-element subset of V . The elements of V are called the verticesof G,
and the elements of E are called the edgesof G.

A good introductory treatment of graph theory is Diestel [14]. Of course the
category of graphs must have morphisms, but like most texts on graph theory
Diesel makes no mention of graph homomorphism (though isomorphisms and
colorings appear), and graph are assumed finite. Graph homomorphisms have
actually been studied for 50 years or so, but there are only a couple of books
that discuss them in any depth, for example see Hell and Nešetřil [31] which
is however almost exclusively about finite graphs.

Definition B.40:
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B.8.2 Digraph – directed graphs

The category Digraph has as objects all directed graphs (commonly called
digraphs) and digraph homomorphisms between them.

Definition B.41:

Definition B.42:

B.9 Topology

B.9.1 Metric – metric spaces

The category Metric has as objects all metric spaces and as morphisms all
contractions between them. [RIGHT CHOICE?]

B.9.2 Uniform – uniform spaces

The category Uniform has as objects all uniform spaces and as morphisms all
uniformly continuous functions between them.

B.9.3 Top – topological spaces

The category Top has as objects all topological spaces and as morphisms all
continuous functions between them.

B.9.4 Comp – compact Hausdorff spaces

The category Comp has as objects all compact Hausdoff topological spaces
and as morphisms all continuous functions between them.

B.9.5 Kspace – K-spaces

The category Kspace has as objects all compactly generated Hausdorff topo-
logical spaces (K-spaces) and as morphisms all continuous functions between
them.

B.9.6 Homotopy – the homotopy category of topological
spaces

Homotopy is the quotient category of Top where the equivalence relation
on continuous functions is homotopy, i.e., for f0, f1 : X // Y , f0 ' f1 iff
there exists a continuous functions (a “homotopy”) F : X × [0, 1] // Y with
F (x, 0) = f0(x) and F (x, 1) = f1(x) for all x ∈ X.
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B.9.7 HSpace – H-Spaces

HSpace are

B.10 Simplicial Categories

B.10.1 Simplicial – simplicial sets

The category of simplicial sets has as objects all simplicial sets and as mor-
phisms ...

Let C be a small category. It is easy to define the sets N(C )k for small
k, which leads to the general definition. In particular, there is a 0-simplex of
N(C ) for each object of C . There is a 1-simplex for each morphism f : x

// y in C . Now suppose that f : x // y and g : y // z are morphisms in
C . Then we also have their composition gf : x // z.

A 2-simplex.

A

B
f

??��������
A

C

gf

��????????

The diagram suggests our course of action: add a 2-simplex for this com-
mutative triangle. Every 2-simplex of N(C ) comes from a pair of composable
morphisms in this way. Note that the addition of these 2-simplices does not
erase or otherwise disregard morphisms obtained by composition, it merely
remembers that that is how they arise.

In general, N(C )k consists of the k-tuples of composable morphisms
A0

// A1
// A2

// · · · // Ak−1
// Ak

of C . To complete the definition of N(C ) as a simplicial set, we must also
specify the face and degeneracy maps. These are also provided to us by the
structure of C as a category. The face maps

di : N(C )k // N(C )k−1

are given by composition of morphisms at the i-th object. This means that
di sends the k-tuple

A0
// A1

// A2
// · · · // Ak−1

// Ak
to the (k-1)-tuple
A0

// · · ·Ai−1
// Ai+1

// · · · // Ak .
That is, the map di composes the morphisms Ai−1

// Ai and Ai //

Ai+1 into the morphism Ai−1
// Ai+1, yielding a (k-1)-tuple for every k-

tuple.
Similarly, the degeneracy maps
si : N(C )k // N(C )k+1
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are given by inserting an identity morphism at the object Ai.
Recall that simplicial sets may also be regarded as functors ∆op // Set,

where ∆ is the category of totally ordered finite sets and order-preserving
morphisms. Every partially ordered set P yields a (small) category i(P) with
objects the elements of P and with a unique morphism from p to q whenever
p < q in P. We thus obtain a functor i from the category ∆ to the category
of small categories. We can now describe the nerve of the category C as the
functor ∆op // Set

N(C )(?) = Fun(i(?),C ).
This description of the nerve makes functoriality quite transparent; for ex-

ample, a functor between small categories C and D induces a map of simplicial
sets N(C ) // N(D). Moreover a natural transformation between two such
functors induces a homotopy between the induced maps. This observation can
be regarded as the beginning of one of the principles of higher category theory.

The nerve of an internal category is discussed by Johnstone [33, B2.3.2]

B.10.2 Kan – the homotopy category of Kan complexes

B.11 Differential, Graded and Filtered Algebraic
Gadgets

B.11.1 Graded Category

Definition B.43: Let I be a category. An I-graded category is a category
C together with a functor G : C // I.

For each object I in I, G(I) is called the I-component of G.

B.11.2 GradedModule

Definition B.44: This is another family of categories.

B.11.3 GradedRing

Definition B.45: This is another family of categories. If N is any monoid,
an N -graded ring R• consists of a family {Rn : n ∈ N} of Abelian groups
together with a multiplication Rn ×Rm // Rm+n denoted in the usual way
as (r, s) 7→ rs satisfying:

(i) r(s + s’) = rs + rs’; (r + r’)s = rs + r’s.

(ii) r(st) = (rs)t
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Definition B.46: The ring associated to an M -graded ring R•

B.11.4 ChainComplex– Chain complexes

Definition B.47: A chain complex C• is a Z-graded module together with
an endomorphism of degree -1 such that d ◦ d = 0.

The endomorphism d is called the boundary map of the chain complex.

Definition B.48: A chain map or morphism of chain complexes is a
0-degree morphism of the graded modules that commutes with the boundary
map.

In detail a chain map f• : A• // B• is a family of homomorphisms fn : An
// Bn such that fndn = dnfn

Definition B.49: A chain complex A• is bounded below if there is an
integer N such that An = 0 for all n < N . It is bounded above if there is
an integer M such that An = 0 for all n > M . It is bounded iff it is bounded
above and below.

Definition B.50: The cycles of a chain complex A• is the graded submodule
Ker(d) which has Ker(dn) ⊆ An in degree n.

Definition B.51: The boundaries of a chain complex A• is the graded
submodule Im(d) which has Im(dn+1) ⊆ An in degree n.

Because d ◦ d = 0, the boundaries are all cycles.

Definition B.52: A chain complex is acyclic or exact iff every cycle is a
boundary, i.e., for every integer n we have Ker(dn) = Im(dn+1).

Definition B.53: The homology of a chain complex A• is the graded module
H•(A•) where Hn(A•) = Ker(dn)/Im(dn+1).

A• is acyclic iff H•(A•) = 0, i.e., Hn(A•) = 0 in every degree n.
If f• : A• // B• is a chain map, then f(Ker(dn)) ⊆ Ker(dn), and

f(Im(dn+1)) ⊆ Im(dn+1), so there is an induced homomorphism H(f•) :
H(A•) // H(B•).

Definition B.54: When f• and g• are two chain maps between the same chain
complexes A• and B•, a chain homotopy between f• and g• is homomorphism
H• : A• // B• of degree 1 such that f − g = Dd+ dD
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Proposition B.43 If f• and g• are chain homotopic chain maps, then H(f•) =
H(g•).

B.12 Topological Algebras

Most of the structures studied in Algebra have another interesting variety where
the operations live on topological spaces and are continuous, while the homo-
morphisms are also required to be continuous. A variety of those categories
are cataloged in this section.

B.12.1 TopGroup – topological groups

B.12.2 TopAb – Abelian topological groups

B.12.3 TopVect – topological vector spaces

B.12.4 HausdorffTopVect – Hausdorff topological vector
spaces

B.13 Analysis

B.13.1 Banach – Banach spaces

The category Banach has as objects all complex Banach spaces, and as mor-
phisms all bounded linear transformations between them.

B.13.2 FDBanach – finite dimensional Banach spaces

The category FDBanach has as objects all finite dimensional complex Banach
spaces, and as morphisms all bounded linear transformations between them.
The finite dimensional Banach spaces are sufficiently special and well studied,
and the category sufficiently interesting that this category deserves its own
study.

B.13.3 BanachAlgebra

Definition B.55: A Banach algebra A is an algebra over the real or complex
numbers which is also a Banach space such that for all a and b in A we have
||ab|| ≤ ||a||||b||.

B.13.3.1 C*-algebra

B.13.4 Hilbert – Hilbert spaces

The category Hilbert has as objects all complex Hilbert spaces, and as mor-
phisms all bounded linear transformations between them.
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Definition B.56: An inner product on a real or complex vector space is a
positive-definite nondegenerate symmetric sequilinear form.

A sesquilinear form on a complex vector space V is a map < •, • >: V V toC
such that for all u, v, x, y ∈ V and all a ∈ C

• < u+ v, x+ y >=< u, x > + < u, y > + < v, x > + < v, y >.

• < au, x >= a < u, x >.

• < u, ax >= a < u, x >

This means that for a fixed v ∈ V the map x 7→ < v, x > is a linear
functional on V (i.e. an element of the dual space V ∗). Likewise, the map
x 7→ < x, v > is a conjugate-linear functional on V .

The form is symmetric when ∀x, y ∈ V < x, y >= < y, x >. This condition
implies that < x, x >∈ R for all x ∈ V , because < x, x >= < x, x >.

The form is nondegenerate provided the induced map from V to the dual
space V ′ is an isomorphism. This means that ∀y ∈ V ,< x, y >= 0 iff x = 0,
and if φ : V // C is a continuous linear functional, then there exists v ∈ V
so that φ =< •, v >.

Finally the form is positive-definite provided ∀x ∈ V ,< x, x >≥ 0. (This
makes sense because < x, x >∈ R for all x ∈ V .)

Examples
The simplest example of a real inner product space is the space of real

numbers with the usual multiplication of numbers as the inner product.
The straight forward generalization of this is to any Euclidean space Rn

with the dot product

< (x1, · · · , xn), (y1, · · · , yn) >= Σni=1xiyi = x1y1 + · · · + xnyn

as the inner product.
The general form of an inner product on Cn is given by:

< x,y >= x ∗My

with M any positive-definite matrix, and x∗ the conjugate transpose of x.
¡x,y¿

B.13.5 FDHilb – finite dimensional Hilbert spaces

B.14 Differential Geometry

B.14.1 Manifold– smooth manifolds

The category Manifold has as objects all real finite dimensional smooth,
i.e., C∞, manifolds, and as morphisms all smooth functions between them.
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B.14.2 LieGroup– Lie groups

The category LieGroup is the category of group objects in the category
Manifold. Concretely it has as objects all real finite dimensional Lie groups,
and as morphisms all smooth homomorphisms between them.

B.15 Algebraic and Analytic Geometry

B.15.1 Sheaf

Definition B.57: Let (X, T ) be a topological space, and C a category. A
presheaf on X with values in C is a contravariant functor from T to C .

Explicitly a presheaf F on the topological space (X, T ) has for each open
set U ⊆ X an object F (U) of C , and for each inclusion of open sets V ⊆ U
a morphism ρU,V : F (U) // F (V ) satisfying the two conditions: (i) ρU,U =
1F (U) and (ii) for W ⊆ V ⊆ U , ρU,W = ρV,W ρU,V .

When U is an open subset of X and F is a presheaf on X, then F (U) is
called the (object of) sections of F over U , and the morphism ρU,V is called
“restriction from U to V ”. This terminology comes from the following canonical
example of a presheaf.

Let π : E // X be any function. For each open set U of X, take F (U)
to be the sections of π over U , i.e., F (U) = {s : U // E : πs = 1U} and for
open sets V ⊆ U ⊆ X take ρU,V (s) = s|V . That F is a presheaf is immediate.
In this situation particularly F (U) is sometimes written as Γ(U,F ), and the
elements of F (X) are called global sections of F .

ok, sheaves are in fact defined as coming

B.15.2 RingedSpace

Definition B.58: A ringed space is a topological space together with a sheaf
of commutative rings on the space. The sheaf is called the structure sheaf
of the ringed space.

If X is the topological space in a ringed space, the structure sheaf is com-
monly named OX and the ringed space is written as (X,OX).

B.15.3 Scheme – algebraic schemes

Schemes are the fundamental objects of modern algebraic geometry. The basic
schemes are the affine schemes.
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B.16 Unusual Categories

B.17 Cat – small categories

B.18 Groupoid – groupoids

B.19 Structures as Categories

B.19.1 Every set is a category

If S is any set, there is the category that has as objects the elements of S and
as morphisms the elements of S with every morphism the identity morphism
on itself! Inspired by this observation we say that discrete categoriesare
those which have only identity morphisms. So a small discrete category is one
that comes from a set as above. Of course if the category is not small, then it
doesn’t come from a set, but it comes from a class in the same way.

Even more a functor between small discrete categories is really just a func-
tion between the objects of the two categories. So the slogan is “sets are small
discrete categories”.

B.19.2 Every monoid is a category

Recall that a monoid consists of a set M , an associative binary operation on
M (conventionally written 〈m,n〉 // mn), and an identity element, 1, for
the binary operation. But this is really the same as the definition of a small
category with one object.

B.19.3 Monoid of Strings

An interesting example of a monoid is the monoid of strings over a given
alphabet. If A is any set, the alphabet, the monoid of string, A∗ consists of all
finite sequences of elements of A, including the empty string. The “product”
in A∗ is concatenation – if a1a2 · · · an and b1 · · · bm are two such strings, their
product is a1a2 · · · anb1 · · · bm. This product is clearly associative, and the
empty string is the identity.

As with any monoid, this may be considered a category with exactly one
object. As a category we can ask, does it have products?

B.19.4 Every preorder is a category

If 〈P ,�〉 is a preorder, it can equally well be considered as a small category
with objects the elements of Pwhile there is a unique morphism from ptoq ∈ P
iff p � q. Note for any two objects p and q there is either exactly one morphism
from p to q (if p � q), or there are no morphisms from p to q (if p � q is false.)

Composition is what it must be: if p // q // r, then p � q � r and so
p � r and that gives the composition. The identity morphisms arise because
p � p.
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Exercise B.1. Suppose P is a small category with the property that for any
two objects A and B of P there is at most one morphism from A to B. Define
a relation on the set P of objects of P by A � B iff there is a morphism from
A to B. Demonstrate that P together with this relation is a preorder.

B.19.5 Every topology is a category

Recall that a topology on a set X is a collection, T, of subsets of X subject to

1. ∅, X ∈ T

2. If X1, · · · , Xn is any finite collection of elements of T, then X1∩· · · ∩Xn ∈
T

3. If S ⊆ T, then
⋃
S∈S S ∈ T

The objects of the category T are the elements of T, and a morphism X1
// X2 means X2 ⊇ X1.

This is lumped with posets exactly because we are really just considering a
topology as a poset with X1 � X2 iff X2 ⊇ X1.

We record this special case exactly because of the connection with sheaves,
Grothendieck topologies and topoi as discussed at length in Chapter IX

B.20 Little Categories

B.20.1 0 – the empty category

0 is the category with no objects and no morphisms. It is interesting and
useful much as the empty set. It is the “initial category”, i.e., there is a unique
(empty) functor from 0 to any category.

The discussion of special morphisms and special objects in 0 is left as an
exercise for those with metaphysical leanings.

B.20.2 1 – the one morphism category

1 is the category with one object and one morphism, the identity morphism
on the one object, represented by the following diagram.

∗

1

∗
��

1 is the “final category”, i.e., there is a unique functor from any category
to 1 – it takes each object to the unique object, and each morphism to the
unique morphism.

Of course the one morphism in 1 is an isomorphism, and so is monic and
epic, has a retract and a section. Products and sums exists in 1 with all objects
being, of course, the one object and all morphisms being the one morphism.
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B.20.3 2 – the arrow category

The category 2 is illustrated by

0
$$ ! // 1 dd

where the two circular arrows are the identity maps. Note that this category
has an initial object, 0, a distinct final object, 1, the required morphisms and
nothing else. This category has both sums and products: as noted before (I.71)
0 + 0 = 0, 0 + 1 = 1, 0× 1 = 0, and 1× 1 = 1.

Exercise B.2. Prove that 1 + 1 = 1 and 0× 0 = 0 in the category 2.

B.20.4 3 – the commutative triangle category

The category 3 is illustrated by

∗
��

��???????

0
$$

??�������
// 1 dd

Note that this category has an initial object, 0, a distinct final object, 1,
and one other object which is not isomorphic to either of those. It has the
morphisms required based on those objects, and nothing more.

B.20.5 The parallel arrows category

The category ���� has objects 0 and 1 with their respective identity morphisms,

two distinct morphisms from 0 to 1, and nothing else. The interest of this
category is nothing more nor less than being the domain for functors whose
limits are equalizers.
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C.1 Solutions for Chapter I

Solution for I.1 on p. 10: For the diagram

∗
��

��???????

0
$$

??�������
// 1 dd

the problem is to show there is a unique fashion in which this is a category
with three objects and five morphisms.

The first thing to note is that if this is a category, then there is at most one
morphism between any two objects. So in particular the arrow from each object
to itself must be the identity morphism. This in turn specifies the composition
of those three morphisms with arrows that start or end at the corresponding
node. There are a total of 9 such compositions, three for each node, and they
are all consistent with this being a category. Moreover there are no other
definitions possible.

There is only one other composition to be defined, that of 0 // ∗ // 1.
Again there is only one morphism from 0 to 1, so that is what the composition
must be. Thus all the definition of composition is forced by the uniqueness of
the morphisms between objects.

At this stage we see that there is a composition defined respecting the
domains and codomains, and there is only one possible way it can be defined.
Moreover there are identity morphisms for each object, they are identities for
the composition operation and associativity does trivially check whenever at
least two of the three morphisms is an identity morphism.

The last detail that must be checked is associativity of compositions in-
volving the composition 0 // ∗ // 1. But the third morphism is any
such composition must be an identity, so all such triple compositions are just
0 // 1 and so are equal.

Solution for I.2 on p. 10: The arrows in the following diagram cannot be
all the distinct morphism of a category with two objects and five morphisms.

0
$$

1 dd0 1

a

��
0 1oo c0 1

b

??

If this did represent a category, the unique arrows that loop around to 0 and
1 would have to be the identities on the objects 0 and 1. That determines the
compositions of those two with the remaining three, a, b and c. So far there
are clearly no conflicts. Now ca and cb must be morphisms from 0 to itself and
so must be the unique morphism, namely the identity morphism on the object
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0. Similarly ac and ab must both be equal to the identity morphism on the
object 1. But associativity now presents a contradiction:

a = a1
= a(ca)
= a(cb)
= (ac)b
= 1b
= b

while our basic assumption is that a and b are not equal.

Solution for I.3 on p. 10: To verify that there is a subcategory E of Set
consisting of all and only the surjective functions as morphisms, first note that
every identity functions is a surjection and so in E . Also if f : A // B and
g : B // C are surjections, then so if gf : for each c ∈ C there exists b ∈ B
with g(b) = c because g is surjective, and there exists a ∈ A with f(a) = b
because f is surjective. Combining these, for each c ∈ C there exists a ∈ A
with gf(a) = g(b) = c proving that gf is surjective.

There is a multitude of examples showing that E is not full, but one par-
ticularly interesting sample are the empty functions ∅ : ∅ // X where X
is any non-empty set. The function ∅ is not surjective in this case, i.e., not
in E , demonstrating that E is not full. But more, peering ahead a bit (see
Section I.3.2,) this shows that E does not have an initial object.

Solution for I.4 on p. 12: If f : A // B is an isomorphism, then for
every object C the induced function f∗ : Hom(C,A) // Hom(C,B) is a
bijection with inverse f−1

∗ . For given any g ∈ Hom(C,A), f∗(g) = fg, so
f−1
∗ f∗(g) = f−1

∗ f∗g = g and for any h ∈ Hom(C,B), f∗f−1
∗ (h) = f∗f

−1
∗ h = h

Similarly for every object C f∗ : Hom(B,C) // Hom(A,C) is a bijec-
tion with inverse (f−1)∗. For given any h ∈ Hom(B,C), f∗(h) = hf , so
(f−1)∗f∗(h) = hf∗(f−1)∗ = h and for any g ∈ Hom(A,C), f∗(f−1)∗(h) =
h(f−1)∗f∗ = h.

Solution for I.5 on p. 12: Here we want to show that if f : A // B is a
morphism where for every object C the induced functions

f∗ : Hom(C,A) // Hom(C,B)

and
f∗ : Hom(B,C) // Hom(A,C)

are bijections, then f is an isomorphism.
This converse to the last exercise is most neatly done in three pieces. First

note that if f : A // B has f∗ : Hom(B,A) // Hom(B,B) surjective, then
there is a g in Hom(B,A) with f∗(g) = 1B , i.e., fg = 1B . (See definition I.17
for more context.)
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Second note that if f∗ : Hom(B,A) // Hom(A,A) is surjective, then
there is an h ∈ Hom(B,A) with f∗(h) = 1A, i.e., hf = 1A. (See definition I.18
for more context.)

Finally note that g = 1Ag = (hf)g = h(fg) = h1B = h, so we have an
inverse for f .

Solution for I.6 on p. 12: When f : A // B is an isomorphism in C we
define a function C (A,A) // C (B,B) by e ∈ C (A,A) 7→ fef−1 ∈ C (B,B).
We will show that this function is a monoid isomorphism.

Clearly f1Af−1 = 1B and fee′f−1 = (fef−1)(fe′f−1), so the function is a
monoid homomorphism. And it is an isomorphism because it has the inverse
homomorphism given by g ∈ C (B,B) maps to f−1gf ∈ C (A,A).

Solution for I.7 on p. 13: For any morphism f : A // B we will verify
the following:
(a.) f has a section iff f∗ always has a section.
(b.) f has a retract iff f∗ always has a section.
(c.) f has a retract implies f∗ always has a retract.
(d.) f has a section implies f∗ always has a retract.

This exercise is really just an elaboration of exercise I.5 as you can easily
see by looking at the solution for that exercise.

(a.) f has a section means there is a morphism s : B // A so that fs = 1B .
But then s∗ : Hom(C,B) // Hom(C,A) is a section for f∗, for if h ∈
Hom(C,B), then f∗s∗(h) = fsh = 1Bh = h.

Conversely if f∗ has a section, then in particular f∗ : Hom(B,A) //

Hom(B,B) is surjective and so there is an element s of Hom(B,A) with
f∗(s) = 1B . But that is just another way of saying that fs = 1B , i.e., that
s is a section for f .

(b.) Similarly f has a retract when there is a morphism r : B // A so that
rf = 1A. But then r∗ : Hom(A,C) // Hom(B,C) is a section for f∗,
for if g ∈ Hom(A,C), then f∗r∗(g) = rfg = 1Ag = g.

Conversely if f∗ has a section, then in particular f∗ : Hom(B,A) //

Hom(A,A) is surjective and so there is an element r of Hom(B,A) with
f∗(r) = 1A. But that is just another way of saying that rf = 1A, i.e., that
r is a retract for f

I hope you noticed the great similarity between these two results. The
two proofs look almost the same, although the order of composition is
reversed. This is our first example of duality which is discussed formally
in Section II.1, but with many examples like this before then.

(c.) Now if f has a retract r, then r∗ : Hom(C,B) // Hom(C,A) is a retract
for f∗, for if k ∈ Hom(C,A), then r∗f∗(k) = rfk = 1Ak = k.
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(d.) Similarly if f has a section s, then s∗ : Hom(A,C) // Hom(B,C) is a
retract for f∗, for if j ∈ Hom(B,C), then s∗f∗(j) = jfs = j1B = j.

Note again the great similarity between these last two results. The two
proofs look almost the same, although the order of composition is reversed.
This is another example of duality.

Solution for I.8 on p. 13: This is just like the observation that in a monoid
every element that has a right inverse and a left inverse has an inverse because
they are equal: r = r1B = r(fs) = (rf)s = 1As = s.

Solution for I.9 on p. 13: It’s even more interesting to observe that for
functions between sets a function has a section exactly if it is surjective, while
a function has a retract exactly if it is injective. To see this note that if
f : X // Y has a section s : Y // X, then for each y ∈ Y , s(y) is an element
in X so that f(s(y)) = y, i.e., f is surjective. Conversely if f is surjective, then
for each y ∈ Y , f−1({y}) = {x|f(x) = y} is non-empty. So the axiom of choice
allows us to define a function s : Y // X with s(y) ∈ f−1({x}), and that is
the desired section. For this reason a section is also sometimes called a choice
map.

Now if f has a retract and f(x) = f(x′), then x = r(f(x)) = r(f(x′)) = x′

and so f is an injection. Conversely if f is an injection, select some arbitrary
element x0 ∈ X and define r : Y // X by

r(y) =

{
x if there exists a (necessarily unique) x ∈ X with f(x) = y

x0 otherwise

Then r is the required retract.
Now for an actual solution to the exercise consider the functions

s : {1} // {1, 2}

and
r : {1, 2} // {1}

with

s(1) = 1,
r(1) = 1,
r(2) = 1.

Then r is a retract for s and s is a section for r, but r does not have a retract
and s does not have a section. Finally note that sr : {1, 2} // {1, 2} is neither
injective nor surjective and so has neither a retract nor a section.

Solution for I.11 on p. 14: To show that f : A // B is an epimorphism iff
f∗ is always injective, observe that the definition of f being epic (gf = hf ⇒
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g = h) is, by the definition of f∗, the same as saying (f∗(g) = f∗(h)⇒ g = h),
which is exactly what it means to says that f∗ is injective.

Solution for I.12 on p. 14: We want an example of a category and a
morphism f : A // B which is an epimorphism, but where f∗ is not always
surjective. We will actually see several examples from different categories, but
preparatory to that let us see just what this means.

In the solution of exercise I.9 we noted that in the category of sets a function
is surjective iff it has a section. But part (a.) of exercise I.7. tells us that f∗
always has a sections iff f has a section. Combining those in this context we
see that we are simply looking for an epimorphism that does not have a section.
This also tells us we will not find our example in the category of sets, where
morphisms are epic iff they have sections.

In the category of monoids consider the inclusion homomorphism i : N // Z
with N the additive monoid of non-negative integers and Z the additive monoid
of all integers. Certainly i is a monomorphism, but more interesting in this con-
text is that it is also an epimorphism! To see this we make a minor digression
on monoids.

Let M be a multiplicative monoid with the operation denoted by ∗ (so the
identity of M is 1.) If h : Z // M is a monoid homomorphism, then h(0) = 1,
and if n is a positive integer, then 1 = h(0) = h(n + (−n)) = h(n) ∗ h(−n).
And in a monoid, if an element m ∈ M has an inverse, it is unique: Suppose
l ∗m = 1 = m ∗ r, then

l = l ∗ 1
= l ∗ (m ∗ r)
= (l ∗m) ∗ r
= 1 ∗ r
= r

[Compare this with exercise I.8.]
Now if h and g are two monoid homomorphisms from Z to M with hi = gi,

then certainly h(n) = g(n) whenever n is a non-negative integer. But the
digression shows that h(−n) = h(n)−1 = g(n)−1 = g(−n) as well, i.e., h and g
are equal. So i is an epimorphism.

But i does not have a section for if s : Z // N were a section we would have
is(−1) = −1, i.e., −1 ∈ N. And this finally tells us that i is an epimorphism
in Monoid where i∗ is not always surjective.

Looking at this concretely can be interesting as well. There is a canonical
bijection between the set Monoid(Z,Z) and the set Z because there is for each
n ∈ Z a unique monoid homomorphism h with h(1) = n. But the only monoid
homomorphism in Monoid(N,Z) take every element of Z to 0 as 0 is the only
invertible element in N. So the function

i∗ : Monoid(N,Z) // Monoid(Z,Z)

is very far indeed from being surjective.
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In the category CommutativeRing (cf. section B.3.4) of commutative
rings consider the inclusion homomorphism i : Z // Q with Z the ring of all
integers and Q the field of all rational numbers. Certainly i is a monomorphism,
but it is an epimorphism as well! The reason is that every homomorphism of
commutative rings with domain Q is determined by its value on 1. For note
that if h : Q // R is such a ring homomorphism, then h(n/m) = h(n)h(m)−1

and so h(n/m) = h(n)h(m)−1 = g(n)g(m)−1, i.e., h = g.
But certainly i has no section s : Q // Z for then s(1/2) ∈ Z would be a

multiplicative inverse for 2 which certainly does not exist!
For another example, in the category of topological spaces consider the in-

clusion i : Q // R where R is the space of real numbers with the usual topol-
ogy and Q is the subspace of all rational numbers. Certainly i is a monomor-
phism, but it is equally well an epimorphism because Q is dense in R and it is
a general truth that two continuous functions which agree on a dense subspace
are equal. But i does not have a section for the most blatant of reasons: the
cardinality of Q is countable, while the cardinality of R is uncountable.

Solution for I.13 on p. 15: We want to verify that in N, the additive monoid
of natural numbers considered as a category with one object, every morphism
is an epimorphism. So consider any natural number n and its “composition”
with two others, j and k. Then we need to verify that n+ j = n+ k ⇒ j = k,
which certainly qualifies as a well known property of the natural numbers!

Solution for I.14 on p. 15: In this exercise we want to verify that for
A = {a, b} and A∗ the monoid of all all finite sequences from A, every morphism
in A∗ is an epimorphism. So consider any three finite sequences (c1, · · · , cp),
(d1, · · · , dq), and (e1, · · · , er), and suppose (c1, · · · , cp, d1, · · · , dq) = (c1, · · · , cp, e1, · · · , er).
To say that two sequences are equal means there are the same number of terms,
and term by term they are equal. So q = r and d1 = e1, . . . , dq = eq.,
i.e., (d1, · · · , dq) = (e1, · · · , er) which is exactly what is needed to show that
(c1, · · · , cp) is an epimorphism. [Those of you with a sharp eye may have no-
ticed that this proof is a bit slippery, as we are carefully avoiding the necessary
use of induction by casually using · · · and . . . . And you are correct, but we
will continue to leave the details of such inductive proofs to be filled in by the
ambitious reader.]

Notice that the only information we used about A∗ is that it is a monoid of
sequences. That A has two elements, or what those particular elements happen
to be, is completely irrelevant. So in fact we’ve really seen that every morphism
in a free monoid is an epimorphism.

Solution for I.15 on p. 16: With B the quotient monoid of A∗ (as above)
by the equivalence relation generated by {a2, ab}, we want to verify that b is
an epimorphism in B, while a is not.

That a is not an epimorphism is directly from the definition of B, for
aa = ab, but a 6= b.
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To see that b is an epimorphism is tedious but elementary; just consider
the cases.

Recall that in B every element has a unique canonical form which is one of
am, bn, or bnam. For m > 0, bam is certainly not equal to ban with n 6= m, nor
to bn for any n, and is only equal bnam for n = 1. Equally well bbn = b(n+1)

and not to any other canonical form, while b(bnam) = b(n+1)am and again is
not equal to any other canonical form.

Solution for I.10 on p. 14: Suppose that f : A // B has a section
s : B // A so that fs = 1B . Now if gf = hf , then g = g1B = g(fs) =
(gf)s = (hf)s = h(fs) = h1B = h and so f is an epimorphism.

Solution for I.17 on p. 17: In order to show that f : A // B is a
monomorphism iff f∗ is always injective, observe that the definition of f being
monic (fg = fh ⇒ g = h) is, by the definition of f∗, the same as saying
(f∗(g) = f∗(h) ⇒ g = h), which is exactly what it means to says that f∗ is
injective.

Notice this is almost the same as the solution of exercise I.11. The difference
between the two being the exchange of epimorphism and monomorphism, f∗
and f∗ and the order of composition. This is another example of duality which
we will discuss formally in Section II.1 after seeing a great many examples.

Solution for I.18 on p. 17: We want an example of a category and a
morphism f : A // B which is a monomorphism, but where f∗ is not always
surjective. We will actually see several examples from different categories, but
preparatory to that let us see just what this means.

In the solution of exercise I.9 we noted that in the category of sets a function
is surjective iff it has a section. But part (b.) of exercise I.7. tells us that f∗

has a section iff f has a retract. Combining those in this context we see that
we are simply looking for a monomorphism that does not have a retract. The
solution of exercise I.9 also showed that in the category of sets a function is
injective iff it has a retract, so this tells us we will not find our example in the
category of sets, nor in any other category where morphisms are monic iff they
have retracts.

In the category of monoids consider the inclusion homomorphism i : N // Z
with N the additive monoid of non-negative integers and Z the additive monoid
of all integers. Certainly i is a monomorphism, but if it has a retract r : Z // N
with ri = 1N, then 1 = ri(1) = r(1) and also 0 = r(0) = r(1 + (−1)) =
r(1) + r(−1) = 1 + r(−1). But there is no element of N which added to 1 gives
0, so no such r can exist.

In the category of Abelian groups consider the inclusion homomorphism
i : Z // Q with Z the additive group of all integers and Q the additive group
of all rational numbers. Certainly i is a monomorphism, but if it has a retract
r : Q // Z with ri = 1Z, then again r(1) = 1 but also 1 = r(1/2 + 1/2) =
r(1/2) + r(1/2). But there is no integer which added to itself gives 1, so no
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such r can exist.
In the category of topological spaces consider the inclusion i : Q // R

where R is the space of real numbers with the usual topology and Q is the
subspace of all rational numbers. Certainly i is a monomorphism. But consider
a hypothetical retract r : R // Q for i. The space R is connected and the
continuous image of a connected space is connected, so the existence of r would
imply that Q is connected which is false indeed.

Solution for I.16 on p. 17: Suppose that f : B // A has a retract r : A
// B so that rf = 1B . Now if fg = fh, then g = 1Ag = (rf)g = r(fg) =

r(fh) = (rf)h = 1Bh = h and so f is a monomorphism.
Notice the great similarity of this solution to that of exercise I.10. The

two proofs look almost the same, with the exchanges of retract and section,
monic and epi, and the the order of composition. This is another example of
duality which we will discuss formally in Section II.1, but we will see many
more examples first.

Solution for I.19 on p. 18: Suppose that f : A // B has a retract r and
g : B // C has a retract q, then rq is a retract for gf because

(rq)(gf) = r(qg)f
= r1Bf
= rf

= 1A

Solution for I.20 on p. 18: If gf is a retract (of s), then g is a retract of
fs because 1 = (gf)h = g(fh).

Solution for I.21 on p. 18: Suppose f : A // // B and g : B // // C are
epimorphisms, then gf is an epimorphism as well. To see this just note that if
h1gf = h2fg, then h1g = h2g because f is an epimorphism and then h1 = h2

because g is an epimorphism.

Solution for I.22 on p. 18: Suppose f : A // B and g : B // C and
that gf is an epimorphism, then g is an epimorphism as well. To see this note
that if h1g = h2g, then h1gf = h2gf . But as gf is an epimorphism it follows
that h1 = h2 which is what is needed to show that g is an epimorphism.

Solution for I.23 on p. 19: Suppose that s : A // // B is an epimorphism
and also a section for r : B // A. Then rs = 1A, but also (sr)s = s(rs) =
s1A = s = 1Bs and so it follows that sr = 1B , i.e., s is an isomorphism.

Solution for I.24 on p. 19: Suppose that s1 : A // B and s2 : B // C
are sections of r1 and r2 respectively. Then s2s1 is a section of r1r2: r1r2s2s1 =
r11Bs1 = r1s1 = 1A.
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Solution for I.25 on p. 19: If gf is a section (of r), then f is a section of
rg because 1 = r(gf) = (rg)f .

Notice this is almost the same as the solution of exercise I.20. The difference
between the two being the exchange of retract and section and the the order of
composition. This is another example of duality which we will discuss formally
in Section II.1.

Solution for I.26 on p. 19: If gf is defined and both g and f are monomor-
phisms then so is gf , for suppose that (gf)e1 = (gf)e2, then g(fe1) = g(fe2)
and so fe1 = fe2 (because g is monic) whence e1 = e2 (because f is monic).
And that is just what we need to know that gf is monic.

Solution for I.27 on p. 19: Suppose that gf is an monomorphism, then f
is a monomorphism as well. for suppose that fe1 = fe2, then gfe1 = gfe2 and
so e1 = e2 (because gf is monic), and that is just what we need to see that f
is monic.

Solution for I.28 on p. 19: Suppose that r is a retract, i.e., there is s with
rs = 1, and r is also a monomorphism, then also sr = 1. For rs = 1⇒ srs =
s = 1s and so, because s is monic, sr = 1.

Solution for I.29 on p. 19: This exercise asks for examples of epimorphisms
which are not surjective. Of course this only makes sense if the objects of the
category under discussion are “sets with structure” and the morphisms are
functions of some sort. Without explicit mention we have already provided
examples in the solutions given for exercise I.12. Much later we will even be
able to explain why this happened.

The three examples are:

1. In Monoid (cf. section B.2.3), the inclusion homomorphism i : N // Z
is an epimorphism, but it is certainly not surjective.

2. In CommutativeRing (cf. section B.3.4) consider the inclusion ho-
momorphism i : Z // Q is an epimorphism, but it is certainly not
surjective.

3. And in Top (cf. section B.9.3) the inclusion i : Q // R is an epimor-
phism, but again it is certainly not surjective.

Solution for I.30 on p. 19: Here we are asked for examples of morphisms
that are both monic and epic, but not iso. Again previous the solutions pro-
vided for earlier exercises have, without explicit mention, given us several.
From exercise I.12 we have the following three examples.

1. In Monoid (cf. section B.2.3) the inclusion homomorphism i : N // Z
is both a monomorphism and an epimorphism, but it is certainly not an
isomorphism (as i has neither a section nor a retract.)
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2. In CommutativeRing (cf. section B.3.4) the inclusion homomorphism
i : Z // Q is a monomorphism and an epimorphism, but it is certainly
not an isomorphism (as i has neither a section nor a retract.)

3. And in Top (cf. section B.9.3) the inclusion i : Q // R is both a
monomorphism and an epimorphism, but again it is certainly not an
isomorphism (as i has neither a section nor a retract.)

We get another family of examples from exercisesI.13 and I.14 for in the
monoids N and A∗ (both considered as categories with one object) all of the el-
ements considered as morphisms are both monomorphisms and epimorphisms,
but only the identity is an isomorphism. This same thing is true for the free
monoid on any number of generators.

Solution for I.31 on p. 22: Recall that an equivalence relation on a set B
is a binary relation ≡ satisfying the three conditions;

1. [reflexive] For all b ∈ B, b ≡ b.

2. [symmetry] For all b, b′ ∈ B, b ≡ b′ ⇐⇒ b′ ≡ b.

3. [transitivity] For all b, b′, b′′ ∈ B, b ≡ b′ and b′ ≡ b′′ ⇒ b ≡ b′′.

The most basic example of an equivalence relation is equality, i.e., b ≡ b′

means b = b′. This exercise is about a close relative: With b ≡f b′ defined
to mean f(b) = f(b′), we want to see that ≡f is an equivalence relation. The
[identity] follows from identity for equality for surely f(b) is equal to f(b). And
[symmetry] follows from symmetry for equality:

f(b) = f(b′) ⇐⇒ f(b′) = f(b).

Finally [transitivity] follows from transitivity for equality:

f(b) = f(b′) and f(b′) = f(b′′)⇒ f(b) = f(b′′).

Solution for I.32 on p. 22: Just as with any equivalence relation, for the
equivalence relation ≡f on the set B we have the quotient p : B // B/ ≡f
where B/ ≡f is the set of all equivalence classes. In this case we also get a
unique induced function f : B/ ≡f // A with f = fp. Indeed the definition
of f is exactly that f(b) = f(b) whenever b is one of the equivalence classes in
B/ ≡f , i.e., f(p(b)) = f(b). And what must be checked is that this is actually
a definition – does p(b) = p(b′) imply f(b) = f(b′)? But p(b) = p(b′) exactly if
b ≡f b′ which is just the same as f(b) = f(b′).

Of course this also says that f is injective. And if f is surjective, then f is
equally well surjective, and so is is a bijection.

Solution for I.33 on p. 26: This exercise is about products in the category,
E , of sets and surjections.



266 APPENDIX C. SOLUTIONS OF EXERCISES

The first thing we want to note is that if E1 and E2 have a product in E ,
it must actually be a product in Set. To see this let (E1 × E2, π1, π2) be
a product in Set, and let (P , p1, p2) be a product of the same two objects
in E . If E1 and E2 are not empty, then π1 and π2 are surjections and so
morphisms in E . So there is a unique morphism 〈π1, pi2〉 : E1 × E2

// P in
E . There is also a unique morphism 〈p1, p2〉 : P // E1 × E2 in Set. But
then 〈π1, π2〉〈p1, p2〉 : P // P is equal to 1P and

〈p1, p2〉〈π1, π2〉 : E1 × E2
// E1 × E2

is equal to 1E1×E2 , the proof being essentially the same as the proof of Propo-
sition I.1. So (E1 × E2, π1, π2) is a product in E .

Now consider S = {0, 1} as an object of E . If S has a product with itself
in E , the product must be (S ×S, π1, π2), the usual product in Set. But look
at the diagram

S × S

S

π2

��

S S × SS S × SS

S

1S

''OOOOOOOOOOOOOOOOOOOO

S

S

77

1S

oooooooooooooooooooo S

S × S

OO

π1

and note that the unique function ∆ : S // S ×S which makes this diagram
commute is not a surjection. So there is NO morphism from S to S × S in E
that will make this diagram commute, so (S × S, π1, π2) is not a product of
S with itself in E , and so, as we just saw above, there is no product of S with
itself in E .

Considering

S × S

S

π2

��

C S × S//________C

S

g

''OOOOOOOOOOOOOOOOOOOO

S

C

77

f

oooooooooooooooooooo S

S × S

OO

π1

notice that are many objects and maps C, f and g in E where there is a
morphism C // S × S in E making the diagram commute. And of course
this morphism is necessarily the unique morphism in Set which makes the
diagram commutes because (S × S, π1, π2) is a product in Set.
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Solution for I.34 on p. 26: The method is to show that Πn−1
i=1 Ai×An (with

suitable morphisms) is a product of A1, · · · , An. The family of morphisms is

π′1 = Πn−1
i=1 Ai ×An

π1 // Πn−1
i=1 Ai

π1 // A1,

...

π′j = Πn−1
i=1 Ai ×An

π1 // Πn−1
i=1 Aj

πj // Aj ,

...

π′n−1 = Πn−1
i=1 Ai ×An

π1 // Πn−1
i=1 An−1

πn−1 // An−1

and π′n = Πn−1
i=1 Ai ×An

π2 // An.
Now given a family fi : C // Ai of morphisms we get

〈f1, · · · , fn−1〉 : C // Πn−1
i=1 Ai

This together with fn gives us f = 〈〈f1, · · · , fn−1〉, fn〉 as the unique morphism
from C to Πn−1

i=1 Ai × An such that π′jf = fj for j = 1, · · · , n. Proposition I.1
now applies to say that Πn−1

i=1 Ai×An is canonically isomorphic to Πn
i=1Ai.

This is well summarized in the commutative diagram:

C

Aj

fj

77ooooooooooooooooooooooooooooooooooooooooooooooooooo

Πn−1
i=1 Ai

Aj

πj

OO

C

Πn−1
i=1 Ai

<f1,··· ,fn−1〉

33gggggggggggggggggggggg Πn−1
i=1 Ai ×An

Πn−1
i=1 Ai

π1

OO

C Πn−1
i=1 Ai ×An

〈〈f1,··· ,fn−1〉,fn〉 //_____________________ Πn−1
i=1 Ai ×An

An

π2

��

C

An

fn

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

where j is in the range 1, · · · , n − 1 and the dotted arrows are those whose
unique existence make the diagram commute.

Solution for I.35 on p. 27: The proof that 〈P , π1f , π2f〉 is also a product
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is neatly captured in the following commutative diagram:

C

A
g1

66mmmmmmmmmmmmmmmmm
C A×B

〈g1,g2〉 //_______C

B

g2

((QQQQQQQQQQQQQQQQQ A×B

A

π1

OO

A×B

B

π2

��

P

A
π1f

hhQQQQQQQQQQQQQQQQQ
A×B P

f−1
// P

B

π2f

vvmmmmmmmmmmmmmmmmm

If g1 and g2 are arbitrary morphisms from some object C to A and B respec-
tively, then 〈g1, g2〉 : C // A×B is the unique morphism making the right
side of the diagram commute. As f is an isomorphism, there is it’s unique
inverse f−1 as shown. Now f−1〈g1, g2〉 : C // P with π1ff

−1〈g1, g2〉 =
π1〈g1, g2〉 = g1 and π2ff

−1〈g1, g2〉 = π2〈g1, g2〉 = g2. Further if g : C // P
is any morphism with gπ1f = g1 and gπ2f = g2, then fg : C // A × B
must be equal to 〈g1, g2〉 and so g = (f−1f)g = f−1(fg) = f−1〈g1, g2〉. So
f−1〈g1, g2〉 is the unique such morphism and so 〈P , π1f , π2f〉 is a product of
A and B.

Solution for I.36 on p. 27: To prove that t : A× B
∼= // B × A is just a

matter of looking carefully at the following commutative diagram.

A×B B ×A
t

//___

A

A×B

OO

π1

A AA

B ×A

OO

π′2

B ×A A×B
t′

//___

A

B ×A

OOA AA

A×B

OO

π1

A×B B ×A
t

//___

A

A×B

OOA AA

B ×A

OO

π′2

A×B B ×A
t

//___

B

A×B

��

π2

B BB

B ×A

��

π′1

B ×A A×B
t′

//___

B

B ×A

��
B BB

A×B

��

π2

A×B B ×A
t

//___

B

A×B

��
B BB

B ×A

��

π′1

Because A×B and B×A are products, t and t′ exist and are uniquely defined
by the requirement that this diagram commutes. But then π1t

′t = π1 and
π2t
′t = π2. As 1A×B is the unique morphism satisfying that pair of relations,

we see that t′t = 1A×B . The same argument using the four squares on the
right shows tt′ = 1B×A.

Solution for I.37 on p. 27: With p an n-permutation with inverse q, look
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at the following family of commutative diagrams (with i varying from 1 to n):

Πn
i=1Ai Πn

i=1Ap(i)s
//_____

Ai

Πn
i=1Ai

��

πi

Ai AiAi

Πn
i=1Ap(i)

��

π′q(i)

Πn
i=1Ap(i) Πn

i=1Ais′
//_____

Ai

Πn
i=1Ap(i)

��
Ai AiAi

Πn
i=1Ai

��

πi

Πn
i=1Ai Πn

i=1Ap(i)s
//_____

Ai

Πn
i=1Ai

��
Ai AiAi

Πn
i=1Ap(i)

��

π′q(i)

Note that s and s′ as morphisms into products are defined by the fact that
these diagrams commute. But then s′s must be the identity on Πn

i=1Ai and
ss′ must be the identity on Πn

i=1Ap(i) as the identities also make the relevant
diagrams commute.

Solution for I.38 on p. 27: No! Projections need not be epimorphisms.
The simplest example is ∅ × {∗} // {∗} in the category of sets. ∅ × {∗} = ∅
as indeed ∅×A = ∅ for every set A, and certainly the map from the empty set
to a one element set is not surjective.

Solution for I.39 on p. 28: In the category of sets, if f1 : A1
// B1 and

f2 : A2
// B2 are two functions, then what is (f1 × f2)(a1, a2)?

Writing (f1 × f2)(a1, a2) = (b1, b2), we have b1 = π1(f1 × f2)(a1, a2).
But π1(f1, f2) = f1π1 by the definition of f1 × f2. So b1 = f1π1(a1, a2) =
f1(a1). The same argument with 2 replacing 1 shows that b2 = f2(a2). So
(f1 × f2)(a1, a2) = (f1(a1), f2(a2)).

Solution for I.40 on p. 28: To show that Πn
i=11Ai = 1ΠAi , note that, by def-

inition, Πn
i=11Ai is the unique morphism that fills in this family of commutative

diagrams:

Πn
i=1Ai Πn

i=1AiΠni=11Ai

//______

Ai

Πn
i=1Ai

��

πi

Ai Ai
1Ai // Ai

Πn
i=1Ai

��

πi

But 1ΠAi fills it in equally well, ergo, they are equal.

Solution for I.41 on p. 28: With the possible exception of the equality of
the top arc with the composition beneath it, the following family of diagrams
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commute.

Πn
i=1Ai Πn

i=1Ci

Πni=1gifi

&&r
o

l j g d b _ \ Z W T R O
L

Ai Bifi

//

Πn
i=1Ai

Ai

πi

��

Πn
i=1Ai Πn

i=1Bi
Πni=1fi //______ Πn

i=1Bi

Bi

πi

��
Bi Cigi

//

Πn
i=1Bi

Bi
��

Πn
i=1Bi Πn

i=1Ci
Πni=1gi //______ Πn

i=1Ci

Ci

πi

��

But by the definition of a product that immediately implies the desired equality:

Πn
i=1giΠ

n
i=1fi = Πn

i=1gifi.

Solution for I.42 on p. 28: If f : A // C and g : B // D have retracts
f ′ and g′ respectively, then ff ′ = 1C and gg′ = 1D and so

(f × g)(f ′ × g′) = (ff ′ × gg′)
= (1C × 1D)
= 1C×D

where we are using exercises I.40 and I.41.

Solution for I.43 on p. 28: Suppose f and g are monomorphisms, and we
have the following commutative diagram:

A×B C ×D
f×g

//_______

A

A×B

OO

πA

A C
f // C

C ×D

OO

πC

A×B
h //

A×B
k

// A×B C ×D
f×g

//_______

B

A×B

��

πB

B D
g // D

C ×D

��

πD

In particular (f × g)h = (f × g)k. Then

fπAh = πC(f × g)h = πC(f × g)k = fπAk

gπBh = πD(f × g)h = πD(f × g)k = gπBk

As f and g are monomorphisms, πAh = πAk and πBh = πBk whence we see
that h = k. So f × g is a monomorphism.
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Solution for I.44 on p. 28: If f and g have sections f ′ and g′ respectively,
then f ′× g′ is a section for f × g. This follows by combining exercises I.41 and
I.40. For (f × g)(f ′ × g′) = ff ′ × gf ′ = 1× 1 = 1.

Compare this with the solution to exercise I.42. The two proofs look almost
the same, although the order of composition is reversed. Notice that this is not
an example of duality, because both involve products rather than interchanging
products and sums. This proof is dual to that in the solution of exercise I.58
because that is the dual theorem.

Solution for I.45 on p. 29: The method to verify that 〈f, g〉h = 〈fh, gh〉
is what should by now be very familiar. 〈fh, gh〉 is the unique morphism such
that πB〈fh, gh〉 = fh and πC〈fh, gh〉 = gh, but 〈f, g〉h has that same property
and so they are equal.

D

B

fh

77oooooooooooooooooooooooo
A

B

f

??��������������
B × C

B

πB

OO

D A
h // A B × C

〈f,g〉 //____A

C

g

��?????????????? B × C

C

πC

��

D

C

gh

''OOOOOOOOOOOOOOOOOOOOOOOO

Solution for I.46 on p. 29: To verify that 〈f, g〉 = (f × g)∆ stare at these
two commutative diagrams and note that πi(f × g)∆ = f1 = f (for i = 1, 2)
which is exactly the defining property of 〈f, g〉.

A×A

A
��

A A×A∆ //A

A

1

��???????????

A

A

??

1

�����������
A

A×A

OO

A×A B ×B//

A

A×A

OO

π1

A B
f // B

B ×B

OO

π1

A Bg
//

A×A

A

π2

��

A×A B ×B
f×g // B ×B

B

π2

��

B ×B

B

π2

��

A B ×B〈f,g〉 //A

B

g

%%KKKKKKKKKKKKKKKK

B

A

99

f

ssssssssssssssss B

B ×B

OO

π1

Solution for I.47 on p. 29: To compute ∆(x) for any x in a set X we just
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note that π1(∆(x)) = 1X(x) = x and π2(∆(x)) = 1X(x) = x, so ∆(x) = (x, x).

Solution for I.48 on p. 29: To compute ∆(a) for any a ∈ A with A an
object in Ab we just note that π1(∆(a)) = 1A(a) = a and π2(∆(a)) = 1A(a) =
a, so ∆(a) = (a, a).

Solution for I.49 on p. 32: For any family of two or more objects,
A1, · · · , An, in C prove that Σni=1Ai is isomorphic to Σn−1

i=1 Ai +An.
The method is to show that Σn−1

i=1 Ai + An (with suitable morphisms) is a
sum of A1, · · · , An. The family of morphisms is

ι′1 = Σn−1
i=1 Ai +An oo ι1 Σn−1

i=1 Ai
oo ι1

A1,

...

ι′j = Σn−1
i=1 Ai +An oo ι1 Σn−1

i=1 Aj
oo ιj

Aj ,

...

ι′n−1 = Σn−1
i=1 Ai +An oo ι1 Σn−1

i=1 An−1
oo ιn−1

An−1

and ι′n = Σn−1
i=1 Ai +An oo ι2

An.
Now given a family fi : Ai // C of morphisms we get [f1, · · · , fn−1] :

Σn−1
i=1 Ai

// C. This together with fn gives us f = [[f1, · · · , fn−1], fn] as the
unique morphism from Σn−1

i=1 Ai +An to C such that fι′j = fj for j = 1, · · · , n.
Proposition I.2 now applies to say that Σn−1

i=1 Ai +An is canonically isomorphic
to Σni=1Ai.

This is well summarized in the commutative diagram:

C

Aj

ww

fj

ooooooooooooooooooooooooooooooooooooooooooooooooooo

Σn−1
i=1 Ai

Aj

��

ιj

C

Σn−1
i=1 Ai

ss

[f1,··· ,fn−1]

gggggggggggggggggggggg Σn−1
i=1 Ai +An

Σn−1
i=1 Ai

��

ι1

C Σn−1
i=1 Ai +Anoo [[f1,··· ,fn−1],fn] _____________________ Σn−1
i=1 Ai +An

An

OO

ι2

C

An

kk

fn

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
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where j is in the range 1, · · · , n − 1 and the dotted arrows are those whose
unique existence make the diagram commute.

Compare this solution with the solution for exercise I.34 on page 26. The
two were written carefully to make it clear that each can be transformed into
the other by “reversing the arrows” and exchanging sums and products. This
is an example of duality which is discussed formally in Section II.1.

Solution for I.50 on p. 32: The proof that 〈S, fι1, fι2〉 is also a sum is
neatly captured in the following commutative diagram:

C

A

vv

g1

mmmmmmmmmmmmmmmmm
C A+Boo [g1,g2] _______C

B

hh
g2

QQQQQQQQQQQQQQQQQ A+B

A

��
ι1

A+B

B

OO

ι2

S

A

((

fι1

QQQQQQQQQQQQQQQQQ
A+B Soo f−1

S

B

66
fι2

mmmmmmmmmmmmmmmmm

If g1 and g2 are arbitrary morphisms to some object C, then [g1, g2] : A+B // C
is the unique morphism making the left side of the diagram commute. As f is
an isomorphism, there is it’s unique inverse f−1 as shown. Now [g1, g2]f−1 : S

// C with ι1ff
−1[g1, g2] = ι1[g1, g2] = g1 and ι2ff

−1[g1, g2] = ι2[g1, g2] =
g2. Further if g : S // C is any morphism with gfι1 = g1 and gfι2 = g2,
then gf : A+B // must be equal to [g1, g2] and so

g = g(ff−1)
= gff−1

= [g1, g2]f−1.

Thus [g1, g2]f−1 is the unique such morphism, and so 〈S, ι1f , ι2f〉 is a sum of
A and B.

Compare this solution with the solution for exercise I.35 on page 27. The
two were written carefully to make it clear that each can be transformed into
the other by “reversing the arrows” and exchanging sums and products. This
is an example of duality which is discussed formally in Section II.1.

Solution for I.51 on p. 32: To prove that A+B ∼= B + A is just a matter
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of looking carefully at the following commutative diagram.

A+B B +Aoo
t

___

A

A+B

ι1

��

A AA

B +A

ι′2

��
B +A A+Boo

t′
___

A

B +A
��

A AA

A+B

ι1

��
A+B B +Aoo

t
___

A

A+B
��

A AA

B +A

ι′2

��
A+B B +Aoo

t
___

B

A+B

ι2

OO

B BB

B +A

ι′1

OOB +A A+Boo
t′

___

B

B +AOO

B BB

A+B

ι2

OOA+B B +Aoo
t

___

B

A+BOO

B BB

B +A

ι′1

OO

Because A + B and B + A are sums, t and t′ exist and are uniquely defined
by the requirement that this diagram commutes. But then tt′ι1 = ι1 and
tt′ι2 = ι2. As 1A+B is the unique morphism satisfying that pair of relations,
we see that tt′ = 1A+B . The same argument using the four squares on the
right shows t′t = 1B+A.

Compare this solution with the solution for exercise I.36 on page 27. The
two were written carefully to make it clear that each can be transformed into
the other by “reversing the arrows” and exchanging sums and products. This
is an example of duality which is discussed formally in Section II.1.

Solution for I.52 on p. 32: With p an n-permutation with inverse q, look
at the following family of commutative diagrams (with i varying from 1 to n):

Σni=1Ai Σni=1Ap(i)s
//_____

Ai

Σni=1Ai

ιi

OO

Ai AiAi

Σni=1Ap(i)

ι′q(i)

OO
Σni=1Ap(i) Σni=1Ais′

//_____

Ai

Σni=1Ap(i)OO

Ai AiAi

Σni=1Ai

ιi

OO
Σni=1Ai Σni=1Ap(i)s

//_____

Ai

Σni=1AiOO

Ai AiAi

Σni=1Ap(i)

ι′q(i)

OO

Note that s and s′ as morphisms from sums are defined by the fact that
these diagrams commute. But then ss′ must be the identity on Σni=1Ai and
s′s must be the identity on Σni=1Ap(i) as the identities also make the relevant
diagrams commute.

Compare this solution with the solution for exercise I.37 on page 27. The
two were written carefully to make it clear that each can be transformed into
the other by “reversing the arrows” and exchanging sums and products. This
is an example of duality which is discussed formally in Section II.1.

Solution for I.53 on p. 32: In a great many of the familiar categories, for
example Set, Group, Ab, Top, etc., every injection into a sum is a monomor-
phism, but this is not universally true. Perhaps the simplest familiar example
where this is not true is CommutativeRing, the category of commutative
rings. As discussed in section B.3.4 of the Catalog of Categories, the sum in
this category is the tensor product. In particular then we have the odd feature
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that the sum of two non-zero rings may be zero with the simplest example
being Z2 ⊗ Z3.

In any tensor product A⊗B we have

(a1 + a2)⊗ (b1 + b2) = a1 ⊗ b1 + a1 ⊗ b2 + a2 ⊗ b1 + a2 ⊗ b2.

So in Z2 ⊗ Z3 we have

1 = 1⊗ 1
= (1 + 1 + 1)⊗ 1
= 1⊗ 1 + 1⊗ 1 + 1⊗ 1
= 1⊗ (1 + 1 + 1)
= 1⊗ 0
= 0

Now look at the two ring homomorphisms E0 and E1 from Z[X] to Z2 with
E0(p(X)) = p(0) mod 2 and E1(p(X)) = p(1) mod 2. They are certainly not
equal, but ι1E0 = ι1E1. So ι1 is not a monomorphism.

Looking ahead to dual categories (see Section II.1) we also see that the
easiest counter-example is the counter-example in exercise I.38 interpreted in
the dual category of the category of sets where the projection that is not an
epimorphism in Set gives an injection that is not a monomorphism in Setop.

Solution for I.54 on p. 33: To show that Σni=11Ai = 1ΣAi , note that, by
definition, Σni=11Ai is the unique morphism that fills in this family of commu-
tative diagrams:

Σni=1Ai Σni=1AiΣni=11Ai

//______

Ai

Σni=1Ai

ιi

OO

Ai Ai
1Ai // Ai

Σni=1Ai

ιi

OO

But 1ΣAi fills it in equally well, ergo, they are equal.
Compare this solution with the solution for exercise I.40 on page 28. The

two were written carefully to make it clear that each can be transformed into
the other by “reversing the arrows” and exchanging sums and products. This
is an example of duality which is discussed formally in Section II.1.

Solution for I.55 on p. 33: Consider the families of morphisms fi : Ai // Bi
and gi : Bi // Ci. Verify that ΣigiΣifi = Σigifi

With the possible exception of the equality of the top arc with the compo-
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sition beneath it, the following family of diagrams commute.

Σni=1Ai Σni=1Ci

Σni=1figi

&&r
o

l j g d b _ \ Z W T R O
L

Ai Bifi

//

Σni=1Ai

Ai

OO

ιi

Σni=1Ai Σni=1Bi
Σni=1fi //______ Σni=1Bi

Bi

OO

ιi

Bi Cigi
//

Σni=1Bi

Bi

OO
Σni=1Bi Σni=1Ci

Σni=1gi //______ Σni=1Ci

Ci

OO

ιi

But by the definition of a sum that immediately implies the desired equality.

Compare this solution with the solution for exercise I.41 on page 28. The
two were written carefully to make it clear that each can be transformed into
the other by “reversing the arrows”, including exchanging sums and products.
This is an example of duality which is discussed formally in Section II.1.

Solution for I.56 on p. 33: If f : A // C and g : B // D have sections
f ′ and g′ respectively, then ff ′ = 1A and gg′ = 1B , so (f + g)(f ′ + g′) =
(ff ′ + gg′) = 1A + 1C = 1(A+B) and so f ′ + g′ is a section for f + g. Notice
we are using exercises I.54 and I.55.

Solution for I.57 on p. 33: Suppose f and g are epimorphisms, and we
have the following commutative diagram:

A+B C +D
f+g

//_______

A

A+B

ιA

��

A C
f // C

C +D

ιC

��
C +D

h //
C +D

k
//A+B C +D

f+g
//_______

B

A+B

ιB

OO

B D
g // D

C +D

ιD

OO

In particular h(f + g) = k(f + g). Then

hιCf = h(f + g)ιA = k(f + g)ιA = kιCf

hιDg = h(f + g)ιB = k(f + g)ιB = kιDg

As f and g are epimorphisms, hιC = kιC and hιD = kιD whence we see that
h = k. So f + g is an epimorphism.

Compare this solution with the solution for exercise I.43 on page 28. The
two were written carefully to make it clear that each can be transformed into
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the other by “reversing the arrows”, exchanging sums and products and inter-
changing “monomorphism” and “epimorphism”. This is an example of duality
which is discussed formally in Section II.1.

Solution for I.58 on p. 33: Suppose that f : A // C and g : B //

D have retracts f ′ and g′ respectively. Then f ′f = 1C and g′g = 1D, so
(f ′+ g′)(f + g) = (f ′f + g′g) = 1C + 1D = 1(C +D) and so f ′+ g′ is a retract
for f + g. Notice we are using exercises I.54 and I.55.

Solution for I.59 on p. 33: In most of the familiar categories, for example
the Set, Group, Ab, Top, etc., the sum of two monomorphisms is always
a monomorphism. Perhaps the simplest example where this is not true is
CommutativeRing, the category of commutative rings.

As discussed in section B.3.4 of the Catalog of Categories, the sum in this
category is the tensor product. In particular then we have the odd feature
that the sum of two non-zero rings may be zero with one simple example being
Z2 ⊗Q.

In any tensor product A⊗B we have (a1 + a2)⊗ (b1 + b2) = a1⊗ b1 + a1⊗
b2 + a2 ⊗ b1 + a2 ⊗ b2. So in Z2 ⊗Q we have

1 = 1⊗ 1
= 1⊗ (1/2 + 1/2)
= 1⊗ 1/2 + 1⊗ 1/2
= (1 + 1)⊗ 1/2
= 0⊗ 1/2
= 0

Now look at 1Z2 ⊗ i with i : Z // Q the inclusion. Both of these are
monomorphisms, but Z2 ⊗ Z ∼= Z2, while Z2 ⊗ Q ∼= 0, so 1Z2 ⊗ i is not a
monomorphism.

Solution for I.60 on p. 34: The method to verify that h[f, g] = [hf, hg]
will be boringly familiar by now. [hf, hg] is the unique morphism such that
[hf, hg]ιB = hf and [fh, gh]ιC = hg, but h[f, g] has that same property and
so they are equal.

B

B + C

ιB

��

B

A

f

��???????????B

D

hf

''OOOOOOOOOOOOOOOOOOOO

B + C A
[f,g] // A D

h //

C

D

hg

77oooooooooooooooooooo
C

A

g

??�����������
C

B + C

ιC

OO
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Again, compare this solution with the solution for exercise I.45 on page 29.
The two were written carefully to make it clear that each can be transformed
into the other by “reversing the arrows”, including exchanging sums and prod-
ucts. And again this is an example of duality which is discussed formally in
Section II.1.

Solution for I.61 on p. 34: To verify that [f, g] = ∇(f + g) stare at these
two commutative diagrams and note that ∇(f + g)ιi = 1f = f (for i = 1, 2)
which is exactly the defining property of [f, g].

A+A

A

OOA A+Aoo ∇A

A

__

1
???????????

A

A

1

�������������
A

A+A
��

A+A B +Boo

A

A+A

ι1

��

A Boo f
B

B +B

ι1

��

A Boo
g

A+A

A

OO

ι2

A+A B +Boof+g
B +B

B

OO

ι2

B +B

B

OO

ι2

A B +Boo [f,g]A

B

ee

g

KKKKKKKKKKKKKKKK

B

A

f

yyssssssssssssssss B

B +B

ι1

��

Compare this solution with the solution for exercise I.46 on page 29. The
two were written carefully to make it clear that each can be transformed into
the other by “reversing the arrows”, including exchanging sums and products.
And yet again this is an example of duality which is discussed formally in
Section II.1.

Solution for I.62 on p. 35: From the definition, (f0 + f1)ι1(a0) = ι0f0(a0)
and (f0 + f1)ι1(a1) = ι1f1(a1), i.e., (f1 + f2)(a0, 0) = (f0(a0), 0) and (f0 +
f1)(a1, 1) = (f1(a1), 1). But in the category of sets A0 + A1 can be taken as
A0 × {0} ∪A1 × {1}

Solution for I.63 on p. 35: Verification that (A×B, ιA(a) = (a, 0), ιB(b) =
(0, b)) is indeed a sum of A and B in Ab has several easy parts. The first
is the trivial observation that ιA and ιB are actually group homomorphisms.
The next is to check that for any two homomorphisms f : A // C and
g : B // C, [f, g] defined by [f, g](a, b) = f(a) + g(b) is indeed a group



C.1. SOLUTIONS FOR CHAPTER I 279

homomorphism:

[f, g]((a1, b1) + (a2, b2)) = [f, g](a1 + a2, b1 + b2)
= f(a1 + a2) + g(b1 + b2)
= f(a1) + f(a2) + g(b1) + g(b2)
= f(a1) + g(b1) + f(a2) + g(b2)
= [f, g](a1, b1) + [f, g](a2, b2)

and [f, g](0, 0) = f(0) + g(0) = 0 + 0 = 0.
Finally we must check that if h : A × B // C is any other group homo-

morphism such that hιA = f and hιB = g, then h = [f, g]:

h(a, b) = h((a, 0) + (0, b))
= h(a, 0) + h(0, b)
= hιA(a) + hιB(b)
= f(a) + g(b)
= [f.g](a, b)

Solution for I.64 on p. 35: To compute ∇(a1, a2) for any (a1, a2) ∈ A⊕A
with A any object in Ab, note that (a1, a2) = (a1, 0) + (0, a2) = ι1(a1) + ι2(a2)
and so ∇(a1, a2) = ∇(ι1(a1) + ι2(a2)) = ∇(ι1(a1)) + ∇(ι2(a2)) = 1A(a1) +
1A(a2) = a1 + a2.

Solution for I.65 on p. 35: From the definition, (f1 + f2)ι1(a1) = ι1f1(a1)
and (f1 + f2)ι2(a2) = ι2f2(a2), i.e., (f1 + f2)(a1, 0) = (f1(a1), 0) and (f1 +
f2)(0, a2) = (0, f2(a2)). And as (a1, a2) = (a1, 0) + (0, a2) and f1 + f2 is a
homomorphism we have (f1 + f2)(a1, a2) = (f1(a1), f2(a2)).

Solution for I.66 on p. 35: Verification that (A × B, ιA(a) = (a, 0),
ιB(b) = (0, b)) is indeed a sum of A and B in Vect has several easy parts. The
first is the trivial observation that ιA and ιB are actually linear transformations.
The next is to check that for any two linear transformations f : A // C and
g : B // C, [f, g] defined by [f, g](a, b) = f(a) + g(b) is indeed a linear
transformation:

[f, g]((a1, b1) + (a2, b2)) = [f, g](a1 + a2, b1 + b2)
= f(a1 + a2) + g(b1 + b2)
= f(a1) + f(a2) + g(b1) + g(b2)
= f(a1) + g(b1) + f(a2) + g(b2)
= [f, g](a1, b1) + [f, g](a2, b2)
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[f, g](λ(a, b)) = [f, g](λa, λb)
= f(λa) + f(λb)
= λf(a) + λg(b)
= λ(f(a) + g(b))
= λ[f, g](a, b)

and [f, g](0, 0) = f(0) + g(0) = 0 + 0 = 0.
Finally we must check that if h : A × B // C is any other linear trans-

formation such that hιA = f and hιB = g, then h = [f, g]:

h(a, b) = h((a, 0) + (0, b))
= h(a, 0) + h(0, b)
= hιA(a) + hιB(b)
= f(a) + g(b)
= [f.g](a, b)

Solution for I.67 on p. 35: To compute ∇(a1, a2) for any (a1, a2) ∈ A⊕A
with A any vector space in Vect, note that (a1, a2) = (a1, 0) + (0, a2) =
ι1(a1)+ι2(a2) and so ∇(a1, a2) = ∇(ι1(a1)+ι2(a2)) = ∇(ι1(a1))+∇(ι2(a2)) =
1A(a1) + 1A(a2) = a1 + a2.

Solution for I.68 on p. 35: From the definition, (f1 + f2)ι1(a1) = ι1f1(a1)
and (f1 + f2)ι2(a2) = ι2f2(a2), i.e., (f1 + f2)(a1, 0) = (f1(a1), 0) and (f1 +
f2)(0, a2) = (0, f2(a2)). And as (a1, a2) = (a1, 0) + (0, a2) and f1 + f2 is a
linear transformation we have (f1 + f2)(a1, a2) = (f1(a1), f2(a2)).

Solution for I.69 on p. 36: Prove that any two final objects in C are
isomorphism, and the isomorphism is unique.

If F and F’ are both final objects, then there are unique morphisms F
! // F ′ and F ′

F //. But then the composition F
! // F ′

! // F must be
the unique morphism from F // F , which is 1F . Equally well the composition
in the other order must be 1F ′ .

Solution for I.70 on p. 36: There is hardly anything to say. For each
and every object C, not just 1, there is a bijection between pairs of morphisms
(f : C // A, g : C // B) and morphisms 〈f, g〉 : C // A × B of C to
A × B – that is just a slightly different way of stating the definition of the
product.

Solution for I.71 on p. 36: Here is the diagram that exhibits (A, 1A, !) as
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a product of A and 1:

A

1

!

��

C Af___ //___C

1

!

��??????????????

A

C

??

f

��������������
A

A

OO

1A

Solution for I.72 on p. 36: To verify that every point p : 1 // C is a
monomorphism, consider the diagram

B
g1 //
g2

// 1
p // C

By the definition of a final object any two morphisms g1, g2 : C // 1 are
equal, so certainly pg1 = pg2 ⇒ g1 = g2.

Solution for I.73 on p. 37: If 0 and 0’ are both initial objects, then there
are unique morphisms 0 // 0′ and 0′ // 0. But then the composition 0

// 0′ // 0 must be the unique morphism from 0 // 0, i.e., 10. Equally
well the composition in the other order must be 10′ .

Compare this solution with the solution for exercise I.69 on page 37. The
two were written carefully to make it clear that each can be transformed into the
other by “reversing the arrows”, including exchanging initial and final objects.
In this particular case the proofs look identical, but this is yet another example
of duality which is discussed formally in Section II.1.

Solution for I.74 on p. 37: Here is the diagram that exhibits (A, 1A, !) as
a sum of A and 0:

A

0

OO

!

C Aoo f___ ___C

0

__

!

??????????????

A

C

f

����������������
A

A

1A

��
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Compare this solution with the solution for exercise I.71 on page 36. The
two were written carefully to make it clear that each can be transformed into
the other by “reversing the arrows”, including exchanging sums and products
and initial and final objects. Again this is yet another example of duality which
is discussed formally in Section II.1.

Solution for I.75 on p. 40: Verifying that the morphisms Σni=1Ai
// Πm
j=1Bj

are exactly the “matrices”

M =


f11 f12 · · · f1m

f21 f22 · · · f2m

. . .
fn1 fn2 · · · fnm



where πjMιi = fij is entirely a matter of unwinding the definitions. Given
f : Σni=1Ai

// Πm
j=1Bj we certainly get the matrix M = (fij) with fij =

πjfιi.
In the reverse direction if we are given an n × m-matrix (fij) of mor-

phisms fij : Ai // Bj , then for each fixed i we get the unique morphism
〈fi1, · · · , fim〉 : Ai // Πm

j=1Bj whose composition with πj is fij . And from
all of those we get the unique morphism f (shown in “matrix” form in the
following diagram) whose composition with ιi is 〈fi1, · · · , fim〉.

Πm
j=1Bj Bjπj

//

Σni=1Ai

Πm
j=1Bj

0BBBBBB@
〈f11, f12, · · · , f1m〉
〈f21, f22, · · · , f2m〉

. . .
〈fn1, fn2, · · · , fnm〉

1CCCCCCA
���
�
�
�
�
�

Σni=1Ai Aioo ιi
Ai

Bj

fij

��

Ai

Πm
j=1Bj

〈fi1,··· ,fim〉

yys
s

s
s

s
s

s
s

s
s

s
s

Equally well, the n×m-matrix (fij) of morphisms fij : Ai // Bj , then for
each fixed j we get the unique morphism [f1j , · · · , fnj ] : Σni=1Ai

// Bj whose
composition with ιi is fij . And from all of those we get the unique morphism f
(shown in “matrix” form in the following diagram) whose composition with πj
is [f1j , · · · , fnj ]. Notice as a result that the two morphisms from ΣAi // ΠBj
defined here and above are equal.
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Πm
j=1Bj Bjπj

//

Σni=1Ai

Πm
j=1Bj

〈0BBBBBB@
f11,
f12

...
fn1

1CCCCCCA,
0BBBBBB@
f12,
f22

...
fn2

1CCCCCCA,··· ,
0BBBBBB@
f1m,
f2m

...
fnm

1CCCCCCA
〉

���
�
�
�
�
�

Σni=1Ai Aioo ιi
Ai

Bj

fij

��

Σni=1Ai

Bj

[f1j ,··· ,fnj ]

%%K
K

K
K

K
K

K
K

K
K

K
K

Solution for I.76 on p. 41: In order to show that I : X + Y // X × Y
corresponds exactly to the inclusion (X×{y0}∪{x0}×Y ) ⊂ X×Y we recall the
construction of the sum of two pointed sets (see I.45): 〈X,x0〉+ 〈Y, y0〉 = 〈X×
{y0}∪{x0}×Y, 〈x0, Y0〉〉, ιX : 〈X,x0〉 // 〈X,x0〉+ 〈Y, y0〉 by ιX(x) = 〈x, y0〉
and ιY : 〈Y, y0〉 // 〈X,x0〉+ 〈Y, y0〉 by ιX(y) = 〈x0, y〉

And what is I?

I(t) =

{
〈t, y0〉 if t ∈ X
〈x0, t〉 if t ∈ Y

which is exactly the desired inclusion.
Now if X and Y are not singletons, then there is x1 ∈ X with x1 6= x0 and

y1 ∈ Y with y1 6= y0. But then (x1, y1) ∈ X × Y , but it is not in the image of
I.

Solution for I.77 on p. 43: Starting with f : A // C and g : B // D
we compute the the matrix f+g by starting with the fact that (f+g)ιA = ιCf
and (f + g)ιB = ιDg. We need πC(f + g)ιA, πC(f + g)ιB , πD(f + g)ιA, and
πD(f + g)ιB . But πC(f + g)ιA = πCιCf = 1Cf = f and πC(f + g)ιB =
πCιDf = 0f = 0. A similar computation for the other two shows that the
matrix is (

f 0
0 g

)
And this is what we previously computed as the matrix of f × g

Solution for I.78 on p. 43: To verify that the matrices of Πn
i=1fi :

⊕n
i=1Ai

// ⊕n
i=1Bi

and Σni=1fi :
⊕n

i=1Ai
// ⊕n

i=1Bi is
f1 0 · · · 0
0 f2 · · · 0

. . .
0 0 · · · fn


is one of those cases where the use of indices makes the computation a little
easier. The ij-entry of the matrix for the product is πi(Πn

k=1fk)ιj which is, by
definition, equal to fiπkιj which is fi when i = j and 0 otherwise.
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Equally well the ij-entry of the matrix for the sum is πi(Σnk=1fk)ιj which
is, by definition, equal to πiιjfj which is fi when i = j and 0 otherwise.

Solution for I.79 on p. 44: In the category of Abelian groups, ∆ : A // A×A
is ∆(a) = (a, a), so (f M g)(a) = [f, g](a, a) = f(a) + g(a). (Recall exer-
cise I.63.) And (fOg)(a) = ∇(f(a), g(a)) = f(a) + g(a).

Solution for I.80 on p. 45: To show that f = 0+f we will use the following
commutative diagram:

A 0
! // 0

B

!

��???????????

A

A

1

??�����������
A⊕A

A

πA

OO 0

0⊕A

ι0

��
A A⊕A∆ // A⊕A 0⊕A

!⊕1 // 0⊕A B
[!,f //]A

A

1

��??????????? A⊕A

A

πA

��
A

0⊕A

ιA

OO

A A
1 // A

B

f

??�����������

Notice that the left two triangle are just exhibiting A ⊕ A as a product,

and showing the definition of ∆. The sequence A ! // 0 ! // B is factoring
0 : A // B. The middle squares exhibit the definition of !⊕1A, and the right
triangle on the right exhibit the definition of [!, f ]. Recall from exercise I.74
that here ιA : A // 0⊕A is an isomorphism.

Now the application of this diagram here is first that [!, f ](! ⊕ 1A)∆ =
f1A1A = f , and second that [!, f ](! ⊕ 1A)∆ = [0, f ]∆ = 0 + f . So f = 0 + f .

Now to get f + 0 = f just interchange the top and bottom of the diagram.

Solution for I.81 on p. 45: For h(f + g) we have:

h(f + g) = h(f M g) by Proposition I.4
= h[f, g]∆ by definition I.49
= [hf, hg]∆ by exercise I.60
= hf M hg by definition I.49
= hf + hg by Proposition I.4

And for (f + g)e we have:

(f + g)e = (fOg)e by Proposition I.4
= ∇〈f, g〉e by definition I.50
= ∇〈fe, ge〉 by exercise I.45
= feOge by definition I.50
= fe+ ge by Proposition I.4
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Solution for I.82 on p. 45: In order to verify that ιAπA+ιBπB = 1A⊕B let’s
look at the matrix of ιAπA + ιBπB . For that we look at the four components:

πA(ιAπA + ιBπB)ιA = πAιAπAιA + πAιBπBιA

= 1A1A + 00
= 1A + 0
= 1A

πA(ιAπA + ιBπB)ιB = πAιAπAιB + πAιBπBιB

= 1A0 + 01B
= 0 + 0
= 0

πB(ιAπA + ιBπB)ιA = πBιAπAιA + πBιBπBιA

= 01A + 1B0
= 0 + 0
= 0

πB(ιAπA + ιBπB)ιB = πBιAπAιB + πBιBπBιB

= 00 + 1B1B
= 0 + 1B
= 1B

So the matrix of ιAπA + ιBπB is the identity matrix. But only the identity
morphism has that matrix!

Solution for I.83 on p. 48: To show that there is a category, MagmaC ,
with objects the magmas in C and as morphisms the magma morphisms, we
have to specify the identity morphisms, the composition and verify the required
identities. Of course the identity morphism for a magma (M,µ) will just be the
identity morphism on the object M which is clearly a magma morphism. And
composition of magma morphisms will just be composition of the morphisms
in C . That composition of two magma morphisms is again a magma morphism
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is clear from

N ×N Nµ
//

M ×M

N ×N

f×f

��

M ×M M
µ // M

N

f

��

P × P Pµ
//

N ×N

P × P

g×g

��

N ×N N
µ // N

P

g

��

and the fact (cf. exercise I.41) that (g × g)(f × f) = (gf × gf). Finally
associativity of composition of magma morphisms and the identities for identity
morphisms follows from associativity of composition of morphisms in C .

Solution for I.84 on p. 49:
If C is any category with finite products, then MagmaC is also category

with finite products. As noted in the text, when M1, . . . , Mn are magmas in
C (with binary operations µ1, . . . , µn), we define a binary operation, µ, on
Πn

1Mi as the composite:

Πn
1Mi ×Πn

1Mi

∼= // Πn
1 (Mi ×Mi)

Πn1 µi // Πn
1Mi

where the isomorphism is a special case of the result in exercise I.37.
To verify this is a product in MagmaC we need to confirm that the pro-

jection morphisms πi : Πn
i=1Mi

// Mi are magma morphisms, and that for
every family of magma morphisms fi : M // Mi, the unique morphism
f = 〈f1, · · · , fn〉 : M // Πn

i=1Mi making the product diagram commute
(which exists because we have the product in C ) is actually a magma mor-
phism.

That each projection πi is a magma homomorphism is seen by inspecting
the following diagram:

Πn
j=1(Mj ×Mj) Mi ×Mi

//

Πn
j=1Mj ×Πn

j=1Mj

Πn
j=1(Mj ×Mj)

∼=

��

Πn
j=1Mj ×Πn

j=1Mj

Mi ×Mi

πi×πi

''OOOOOOOOOOOOOOO

Πn
j=1Mj Miπi

//

Πn
j=1(Mj ×Mj)

Πn
j=1Mj

Πµj

��

Πn
j=1(Mj ×Mj) Mi ×Mi

πi // Mi ×Mi

Mi

µi

��

The top triangle is commutative because the isomorphism is exactly the unique
morphism that makes it commute. While the bottom square is commutative
because this is exactly the definition of Πµj .
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To see that f =< f1, · · · , fn > is a magma morphism we need to show the
following diagram commutes:

M ×M Πn
j=1Mj ×Πn

j=1Mj

f×f //M ×M

Πn
j=1(Mj ×Mj)

M ×M

Πn
j=1(Mj ×Mj)

Πn
j=1Mj ×Πn

j=1Mj

Πn
j=1(Mj ×Mj)

∼=

��

M ×M

M

µ

��

Πn
j=1(Mj ×Mj)

Πn
j=1Mj

Πµj

��
M Πn

j=1Mj

f //MM Πn
j=1MjΠn
j=1Mj

To show that two morphisms into the product Πn
j=1Mj are equal we need

to show their compositions with the projections into each factor are equal. To
see that let’s add a few more morphisms:

M ×M Πn
j=1Mj ×Πn

j=1Mj

f×f //M ×M

Πn
j=1(Mj ×Mj)

F

**TTTTTTTTTTTTTTTTTTTTTTT Πn
j=1Mj ×Πn

j=1Mj

Πn
j=1(Mj ×Mj)

∼=

��

M ×M

M

µ

��

Πn
j=1(Mj ×Mj)

Πn
j=1Mj

Πµj

��
M Πn

j=1Mj

f //M

Mi

fi

**TTTTTTTTTTTTTTTTTTTTTTTTTTTT Πn
j=1Mj

Mi

πi

��

(where we’ve written F for 〈f1 × f1, · · · , fn × fn〉 to make the diagram less
cluttered.) The top triangle commutes by the definition of the isomorphism,
while the bottom triangle commutes by the definition of f . So we are left to
verify that πi(Πµj)F = fiµ. But πi(Πµj)F = µiπiF by definition of Πµj , and
this in turn is equal to µi(fi × fi) by definition of F . And finally this is equal
to fiµ because fi is a magma morphism by hypothesis.

Solution for I.85 on p. 49: As with most everything here, verification that
for M and N magmas and h : M // N a magma morphism, then Hom(C, h)
is a magma homomorphism is just a matter of unwinding the definitions. And
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as usual a commutative diagram helps:

C M ×M
〈f,g〉 //C

N ×N

〈hf,hg〉
��??????????? M ×M

N ×N
��

N ×N Nµ
//

M ×M

N ×N

h×h

��

M ×M M
µ // M

N

h

��

Hom(C, h)(f M g) = h(f M g)
= hµ〈f, g〉
= 〈f, g〉(h× h)µ
= 〈hf, hg〉µ
= hf M hg

= Hom(C, h)(f) M Hom(C, h)(g)

Solution for I.86 on p. 49: Verifying that for any magma M and h any
morphism at all Hom(h,M) is a magma homomorphism is even simpler than
the last exercise:

Hom(h,M)(f M g) = (f M g)h
= µ〈f, g〉h
= µ〈fh, gh〉
= fh M gh

= Hom(h,M)(f) M Hom(h,M)(g)

Solution for I.87 on p. 51: To show that there is a category, ComagmaC ,
with objects the comagmas in C and as morphisms the comagma morphisms,
we have to specify the identity morphisms, the composition and verify the
required identities. Of course the identity morphism for a comagma (C, ν) will
just be the identity morphism on the object C which is clearly a comagma
morphism. And composition of comagma morphisms will just be composition
of the morphisms in C . That composition of two comagma morphisms is again
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a comagma morphism is clear from

D +D Doo
ν

C + C

D +D

OO

f+f

C + C Coo ν
C

D

OO

f

E + E Eoo
ν

D +D

E + E

OO

g+g

D +D Doo D

E

OO

g

and the fact (cf. exercise I.55) that (f + f)(g + g) = (fg + fg). Finally asso-
ciativity of composition of comagma morphisms and the identities for identity
morphisms follows from associativity of composition of morphisms in C .

Solution for I.88 on p. 51: To verify that h : D // C a comagma
morphism, implies Hom(h,X) is a magma homomorphism is just a matter of
unwinding the definitions. And as usual a commutative diagram helps:

X C + Coo [f,g]
X

D +D

__

[hf,hg]
??????????? C + C

D +D

OO

D +D Doo
ν

C + C

D +D

OO

h+h

C + C Coo ν
C

D

OO

h

Hom(h,X)(fOg) = (fOg)h
= [f, g]νh
= ν(h+ h)[f, g]
= ν[hf, hg]
= hfOhg

= Hom(h,X)(f)OHom(h,X)(g)

Compare this solution with that of I.85. This is yet another example of
duality, though now “reversing arrows” results not only in interchanging sums
and products, but also interchanging magmas and comagmas.

Solution for I.89 on p. 51: Verifying that for any comagma C and h any
morphism at all Hom(C, h) is a magma homomorphism is even simpler than
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the last exercise:

Hom(C, h)(fOg) = h(fOg)
= h[f, g]ν
= [hf, hg]ν
= hfOhg

= Hom(C, h)(f)OHom(C, h)(g)

Compare this solution with that of exercise I.86. This is yet another exam-
ple of duality, though now “reversing arrows” results not only in interchanging
sums and products, but also interchanging magmas and comagmas.

Solution for I.90 on p. 52: The exercise here is to show that if C is any
category with finite sums, then ComagmaC is also category with finite sums.

As noted in the text, when C1, . . . , Cn are comagmas in C (with co-
operations ν1, . . . , νn), we can define a co-operation, ν, on Σn1Ci as the com-
posite:

Σn1Ci
Σn1 νi // Σn1 (Ci + Ci)

∼= // Σn1Ci + Σn1Ci

where the isomorphism is a special case of the result in exercise I.52.
To verify this is a sum in ComagmaC we need to confirm that the injection

morphisms ιi : Ci // Σni=1Ci are comagma morphisms, and that for every
family of comagma morphisms fi : C // Ci, the unique morphism f =
[f1, · · · , fn] : C // Σni=1Ci making the sum diagram commute (which exists
because we have the sum in C ) is actually a comagma morphism.

That each injection ιi is a comagma homomorphism is seen by inspecting
the following diagram:

Σnj=1(Cj + Cj) Ci + Cioo

Σnj=1Cj + Σnj=1Cj

Σnj=1(Cj + Cj)

OO

∼=

Σnj=1Cj + Σnj=1Cj

Ci + Ci

gg
ιi+ιi

OOOOOOOOOOOOOOO

Σnj=1Cj Cioo
ιi

Σnj=1(Cj + Cj)

Σnj=1Cj

OO

Σνj

Σnj=1(Cj + Cj) Ci + Cioo ιi
Ci + Ci

Ci

OO

νi

The top triangle is commutative because the isomorphism is exactly the unique
morphism that makes it commute. While the bottom square is commutative
because this is exactly the definition of Σνj .

To see that f = [f1, · · · , fn] is a comagma morphism we need to show the
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following diagram commutes:

C + C Σnj=1Cj + Σnj=1Cj
oo f+f

C + C

Σnj=1(Cj + Cj)

C + C

Σnj=1(Cj + Cj)

Σnj=1Cj + Σnj=1Cj

Σnj=1(Cj + Cj)

OO

∼=

C + C

C

OO

ν Σnj=1(Cj + Cj)

Σnj=1Cj

OO

Σνj

C Σnj=1Cj
oo f

CC Σnj=1CjΣnj=1Cj

To show that two morphisms from the sum Σnj=1Cj are equal we need to
show their compositions with the injections from each summand are equal. To
see that let’s add a few more morphisms:

C + C Σnj=1Cj + Σnj=1Cj
oo f+f

C + C

Σnj=1(Cj + Cj)

jj

F

TTTTTTTTTTTTTTTTTTTTTTTT Σnj=1Cj + Σnj=1Cj

Σnj=1(Cj + Cj)

OO

∼=

C + C

C

OO

ν Σnj=1(Cj + Cj)

Σnj=1Cj

OO

Σνj

C Σnj=1Cj
oo f

C

Ci

jj

fi

TTTTTTTTTTTTTTTTTTTTTTTTTTTTT Σnj=1Cj

Ci

OO

ιi

(where we’ve written F for [f1 + f1, · · · , fn + fn] to make the diagram less
cluttered.) The top triangle commutes by the definition of the isomorphism,
while the bottom triangle commutes by the definition of f . So we are left to
verify that F (Σνj)ιi = νfi.

But F (Σνj)ιi = Fιiνi by definition of Σνj , and this in turn is equal to
(fi + fi)νi by definition of F . And finally this is equal to νfi because fi is a
comagma morphism by hypothesis.

Compare this solution with that of exercise I.84. This is yet another exam-
ple of dual proofs of dual theorems. In particular this solution was carefully
produced by taking the solution of exercise I.84 and making exactly the changes
necessary to produce the dual proof.
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Solution for I.91 on p. 56: The proof of parts (4.) – (6.) of Proposition I.8
were left as an exercise because they are dual to parts (1.) – (3.). Here are the
dual proofs:

For (4.) note that [ι1, 0] M= ι1 + 0 = ι1 and [0, ι2] M= 0 + ι2 = ι2 as 0 is
the identity for +, the induced binary operation on Hom(A, •)

For (5.) we see that [M, 1] M=M +1, while [1,M] M= 1+ M. But we know
that + is commutative, so M +1 = 1+ M.

For (6.) we observe that M t is also a binary operation on A for which 0
is the identity in the monoid Hom(A, •). But such a binary operation on A is
unique, so M t =M.

Solution for I.92 on p. 58: To show that there is a category, MonoidC ,
with objects the monoids in C and as morphisms the monoid morphisms, we
have to specify the identity morphisms, the composition and verify the required
identities. Of course the identity morphism for a monoid (M,µ) will just be the
identity morphism on the object M which is clearly a monoid morphism. And
composition of monoid morphisms will just be composition of the morphisms
in C . The only work to be done is verification that composition of two monoid
morphisms is again a monoid morphism. The first part of that was done in
verifying the existence of MagmaC in the solution to exercise I.83. For the
second part suppose f : M // N and g : N // P are monoid morphisms,
so in particular fζM = ζN and gζN = ζP , then gfζM = ζP and so gf is a
monoid morphism as well.

That identity morphisms behave as required and that composition is asso-
ciative is true in MonoidC just because it is true in C .

Solution for I.93 on p. 58: In exercise I.92 you displayed the category of
monoids in C , MonoidC . For the category of commutative monoids in C there
is really nothing more to say – the identities, law of composition and various
identities all come from those same items in MonoidC . Indeed this is just one
of many examples of a full subcategory defined by a class of objects in some
category (see section I.1.2, especially definition I.12.)

Solution for I.94 on p. 59: If C is any category with finite products,
then MonoidC is also a category with finite products. Much of the work of
proving this has already been done in exercise I.84. What remains to be done is
(1.) check that when M1, . . . , Mn are monoids, the product binary operation
on the magma Πn

i=1Mi also satisfies the associative law (see definition I.59);
(2.) define an identity ζ : 1 // Πn

i=1Mi (including verifying the identity
law holds); (3.) verify that each of the projection morphisms πi : Πn

i=1Mi
// Mi preserves the identity; and (4.) show that for every family of monoid

morphisms fi : M // Mi, the unique magma morphism f = 〈f1, · · · , fn〉 : M
// Πn
i=1Mi making the product diagram commute respect the identity.

(1.) Taking M = Πn
i=1Mi the associative law asserts the following diagram



C.1. SOLUTIONS FOR CHAPTER I 293

is commutative:

M ×M Mµ
//

M ×M ×M

M ×M

〈µ,1〉

��

M ×M ×M M ×M
〈1,µ〉 // M ×M

M

µ

��

As always, to verify that two morphisms into a product are equal it is
enough to verify that their composites with all of the projection morphisms
are equal. So we will verify that the following diagrams are commutative:

Mi ×Mi ×Mi Mi ×Mi1×µi
//

M ×M ×M

Mi ×Mi ×Mi

πi×πi×πi

��

M ×M ×M M ×M
1×µ // M ×M

Mi ×Mi

πi×πi

��
Mi ×Mi Miµi

//

M ×M

Mi ×Mi

πi×πi

��

M ×M M
µ // M

Mi

πi

��

Mi ×Mi ×Mi Mi ×Miµi×1
//

M ×M ×M

Mi ×Mi ×Mi

πi×πi×πi

��

M ×M ×M M ×M
µ×1 // M ×M

Mi ×Mi

πi×πi

��
Mi ×Mi Miµi

//

M ×M

Mi ×Mi

πi×πi

��

M ×M M
µ // M

Mi

πi

��

Notice that the only differences in the diagrams are the 1 × µ and 1 × µi
in the top diagram versus µ× 1 and µi × 1 in the bottom. But we know that
for all i the bottom rows of the two diagrams are equal because the binary
operations µi are associative. So if the diagrams are commutative, it follows
that the top rows are equal and so µ is also associative.

In the top diagram, the right hand square is commutative by the definition
of µ = Πn

i=1µi. For the left hand square note that (πi×πi)(1×µ) = πi×(πiµ) =
πi × (µi(πi × πi)) = (1× µi)(πi × πi × πi)

The lower diagram is commutative by essentially the same argument.
(2.) With the identity on M defined as ζ = 〈ζ1, · · · , ζn〉 : 1 // Πn

i=1Mi,
we want to verify that the following two triangles commute.

M × 1 M ×M
1M×ζ //M × 1

M

π1

$$JJJJJJJJJJJJJJ M ×M

M

µ

��

M ×M 1×Moo ζ×1M
M ×M

M
��

1×M

M

π2

zztttttttttttttt

Again it is enough to verify that their composites with all of the projec-
tion morphisms are equal. So we first note that the following diagrams are
commutative:
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Mi × 1 Mi ×Mi1×ζi
//

M × 1

Mi × 1

πi×1

��

M × 1 M ×M
1×ζ // M ×M

Mi ×Mi

πi×πi

��
Mi ×Mi Miµi

//

M ×M

Mi ×Mi

πi×πi

��

M ×M M
µ // M

Mi

πi

��

Mi × 1 Mi ×Miζi×1
//

M × 1

Mi × 1

πi×1

��

M × 1 M ×M
ζ×1 // M ×M

Mi ×Mi

πi×πi

��
Mi ×Mi Miµi

//

M ×M

Mi ×Mi

πi×πi

��

M ×M M
µ // M

Mi

πi

��

and observe that the bottom row in both cases is π1 : Mi × 1 // Mi because
ζi is the identity for µi. But that says for every i, πiµ(1×ζ) = π1(πi×1) which
in turn is equal to πiπ1 and so µ(1× ζ) = π1.

(3.) To verify that each of the projection morphisms πi : Πn
i=1Mi

// Mi

preserves the identity is just to note the definition of ζ: πiζ = ζi.
(4.) And finally verifying that f = 〈f1, · · · , fn〉 always respects the identity

is just noting fζ = 〈f1ζ1, · · · , fnζn〉 = 〈ζ1, · · · , ζn〉 = ζ.

Solution for I.95 on p. 59: Suppose h : M // N is a monoid mor-
phism in C and C is any object, then in exercise I.85 you showed that h∗ from
Hom(C,M) to Hom(C,N) is a magma morphism. It is a monoid homomor-
phism because hζ = ζ implies that h∗ζ∗ = ζ∗, i.e., h∗(ζ) = ζ where these last
ζ’s are the identities in Hom(C,M) and Hom(C,N).

Solution for I.96 on p. 59: Considering h : D // C and the induced
function h∗ : Hom(C,M) // Hom(D,M) for a monoid M in C , half the
work to show h∗ is a monoid homomorphism was done in exercise I.86. What
remains is to see that h∗(ζ) = ζ and that is just because !h =! where the !’s
are the unique morphisms to the final object.

Solution for I.97 on p. 61: Most of the work to prove Theorem I.5 was done
in proving Theorem I.4. From that we have the unique morphisms so that (M ,
µ, ζ) is a monoid inducing the given monoid structure in Hom(C,M). All that
remains is to prove the binary operation commutative. which means that the
diagram

M ×M

M

µ

��???????????M ×M M ×Mt // M ×M

M

µ

�������������
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is commutative. Recall that µ = π1Oπ2 and t = 〈π2, π1〉 so µt = π2Oπ1. By
hypothesis O is commutative, so π1Oπ2 = π2Oπ1 and µt = µ.

Solution for I.98 on p. 62: To show that there is a category, ComonoidC ,
with objects the comonoids in C and as morphisms the comonoid morphisms,
we have to specify the identity morphisms, the composition and verify the re-
quired identities. Of course the identity morphism for a comonoid (C, ν) will
just be the identity morphism on the object C which is clearly a comonoid
morphism. And composition of comonoid morphisms will just be composition
of the morphisms in C . The only work to be done is verification that compo-
sition of two comonoid morphisms is again a comonoid morphism. The first
part of that was done in verifying the existence of ComagmaC in the solution
to exercise I.87. For the second part suppose f : C // D and g : D // E
are comonoid morphisms, so in particular ηCf = ηD and ηDg = ηE , then
ηCgf = ηE and so gf is a comonoid morphism as well.

That identity morphisms behave as required and that composition is asso-
ciative is true in ComonoidC just because it is true in C .

Compare this solution to the solution of exercise I.92. This is still another
example of dual proofs of dual theorems. In particular this solution was care-
fully produced by taking the solution of exercise I.92 and making exactly the
changes necessary to produce the dual proof.

Solution for I.99 on p. 62: In exercise I.98 you displayed the category of
comonoids in C , ComonoidC . For the category of co-commutative comonoids
in C there is really nothing more to say – the identities, law of composition
and various identities all come from those same items in ComonoidC . Indeed
this is just one of many examples of a full subcategory defined by a class of
objects in some category (see section I.1.2, especially definition I.12.)

Compare this solution to the solution of exercise I.93. This time the two
proofs are nearly identical, but this is still an example of dual proofs of dual
theorems. In particular this solution was produced by taking the solution
of exercise I.92 and following using the meaning of “dual” to make exactly
the changes necessary to produce the dual proof, which in this case was just
changing a few words and symbols.

Solution for I.100 on p. 63: If C is any category with finite sums, then
ComonoidC is also a category with finite sums. Much of the work of proving
this has already been done in exercise I.90. What remains to be done is (1.)
check that when C1, . . . , Cn are monoids, the co-operation on the magma
Σni=1Ci also satisfies the associative law (see definition I.62); (2.) define an
co-unit η : Σni=1Ci

// 1 (including verifying the co-unit law holds); (3.)
verify that each of the inclusion morphisms ιi : Ci // Σni=1Ci preserves the
co-unit; and (4.) show that for every family of comonoid morphisms fi : Ci

// C, the unique co-magma morphism f = [f1, · · · , fn] : Σni=1Ci
// C

making the sum diagram commute respect the identity.
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1. Taking C = Σni=1Ci the co-associative law asserts the following diagram
is commutative:

C + C Coo
ν

C + C + C

C + C

OO

[ν,1]

C + C + C C + Coo [1,ν]
C + C

C

OO

ν

As always, to verify that two morphisms from a sum are equal it is enough
to verify that their composites with all of the inclusion morphisms are
equal. So we will verify that the following diagrams are commutative:

Ci + Ci + Ci Ci + Cioo
1+νi

C + C + C

Ci + Ci + Ci

OO

ιi+ιi+ιi

C + C + C C + Coo 1+ν
C + C

Ci + Ci

OO

ιi+ιi

Ci + Ci Cioo
νi

C + C

Ci + Ci

OO

ιi+ιi

C + C Coo ν
C

Ci

OO

ιi

Ci + Ci + Ci Ci + Cioo
νi+1

C + C + C

Ci + Ci + Ci

OO

ιi+ιi+ιi

C + C + C C + Coo ν+1
C + C

Ci + Ci

OO

ιi+ιi

Ci + Ci Cioo
νi

C + C

Ci + Ci

OO

ιi+ιi

C + C Coo ν
C

Ci

OO

ιi

Notice that the only differences in the diagrams are the 1 + ν and 1 + νi
in the top diagram versus ν + 1 and νi + 1 in the bottom. But we know
that for all i the bottom rows of the two diagrams are equal because the
co-operations νi are co-associative. So if the diagrams are commutative,
it follows that the top rows are equal as well so ν is also co-associative.

In the top diagram, the right hand square is commutative by the definition
of ν = Σni=1νi. For the left hand square note that (ιi + ιi)(1 + ν) =
ιi + (ιiν) = ιi + (νi(ιi + ιi)) = (1 + νi)(ιi + ιi + ιi)

The lower diagram is commutative by essentially the same argument.

2. With the co-unit on C defined as η = [η1, · · · , ηn] : Σni=1Ci
// 0, we

want to verify that the following two triangles commute.

C + 0 C + Coo 1C+η
C + 0

C

dd

ι1

JJJJJJJJJJJJJJ C + C

C

OO

ν

C + C 0 + C
η+1C //C + C

C

OO 0 + C

C

::

ι2

tttttttttttttt
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Again it is enough to verify that their composites with all of the injection
morphisms are equal. So we first note that the following diagrams are
commutative:

Ci + 0 Ci + Cioo
1Ci+ηi

C + 0

Ci + 0

OO

ιi+1Ci

C + 0 C + Coo 1C+η
C + C

Ci + Ci

OO

ιi+ιi

Ci + Ci Cioo
νi

C + C

Ci + Ci

OO

ιi+ιi

C + C Coo ν
C

Ci

OO

ιi

Ci + 1 Ci + Cioo
ηi+1Ci

C + 1

Ci + 1

OO

ιi+1Ci

C + 1 C + Coo η+1
C + C

Ci + Ci

OO

ιi+ιi

Ci + Ci Cioo
νi

C + C

Ci + Ci

OO

ιi+ιi

C + C Coo ν
C

Ci

OO

ιi

and observe that the bottom row in both cases is ι1 : Ci // Ci + 0
because ηi is the co-unit for νi. But that says for every i, ιiν(1C + η) =
ι1(ιi + 1Ci) which in turn is equal to ιiι1 and so ν(1 + η) = ι1.

3. To verify that each of the inclusion morphisms ιi : Ci // Σni=1Ci pre-
serves the co-unit is just to note the definition of η as the unique morphism
with ιiη = ηi.

4. And finally verifying that f = [f1, · · · , fn] always respects the co-unit is
just noting fη = [f1η1, · · · , fnηn] = [η1, · · · , ηn] = η.

Compare this solution to the solution of exercise I.94. This is still another
example of dual proofs of dual theorems. In particular this solution was care-
fully produced by taking the solution of exercise I.94 and making exactly the
changes necessary to produce the dual proof. In particular products were re-
placed by sums, product projections by sum injections, monoids by comonoids,
and – the root of all the changes – the direction of all morphisms was reversed.
This shows most clearly in all of the diagrams.

Solution for I.101 on p. 63: Suppose h : C // D is a comonoid morphism
in C and A is any object, then in exercise I.88 you showed that h∗ : Hom(D,A)

// Hom(C,A) is a magma morphism. To show that it is a monoid homomor-
phism we just note that ηh = η implies that η∗h∗ = η∗, i.e., h∗(ζ) = ζ where
these last ζ’s are the identities in Hom(D,A) and Hom(C,A).

Compare this to the solution of exercise I.96. Once again this is a dual
proof of a dual theorem.

Solution for I.102 on p. 63: To verify that for every comonoid C in C and ev-
ery morphism h : A // B the induced function h∗ : Hom(C,A) // Hom(C,B)
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is actually a monoid homomorphism was half done in exercise I.89. What re-
mains is to see that h∗(ζ) = ζ and that is just because h! =! where the !’s are
the unique morphisms from an initial object.

Solution for I.103 on p. 64: Proof: In order to prove Theorem I.6 note
the first part of this is Theorem I.2 which gives us the unique co-operation ν
on C inducing the binary operation on Hom(C, •).

To get the co-unit, η : C // 0, note that if it exists it is in Hom(C, 0)
and it must be the identity element in that monoid. So let us define η to
be the identity element in Hom(C, 0) and prove that it is also the co-unit for
the co-operation ν. The next thing to notice is that as 0 is an initial object,
for every object D the unique morphism ! : 0 // D induces a monoid
homomorphism !∗ : Hom(C, 0) // Hom(C,D) which in particular takes the
identity element in Hom(C, 0) to the identity element in Hom(C,D), i.e., !η is
the identity element in Hom(C,D).

Applying this to ι2 : 0 // C + 0 we first notice that ι2 is really !, so ι2η
is the identity element in Hom(C,C + 0). And (1C + η)ν = ι2ηOι1 = ι1.

The argument for the other half of η being a co-unit is essentially the same
and is left to the reader.

To verify the co-associativity of ν we need to make the diagram in the
definition a bit more fulsome:

C + C

C

__

ν

???????????C + (2 · C) C + Coo 1C+ν

3 · C

C + C

tt
[ι1,(ι2Oι3)]

jjjjjjjjjjjjjjjjjjjjjjjjjj
3 · C

C + (2 · C)

��

[ι1,[ι2,ι3]]

����������
3 · C

(2 · C) + C

__

[[ι1,ι2],ι3]
???????????3 · C

C + C

jj

[(ι1Oι2),ι3]

TTTTTTTTTTTTTTTTTTTTTTTTTT

(2 · C) + C C + Coo
ν+1C

C + C

C

��
ν

�����������

And finally ν[ι1, ι2Oι3] = ι1O(ι2O = (ι1Oι2)ι3), while ν[(ι1Oι2), ι3]Oι3. But
these two are equal because the binary operation O on Hom(C3, C) is associa-
tive.

Compare this solution to the proof of Theorem I.4. This is yet one more
example of a dual proofs of a dual theorem. In particular this solution was
carefully produced by taking the proof of Theorem I.4 and making exactly the
changes necessary to produce the dual proof. In particular products were re-
placed by sums, product projections by sum injections, monoids by comonoids,
and – the root of all the changes – the direction of all morphisms was reversed.
This shows most clearly in the rather complicated diagram.

Solution for I.104 on p. 64: Most of the work to prove Theorem I.7 was
done in proving Theorem I.6. From that we have the unique morphisms so that
(C, ν, η) is a comonoid inducing the given monoid structure in Hom(C, •). All
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that remains is to prove the co-operation is co-commutative. which means that
the diagram

C + C

C

__

ν
???????????C + C C + Coo t

C + C

C

??

ν

�����������

is commutative. Recall that ν = ι1 M ι2 and t = [ι2, ι1] so νt = ι2 M ι1. By
hypothesis M is commutative, so ι1 M ι2 = ι2 M ι1 and νt = ν.

Compare this to the solution of exercise I.97. We have yet another example
of a dual proof of a dual theorem.

Solution for I.105 on p. 65: To show that there is a category, GroupC ,
with objects the groups in C and as morphisms the group morphisms, we have
to specify the identity morphisms, the composition and verify the required
identities. Of course the identity morphism for a group (G, µ, ζ, ι) will just be
the identity morphism on the object M which is clearly a group morphism. And
composition of group morphisms will just be composition of the morphisms in
C . The only work to be done is verification that composition of two group
morphisms is again a group morphism. Most of that was done in verifying the
existence of MonoidC in the solution to exercise I.92. The only part remaining
is to show that when f : G // H and g : H // K are group morphisms, so
in particular fιG = ιHF and gιH = ιKg, then gfιG = ιK and so gf is a group
morphism as well.

That identity morphisms behave as required and that composition is asso-
ciative is true in GroupC just because it is true in C .

Solution for I.106 on p. 66: To show that there is a category, AbC , with
objects the commutative (or Abelian) groups in C and as morphisms the group
morphisms, is essentially trivial following exercise I.105, just as exercise I.93
was trivial after exercise I.92.

The identities, law of composition and various identities in AbC all come
from those same items in GroupC . Indeed this is just one of many exam-
ples of a full subcategory defined by a class of objects in some category (see
section I.1.2, especially definition I.12.)

Solution for I.107 on p. 67: If C is any category with finite products,
then MonoidC is also a category with finite products as was confirmed in
exercise I.94. So if (Gi, µi, ζi, ιi) is a family of objects in GroupC , then (Gi,
µi, ζi) is a family of objects in MonoidC with a product (G, µ, ζ) (including
projections πi : G // Gi in MonoidC ) To get the product in GroupC we
need to do the following:

• Define an inverse ι : G // G.
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Which We do by defining ι = Πn
i=1ιi. (Remember this is the same as

saying πiι = ιiπi which is what we will use below.) Now we must verify
that the following diagrams commute.

1 G
ζ

//

G

1

!

��

G G×G
〈1G,ι〉 // G×G

G
��
G 1oo

ζ

G×G

G

µ

��

G×G Goo 〈ι,1G〉
G

1

!

��

As always, to verify that two morphisms into a product are equal it is
enough to verify that their composites with all of the projection mor-
phisms are equal. But for every i from 1 to n we have

πimu〈1G, ι〉 = µiπi〈〈π1, π1〉, · · · , 〈πn, πn〉〉〈1G, ι〉
= µi〈πi, πi〉〈1G, ι〉
= µi〈πi1G, πiι〉
= µi〈1Giπi, ιiπi〉
= µi〈1Gi , ιi〉〈πi, πi〉

πiζ! = ζi! < πi, πi〉

and so µ〈1G, ι〉 = ζ! which shows the left square commutes. The proof
that the right square commutes is a slight rearrangement of this.

• To verify that each of the projection morphisms πi : Πn
i=1Gi

// Gi
commutes with the inverse morphism is just to note the definition of ι:
πiι = ιiπi.

• And finally verifying that f = 〈f1, · · · , fn〉 always commutes with the
inverse is just noting fι = 〈f1ι1, · · · , fnιn〉 = 〈ι1f1, · · · , ιn fn〉 = ιf .

Solution for I.108 on p. 67: To verify that ι∗ is indeed the inverse on
Hom(C,G) we check that for each f ∈ Hom(C,G) we have

fOι∗(f) = µ〈f, ι∗(f)〉
= µ∗(〈(1G)∗(f), ι∗(f)〉
= µ∗〈(1G)∗, ι∗〉(f)
= ζ∗!∗(f)
= ζ∗(∗)
= e the identity in Hom(C,G)

The check that ι∗(f)Of = e is essentially the same.
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Solution for I.109 on p. 67: Suppose h : G // H is a group morphism in
C and C is any object, then, forgetting the inverse, h is a monoid morphism or
even, forgetting the identity, just a magma morphism. And in exercise I.95 you
showed that h∗ from Hom(C,G) to Hom(C,H) is a monoid morphism (and that
in turn was based on exercise I.85 which shows h∗ is a magma homomorphism.)
Now to complete the proof that h∗ is a group homomorphism just note that
hι = ιh implies h∗ι∗ = ι∗h∗.

Solution for I.110 on p. 68: Considering h : D // C and the induced
function h∗ : Hom(C,G) // Hom(D,G) for a groupG in C , most of the work
to show h∗ is a group homomorphism was done in exercise I.96 showing h∗ is a
monoid homomorphism (and which in turn was based on exercise I.86 showing
h∗ is a magma homomorphism.) What remains is to see that h∗ι∗ = ι∗h∗ which
follows immediately from hι = ιh.

Solution for I.111 on p. 68: To prove Theorem I.8 we first note that
Theorem I.8 gives most of the result, namely the monoid (G, µ, ζ) inducing
the monoid structure in Hom(•, G). What remains is to define the inverse
morphism ι : G // G and verify that it induces the inverse operation on
Hom(•, G).

By hypothesis, Hom(G,G) is a group so in particular 1G has an inverse
with regard to this group operation and we will take this to be the inverse on
G and so write it as ι. So we have 1GOι = e = ιO1G (e being the identity for
the group Hom(G,G).)

For the induced operation note that for f : C // G we know that f∗(ι) is
the inverse of f∗(1G) = f . But f∗(ι) = ιf = ι∗(f), so ι does induce the inverse
operation on Hom(C,G).

C.2 Solutions for Chapter II

Solution for II.1 on p. 73: To verify that C / ∼ is a category we note that
we have identified the objects, the morphisms, the identity morphisms and
composition of morphisms. The requirement that f ∼ g implies f and g have
the same domain and codomain guarantees that the domain and codomain of
an equivalence class of morphisms is well defined. And the requirement that
f ∼ g and h ∼ k implies hf ∼ kg. guarantees both the proper behavior of
identity morphisms and associativity of composition follow from those facts in
C .

Solution for II.2 on p. 73: If A and B are two categories, the objects of
A ×B are pairs of objects from A and B respectively, while the morphisms
are similar pairs of morphisms.

To verify that A ×B is indeed a category we note that we while we have
objects and morphisms, we need to identify domains and codomains, identity
morphisms and compositions, then check that the appropriate identities hold.
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We define the domain of (f : A1
// A2, g : B1

// B2) to be (A1,
B1), and the codomain to be (A2, B2), so (f, g) : (A1, B1) // (A2, B2).
The identity morphism on (A,B) is taken as (1A, 1B), and composition of
(f, g) : (A1, B1) // (A2, B2) with (h, k) : (A2, B2) // (A3, B3) is defined to
be (hf, kg) : (A1, B1) // (A3, B3).

The identities (1A1 , 1B1)(f, g) = (f, g) = (f, g)(1A2 , 1B2) and (p, q)((h, k)(f, g)) =
((p, q)(h, k))(f, g) follow from the corresponding identities in A and B.

Solution for II.3 on p. 74: To verify that Σi∈ICi, as defined in II.6, is
actually a category observe that when (f, i) : (C, i) // (D, i) and (g, i) :
(D, i) // (E, i) are morphisms in Σi∈ICi their composition is (gf, i) : (C, i)

// (E, i) and this is associative because composition is associative in each
Ci. The identity morphism on (C, i) is (1C , i) and this has the properties of an
identity morphism because 1C is the identity morphism on C.

Solution for II.4 on p. 75: No solution is given here. As mentioned in the
exercise “the answer in each case is in the article for the given category”.

Solution for II.5 on p. 76:

1. Group is based on Set – A group is a set together with a binary op-
eration that is associative, has an identity and where every element has
an inverse, so the underlying set is just gotten by ignoring the binary
operation. Similarly a group homomorphism is a function between the
corresponding sets that behaves properly with respect to the binary op-
eration, to the underlying function is just that function. Checking the
consistency conditions is immediate.

2. Group is based on Monoid – A group is equally well a monoid where
every element has an inverse, so the underlying monoid of a group is
just the group, forgetting the extra properties. Additionally a group
homomorphism is just a monoid homomorphism between groups, so the
underlying homomorphism is just itself. Again checking the consistency
condition is immediate.

3. Monoid based on Magma – A monoid is a magma where the binary
operation is associative and has an identity, so the underlying magma is
just the monoid, forgetting the extra properties. Additionally a monoid
homomorphism is just a magma homomorphism between monoids that
takes identity to identity, so the underlying homomorphism is just itself.
Again checking the consistency condition is immediate.

4. When C is a category with finite products we have the category GroupC

which is based on C : For each object (G, µ, ζ, ι) in GroupC , the
underlying object U(G,µ, ζ, ι) in C is G and each group morphism is
just a morphism in C anyway (for which certain diagrams commute).
Checking the consistency conditions is clear and immediate.
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5. Pretty much the same, when C is a category with finite products, MagmaC

is based on C : For each object (M,µ) in MagmaC , the underlying object
in C is, of course, M and for each magma morphism f the corresponding
morphism U(f) is just f in C . Checking the consistency conditions is
again immediate.

6. Again in just the same way, when C is a category with finite products,
MonoidC is based on C : For each object (M,µ, ζ) in MonoidC , the un-
derlying object in C is, of course, M and for each monoid morphism f the
corresponding morphism U(f) is just f in C . Checking the consistency
conditions is immediate.

7. And when C is a category with finite products so that there is both
MonoidC and MagmaC and the first is based on the second: For
each object (M,µ, ζ) in MonoidC , the underlying object in MagmaC

is (M,µ) and each monoid morphism is equally well a magma morphism.
Checking the consistency conditions is immediate.

8. The same remarks apply in comparing GroupC and MonoidC : For
each object (G, µ, ζ, ι) in GroupC , the underlying object in MonoidC

is (G,µ, ζ) and each group morphism is equally well a monoid morphism.
And again checking the consistency conditions is immediate.

9. LieGroup is based on Manifold, and this is just a special case of
GroupC being based on C by taking C to be Manifold whereupon
GroupC is the category LieGroup.

10. ModuleR based on Ab for every R-module is just an Abelian group M
together with a suitable pairing R×M // M , so the underlying Abelian
group is just M . And every module homomorphism is an Abelian group
homomorphism that respects the pairing, so the underlying
consistency conditions is clear and immediate.

C.3 Solutions for Chapter III

Solution for III.1 on p. 81: To say that Hom is a bifunctor from C and C
to Set which is contravariant in the first position means just that Hom may be
regarded as a functor from C op×C to Set. To verify this we must show what
Hom does on objects and morphisms, and confirm the relevant identities. On
an object (C1, C2) in C op ×C , we have Hom(C1, C2), the set of morphisms in
C from C1 to C2. Now a morphism (f, g) : (D1, C1) // (D2, C2) in C op × C
is a pair consisting f : D1

// D2 in C op and g : C1
// C2 in C . Of course

the morphism f in C op is the same as a morphism f : D2
// D1 in C .

The Hom bifunctor applied to (f, g) is Hom(f, g) : Hom(D1, C1) //

Hom(D2, C2) with Hom(f, g)(h) = ghf . So clearly Hom(1D, 1C) is the iden-
tity function on Hom(D,C), while for (p, q) : (D2, C2) // (D3, C3) we have
Hom(fp, qg)(h) = (qg)h(fp) = q(ghf)p = Hom(p, q)Hom(f, g)(h).
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Solution for III.2 on p. 83: To find example of projection functors that
are not faithful or not full, recall that

A ×B((A,B), (A′, B′)) = A (A,A′)×B(B,B′)

and the projection functor π1 : A ×A // A induces the projection function
A (A,A′)×B(B,B′) // A (A,A′). So we need sets S and T where π1 : S×T

// S is not injective (or surjective, respectively) and then we need categories
where the Hom sets are the appropriate S and T . The first part we get by
taking T to be the empty set ∅ and S any non-empty set (a one element set
as a specific example,) for then S × T = ∅ as well, so π1 : S × T // S is
the empty function from ∅ to the non-empty set S and is neither injective nor
surjective. For the categories we may take both A and B to be the category
of sets Set as for any set S we have Set(1, S) ∼= S, whence

π1 : Set× Set((1, 1), (1, 0)) // Set(1, 1)

is an example showing the function π1 is neither faithful nor full. [Here 0 is
the initial object ∅ and 1 is the final object {0}.]

Solution for III.3 on p. 85: For a fixed object C in a category C with finite
products, we want to verify that taking F (A) = A×C for every object A and
F (f) = f × 1C for every morphism f : A // B defines a functor from C to
itself. Certainly F (1A) = 1F (A) by exercise I.40, while F (gf) = F (g)F (f) by
exercise I.41.

Solution for III.4 on p. 85: The functor +C : C // C takes an object
B to the object B + C and a morphism f : B // B′ to the morphism
f + 1C : B + C // B′ + C. [This morphism is also often written f + C.]
Certainly 1B +1C = 1B+C by exercise I.54, while f ′f +1C = (f ′+1C)(f +1C)
by exercise I.55 and those are the two parts needed to verify that +C is a
functor.

Compare these last two solutions. This is yet another example of duality,
where “reversing arrows” also means interchanging sums and products.

Solution for III.5 on p. 86: In a category C with finite sums, define
F : C ×C // C by F (C1, C2) = C1 +C2 and F (f1, f2) = f1 + f2, then F is
a functor from C ×C to itself. The fact that F (1C , 1c) = 1F (C) is the content of
exercise I.54, while F ((g1, g2)(f1, f2)) = F (g1, g2)F (f1, f2) is immediate from
exercise I.55.

Solution for III.6 on p. 86: In a category C with finite products, define
F : C × C // C by F (C1, C2) = C1 × C2 and F (f1, f2) = f1 × f2, then
F is a functor from C × C to itself. The fact that F (1C1 , 1C2) = 1F (C1,C2)

is the content of exercise I.40, while F ((g1, g2)(f1, f2)) = F (g1, g2)F (f1, f2) is
immediate from exercise I.41.
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Compare these last two solutions. This is yet another example of duality,
where in this case “reversing arrows” shows up as just interchanging sums and
products.

Solution for III.7 on p. 86: We verify that the power set P : Set // Set
is a functor by noting that P(1X)(S) = 1X(S) = S for every S ⊆ X, so
P(1X) = 1P(X). While for f : X // Y and g : Y // Z and S ⊆ X we have:

P(gf)(S) = gf(S)
= {z|∃x ∈ S, z = gf(x)}
= {z|∃y ∈ f(S), z = f(y)}
= P(g)P(f)(S)

so P(gf) = P(g)P(f).

Solution for III.8 on p. 86: We verify that the power set P : Set // Set
is a contravariant functor by noting that P(1X)(S) = 1X inf(S) = S for every
S ⊆ X, so P(1X) = 1P(X). While for f : X // Y and g : Y // Z and
T ⊆ Z we have:

P(gf)(T ) = (gf)−1(T )
= {x|gf(x) ∈ T}
= {x|f(x) ∈ g−1(T )}
= P(f)P(g)(T )

so P(gf) = P(f)P(g).

Solution for III.9 on p. 87: For the category MonoidC of monoids in the
category C (with finite products) the forgetful functor U : MonoidC

// C
is defined as U(M,µ, ζ) = M for any monoid in C and U(f) = f for f any
monoid morphism. Verification that U is indeed a functor is completely trivial:
U(1M ) = 1M = 1U(M) and U(gf) = gf = U(g)U(f) by the definition of the
identity morphisms and composition in MonoidC .

Solution for III.10 on p. 87: The first part of verifying that f∗ : A∗ // M
is a monoid homomorphism is just the part of the definition which says f∗(()) =
1 as the empty sequence is the identity in A∗. For the second part we need to
check that f∗(a1, a2, · · · , an, an+1, · · · , an+m) = f∗(a1, a2, · · · , an)f∗(an+1, · · · , an+m).
But the left hand side of this is f(a1)f(a2) · · · f(an)f(an+1) · · · f(an+m) while
the right hand side is f(a1)f(a2) · · · f(an)f(an+1) · · · f(an+m) and the equality
of the two is a direct consequence of associativity of the multiplication in M .

Solution for III.11 on p. 88: The function Set(A,U(M)) // Monoid(A∗,M)
assigns to each function f : AtoU(M) the homomorphism f∗ : A∗ // M . The
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inverse function assigns to each homomorphism h : A∗ // M the function

A // U(M)
a 7→ h(a)

where the a in h(a) refers to the sequence consisting just of the one element
a. Going from Set(A,U(M)) to Monoid(A∗,M) and back to Set(A,U(M))
clearly takes any function from A to U(M) to itself. In the other direc-
tion note that if h : A∗ // M is a homomorphism, then h(a1 a2 · · · an) =
h(a1)h(a2) · · ·h(an) and this is exactly the homomorphism gotten by starting
with h and taking it to Set(A,U(M)) and then back to Monoid(A,M) again.

Solution for III.12 on p. 88: Verification that assigning to a commutative
ring R its polynomial ring R[X] and to a ring homomorphism h : R // S its
extension to the polynomial rings defines a functor from CommutativeRing
to CommutativeRing is just directly checking the definition. First this cer-
tainly takes objects to object and morphisms to morphisms. Second F (1R) =
1R[X] = 1F (R), and third for homomorphisms h : R // S and k : S // T
we have

F (kh)(Σni=1riX
i) = Σni=1kh(ri)Xi

= K(Σni=1h(ri)Xi)
= K(H(Σni=1riX

i))
= F (k)F (h)(Σni=1riX

i)

so F(kh) = F(k)F(h).

Solution for III.13 on p. 88: To prove that the commutator functor C :
Group // Group is indeed a functor is just a matter of directly checking the
definition. First C certainly takes objects to object and morphisms. Second
C(1G) = 1G|[G,G] = 1[G,G] = 1C(G), and third for f : G // H and f ′ : H

// K we have C(f ′f) = C(f ′)C(f) because f ′f |[G,G] = f ′|[H,H]f |[G,G] and
that follows from the fact that f([G,G]) ⊆ [H,H].

Solution for III.14 on p. 89: We want to verify the Abelianizer A : Group
// Ab is a functor. A is given on objects by A(G) = G/[G,G] and on a

group homomorphism f : G // H by A(f) = f with f being the unique
homomorphism with pHf = fpG. Certainly A(1G) is 1A(G). While if we have
homomorphism f : G // H and e : H // K, then certainly pKef =
epHf = efpG so ef = ef which is the same as saying that A(ef) = A(e)A(f)
and so A is indeed a functor.

Solution for III.15 on p. 89: The function ϕ : Group(G, I(H)) //

Ab(A(G), H) was defined in the text, and here we wish to show it is a bi-
jection. The easiest way is to explicitly exhibit its inverse ψ : Ab(A(G), H)
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// Group(G, I(H)). So starting with a homomorphism e ∈ Ab(A(G), H)
notice that epG ∈ Group(G, I(H)) and ϕ(epG) = e because pG([G,G]) = {0}.
So we define ψ(e) = epG and we have already verified that ϕψ is the identity
on Ab(A(G), H). For the other direction recall that the defining property of
ϕ(f) = f is that it is the unique homomorphism with fpG = f . But then ψ(f)
is, by definition, fpG and that is f . Thus we have also verified that ψϕ is the
identity on Group(G, I(H)).

Solution for III.16 on p. 89: For the category Top we have the forgetful
functor U : Top // Set which takes a topological space (X, T (X)) (where
T (X) is the topology) to the underlying set X and a continuous function
f : (X, T (X)) // (Y, T (Y )) to the function f : X // Y where we are
simply forgetting it is continuous. The forgetful functor patently takes identity
functions (which are always continuous no matter the topology) to identity
functions, and it also preserves composition because composition of continuous
functions is after all just composition of functions.

We also have the discrete topology functor F : Set // Top where F (X) =
(X,P(X)) and F (f) = f . This makes sense as for any set X the set P(X) of
all its subsets is closed under arbitrary unions and finite intersections, i.e., it is
a topology. Moreover any function f : X // Y is continuous for any topology
on Y as the inverse image of every subset of Y is in P(X). And it is a functor
for clearly F (1X) = 1F (X) and F (gf) = F (g)F (f).

Finally the bijection between Top(F (X), Y ) and Set(X,U(Y )) is nothing
more than reading the previous two paragraphs — every function from a set
X to the underlying set of some topological space Y is a continuous function
from X with the discrete topology to the topological space Y , and conversely.

Solution for III.17 on p. 94: The verification that f̂ : F (G) // C is
always a functor has the usual steps. The definition of f̂ shows it assigns to
each object of F (G) an object of C , and to each morphism of F (G) a morphism
in C . Additionally if p : v0

// vn in F (G) then clearly f̂(p) : v̂0
// v̂n.

Finally for paths p = (e1, · · · , en) from v0(= init(e1)) to vn(= ter(en)) and
q = (en+1, · · · , em) from vn(= init(en+1)) to vm(= ter(em)) the composition
qp is the path (e1, · · · , en, en+1, · · · , em) and

f̂(qp) = (fE(e1) · · · fE(en)fE(en+1) · · · , fE(em))
= (fE(e1), · · · , fE(en))(fE(en+1) · · · fE(em))

= f̂(q)f̂(p)



308 APPENDIX C. SOLUTIONS OF EXERCISES

Solution for III.18 on p. 94: The exercise here is to prove that the function

Digraph(G,U(C )) // Cat(F (G),C )

f 7→ f̂

is a bijection.
The inverse function takes a functor k : F (G) // C to the digraph homo-

morphism ǩ : G // C that just forgets about composition, i.e., ǩV (v) = k(v)
and ǩE(e) = k(e). That ǩ is a digraph homomorphism is an immediate con-
sequence of the properties in the definition of a functor not involving compo-
sition. The computation of ˇ̂

f is also immediate: ˇ̂
fV (v) = f̂(v) = fV (v) and

ˇ̂
fE(e)f̂(e) = fE(e), so ˇ̂

f = f . Also if g : C // D is any morphism in C , then
ˆ̌k(C) = ǩV (C) = k(C) and ˆ̌k(g) = ǩE(f) = k(g). so ˆ̌k = k.

Solution for III.19 on p. 96: In the terminology of the preceding exer-
cise, the canonical functor ε : F (U(2)) // 2 is 1̂U(2), and we will use the
description found above.

The category 2 has the two objects 0 and 1, the two identity morphisms 0, 1
(with the same names as their corresponding objects) and the one non-identity
morphism ! : 0 // 1 (so named because it is the unique morphism from the
initial object 0 to the final object 1.) The underlying graph U(2) has the two
nodes 0 and 1 and the three edges: 0 from 0 to 0; 1 from 1 to 1 and ! from 0
to 1. So F (U(2)) has the two objects 0 and 1 and as morphisms all sequences
of the following forms:

1. an empty path on 0

2. ! as a path from 0 to 1

3. an empty path on 1

4. any path of positive length starting and ending at 0: (0, · · · , 0)

5. any path of positive length starting and ending at 1: (1, · · · , 1)

6. the other paths from 0 to 1: (0, · · · , 0, !, 1, · · · , 1)

From the above description we know that ε = 1̂U(2) takes the objects 0 to
0 and 1 to 1, while on the morphisms it takes every path starting and ending
at 0 to the identity morphism 0, every path starting and ending at 1 to the
identity morphism 1, and every path from 0 to 1 to the morphism !.

Solution for III.20 on p. 96: In order to describe in more detail the free
category generated by the following digraph we have added names for the five
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edges.

0a
$$

1 edd0 1

b

��
0 1oo d0 1

c

??

In the free category F there are, of course, just the two objects and 1. So
it is convenient to describe the morphisms of F by partitioning them into the
four sets F (0, 0), F (1, 1), F (0, 1), and F (1, 1). The constructive specification
of F shows that F (0, 0) is the free monoid on the three generators a, db and
dc. Similarly F (1, 1) is the free monoid on the three generators e, bd and cd.

The two sets F (0, 1) and F (1, 0) have somewhat more complicated descrip-
tions, but they are very similar to one another. A morphism in F (0, 1) can be
described by the following “regular expression”: {A(b|c)Ed}+ where A denotes
any ”word” from F (0, 0), E is any ”word” from F (1, 1), (b|c) means one of b
or c and {· · · }+ signifies that the expression inside the braces is repeated one
or more times.

The morphisms in F (1, 0) are described by this regular expression: {EdA(b|c)}+

Solution for III.21 on p. 97: When f : D // D′ is a morphism in
the category D it induces in the obvious way a natural transformation, which
we will also denote by f , between the associated constant functors – for each
object C of C , fC : D(C) // D′(C) is just f . And if η : D // D′ is
a natural transformation between the constant functors selecting D and D′,
then ηC must be the same morphism from D(C) = D to D′(C) = D′ for every
object C of C and this correspondence is clearly bijective.

Solution for III.22 on p. 98: If f : V // W is a linear transformation,
then we have the dual linear transformation D(f) : D(W ) // D(V ) which
we will write as f∗ : W ∗ // V ∗. (Notice this is consistent with definition I.8
and the notation we have used elsewhere.)

Writing v∗ and w∗ for arbitrary elements of V ∗ and W ∗ respectively, we
see that f∗(w∗) is in V ∗ and is defined by f∗(w∗)(v) = w∗(f(v))

Continuing in this vein and writing v∗∗ and w∗∗ for arbitrary elements of
V ∗∗ and W ∗∗ respectively, we see that f∗∗(v∗∗)(w∗) = v∗∗(f∗(w∗)) = v∗∗(w∗f)

Now τ : 1V
// DD was defined by τV (v)(v∗) = v∗(v) and we want to

verify the following square commutes:

W W ∗∗τW
//

V

W

f

��

V V ∗∗
τV // V ∗∗

W ∗∗

f∗∗

��
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Checking we see

(f∗∗τV )(v)(w∗) = f∗∗(τV (v))(w∗)
= τV (v)(f∗(w∗))
= τV (v)(w∗f)
= (w∗f)(v)
= w∗(f(v))
= τW (f(v))(w∗)
= (τW f)(v)(w∗)

The result that τV : V // V ∗∗ is always injective requires a bit of special
knowledge about vector spaces, to wit the result that if v is any non-zero
element of V , then there exists an element v∗ of V ∗ with v∗(v) 6= 0. This is
usually proved using the observation that every non-zero v is part of a basis
for V , for then if B is such a basis we can define v∗(Σb∈Bcbb) = cv with cv the
coefficient of v ∈ V . For that we see that if τV (v) = 0, then τV (v)(v∗) = 0 for
all v∗ ∈ V ∗ which by the above observation implies v = 0.

Solution for III.23 on p. 98: Recall (cf. Section III.2.12) the construc-
tion of the free monoid F (S) on the set S as the set of finite sequence of
elements of S with the binary operation of concatenation. For f : S // T
the homomorphism F (f) : F (S) // F (T ) is given by F (f)(s0, · · · , sn) =
(f(s0), · · · , f(sn)).

The natural transformation η : 1Set
// UF is defined as ηS(s) = (s)

with (s) the sequence with just one term, s. To verify that η is a natural
transformation we must show that the following diagram always commutes.

T UF (T )ηT
//

S

T

f

��

S UF (S)
ηS // UF (S)

UF (T )

UF (f)

��

With all of this the actual verification is immediate:

UF (f)(ηS(s)) = UF (f)((s)) = (f(s))
ηT (f(s)) = (f(s))

Solution for III.24 on p. 99: The natural transformation ε : FU //

1Monoid is defined by εM (m1,m2, · · · ,mn) = m1m2 · · ·mn To verify that ε
is a natural transformation we must show that the following diagram always
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commutes:

FU(N) NεN
//

FU(M)

FU(N)

FU(f)

��

FU(M) M
εM // M

N

f

��

That is just the following simple calculation:

f(εM (m1,m2, · · · ,mn)) = f(m1m2 · · ·mn) = f(m1)f(m2) · · · f(mn)
εN (FU(f)((m1m2 · · ·mn))) = εN ((f(m1)f(m2) · · · f(mn))) = f(m1)f(m2) · · · f(mn)

Solution for III.25 on p. 99: In Section III.2.12 we defined a func-
tion from Set(A,U(M)) to Monoid(F (A),M) by assigning to each f : A

// U(M) the monoid homomorphism f∗ : A∗ // M with f∗(()) = 1 and
f∗(a1, a2, · · · , an) = f(a1)f(a2) · · · f(an)

Now we also have the function Set(A,U(M)) // Monoid(F (A),M)
given by f 7→ εMF (f) where ε : FU // 1Monoid is defined as εM (m1,m2, · · · ,mn) =
m1m2 · · ·mn, and this exercise is to verify that these are the same functions.
The verification consists of explicitly evaluating εMF (f): εM (F (f)(a1, a2, · · · , an)) =
εM (f(a1), f(a2), · · · , f(an)) = f(a1)f(a2) · · · f(an)

Solution for III.26 on p. 99: As a preliminary step, if we consider the
function Monoid(F (A),M) // Set(A,U(M)) given by h 7→ U(h)η and
write ĥ for U(h)η we immediately see that ĥ(a) = h(a). [Beware of the change
of type between the two occurrences of a – the first is a as an element of the
set A, while the second is actually a as the single element in the one element
sequence (a).]

Combining this observation with the immediately preceding exercise we see
that the composition

Set(A,U(M)) // Monoid(F (A),M) // Set(A,U(M))

assigns to a function f the function f̂∗ and f̂∗(a) is just f(a), i.e., f̂∗ = f .
Similarly the composition

Monoid(F (A),M) // Set(A,U(M)) // Monoid(F (A),M)

assigns to a homomorphism h the homomorphism ĥ∗ and ĥ∗(s) is just h(s),
i.e., ĥ∗ = h. So the function Monoid(F (A),M) // Set(A,U(M)) given
by h 7→ U(h)η is the inverse of the function of the preceding exercise.

The above verification is as simple and direct as can be imagined, but
there is a little more complex approach which has the advantage of connecting
directly with the general study of adjunctions and adjoint functors, so we offer
it as well.
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First observe that

F (A)
F (ηA) // FUF (A)

εF (A) // F (A)
U(M)

ηU(M)
// UFU(M)

U(εM )
// U(M)

are immediately verified to be identity morphisms. Next note that the compo-
sition:

Set(A,U(M)) // Monoid(F (A),M) // Set(A,U(M))

assigns to a function f the following composite function.

F (A) FUF (A)
F (ηA) // FUF (A) FU(M)

FU(h) // FU(M)

M

εM

��

Adding a few more morphisms gives the following diagram as ε is a natural
transformation.

F (A) FUF (A)
F (ηA) // FUF (A) FU(M)

FU(h) //F (A)

F (A)

1F (A)

''OOOOOOOOOOOOOOOO FUF (A)

F (A)

εF (A)

��

FU(M)

M

εM

��
F (A) M

h //

Of course this says exactly that going from Set(A,U(M)) to Monoid(F (A),M)
and back to Set(A,U(M)) is the identity.

In much the same way the following commutative diagram shows that going
from Monoid(F (A),M) to Set(A,U(M)) and back to Monoid(F (A),M) is
the identity.

UF (A) UFU(M)
UF (f) // UFU(M) U(M)

U(εM ) //

A

UF (A)

ηA

OO

U(M)

UFU(M)

ηU(M)

OO

U(M)

U(M)

1U(M)

77oooooooooooooooo
A U(M)

f //

Solution for III.27 on p. 99: The natural transformation φA,M : Set(A,U(M))
// Monoid(F (A),M) is defined by φA,M (f) = εMF (f), while the natural

transformation ψA,M : Monoid(F (A),M) // Set(A,U(M)) is defined by
ψA,M (h) = U(h)ηA. By the last exercise these are inverse functions, so the
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only work required to verify that they give a natural isomorphism is to verify
that they are in fact natural transformations, which means verifying that for
all morphisms f : A // B and h : M // N the following diagrams are
commutative.

Set(B,U(N)) Monoid(F (B), N)
φB,N

//

Set(A,U(M))

Set(B,U(N))

(f,U(h))∗

��

Set(A,U(M)) Monoid(F (A),M)
φA,M // Monoid(F (A),M)

Monoid(F (B), N)

(F (f),h)∗

��

Monoid(F (B), N) Set(B,U(N))
ψB,N

//

Monoid(F (A),M)

Monoid(F (B), N)

(F (f),h)∗

��

Monoid(F (A),M) Set(A,U(M))
ψA,M // Set(A,U(M))

Set(B,U(N))

(f,U(h))∗

��

For the first diagram, notice that the result of starting with b ∈ Set(A,U(M))
and following it across the top and down on the right is hεMF (b)F (f) while the
result of going down on the left and across the bottom is εNFU(h)F (b)F (f).
As ε is a natural transformation we know that εNFU(h) = hεM and so the
diagram is commutative.

For the second diagram, notice that the result of starting with k ∈Monoid(F (A),M)
and following it across the top and down on the right is U(h)U(k)ηAf while the
result of going down on the left and across the bottom is U(h)U(k)UF (f)ηA.
As η is a natural transformation we know that ηAf = UF (f)ηA and so the
diagram is commutative.

Solution for III.28 on p. 100: Verification that inclusion of the commutator
subgroup into the containing group is a natural transformation is just a matter
of displaying the relevant diagram:

[H,H] Hιh
//

[G,G]

[H,H]

f |[H,H]

��

[G,G] G
ιG // G

H

f

��

Solution for III.29 on p. 100: Verification that projection onto the abelian-
izer of a group is a natural transformation is just a matter of displaying the
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relevant diagram:

H H/[H,H]πH
//

G

H

f

��

G G/[G,G]
πG // G/[G,G]

H/[H,H]

f

��

Solution for III.30 on p. 100: This is one of those cases where the formalism
complicates a very simple situation. The bijection between Ab(A(G), A) and
Group(G, I(A)) is just the simple observation that any group homomorphism
from an arbitrary group G into an Abelian group factors uniquely through
A(G) as group homomorphisms preserve commutators and every commutator
in a Abelian group is the identity.

Solution for III.31 on p. 100: Verification that Ab(A(•), •) is naturally
equivalent to Group(•, I(•)) just consists of showing that the functions dis-
cussed in the last exercise are actually natural transformations, which means
verifying that for all morphisms f : H // F and h : A // B the following
squares are commutative.

Ab(A(H), B) Group(H, I(B))
φH,B

//

Ab(A(G), A)

Ab(A(H), B)

(A(f),h)∗

��

Ab(A(G), A) Group(G, I(A))
φG,A // Group(G, I(A))

Group(H, I(B))

(f,I(h))∗

��
] ]

Group(H, I(B)) Ab(A(H), B)
ψH,B

//

Group(G, I(A))

Group(H, I(B))

(f,I(h))∗

��

Group(G, I(A)) Ab(A(G), A)
ψG,A // Ab(A(G), A)

Ab(A(H), B)

(A(f),h)∗

��
] ]

φG,A
Show that Ab(A(•), •) is naturally equivalent to Group(•, I(•)) with both

considered as functors from Groupop ×Ab to Set.

Solution for III.32 on p. 101: Verify that ε : FU // 1Top is indeed a
natural transformation.

Solution for III.33 on p. 101: Show that the two functions just de-
fined are inverse to one another and give bijections between Top(F (S), X)
and Set(S,U(X)).
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Solution for III.34 on p. 101: Show that Top(F (•), •) is naturally iso-
morphic to Set(•, I(•)) with both considered as functors from Setop×Top to
Set.

Solution for III.35 on p. 102: Verify that βF as just defined is indeed a
natural transformation from GF to G′F .

Solution for III.36 on p. 102: Verify that Gα as just defined is indeed a
natural transformation from GF to GF ′.

Solution for III.37 on p. 103: Show that for any category C the functor
category C 1 is isomorphic to C

Hint: Every functor 1 // C takes the unique object in 1 to an object
in C , and that completely determines the functor, so all that is left is to note
that a natural transformation between such functors is the same as a morphism
between the objects.

Solution for III.38 on p. 103: If D is a discrete finite category with n
objects, show that C D ∼= C n where C n is the n-fold product of C with itself.

C.4 Solutions for Chapter IV

C.5 Solutions for Chapter V

Solution for V.5 on p. 144:
To see that the equation (Uη)(εU) = 1U implies θξ is the identity on

(S ↓ U), observe that the result of applying θξ to
Extend this to the following larger commutative diagram by adding the dot-

ted arrows shown using the naturality of η and the assumption that (ηF )(Fε) =
1F

UF (S) UF (S′)//

S

UF (S)

εS

��

S S′
s // S′

UF (S′)

εS′ )

��

S

S

1S

yy

U(M) UFU(M)εU(M)
//

S

U(M)

g

��

S UF (S)
εS // UF (S)

UFU(M)

UF (S)

UFU(M)U(M)

U(M)

1U(M)

%%

UFU(M) UFU(M ′)//

UF (S)

UFU(M)

UF (g)

��

UF (S) UF (S′)
UF (s) // UF (S′)

UFU(M ′)

UF (g′)

��

S′

S′

1S′

%%

UFU(M ′) U(M ′)εU(M′)
//

UF (S′)

UFU(M ′)

UF (S′)

UFU(M ′)

UF (S′) S′
εS′ // S′

U(M ′)

g′

��
U(M ′)

U(M ′)

1U(M′)

yy
U(M) U(M ′)

U(m)
//

UFU(M)

U(M)

U(ηM )

��

UFU(M) UFU(M ′)
UFU(m)// UFU(M ′)

U(M ′)

U(ηM′ )

��

and this gives the result.
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C.6 Solutions for Chapter VII

C.7 Solutions for Chapter VIII

C.8 Solutions for Chapter XIII

C.9 Solutions for Chapter XIV

C.10 Solutions for Chapter IX

C.11 Solutions for Chapter VI

Solution for VI.1 on p. 147: Verify that if the product C × C exists, then
d0, d1 are jointly monic iff 〈d0, d1〉 : R // C × C is monic.

Solution for VI.2 on p. 148: Suppose that in C the pair d0, d1 : R // C is
a relation on C. Show that it is a reflexive relation iff Hom(X, d0),Hom(X, d1) :
Hom(X,R) // Hom(X,C) is a reflexive relation in Set.

C.12 Solutions for Appendix B

Solution for B.1 on p. 253: Suppose P is a small category with the
property that for any two objects A and B of P there is at most one morphism
from A to B. Define a relation on the objects of P by A � B iff there is a
morphism from A to B. Demonstrate that the set of objects of P with the
relation � is a partially ordered set. Similarly if

Solution for B.2 on p. 254: To prove that 1 + 1 = 1 in 2, note that there
is only one morphism with domain 1, namely the identity, and it serves as
the unique morphism from 1 + 1 to 1. In the same fashion there is only one
morphism with codomain 0, namely the identity, and it serves as the unique
morphism from 0 to 0× 0 = 0.



Appendix D

Other Sources

Even though category theory is a relatively young part of mathematics, it has
a huge literature. In particular there are a many accounts of the material
in these notes, and the study of category theory benefits from this variety of
perspectives. Here are listed a number of generally available books and notes,
together with some brief comments on them. In particular all of these have
been useful in preparing these notes.
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D.1 Introductions

D.1.1 Abstract and Concrete Categories: The Joy of Cats
(Adámek, Herrlich, and Strecker [?])

0 Introduction
1 Motivation
2 Foundations

I Categories, Functors, and Natural Transformations
3 Categories and functors
4 Subcategories
5 Concrete categories and concrete functors
6 Natural transformations

II Objects and Morphisms
7 Objects and morphisms in abstract categories
8 Objects and morphisms in concrete categories
9 Injective objects and essential embeddings

III Sources and Sinks
10 Sources and sinks
11 Limits and colimits
12 Completeness and cocompleteness
13 Functors and limits

IV Factorization Structures
14 Factorization structures for morphisms
15 Factorization structures for sources
16 E-reflective subcategories
17 Factorization structures for functors

V Adjoints and Monads
18 Adjoint functors
19 Adjoint situations
20 Monads

VI Topological and Algebraic Categories
21 Topological categories
22 Topological structure theorems
23 Algebraic categories
24 Algebraic structure theorems
25 Topologically algebraic categories
26 Topologically algebraic structure theorems

VII Cartesian Closedness and Partial Morphisms
27 Cartesian closed categories
28 Partial morphisms, quasitopoi, and topological universes
Tables

Functors and morphisms: Preservation properties
Functors and morphisms: Reflection properties
Functors and limits
Functors and colimits
Stability properties of special epimorphisms

Table of Categories
Table of Symbols

D.1.2 Category Theory (Awodey [?])
1 Categories

1.1 Introduction
1.2 Functions of sets
1.3 Definition of a category
1.4 Examples of categories
1.5 Isomorphisms
1.6 Constructions on categories
1.7 Free categories
1.8 Foundations: large, small, and locally small
1.9 Exercises

2 Abstract structures
2.1 Epis and monos
2.2 Initial and terminal objects
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2.3 Generalized elements
2.4 Sections and retractions
2.5 Products
2.6 Examples of products
2.7 Categories with products
2.8 Hom-sets
2.9 Exercises

3 Duality
3.1 The duality principle
3.2 Coproducts
3.3 Equalizers
3.4 Coequalizers
3.5 Exercises

4 Groups and categories
4.1 Groups in a category
4.2 The category of groups
4.3 Groups as categories
4.4 Finitely presented categories
4.5 Exercises

5 Limits and colimits
5.1 Subobjects
5.2 Pullbacks
5.3 Properties of pullbacks
5.4 Limits
5.5 Preservation of limits
5.6 Colimits
5.7 Exercises

6 Exponentials
6.1 Exponential in a category
6.2 Cartesian closed categories
6.3 Heyting algebras
6.4 Equational definition
6.5 λ-calculus
6.6 Exercises

7 Functors and naturality
7.1 Category of categories
7.2 Representable structure
7.3 Stone duality
7.4 Naturality
7.5 Examples of natural transformations
7.6 Exponentials of categories
7.7 Functor categories
7.8 Equivalence of categories
7.9 Examples of equivalence

7.10 Exercises
8 Categories of diagrams

8.1 Set-valued functor categories
8.2 The Yoneda embedding
8.3 The Yoneda Lemma
8.4 Applications of the Yoneda Lemma
8.5 Limits in categories of diagrams
8.6 Colimits in categories of diagrams
8.7 Exponentials in categories of diagrams
8.8 Topoi
8.9 Exercises

9 Adjoints
9.1 Preliminary definition
9.2 Hom-set definition
9.3 Examples of adjoints
9.4 Order adjoints
9.5 Quantifiers as adjoints
9.6 RAPL
9.7 Locally cartesian closed categories
9.8 Adjoint functor theorem
9.9 Exercises

10 Monads and algebras
10.1 The triangle identities
10.2 Monads and adjoints
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10.3 Algebras for a monad
10.4 Comonads and coalgebras
10.5 Algebras for endofunctors
10.6 Exercises

D.1.3 Category Theory: An Introduction (Herrlich and
Strecker [?])

I Introduction
II Foundations

1 Set, classes and conglomerates
III Categories

2 Concrete categories
3 Abstract categories
4 New categories from old

IV Special Morphisms and Special Objects
5 Sections, retractions and isomorphisms
6 Monomorphisms, epimorphisms, and bimorphisms
7 Initial, terminal, and zero objects
8 Constant morphisms, zero morphisms, and pointed categories

V Functors and Natural Transformations
9 Functors

10 Hom-functors
11 Categories of categories
12 Properties of functors
13 Natural transformations and natural isomorphisms
14 Isomorphisms and equivalences of categories
15 Functor categories

VI Limits in Categories
16 Equalizers and coequalizers
17 Intersections and factorizations
18 Products and coproducts
19 Sources and sinks
20 Limits and colimits
21 Pullbacks and pushouts
22 Inverse and direct limits
23 Complete categories
24 Functors that preserve and reflect limits
25 Limits in functor categories

VII Adjoint Situations
26 Universal maps
27 Adjoint functors
28 Existence of adjoints

VIII Set-Valued Functors
29 Hom-functors
30 Representable functors
31 Free objects
32 Algebraic categories and algebraic functors

IX Subobjects, Quotient Objects, and Factorizations
33 (E , M ) categories
34 (Epi, extremal mono) and (extremal epi, mono) categories
35 (Generating, extremal mono) and (extremal generating, mono) factorizations

X Reflective Subcategories
36 General reflective subcategories
37 Characterization and generation of E -reflective subcategories
38 Algebraic subcategories

XI Pointed Categories
39 Normal and exact categories
40 Additive categories
41 Abelian categories

Appendix: Foundations
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D.1.4 Arrows, Structures, and Functors: The Categorical
Imperative (Arbib and Manes [1])

PART I
Chapter 1 Learning to Think with Arrows

1.1 Epimorphisms and Monomorphisms
1.2 Products and Coproducts
1.3 Coequalizers and Equalizers

Chapter 2 Basic Concepts of Category Theory
2.1 Vector Spaces and Posets
2.2 The Definition of a Category
2.3 Epimorphisms and Monomorphisms
2.4 Limits and Colimits

Chapter 3 Monoids and Groups
3.1 Defining the Categories
3.2 Constructions within the Categories

Chapter 4 Metric and Topological Spaces
4.1 Categories of Metric Spaces
4.2 Constructions in Categories of Metric Spaces
4.3 Topological Spaces

Chapter 5 Additive Categories
5.1 Vectors and Matrices in a Category
5.2 Abm-Categories

Chapter 6 Structured Sets
6.1 The Admissible Maps Approach to Structure
6.2 Optimal Families
6.3 Examples from Automata Theory

Part II
Chapter 7 Functors and Adjoints

7.1 Functors
7.2 Free and Cofree
7.3 Natural Transformations and Adjunctions

Chapter 8 The Adjoint Functor Theorem
8.1 Necessary Conditions
8.2 Sufficient Conditions

Chapter 9 Monoidal and Closed Categories
9.1 Motivation from Set Theory
9.2 Monoids in a Monoidal Category
9.3 Categories over a Monoidal Category
9.4 The Godement Calculus

Chapter 10 Monads and Algebras
10.1 Universal Algebra
10.2 From Monoids to Monads
10.3 Monads from Free Algebras

D.1.5 Category Theory: Lecture Notes for ESSLLI (Barr
and Wells [?])

1. Preliminaries
1.1 Graphs
1.2 Homomorphisms of graphs

2. Categories
2.1 Basic definitions
2.2 Functional programming languages as categories
2.3 Mathematical structures as categories
2.4 Categories of sets with structure
2.5 Categories of algebraic structures
2.6 Constructions on categories

3. Properties of objects and arrows
3.1 Isomorphisms
3.2 Terminal and initial objects
3.3 Monomorphisms and subobjects
3.4 Other types of arrow

4. Functors
4.1 Functors
4.2 Actions
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4.3 Types of functors
4.4 Equivalences

5. Diagrams and naturality
5.1 Diagrams
5.2 Natural transformations
5.3 Natural transformations between functors
5.4 Natural transformations involving lists
5.5 Natural transformations of graphs
5.6 Combining natural transformations and functors
5.7 The Yoneda Lemma and universal elements

6. Products and sums
6.1 The product of two objects in a category
6.2 Notation for and properties of products
6.3 Finite products
6.4 Sums
6.5 Deduction systems as categories

7. Cartesian closed categories
7.1 Cartesian closed categories
7.2 Properties of cartesian closed categories
7.3 Typed λ-calculus
7.4 λ-calculus to category and back

8. Limits and colimits
8.1 Equalizers
8.2 The general concept of limit
8.3 Pullbacks
8.4 Coequalizers
8.5 Cocones

9. Adjoints
9.1 Free monoids
9.2 Adjoints
9.3 Further topics on adjoints

10. Triples
10.1 Triples
10.2 Factorization of a triple

11. Toposes
11.1 Definition of topos
11.2 Properties of toposes
11.3 Presheaves
11.4 Sheaves

12. Categories with monoidal structure
12.1 Closed monoidal categories
12.2 Properties of A ( C
12.3 *-autonomous categories
12.4 Factorization systems
12.5 The Chu construction

D.1.6 Category Theory for Computing Science (Barr and
Wells [3])

1. Preliminaries
1.1 Sets
1.2 Functions
1.3 Graphs
1.4 Homomorphisms of graphs

2. Categories
2.1 Basic definitions
2.2 Functional programming languages as categories
2.3 Mathematical structures as categories
2.4 Categories of sets with structure
2.5 Categories of algebraic structures
2.6 Constructions on categories
2.7 Properties of objects and arrows in a category
2.8 Other types of arrow
2.9 Factorization systems

3. Functors
3.1 Functors
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3.2 Actions
3.3 Types of functors
3.4 Equivalences
3.5 Quotient categories

4. Diagrams, naturality and sketches
4.1 Diagrams
4.2 Natural transformations
4.3 Natural transformations between functors
4.4 The Godement calculus of natural transformations
4.5 The Yoneda Lemma and universal elements
4.6 Linear sketches (graphs with diagrams)
4.7 Linear sketches with constants: initial term models
4.8 2-categories

5. Products and sums
5.1 The product of two objects in a category
5.2 Notation for and properties of products
5.3 Finite products
5.4 Sums
5.5 Natural numbers objects
5.6 Deduction systems as categories
5.7 Distributive categories

6. Cartesian closed categories
6.1 Cartesian closed categories
6.2 Properties of cartesian closed categories
6.3 Typed λ-calculus
6.4 λ-calculus to category and back
6.5 Arrows vs. terms
6.6 Fixed points in cartesian closed categories

7. Finite product sketches
7.1 Finite product sketches
7.2 The sketch for semigroups
7.3 Notation for FP sketches
7.4 Arrows between models of FP sketches
7.5 Signatures and FP sketches

8. Finite discrete sketches
8.1 Sketches with sums
8.2 The sketch for fields
8.3 Term algebras for FD sketches

9. Limits and colimits
9.1 Equalizers
9.2 The general concept of limit
9.3 Pullbacks
9.4 Coequalizers
9.5 Cocones
9.6 More about sums
9.7 Unification as coequalizer
9.8 Properties of factorization systems

10. More about sketches
10.1 Finite limit sketches
10.2 Initial term models of FL sketches
10.3 The theory of an FL sketch
10.4 General definition of sketch

11. The category of sketches
11.1 Homomorphisms of sketches
11.2 Parameterized data types as pushouts
11.3 The model category functor

12. Fibrations
12.1 Fibrations
12.2 The Grothendieck construction
12.3 An equivalence of categories
12.4 Wreath products

13. Adjoints
13.1 Free monoids
13.2 Adjoints
13.3 Further topics on adjoints
13.4 Locally cartesian closed categories

14. Algebras for endofunctors
14.1 Fixed points for a functor
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14.2 Recursive categories
14.3 Triples
14.4 Factorization of a triple
14.5 Scott domains

15. Toposes
15.1 Definition of topos
15.2 Properties of toposes
15.3 Presheaves
15.4 Sheaves
15.5 Fuzzy sets
15.6 External functors
15.7 The realizability topos

16. Categories with monoidal structure
16.1 Closed monoidal categories
16.2 Properties of A ( C
16.3 *-autonomous categories
16.4 Factorization systems
16.5 The Chu construction

Solutions to the exercises

D.1.7 Categories (Blyth [8])
Chapter 1 – Looking at the woods rather than the trees
Chapter 2 – Particular objects and morphisms
Chapter 3 – Universal constructions
Chapter 4 – Factorisation of morphisms
Chapter 5 – Structuring the morphism sets
Chapter 6 – Functors
Chapter 7 – Equivalent categories
Chapter 8 – Representable and adjoint functors

D.1.8 Handbook of Categorical Algebra I: Basic Category
Theory (Borceux [?])

1. The language of categories
1.1 Logical foundations of the theory
1.2 Categories and functors
1.3 Natural transformations
1.4 Contravariant functors
1.5 Full and faithful functors
1.6 Comma categories
1.7 Monomorphisms
1.8 Epimorphisms
1.9 Isomorphisms

1.10 The duality principle
1.11 Exercises

2. Limits
2.1 Products
2.2 Coproducts
2.3 Initial and terminal objects
2.4 Equalizers, coequalizers
2.5 Pullbacks, pushouts
2.6 Limits and colimits
2.7 Complete categories
2.8 Existence theorem for limits
2.9 Limit preserving functors

2.10 Absolute colimits
2.11 Final functors
2.12 Interchange of limits
2.13 Filtered colimits
2.14 Universality of colimits
2.15 Limits in categories of functors
2.16 Limits in comma categories
2.17 Exercises

3. Adjoint functors
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3.1 Reflection along a functor
3.2 Properties of adjoint functors
3.3 The adjoint functor theorem
3.4 Fully faithful adjoint functors
3.5 Reflective subcategories
3.6 Epireflective subcategories
3.7 Kan extensions
3.8 Tensor product of set-valued functors
3.9 Exercises

4. Generators and projectives
4.1 Well-powered categories
4.2 Intersection and union
4.3 Strong epimorphisms
4.4 Epi-mono factorizations
4.5 Generators
4.6 Projectives
4.7 Injective cogenerators
4.8 Exercises

5. Categories of fractions
5.1 Graphs and path categories
5.2 Calculus of fractions
5.3 Reflective subcategories as categories of fractions
5.4 The orthogonal subcategory problem
5.5 Factorization systems
5.6 The case of localizations
5.7 Universal closure operations
5.8 The calculus of bidense morphisms
5.9 Exercises

6. Flat functors and Cauchy completeness
6.1 Exact functors
6.2 Left exact reflections of a functor
6.3 Flat functors
6.4 The relevance of regular cardinals
6.5 The splitting of idempotents
6.6 The more general adjoint functor theorem
6.7 Exercises

7. Bicategories and distributors
7.1 2-categories
7.2 2-functors and 2-natural transformations
7.3 Modifications and n-categories
7.4 2-limits and bilimits
7.5 Lax functors and pseudo-functors
7.6 Bicategories
7.7 Distributors
7.8 Cauchy completeness versus distributors
7.9 Exercises

8. Internal category theory
8.1 Internal categories and functors
8.2 Internal base-valued functors
8.3 Internal limits and colimits
8.4 Exercises

D.1.9 Handbook of Categorical Algebra II: (Borceux [?])
1. Abelian categories

1.1 Zero objects and kernels
1.2 Additive categories and biproducts
1.3 Additive functors
1.4 Abelian categories
1.5 Exactness properties of abelian categories
1.6 Additivity of abelian categories
1.7 Union of subobjects
1.8 Exact sequences
1.9 Diagram chasing

1.10 Some diagram lemmas
1.11 Exact functors
1.12 Torsion theories
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1.13 Localizations of abelian categories
1.14 The embedding theorem
1.15 Exercises

2. Regular categories
2.1 Exactness properties of regular categories
2.2 Definition in terms of strong epimorphisms
2.3 Exact sequences
2.4 Examples
2.5 Equivalence relations
2.6 Exact categories
2.7 An embedding theorem
2.8 The calculus of relations
2.9 Exercises

3. Algebraic theories
3.1 The theory of groups revisited
3.2 A glance at universal algebra
3.3 A categorical approach to universal algebra
3.4 Limits and colimits in algebraic categories
3.5 The exactness properties of algebraic categories
3.6 The algebraic lattice of subobjects
3.7 Algebraic functors
3.8 Finitely generated models
3.9 Characterization of algebraic categories

3.10 Commutative theories
3.11 Tensor product of theories
3.12 A glance at Morita theory
3.13 Exercises

4. Monads
4.1 Monads and their algebras
4.2 Monads and adjunctions
4.3 Limits and colimits in categories of algebras
4.4 Characterization of monadic categories
4.5 The adjoint lifting theorem
4.6 Monads with rank
4.7 A glance at descent theory
4.8 Exercises

5. Accessible categories
5.1 Presentable objects in a category
5.2 Locally presentable categories
5.3 Accessible categories
5.4 Raising the degree of accessibility
5.5 Functors with rank
5.6 Sketches
5.7 Exercises

6. Enriched category theory
6.1 Symmetric monoidal closed categories
6.2 Enriched categories
6.3 The enriched Yoneda lemma
6.4 Change of base
6.5 Tensors and cotensors
6.6 Weighted limits
6.7 Enriched adjunctions
6.8 Exercises

7. Topological categories
7.1 Exponentiable spaces
7.2 Compactly generated spaces
7.3 Topological functors
7.4 Exercises

8. Fibred categories
8.1 Fibrations
8.2 Cartesian functors
8.3 Fibrations via pseudo-functors
8.4 Fibred adjunctions
8.5 Completeness of a fibration
8.6 Locally small fibrations
8.7 Definability
8.8 Exercises
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D.1.10 Handbook of Categorical Algebra III: (Borceux [?])

1. Locales
1.1 The intuitionistic propositional calculus
1.2 Heyting algebras
1.3 Locales
1.4 Limits and colimits of locales
1.5 Nuclei
1.6 Open morphisms of locales
1.7 Etale morphisms of locales
1.8 The points of a locale
1.9 Sober spaces

1.10 Compactness conditions
1.11 Regularity conditions
1.12 Exercises

2. Sheaves
2.1 Sheaves on a locale
2.2 Closed subobjects
2.3 Some categorical properties of sheaves
2.4 Etale spaces
2.5 The stalks of a topological sheaf
2.6 Associated sheaves and étale morphisms
2.7 Systems of generators for a sheaf
2.8 The theory of Ω-sets
2.9 Complete Ω-sets

2.10 Some basic facts in ring theory
2.11 Sheaf representation of a ring
2.12 Change of base
2.13 Exercises

3. Grothendieck toposes
3.1 A categorical glance at sheaves
3.2 Grothendieck topologies
3.3 The associated sheaf functor theorem
3.4 Categorical properties of Grothendieck toposes
3.5 Localization of Grothendieck toposes
3.6 Characterization of Grothendieck toposes
3.7 Exercises

4. The classifying topos
4.1 The points of a topos
4.2 The classifying topos of a finite limit theory
4.3 The classifying topos of a geometric sketch
4.4 The classifying topos of a coherent theory
4.5 Diaconescu’s theorem
4.6 Exercises

5. Elementary toposes
5.1 The notion of a topos
5.2 Examples of toposes
5.3 Monomorphisms in a topos
5.4 Some set theoretical notions in a topos
5.5 Partial morphisms
5.6 Injective objects
5.7 Finite colimits
5.8 The slice toposes
5.9 Exactness properties of toposes

5.10 Union of subobjects
5.11 Morphisms of toposes
5.12 Exercises

6. Internal logic of a topos
6.1 The language of a topos
6.2 Categorical foundations of the logic of toposes
6.3 The calculus of truth tables
6.4 The point about “ghost” variables
6.5 Coherent theories
6.6 The Kripke-Joyal semantics
6.7 The intuitionistic propositional calculus in a topos
6.8 The intuitionistic predicate calculus in a topos
6.9 Intuitionistic set theory in a topos

6.10 The structure of a topos in its internal language
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6.11 Locales in a topos
6.12 Exercises

7. The law of excluded middle
7.1 The regular elements of Ω
7.2 Boolean toposes
7.3 De Morgan toposes
7.4 Decidable objects
7.5 The axiom of choice
7.6 Exercises

8. The axiom of infinity
8.1 The natural number object
8.2 Infinite objects in a topos
8.3 Arithmetic in a topos
8.4 Finite objects in a topos
8.5 Exercises

9. Sheaves in a topos
9.1 Topologies in a topos
9.2 Sheaves for a topology
9.3 The localization of a topos
9.4 The double negation sheaves
9.5 Exercises

D.1.11 Introduction to the Theory of Categories and
Functors (Bucur and Deleanu [?])

1 Basic concepts
1 The Notion of a Category. Duality. Subcategories. Examples
2 Monomorphisms, epimorphisms, isomorphisms
3 Functors
4 Representable functors
5 Adjoint functors
6 The notion of equivalence between categories

2 Sum and products
1 Direct sums and products
2 Kernel and cokernel
3 Grothendieck topologies and the general notion of a sheaf

3 Inductive and projective limits
1 The general notion of a projective or inductive limit
2 Existence of inductive or projective limits
3 Commutation of functors with projective and inductive limits
4 Characterization of adjoint functors
5 Prorepresentable functors

4 Structures on the objects of a category
1 Algebraic operations on the objects of a category. Homomorphisms
2 The existence of kernels for homomorphisms
3 Equivalence relations
4 The general notion of a structure on the objects of a category

5 General theory of Abelian categories
1 Additive categories
2 Kernel and cokernel
3 The canonical factorization of a morphism
4 Pre-Abelian categories
5 Abelian categories
6 Exact functors
7 The isomorphism theorems in Abelian categories
8 The conditions AB3, AB4, AB5
9 Generators

10 Full embedding of a small Abelian category into a Grothendieck category
6 Injective and projective objects in Abelian categories

1 The notion of an injective (projective) object and its general properties
2 Essential extensions
3 Properties of injective envelopes
4 Projective objects
5 Localization in rings
6 Characterization of Grothendieck categories
7 The theorem of Krull-Remak-Schmidt
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8 The structure of injective objects in locally Noetherian categories
9 Applications to the decomposition theories

7 Elements of homological algebra
1 Complexes, homology, cohomology
2 Resolutions
3 Derived functors
4 Other properties of derived functors
5 Homology and cohomology functors
6 Other properties of homology and cohomology functors
7 The homological dimension of Abelian categories
8 Minimal projective resolutions
9 Relative homological algebra

D.1.12 Lecture Notes in Category Theory (Cáccamo [?])
1. Categories, Functors and Natural Transformations

a) Categories
b) Functors
c) Natural Transformations
d) Functor Categories

2. Constructions on Categories
a) Opposite Category and Contravariance
b) Product of Categories
c) Natural Transformations between Bifunctors
d) Examples

3. Yoneda Lemma and Universal Properties
a) Yoneda Lemma
b) Representability

4. Limits and Colimits
a) Definition of Limits
b) Examples of Limits
c) Limits in Set
d) Limits as Products and Equalizers
e) Definition of Colimit
f) Examples of Colimits
g) Colimits in Set
h) Limits with Parameters

5. Ends
a) Dinaturality
b) Special Cases of Dinatural Transformations
c) Definition of End
d) Ends in Set
e) Ends with Parameters

6. Limits and Ends
a) Some Useful Isomorphisms
b) Limits in Functor Categories
c) Fubini Theorem
d) Preservation of Limits

7. Preservation of Limits
a) Definition
b) Connected Diagrams
c) Products
d) General Limits

8. Coends
a) Definition of Coend
b) Density Formula
c) Recasting the Density Formula

9. Adjunctions
a) Definition of Adjunctions
b) The Naturality Laws for Adjunctions
c) The Triangle Identities
d) Limits and Adjunctions
e) Representation Functors
f) Adjoints and Initial Objects
g) The Initial Object Lemma
h) The General Adjoint Functor Theorem
i) Well-powered categories
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j) The Special Adjoint Functor Theorem
k) Cartesian-closed Categories

D.1.13 Abelian Categories: An Introduction to the Theory
of Functors (Freyd [?])
Introduction
Exercises on Extremal Categories
Exercises on Typical Categories

CH1PTER 1. FUNDAMENTALS
1.1 Contravariant Functors and Dual Categories
1.2 Notation
1.3 The Standard Functors
1.4 Special Maps
1.5 Subobjects and Quotient Objects
1.6 Difference Kernels and Cokernels
1.7 Products and Sums
1.8 Complete Categories
1.9 Zero Objects, Kernels, and Cokernels

CH2PTER 2. FUNDAMENTALS OF ABELIAN CATEGORIES
2.1 Theorems for Abelian Categories
2.2 Exact Sequences
2.3 The Additive Structure for Abelian Categories
2.4 Recognition of Direct Sum Systems
2.5 The Pullback and Pushout Theorems
2.6 Classical Lemmas

CH3PTER 3. SPECIAL FUNCTORS AND SUBCATEGORIES
3.1 Additivity and Exactness
3.2 Embeddings
3.3 Special Objects
3.4 Subcategories
3.5 Special Contravariant Functors
3.6 Bifunctors

CH4PTER 4. METATHEOREMS
4.1 Very Abelian Categories
4.2 First Metatheorem
4.3 Fully Abelian Categories
4.4 Mitchell’s Theorem

CH5PTER 5. FUNCTOR CATEGORIES
5.1 Abelianness
5.2 Grothendieck Categories
5.3 The Representation Functor

CH6PTER 6. INJECTIVE ENVELOPES
6.1 Extensions
6.2 Envelopes

CH7PTER 7. EMBEDDING THEOREMS
7.1 First Embedding
7.2 An Abstraction
7.3 The Abelianness of the Categories of Absolutely Pure Objects and Left-Exact

Functors
APPENDIX

D.1.14 A Categorical Primer (Hillman [?])
1. Introduction
2. categories
3. Distinguished Objects and Arrows
4. Operations within a Category
5. Functors and Cofunctors
6. Naturality and Equivalence
7. Operations on Categories
8. Limits and Colimits
9. Adjoints

10. Monads and Comonads
11. Homology and Cohomology



D.1. INTRODUCTIONS 331

12. Sheaves
13. Groupoids
14. Structurings
15. Logic in a Topos
16. Languages in a Topos
17. Theories in a Topos
18. Topologies on a Topos
19. Models in a Topos

D.1.15 An Introduction to Category Theory (Krishnan [?])
CHAPTER 1. BASICS FROM ALGEBRA AND TOPOLOGY

1.1 Set Theory
1.2 Some Typical Algebraic Structures
1.3 Algebra in General
1.4 Topological Spaces
1.5 Semimetric and Semiuniform Spaces
1.6 Completeness and the Canonical Completion

CHAPTER 2. CATEGORIES, DEFINITIONS AND EXAMPLES
2.1 Concrete and General Categories
2.2 Subcategories and Quotient Categories
2.3 Products and Coproducts of Categories
2.4 The Dual Category and Duality of Properties
2.5 Arrow Category and Comma Categories over a Category

CHAPTER 3. DISTINGUISHED MORPHISMS AND OBJECTS
3.1 Distinguished Morphisms
3.2 Distinguished Objects
3.3 Equalizers and Coequalizers
3.4 Constant Morphisms and Pointed Categories
3.5 Separators and Coseparators

CHAPTER 4. TYPES OF FUNCTORS
4.1 Full, Faithful, Dense, Embedding Functors
4.2 Reflection and Preservation of Categorical Properties
4.3 The Feeble Functor and Reverse Quotient Functor

CHAPTER 5. NATURAL TRANSFORMATIONS AND EQUIVALENCES
5.1 Natural Transformations and Their Compositions
5.2 Equivalence of Categories and Skeletons
5.3 Functor Categories
5.4 Natural Transformations for Feeble Functors

CHAPTER 6. LIMITS, COLIMITS, COMPLETENESS, COCOMPLETENESS
6.1 Predecessors and Limits of a Functor
6.2 Successors and Colimits of a Functor
6.3 Factorizations of Morphisms
6.4 Completeness

CHAPTER 7. ADJOINT FUNCTORS
7.1 The Path Category
7.2 Adjointness
7.3 Near-equivalence and Adjointness
7.4 Composing and Resolving Shortest Paths or Adjoints
7.5 Adjoint Functor Theorems
7.6 Examples of Adjoints
7.7 Monads
7.8 Weak Adjoints

APPENDIX ONE. SEMIUNIFORM, BITOPOLOGICAL, AND PREORDERED ALGEBRAS
APPENDIX TWO. ALGEBRAIC FUNCTORS

APPENDIX THREE. TOPOLOGICAL FUNCTORS

D.1.16 Conceptual Mathematics: A First Introduction to
Categories (Lawvere and Schanuel [47])
Preview

Session 1 Galileo and multiplication of objects
1 Introduction
2 Galileo and the flight of a bird
3 Other examples of multiplication of objects
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Part I The category of sets
Article I Sets, maps, composition
1 Guide

Summary Definition of a category
Session 2 Sets, maps and composition
1 Review of Article I
2 An example of different rules for a map
3 External diagrams
4 Problems on the number of maps from one set to another
Session 3 Composing maps and counting maps

Part II The algebra of composition
Article II Isomorphisms
1 Isomorphisms
2 General division problems. Determination and choice
3 Retractions, sections, and idempotents
4 Isomorphism and automorphisms
5 Guide

Summary Special properties a map may have
Session 4 Division of maps: Isomorphisms
1 Division of maps versus division of numbers
2 Inverses versus reciprocals
3 Isomorphisms ad ‘divisors’
4 A small zoo of isomorphisms in other categories
Session 5 Division of maps: Sections and retractions
1 Determination problems
2 A special case: Constant maps
3 Choice problems
4 Two special cases of division: Sections and retractions
5 Stacking or sorting
6 Stacking in a Chinese restaurant
Session 6 Two general aspects or uses of maps

1. Sorting of the domain by a property

2. Naming or sampling of the codomain

3. Philosophical explanation of the two aspects

Session 7 Isomorphisms and coordinates
1 One use of isomorphisms: Coordinate systems
2 Two abuses of isomorphisms
Session 8 Pictures of a map making its features evident
Session 9 Retracts and idempotents
1 Retracts and comparisons
2 Idempotents as records of retracts
3 A puzzle
4 Three kinds of retract problems
Session 10 Brouwer’s theorems
1 Balls, spheres, fixed points, and retractions
2 Digression on the contrapositive rule
3 Brouwer’s proof
4 Relation between fixed point and retraction theorems
5 How to understand a proof. The objectification and “mapification” of concepts
6 The eye of the storm
7 Using maps to formulate guesses

Part III Categories of structured sets
Article III Examples of categories
1 The category FIX of endomaps of sets
2 Typical applications of FIX
3 Two subcategories of FIX
4 Categories of endomaps
5 Irreflexive graphs
6 Endomaps as special graphs
7 The simpler category FIX?: Objects are just maps of sets
8 Reflexive graphs
9 Summary of the examples and their general significance

10 Retractions and injectivity
11 Types of Structure
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12 Guide
Session 11 Ascending to categories of richer structures

1 A category of richer structures; Endomaps of sets
2 Two subcategories: Idempotents and automorphisms
3 The category of graphs

Session 12 Categories of diagrams
1 Dynamical systems or automata
2 Family trees
3 Dynamical systems revisited

Session 13 Monoids
Session 14 Maps preserve positive properties

1 Positive properties versus negative properties
Session 15 Objectification of properties in dynamical systems

1 Structure-preserving maps from a cycle to another endomap
2 Naming elements that have a given period by maps
3 Naming arbitrary elements
4 The philosophical role of N
5 Presentations of dynamical systems

Session 16 Idempotents, involutions, and graphs
1 Solving exercises on idempotents and involutions
2 Solving exercises on maps of graphs

Session 17 Some uses of graphs
1 Paths
2 Graphs as diagram shapes
3 Commuting diagrams
4 Is a diagram a map

Test 2
Session 18 Review of Test 2

Part IV Elementary universal mapping properties
Article IV Universal mapping properties
1 Terminal objects
2 Separating
3 Initial object
4 Products
5 Commutative, associative, and identity laws for multiplication of objects
6 Sums
7 Distributive laws
8 Guide

Session 19 Terminal objects
Session 20 Points of an objects
Session 21 Products in categories
Session 22 Universal mapping properties and incidence relations

1 A special property of the category of sets
2 A similar property in the category of endomaps of sets
3 Incidence relations
4 Basic figure-types, singular figures, and incidence, in the category of graphs

Session 23 More on universal mapping properties
1 A category of pairs of maps
2 How to calculate products

Session 24 Uniqueness of products and definition of sum
1 The terminal object as an identity of multiplication
2 The uniqueness theorem for products
3 Sum of two objects in a category

Session 25 Labelings and products of graphs
1 Detecting the structure of a graph by means of labelings
2 Calculating the graphs A× Y
3 The distributive law

Session 26 Distributive categories and linear categories
1 The standard map
A× B1 + A× B2 // A× (B1 + B2)

2 Matrix multiplication in linear categories
3 Sum of maps in a linear category
4 The associative law for sums and products

Session 27 Examples of universal constructions
1 Universal constructions
2 Can objects have negatives?
3 Idempotent objects
4 Solving equations and picturing maps
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Session 28 The category of pointed sets
1 An example of a non-distributive category

Session 29 Binary operations and diagonal arguments
1 Binary operations and actions
2 Cantor’s diagonal argument

Part V Higher universal mapping properties
Article V Map objects
1 Definition of map object
2 Distributivity
3 Map objects and the Diagonal Argument
4 Universal properties and ‘observables’
5 Guide

Session 30 Exponentiation
1 Map objects, or function spaces
2 A fundamental example of the transformation of map objects
3 Laws of exponents
4 The distributive law in cartesian closed categories

Session 31 Map object versus product
1 Definition of map object versus definition of product
2 Calculating map objects

Session 32 Subobjects, logic, and truth
1 Subobjects
2 Truth
3 The truth value object

Session 33 Parts of an object: Toposes
1 Parts and inclusions
2 Toposes and logic

D.1.17 Theory of Categories (Mitchell [?])
I. Preliminaries

Introduction
1. Definition
2. The Nonobjective Approach
3. Examples
4. Duality
5. Special Morphisms
6. Equalizers
7. Pullbacks, Pushouts
8. Intersections
9. Unions

10. Images
11. Inverse Images
12. Zero Objects
13. Kernels
14. Normality
15. Exact Categories
16. The 9 Lemma
17. Products
18. Additive Categories
19. Exact Additive Categories
20. Abelian Categories
21. The Category of Abelian Groups G

II. Diagrams and Functors
Introduction

1. Diagrams
2. Limits
3. Functors
4. Preservation Properties of Functors
5. Morphism Functors
6. Limit Preserving Functors
7. Faithful Functors
8. Functors of Several Variables
9. Natural Transformations

10. Equivalence of Categories
11. Functor Categories
12. Diagrams as Functors
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13. Categories of Additive Functors; Modules
14. Projectives, Injectives
15. Generators
16. Small Objects

III. Complete Categories
Introduction

1. Ci Categories
2. Injective Envelopes
3. Existence of Injectives

IV. Group Valued Functors
Introduction

1. Metatheorems
2. The Group Valued Imbedding Theorem
3. An Imbedding for Big Categories
4. Characterization of Categories of Modules
5. Characterization of Functor Categories

V. Adjoint Functors
Introduction

1. Generalities
2. Conjugate Transformations
3. Existence of Adjoints
4. Functor Categories
5. Reflections
6. Monosubcategories
7. Projective Classes

VI. Applications of Adjoint Functors
Introduction

1. Application to Limits
2. Module-Valued Adjoints
3. The Tensor Product
4. Functor Categories
5. Derived Functors
6. The Category of Kernel Preserving Functors
7. The Full Imbedding Theorem
8. Complexes

VII. Extensions
Introduction

1. Ext1

2. The Exact Sequence (Special Case)
3. Extn

4. The Relation ∼
5. The Exact Sequence
6. Global Dimension
7. Appendix: Alternative Descriptive of Ext

VIII. Satellites
Introduction

1. Connected Sequences of Functors
2. Existence of Satellites
3. The Exact Sequence
4. Satellites of Group Valued Functors
5. Projective Sequences
6. Several Variables

IX. Global Dimension
Introduction

1. Free Categories
2. Polynomial Categories
3. Grassmann Categories
4. Graded Free Categories
5. Graded Polynomial Categories
6. Graded Grassmann Categories
7. Finite Commutative Diagrams
8. Homological Tic Tac Toe
9. Normal Subsets

10. Dimension for Finite Ordered Sets
X. Sheaves

Introduction
1. Preliminaries
2. F -Categories
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3. Associated Sheaves
4. Direct Images of Sheaves
5. Inverse Images of Sheaves
6. Sheaves for Abelian Categories
7. Injective Sheaves
8. Induced Sheaves

D.1.18 Categories and Functors (Pareigis [?])
1. Preliminary Notions

1.1 Definition of a Category
1.2 Functors and Natural Transformations
1.3 Representable Functors
1.4 Duality
1.5 Monomorphisms, Epimorphisms, and Isomorphisms
1.6 Subobjects and Quotient Objects
1.7 Zero Objects and Zero Morphisms
1.8 Diagrams
1.9 Difference Kernels and Difference Cokernels

1.10 Products and Coproducts
1.11 Intersections and Unions
1.12 Images, Coimages, and Counterimages
1.13 Multifunctors
1.14 The Yoneda Lemma
1.15 Categories as Classes

2. Adjoint Functors and Limits
2.1 Adjoint Functors
2.2 Universal Problems
2.3 Monads
2.4 Reflexive Subcategories
2.5 Limits and Colimits
2.6 Special Limits and Colimits
2.7 Diagram Categories
2.8 Constructions with Limits
2.9 The Adjoint Functor Theorem

2.10 Generators and Cogenerators
2.11 Special Cases of the Adjoint Functor Theorem
2.12 Full and Faithful Functors

3. Universal Algebra
3.1 Algebraic Theories
3.2 Algebraic Categories
3.3 Free Algebras
3.4 Algebraic Functors
3.5 Examples of Algebraic Theories and Functors
3.6 Algebras in Arbitrary Categories

4. Abelian Categories
4.1 Additive Categories
4.2 Abelian Categories
4.3 Exact Sequences
4.4 Isomorphism Theorems
4.5 The Jordan-Hölder Theorem
4.6 Additive Functors
4.7 Grothendieck Categories
4.8 The Krull-Remak-Schmidt-Azumaya Theorem
4.9 Injective and Projective Objects and Hulls

4.10 Finitely Generated Objects
4.11 Module Categories
4.12 Semisimple and Simple Rings
4.13 Functor Categories
4.14 Embedding Theorems

Appendix. Fundamentals of Set Theory

D.1.19 Theory of Categories (Popescu and Popescu [63])
Chapter 1 – Categories and Functors

1.1 The notion of a category. Examples, Duality
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1.2 Special morphisms in a category
1.3 Functors
1.4 Equivalence of categories
1.5 Equivalence relations on a category
1.6 Limits and colimits
1.7 Products and coproducts
1.8 Some special limits and colimits
1.9 Existence of limits and colimits

1.10 Limits and colimits in the category of functors
1.11 Adjoint functors
1.12 Commutations of functors with limits and colimits
1.13 Categories of fractions
1.14 Calculus of fractions
1.15 Existence of a coadjoint to the canonical functor (to category of fractions)
1.16 Subobjects and quotient objects
1.17 Intersections and unions of subobjects
1.18 Images and inverse images
1.19 Triangular decomposition of morphisms
1.20 Relative triangular decomposition of morphisms

Chapter 2 – Completion of Categories
2.1 Proper functors
2.2 The extension theorem
2.3 Dense functors
2.4 Sigma-sheaves
2.5 Topologies and sheaves
2.6 Some adjoint theorems
2.7 A generalization of the extensions theorem
2.8 Completion of categories
2.9 Grothendieck topologies

Chapter 3 – Algebraic Categories
3.1 Algebraic theories
3.2 Algebraic categories
3.3 Algebraic functors
3.4 Coalgebras
3.5 Characterization of algebraic categories

Chapter 4 – Abelian Categories
4.1 Preadditive and additive categories
4.2 Abelian categories
4.3 The isomorphism theorems
4.4 Limits and colimits in abelian categories
4.5 The extension theorem in the additive case.

A characterization of functor categories
4.6 Injective objects in abelian categories
4.7 Categories of additive fractions
4.8 Left exact functors. The embedding theorem.

D.1.20 Categories (Schubert [?])
1. Categories

1.1 Definition of Categories
1.2 Examples
1.3 Isomorphisms
1.4 Further Examples
1.5 Additive Categories
1.6 Subcategories

2. Functors
2.1 Covariant Functors
2.2 Standard Examples
2.3 Contravariant Functors
2.4 Dual Categories
2.5 Bifunctors
2.6 Natural Transformations

3. Categories of Categories and Categories of Functors
3.1 Preliminary Remarks
3.2 Universes
3.3 Conventions
3.4 Functor Categories
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3.5 The Category of Small Categories
3.6 Large Categories
3.7 The Evaluation Functor
3.8 The Additive Case

4. Representable Functors
4.1 Embeddings
4.2 Yoneda Lemma
4.3 The Additive Case
4.4 Representable Functors
4.5 Partially Representable Bifunctors

5. Some Special Objects and Morphisms
5.1 Monomorphisms, Epimorphisms
5.2 Retractions and Coretractions
5.3 Bimorphisms
5.4 Terminal and Initial Objects
5.5 Zero Objects

6. Diagrams
6.1 Diagram Schemes and Diagrams
6.2 Diagrams with Commutativity Conditions
6.3 Diagrams as Presentations of Functors
6.4 Quotients of Categories
6.5 Classes of Mono-, resp., Epimorphisms

7. Limits
7.1 Definition of Limits
7.2 Equalizers
7.3 Products
7.4 Complete Categories
7.5 Limits in Functor Categories
7.6 Double Limits
7.7 Criteria for Limits
7.8 Pullbacks

8. Colimits
8.1 Definition of Colimits
8.2 Coequalizers
8.3 Coproducts
8.4 Cocomplete Categories
8.5 Colimits in Functor Categories
8.6 Double Colimits
8.7 Criteria for Colimits
8.8 Pushouts

9. Filtered Colimits
9.1 Connected Categories
9.2 On the Calculation of Limits and Colimits
9.3 Filtered Categories
9.4 Filtered Colimits
9.5 Commutativity Theorems

10. Setvalued Functors
10.1 Properties Inherited from the Codomain Category
10.2 The Yoneda Embedding H∗ : C // [C o,Ens]
10.3 The General Representation Theorem
10.4 Projective and Injective Objects
10.5 Generators and Cogenerators
10.6 Well-powered Categories

11. Objects with an Algebraic Structure
11.1 Algebraic Structures
11.2 Operations of an Object on Another
11.3 Homomorphisms
11.4 Reduction to Ens
11.5 Limits and Filtered Colimits
11.6 Homomorphically Compatible Structures

12. Abelian Categories
12.1 Survey
12.2 Semi-additive Structure
12.3 Kernels and Cokernels
12.4 Factorization of Morphisms
12.5 The Additive Structure
12.6 Idempotents

13. Exact Sequences
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13.1 Exact Sequences in Exact Categories
13.2 Short Exact Sequences
13.3 Exact and Faithful Functors
13.4 Exact Squares
13.5 Some Diagram Lemmas

14. Colimits of Monomorphisms
14.1 Preordered Classes
14.2 Unions of Monomorphisms
14.3 Inverse Images of Monomorphisms
14.4 Images of Monomorphisms
14.5 Constructions for Colimits
14.6 Grothendieck Categories

15. Injective Envelopes
15.1 Modules over Additive Categories
15.2 Essential Extensions
15.3 Existence of Injectives
15.4 An Embedding Theorem

16. Adjoint Functors
16.1 Composition of Functors and Natural Transformations
16.2 Equivalences of Categories
16.3 Skeletons
16.4 Adjoint Functors
16.5 Quasi-inverse Adjunction Transformations
16.6 Fully Faithful Adjoints
16.7 Tensor Products

17. Pairs of Adjoint Functors between Functor Categories
17.1 The Kan Construction
17.2 Dense Functors
17.3 Characterization of the Yoneda Embedding
17.4 Small Projective Objects
17.5 Finitely Generated Objects
17.6 Natural Transformations with Parameters
17.7 Tensor Products over Small Categories
17.8 Relatives of the Tensor Product

18. Principles of Universal Algebra
18.1 Algebraic Theories
18.2 Yoneda Embedding and Free Algebras
18.3 Subalgebras and Cocompleteness
18.4 Coequalizers and Kernel Pairs
18.5 Algebraic Functors and Left Adjoints
18.6 Semantics and Structure
18.7 The Kronecker Product
18.8 Characterization of Algebraic Categories

19. Calculus of Fractions
19.1 Categories of Fractions
19.2 Calculus of Left Fractions
19.3 Factorization of Functors and Saturation
19.4 Interrelation with Subcategories
19.5 Additivity and Exactness
19.6 Localization in Abelian Categories
19.7 Characterization of Grothendieck Categories with a Generator

20. Grothendieck Topologies
20.1 Sieves and Topologies
20.2 Covering Morphisms and Sheaves
20.3 Sheaves Associated with a Presheaf
20.4 Generation of Topologies
20.5 Pretopologies
20.6 Characterization of Topos

21. Triples
21.1 The Construction of Eilenberg and Moore
21.2 Full Image and Kleisli Categories
21.3 Limits and Colimits in Eilenberg-Moore Categories
21.4 Split Forks
21.5 Characterization of Eilenberg-Moore Situations
21.6 Consequences of Factorizations of Morphisms
21.7 Eilenberg-Moore Categories as Functor Categories
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D.1.21 Introduction to Category Theory and Categorical
Logic (Streichert [?])

1 Categories
2 Functors and Natural Transformations
3 Subcategories, Full and Faithful Functors, Equivalences
4 Comma Categories and Slice Categories
5 Yoneda Lemma
6 Grothendieck universes: big vs. small
7 Limits and Colimits
8 Adjoint Functors
9 Adjoint Functor Theorem

10 Monads
11 Cartesian Closed Categories and λ-calculus
12 Elementary Toposes
13 Logic of Toposes

D.2 For Computer Science

D.2.1 Categories, Types, and Structures: An Introduction
to Category Theory for the Working Computer
Scientist (Asperti and Longo [?]))

I Categories and Structures
1 Categories

1.1 Category: Definition and Examples
1.2 Diagrams
1.3 Categories Out of Categories
1.4 Monic, Epic, and Principal Morphisms
1.5 Subobjects

2 Constructions
2.1 Initial and Terminal Objects
2.2 Products and Coproducts
2.3 Exponentials
2.4 Examples of CCCs
2.5 Equalizers and Pullbacks
2.6 Partial Morphisms and Complete Objects
2.7 Subobject Classifiers and Topoi

3 Functors and Natural Transformations
3.1 Functors
3.2 Natural Transformations
3.3 Cartesian and Cartesian Closed Categories Revisited
3.4 More Examples of CCCs
3.5 Yoneda’s Lemma
3.6 Presheaves

4 Categories Derived from Functors and Natural Transformations
4.1 Algebras Derived from Functors
4.2 From Monoids to Monads
4.3 Monoidal and Monoidal Closed Categories
4.4 Monoidal Categories and Linear Logic

5 Universal Arrows and Adjunctions
5.1 Universal Arrows
5.2 From Universal Arrows toward Adjunctions
5.3 Adjunctions
5.4 Adjunctions and Monads
5.5 More on Linear Logic

6 Cones and Limits
6.1 Limits and Colimits
6.2 Some Constructions Revisited
6.3 Existence of Limits
6.4 Preservation and Creation of Limits
6.5 ω-limits

7 Indexed and Internal Categories
7.1 Indexed Categories
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7.2 Internal Category Theory
7.3 Internal Presheaves
7.4 Externalization
7.5 Internalization

II Types as Objects
8 Formulae, Types and Objects

8.1 λ-Notation
8.2 The Typed λ-Calculus with Explicit Pairs (λβηπt)
8.3 The Intuitionistic Calculus of Sequents
8.4 The Cut-Elimination Theorem
8.5 Categorical Semantics of Derivations
8.6 The Cut-Elimination Theorem Revisited
8.7 Categorical Semantics of the Simply Typed Lambda Calculus
8.8 Fixpoint Operators and CCCs

9 Reflexive Objects and the Type-Free Lambda Calculus
9.1 Combinatory Logic
9.2 From Categories to Functionally Complete Applicative Structures
9.3 Categorical Semantics of the λ-Calculus
9.4 The Categorical Abstract Machine
9.5 From Applicative Structures to Categories
9.6 Typed and Applicative Structures: Applications and Examples

10 Recursive Domain Equations
10.1 The Problem of Contravariant Functors
10.2 0-Categories

11 Second Order Lambda Calculus
11.1 Syntax
11.2 The External Model
11.3 The External Interpretation
11.4 The Internal Model
11.5 The Internal Interpretation
11.6 Relating Models

12 Examples of Internal Models
12.1 Provable Retractions
12.2 PER Inside ω-Set
12.3 PL-Categories Inside Their Grothendieck Completion

D.2.2 Categories for Types (Crole [?])
1. Order, Lattices and Domains

1.1 Introduction
1.2 Ordered Sets
1.3 Basic Lattice Theory
1.4 Boolean and Heyting Lattices
1.5 Elementary Domain Theory
1.6 Further Exercises
1.7 Pointers to the Literature

2. A Category Theory Primer
2.1 Introduction
2.2 Categories and Examples
2.3 Functors and Examples
2.4 Natural Transformations and Examples
2.5 Isomorphisms and Equivalences
2.6 Products and Coproducts
2.7 The Yoneda Lemma
2.8 Cartesian Closed Categories
2.9 Monics, Equalisers, Pullbacks and their Duals

2.10 Adjunctions
2.11 Limits and Colimits
2.12 Strict Indexed Categories
2.13 Further Exercises
2.14 Pointers to the Literature

3. Algebraic Type Theory
3.1 Introduction
3.2 Definition of the Syntax
3.3 Algebraic Theories
3.4 Motivating a Categorical Semantics
3.5 Categorical Semantics
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3.6 Categorical Models and the Soundness Theorem
3.7 Categories of Models
3.8 Classifying Category of an Algebraic Theory
3.9 The Categorical Type Theory Correspondence

3.10 Further Exercises
3.11 Pointers to the Literature

4. Functional Type Theory
4.1 Introduction
4.2 Definition of the Syntax
4.3 λ×-Theories
4.4 Deriving a Categorical Semantics
4.5 Categorical Semantics
4.6 Categorical Models and the Soundness Theorem
4.7 Categories of Models
4.8 Classifying Category of a λ×-Theory
4.9 The Categorical Type Theory Correspondence

4.10 Categorical Gluing
4.11 Further Exercises
4.12 Pointers to the Literature

5. Polymorphic Functional Type Theory
5.1 Introduction
5.2 The Syntax and Equations of 2λ×-Theories
5.3 Deriving a Categorical Semantics
5.4 Categorical Semantics and Soundness Theorems
5.5 A PER Model
5.6 A Domain Model
5.7 Classifying Hyperdoctrine of a 2λ×-Theory
5.8 Categorical Type Theory Correspondence
5.9 Pointers to the Literature

6. Higher Order Polymorphism
6.1 Introduction
6.2 The Syntax and Equations of ωλ×-Theories
6.3 Categorical Semantics and Soundness Theorems
6.4 A PER Model
6.5 A Domain Model
6.6 Classifying Hyperdoctrine of an ωλ×-Theory
6.7 Categorical Type Theory Correspondence
6.8 Pointers to the Literature

D.2.3 A Gentle Introduction to Category Theory — The
Calculational Approach — (Fokkinga [?])

0 Introduction
1 The main concepts

1a Categories
1b Functors
1c Naturality
1d Adjunctions
1e Duality

2 Constructions in categories
2a Iso, epic, and monic
2b Initiality and finality
2c Products and Sums
2d Coequalizers
2e Colimits

A More on adjointness

D.2.4 Basic Category Theory for Computer Scientists
(Pierce [?])

1 Basic Constructions
1.1 Categories
1.2 Diagrams
1.3 Monomorphisms, Epimorphisms, and Isomorphisms
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1.4 Initial and Terminal Objects
1.5 Products
1.6 Universal Constructions
1.7 Equalizers
1.8 Pullbacks
1.9 Limits

1.10 Exponentiation
2 Functors, Natural Transformations, and Adjoints

2.1 Functors
2.2 F -Algebras
2.3 Natural Transformations
2.4 Adjoints

3 Applications
3.1 Cartesian Closed Categories
3.2 Implicit Conversions and Generic Operators
3.3 Programming Language Semantics
3.4 Recursive Domain Equations

4 Further Reading
4.1 Textbooks
4.2 Introductory Articles
4.3 Reference Books
4.4 Selected Research Articles

D.2.5 Category Theory and Computer Programming (Pitt
et. al. [?])

This is the proceedings of the “Category Theory and Computer Programming,
Tutorial and Workshop” held in Guildford, UK, September 16-20, 1985. The
primary interest here are the tutorials which present basic category theory from
a computer science perspective.

Part I Tutorials
• Abramsky: Introduction.
• David H. Pitt: Categories.
• Axel Poigné: Elements of Categorical Reasoning: Products and Coproducts and

some other (Co-) Limits.
• David E. Rydeheard: Functors and Natural Transformations.
• David E. Rydeheard: Adjunction.
• Axel Poigné: Cartesian Closure - Higher Types in Categories.
• Axel Poigné: Algebra Categorically.
• Axel Poigné: Category Theory and Logic.
• Eric G. Wagner: Categories, Data Types and Imperative Languages.

Part II Research Contributions
Section 1 : Semantics

• Peter Dybjer: Category Theory and Programming Language Seman-
tics: an Overview.

• Ernest G. Manes: Weakest Preconditions: Categorical Insights.
• Eric G. Wagner: A Categorical View of Weakest Liberal Precondi-

tions.
• Robert D. Tennent: Functor - Category Semantics of Programming

Languages and Logics.
• Michael B. Smyth: Finite Approximation of Spaces.
• Eugenio Moggi: Categories of Partial Morphisms and the lambdap -

Calculus.
• Axel Poigné: A Note on Distributive Laws and Power Domains.
• Glynn Winskel: Category Theory and Models for Parallel Computa-

tion.
• Anna Labella, Alberto Pettorossi: Categorical Models of Process Co-

operation.
• Austin Melton, David A. Schmidt, George E. Strecker: Galois Con-

nections and Computer Science Applications.
Section 2 : Specification

• Joseph A. Goguen, Rod M. Burstall: A Study in the Functions of
Programming Methodology: Specifications, Institutions, Charters and
Parchments.
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• Andrzej Tarlecki: Bits and Pieces of the Theory of Institutions.
• Donald Sannella, Andrzej Tarlecki: Extended ML: an Institution -

Independent Framework for Formal Program Development.
• Horst Reichel: Behavioral Program Specification.
• Hans-Dieter Ehrich: Key Extensions of Abstract Data Types, Final

Algebras, and Database Semantics.
Section 3 : Categorical Logic

• Michael P. Fourman, Steven Vickers: Theories as Categories.
• Paul Taylor: Internal Completeness of Categories of Domains.
• John Cartmell: Formalizing the Network and Hierarchical Data Mod-

els - an Application of Categorical Logic.
Section 4 : Categorical Programming

• David E. Rydeheard, Rod M. Burstall: A Categorical Unification Al-
gorithm.

• David E. Rydeheard, Rod M. Burstall: Computing with Categories.

D.2.6 Categories and Computer Science (Walters [?])
Introduction

1 The Algebra of Functions
a) Categories
b) General Examples
c) Free Categories; Generators and Relations
d) Some Large Categories
e) The Dual of a Category

2 Products and Sums
a) Initial and Terminal Objects
b) Categories with Products; Circuits
c) Products of Families
d) Sums
e) Categories with Sums; Flow Charts

3 Distributive Categories
a) The Distributive Law
b) Examples
c) Imperative Programs

4 Data Types
a) Arithmetic
b) Stacks
c) Arrays
d) Binary Trees
e) Queues
f) Pointers
g) Turing Machines

5 Categories of Functors
a) Functors
b) Functor Categories
c) Directed Graphs and Regular Grammars
d) Automata and Imperative Programs with Input
e) The Specification of Functions
f) What Does Free Mean?
g) Adjoint Functors

6 More About Products
a) The Free Category with Products
b) Functional Specification with Products
c) Context-free Languages
d) Natural Numbers and Cartesian Closed Categories

7 Computational Category Theory
a) The Knuth-Bendix Procedure
b) Computing Left Kan Extensions

D.3 Advanced - Specialized

D.3.1 Theory of Mathematical Structures (Adámek [?])
Part I: CONSTRUCTS
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Chapter 1: Objects and Morphisms
1A Sets
1B Constructs: Definitions and Examples
1C Isomorphisms
1D Fibres
1E Isomorphic Constructs
1F Subobjects and Generation
1G Quotient Objects
1H Free Objects

Chapter 2: Initial and Final Structures
2A Initial Structures
2B Cartesian Products
2C Final Structures
2D Semifinal Objects
2E A Criterion for Semifinal Completeness

Part II: CATEGORIES AND FUNCTORS
Chapter 3: Categories

3A The Definition of a Category
3B The Duality Principle
3C Functors
3D The Construct of Small Categories
3E Natural Transformations
3F Adjoint Functors

Chapter 4: Limits and Colimits
4A Products and Coproducts
4B Limits
4C Colimits
4D Adjoint Functor Theorem
4E Reflective Subcategories
4F Tensor Products

Part III: SELECTED TOPICS
Chapter 5: Relational and Algebraic Structures

5A Set Functors
5B Relational Structures
5C Algebraic Structures
5D The Birkhoff Variety Theorem

Chapter 6: Concrete Categories
6A Which Categories are Concrete
6B The Kučera Theorem
6C Universal Constructs

D.3.2 Toposes, Triples, and Theories (Barr and Wells [?])
1. Categories

1.1 Definition of category
1.2 Functors
1.3 Natural transformations
1.4 Elements and Subobjects
1.5 The Yoneda Lemma
1.6 Pullbacks
1.7 Limits
1.8 Colimits
1.9 Adjoint functors

1.10 Filtered colimits
1.11 Notes to Chapter 1

2. Toposes
2.1 Basic Ideas about Toposes
2.2 Sheaves on a Space
2.3 Properties of Toposes
2.4 The Beck Conditions
2.5 Notes to Chapter 2

3. Triples
3.1 Definitions and Examples
3.2 The Kleisli and Eilenberg-Moore Categories
3.3 Tripleability
3.4 Properties of Tripleable Functors
3.5 Sufficient Conditions for Tripleability
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3.6 Morphisms of Triples
3.7 Adjoint Triples
3.8 Historical Notes on Triples

4. Theories
4.1 Sketches
4.2 The Ehresmann-Kennison Theorem
4.3 Finite-Product Theories
4.4 Left Exact Theories
4.5 Notes on Theories

5. Properties of Toposes
5.1 Tripleability of P
5.2 Slices of Toposes
5.3 Logical Functors
5.4 Toposes are Cartesian Closed
5.5 Exactness Properties of Toposes
5.6 The Heyting Algebra Structure on Ω

6. Permanence Properties of Toposes
6.1 Topologies
6.2 Sheaves for a Topology
6.3 Sheaves form a topos
6.4 Left exact cotriples
6.5 Left exact triples
6.6 Categories in a Topos
6.7 Grothendieck Topologies
6.8 Giraud’s Theorem

7. Representation Theorems
7.1 Freyd’s Representation Theorems
7.2 The Axiom of Choice
7.3 Morphisms of Sites
7.4 Deligne’s Theorem
7.5 Natural Number Objects
7.6 Countable Toposes and Separable Toposes
7.7 Barr’s Theorem
7.8 Notes to Chapter 7

8. Cocone Theories
8.1 Regular Theories
8.2 Finite Sum Theories
8.3 Geometric Theories
8.4 Properties of Model Categories

9. More on Triples
9.1 Duskin’s Tripleability Theorem
9.2 Distributive Laws
9.3 Colimits of Triple Algebras
9.4 Free Triples

D.3.3 An Invitation to General Algebra and Universal
Constructions (Bergman [?])

1. First chapter
First section

D.3.4 Toposes and Local Set Theories (Bell [?])
1. Elements of category theory

Categories
Some basic category-theoretic notions
Limits and colimits
Existence of limits and colimits
Functors
Natural transformations and functor categories
Equivalence of categories
Adjunctions
Units and counits of adjunctions
Freedom and cofreedom
Uniqueness of adjoints
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Preservation of limits and colimits
Cartesian closed categories
Reflective subcategories
Galois connections

2. Introducing toposes
Subobjects and subobject classifiers
Power objects: the concept of topos
SetC as a topos
Geometric morphisms

3. Local set theories
Local languages and local set theories
Logic in a local set theory
Set theory in a local language
The category of sets determined by a local set theory
Interpreting a local language in a topos: the soundness theorem
The completeness theorem
The equivalence theorem
Translation and logical functors
Adjoining indeterminates
Introduction of function values

4. Fundamental properties of toposes
Some fundamental properties of toposes
The structure of Ω and Sub(A) in a topos
Slicing a topos
Coproducts in a topos
Syntactic properties of local set theories versus essentially categorical properties of toposes
Full theories
Beth-Kripke-Joyal Semantics

5. From logic to sheaves
Truth sets, modalities, and universal closure operations
Sheaves
The sheafification functor
Modalized toposes

Modal operators and sheaves in SetC
op

Sheaves over locales and topological spaces
6. Locale-valued sets

Locale-valued sets
The topos of sheaves on a topological space
Decidable, subconstant, and fuzzy sets
Boolean extensions as toposes

7. Natural numbers and real numbers
Natural numbers in local set theories
Real numbers in local set theories
The free topos

8. Epilogue: the wider significance of topos theory
From set theory to topos theory
Some analogies with the theory of relativity
The negation of constancy

Appendix: Geometric theories and classifying toposes

D.3.5 Categories, Allegories (Freyd and Scedrov [25])
Chapter One: CATEGORIES

1.1 Basic definitions
1.1.1 CATEGORY, morphism, source, target, composition
1.1.2 ESSENTIALLY ALGEBRAIC THEORY
1.1.3 directed equality
1.1.4 IDENTITY MORPHISM
1.1.5 MONOID
1.1.6 DISCRETE CATEGORY
1.1.7 LEFT-INVERTIBLE, RIGHT-INVERTIBLE, ISOMORPHISM, INVERSE, GROUPOID,

GROUP
1.1.8 FUNCTOR, separating functions
1.1.9 CONTRAVARIANT FUNCTOR, OPPOSITE CATEGORY, COVARIANT FUNC-

TOR
1.1.10 ISOMORPHISM OF CATEGORIES

1.2 Basic examples and constructions
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1.2.1 object, proto-morphism, SOURCE-TARGET PREDICATE [ARROW PREDICATE]
1.2.2 category of . . . , category composed of . . .
1.2.3 CATEGORY OF SETS
1.2.4 CATEGORY OF GROUPS
1.2.5 FOUNDED (one category on another), FORGETFUL FUNCTOR, CONCRETE

CATEGORY, UNDERLYING SET FUNCTOR
1.2.6 underlying set
1.2.7 PRE-ORDERING
1.2.8 group as a category, POSET
1.2.9 ARROW NOTATION, puncture mark

1.2.10 SLICE CATEGORY
1.2.11 category of rings, category of augmented rings
1.2.12 LOCAL HOMEOMORPHISMS, LAZARD SHEAVES
1.2.13 counter-slice category, category of pointed sets, category of pointed spaces
1.2.14 SMALL CATEGORY, FUNCTOR CATEGORY, NATURAL TRANSFORMATION,

CONJUGATE
1.2.15 CATEGORY OF M-SETS, RIGHT A-SET
1.2.16 CAYLEY REPRESENTATION
1.2.17 LEFT A-SET
1.2.18 NATURAL EQUIVALENCE
1.2.19 IDEMPOTENT
1.2.20 SPLIT IDEMPOTENT
1.2.21 STRONGLY CONNECTED
1.2.22 PRE-FUNCTOR

1.3 Equivalence of categories
1.3.1 EMBEDDING, FULL FUNCTOR, FULL SUBCATEGORY, REPRESENTATIVE

IMAGE, EQUIVALENCE FUNCTOR, STRONG EQUIVALENCE
1.3.2 REFLECTS (properties by functors), FAITHFUL FUNCTOR
1.3.3 contravariant Cayley representation, power set functor
1.3.4 ISOMORPHIC OBJECTS
1.3.5 FORGETFUL FUNCTOR, grounding, foundation functor
1.3.6 INFLATION, INFLATION CROSS-SECTION
1.3.7 EQUIVALENT CATEGORIES
1.3.8 SKELETAL, SKELETON, COSKELETON, support of a permutation, transposition
1.3.9 EQUIVALENCE KERNEL

1.3.10 ideal, downdeal, updeal
1.3.11 SECTION OF A SHEAF, PRE-SHEAF, GERM, STALK, ADJOINT PAIR, LEFT

ADJOINT, RIGHT ADJOINT, ASSOCIATED SHEAF FUNCTOR
1.3.12 consistent, realizable (subsets of a pre-sheaf), complete pre-sheaf
1.3.13 DUALITY
1.3.14 category composed of finite lists
1.3.15 category of rings, category of augmented rings
1.3.16 STONE DUALITY, STONE SPACE
1.3.17 linearly ordered category
1.3.18 FINITE PRESENTATION
1.3.19 Q-SEQUENCE, SATISFIES (a Q-sequence), COMPLEMENTARY Q-SEQUENCE
1.3.20 tree, rooted tree, root, length of a tree, sprouting, Q-tree
1.3.21 mapping-cylinder
1.3.22 good, nearly-good, stable, coextensive, S-coextensive (Q-trees)
1.3.23 C-stability (of Q-trees)

1.4 Cartesian categories
1.4.1 MONIC [monomorphism, mono, injection, inclusion, monic morphism]
1.4.2 monic family, TABLE, COLUMN, TOP, FEET, RELATION, SUBOBJECT, VALUE

[SUBTERMINATOR]
1.4.3 CONTAINMENT (of tables)
1.4.4 tabulation, tabulates a relation
1.4.5 TERMINATOR [final object, terminal object]
1.4.6 binary PRODUCT diagram, has binary products
1.4.7 product of a family
1.4.8 support of a functor
1.4.9 EQUALIZER, has equalizers

1.4.10 CARTESIAN CATEGORY [finitely complete, left exact]
1.4.11 PULLBACK diagram, has pullbacks
1.4.12 REPRESENTATION OF CARTESIAN CATEGORIES
1.4.13 REPRESENTABLE FUNCTOR
1.4.14 HORN SENTENCE
1.4.15 INVERSE IMAGE
1.4.16 SEMI-LATTICE, entire subobject
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1.4.17 LEVEL [kernel-pair, congruence], DIAGONAL, diagonal subobject
1.4.18 fiber, fiber-product
1.4.19 EVALUATION FUNCTORS
1.4.20 conjugate functors
1.4.21 YONEDA REPRESENTATION
1.4.22 special cartesian category
1.4.23 DENSE MONIC, RATIONAL CATEGORY
1.4.24 SHORT COLUMN (of a table), COMPOSITION (of tables) AT (a column)
1.4.25 τ -CATEGORY
1.4.26 SUPPORTING (sequence of columns), PRUNING (of a column)
1.4.27 category of ordinal lists
1.4.28 RESURFACING (of a table)
1.4.29 CANONICAL CARTESIAN STRUCTURE
1.4.30 AUSPICIOUS (sequence of columns)
1.4.31 FREE τ -CATEGORY
1.4.32 WELL-MADE, WELL-MADE PART
1.4.33 CANONICAL SLICE
1.4.34 POINT, GENERIC POINT

1.5 Regular categories
1.5.1 ALLOWS, IMAGE, has images, ADJOINT PAIR (of functions between posets),

LEFT ADJOINT, RIGHT ADJOINT
1.5.2 COVER
1.5.3 EPIC [epimorphism]
1.5.4 REGULAR CATEGORY, PRE-REGULAR CATEGORY
1.5.5 STALK-FUNCTOR
1.5.6 SUPPORT, WELL-SUPPORTED
1.5.7 WELL-POINTED
1.5.8 PROJECTIVE
1.5.9 CAPITAL

1.5.10 SLICE LEMMA for regular categories, DIAGONAL FUNCTOR
1.5.11 CAPITALIZATION LEMMA
1.5.12 equivalence condition, slice condition, union condition, direct union
1.5.13 relative capitalization
1.5.14 HENKIN-LUBKIN THEOREM [representation theorem for regular categories]
1.5.15 special pre-regular category
1.5.16 composition of relations
1.5.17 RECIPROCAL
1.5.18 MODULAR IDENTITY
1.5.19 GRAPH (of a morphism), MAP, ENTIRE, SIMPLE
1.5.20 PUSHOUT
1.5.21 COEQUALIZER
1.5.22 EQUIVALENCE RELATION, EFFECTIVE EQUIVALENCE RELATION, EFFEC-

TIVE REGULAR CATEGORY
1.5.23 QUOTIENT-OBJECT
1.5.24 CONSTANT MORPHISM
1.5.25 CHOICE OBJECT, AC REGULAR CATEGORY, Axiom of Choice
1.5.26 category composed of recursive functions
1.5.27 category composed of primitive recursive functions
1.5.28 BICARTESIAN CATEGORY, COCARTESIAN CATEGORY, COTERMINATOR

[initial object, coterminal object], COPRODUCT, STRICT COTERMINATOR
1.5.29 representation of bicartesian categories
1.5.30 bicartesian characterization of the set of natural numbers
1.5.31 ABELIAN CATEGORY
1.5.32 ZERO OBJECT, ZERO MORPHISM, category with zero, middle-two interchange

law, HALF-ADDITIVE CATEGORY, ADDITIVE CATEGORY
1.5.33 KERNEL, COKERNEL
1.5.34 abelian group object, homomorphism
1.5.35 EXACT CATEGORY
1.5.36 left-normal, right-normal, normal (categories with zero)
1.5.37 EXACT SEQUENCE, five-lemma, snake lemma

1.6 Pre-logoi
1.6.1 PRE-LOGOS
1.6.2 DISTRIBUTIVE LATTICE
1.6.3 REPRESENTATION OF PRE-LOGOI
1.6.4 PASTING LEMMA
1.6.5 POSITIVE PRE-LOGOS
1.6.6 slice lemma for pre-logoi
1.6.7 COMPLEMENTED SUBOBJECT, COMPLEMENTED SUBTERMINATOR
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1.6.8 GENERATING SET, BASIS
1.6.9 PRE-FILTER, FILTER

1.6.10 REPRESENTATION THEOREM FOR PRE-LOGOI, BOOLEAN ALGEBRA, ULTRA-
FILTER

1.6.11 special pre-logos
1.6.12 well-joined category
1.6.13 BOOLEAN PRE-LOGOS
1.6.14 ULTRA-PRODUCT FUNCTOR, ULTRA-POWER FUNCTOR
1.6.15 properness of a subobject
1.6.16 COMPLETE MEASURE, ATOMIC MEASURE
1.6.17 PRE-TOPOS
1.6.18 AMALGAMATION LEMMA
1.6.19 DECIDABLE OBJECT
1.6.20 DIACONESCU BOOLEAN THEOREM

1.7 Logoi
1.7.1 LOGOS
1.7.2 LOCALLY COMPLETE CATEGORY
1.7.3 HEYTING ALGEBRA
1.7.4 LOCALE, category of complete Heyting algebras, category of locales
1.7.5 NEGATION
1.7.6 LAW OF EXCLUDED MIDDLE
1.7.7 scone of a Heyting algebra
1.7.8 free Heyting algebra, RETRACT
1.7.9 slice lemma for logoi

1.7.10 COPRIME OBJECT, CONNECTED OBJECT, FOCAL LOGOS
1.7.11 FOCAL REPRESENTATION
1.7.12 GEOMETRIC REPRESENTATION THEOREM FOR LOGOI
1.7.13 DOMINATES, LEFT-FULL
1.7.14 FREYD CURVE
1.7.15 STONE REPRESENTATION THEOREM FOR LOGOI
1.7.16 ATOM, ATOMICALLY BASED, ATOMLESS, periodic power
1.7.17 STONE SPACE, CLOPEN
1.7.18 MICRO-SHEAF
1.7.19 TRANSITIVE CLOSURE, TRANSITIVE-REFLEXIVE CLOSURE, TRANSITIVE

(PRE-)LOGOS
1.7.20 σ-TRANSITIVE LOGOS, σ-TRANSITIVE PRE-LOGOS
1.7.21 EQUIVALENCE CLOSURE, E-STANDARD PRE-LOGOS
1.7.22 representation theorem for countable σ-transitive (pre-)logoi

1.8 Adjoint functors, Grothendieck topoi, and exponential categories
1.8.1 ADJOINT PAIR OF FUNCTORS, LEFT ADJOINT, RIGHT ADJOINT
1.8.2 REFLECTIVE SUBCATEGORY, REFLECTION
1.8.3 REFLECTIVE SUBCATEGORY, REFLECTION
1.8.4 CLOSURE OPERATION
1.8.5 COREFLECTIVE INCLUSION
1.8.6 ADJOINT ON THE RIGHT (LEFT), Galois connection
1.8.7 DIAGONAL FUNCTOR
1.8.8 diagram in one category modeled on another, lower bound, compatibility condition,

greatest lower bound
1.8.9 LIMIT, COLIMIT

1.8.10 COMPLETE, COCOMPLETE (category)
1.8.11 CONTINUOUS, COCONTINUOUS (functor)
1.8.12 weak-, WEAK-LIMIT, WEAKLY-COMPLETE
1.8.13 PRE-LIMIT, PRE-COMPLETE
1.8.14 PRE-ADJOINT, PRE-REFLECTION, PRE-ADJOINT FUNCTOR, GENERAL AD-

JOINT FUNCTOR THEOREM
1.8.15 UNIFORMLY CONTINUOUS (functor), MORE GENERAL ADJOINT FUNCTOR

THEOREM
1.8.16 ADJOINT FUNCTOR THEOREM
1.8.17 POINTWISE CONTINUOUS (functor)
1.8.18 functor generated by the elements, PETTY-FUNCTOR
1.8.19 GENERAL REPRESENTABILITY THEOREM, category of elements
1.8.20 WELL-POWERED CATEGORY, minimal object
1.8.21 cardinality function, generated by A through G
1.8.22 COGENERATING SET, SPECIAL ADJOINT FUNCTOR THEOREM
1.8.23 GIRAUD DEFINITION OF A GROTHENDIECK TOPOS
1.8.24 EXPONENTIAL CATEGORY [cartesian-closed], EVALUATION MAP
1.8.25 bifunctor
1.8.26 EXPONENTIAL IDEAL, REPLETE SUBCATEGORY
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1.8.27 KURATOWSKI INTERIOR OPERATOR, open elements
1.8.28 LAWVERE-TIERNEY CLOSURE OPERATION [L-T], Kuratowski closure opera-

tion, closed elements
1.8.29 BASEABLE

1.9 Topoi
1.9.1 UNIVERSAL RELATION, POWER-OBJECT, TOPOS
1.9.2 SUBOBJECT CLASSIFIER, universal subobject, CHARACTERISTIC MAP
1.9.3 g-large subobject
1.9.4 SINGLETON MAP
1.9.5 elementary topos
1.9.6 slice lemma for topoi
1.9.7 FUNDAMENTAL LEMMA OF TOPOI
1.9.8 family of subobjects NAMED BY, INTERNALLY DEFINED INTERSECTION
1.9.9 NAME OF a subobject

1.9.10 topos has strict coterminator
1.9.11 topos is regular
1.9.12 topos is a logos
1.9.13 topos is a transitive logos
1.9.14 INTERNALLY DEFINED UNION, permanent lower (upper) bound
1.9.15 WELL-POINTED PART, SOLVABLE TOPOS
1.9.16 Topos is a pre-topos
1.9.17 topos is positive
1.9.18 topos has coequalizers
1.9.19 INJECTIVE, INTERNALLY INJECTIVE
1.9.20 VALUE-BASED
1.9.21 INTERNALLY COGENERATES
1.9.22 PROGENITOR
1.9.23 LAWVERE DEFINITION, TIERNEY DEFINITION (of a Grothendieck topos)
1.9.24 slice lemma for Grothendieck topoi
1.9.25 BOOLEAN TOPOS
1.9.26 small object
1.9.27 IAC [Internal Axiom of Choice]
1.9.28 ENTENDUE
1.9.29 NATURAL NUMBER OBJECT in a topos
1.9.30 PEANO PROPERTY
1.9.31 bicartesian characterization of a natural numbers object
1.9.32 A-ACTION, FREE A-ACTION

1.10 Sconing
1.10.1 EXACTING CATEGORY
1.10.2 SCONE
1.10.3 free categories, RETRACT
1.10.4 SMALL PROJECTIVE

Chapter Two: ALLEGORIES
1.1 Basic definitions

1.1.1 RECIPROCATION, COMPOSITION, INTERSECTION, semi-distributivity, law of
modularity

1.1.2 ALLEGORY
1.1.3 V -VALUED RELATION
1.1.4 MODULAR LATTICE
1.1.5 REFLEXIVE, SYMMETRIC, TRANSITIVE, COREFLEXIVE, EQUIVALENCE RE-

LATION
1.1.6 DOMAIN
1.1.7 ENTIRE, SIMPLE, MAP
1.1.8 TABULATES (a morphism), TABULAR (morphism), TABULAR ALLEGORY, con-

nected locale
1.1.9 PARTIAL UNIT, UNIT, UNITARY ALLEGORY

1.1.10 ASSEMBLY, CAUCUS, modulus
1.1.11 (UNITARY) REPRESENTATION OF ALLEGORIES, representation theorem for

unitary tabular allegories
1.1.12 partition representation [combinatorial representation], geometric representation (of

modular lattices)
1.1.13 projective plane, Desargues’ theorem
1.1.14 representable allegory
1.1.15 PRE-TABULAR ALLEGORY
1.1.16 tabular reflection
1.1.17 EFFECTIVE ALLEGORY, EFFECTIVE REFLECTION
1.1.18 SEMI-SIMPLE morphism, SEMI-SIMPLE ALLEGORY
1.1.19 neighbors (pair of idempotents)
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1.1.20 V -VALUED SETS
1.2 Distributive allegories

1.2.1 DISTRIBUTIVE ALLEGORY
1.2.2 POSITIVE ALLEGORY
1.2.3 POSITIVE REFLECTION
1.2.4 representation theorem for distributive allegories
1.2.5 LOCALLY COMPLETE DISTRIBUTIVE ALLEGORY
1.2.6 downdeal, LOCAL COMPLETION
1.2.7 ideal
1.2.8 GLOBALLY COMPLETE
1.2.9 GLOBAL COMPLETION

1.2.10 SYSTEMIC COMPLETION
1.2.11 O(Y )-valued sets and sheaves on Y

1.3 Division allegories
1.3.1 DIVISION ALLEGORY
1.3.2 representation theorem for distributive allegories
1.3.3 SYMMETRIC DIVISION
1.3.4 STRAIGHT (morphism)
1.3.5 SIMPLE PART, DOMAIN OF SIMPLICITY

1.4 Power allegories
1.4.1 POWER ALLEGORY, THICK (morphism)
1.4.2 POWER-OBJECT, SINGLETON MAP
1.4.3 REALIZABILITY TOPOS
1.4.4 SPLITTING LEMMAS
1.4.5 PRE-POWER ALLEGORY
1.4.6 Cantor’s diagonal proof
1.4.7 recursively enumerable sets which are not recursive
1.4.8 Peano axioms, Gödel-numbers, inconsistency
1.4.9 PRE-POSITIVE ALLEGORY, well-joined category

1.4.10 LAW OF METONYMY
1.4.11 stilted relation
1.4.12 FREE BOOLEAN ALGEBRA
1.4.13 Continuum Hypothesis
1.4.14 WELL-POINTED

1.5 Quotient allegories
1.5.1 CONGRUENCE (on an allegory), QUOTIENT ALLEGORY
1.5.2 BOOLEAN QUOTIENT
1.5.3 CLOSED QUOTIENT
1.5.4 faithful bicartesian representation in a boolean topos
1.5.5 AMENABLE CONGRUENCE, AMENABLE QUOTIENT
1.5.6 quotients of complete allegories
1.5.7 Axiom of Choice, independence of
1.5.8 SEPARATED OBJECT, DENSE RELATION

APPENDICES
1.1 countable dense linearly ordered set, Cantor’s back-and-forth argument, complete metric

on a Gδ set, countable power of 2, Cantor space, countable power of the natural numbers,
Baire space, countable atomless boolean algebras

1.2 Appendix
1.2.1 SORT, SORT WORD, VARIABLE, SORT ASSIGNMENT, PREDICATE SYMBOL,

SORT TYPE ASSIGNMENT [arity], EQUALITY SYMBOL, CONNECTIVES, QUAN-
TIFIERS, PUNCTUATORS

1.2.2 FORMULA, FREE, BOUND, INDEX (occurrences of a variable), SCOPE (of a quan-
tifier), ASSERTION, TOLERATES

1.2.3 PRIMITIVE FUNCTIONAL SEMANTICS, VALID (assertion), MODEL, THEORY,
ENTAILS IN PRIMITIVE FUNCTIONAL SEMANTICS

1.2.4 RULES OF INFERENCE FIRST ORDER LOGIC, SYNTACTICALLY ENTAILS
1.2.5 COHERENT LOGIC, REGULAR LOGIC, HORN LOGIC, HIGHER ORDER LOGIC,

propositional theories
1.2.6 DERIVED RULES
1.2.7 DERIVED PREDICATE TOKEN, INSTANTIATION (of a variable), DERIVED

PREDICATE
1.2.8 FREE ALLEGORY (on a theory)
1.2.9 FREE (REGULAR CATEGORY, PRE-LOGOS, LOGOS, TOPOS)

1.2.10 ARITHMETIC (theories of), NUMERICAL SORT, NUMERICAL CONSTANT, FUNC-
TION SYMBOL, term, INDUCTION, PEANO AXIOMS, HIGHER ORDER ARITH-
METIC

1.2.11 free topos with a natural number object
1.2.12 numerical coding of inference and inconsistency
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1.2.13 DISJUNCTION PROPERTY, EXISTENCE PROPERTY, NUMERICAL EXISTENCE
PROPERTY

1.2.14 SEMANTICALLY ENTAILS IN A UNITARY ALLEGORY
1.2.15 tarskian semantics, BOOLEAN THEORY
1.2.16 GÖDEL’S COMPLETENESS THEOREM
1.2.17 ZERMELO-FRAENKEL SET THEORY
1.2.18 FOURMAN-HAYASHI INTERPRETATION, well-founded part, SCOTT-SOLOVAY

BOOLEAN-VALUED MODEL
1.2.19 Continuum Hypothesis, independence of
1.2.20 Axiom of Choice, independence of

D.3.6 Topoi. The Categorical Analysis of Logic (Goldblatt
[?])

CHAPTER 1. MATHEMATICS = SET THEORY
1. Set theory
2. Foundations of mathematics
3. Mathematics as set theory

CHAPTER 2. WHAT CATEGORIES ARE
1. Functions are sets?
2. Composition of functions
3. Categories: first examples
4. The pathology of abstraction
5. Basic examples

CHAPTER 3. ARROWS INSTEAD OF EPSILON
1. Monic arrows
2. Epic arrows
3. Iso arrows
4. Isomorphic objects
5. Initial objects
6. Terminal objects
7. Duality
8. Products
9. Co-products

10. Equalizers
11. Limits and co-limits
12. Co-equalizers
13. The pullback
14. Pushouts
15. Completeness
16. Exponentiation

CHAPTER 4. INTRODUCING TOPOI
1. Classifying subobjects
2. Definition of topos
3. First examples
4. Bundles and sheaves
5. Monoid actions
6. Power objects
7. Ω and comprehension

CHAPTER 5. TOPOS STRUCTURE: FIRST STEPS
1. Monics equalise
2. Images of arrows
3. Fundamental facts
4. Extensionality and bivalence
5. Monics and epics by elements

CHAPTER 6. LOGIC CLASSICALLY CONCEIVED
1. Motivating topos logic
2. Propositions and truth-values
3. The propositional calculus
4. Boolean algebra
5. Algebraic semantics
6. Truth-functions as arrows
7. E -semantics

CHAPTER 7. ALGEBRA OF SUBOBJECTS
1. Complement, intersection, union
2. Sub(d) as a lattice



354 APPENDIX D. OTHER SOURCES

3. Boolean topoi
4. Internal vs. external
5. Implication and its implications
6. Filling two gaps
7. Extensionality revisited

CHAPTER 8. INTUITIONISM AND ITS LOGIC
1. Constructivist philosophy
2. Heyting’s calculus
3. Heyting algebras
4. Kripke semantics

CHAPTER 9. FUNCTORS
1. The concept of functor
2. Natural transformations
3. Functor categories

CHAPTER 10. SET CONCEPTS AND VALIDITY
1. Set concepts
2. Heyting algebras in P
3. The subobject classifier in Setop

4. The truth arrows
5. Validity
6. Applications

CHAPTER 11. ELEMENTARY TRUTH
1. The idea of a first-order language
2. Formal language and semantics
3. Axiomatics
4. Models in a topos
5. Substitution and soundness
6. Kripke models
7. Completeness
8. Existence and free logic
9. Heyting-valued sets

10. High-order logic
CHAPTER 12. CATEGORICAL SET THEORY

1. Axiom of choice
2. Natural numbers objects
3. Formal set theory
4. Transitive sets
5. Set-objects
6. Equivalence of models

CHAPTER 13. ARITHMETIC
1. Topoi as foundations
2. Primitive recursion
3. Peano postulates

CHAPTER 14. LOCAL TRUTH
1. Stacks and sheaves
2. Classifying stacks and sheaves
3. Grothendieck topoi
4. Elementary sites
5. Geometric modality
6. Kripke-Joyal semantics
7. Sheaves as complete Ω-sets
8. Number systems as sheaves

CHAPTER 15. ADJOINTNESS AND QUANTIFIERS
1. Adjunctions
2. Some adjoint situations
3. The fundamental theorem
4. Quantifiers

D.3.7 Notes on Categories and Groupoids (Higgins[32])
Chapters
1. Some basic categories
2. Natural equivalence and adjoint functors
3. Paths and components
4. Free groupoids
5. Trees and simplicial groupoids
6. Fundamental groupoids of topological spaces
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7. Limits in Categories
8. Universal morphisms in D, C and G
9. Right limits in C and G

10. The word problem for Uσ
11. Free products of categories and groupoids
12. Quotient maps of groupoids
13. Covering maps
14. Applications to group theory
15. Coverings of right limits
16. Homology of groups and groupoids
17. Calculation of fundamental groups

D.3.8 Topos Theory (Johnstone [?])
Chapter 0: Preliminaries

0.1 Category Theory
0.2 Sheaf Theory
0.3 Grothendieck Topologies
0.4 Giraud’s Theorem

Chapter 1: Elementary Toposes
1.1 Definition and Examples
1.2 Equivalence Relations and Partial Maps
1.3 The Category E op

1.4 Pullback Functors
1.5 Image Factorizations

Chapter 2: Internal Category Theory
2.1 Internal Categories and Diagrams
2.2 Internal Limits and Colimits
2.3 Diagrams in a Topos
2.4 Internal Profunctors
2.5 Filtered Categories

Chapter 3: Topologies and Sheaves
3.1 Topologies
3.2 Sheaves
3.3 The Associated Sheaf Functor
3.4 shj(E ) as a Category of Fractions
3.5 Examples of Topologies

Chapter 4: Geometric Morphisms
4.1 The Factorization Theorem
4.2 The Gluing Construction
4.3 Diaconescu’s Theorem
4.4 Bounded Morphisms

Chapter 5: Logical Aspects of Topos Theory
5.1 Boolean Toposes
5.2 The Axiom of Choice
5.3 The Axiom (SG)
5.4 The Mitchell-Bénabou Language

Chapter 6: Natural Number Objects
6.1 Definition and Basic Properties
6.2 Finite Cardinals
6.3 The Object Classifier
6.4 Algebraic Theories
6.5 Geometric Theories
6.6 Real Number Objects

Chapter 7: Theorems of Deligne and Barr
7.1 Points
7.2 Spatial Toposes
7.3 Coherent Toposes
7.4 Deligne’s Theorem
7.5 Barr’s Theorem

Chapter 8: Cohomology
8.1 Basic Definitions
8.2 Čech Cohomology
8.3 Torsors
8.4 Profinite Fundamental Groups

Chapter 9: Topos Theory and Set Theory
9.1 Kuratowski-Finiteness
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9.2 Transitive Objects
9.3 The Equiconsistency Theorem
9.4 The Filterpower Construction
9.5 Independence of the Continuum Hypothesis

Appendix: Locally Internal Categories

D.3.9 Sketches of an Elephant: a Topos Theory
Compendium (Johnstone [33, ?])

VOLUME 1

A TOPOSES AS CATEGORIES
A1 Regular and cartesian closed categories

A1.1 Preliminary assumptions
A1.2 Cartesian categories
A1.3 Regular categories
A1.4 Coherent categories
A1.5 Cartesian closed categories
A1.6 Subobject classifiers

A2 Toposes – basic theory
A2.1 Definition and examples
A2.2 The Monadicity Theorem
A2.3 The Fundamental Theorem
A2.4 Effectiveness, positivity and partial maps
A2.5 Natural number objects
A2.6 Quasitoposes

A3 Allegories
A3.1 Relations in regular categories
A3.2 Allegories and tabulations
A3.3 Splitting symmetric idempotents
A3.4 Division allegories and power allegories

A4 Geometric morphisms – basic theory
A4.1 Definition and examples
A4.2 Surjections and inclusions
A4.3 Cartesian reflectors and sheaves
A4.4 Local operators
A4.5 Examples of local operators
A4.6 The hyperconnected-localic factorization

B 2-CATEGORICAL ASPECTS OF TOPOS THEORY
B1 Indexed categories and fibrations

B1.1 Review of 2-categories
B1.2 Indexed categories
B1.3 Fibred categories
B1.4 Limits and colimits
B1.5 Descent conditions and stacks

B2 Internal and locally internal categories
B2.1 Review of enriched categories
B2.2 Locally internal categories
B2.3 Internal categories and diagram categories
B2.4 The Indexed Adjoint Functor Theorem
B2.5 Discrete opfibrations
B2.6 Filtered colimits
B2.7 Internal profunctors

B3 Toposes over a base
B3.1 S-toposes as S-indexed categories
B3.2 Diaconescu’s Theorem
B3.3 Giraud’s Theorem
B3.4 Colimits in Top

B4 BTop / S as a 2-category
B4.1 Finite weighted limits
B4.2 Classifying toposes via weighted limits
B4.3 Some exponentiable toposes
B4.4 Fibrations and partial products
B4.5 The symmetric monad

VOLUME 2
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C TOPOSES AS SPACES
C1 Sheaves on a locale

C1.1 Frames and nuclei
C1.2 Locales and spaces
C1.3 Sheaves, local homeomorphisms and frame-valued sets
C1.4 Continuous maps
C1.5 Some topological properties of toposes
C1.6 Internal locales

C2 Sheaves on a site
C2.1 Sites and coverages
C2.2 The topos of sheaves
C2.3 Morphisms of sites
C2.4 Internal sites and pullbacks
C2.5 Filtrations of sites

C3 Classes of geometric morphisms
C3.1 Open maps
C3.2 Proper maps
C3.3 Locally connected morphisms
C3.4 Tidy morphisms
C3.5 Atomic morphisms
C3.6 Local maps

C4 Local compactness and exponentiability
C4.1 Locally compact locales
C4.2 Continuous categories
C4.3 Injective toposes
C4.4 Exponentiable toposes

C5 Toposes as groupoids
C5.1 The descent theorems
C5.2 Groupoid representations
C5.3 Morita equivalence for groupoids
C5.4 The Freyd representation

D TOPOSES AS THEORIES
D1 First-order categorical logic

D1.1 First-order languages
D1.2 Categorical semantics
D1.3 First-order logic
D1.4 Syntactic categories
D1.5 Classical completeness

D2 Sketches
D2.1 The concept of sketch
D2.2 Sketches and theories
D2.3 Sketchable and accessible categories
D2.4 Properties of model categories

D3 Classifying toposes
D3.1 Classifying toposes via syntactic sites
D3.2 The object classifier
D3.3 Coherent toposes
D3.4 Boolean classifying toposes
D3.5 Conceptual completeness

D4 Higher-order logic
D4.1 Interpreting higher-order logic in a topos
D4.2 λ-Calculus and cartesian closed categories
D4.3 Toposes as type theories
D4.4 Predicative type theories
D4.5 Axioms of choice and booleanness
D4.6 De Morgan’s law and the Gleason cover
D4.7 Real numbers in a topos

D5 Aspects of finiteness
D5.1 Natural number objects revisited
D5.2 Finite cardinals
D5.3 Finitary algebraic theories
D5.4 Kuratowski-finiteness
D5.5 Orbitals and numerals
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D.3.10 Categories and Sheaves (Kashiwara and Schapira
[35])

Introduction
1 The Language of Categories

1.1 Preliminaries: Sets and Universes
1.2 Categories and Functors
1.3 Morphisms of Functors
1.4 The Yoneda Lemma
1.5 Adjoint Functors

Exercises
2 Limits

2.1 Limits
2.2 Examples
2.3 Kan Extensions of Functors
2.4 Inductive Limits in the Category Set
2.5 Cofinal Functors
2.6 Ind-lim and Pro-lim
2.7 Yoneda Extensions of Functors

Exercises
3 Filtrant Limits

3.1 Filtrant Inductive Limits in the Category Set
3.2 Filtrant Categories
3.3 Exact Functors
3.4 Categories Associated with Two Functors

Exercises
4 Tensor Categories

4.1 Projectors
4.2 Tensor Categories
4.3 Rings, Modules and Monads

Exercises
5 Generators and Representability

5.1 Strict Morphisms
5.2 Generators and Representability
5.3 Strictly Generating Subcategories

Exercises
6 Indization of Categories

6.1 Indization of Categories and Functors
6.2 Representable Ind-limits
6.3 Indization of Categories Admitting Inductive Limits
6.4 Finite Diagrams in Ind(C )

Exercises
7 Localization

7.1 Localization of Categories
7.2 Localization of Subcategories
7.3 Localization of Functors
7.4 Indization and Localization

Exercises
8 Additive and Abelian Categories

8.1 Group Objects
8.2 Additive Categories
8.3 Abelian Categories
8.4 Injective Objects
8.5 Ring Action
8.6 Indization of Abelian Categories
8.7 Extension of Exact Functors

Exercises
9 π-accessible Objects and F -injective Objects

91 Cardinals
92 π-filtrant Categories and π-accessible Objects
93 π-accessible Objects and Generators
94 Quasi-Terminal Objects
95 F -injective Objects
96 Applications to Abelian Categories

Exercises
10 Triangulated Categories

10.1 Triangulated Categories
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10.2 Localization of Triangulated Categories
10.3 Localization of Triangulated Functors
10.4 Extension of Cohomological Functors
10.5 The Brown Representability Theorem

Exercises
11 Complexes in Additive Categories

111 Differential Objects and Mapping Cones
112 The Homotopy Category
113 Complexes in Additive Categories
114 Simplicial Constructions
115 Double Complexes
116 Bifunctors
117 The Complex Hom•

Exercises
12 Complexes in Abelian Categories

121 The Snake Lemma
122 Abelian Categories with Translation
123 Complexes in Abelian Categories
124 Example: Koszul Complexes
125 Double Complexes

Exercises
13 Derived Categories

131 Derived categories
132 Resolutions
133 Derived Functors
134 Bifunctors

Exercises
14 Unbounded Derived Categories

141 Derived Categories of Abelian Categories with Translation
142 The Brow Representability Theorem
143 Unbounded Derived Category
144 Left Derived Functors

Exercises
15 Indization and Derivation of Abelian Categories

151 Injective Objects in Ind(C )
152 Quasi-injective Objects
153 Derivation of Ind-categories
154 Indization and Derivation

Exercises
16 Grothendieck Topologies

161 Sieves and Local Epimorphisms
162 Local Isomorphisms
163 Localization by Local Isomorphisms

Exercises
17 Sheaves on Grothendieck Topologies

171 Presites and Presheaves
172 Sites
173 Sheaves
174 Sheaf Associated with a Presheaf
175 Direct and Inverse Images
176 Derived Functors for Hom and Hom

Exercises
18 Abelian Sheaves

181 R-modules
182 Tensor Product and Internal Hom
183 Direct and Inverse Images
184 Derived Functors for Hom and Hom
185 Flatness
186 Ringed Sites
187 Čech Coverings

Exercises
19 Stacks and Twisted Sheaves

191 Prestacks
192 Simply Connected Categories
193 Simplicial Constructions
194 Stacks
195 Morita Equivalence
196 Twisted Sheaves



360 APPENDIX D. OTHER SOURCES

Exercises

D.3.11 Basic Concepts of Enriched Category Theory
(Kelly [37])

Introduction
Chapter 1. The elementary notions

1.1 Monoidal categories
1.2 The 2-category V -CAT for a monoidal V
1.3 The 2-functor ( )0 : V -CAT // CAT

Chapter 2. Functor categories
2.1

Chapter 3. Indexed limits and colimits
3.1

Chapter 4. Kan extensions
4.1

Chapter 5. Density
5.1

Chapter 6. Essentially-algebraic theories defined by reguli and sketches
6.1

D.3.12 Introduction to Higher Order Categorical Logic
(Lambek and Scott [?])

Part 0 Introduction to category theory
Introduction to Part 0

1 Categories and functors
2 Natural transformations
3 Adjoint functors
4 Equivalence of categories
5 Limits in categories
6 Triples
7 Examples of cartesian closed categories

Part I Cartesian closed categories and λ-calculus
Introduction to Part I
Historical perspective on Part I

1 Propositional calculus as a deductive system
2 The deduction theorem
3 Cartesian closed categories equationally presented
4 Free cartesian closed categories generated by graphs
5 Polynomial categories
6 Functional completeness of cartesian closed categories
7 Typed λ-calculi
8 The cartesian closed category generated by a typed λ-calculus
9 The decision problem for equality

10 The Church-Rosser theorem for bounded terms
11 All terms are bounded
12 C-monoids
13 C-monoids and cartesian closed categories
14 C-monoids and untyped λ-calculus
15 A construction by Dana Scott

Historical comments on Part I
Part II Type theory and toposes

Introduction to Part II
Historical perspective on Part II

1 Intuitionistic type theory
2 Type theory based on equality
3 The internal language of a topos
4 Peano’s rules in a topos
5 The internal language at work
6 The internal language at work II
7 Choice and the Boolean axiom
8 Topos semantics
9 Topos semantics in functor categories
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10 Sheaf categories and their semantics
11 Three categories associated with a type theory
12 The topos generated by a type theory
13 The topos generated by the internal language
14 The internal language of the topos generated
15 Toposes with canonical subobjects
16 Applications of the adjoint functors between toposes and type theories
17 Completeness of higher order logic with choice rule
18 Sheaf representation of toposes
19 Completeness without assuming the rule of choice
20 Some basic intuitionistic principles
21 Further intuitionistic principles
22 The Freyd cover of a topos

Historical comments on Part II
Supplement to section 17

Part III Representing numerical functions in various categories
Introduction to Part III

1 Recursive functions
2 Representing numerical functions in cartesian closed categories
3 Representing numerical functions in toposes
4 Representing numerical functions in C-monoids

Historical comments on Part III

D.3.13 Sets for Mathematics (Lawvere and Rosebrugh [46])
1 Abstract Sets and Mappings

1.1 Sets, Mappings, and Composition
1.2 Listings, Properties, and Elements
1.3 Surjective and Injective Mappings
1.4 Associativity and Categories
1.5 Separators and the Empty Set
1.6 Generalized Elements
1.7 Mappings as Properties

2 Sums, Monomorphisms, and Parts
2.1 Sum as a Universal Property
2.2 Monomorphisms and Parts
2.3 Inclusion and Membership
2.4 Characteristic Functions
2.5 Inverse Image of a Part

3 Finite Inverse Limits
3.1 Retractions
3.2 Isomorphism and Dedekind Finiteness
3.3 Cartesian Products and Graphs
3.4 Equalizers
3.5 Pullbacks
3.6 Inverse Limits

4 Colimits, Epimorphisms, and the Axiom of Choice
4.1 Colimits are Dual to Limits
4.2 Epimorphisms and Split Surjections
4.3 The Axiom of Choice
4.4 Partitions and Equivalence Relations
4.5 Split Images
4.6 The Axiom of Choice as the Distinguishing Property of Constant/Random Sets

5 Mapping Sets and Exponentials
5.1 Natural Bijections and Functoriality
5.2 Exponentiation
5.3 Functoriality of Function Spaces

6 Summary of the Axioms and an Example of Variable Sets
6.1 Axioms for Abstract Sets and Mappings
6.2 Truth Values for Two-Stage Variable Sets

7 Consequences and Uses of Exponentials
7.1 Concrete Duality: The Behavior of Monics and Epics under the Contravariant Functori-

ality of Exponentiation
7.2 The Distributive Law
7.3 Cantor’s Diagonal Argument

8 More on Power Sets
8.1 Images
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8.2 The Covariant Power Set Functor

8.3 The Natural Map PX // 22X

8.4 Measuring, Averaging, and Winning with V-Valued Quantities
9 Introduction to Variable Sets

9.1 The Axiom of Infinity: Number Theory
9.2 Recursion
9.3 Arithmetic of N

10 Models of Additional Variation
10.1 Monoids, Posets, and Groupoids
10.2 Actions
10.3 Reversible Graphs
10.4 Chaotic Graphs
10.5 Feedback and Control
10.6 To and from Idempotents

Appendixes
A Logic as the Algebra of Parts

A.0 Why Study Logic?
A.1 Basic Operators and Their Rules of Inference
A.2 Fields, Nilpotents, Idempotents

B The Axiom of Choice and Maximal Principles
C Definitions, Symbols, and the Greek Alphabet

C.1 Definitions of Some Mathematical and Logical Concepts
C.2 Mathematical Notations and Logical Symbols
C.3 The Greek Alphabet

D.3.14 Categories for the Working Mathematician
(Mac Lane [53])

I. Categories, Functors and Natural Transformations
1. Axioms for categories
2. Categories
3. Functors
4. Natural Transformations
5. Monics, Epis, and Zeros
6. Foundations
7. Large Categories
8. Hom-sets

II. Constructions on Categories
1. Duality
2. Contravariance and Opposites
3. Products of Categories
4. Functor Categories
5. The Category of All Categories
6. Comma Categories
7. Graphs and Free Categories
8. Quotient Categories

III. Universals and Limits
1. Universal Arrows
2. The Yoneda Lemma
3. Coproducts and Colimits
4. Products and Limits
5. Categories with Finite Products
6. Groups in Categories

IV. Adjoints
1. Adjunctions
2. Examples of Adjoints
3. Reflective Subcategories
4. Equivalence of Categories
5. Adjoints for Preorders
6. Cartesian Closed Categories
7. Transformations of Adjoints
8. Composition of Adjoints

V. Limits
1. Creation of Limits
2. Limits by Products and Equalizers
3. Limits with Parameters
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4. Preservation of Limits
5. Adjoints on Limits
6. Freyd’s Adjoint Functor Theorem
7. Subobjects and Generators
8. The Special Adjoint Functor Theorem
9. Adjoints in Topology

VI. Monads and Algebras
1. Monads in a Category
2. Algebras for a Monad
3. The Comparison with Algebras
4. Words and Free Semigroups
5. Free Algebras for a Monad
6. Split Coequalizers
7. Beck’s Theorem
8. Algebras are T -algebras
9. Compact Hausdorff Spaces

VII. Monoids
1. Monoidal Categories
2. Coherence
3. Monoids
4. Actions
5. The Simplicial Category
6. Monads and Homology
7. Closed Categories
8. Compactly Generated Spaces
9. Loops and Suspensions

VIII. Abelian Categories
1. Kernels and Cokernels
2. Additive Categories
3. Abelian Categories
4. Diagram Lemmas

IX. Special Limits
1. Filtered Limits
2. Interchange of Limits
3. Final Functors
4. Diagonal Naturality
5. Ends
6. Coends
7. Ends with Parameters
8. Iterated Ends and Limits

X. Kan Extensions
1. Adjoints and Limits
2. Weak Universality
3. The Kan Extension
4. Kan Extensions as Coends
5. Pointwise Kan Extensions
6. Density
7. All Concepts are Kan Extensions

D.3.15 Sheaves in Geometry and Logic (Mac Lane and
Moerdijk [56])

Categorical Preliminaries
I. Categories of Functors

1. The Categories at Issue
2. Pullbacks
3. Characteristic Functions of Subobjects
4. Typical Subobject Classifiers
5. Colimits
6. Exponentials
7. Propositional Calculus
8. Heyting Algebras
9. Quantifiers as Adjoints

II. Sheaves of Sets
1. Sheaves
2. Sieves and Sheaves
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3. Sheaves and Manifolds
4. Bundles
5. Sheaves and Cross-Sections
6. Sheaves as Étale Spaces
7. Sheaves with Algebraic Structure
8. Sheaves are Typical
9. Inverse Image Sheaf

III. Grothendieck Topologies and Sheaves
1. Generalized Neighborhoods
2. Grothendieck Topologies
3. The Zariski Site
4. Sheaves on a Site
5. The Associated Sheaf Functor
6. First Properties of the Category of Sheaves
7. Subobject Classifier for Sites
8. Subsheaves
9. Continuous Group Actions

IV. First Properties of Elementary Topoi
1. Definition of a Topos
2. The Construction of Exponentials
3. Direct Image
4. Monads and Beck’s Theorem
5. The Construction of Colimits
6. Factorization and Images
7. The Slice Category as a Topos
8. Lattice and Heyting Algebra Objects in a Topos
9. The Beck-Chevalley Condition

10. Injective Objects
V. Basic Constructions of Topoi

1. Lawvere-Tierney Topologies
2. Sheaves
3. The Associated Sheaf Functor
4. Lawvere-Tierney Subsumes Grothendieck
5. Internal Versus External
6. Group Actions
7. Category Actions
8. The Topos of Coalgebras
9. The Filter-Quotient Construction

VI. Topoi and Logic
1. The Topos of Sets
2. The Cohen Topos
3. The Preservation of Cardinal Inequalities
4. The Axiom of Choice
5. The Mitchell-Bénabou Language
6. Kripke-Joyal Semantics
7. Sheaf Semantics
8. Real Numbers in a Topos
9. Brouwer’s Theorem: All Functions are Continuous

10. Topos-Theoretic and Set-Theoretic Foundations
VII. Geometric Morphisms

1. Geometric Morphisms and Basic Examples
2. Tensor Products
3. Group Actions
4. Embeddings and Surjections
5. Points
6. Filtering Functors
7. Morphisms into Grothendieck Topoi
8. Filtering Functors into a Topos
9. Geometric Morphisms as Filtering Functors

10. Morphisms Between Sites
VIII. Classifying Topoi

1. Classifying Spaces in Topology
2. Torsors
3. Classifying Topoi
4. The Object Classifier
5. The Classifying Topos for Rings
6. The Zariski Topos Classifies Local Rings
7. Simplicial Sets
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8. Simplicial Sets Classify Linear Orders
IX. Localic Topoi

1. Locales
2. Points and Sober Spaces
3. Spaces from Locales
4. Embeddings and Surjections of Locales
5. Localic Topoi
6. Open Geometric Morphisms
7. Open Maps of Locales
8. Open Maps and Sites
9. The Diaconescu Cover and Barr’s Theorem

10. The Stone Space of a Complete Boolean Algebra
11. Deligne’s Theorem

X. Geometric Logic and Classifying Topoi
1. First-Order Theories
2. Models in Topoi
3. Geometric Theories
4. Categories of Definable Objects
5. Syntactic Sites
6. The Classifying Topos of a Geometric Theory
7. Universal Models

Appendix: Sites for Topoi
1. Exactness Conditions
2. Construction of Coequalizers
3. The Construction of Sites
4. Some Consequences of Giraud’s Theorem

D.3.16 First Order Categorical Logic (Makkai and Reyes [?])
Chapter 1 Grothendieck topoi

§1 Sites and Sheaves
§2 The associated sheaf
§3 Grothendieck topoi
§4 Characterization of Grothendieck topoi: Giraud’s theorem

Appendix to Chapter 1. Concepts of local character, examples
Chapter 2 Interpretation of the logic L∞ω in categories

§1 The logic L∞ω
§2 Some categorical notions
§3 The categorical interpretations
§4 Expressing categorical notions in formulas: the first main fact

Chapter 3 Axioms and rules of inference valid in categories
§1 Some simple rules
§2 Stability and distributivity
§3 Further categorical notions and their expression by formulas
§4 Logical categories
§5 Summary of the two main facts

Chapter 4 Boolean and Heyting valued models
§1 Heyting and Boolean valued models
§2 Sheaves over Heyting algebras
§3 Boolean homomorphisms

Chapter 5 Completeness
§1 A Boolean-complete formalization of L∞ω
§2 Completeness of a “one-sided” system for coherent logic

Chapter 6 Existence theorems on geometric morphisms of topoi
§1 Preliminaries
§2 Categorical completeness theorems
§3 Intuitionistic models

Chapter 7 Conceptual completeness
§1 A completeness property of pretopoi
§2 Infinitary generalizations; preliminaries
§3 Infinitary generalizations
§4 Infinitary generalizations (continued)

Chapter 8 Theories as categories
§1 Categories and algebraic logic
§2 The categorization of a coherent theory
§3 Infinitary generalizations
§4 The κ-pretopos completed to a theory
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Chapter 9 Classifying topoi
§1 Classifying topoi
§2 Coherent objects
§3 The Zariski topos

Appendix. M. Coste’s construction of the classifying topos of a theory
Appendix

D.3.17 Algebraic Theories (Manes [?])
Chapter 1. Algebraic Theories of Sets

1. Finitary Universal Algebra
2. The Clone of an Equational Presentation
3. Algebraic Theories
4. The Algebras of a Theory
5. Infinitary Theories

Chapter 2. Trade Secrets of Category Theory
1. The Base Category
2. Free Objects
3. Objects with Structure

Chapter 3. Algebraic Theories in a Category
1. Recognition Theorems
2. Theories as Monoids
3. Abstract Birkhoff Subcategories
4. Regular Categories
5. Fibre-Complete Algebra
6. Bialgebras
7. Colimits

Chapter 4. Some Applications and Interactions
1. Minimal Algebras: Interactions with Topological Dynamics
2. Free Algebraic Theories: the Minimal Realization of Systems
3. Nondeterminism

D.3.18 Elementary Categories, Elementary Toposes
(McLarty [?])

PIrt I CATEGORIES
1. Rudimentary structures in a category

1.1 Axioms
1.2 Isomorphisms, monics, epics
1.3 Terminal and initial objects
1.4 Generalized elements
1.5 Monics, isos, and generalized elements

2. Products, equalizers, and their duals
2.1 Commutative diagrams
2.2 Products
2.3 Some natural isomorphisms
2.4 Finite products
2.5 Co-products
2.6 Equalizers and coequalizers

3. Groups
3.1 Definition
3.2 Homomorphisms
3.3 Algebraic structures

4. Sub-objects, pullbacks, and limits
4.1 Sub-objects
4.2 Pullbacks
4.3 Guises of pullbacks
4.4 Theorems on pullbacks
4.5 Cones and limits
4.6 Limits as equalizers of products

5. Relations
5.1 Definition
5.2 Equivalence relations

6. Cartesian closed categories
6.1 Exponentials
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6.2 Internalizing composition
6.3 Further internalizing composition
6.4 Initial objects and pushouts
6.5 Intuitive discussion
6.6 Indexed families of arrows

7. Product operators and others
7.1 Extending the language

PIIrt II THE CATEGORY OF CATEGORIES
8. Functors and categories

8.1 Functors
8.2 Preserving structures
8.3 Constructing categories from categories
8.4 Aspects of finite categories

9. Natural transformations
9.1 Definition
9.2 Functor categories
9.3 Equivalence

10. Adjunctions
10.1 Universal arrows
10.2 Adjunctions
10.3 Proofs
10.4 Adjunctions as isomorphisms
10.5 Adjunctions compose

11. Slice categories
11.1 Indexed families of objects
11.2 Internal products
11.3 Functors between slices

12. Mathematical foundations
12.1 Set-theoretic foundations
12.2 Axiomatizing the category of categories

PIIIrt III TOPOSES
13. Basics

13.1 Definition
13.2 The sub-object classifier
13.3 Conjunction and intersection
13.4 Order and implicates
13.5 Power objects
13.6 Universal quantification
13.7 Members of implicates and of universal quantification

14. The internal language
14.1 The language
14.2 Topos logic
14.3 Proofs in topos logic

15. Soundness proof for topos logic
15.1 Defining fa, ∼, ∨, and (∃x)
15.2 Soundness

16. From the internal language to the topos
16.1 Overview
16.2 Monics and epics
16.3 Functional relations
16.4 Extensions and arrows
16.5 Initial objects and negation
16.6 Coproducts
16.7 Equivalence relations
16.8 Coequalizers

17. The fundamental theorem
17.1 Partial arrow classifiers
17.2 Local Cartesian closedness
17.3 The fundamental theorem
17.4 Stability
17.5 Complements and Boolean toposes
17.6 The axiom of choice

18. External semantics
18.1 Satisfaction
18.2 Generic elements

19. Natural number objects
19.1 Definition
19.2 Peano’s axioms
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19.3 Arithmetic
19.4 Order
19.5 Rational and real numbers
19.6 Finite cardinals

20. Categories in a topos
20.1 Small categories
20.2 E-valued functors
20.3 The Yoneda lemma
20.4 EA is a topos

21. Topologies
21.1 Definition
21.2 Sheaves
21.3 The sheaf reflection
21.4 Grothendieck toposes

PIVrt IV SOME TOPOSES
22. Sets

22.1 Axioms
22.2 Diagram categories over Set
22.3 Membership-based set theory

23. Synthetic differential geometry
23.1 A ring of line type
23.2 Calculus
23.3 Models over Set

24. The effective topos
24.1 Constructing the topos
24.2 Realizability
24.3 Features of Eff
24.4 Further features

25. Relations in regular categories
25.1 Categories of relations
25.2 Map(C)
25.3 When Map(C) is a topos

D.3.19 Categorical Foundations (Pedicchio and Tholen [62]
Introduction Walter Tholen

I Ordered Sets via Adjunction R. J. Wood
1 Preliminaries
2 The bicategory of ordered sets
3 Semilattices and lattices
4 Power set Heyting algebras
5 Completeness
6 Complete distributivity

II Locales Jorge Picad, Aleš Pultr, and Anna Tozzi
1 Spaces, frames, and locales
2 Sublocales
3 Limits and colimits
4 Some subcategories of Locales
5 Open and closed maps
6 Compact locales and compactifications
7 Locally compact locales
[1]

III A Functional Approach to General Topology Maria Manuel Clementino, Eraldo Giuli, and
Walter Tholen
1 Subobjects, images, preimages
2 Closed maps, dense maps, standard examples
3 Proper maps, compact spaces
4 Separated maps, Hausdorff spaces
5 Perfect maps, compact Hausdorff spaces
6 Tychonoff spaces, absolutely closed spaces, compactification
7 Open maps, open subspaces
8 Locally perfect maps, locally compact Hausdorff spaces
9 Pullback stability of quotient maps, Whitehead’s Theorem

10 Exponentiable maps, exponentiable spaces
11 Remarks on the Tychonoff Theorem and the Stone-Čech compactification

IV Regular, Protomodular, and Abelian Categories Dominique Bourn and Marino Gran
1 Internal equivalence relations
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2 Epimorphisms and regular categories
3 Normal monomorphisms and protomodular categories
4 Regular protomodular categories
5 Additive categories
6 The Short Five Lemma and the Tierney equation

V Aspects of Monads John MacDonald and Manuela Sobral
1 Monoids and monads
2 Conditions for monadicity
3 Conditions for the unit of a monad to be a monomorphism
4 The Kleisli triples of Manes and their generated monads
5 Eilenberg-Moore and Kleisli objects in a 2-category
6 Monads, idempotent monads, and commutative monads as algebras

VI Algebraic Categories Maria Cristina Pedicchio and Fabrizio Rovatti
1 Algebraic categories
2 The Lawvere Theorem for algebraic categories
3 Applications of Lawvere’s Theorem
4 Locally finitely presentable categories

VII Sheaf Theory Claudia Centazzo and Enrico M. Vitale
1 Introduction
2 Sheaves on a topological space
3 Topologies, closure operators, and localizations
4 Extensive categories

VIII Beyond Barr Exactness: Effective Descent Morphisms George Janelidze, Manuela Sobral,
and Walter Tholen
1 The world of epimorphisms
2 Generalizations of the kernel-cokernel correspondence
3 Elementary descent theory
4 Sheaf-theoretic characterization of effective descent
5 Links with other categorical constructions
6 Effective descent morphisms in Cat and related remarks
7 Towards applications of descent theory: objects that are “simple” up to effective descent

D.3.20 Introduction to Categories, Homological Algebra,
and Sheaf Cohomology (Strooker [?])

1.1 General concepts
1.1 Categories
1.2 Functors
1.3 Morphisms of functors
1.4 Representable functors
1.5 Products and sums
1.6 Limits
1.7 Adjoint functors
1.8 Suprema and infima
1.9 Continuous functors

1.2 Internal structure of categories
2.1 Epimorphisms and monomorphisms
2.2 Punctured categories
2.3 Additive categories
2.4 Kernels and cokernels
2.5 Exact sequences
2.6 Functors preserving extra structure
2.7 Special objects: projectives, injectives, generators and cogenerators
2.8 Grothendieck categories

1.3 Homological algebra
3.1 Extensions
3.2 Connected sequences and satellites
3.3 Derived functors
3.4 Satellites and derived functors

1.4 Sheaves and their cohomology
4.1 Introduction
4.2 Concrete sheaves
4.3 Presheaves
4.4 The sheafification of presheaves
4.5 Sheaves
4.6 Change of base space



370 APPENDIX D. OTHER SOURCES

4.7 A pseudo-categorical survey
4.8 Presheaves and sheaves of modules
4.9 Subspaces and sheaves of modules

4.10 Cohomology of sheaves
4.11 Flabby sheaves and cohomology
4.12 Soft and fine sheaves

D.3.21 Practical Foundations of Mathematics (Taylor [?])
Introduction

I First Order Reasoning
1.1 Substitution
1.2 Denotation and Description
1.3 Functions and Relations
1.4 Direct Reasoning
1.5 Proof Boxes
1.6 Formal and Idiomatic Proof
1.7 Automated Deduction
1.8 Classical and Intuitionistic Logic

II Types and Induction
2.1 Constructing the Number Systems
2.2 Sets (Zermelo Type Theory)
2.3 Sums, Products and Function-Types
2.4 Propositions as Types
2.5 Induction and Recursion
2.6 Constructions with Well Founded Relations
2.7 Lists and Structural Induction
2.8 Higher Order Logic

III Posets and Lattices
3.1 Posets and Monotone Functions
3.2 Meets, Joins and Lattices
3.3 Fixed Points and Partial Functions
3.4 Domains
3.5 Products and Function-Spaces
3.6 Adjunctions
3.7 Closure Conditions and Induction
3.8 Modalities and Galois Connections
3.9 Constructions with Closure Conditions

IV Cartesian Closed Categories
4.1 Categories
4.2 Actions and Sketches
4.3 Categories for Formal Languages
4.4 Functors
4.5 A Universal Property: Products
4.6 Algebraic Theories
4.7 Interpretation of the Lambda Calculus
4.8 Natural Transformations

V Limits and Colimits
5.1 Pullbacks and Equalizers
5.2 Subobjects
5.3 Partial and Conditional Programs
5.4 Coproducts and Pushouts
5.5 Extensive Categories
5.6 Kernels, Quotients and Coequalizers
5.7 Factorisation Systems
5.8 Regular Categories

VI Structural Recursion
6.1 Free Algebras for Free Theories
6.2 Well Formed Formulae
6.3 The General Recursion Theorem
6.4 Tail Recursion and Loop Programs
6.5 Unification
6.6 Finiteness
6.7 The Ordinals

VII Adjunctions
7.1 Examples of Universal Constructions
7.2 Adjunctions
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7.3 General Limits and Colimits
7.4 Finding Limits and Free Algebras
7.5 Monads
7.6 From Semantics to Syntax
7.7 Gluing and Completeness

VIII Algebra with Dependent Types
8.1 The Language
8.2 The Category of Contexts
8.3 Display Categories and Equality Types
8.4 Interpretation

IX The Quantifiers
9.1 The Predicate Convention
9.2 Indexed and Fibred Categories
9.3 Sums and Existential Quantification
9.4 Dependent Products
9.5 Comprehension and Powerset
9.6 Universes

Here are the categories that Taylor names:
1.1 Set
1.2 PSet
1.3 binary endorelations
1.4 well founded relations
1.5 Preorder
1.6 Poset
1.7 posets with left adjoints
1.8 complete semilattices
1.9 meet semilattices

1.10 distributive lattices
1.11 Heyting semilattices
1.12 Heyting lattices
1.13 frames
1.14 locales
1.15 directed complete posets
1.16 inductive partial orders
1.17 Top
1.18 Monoid
1.19 Group
1.20 commutative monoids
1.21 Ab
1.22 fields
1.23 Vect
1.24 Ring
1.25 CommutativeRing

D.3.22 An Introduction to Homological Algebra (Weibel
[65])

1 Chain Complexes
1.1 Complexes of R-Modules
1.2 Operations on Chain Complexes
1.3 Long Exact Sequences
1.4 Chain Homotopies
1.5 Mapping Cones and Cylinders
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1.6 More on Abelian Categories
2 Derived Functors

2.1 δ-functors
2.2 Projective Resolutions
2.3 Injective Resolutions
2.4 Left Derived Functors
2.5 Right Derived Functors
2.6 Adjoint Functors and Left/Right Exactness
2.7 Balancing Tor and Ext

3 Tor and Ext
3.1 Tor for Abelian Groups
3.2 Tor and Flatness
3.3 Ext for Nice Rings
3.4 Ext and Extensions
3.5 Derived Functors of the Inverse Limit
3.6 Universal Coefficient Theorems

4 Homological Dimension
4.1 Dimensions
4.2 Rings of Small Dimension
4.3 Change of Rings Theorems
4.4 Local Rings
4.5 Koszul Complexes
4.6 Local Cohomology

5 Spectral Sequences
5.1 Introduction
5.2 Terminology
5.3 The Leray-Serre Spectral Sequence
5.4 Spectral Sequence of a Filtration
5.5 Convergence
5.6 Spectral Sequences of a Double Complex
5.7 Hyperhomology
5.8 Grothendieck Spectral Sequences
5.9 Exact Couples

6 Group Homology and Cohomology
6.1 Definitions and First Properties
6.2 Cyclic and Free Groups
6.3 Shapiro’s Lemma
6.4 Crossed Homomorphsims and H1

6.5 The Bar Resolution
6.6 Factor Sets and H2

6.7 Restriction, Corestriction, Inflation, and Transfer
6.8 The Spectral Sequence
6.9 Universal Central Extensions

6.10 Covering Spaces in Topology
6.11 Galois Cohomology and Profinite Groups

7 Lie Algebra Homology and Cohomology
7.1 Lie Algebras
7.2 g-Modules
7.3 Universal Enveloping Algebra
7.4 H1 and H1
7.5 The Hochschild-Serre Spectral Sequence
7.6 H2 and Extensions
7.7 The Chevalley-Eilenberg Complex
7.8 Semisimple Lie Algebra
7.9 Universal Central Extensions

8 Simplicial Methods in Homological Algebra
8.1 Simplicial Objects
8.2 Operations on Simplicial Objects
8.3 Simplicial Homotopy Groups
8.4 The Dold-Kan Correspondence
8.5 The Eilenberg-Zilber Theorem
8.6 Canonical Resolutions
8.7 Cotriple Homology
8.8 André-Quillen Homology and Cohomology

9 Hochschild and Cyclic Homology
A.1 Hochschild Homology and Cohomology of Algebras
A.2 Derivations, Differentials, and Separable Algebras
A.3 H2, Extensions, and Smooth Algebras
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A.4 Hochschild Products
A.5 Morita Invariance
A.6 Cyclic Homology
A.7 Group Rings
A.8 Mixed Complexes
A.9 Graded Algebras

A.10 Lie Algebras of Matrices
10 The Derived Category

10.1 The Category K(A )
10.2 Triangulated Categories
10.3 Localization and the Calculus of Fractions
10.4 The Derived Category
10.5 The Total Tensor Product
10.6 Ext and RHom
10.7 Replacing Spectral Sequences
10.8 The Topological Derived Category

A Category Theory Language
A.1 Categories
A.2 Functors
A.3 Natural Transformations
A.4 Abelian Categories
A.5 Limits and Colimits
A.6 Adjoint Functors
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[55] André Joyal and Ieke Moerdijk. Algebraic Set Theory. Number 220
in London Mathematical Society Lecture Notes. Cambridge University
Press, 1995.

[56] Masaki Kashiwara and Pierre Schapira. Categories and Sheaves, vol-
ume 332 of Grundlehren der mathematischen Wissenschaften. Springer-
Verlag, 2006.

[57] John L. Kelley. General Topology. University Series in Higher Mathe-
matics. D. Van Nostrand Co., 1955. Reprinted by Springer-Verlag, 1975.

[58] G. M. Kelly. Basic Concepts of Enriched Category Theory. Number 64
in London Mathematical Society Lecture Notes. Cambridge University
Press, Cambridge, 1982. Reprinted as [38].

[59] G. M. Kelly. Basic Concepts of Enriched Category Theory. Number 10
in Reprints in Theory and Applications of Categories. Theory and Ap-
plications of Categories, 2005. Reprint of [37].

[60] Viakalathur Sankrithi Krishnan. An introduction to category theory.
North Holland, New York, 1981.

[61] Joachim Lambek and P. J. Scott. Introduction to Higher Order Cate-
gorical Logic. Number 7 in Cambridge studies in advanced mathematics.
Cambridge University Press, 1986. First paperback edition (with correc-
tions) 1988.

[62] Edmund Landau. Foundations of analysis; the arithmetic of whole, ra-
tional, irrational, and complex numbers. Chelsea Publishing Co., 1951.
Translated from the German by F. Steinhardt.

[63] Serge Lang. Differential and Riemannian Manifolds. Springer-Verlag,
3rd edition, 1995.

[64] F. W. Lawvere. An elementary theory of the category of sets. Proceedings
of the National Academy of Sciences U.S.A., 52:1506–1511., 1964.

[65] F. William Lawvere. The category of categories as a foundation for math-
ematics. In Samuel Eilenberg, D. K. Harrison, Saunders Mac Lane, and
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