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Preface

There are many fine articles, notes, and books on category theory, so what is
the excuse for publishing yet another tome on the subject. My initial excuse
was altruistic, a student asked for help in learning the subject and none of
the available sources was quite appropriate. But ultimately I recognized the
personal and selfish desire to produce my own exposition of the subject. Despite
that I have some hope that other students of the subject will find these notes
useful.

Target Audience € Prerequisites

Category theory can sensibly be studied at many levels. Lawvere and
Schanuel in their book Conceptual Mathematics [47] have provided an intro-
duction to categories assuming very little background in mathematics, while
Mac Lane’s Categories for the Working Mathematician is an introduction to
categories for those who already have a substantial knowledge of other parts
of mathematics. These notes are targeted to a student with significant “math-
ematical sophistication” and a modest amount of specific knowledge. The
sophistication is primarily an ease with the definition-theorem-proof style of
mathematical exposition, being comfortable with an axiomatic approach, and
finding particular pleasure in exploring unexpected connections even with un-
familiar parts of mathematics

Assumed Background: The critical specific knowledge assumed is a basic
understanding of set theory. This includes such notions as subsets, unions and
intersections of sets, ordered pairs, Cartesian products, relations, and functions
as relations. An understanding of particular types of functions, particularly bi-
jections, injections, surjections and the associated notions of direct and inverse
images of subsets is also important. Other kinds of relations are important
as well, particularly equivalence relations and order relations. The basic ideas
regarding finite and infinite sets, cardinal and ordinal numbers and induction
will also be used.

All of this material is outlined in Appendix A on informal axiomatic set
theory, but this is not likely to be useful as a first exposure to set theory.

Although not strictly required some minimal understanding of elementary
group theory or basic linear algebra will certainly make parts of the text much
easier to understand.

There are many examples scattered through the text which require some
knowledge of other and occasionally quite advanced parts of mathematics. In
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particular Appendix B (Catalog of Categories) contains a discussion of a large
variety of specific categories. These typically assume some detailed knowledge
of some parts of mathematics. None of these examples are required for under-
standing the body of the notes, but are included primarily for those readers
who do have such knowledge and secondarily to encourage readers to explore
other areas of mathematics.

Notation: The rigorous development of axiomatic set theory requires a very
precise specification of the language and logic that is used. As part of that there
is some concise notation that has become common in much of mathematics and
which will be used throughout these notes. Occasionally, often in descriptions
of sets, we will use various symbols from sentential logic particularly logical
conjunction A for “and”, logical disjunction V for “or”, implication = for
“implies” and logical equivalence <= for “if and only if”. We also use V and
3 from existential logic with V meaning “for all” and 3 meaning “there exists”.

Here is an example of the usage: For any sets A and B

VAVB, A+ B={z:(x€ ANz ¢ B)V(x¢ ANz € B)}
from which we conclude
VAVB, A+ B=A=ANB=1

We have adopted two of Halmos’ fine notational conventions here as well:
the use of “iff” when precision demands “if and only if” while felicity asks for
less; and the end (or absence) of a proof is marked with

Note on the Exercises

There are 170 exercises in these notes, freely interspersed in the text. A list
of the exercises is included in the front matter, just after the list of definitions.
Although the main purpose of the exercises is to develop your skill working with
the concepts and techniques of category theory, the results in the exercises are
also an integral part of our development. Solutions to all of the exercises are
provided in Appendix C, and you should understand them. If you have any
doubt about your own solution, you should read the solution in the Appendix
before continuing on with the text. If you find an error in the text, in the
solutions, or just have a better solution, please send your comments to the
author at notes@knighten.org. They will be much appreciated.

Alternative Sources

There are many useful accounts of the material in these notes, and the study
of category theory benefits from this variety of perspectives. In Appendix D are
included brief reviews of the various books and notes, along with an indication
of their contents.

Throughout these Notes specific references are included for alternative dis-
cussions of the material being treated, but no attempt has been made to provide
attribution to original sources.
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Introduction

Over the past century much of the progress in mathematics has been due to
generalization and abstraction. Groups arose largely from the study of sym-
metries in various contexts, and group theory came when it was realized that
there was a general abstraction that captured ideas that were being developed
separately. Similarly linear algebra arose initially by recognizing the common
ground under the development of linear equations, matrices, determinants and
other notions. Then as linear algebra was codified it was recognized that it
applied to very different situations and so, for example, its relevance to func-
tional analysis was recognized and powerfully shaped the development of that
field.

Topology, as the study of topological spaces, began around the middle of
the 19th century. What we now call Algebraic Topology largely began with the
work in Poincaré’s series of papers called Complénts a I’Analysis Situs which
he began publishing in 1895. Over the next 30 years Algebraic Topology de-
veloped rather slowly, but this was the same time that abstract algebra as
was coming into being (as exemplified by van der Waerden’s still well-named
Moderne Algebra published in 1931.) About 1925 homology groups began to
appear in all of their glory, and over the next twenty years much of the basics
of modern algebraic topology appeared. But a basic insight was still missing
— the recognition that in algebraic topology the important operations not only
assign groups to topological spaces but also assign group homomorphisms to
the continuous maps between the spaces. Indeed in order to axiomatize homol-
ogy and cohomology theory the notion of equivalence between such operations
was also needed. That was provided by Eilenberg and Mac Lane in their
ground breaking paper “General theory of natural equivalences” [20], where
the definitions of categories, functors and natural equivalences were first given.
(A very good and extensive book on all of this and a very great deal more is
Dieudonné’s A History of Algebraic and Differential Topology 1900-1960 [15].)
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Chapter 1

Mathematics in Categories

I.1 What is a Category?

Definition I.1: A category ¢ has objects A, B,C,--- | P,Q,..., and mor-
phisms f,g,h,i,--- ,x,y,---. To each morphism is associated two objects, its
domain and codomain. If f is a morphism with domain A and codomain B,
this is indicated by f : A —— B. Each object, A, has an associated identity
morphism written 14 : A —= A. Finally if f: A——= B and g: B—C,
there is a composition gf : A——= C, and these all satisfy the following rela-
tions:

1. (Associativity) If f : A——= B, g: B——> C and h: C — D, then
h(gf) = (hg)f : A——=D.

2. (Identity Morphisms) If f: A——= B, then fly = f = 15f.

Sometimes g f is unclear and g f will be used instead. These are both read
as “f composed with ¢g” or as “g following f”.

Relations such as these are indicated by saying diagrams of the following
sort, commute, meaning that any sequence of compositions of morphisms in the
diagram that start and end at the same nodes in the diagram are equal.
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B

For example in diagram (1.) commutativity of the left triangle says that gf
is the g following f and the left triangle says that hg is h following g, which
is certainly true but just the meaning of gf and hg. More interesting the top
composite, (hg)f, is equal to the bottom composite, h(gf), which is exactly
Associativity. There is also h following g following f, and what Associativity
allows us to say is that this is equal to both (hg)f and h(gf), i.e., the order
matters, but parenthesis are unneeded.

In diagram (2.), commutativity of the top triangle says f14 is equal to f,
while commutativity of the lower triangle say f if equal to 15 f. And these are
exactly the requirements on the identify morphisms.

Note: Because category theory is applicable to so many diverse areas which
have their own terminology, often well established before categories intruded, it
is common even when discussing category theory to use a variety of terminology.
For example while morphism is the most commonly used term, these elements
of a category are also called “maps”,and sometimes “arrows”.Indeed we will
occasionally use the word “map” as a synonym for morphism. Similarly what
we called the domain of a morphism is sometimes called the “source”,while
“target”is an alternative for codomain.

Note: Throughout these notes script capital letters such as &7, %, €, ...,
2, %, Z will be used without further comment to denote categories.

Examples of categories, familiar and unfamiliar, are readily at hand, but
rather than listing them here Appendix B provides a Catalog of Categories
where many examples are listed, together with detailed information about each
of them. Each time a new concept or theorem appears it will be worthwhile to
browse that Appendix for relevant examples.

There are two extreme examples of categories that are worthy of mention
here. The first is the category Set of sets. Set has as objects all sets, and
as morphisms all functions between sets. (For details see Section B.1.1 in the
Catalog of Categories.) It is common in the development of the theory of sets
to identify a function with its graph as a subset of the Cartesian product of its
domain and its codomain. (See definition A.30 in Section A.8.) One result of
this is that from the function (considered just as a set) it is possible to recover
the domain of the function, but not in general its codomain. So when we say
the morphisms are “all functions between sets” we actually consider a function
as including a specification of its codomain. This same remark applies to many
of the other “familiar” categories that we consider such as the categories of
groups, Abelian groups, vector spaces, topological spaces, manifolds, etc.
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By contrast suppose that (M, u) is a monoid, that is a set M together an
associative binary operation on M that has identity element (which we call 1.)
Using M we define a category .# which has only one object, which has M as
its set of morphisms, all with the one object as both domain and codomain,
with the identity of the monoid as the identity morphism on the unique object,
and composition defined by the multiplication p. We will usually refer to the
category . by writing “consider the monoid M as a category with one object”
without using any special name.

Conversely if € is any category with only one object, the morphisms with
composition as multiplication form a monoid — save for one significant caveat,
the definition of a monoid stipulates that M is a set.

For more information on monoids, look at the material in Section B.2.3 of
the Catalog of Categories.

Our basic reference for topics in algebra is Mac Lane and Birkhoff’s Alge-
bra [55]. In particular for the definition and basic properties of a monoid see
(55, I.11].

As an algebraic gadget the expected definition of a category is probably
something like: A category, %, consists of two sets Objects and Morphisms
and functions:

domain : Morphisms —— Objects,
codomain : Morphisms —— Objects,

id : Objects — Morphisms
and a partial function
composition : Morphisms x Morphisms — Morphisms

such that ....

The reason the definition we’ve given makes no mention of sets at all is
because the most familiar categories, such as Set, do not have either a set of
objects or a set of morphisms.

The connection between set theory and category theory is an odd one.
Exactly how category theory should be explained in terms of set theory is still
a topic of controversy, while at the same time most writers on either set theory
or category theory give the subject scant attention. And that is what we will
do as well. For those who are interested in more information about these issues,
consult [50], [51] and [24] as a start.

There is also an active effort to use category theory as alternative founda-
tion for set theory or even all of mathematics. Some references for these topics
include Lawvere’s “An Elementary Theory of the Category of Sets” [41, 44]
and “The category of categories as a foundation for mathematics” [42], a cou-
ple of efforts to correct some errors, “Lawvere’s basic theory of the category of
categories” [7, 6]. A later discussion of axiomatizing the category of categories
is McLarty’s “Axiomatizing a Category of Categories” [57] , and a later dis-
cussion of axiomatizing the category of sets is Osius’ “Categorical Set Theory:
a Characterisation of the Category of Sets” [60].
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With the arrival of the theory of topoi, that became the most important
tool for discussing category theory and foundations. See Joyal and Moerdijk,
[34], Mac Lane and Moerdijk, [56] and Lawvere and Rosebrugh [46] .

After that digression, we make the following definitions.

Definition I.2: A small category is one in which the collection of morphisms
is a set. Note that as a consequence the collection of objects is a set as well.

Definition 1.3: A large category is one in which the collection of morphisms
is not a set.

Definition I.4: A finite category is one in which the collection of morphisms
is a finite set. Note that as a consequence the collection of objects is finite as
well.

So now going back to the connection between categories and monoids, we see
that there is a natural correspondence between monoids and small categories
with a single object. This is sufficiently strong that we will usually just write
something like “consider the monoid as a category with one object.”

I.1.1 Hom and Related Notation

Definition I.5: For any two objects in a category Hom(A, B) is the collection
of all morphisms from A to B. If the morphisms are in the category ¢ and we
need to emphasize this, we will write €' (A, B).

In a small category, Hom(A, B) is a set. In some large categories Hom(A, B)
will not be a set, but in the familiar ones it is a set, so we make that a definition
and a convention.

Definition 1.6: A locally small category is one in which Hom(A, B) is a
set for all objects A and B.

CONVENTION: Unless explicitly mentioned to the contrary, all cat-
egories considered in these notes are locally small.

With this convention every category with one object is a small category
and so “is” a monoid.

“Hom” comes from “homomorphism”, as does “morphism”. Other nota-
tions that are sometimes used in place of Hom include “Map”, “Mor”, “Arr”

and just parentheses — [A, B] or (A4, B).

Notation: It is often convenient to have anonymous functions, i.e., ones to
which we give no special name. One common way of doing this is by writing
something like x — 22 in place of say sq(x) = z2. If you are familiar with the
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elementary notation of the A-calculus, this is equivalent to writing Az.22. More
generally if ¢(x) is some formula involving z, writing = — ¢(x), Az . ¢(z),
and f(z) = ¢(x) all have essentially the same effect except the expression
f(x) = ¢(x) requires providing the name f.

Now to use this notation, the composition of morphisms gives us a function:

Hom(B, C) x Hom(A, B) — Hom(A4, C)
(f,9) — fg

And that in turn allows the application of the following simple but important
observation. [Warning: For convenience we have f : B ——= C and g : A
—— B rather than the other way round.]

For any sets X, Y and Z, if we have a function X x Y ——= Z (which we
will write (anonymously) as (z,y) — zy), then each element z € X defines a
function x, : Y —= Z by x.(y) = xy. Similarly each element y € Y defines a
function y* : X —= Z by y*(z) = zy. We can go even further: write Z¥ for
the set of all functions from Y to Z, then from the function X x Y —= Z we
get a function \ : X —= ZY which is defined by A(x) = . There is a similar
function Y — ZX which we will leave for the reader to actually name and
describe.

As we noted above, the composition of morphisms gives us a function

Hom(B, C) x Hom(A, B) —= Hom(A4, C)
(f,9)— 19

to which we can apply this observation. So for each f : B —= C, ie., f €
Hom(B, C), we get a function f. : Hom(A, B) — Hom(A, C) defined by
f«(9) = fg . Equally for each g : A ——= B we get ¢* : Hom(B, ') — Hom(A, C)
with g*(f) = fg .

Notice the subscript * on f, and the superscript * on ¢*. This use of
subscript and superscript * has historical roots dating at least as far back as
tensor calculus and the use of subscripts and superscripts for covariant and
contravariant tensors.

Notation: It occasionally happens that we want to discuss Hom(A, B) where
we fix A but vary B. Usually the name B just confuses the issue, so in this
situation we will often write Hom(A, ) instead. This same thing applies for
many things besides Hom, and the meaning should be clear in all cases. Other
sources sometimes write Hom(A, _) with the same meaning as Hom(A, e) here.

In the language of computer science Hom(A, e) is polymorphic, i.e., Hom(A, B)
is defined for all objects B and is a set, while Hom(A4, f) is defined for suitable
morphisms and is a function. As we will see in detail in Chapter III (Functors),
Hom(A,e) is a covariant functor, while Hom(e, C) is a contravariant functor,
with the words covariant and contravariant having historical roots in tensor
calculus.

As we’ll see when we discuss functors in general, the more general notation
for f. is the rather cumbersome Hom(A, f) and for ¢g* it is Hom(g,C). We
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will commonly use f, and g*, but sometimes f3 if we need to keep track
of the object A and sometimes the full Hom(A, f) or even € (A, f) if all the
information is needed. Similarly we will usually write g*, but sometimes g,
Hom(g, C) or €(g,C).

We sometimes want to describe the functions f., and ¢g* without using the
notation or even necessarily mentioning f or g specifically, so then we will write
of “the induced functions” on the Hom sets.

For the record, here are the formal definitions.

Definition I.7: For each morphism f : B ——= C, the formula f.(g9) = fg
defines the induced function f. : Hom(A4, B) — Hom(A4, C).

Definition 1.8: For each morphism g : A —— B, the formula ¢*(f) = fg
defines the induced function ¢g* : Hom(B, C) — Hom(A4, C).

When we come to discuss functors in Chapter III (Functors), these will
be primary examples. In that context we want to note a few simple facts that
we will use often: (fg). = f.g« and (fg)* = g*f*; (1), = Hom(A,1p) =
1Hom(A,B) and (1A)* = Hom(lA, B) = 1Hom(A,B)-

We also want to note another connection between categories and monoids.
If € is any category and C is any object in €, then € (C, C) is a monoid with
composition as the binary operation and 1< as the identity.

This is sufficiently important that we have a couple of definitions.

Definition I.9: In any category, a morphism in which the domain and codomain
are equal is called an endomorphism.

Definition 1.10: When C' is an object of ¢ as above, €(C, C) is the monoid
of endomorphisms, or the endomorphism monoid, of C.

1.1.2 Subcategories

The most convenient source of additional categories is through the notion of a
subcategory.

Definition 1.11: A category . is a subcategory of category 4 provided:
1. Every object of . is an object of €.
2. If f € S(A,B), then f € €(A, B).

3.If f:A—=Band g: B——=C in ., then gf is also the composition
of g following f in ¥.

4. If 14 is the identity morphism for A in .%, then 14 is also the identity
morphism for A in .
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Examples of subcategories abound. A few of the examples that are discussed
in the Catalog of Categories (Appendix B) are: The category of finite sets,
FiniteSet, cf. Section B.1.2, as a subcategory of the category of sets; the
category of Abelian groups, Ab cf. Section B.2.7, as a subcategory of the
category of groups, Group (cf. Section B.2.5;) the category of lattices, Lattice
cf. Section B.6.3, as a subcategory of the category of partially ordered sets,
Poset cf. Section B.6.2; the category of compact Hausdorff spaces, Comp cf.
Section B.9.4, as a subcategory of the category of topological spaces, Top cf.
Section B.9.3; and the category of Hilbert spaces, Hilbert cf. Section B.13.4,
as a subcategory of the category of Banach spaces, cf. Section B.13.1.

In addition the notion of subcategory generalizes the notion of submonoid,
subgroup, etc. For if S is a submonoid of the monoid M, then, considered as
categories, S is a subcategory of the category M, etc.

For the moment our interest in subcategories will be entirely as a way
of specifying additional categories. To date all we have mentioned are just
gotten specifying some collection of objects in the containing category. That
is sufficiently common and important that we record it as:

Definition I.12: A subcategory . of € is full when for all objects A and B
of . we have .7 (A, B) = €(A, B).

Of course subcategories need not be full subcategories. As an example,
starting with the category of sets we define a new category Iso(Set) with the
same objects, i.e., sets, but as morphisms only the bijections. As every identity
function is a bijections and the composition of bijections is a bijection, Iso(Set)
is clearly a subcategory of Set. Not every function is a bijection, so Iso(Set)
is not a full subcategory. The notation Iso(Set) may appear odd, but this is
part of a general situation as we will see in Section 1.2.1 (see page 11.)

1.1.3 Recognizing Categories

To practice recognizing categories, we start with some very small and somewhat
artificial examples.

The empty category 0 is the category with no objects and no morphisms.
All the requirements in the definition of a category are vacuously satisfied. It
is interesting and useful in much the same way the empty set is useful.

The one element category 1 is an essentially unique category with one object
and one morphism which must be the identity morphism on the one object.

The category we call 2 or the arrow category is illustrated by the following
diagram.

A !
Co—t1D)
where all of the arrows represent distinct morphisms, and there are no
other morphisms. For this to be a category, the two circular arrows must be
the identity morphisms, and that completely determines composition, which is
easily seen to be associative.
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Next consider the following diagram:

N
\

*

/N

/‘*\

0 1
with each node representing an object and each arrow representing a distinct
morphism.

Exercise I.1. Verify that there is a unique fashion in which this is a category
with three objects and six morphisms. This category is named 3.

Although these examples may seem strange they will actually recur in var-
ious application later in these notes.
As the last little example look at the following diagram:

SN

Co~——1

~_

Exercise 1.2. If each arrow in the above diagram represents a distinct mor-
phism, can this be a category with two objects and five morphisms?

In the previous section we saw the example of Iso(Set) as a somewhat
unusual category. Let’s look at a few more.

Define a subcategory .# of Set to have as objects all sets, but the only mor-
phisms are the injective functions, i.e., f : X —=Y where f(x1) = f(x2) =
1 = x9. Clearly the identity function on any set is in ., and the composi-
tion of any two injective functions is again injective, so we see .# is indeed a
subcategory, but not a full subcategory, of Set.

Exercise 1.3. Define a subcategory & of Set to have as objects all sets, but the
only morphisms are the surjective functions, i.e., f : X —=Y where for every
y € Y there exists some x € X with f(z) = y. Verify that & is a subcategory,
but not a full subcategory, of Set.

1.2 Special Morphisms

CONVENTION: In this section all the objects and morphisms are in
the one fixed category ¥ Unless explicitly mentioned to the contrary.
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1.2.1 Isomorphisms

Besides the identity morphisms that exist in every category, there are other
morphisms that are important and interesting parts of mathematics in a cate-
gory. The first are isomorphisms.

Definition I.13: An isomorphism, f : A ——= B, is a morphism with an
inverse, f~1: B——= A, satisfying f'f =14 and ff~! =15p.

Note that if f has an inverse, then it is unique, justifying the notation f~!.
To see the uniqueness note that if g and h are both inverses, then g = 149 =
hfg=hlp =h.

Notation: As is often done in algebra, we will use the symbol = to indicate

an isomorphism. So we will write f : A —Z. B to indicate that f is an
isomorphism, and we will write A & B and say “A is isomorphic to B” when
there is an isomorphism from A to B.

Just a bit earlier we introduced the endomorphism monoid of an object.
Now in any monoid M with identity element 1, there is the submonoid of
invertible elements: G = {m € M | I3m~! such that mm=' =1 = m~Im}.
As every element of G has an inverse, G is actually a group called, unoriginally,
the group of invertible elements of M.

Applying this to the monoid of endomorphisms of any object in a cate-
gory, we get the group of automorphisms or automorphism group of the
object.

Here are the formal definitions.

Definition I.14: An automorphism is an endomorphism that is also an
isomorphism.

Definition I.15: The automorphism group of an object C is the group of
all automorphisms of C. This is usually denoted by Aut(C).

So Aut(C) is the group of invertible elements of the monoid of endomor-
phisms of C'. In particular the identity morphism for any object C is an auto-
morphism of C' and is the identity in the group Aut(C).

Back in Section I.1.2 we met Iso(Set), a subcategory of the categories of
sets that is not a full subcategory. As mentioned there this is an example of
a general construction. For any category % there is the subcategory Iso(%)
of € which has the same objects, but with the morphisms of Iso(%) being
the isomorphisms of ¢ (and that is the origin of the notation.) This is a full
subcategory of ¢ only when every morphism of ¢ is an isomorphism (and then,
of course, the two categories are the same.)

Categories such as this are actually of sufficient interest to deserve special
study in their own right — for example see Higgins [32]. As a start we note the
following definition.
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Definition 1.16: A groupoid is a category in which every morphism is an
isomorphism.

Now just as a monoid is a category with just one object, a group is a
groupoid with just one object. More information, including examples and
applications, are in Appendix B.18 (Catalog of Categories).

A frequently useful technique in category theory is to connect properties of
morphisms with properties of the functions they induce on Hom sets. Isomor-
phisms provide our first example in the next two exercises.

Exercise 1.4. For any category %, prove that if f : A ——= B is an isomor-
phism, then for every object C' the functions

f€ : Hom(C, A) —= Hom(C, B) and f : Hom(B, C) — Hom(A, C)

are isomorphisms (i.e., bijections) as well.

Exercise 1.5. Suppose f: A ——= B is a morphism where for every object C
the functions

f€ : Hom(C, A) —= Hom(C, B) and f : Hom(B,C) — Hom(A,C)

are bijections. Prove that f is an isomorphism.

Exercise 1.6. Suppose that f : A ——= B is an isomorphism in %. Define a
function ¢ (A, A) —= € (B,B) by e € €(A,A) — fef~! € €(B,B). Show
that this function is a monoid homomorphism, and indeed an isomorphism.

In general an isomorphism of monoids is easily seen to also give rise to an
isomorphism of the group of invertible elements in the monoids, so in particular
whenever f: A ——= B is an isomorphism the function defined above also gives
an isomorphism between Aut(A) and Aut(B).

I.2.2 Sections and Retracts

The definition of an isomorphism has two parts which are really separable, and
that leads to the notions of sections and retracts which we define here.

Definition I.17: For any morphism f : A —— B, a section of f is a mor-

phism s : B——= A such that fs=1p.

Definition I.18: For any morphism f : A —— B, a retract (or retract) of
fis a morphism r : B —— A such that rf = 14.
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A section is also called a right inverse,while a retract is alternatively called
a left inverse.

Exercise 1.7. Consider any morphism f. Verify the following:
1. f has a section iff f, always has a section.
2. f has a retract iff f* always has a section.

3. f has a retract implies f, always has a retract.

4. f has a section implies f* always has a retract.

It is a trivial observation that s is a section for r iff r is a retract for s.

Note the usage of “iff”as an abbreviation for “if and only if”. As noted in
the preface (p. iv) we will use that from time to time throughout these notes.

It is not an accident that we have iff in the first two parts of this exercise,
but only implication in the last two. Can you find examples where f, has a
retract, but f does not? What about where f* has a retract but f does not
have a section? [Warning: You won’t find such examples in the category of
sets.] We will return to this in exercises 1.12 and 1.18.

Exercise 1.8. Clearly if f is an isomorphism, then f~! is both a section and
a retract for f. Show that if s is a section for f and r is a retract for f, then
r = s and so f is an isomorphism.

Exercise 1.9. In the category of sets, give examples of functions that have a
section but not a retract, and that have a retract but not a section. Also give
examples of functions that have neither a section nor a retract.

1.2.3 Epimorphisms and Monomorphisms

In the category of Sets, the categorical notions of having a section or having
a retract capture the essence of surjections and injections without any explicit
mention of the elements of the sets. But these notions do not work nearly so
well in other categories.

As one simple example consider the homomorphism ¢ : Z —— Z2 (in the
category of Abelian groups)defined by ¢(n) = n mod 2 (Z being the group of
integers, and Zy the group of integers modulo 2.) Now ¢ is a surjection, but it
certainly does not have a section - indeed the only homomorphism of Zs to Z
takes both elements of Zy to 0. [For more information see the section on the
category of groups see Section B.2.7 of the Catalog of Categories. The general
reference for information about Abelian groups, and other general topics in
abstract algebra, is Mac Lane and Birkhoft’s Algebra [55].]
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Fortunately there is a weaker property than having a right inverse, that
captures the notion of a surjection in a categorical fashion for a great many
categories. Moreover it turns out to be important and useful quite generally.
Note that in many “algebraic” categories such as the categories of groups,
Abelian groups, rings, etc, a surjective homomorphism is usually called an
epimorphism, and that is the name used throughout these notes.

Definition 1.19: In any category, a morphism e : A —— B is an epimor-
phism iff fe = ge implies f = g.

The equation fe = ge means that f and g are two morphisms with domain
B and the same codomain. The codomain wasn’t explicitly mentioned because
it’s name is irrelevant.

Note: Asis common in mathematical writing, there is an implicit universal
quantifier in the definition of an epimorphism. We have an epimorphism e only
if for all morphisms f and g, ef = eg implies e=f. Even one exception and e
is not an epimorphism.

This is called a cancellation law, and we say that e is an epimorphism iff it
can be canceled on the right or has right cancellation. That “right cancellation”
is a weakened form of “having a right inverse” is the content of this next
exercise.

Exercise 1.10. Prove that if a morphism f has a section, then f is an epi-
morphism.

This result can be restated as “every retract is an epimorphism” which
partly explains why retracts are also called split epimorphisms .

Notation: We often use the special arrow —s= to indicate an epimorphism.
When writing about epimorphisms, other words are sometimes used — we
sometimes use the abbreviated form epi, and epic, particularly as an adjective
(“the map f is epic”.)
As with sections and retracts, let’s also connect this with the Hom sets.

Exercise 1.11. Show that f: A—— B is an epimorphism iff for every object
C, the functions f¢ are all injective.

Exercise I.12. Find an example where f : A ——= B is an epimorphism, but
for some object C' the function fC is not surjective. [Warning: You need to
use something other than the category of sets.]

The next three exercises ask you to work out the meaning of epimorphisms
in a few special cases where the categories are monoids.
There are two familiar binary operation on the set of natural numbers,
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addition and multiplication. Each of them gives us a monoid. The first is
called the additive monoid of natural numbers, while the second is called the
multiplicative monoid of natural numbers.

Exercise 1.13. Consider N, the monoid of natural numbers with the binary
operation of addition as a category with one object. Show that every morphism
in Nis an epimorphism.

The next exercise asks you to consider epimorphisms in a more complicated
monoid.

Let A = {a,b} be a set with two elements. Define A* to be the set of all
finite sequences from A, i.e.,

At = {()7 (a)7 (b)a (a,a)a (av b)v (b7a)’ (ba b)? (a7 ava)’ T }

Define a binary operation on A* to be concatenation, i.e., if s = (s1, 82, -, $m)
and t = (t1,t2, - ,t,) are in A*, then st = (s1, 82, -+, Sm,t1,t2, -+ ,t,). This
makes A* into a monoid with (), the empty sequence as the identity. [This is
the free monoid on A and is one example of many “free” structures that will
be discussed in these notes. More information on free monoids can be found in
Sections B.19.3 and III.2.12, and in Bourbaki’s Algebra (Part I) [10, I, §7].]

We will usually write just a or b rather than (a) and (b). And with that no-
tation (s152 -+ Sm) = S$152 - - - Sm and we can think of that as either the product
of the elements s1, so, ..., or as composition of the morphisms s1, so, .. ..

[In mathematical logic and theoretical computer science the monoid A* is
called the Kleene closure of A after the logician Stephen Kleene who used it
in his study of regular expressions. The construction actually make sense for
sets with any number of elements, and this is the more general context of the
Kleene closure.]

Exercise 1.14. Show that every morphism in A* is an epimorphism.

And finally we look at a monoid where not every morphism is an epimor-
phism.

Let R be the compatible equivalence relation on A* generated by {a?, ab},
and consider the quotient monoid B = A*/R. This means that in B we have
a® = ab, a’b = ab® = o, and all other relations that follow from a? = ab. By
contrast ba is not equal to anything else.

[More information about generated equivalence relations and the associated
quotients can be found in the Appendix on Set Theory (see Section A.7), and
in the material on the categories Monoid and Semigroup in the Catalog of
Categories (see Sections B.2.3 and B.2.2.) There is also a detailed treatment
in Bourbaki [10, I, §1.6].]

In B every element has a unique canonical form that is one of a™, b", or
b"a™. There is nothing more complicated because any element of the form
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a™b"™ = o™ and that in turn will simplify any expression that has an ab in
it somewhere.

Exercise 1.15. Using the above show that b is an epimorphism in B considered
as a monoid with one object, but a is not an epimorphism.

Now the term epimorphism already has a meaning in a number of familiar
categories, so we would certainly like to know that the new definition we have
just given is actually the same as the usual one. In just a moment we’ll see this
is indeed true in some important examples, but there are other cases where it is
not at all easy to verify this and many more where it is false. More information
on this topic for the specific categories discussed can be found in the Catalog
of Categories in Appendix B.

In the category Ab of Abelian groups and group homomorphisms (see Sec-
tion B.2.7,) it is easy to see that every epimorphism in the usual sense, i.e., a
surjective group homomorphism, is an epimorphism in the the sense of defi-
nition 1.19. Just note that if e is a surjective homomorphism and fe = ge,
then for each b € B there is some a € A so that b = e(a). But then
F(b) = f(e(a)) = gle(a)) = g(b), and so f = g.

The converse uses some more information about Abelian groups. Recall
that for any homomorphism f : A ——= B of Abelian groups the image of f,
Im(f) = {f(a)|la € A} is a (normal) subgroup and there is a quotient group
B/Im(f) and a quotient map ¢ : B — B/Im(f).

Now suppose that e : A —— B has the cancellation property that is the
definition of an epimorphism in a category, and consider

0
A—"> B—z B/Im(e)
q

where ¢ is the quotient map, and 0 maps every element to the zero element.
Surely Oe = 0, but also ge = 0. So ¢ = 0! But that says B/Im(e) is the zero
group, i.e., that B = Im(e) and e is surjective.

Very much the same thing is true in the category Vect of vector spaces and
linear transformations (see Section B.4.3.) Every surjective linear transforma-
tion is an epimorphism as defined above with exactly the same argument as
above.

The proof of the converse is much the same as well. Every linear trans-
formation f : A — B has an image Im(f) = {f(a)la € A} which is a
subspace of B, and there is a quotient space B/Im(f) and a quotient map
q : B—— B/Im(f). Just as with Abelian groups, if e : A ——= B has right
cancellation, then consider

0
A—> B—z B/Im(e)
q
where ¢ is the quotient map, and 0 maps every element to the zero element.

Surely Oe = 0, but also ge = 0. So ¢ = 0! But that says B/Im(e) is the zero
vector space which only happens when B = Im(e), so e is surjective.
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In Chapter XIII we’ll see that there are a large variety of additional cate-
gories where very similar arguments apply.

By contrast, proving that a homomorphism in the category of groups (i.e., not
necessarily Abelian) which has the epimorphism cancellation property is actu-
ally surjective is not nearly so easy. See section B.2.5 on page 227 for more
detail.

Just as “having a right inverse” can be weakened to “right cancellation”,
“having a left inverse” can be weakened to “left cancellation”.

Definition I.20: In any category, a morphism m : A —— B is a monomor-
phism iff mf = mg implies f = g.

This is another “cancellation law”,so we say that m is a monomorphism iff
it can be canceled on the left or has left cancellation.

That “left cancellation” is a weakened form of “having a left inverse” is the
content of this next exercise.

Exercise I.16. Prove that if a morphism f has a retract, then f is a monomor-
phism.

This result can be restated as “every section is a monomorphism” which
partly explains why sections are also called split monomorphisms .

Just as with epimorphisms, other words are sometimes used — we sometimes
say a morphism is monic or mono or is a monic.

Notation: We use the special arrow >— to indicate a monomorphism.
Again let’s connect this with the Hom sets.

Exercise 1.17. Show that f: A —— B is a monomorphism iff for all objects
C the functions f€ are always injective.

Exercise 1.18. Find an example where f : A —— B is an monomorphism,
but for some object C' the function f¢ is not surjective. [Warning: You need
to use something other than the category of sets.]

Just as with epimorphism, monomorphism already has a meaning in a num-
ber of familiar categories and we would certainly like to know that the new
definition we have just given is actually the same as the usual one. In just a
moment we’ll see this is indeed true in some important examples, but there
are other cases where it is not at all easy to verify this. More information on
this topic for the specific categories discussed can be found in the Catalog of
Categories in Appendix B.

In the category Ab of Abelian groups and group homomorphism, it is easy
to see that every monomorphism in the usual sense, i.e., a group homomorphism
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that is injective or one-to-one, is a monomorphism in the the sense of definition
1.20. Just note that if e is an injective homomorphism and m f = mg, then for
each a € A, mf(a) = mg(a) and so f(a) = g(a), ie., f =g.

The converse uses some more information about Abelian groups. Recall
that for each homomorphism f : A ——= B of Abelian groups we have the
kernel of f, Ker(f) = {a € A|f(a) = 0}, a subgroup of A with inclusion map
i:Ker(f) — A.

Now suppose that m : A>— B has the left cancellation property that is
the definition of an monomorphism in a category, and consider

0
Ker(m) —= A I.B

(2

where ¢ is the inclusion map, and 0 maps every element to the zero element.
Now m0 = 0 = mi, so 0 = ¢! But that says Ker(m) = {0} and so m is injective.

This argument works equally well in the category of groups as in the cate-
gory of Abelian groups.

Essentially the same argument works in the category Vect of vector spaces
and linear transformation as well. The first part of the argument is exactly
the same, while there is just a small change of terminology in the second
part. Associated to a linear transformation f : A ——= B is its null space,
N(f) ={a € A|f(a) = 0}, with inclusion map i : N(f) — A. The rest of the
argument is the same: if m : A>— B has left cancellation then consider

0
Ker(m) —_—=<A —f> B

1
where ¢ is the inclusion map, and 0 maps every element to the zero element.
Now m0 = 0 = mi, so 0 = i! But that says N(m) = {0} and so m is injective.
Before continuing we record as exercises some simple observations that will
be useful as we go along.

Exercise 1.19. Show that in any category the composition of retracts is a
retract.

Exercise 1.20. Show that in any category if g f is a retract, then g is a retract.

Exercise 1.21. Show that in any category the composition of epimorphisms
is an epimorphism.

Exercise 1.22. Show that in any category if gf is an epimorphism, then ¢ is
an epimorphism.
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Exercise 1.23. Show that in any category if s is an epimorphism and a section,
then s is an isomorphism.

Exercise 1.24. Show that in any category the composition of sections is a
section.

Exercise 1.25. Show that in any category if g f is a section, then f is a section.

Exercise I.26. Show that in any category the composition of monomorphisms
is a monomorphism.

Exercise 1.27. Show that in any category if gf is an monomorphism, then f
is a monomorphism.

Exercise 1.28. Show that in any category if r is a monomorphism and a
retract, then 7 is an isomorphism.

In many, though far from all, of the familiar categories discussed in the Cat-
alog of Categories (Appendix B) the epimorphisms are the surjective functions,
and the monomorphisms are the injective functions. As a result it is often the
case that morphisms that are both monic and epic are isomorphisms. Often,
but not always!

Exercise 1.29. Give an example of a morphism in a category of “sets with
structure” that is an epimorphism, but not surjective. (Hint: Look in the
category of monoids or in the category of topological spaces.)

For reasons explained in it is considerably harder to give examples of monomor-
phisms which are not injective. The most common example is in the category
of divisible Abelian groups where the quotient homomorphism Q — Q/Z is
a monomorphism but clearly not an injection.

Exercise 1.30. Give an example of a category and a morphism in the category
which is both a monomorphism and an epimorphism, but not an isomorphism.

This is sufficiently common that it deserves a name.

Definition I.21: A morphism that is both a monomorphism and an epimor-
phism is called a bimorphism.
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Of course every isomorphism is a bimorphism, while the last exercises ex-
hibits a bimorphism that is not an isomorphism. The interesting question is
“When is a bimorphism an isomorphism?”. There are categories where this is
always true, and others where the bimorphisms that are not isomorphisms are
of particular interest. This is a minor theme that will recur from time to time.

Again the situation where every bimorphism is an isomorphism has a name.

Definition 1.22: A category is which every bimorphism is an isomorphism
is called a balanced category.

1.2.4 Subobjects and Quotient Objects

Although “surjective” and “injective” are defined in terms of elements and
so don’t quite fit our “arrows only” motto, we will investigate the relation
between these pairs of concepts (and sections and retracts as well) repeatedly.
In particular the relation between these concepts not just in a single category,
but between related categories.

As a start notice that in most familiar categories we have notions of sub-
objects and quotient objects. These are usually defined in terms of elements,
but we’ll do it with morphisms.

Definition 1.23: A subobject of an object B is a monomorphism A>— B.

Before continuing on, let’s look at how meaningful this is in the category of
sets. We know that a monomorphism A>— B in Set is an injective function,
so certainly if A is a subset of B, then the inclusion function is a monomorphism
and so we have a subobject of B. But just because A > B is an injection,
this does not mean that A is a subset of B. But any injection does factor as

A-=-5< B

with S the image of the monomorphism being an actual subset of B and S — B
the inclusion function. Moreover two injections m : A >— B and m/ : A’
>—> B have the same image in B exactly when there is a bijection between A
and A’ so that

A

4
S|

AI
commutes. The same is true in many categories of “structured sets”. Based
on this we make the following definition.
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Definition 1.24: Two subobjects m : A= B and m' : A’ >— B of B are
equivalent when there is an isomorphism between A and A’ with

A

R
S|

A/
commuting.

So in the category of sets a subset determines a subobject and a subobject
determines a subset with two different subobjects determining the same subset
iff they are equivalent. In many other familiar categories such as the cate-
gories of groups, rings, vector spaces, etc., there is the same correspondence
between equivalent subobjects and the familiar subgroups, subrings, etc. But,
as just one example, subobjects in the category Top does not well correspond
to subspaces of topological spaces. For the details see the various entries in the
Catalog of Categories (Appendix B).

It is tempting to define a subobject of an object to be an equivalence class of
equivalent monomorphisms into the object, and it is common to do so. But the
difficulty with this is that such an equivalence class need not exist! In Zermelo-
Fraenkel set theory as discussed in Appendix A, the “equivalence class” of all
injections into a one element set, say {0}, cannot exist as a set — it is too
large. Remember that for every set X there is the one element set {X} and
and a unique injection {X} > {0}. Any two of these are equivalent, so if
this equivalence class were to exist as a set it would be equinumerous with the
(non-existent) set of all sets!

This issue will be dealt in a much more satisfying fashion when we discuss
subobject classifiers (see definition IX.1 and the following surrounding mate-
rial).

There is the dual notion of a quotient object.

Definition I.25: A quotient object of an object B is an epimorphism

B — A.

Just as with subobjects we define equivalent quotient objects.

Definition 1.26: Two quotient objects e : B —s= A and ¢’ : B —s A’ are
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equivalent where there is an isomorphism between A and A’ with

Il
s

A/

commuting.

Again let’s look at this in the category of sets. First what is a quotient
set? As described in the Appendix on Set Theory (see A.7 and also Mac Lane
and Birkhoff [55, Sec. 1.9]) a quotient set of B is the set of equivalence classes
of some equivalence relation on B. To connect that to the notion of quotient
object, any function f : B ——= A defines an equivalence relation on B via
b=, b iff f(b) = f(b'). This equivalence relation is written as b =5 mod f.

Exercise 1.31. Verify that b =; b iff f(b) = f(b) is an equivalence relation.

We write B/ = for the quotient set of B by this equivalence relation, and
p : B—— B/ = for the projection that sends each element of B into the
equivalence class containing it. The projection function, p, is a surjection, and
p(b) =pb') iff b=; ¥, ie., iff f(b) = f(I'). The key result is in the following

exercise.

Exercise 1.32. Show that in the above situation there is a unique function

f: B/ =p—= A with f = fp. Moreover if f is a surjection, then f is a
bijection.

So in the category of sets quotient sets correspond precisely to equivalent
quotient objects. As with subobjects this is also true in many other familiar
categories such as the categories of groups, rings, vector spaces, etc., but not
always. For the details see the various entries in the Catalog of Categories
(Appendix B).

We will revisit quotient objects and subobjects from time to time in later
sections. For the moment we do not even have the notion of an equivalence
relation for general categories. This is one of the topics we will address in
Section VI.1. In particular see the definition VI.6.
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1.3 Special Objects

1.3.1 Products and Sums

Definition I1.27: The product of a finite family Cy,---,C, of objects in
%’is an object, P, together with a family of morphisms m; : P —— C; so that
for every family of morphisms f; : C —— C; there exists a unique morphism

<f17"' 7fn> : ¢ —— P with that 7Ti<f17"’ ,fn> = fz

&

[We read this diagram as saying that (f1,---, fn) is the unique morphism
making the diagram commute. Note that implicitly there are n triangles in
this diagram featuring (71, f1), ..., (7, fn) and all with the common edge
(oo fa)]

Similar situations occur constantly in the study of categories, under the
name Universal Mapping Property. The Universal Mapping Property for a
product of Ay,---, A, is that every family of morphisms f; : C ——= A; uniquely
factors through the family 7; : P ——= A; of projections. We will mention ex-
amples of other Universal Mapping Properties as they occur, and then discuss
the many ramifications in Chapter V (Universal Mapping Properties).

Note: The definition of a product is a template for universal mapping prop-
erty definitions throughout category theory, so it is important to understand
just what is required to prove that something is a product.

The important first part is that a product is not just an object. In set
theory there is the product of two sets, and it is a certain unique set. In
the category of sets by contrast, a product of two sets is a set together with
two projection functions. And while products in the category of sets are in a
important certain sense unique (see the next proposition), it is definitely not
the object that is unique.

The next crucial part of the definition is the requirement that for every
object C in the category, and for every family of morphisms f; : C ——= A; a
morphism f : C —— P exists such that for all ¢ we have m; f = f;.

And the final critical requirement is that the morphism f which is asserted
to exist in the previous paragraph is the unique morphism which satisfies those
equations, i.e., if we have both f and g with m; f = f; = m;¢g, then it must follow
that f =g.

And equally, these are exactly the properties that can be used when we
have the hypothesis that (P, m; : P —> A;) is a product of the family (4;) of
objects.
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Proposition 1.1 If P with m; : P —> A; and P’ with ©, : P —= A; are
both products of Ay,--- , A,, then (w1, -+ ,m,) : P ——> P’ is an isomorphism
with (w},-+- ,m) : P'——= P as inverse.

Proof: Consider the commutative diagram

(T, ,7n) (g (T, 7))

P - p-vIl p T p
o T x ™
A; A; A; A;
But 1% is the unique morphism with 7%1p = 7}, so (71, -+, mp) {7y, -+, 7m,) =
1%». And 1p is the unique morphism with 7;1p = 7, so (7}, -+ , ) (71, -+ , W) =

1p.

Note the use of 0| to mark the end (or omission) of a proof. As noted
in the preface (p. iv) We will use it in this way from time to time throughout
these notes.

Notation: We will speak of “the” product of Ay,---, A, and will denote the

object as II?" | A; with the projection morphisms 71, - - - ,m,, but it is important

to keep in mind that the product is only unique up to a unique isomorphism.
When there is no danger of confusion, we will for each morphism

f 0 —— H;LZIAZ‘

write f; for m; f, so that f = (f1, -+, fn). Notice the frequently useful obser-
vation that the identity morphism on the product II? | A; is (71, -+, 7).

For a product of two objects we will usually write A x B for the (object
of the) product of the two objects A and B and will write the projection
morphisms as 74 : Ax B——= A and g : A x B——= B. The diagram for the
definition is

A
f
TA
C- - —{fo— - =AxB
g B
B

In particular note that 14xp = (74, 7R).

When A = B the notation 7 4 is ambiguous, so we must use the 7; notation.
The special case where all the objects are the same is common and important,
so we have the special notation A% for A x A, and generally A" for 11" ; A.
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The Catalog of Categories (Appendix B) discusses products for all of the
categories there, but it seems worthwhile to at least note the situation in a few
familiar categories. In Set, A x B = {(a,b)|la € A,b € B} with 74(a,b) = a
and wp(a,b) = b. And given functions f : C —= A and g : C — B,

(f:9)(c) = (f(c), 9(c))

For most of the familiar categories of “structured sets”, e.g., categories of
groups, rings, vector spaces, topological spaces, etc., the same construction
works equally well.

Recalling that Hom(C, A)stands for the collection of morphisms from C to
A, we can also state the definition as: (IT7_; A;, 71, ,7m,) is a product iff

Hom(C,II7_; A;) — I, Hom(C, A;)
f'—) (ﬂ-lfa"' aﬂ-nf)

is a bijection with inverse

I Hom(C, A;) — Hom(C, I}, 4;)
(fl?"' uf’n) [ — <f17"' 7fn>

Yet another way of saying this is that for every object C, the morphism

(T14y -+ yTny) + Hom(C, I A;) — I Hom(C, A;) is an isomorphism in
the category of sets.

Note that (f1,---,fn) is an n-tuple of morphisms, while (f1, -, fn) is
just one morphism, the single unique morphism with m;(f1, -, fn) = f; for
i=1,---,n.

Now we want to look at an unfamiliar category to illustrate just what is
involved in showing we do or do not have a product.
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Exercise 1.33. From exercise 1.3 recall the category & with objects all sets,
but with morphisms only the surjections.

Let S be the set {0, 1} considered as object of &. Certainly the product (S x S,
71, To) exists in Set. Moreover S x S is an object of & and m and 7y are
morphisms in &.

(a) Show that if a product of S with itself exists in &, then it must be (S x S,
1, T2).

(b) Consider the diagram

ls

lg

A

S

and confirm that there is mo surjection S ——= S x S which makes this
diagram commute.

Why does this tell us that there is no product of S with itself in &7

There are many objects and maps C, f and ¢ in & where there is a mor-
phism from C —— S x S in & making the following diagram commute:

Verify that whenever such a morphism exists, it is unique.

The following exercises are designed both to exercise your facility in working
with the definition, and also to develop the extent to which products do indeed
work as our intuition suggests.

Exercise 1.34. For any family of two or more objects, Ay, -+, A,, in €
prove that II?_; A; is isomorphic to (H?;llAi) x Ap.
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Exercise 1.35. Suppose f : P —= A x Bis an isomorphism. Prove that
(P, w1 f,maf) is also a product of A and B.

Exercise 1.36. Definet : AxB — BxAby t; = ma,ts = mp, i.e.,t = (w2, T1).
Prove that t is an isomorphism.

The morphism ¢ of the above exercise will be used from time to time, usually
in connection with commutative operations of some sort. Because of that we
want the following definition.

Definition I.28: The morphism t as defined in exercise 1.36 is the transpo-
sition isomorphism.

This exercise and definition is a special case of a more general one which is
harder only because of the bookkeeping involved in dealing with the indices.

Exercise 1.37. With n a positive integer, let p : {1,--- ,n} = {1,---,n}
be a permutation. Define s : II}_; A; ——=II7_; A);) by s,;) = m;. Show that
s is an isomorphism with s~ : I} | A, ;) — II}_; A; defined by s;t=m

These two exercises are interesting, but can also be misleading. Notice that
the first exercise does not say that B x A is a productof A and B. Indeed it
cannot be overemphasized that a product of two objects is not just an object,
but rather an object together with two projection morphisms satisfying the
Universal Mapping Property for a product. The object that is part of the
product (B x A, mp, m4) is isomorphic to the object A x B and so, following
exercise 1.35, there are suitable projections morphisms from B x A to A and
B that will give a product. But those projections are not the projections that
are part of (B x A, mp, ma), even in the special case when A = B!

In many of the familiar categories the projection morphisms from a product
to each of its factors is surjective. That suggests that perhaps in categories they
are always surjective, so we ask the following question.

Exercise 1.38. Does the projection m; : A x B ——= A have to be an epi-
morphism? Prove or give a counter-example. (Hint: Carefully consider the
category of sets.)

There are many familiar constructions for sets that carry over quite readily
to products in arbitrary categories. We start with the following definition.

Definition I.29: Whenever we have f; : A; — B;, we define the product of
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the morphisms to be the unique morphism f =117, f; : [I?_; A, — 117", B;
such that m; f = f;m;

Just as with the product of objects, if we have just two morphisms, say f
and g, we will write f X g for the product of the two. And sometimes we will
write f X g X h, etc.

These definitions make for a number of exercises.

Exercise 1.39. In the category of sets, if f; : Ay —— By and fy : Ay —— By
are two functions and (a1, a2) € A1 x Ag, then what is (f1 X fa)(a1,a2)?

Exercise 1.40. Show that II7_;14, = 1pa,.

Exercise I1.41. Consider the families of morphisms f; : A4; —= B; and
gi ' Bz e Ci~ Verlfy that (Hzgz)(Hzfz) = Hz(ngz)

Exercise 1.42. Show that if f and g have retracts f’ and ¢’ respectively, then
f' x ¢’ is a retract for f x g.

Exercise 1.43. Show that if f and ¢ are monomorphisms, then f x g is a
monomorphism.

Exercise 1.44. Show that if f and g have sections f’ and ¢’ respectively, then
f' x ¢’ is a section for f X g

In most familiar categories the product of epimorphismsis an epimorphism
as well, but that is not universally true. But neither is it very easy to give an
example. See if you can find one!

Recall the induced function hA* : Hom(A, B) —= Hom(D, B) given by
h+(f)= fhwhen h: D— A and f: A—— B. Look at what happens with
products:
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Exercise 1.45. Suppose that f: A—— B, g: A——= C and h: D —= A.
Verify that (f,g)h = (fh, gh).
Hint: Here is the relevant diagram.
B
fh )
B
pZt 4 o
gh g
TC
C

Here is a simple but important example which is worthy of a formal defini-
tion.

Definition 1.30: For every object A this is the diagonal morphism A =
<1A71A> tA——= A X A.
This will be written as A 4 if we need to emphasize the particular object.

Exercise 1.46. Verify that for any morphisms f,g : A —= B, we have
(f,9)=(f x g)A.

’ Exercise 1.47. Let X be any object of Set. What is A(z) for z € X7

Exercise 1.48. Let A be any Abelian group in Ab. What is A(a) for any
ae€ A?

The answers for the two previous exercises are the same, and for general
reasons we will explain when we discuss Algebraic Categories in Chapter VII.

For every concept defined in a general category, there is a dual concept that
is gotten by “reversing all the arrows”. This notion of duality is itself a very
general and important concept that will be discussed at length in Section II.1.
Leading up to that we will give many example of dual definitions, theorems
and proofs, starting with the dual of products.

Definition I.31: For any finite family Ay, --- , A, of objects in €, a coprod-
uct or sum of these objects is an object, S together with a family of morphism
tj + Aj — S where for every family of morphisms f; : Aj; —— C' there exists
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a unique morphism

f1

In
such that
bil
Colu=t
In

fi

[We read this diagram as saying that
fi
fn
is the unique morphism that makes the diagram commute. Note that implicitly
there are n triangles in this diagram featuring (¢1, f1), - .., (tn, fn) and all with

fi

the common edge ol
fn
Note: In Section 1.3.3 we’ll see the good reasons why we would like to write
the morphism from a sum into another object as a column vector, but space
considerations demands a more compact notation, so we will use [f1, -, fn]
as a synonym for

fi

fn
For reasons that we will explore more fully when we discuss dual cate-
gories and duality in Section II.1, for each result about products, there is a
corresponding result about sums. All of the following results in this section,
including the exercises, are examples.

Proposition 1.2 If S with t; : Ay —= S and S" with /}; : A; —= S' are
both sums of Ay,--+, An, then [t1, -+ ,tn] : S —= S is an isomorphism with
[Lh, ,th] S —=S5" as inverse.
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Proof: Consider the commutative diagram

A; A; A; A;
% Lj |L; kLJ
§—c=-<=8-- - <> S————>S
L1 L
in o [ in J
But 1 is the unique morphism with 1g:0; = 17, 50 [th, -+, ep][tr, -+ tn] = 15,

And 1g is the unique morphism with 1sLJ =1j,80 [t1, - )], -, 0] = 1g.
|

Compare this solution with the proof of Proposition I.1. The two were
written carefully to make it clear that each can be transformed into the other
by “reversing the arrows” and exchanging sums and products. This is an
example of duality which is discussed formally in Section II.1.

Notation: We will speak of “the” sum or coproduct of Ay,---, A, and will
denote the object as X7, A; with the injection morphisms

JZAjHZ?ﬂAi,j:l,“-,n

)

but it is important to keep in mind that the sum is only unique up to a unique
isomorphism.

In the special case of two objects A and B we will usually write A + B for
the sum and write 1 : A —= A+ B,1p : B— A + B for the injection
morphisms.

When A = B the notation ¢4 is ambiguous, so we must use the ¢; notation.
The special case where all the objects are the same is common and important,
so we have the special notation 2e A for A+ A, and generally ne A for X', A.

When there is no danger of confusion, we will for each morphism

FiXr A —=C

write f; for fi;, so that f = [f1,---, fn]. Remember the frequently useful
observation that the identity morphism on the sum 37 ; A; is [t1,- -+ , tn).

The Catalog of Categories (Appendix B) discusses sums for all of the cat-
egories there, and for some of them (such as the categories of Abelian groups
and of vector spaces) the sum is a familiar construction. But more commonly,
even in the category of sets, sums are not nearly so well known as products.
An initial discussion follows on page 34.

Recalling that Hom(A, C)stands for the set of morphisms from A to C, we
can also state the definition as: (37 A4;,t1,- - ,tp) is a sum iff

Hom (X7 ,A4;,C) —=1I}" ;Hom(A4;,C)
f’—> (fl'la"' 7fl’n)
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is a bijection with inverse

I ;Hom(A4;,C) —= Hom(X} , A;, C)
(lea"' 7an) — [fla"' 7fn}

Exercise 1.49. For any family of two or more objects Ap,---, A, in % prove
that ¥, A; is isomorphic to (X7-'4;) + A,,. (Compare to exercise 1.34.)

Exercise 1.50. Suppose f : A+ B ——= S is an isomorphism. Prove that
(S, fi1, fro) is also a sum of A and B. (Compare to exercise 1.35.)

Exercise 1.51. Definet: A+ B——> B+ Aby t; = 9, to = 11, i.e., t = [t2, 1]
Prove that ¢ is an isomorphism. (Compare to exercise 1.36.)

Definition I1.32: Write ¢ for [t2,¢1] : A+ B—— B+ A. By the immediately
preceding exercise this is an isomorphism. Just as with the morphism defined
in exercise 1.36, we call this the transposition isomorphism.

Just as with products, this last exercise (and the next) is interesting, but
can also be misleading. In particular the previous exercises does not say that
B+ A is a sumof A and B. Indeed it cannot be overemphasized that a sum
of two objects is not just an object, but rather an object together with two
inclusion morphisms satisfying the Universal Mapping Property for a sum. The
object that is part of the product (B + A, tp, t4) is isomorphic to the object
A + B and so, following exercise 1.50, there are suitable injection morphisms
from A and B to B + A that will give a sum. But those injections are not
the injections that are part of (B + A, tp, ta), even in the special case when
A= B!

Exercise 1.52. With n a positive integer, let p : {1,--- ,n} =, {1,---,n}
be a permutation. Define s : X7, Ay —= X{L; A; by s,;) = t;- Show that
s is an isomorphism with s~ : X7 A; — U7 Ay, defined by 5,71 = ;.

(Compare to exercise 1.37.)

Exercise 1.53. Does the injection ¢; : A ——= A 4+ B have to be a monomor-
phism? Prove or give a counter-example. (Compare to exercise 1.38.)

Definition 1.33: Whenever we have f; : A; —— B;, we define the sum of
the morphisms f =3%7_, f; : ¥7_A; —= X" | B; by the fi; =¢;f;
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Just as with the sum of objects, if we have just two morphisms, say f and
g, we will write f + g for the sum of the two. And sometimes we will write
f+g+h, etc

And just as for products this makes for a number of exercises.

Exercise 1.54. Show that X7 ;14, = 1x4,. (Compare to exercise 1.40.)

Exercise 1.55. Consider the families of morphisms f; : A; —= B; and g; : B;
— C;. Verify that (X;9:)(2:fi) = £:(9:fi)- (Compare to exercise 1.41.)

Exercise 1.56. Show that if f and g have sections f’ and ¢’ respectively, then
'+ ¢ is a section for f + g. (Compare to exercise 1.42.)

Exercise 1.57. Show that if f and g are epimorphisms, then f + g is an
epimorphism. (Compare to exercise 1.43.)

Exercise 1.58. Show that if f and g have retracts f’ and ¢’ respectively, then
'+ ¢ is a retract for f 4+ g. (Compare to exercise 1.44.)

Just as with products of epimorphisms, in most familiar categories the sum
of monomorphism is a monomorphism as well, but that is not universally true.
(Indeed that follows from the discussion on duality in Section II.1.) But neither
is it very easy to give an example. See if you can find one!

Exercise 1.59. Give an example where f and g are monomorphisms, but f+g
is not a monomorphism. (Compare with the remark on page 28.)

Recall the induced function h, : Hom(B,A) —= Hom(B, D) given by
ho(f) =hf when h: A——= D and f: B——= A. Look at what happens with

sums.
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Exercise 1.60. Suppose that f: B——= A, g: C —= Aand h: A—— D.
Verify that h[f, g] = [hf, hg].
Hint: Here is the relevant diagram.
B
f hf
LB
I
B+C [f.d] A h D
g hg
Lo
C
(Compare to exercise 1.45.)

Here is another simple but important example which is worthy of a formal
definition. This is the dual of the diagonal morphism from page 29.

Definition 1.34: For every object A the codiagonal morphism or folding
morphism is V =[14,14]: A+ A— A.
This will be written as V 4 if we need to emphasize the particular object.

Exercise 1.61. Verify that for any morphisms f,g : B —= A, we have
[f,9] = V(f + g). (Compare to exercise 1.46.)

So we have a number of simple results about sums that are all dual to the
corresponding properties for products, but what categories actually have sums,
and what are sums in the categories where they exist? Most of the familiar
categories do have sums, and in many cases these are very well known, but in
the most basic category of sets the sum is unfamiliar.

If X and Y are disjoint sets, i.e., X NY = @ and f : X — Z and
g:Y —= Z are any two functions, then we can define [f,g] : X UY —= Z
by

.010) = {f(“ pees
g(t) ifteY

Defining tx : X —= X UY and 1y : Y —= X UY to be the inclusion
maps, it is clear that (X UY, tx, ty) isa sumof X and V. If X and YV
are not disjoint, there are nonetheless isomorphic sets X’ and Y’ which are
disjoint. (One common construction is X’ = X x {0} and Y’ =Y x {1},) Then
with tx and ty as the compositions of the isomorphisms to X and Y with the
inclusions into X’ UY’, we have (X' UY”’, tx, ty) as asum of X and Y.
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Definition I.35: This above construction defines the disjoint union of two
sets.

It should be clear how to extend this to a arbitrary (finite) sums, and we
will leave the details for the reader.

Exercise 1.62. If fy: A — By and f; : Ay — B; are two functions, then
describe (fo 4+ f1) on the elements of Ag + Aj.

The situation in both the category of Abelian groups and in the category
of vector spaces is very simple. Define (A + B = A x B, ta(a) = (a,0),
tp(b) = (0,b)). Now for any two homomorphisms f : A —= C and g : B
— C, define [f, g] by [f, g](a, ) = f(a) + g(b).

’ Exercise 1.63. Verify that (A+ B, ¢4, tp) is indeed a sum of A and B in Ab. ‘

Exercise 1.64. Let A be any Abelian group in Ab. What is V(a)for any
a€ A?

Exercise 1.65. If f; : Ay —= By and f5 : A, —> By are two homomor-
phisms of Abelian groups, describe (f1 4+ f2) on the elements of A; + A,.

Exercise 1.66. Verify that (A + B, ta, tp) is indeed a sum of A and B in
Vect.

Exercise 1.67. Let A be any vector space in Vect. What is V(a)for any
ae€A?

Exercise 1.68. If f; : Ay —= By and fy : Ay ——= By are two linear
transformations of vector spaces, describe (f1 4 f2) on the elements of A; + As.

The same results hold true more generally in the categories of modules over
a ring. These are all examples of Abelian categories which are the topic of
Chapter XIII. In other well-known categories, such at the category of groups,
there are commonly sums, but the construction is less familiar. These are
discussed in the Catalog of Categories (Appendix B).
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1.3.2 Final, Initial and Zero Objects

In the category of sets there are several types of sets that play an important
role. The first of these are the one element sets!

Definition 1.36: An object 1 is a final object or terminal object iff each
object A has exactly one morphism from A to 1. We will write this as ! : A
——> 1 when we need to name the morphism.

Exercise 1.69. Prove that any two final objects in ¥ are isomorphic, and the
isomorphism is unique.

Notation: We will speak of “the” final object in a category and and will write
it as 1 and will write the unique morphism from any object to 1 as !, but it is
important to keep in mind that the final object is only unique up to a unique
isomorphism.

In Set the final objects are all the singletons, i.e., the sets with exactly one
element. These are useful objects in the category because it means there is a
bijection between functions f : 1 ——= A and the elements of A. Inspired by
this (and other examples we will see later) we make the following definition.

Definition I.37: For any category with a final object, a point in an object
A is a morphism 1 —— A.

To see some of the value of these definitions, do the following exercise.

Exercise 1.70. Show there is a bijection between the points of A x B and
pairs (a,b) where a is a point of A and b is a point of B.

Final objects capture some other properties of singletons as well.

Exercise 1.71. If 1 is the final object in a category and A is any object in the

category, prove that A <4 A 1.1 exhibits A as the product of 1 and A.
So in any category with a final object, 1 x A = A.

Exercise 1.72. Verify that every point is a monomorphism.

Unfortunately this is not as general as we would like. In the category Ab of
Abelian groups, the final object is the zero group, and for every Abelian group
A there is only one homomorphism from the zero group to any Abelian group.
So the set of “points” in an Abelian group has no correspondence with the
set of elements of the group. Although the final object in a category is in one
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sense very trivial, it is also another example of a Universal Mapping Property.

Even more, as we will see in section V.1, it is the fundamental example of
a Universal Mapping Property. We will also see that how it relates to each
particular category is important for distinguishing various types of categories.
(See Chapter IX.)

Definition 1.38: A Cartesian category or category with finite prod-
ucts is one with a final object where every finite number of objects C, ...,
C,, has a product.

A final object is sensibly considered to be the product of no objects: it has
no projection morphisms (there are no factors on which to project) but there
is the unique morphism from any object to the final object which has suitable
composition with all of those non-existent projections!

There is a dual notion (in a sense that will be explained in Section II.1)
which is also important.

Definition 1.39: An object 0 is an initial object iff there is exactly one
morphism from 0 to each object A.

Exercise 1.73. Prove that any two initial objects in 4" are isomorphic, and
the isomorphism is unique. (Compare to exercise 1.69.)

In the category of sets there is exactly one initial object, the empty set,
and the unique function from the empty set to any set is the empty function.
And while functions from a singleton final object to other sets are quite useful,
functions from other sets to the empty set are very dull — there aren’t any! But
exercise 1.71 does have a suitable dual.

Exercise I.74. If 0 is the initial object in a category and A is any object in

the category, prove that A 14, A< 0 exhibits A as the sum of 0 and A.
So in any category with a initial object, 0+ A = A. (Compare to exercise 1.71.)

Definition I.40: A co-Cartesian category or category with finite sums
is one with an initial object where every finite collection of objects C, ..., C,
has a sum.

Just as a final object is a product of no factors, an initial object is sensibly
considered to be the sum of no objects: it has no injection morphisms (there
is nothing to inject) but there is the unique morphism from the initial object
to any object which composes properly with all of the non-existent injections!

Initial objects are just as trivial and interesting as final objects. They,
too, provide another example of a Universal Mapping Property. Indeed in
Section V.1.) we will see they are a fundamental example.
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Sometimes initial objects and final objects are the same, and this deserves
a special name.

Definition 1.41: In a category that has both an initial object, 0, and a final
object, 1, there is a unique morphism ! : 0 —— 1. If this is an isomorphism,
then we speak of a zero object and write it as 0.

Of course in a category with a zero object all initial objects, final objects
and zero objects are then uniquely isomorphic.

Definition 1.42: If a category has a zero object, then for any objects A and

B we have A —>=0—'> B, i.e., there is a unique morphism which “factors
through” the zero object. All such morphisms are called zero morphisms
and are denoted by 0.

Although the category of sets does not have a zero object, there are very
many familiar categories that do. In the categories of monoids, of groups, of
Abelian groups, of vector spaces, and many others, there is a trivial object that
is the zero object in the category.

There are also interesting and natural categories that have a zero object
but which are not “algebraic”. One good example is the category of pointed
sets.

Definition 1.43: A pointed set is a pair, (X, zg), consisting of a non-empty
set, X, together with an element (called the base point,) zo, of X.

Definition I.44: A morphism between pointed sets f : (X, z9) —= (Y, yo) is
a function f: X —=Y with f(z0) = yo.

Just as we have the category Set of sets and functions, we have the category
Set. of pointed sets together with their morphisms. For more details see B.1.7.

The category Set, has initial objects, final objects and zero objects: any one
element set with the single element being (necessarily) the base point element.

Set, has products and sums. The product of two pointed sets, (X, zg) and
(Y,yo) “is” (X x Y, (x0,y0)) with the usual projection maps.

The sum of two pointed sets is similar to but a bit simpler than the disjoint
union of arbitrary sets. Define (X, z0) + (Y,y0) = (X % {w0}) U ({zo} %
Y), (@0,90)); tx ¢ (X,20) —> (X, 20) + (Y,90) by 1x(x) = (w,30) and 1y :
(Y, y0) — (X, 20) + (Y, 50) by ¢ty (y) = (z0,y)

Definition I.45: The above construction of the sum of two pointed sets is
usually called the join of the two pointed sets.

Now for any two morphisms f : (X, z9) —= (Z, z9) and g : (Y, yo) —= (Z, 20)
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we can define [fv g] : (Xv {Eo) + (Yv yO) - (Z7 ZO) by

flt) ifteX
g(t) ifteY

It is very easy to check the details to verify that this does indeed exhibit a
sum of (X, zo) and (Y, yo), so it will be left for the reader.

It should be clear how to extend this to a arbitrary (finite) sums, and we
will also leave those details for the diligent reader.

1.3.3 Direct Sums and Matrices

As an example of how this abstraction begins to connect back to more familiar
mathematics, and at the same time provides a bridge to new ideas we want to
look at morphisms from sums to products.

The recognition of the connections among direct sums, matrices of mor-
phisms and addition of morphisms first appeared in Mac Lane [49](though
much of the terminology has changed since then.) Most of the material in this
section in much this form appeared in Eckmann and Hilton [17].Treatments
can also be found in Chapter 5 of Blyth [8],section 1.591 of Freyd and Scedrov
[25]and Session 26 of Lawvere and Schanuel [47]

Throughout this section we suppose that ¥ is a category that has
finite sums, finite products and a zero object.

Let A, B, C, and D be arbitrary objects in % and consider the question:
“What are the morphisms from A + B to C x D?”

A C
A e
A+B————>CxD
o5 .
B D

To specify a morphism from any object into C' x D requires giving two mor-
phisms from the object into C' and D respectively. Specifying a morphism from
A+ B to any object requires giving two morphisms from A and B, respectively,
into the object. So to give a morphism A + B — C x D is equivalent to
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giving four morphisms

fiA—C
g:A——=D
h:B—C
k:B——D

and the morphism is

or, equivalently,

(&)

As you probably suspect from the title of this sections, we are going to
write this morphism as
fg
h k

We have done this for A+ B ——= C x D just to avoid the additional
complication of indices, but that is really just a matter of bookkeeping. The
real result is the following proposition.

Proposition 1.3 The morphisms X7y A; — 117, B; are exactly the “ma-

trices”
fll f12 flm
. f21 f22 f2m
fnl fn2 fnm

where miMu; = fij.

Exercise 1.75. Prove Proposition 1.3.

Just as in our initial discussion of morphisms A + B ——= C x D, it is
very well worth noting that this also says Mv; = (fi1, -, fim) and m;M =
[frjs e s fsl-

Another way of looking at this same information to to recall (see pages 25
and 32)that

Hom(C, 1172, B;) = ] Hom(C, B;)

and
Hom(X}, A;, C) = 11 Hom(A;, C)

Put those together and look at

Hom(Z?:lAi, Hg»nlej) = H;"ZIHom(Z?:lAi, B]) = Hleﬂg":lHom(A“ B7)
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We started this section with the assumption that the category under consid-
eration has finite sums, finite products and a zero object. But the zero object
has as yet made no appearance. That changes when we consider morphisms

YA —=1I7_, A

i.e., when we have the same objects in both the sum and product. Now in
general there is no distinguished morphism from A; to A; when ¢ and j are
different, but when the category has a zero object this changes and we have the
zero morphism 0 : A; —=0—— A4;. And as a result we have the morphism

]-A1 0 0
0 ]_A2 0
1= . : E?:lAi HH?ZlAj

Definition I.46: This matrix of morphisms is called the identity matrix
and is denoted by I.

This notation is deliberately very suggestive, and in some important cases
it is exactly right. For example consider the category FDVecty of finite di-
mensional vector spaces over a field K. In this category every vector space
of dimension 7 is isomorphic to K™ = II} ; K. Moreover the morphisms, i.e.
linear transformations, L : K —— K have the form L(z) = lz for some [ € K.
For good measure the morphism I : ¥ | K —— K" that we constructed
above is an isomorphism. Even more every morphism K™ ——s K" can now
be identified with an ordinary matrix

aip a2 - G1m
a1 Q22 - G2m
an1 an2 e Anm

of elements of K.
For more details, see Section B.4.4.
Of course in some cases the suggestion is misleading. For example consider

j=( ™ 0 X4+Y —>XxY
0 1y

in the category of pointed sets.
If X and Y are not singletons, then this is not an isomorphism, instead:

Exercise 1.76. Show that I : X + Y ——= X X Y corresponds exactly to the
inclusion (X x {yo} U{ao} xY)C X x Y.
Use this to show that if X and Y are not singletons, then I is not surjective.
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Categories where the morphism [ : ¥ ; A; —=1II7_; A; is an isomorphism
are both interesting and common. We will discuss this considerably more in
Chapter XIII on Additive and Abelian Categories, but there are interesting
consequences we can see right now.

The first simple observation is that when I is an isomorphism, then following
exercises 1.35 and 1.50 we can equip any sum or product with projections and
injections that make it both a sum and a product. Such an object equipped
with both injections and projections such as to make it a sum and product is
called a direct sum of the objects. We write this as

TA T™B
A=—-A@B_—_—_—"B
LA LB
for two objects, and as
T
Da=—=4

in the general case.
Once we do this the morphism

la, 0O -+ 0
0 14, 0
0 0 - 1g,

@A B
really is the identity morphism.
This is sufficiently important that we make a formal definition.

Definition 1.47: In a category with finite products, finite sums and a zero
object, a direct sum of objects Ay, ..., A, is an object, @, A;, and mor-
phisms 7m; : @, Ai —= A; and ¢; : A; — P, A; for i = 1 to n such
that

i (P, A, m:i=1,---,n)is a product of the A;;
i (B, Ai,t;:i=1,---,n)is asum of the A4;;
iii For each ¢, m;t; = 14,; and
iv For each 7 and each j # %, m;1; = 0.
The name “direct sum” comes from its use for Abelian groups, modules

and vector spaces. Another term that is commonly used in the category theory
literature is biproduct.

Definition 1.48: A category with direct sums is a category with a zero object
where every finite family of objects has a direct sum.
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There is no common name for this type of category, though Lawvere [43] has
argued for “linear category” largely because of results such as those expounded
in this section. That name is not adopted here because it is not commonly used,
and because linear category is also used in the literature for at least two other
types of categories.

Just as with products (I1.38) and sums (I.40), the zero object in such a
category is sensibly considered to be the direct sum of zero objects. Contrast
this with exercises 1.38 and 1.53.

In direct analogy with products and sums we will write the direct sum of
two objects as (A® B, w4, 7B, LA,LB).

Each projection m; : 69?:1 A; —= A, has the corresponding injection
v+ Ay — @), A; as a section (and the injection has the projection as
a retract), so the projections are always epimorphisms, and the injections are
always monomorphisms.

Now for any two morphisms f : A —= B and g : C —— D, we have
already defined f x g: Ax B——=CxCand f+g: A+ B—C+ D. But
when we have direct sums, that means they both are morphisms from A& B to
C& D and so both are given by 2 x 2-matrices. So what is the matrix for f x g7
Well we know that f x g is the unique morphism with 7g(f x g) = fma and
mp(f X g) = grp. To compute the matrix we need 7o (f X g)ta, 7o (f X g)iB,
mp(f X g)ta, and p(f X g)ep. But wo(f X g)ta = frata = fla = f and
mo(f X g)tg = frarg = fO = 0. A similar computation for the other two
shows that the matrix is

f o0
( 0 9 )

Exercise 1.77. By means of a similar computation show that the matrix of
f + g is the same as the matrix of f X g, s0 f+g=f X g.

And so from now on we will write f@g: A® B — C® D in this situation.
Also we want to write @, f; : @;_, Ai — @D]_, B; so we need the more
general result of the next exercise.

Exercise 1.78. In a category with direct sums, verify that the matrix of both
I, fi: @?:1 Aj— @::1 B; and i, fi: @?:1 Aj— @?:1 B is

fi 0 - 0
0 fo - 0
0 0 - fn

What makes ordinary matrices interesting is primarily that they can be
multiplied, and that multiplication of matrices corresponds to composition of
the corresponding maps, as is the case for the category of vector spaces. In
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order to define multiplication of these new matrices, we may be able to use
composition of morphisms in place of multiplication, but what is to take the
place of sum? We actually have a pair of candidates which we will see are actu-
ally the same. As we will see in a bit this has several important consequences,
and is not at all just a happy accident.

The two “sums” we define on Hom(A, B) are:

For f,g € Hom(A, B), define

Definition 1.49:

ngzA#A@A%B

and

(f.9)
—_—

Definition 1.50: fvg = A BaB-Y-B

Exercise 1.79. In the category Ab of Abelian groups, what are (f A g)(a)
and (£7g)(a)?

Proposition 1.4 In any category with direct sums A and V are the same bi-
nary operations on Hom(A, B)

Proof: For f, g in Hom(A, B),

fog = [fgA by definition 1.49
V(f+g)A by exercise 1.61
V(f x g)A by exercise 1.77
V(f.9) by exercise 1.46
= fvyg by definition 1.50

Definition 1.51: For any category with direct sums and any two morphisms
fyg: A—— B in the category we define f + g = V(f ® g)A. By the preceding
proposition f+g=f A g= fVyg.
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Exercise I.80. In any category with direct sums, show that for any morphism

ff+0=f=0+F.

Hint: Explain and use the following commutative diagram.
!
™A Lo

1
AA2 o Aapa®t omaa S BB
1 f

TA LA

A— 4

Exercise 1.81. In any category with direct sums, consider morphisms where
hf, hg, f + g, fe and ge are all defined. Show that h(f + g) = hf + hg and

(f +g)e= fe+ge.

Using this exercise you can readily verify a result that is quite familiar for
Abelian groups, vector spaces, etc.

Exercise 1.82. In any category with direct sums, show that for any direct
sum A @ B we have tqym4 + tpmp = lagB

This exercise also allows us to get back to the motivation for the develop-
ment of the sum of morphisms: composition of matrices of morphisms.

Proposition 1.5 In any category with direct sums, the composition

fu fiz o fim gir 912 - YGip
for fo2 o fom g21  g22 - Gp

n - m - b
@ Al fnl fn2 fnm @ Bj Im1  Gm2 Imp @ Ck

is the n X p-matriz (h;g) with hy, =

gik
92k

(fi1, fizs - fim)

Imk
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Proof: To simplify the notation, we will write F' for the matrix (f;;), G for
the matrix (g;x) and H for the matrix (h;;). Remember that h;, = mHe; =
meGFu. But m,G s [gu, - gox] and Fu; s (fir, fiz, - o fim). |1

Now one more proposition will take us to our target.

Proposition 1.6 In any category with direct sums, the composition

m
A (froee o fm) @Bj lg1, ,gm] C

j=1
is gifi+ -+ gmfm

Unfortunately there is a problem. We have not defined the sum of more
than two morphisms — well so what, we certainly know how to iterate sums
as (((f +g) + h) + k), etc. Unfortunately we don’t yet know that our “sum”
is associative! So we need a bit of a detour to fix these details, and the first
step is some convenient notation — for any object, A, we write A" for @] A.
(Compare the notation A™ on page 24 and n e A on page 31.)

Definition 1.52: In any category with direct sums and any finite number of
morphisms fi,---, f,, all from A to B we define f; +---+ f,, to be

A J10®fn \4

A A" B" B

Now we have a definition, but we really want to know that this sum is
associative. The proof of that is tricky, and we will actually defer it to the
discussion preceding corollary 1 on page 54.

Proof of Proposition 1.6 Now of course we have things arranged so that
the proof is trivial.

91, 5 gml(f1,  f) = V(1 @ O gm) (/1O © frn)A
= v(glfl @@gmfm)A
=gifi+-+gmfm

With the first aspects of “matrix multiplication” in hand, there are many
additional developments possible, but this is a good point to change our point
of view a bit and consider doing various types of algebra in other categories.
Once we have some of that in hand we’ll revisit matrices of morphisms as an
application and see how it connects to what we have just done.

1.4 Algebraic Objects

A recurring theme in these notes is moving back and forth between investigating
what we can do using familiar concepts in general categories as a way to study
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categories (as in the previous section where we found that arbitrary categories
with finite direct sums have many familiar properties), and using categories
to investigate familiar concepts (as we are about to do in this section.) Many
familiar algebraic structures, such as groups and rings, can be defined in very
general categories. Specialized to familiar categories they then give us new
insights and connections.

We will actually return to this theme several times, particularly in Chap-
ter VII (Algebraic Categories). This first discussion is largely based on the
treatment given by Eckmann and Hilton [17, 18, 19].

1.4.1 Magmas in a Category

We start with the simplest of algebraic gadgets because it will serve as a useful
base for most of what follows, and because it usefully simplifies what we need
to do. Unfortunately the simplest algebraic gadget is also an unfamiliar one.
It is so simple that it really has little interesting theory of its own.

Following Bourbaki [10, I.1] we have the most basic definition.

Definition I.53: A magma is a set, M, together with a binary operation or
law of composition, u: M x M —— M.

Most commonly the binary operation in a magma is written as u(m,n) =
mmn though in particular examples the operation may be written as m + n,
mxn, m™ or in some quite different fashion.

Here we make NO assumptions about the operation — it need not be as-
sociative, commutative, nor have any sort of identities. Stipulating that the
operation is associative, commutative or satisfies some other identities results
in other, often more familiar, objects.

Now as we are discussing categories we immediately want to define a suitable
morphism.

Definition I.54: A magma homomorphism is a function f : M —= N
such that f(zy) = f(2)f(y).

Formally, if (M, pp) and (N, pn) are magmas, then a magma homo-
morphism f : (M, up) — (N, un) is a function f : M — N such that
fune(z,y)) = pn (f(2), f(y)) for x,y € M.

Now we have the category Magmaof magmas which has as objects all
magmas and as morphisms the magma homomorphisms. (You should convince
yourself that this is indeed a category.) And look at Section B.2.1 in the
Catalog of Categories (Appendix B) for more information about this category.

We could now go forward and define commutative magmas, and topological
magmas, smooth magmas and many other variations on this theme, thereby
getting a plethora of additional categories. But there is a better way.

Let & be any category with finite products.

Definition I.55: A magma in ¢ is an object, M, together with a binary
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operation p: M x M — M.
And to go along we define the corresponding morphisms.

Definition 1.56: A magma morphism, or morphism of magmas in % is
a morphism h : M —— N such that

M x M

N x N

123 KN

Exercise 1.83. Show that there is a category, Magma.,, with objects the
magmas in ¢ and as morphisms the magma morphisms.

Of course Magmag,, = Magma, as defined in Section B.2.1.

Now we have such categories as Magmar,,, the category of continuous
magmas, and Magmay,nifo1a, the category of smooth magmas.

The category Magma., directly inherits some properties from the mother
category . First note that if 1 is a final object in % then the unique morphism
1:1x1——1 exhibits 1 as an object in Magma.,. Moreover for any other
magma, (M, u) in € clearly

Ix!

M x M

1x1

M 1

commutes, so ! is the unique magma morphism from M to 1. Thus 1 (with its
unique binary operation) is also a final object in Magma.,.

Also if My, ..., M, are magmas in ¢ (with binary operations u1, ..., ),
then we can use the p,; to define a binary operation, u, on II7 ;. This is done
using the isomorphism between II7 M; x IIT M; and I} (M; x M;) which is given
by exercise 1.37. Because we will use this particular isomorphism repeatedly it
is worthwhile to make it explicit. It is

(1, 1), (T o)) 2 T My x T My —— T (M x M;)

‘While the inverse is

<<7r1’... 77Tn>7<7T1,"' ’ﬂ—n>>
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Now we define p to be the composition of I M; x TIT M; = I (M; x M;)
and Ofp; : TIP(M; x M;) — TIT'M;. Some diagram chasing leads to the
conclusion that (II7M;, i) is the product of the (M;, p;) in Magmag. The
details are in the following exercise.

Exercise 1.84. Prove that if ¥ is any category with finite products, then
Magma., is a category with finite products.

Now we want to preview a bit of what we will start doing once we introduce
functors, the morphisms between categories (cf. Chapter III (Functors).)

Recall that we write Hom(A, B) for the set of morphisms from A to B(or
%(A, B) if we want to emphasize which category is being discussed.) More-
over we have Hom(C, A x B) = Hom(C, A) x Hom(C, B) (look back at page
25.) Lets apply that to a magma (M, p) and notice that for any object
C we get a binary operation, V, on Hom(C, M) defined by fvg = u(f,g)
Even more, if A : M —— N is a magma morphism, then the induced function
hs« : Hom(C, M) — Hom(C, N)is a magma homomorphism.

Exercise 1.85. Verify the above assertion that if h : M ——= N is a magma
morphism, then A, is a magma homomorphism.

Now if h : D —— (' is any morphism in the category, we also have the
induced function 2* : Hom(C, M) — Hom(D, M).Recalling exercise 1.45 we
have the following closely related exercise.

Exercise 1.86. Verify that if M is a magma in ¢, and h : D — C is any
morphism, then 2* : Hom(C, M) —— Hom(D, M) is a magma homomorphism.

One of the motivating examples for this discussion of magmas is the codi-
agonal V: A ® A ——= A in any category with direct sums. In particular the
definition of v in Hom(A, B) given in Definition 1.50 and several of the results
following that definition are special cases of the material in this section. And
pretty much all of them will be included once we combine the material here
with that in the next section.

Before we move on to that, we want to record the following theorem.

Theorem 1.1 Let M be an object in € and suppose that for every object C in
€ a binary operation, V, is defined on Hom(C, M) in such a way that for ev-
ery morphism h : C —— D the function h* : Hom(D, M) — Hom(C, M) is a
magma homomorphism. Then there is a unique binary operation p: M x M — M

so fvg = p{f,g) for all f and g in Hom(C, M)

Proof: Consider 4 = mVmg : M XM —— M. Then for f and g in Hom(C, M)
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we have (f,g) : C x C — M and

i f,9) = (mvma)(f,g)
= (f,9)" (m1Vm2)
= (f,9)"(m)V(f,9)" (m2)
= mi(f,9)Vm2(f, )
= fVvyg

And if v is some binary operation on M that induces Vv, then

1= m Vg
= V<7T1,7T2>
=vlimxm

=v

Many interesting categories have the property that the Hom sets can be
naturally considered as objects in some category other than Set. The study of
such categories and the consequences of the additional structure is the subject
of Enriched Category Theory which is the topic of Chapter XII.

1.4.2 Comagmas in a Category

As with just about everything in category theory (and as we will explore more
fully in Section II.1)there is a dual to the concept of magma. We are going
straight to the “categorical” definition for reasons that should be clear very
quickly.

Let € be any category with finite sums. The dual of the magmas are
comagmas. Here is the definition.

Definition I.57: A comagma in % is an object, C, together with a co-
operationv : C + C —C.

And to go with it, here is the definition of the appropriate morphisms.

Definition I.58: A comagma morphism, or morphism of comagmas in
% is a morphism h : D —— C such that

C+C<~—D+D

vc VD

Q
!
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Exercise 1.87. Show that there is a category, Comagma.,, with objects the
comagmas in % and as morphisms the comagma morphisms. (Compare to
exercise 1.83.)

We now have, in particular, the category Comagma = Comagmag,; as
well as many others. Of course the reason that comagmas are actually inter-
esting is probably obscure at this point. For instance there are no interesting
comagmas from the category of sets in these notes! Indeed the first interesting
specialization of comagmas is to comonoids, the dual of monoids, But the only
comonoid in the category of sets is the empty set. (See page 62.) But in time
we will see interesting examples on other categories.

The primary reason that we are discussing comagmas here is because of
what happens with Hom.Recall that Hom(A+ B, C) = Hom(A, C)xHom(B, C)
(look back at page 32.) Lets apply that to a comagma (C, v) and notice that for
any object B we get a binary operation on Hom(C, B) defined by fvg = [f, g]v
Even more, if h : C —— D is a comagma morphism, then the induced function
h* : Hom(D, B) — Hom(C, B)is a magma homomorphism.

Exercise 1.88. Verify the above assertion that if A : C' ——= D is a comagma
morphism, then ~A* is a magma homomorphism. (Compare to exercise 1.89.)

Now if h : A ——= B is any morphism in the category, we also have h, :
Hom(C, A) — Hom(C, B).Recalling exercise 1.60 we have:

Exercise 1.89. Verify that if C is a comagma in ¢, and h : A —— B is any
morphism, then h, : Hom(C, A) — Hom(D, B)is a magma homomorphism.

The category of comagmas in a category directly inherits some properties
from the mother category. First note that if 0 is a initial object in % the unique

morphism 0 —15 0+ 0 exhibits 0 as an object in Comagma.,. Moreover for
any other comagma, (C,v) in € clearly

c+C

0+0

c 0

commutes, so ! is the unique comagma morphism from 0 to C. Thus 0 (with
its unique co-operation) is also a initial object in Comagma.,.

Also if C1, ..., C, are comagmas in ¢ (with co-operations vy, ..., vy),
then we can use the v; to define a co-operation, v, on X7 C; by taking v to be
the composition of

E;L:lyi : Z?Cz e Z?(Ol + Cz)
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and
XHCi+ Cy) — Y10+ X7C;

Some diagram chasing leads to the conclusion that (£7C;,v) is the sum of the
(Ci,v;) in Comagma.,. The details are in the next exercise.

Exercise 1.90. If ¢ is any category with finite sums, then Comagma., is a
category with finite sums. (Compare to exercise 1.84.)

The motivating example for this discussion of comagmas is the diagonal
morphism A : C'——= C@C in any category with direct sums. In particular the
definition of A in Hom(A, C) given in 1.50 and several of the results following
that definition are special cases of the material in this section. And pretty
much all of them will be included once we combine the material here with that
in the previous section on magmas.

Before we move on to that, we want to note that if Hom(e, M) is always a
magma and gives magma homomorphisms, then M “is” a magma. This easy
theorem has a multitude of ramifications.

Theorem 1.2 Let C be an object in € and suppose that for every object A
in € a binary operation, A, is defined on Hom(C, A) in such a way that for
every morphism h : A——s B the function h, : Hom(C, A) — Hom(C, B)is a
magma homomorphism. Then there is a unique co-operation v : C —=C+C
so fAg=1f,glv forall f and g in Hom(C, A). (Compare to Theorem I.1.)

Proof: Consider v =17 A tg: C ——= C + C. Then for f and g in Hom(C, A)
we have [f,g] : C 4+ C —— A and

[f,glv=[f,gl(t1 & 12)

= [f,gl«(t1 & 12)

= [f,gl«(t1) & [f, gl (e2)
= [f,gltr A [f, glez

=fAag

And if p is some co-operation on M that induces A, then

*
*

V=1l Al
= [t1,t2]p
=Iymrmp
=

|

Again note the great similarity (or more precisely the duality) of everything
we’ve done to this point in this section with what was done in the preceding
section on magmas. This is yet another example of what we will formalize in
Section II.1.
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1.4.2.1 Comagmas and Magmas Together

In a category with direct sums, every object naturally has both a magma and a
comagma structure, and in Section 1.3.3 we saw that the two magma structures
that were induced on the Hom sets are equal. Here we want to revisit that
material in the context of magmas and comagmas. So suppose that A is a
comagma in € with co-operation A (deliberately intended to remind us of the
diagonal A) and B is a magma in ¥ with binary operation V (deliberately
intended to remind us of the codiagonal V). Then, as above, Hom(A, B) has
two binary operations A and V defined by

fag=Ifgla
hvk = v{h,k)

for f, g, h, and k all in Hom(A, B). And these are connected by this master
identity:

Proposition 1.7 ’ (fARh)V(gak)=(fvg) & (hVE) ‘

Proof:

(fagvihak) = v{faghAnk) by definition of v
= V{[f,9] &,[h k] &) by definition of A
= Yf, 9], [hk]) & by exercise 1.89
= V[{f,h),{g,k)] Ao by Proposition 1.3
= [V{(f,h),V{(g,k)] A Dby exercise 1.86
= [fVh,gVk] A by definition of v
= (fvh) A (gVk) by definition of A

i
Now assume that % has a zero object and that the zero morphism in
Hom(A, B) is the identity for both A and v, ie, f A O = f =0 A f and
gV0 =g =0Vg for all f and g in Hom(A, B). This assumption combined with
the master identity has amazing consequences.
First, taking ¢ = 0 and h = 0, we get

fvk = (fA0)V(0Ak)
= (fv0) A (0VEk)
fok

i.e., the two binary operations A and V on Hom(A, B). And this means the
master identity can be rewritten as ’ (f+h)+(g+Ek)=((+9g) +(h+k) ‘

where + stands for either/both of A and V.



54 CHAPTER I. MATHEMATICS IN CATEGORIES

Part of the reason for using + as the name of the binary operation is because
taking f =0 and k = 0 gives

h+g=(0+h)+(g+0)
=(0+g)+ (h+0)
=g+h

i.e., the binary operation is commutative.
And finally, taking just h = 0 we get

f+g+k)=(+0)+(g+k)
=(f+9)+(0+k)
=(f+9)+k

Which is to say that the two (equal) binary operations on Hom(A, B) are also
associative.

Recall that a set together with a binary operation that is associative, com-
mutative and has an identity is a commutative monoid, so the above is sum-
marized in the following theorem.

Theorem 1.3 Let € be a category with a zero object, (A, A) a comagma in
€ and (B,V) a magma in € such that the zero morphism in Hom(A, B) is
the identity for the binary operations induced by A and V, then the two binary
operations are the same and make Hom(A, B) a commutative monoid.

As a first consequence we have the following corollary.

Corollary 1 If % is a category with finite direct sums, then for any two objects
A and B in the category, the binary operation on Hom(A, B) defined by the
diagonal morphism A and the folding morphism V makes it a commutative
monoid with the zero morphism as the identity.

As another interesting consequence notice that if every object in ¥ admits
a comagma structure and a magma structure such that the 0 morphism is the
identity in the magma structure induced on the Hom sets, then these structures
are necessarily unique. This follows by combining the above proposition with
Theorems 1.1 and 1.2 which say that the magma structure on the Hom sets
determine the magma and comagmas in %.

In particular this applies to every category with finite direct sums — the
comagma and magma structures defined by A and V are unique!

As a direct lead-in to the next section we have the following summary result.

Proposition 1.8 Let € be a category with a zero object, (A, A) a comagma in
% and (B,V) a magma in € such that the zero morphism in Hom(A, B) is the
identity for the common binary operation on Hom(A, B), then the following
diagrams commute:



I.4. ALGEBRAIC OBJECTS 95

1. (B, V) has an identity:

<7T1 7O> <077T2>

Bx0 Bx B 0x B
v
T ™2
2. (B, V) is associative:
<17v>

BxBxB—BxB

<V’1> v

Bx B B

3. (B, V) is commutative:

B x B

i Bx B
\v\ /
B

4. (A, A) has a co-identity:

[Llﬂo] [07L2]

A+0 A+ A 0+ A
A
L1 L2
5. (A, A) is co-associative:
(1,4]

A+ A+ A<—A+A
[a,1] A

A+ A A
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6. (A, A) is co-commutative:
At A<~—"—— A4 A
A

Notation: It occasionally happens that we want to discuss Hom(A, B) where
we fix B but vary A. Usually the name A just confuses the issue, so in this situa-
tion — the following proof is an example — we will often write Hom(e, B)instead.
(The notation Hom(—, B) is also sometimes used for the same purpose.) This
same thing applies for many things besides Hom, and the meaning should be
clear in all cases.

Proof: For (1.) note that V(m,0) =71 +0 = m; and V(0,m2) = 0+ mo = mo
as 0 is the identity for +, the induced binary operation on Hom(e, B)

For (2.) we see that v(v,1) = v 4 1, while v(1,V) =1+ V. But we know
that + is commutative, so V4+1=1+ V.

For (3.) we observe that V¢ is also a binary operation on B for which 0 is
the identity in the monoid Hom(e, B). But such a binary operation on B is
unique, so Vt = V.

We will leave parts (4.) — (6.) as the next exercise. |

Exercise 1.91. Complete the proof of Proposition 1.8

In case they are not clear, the titles for each of the six parts of this propo-
sition will be explained in more detail in the next two sections.

1.4.3 Monoids in a Category

Throughout this section all categories are assumed to have finite
products.

Definition I.59: A monoid object, or usually just a monoid, in % is a
magma in € (M, pu: M x M — M) plus an identity or unit ¢ : 1 —= M
for which the following diagrams commute:

identity

1ar X¢ Cx1n

Mx1l——MxM<—""1xM
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associativity

1,
Mx MxM—2" o v

(p,1) W

M x M

M

This definition will likely make more sense when we see that a monoid in Set
is just a monoid in the usual sense. Write p(m,n) = mvn and ((x) =1 € M
where * is the unique element in the singleton set 1. (The use of V for the
product is intended to remind of the codiagonal, see page 34.) Now the above
diagrams become:

1. identity
(m, %) F—=(m,1)  (1,m) = (x,m)

m=mV1l 1Vm=m
2. associativity

(mv n, p) — (m7 nvp)

(mVn,p) ——=mV(nVp) = (mVn)Vp

So the first says that 1 is an identity for the multiplication while the second
is just the associative law for multiplication, i.e., we have a monoid in the usual
sense.

In light of the last section we also want to define commutative monoids in
a category.

Definition 1.60: Let ¢t : M x M ——= M x M be the transposition isomor-
phism defined in exercise 1.36. A monoid (M, p, ¢) is commutative iff

MxM—" > MxM

N

is commutative.
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Note that in Set this just says mVn = nVm, i.e., the multiplication is
commutative in the ordinary sense.

Now we can restate the first three parts of Proposition 1.8 as saying that
the object B is a commutative monoid in the category. The last three parts say
that A is a co-commutative comonoid, and that will be explained and justified
in the next section.

As we are studying categories, we are, of course, looking for a category of
monoids, so we want the following definition.

Definition 1.61: If (M, up, Cy) and (N, un, (n) are two monoids in %,
then a monoid morphism from M to N is a morphism h: M —= N in ¥
for which the following diagrams commute:

1
7
13,78 KN
M h N

The subscripts on p and ¢ will usually be omitted as the intended subscript
is usually clear from the context.

Again if we look at what this means in the category of sets, then the first
square is the familiar A(m A m’) = h(m) A h(m’), while the second is h(1) = 1,
exactly what it means for h to be a monoid homomorphism.

Exercise 1.92. Show that there is a category, Monoidy, with objects the
monoids in € and with morphisms the monoid morphisms.

Of course Monoidse; = Monoid, as defined in Section B.2.3. Well, there
is a tiny issue: the definition of a monoid in Set isn’t exactly the usual definition
of a monoid which just asserts that some identity element exists. Fortunately
it is an easy theorem that a monoid has a unique identity and so the two
concepts really do coincide. For more details, see the material on monoids
in Section B.2.3 of the Catalog of Categories. Also look at Mac Lane and
Birkhoff [55, I.11].

Exercise 1.93. Show that there is a category with objects the commutative
monoids in € and with morphisms the monoid morphisms between commuta-
tive monoids.

Of course you’ve already done much of the work for these last two exercises
in exercise 1.83.
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This exercise is really about showing that the category of commutative
monoids in ¥ is a subcategory of the category of monoids in % .

Just as with the category of magmas in a category, the category Monoid¢
directly inherits various properties from %¢. Again you've already done most of
the next exercise in exercise 1.84.

Exercise 1.94. Prove that if € is any category with finite products, then
Monoidy is a category with finite products.

Similarly for the next two exercises, you did most of the work back in
exercises 1.85 and 1.86.

To start, for any monoid (M, u, ¢) and any object C', the Hom set Hom(C\, M)
is naturally a monoid with binary operation V defined by fvg = u(f, g). The
identity is e = (.(!) € Hom(C, M). [Remember that Hom(C,1) has just the
one element ! as 1 is a final object in €]

Of course we need to verify the identity and associativity relations for
Hom(C, M) and that is easily done by noting that the Hom(C,e) operation
applied to the diagrams for M become (writing H for Hom(C, M)):

1. identity

1 L« X1
Hx1—2 g g<t g

2. associativity

1,104
HxHxH—"""  pwn

(B, 1) o

HxH H

L

and, as we saw on page 57 these really are the same as the ordinary definition
of a monoid.

Even more, if h : M —— N is a monoid morphism, then the induced
function h, : Hom(C, M) — Hom(C, N)is a monoid homomorphism.

Exercise 1.95. Verify the above assertion that if A : M ——= N is a monoid
morphism, then Hom(C, k) is a monoid homomorphism.

Exercise 1.96. Verify that if M is a monoid in ¢, and h : D — C is
any morphism, then h* : Hom(C, M) — Hom(D, M) is a monoid homomor-
phism.
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Finally just as for magmas we have the reverse: If Hom(e, M) is always a
monoid and gives monoid homomorphisms, then M is a monoid.

Theorem 1.4 Let M be an object in €. Suppose that for every object C in €
the Hom set Hom(C, M) is a monoid in such a fashion that for every morphism
h : C —— D the induced function h* : Hom(D, M) — Hom(C, M) is a
monotd homomorphism. Then there are unique morphisms p and { so that
(M, 1, ¢) is a monoid in € inducing the monoid structure in Hom(C, M)

Proof: The first part of this is Theorem I.1 which gives us the unique binary
operation p on M inducing the binary operation on Hom(e, M).

To get the identity, ¢ : 1 ——= M, note that if it exists it is in Hom(1, M)
and it must be the identity element in that monoid. So let us define ¢ to be the
identity element in the monoid Hom(1, M) and prove that it is also the identity
for the binary operation p. The next thing to notice is that as 1 is the final
object, for every object N the unique morphism ! : N —— 1 induces a monoid
homomorphism !* : Hom(1, M) — Hom(N, M) which in particular takes the
identity element in Hom(1, M) to the identity element in Hom(N, M), i.e., ¢!
is the identity element in Hom(N, M).

Applying this to mo : M x 1 ——= 1 we first notice that 7 is really !, so (o
is the identity element in Hom(M x 1, M). And u(1p x ¢) = mV{my = 1.

The argument for the other half of ( being an identity is essentially the
same and is left to the reader.

To verify the associativity of u we need to make the diagram in the definition
a bit more fulsome:

1M></L

MxM?——MxM

(m1,(m2,m3))
7T1,(7I'2V7l'3)>
M3 M

71'1V7T2),71'3>

((m1,m2),73)

M2x M

Mx M

X 1ar

And finally p(m, maVrs) = m1V(maVas), while u{(m V), m3) = (w1 Vre) Vs,
But these two are equal because the binary operation V on Hom(M?3, M) is
associative. |

In this same situation, if Hom(e, M) is a commutative monoid, then the
corresponding monoid structure on M is commutative.

Theorem 1.5 Let M be an object in €. Suppose that for every object C' in
€ the Hom set Hom(C, M) has a natural commutative monoid structure in
such a fashion that for every morphism h : C ——= D the induced function
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h* : Hom(D, M) — Hom(C, M) is a monoid homomorphism. Then there
are unique morphisms p and ¢ so that (M, u, ¢) is a commutative monoid in
€ inducing the monoid structure in Hom(C, M)

Exercise 1.97. Prove Theorem 1.5

As promised we now have an alternative proof of the first three parts of
Proposition 1.8 on page 54. Indeed this can be recast as saying that when € is
a category with a zero object, (A, A) is a comagma in ¢, (B, V) a magma in
%, and the zero morphism in Hom(A, B) is the identity for the common binary
operation on Hom(A, B), then (B, Vv, 0) is a commutative monoid.

The last three parts say that (A4, A, 0) is a co-commutative comonoid, and
the next section explains and justifies this claim.

I.4.4 Comonoids in a Category

Even though the definition of duality in categories is still to come in Section II.1,
the many examples to date should make it clear that every thing in the previous
section can be “dualized”. We will take advantage of that to leave all the results
in this section as exercises.

To start we make assume the dual of the presumption of section 1.4.3.

Throughout this section all categories are assumed to have finite
sums.

If you find any of this confusing, you should be able to read ahead in Section I1.1
as well as reading the solutions.

Definition 1.62: Suppose % is a category with finite sums. A comonoid
object or usually just a comonoid in % consists of an object C' and morphisms
v:C—=C+Candn:C—=0sothat (C,v)is a comagma and the following
diagram commutes:

C + 0 [e1,m] C + C [m,e2] 0 + C

Terminology: We will often just speak of a comonoid or a comonoid object
if the category is clear. The morphism v is, of course, called the comultipli-
cation,while 7 is called the co-unitof the comonoid.

While for monoids we were able to explain the definition of a monoid object
by pointing out that it was familiar in the category of sets, we don’t have that
advantage with comonoids. Comonoids are not familiar, and in the category
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of sets there is only one comonoid, namely the empty set! So for the moment
this is largely an exercise in formal manipulation, with a promise that this will
be more interesting later on

Definition 1.63: Let ¢t : C + C —— C + C be the transposition isomorphis-
mdefined in definition 1.32 on 32. A co-monoid (C, v, ) is co-commutative
iff

C+C~—"——C+C

RNy

Now see that the second three parts of Proposition 1.8 does just say that A
is a co-commutative comonoid.

As we are studying categories, we are, of course, looking for a category of
comonoids, so we want the following definition.

is commutative.

Definition 1.64: If (C, v, n) and (D, v, n) are two comonoids in &, then
a comonoid morphism from C to D is a morphism h : C ——= D in ¥ for
which the following diagrams commute:

C D+ D 1
C D

Exercise 1.98. Show that there is a category, Comonoid, with objects the
comonoids in ¥ and as morphisms the comonoid morphisms.

Exercise 1.99. Show that there is a category with objects the co-commutative
comonoids in ¥ and as morphisms the comonoid morphisms between co-
commutative comonoids.

Of course you've already done most of the work for these two exercises in
exercise 1.87.

Just as with the category of comagmas in a category, the category Comonoidy
directly inherits various properties from €. Again you've already done most of
the next exercise in exercise 1.90.
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Exercise 1.100. Prove that if % is any category with finite sums, then
Comonoidy is a category with finite sums.

Back on page 59 we saw that for any monoid M and any object C the
Hom set Hom(C, M) is naturally a monoid. There is a similar dual result for
comonoids leading to the next few exercises.

For any comonoid (C, v, n) and any object A the Hom set Hom(C, A)
is naturally a monoid with binary operation, Vv, on Hom(C, M) defined by
fvg = [f,g]v, with identity ¢ € Hom(C, A) as the image of n* : Hom(0, A)
— Hom(C, A), i.e., ( = n*(!) =In where ! is the unique morphism from an
initial object 0 to A.

Of course we need to verify the identity and associativity relations for
Hom(C, A) and that is easily done by noting that the Hom(e, A) operation
applied to the diagrams for C' gives (writing H for Hom(C, A)):

1. identity
lgxn Nse X 1pr

Hxl———HxH~<~——1xH

L1 L2

2. associativity

(1,v7)
HxHxH

HxH

(v™,1) v*

Hx H H

-
and, as we saw on page 57 these really are the same as the ordinary definition
of a monoid.

Even more, if h : C —— D is a comonoid morphism,then the induced
function h* : Hom(D, A) — Hom(C, A)is a monoid homomorphism as you
will verify in the next exercise. Note that most of the work in the next two
exercises was done in exercises 1.88 and 1.89.

Exercise 1.101. Verify that if h : ¢ ——= D is a comonoid morphism, then
for every object A the induced function h* : Hom(D, A) — Hom(C, A) is a
monoid homomorphism.

Exercise 1.102. Verify that if C is a comonoid in ¢, and h : A—— B is any
morphism, then h, : Hom(C, A) — Hom(C, B) is a monoid homomorphism.
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And finally we have the is dual of Theorem 1.4 on page 60, the result
for Hom and monoids: If Hom(C,e) is always a monoid and gives monoid
homomorphisms, then C' is a comonoid.

Theorem 1.6 Let C' be an object in €. Suppose that for every object A in €
the Hom set Hom(C, A) is a monoid in such a way that for every morphism
h : A—— B the induced function h, : Hom(C, A) — Hom(C, B) is a monoid
homomorphism. Then there are unique morphisms v and n so that (C, v, n)
is a comonoid in € inducing the monoid structure in Hom(C, A)

Exercise 1.103. Prove Theorem 1.6

In this same situation, if Hom(C,e) is a commutative monoid, then the
corresponding comonoid structure on C is co-commutative.

Theorem 1.7 Let C' be an object in €. Suppose that for every object A in €
the Hom set Hom(C, A) is a commutative monoid in such a way that for every
morphism h : A ——> B the induced function h, : Hom(C, A) — Hom(C, B)
is a monoid homomorphism. Then there are unique morphisms v and n so that

(C, v, n) is a co-commutative comonoid in € inducing the monoid structure
in Hom(C, A)

’ Exercise 1.104. Prove Theorem 1.7

As promised we now have an alternative proof of the second part of Propo-
sition 1.8. Indeed this can now be recast as saying that when % is a category
with a zero object, (A, A) is a comagma in ¢ and (B, v) a magma in € such
that the zero morphism in Hom(A, B) is the identity for the common binary
operation on Hom(A, B), then (4, A, 0) is a co-commutative comonoid.

Now as you may have guessed we could continue on to define monoids
acting on other objects, or rings or other algebraic gadgets in quite general
categories in much the same way we done with magmas and monoids. But
we’ll postpone that until we have more machinery that will simplify the process
considerably (see Chapter VII, Algebraic Categories.) But we do want to look
at the categorical generalization of one of the most familiar concepts: groups.

1.4.5 Groups in a Category

A group is a monoid in which every element has an inverse. The corresponding
definition in a category is the following.

Definition I.65: Suppose % is a category with finite products. A group
object or usually just a group in % consists of an object G and morphisms
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w:GxG—=G,(:1—>G,and ¢ : G—— G so that (G, p, ¢) is a monoid
in ¢ and ¢ is the inverse. This mean that the following diagrams commute:

lg,e t,1
a1 | gwg—1

Of course this is really just saying that a group object is a monoid object
together with an inverse, in particular in the category of sets ¢« : G —= G is
just 1(g) =g~

Now we can go one step further and define the corresponding morphisms.

Definition 1.66: If (G, u, ¢, ¢) and (H, p, ¢, ¢) are two groups in €, then a
group morphism from G to H is a morphism h : G —= H in € for which
the following diagrams commute:

GxG hoxch Hx H 1
/ \
Iz Iz
G - H G - H
G—2 ~H

@
=

As you should expect this is a monoid homomorphism that also “carries
inverses to inverses”, the natural generalization from Set.
We call also easily define Abelian, i.e., commutative, groups.

Definition I.67: A group (G, p, ¢, ¢) is commutative or Abelian iff the
monoid (G, u, ¢) is commutative.

In the next exercise you will show that there is a category of groups in %.
Of course most of the work was already done in exercise 1.92

Exercise 1.105. Show that there is a category, Groups, with objects the
groups in ¢ and as morphisms the group morphisms.
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Of course Groupg,, = Group, as defined in Section B.2.5, right? Well,
there is actually a bit to be said here. The issue is that the definition of a group
in Set does not immediately translate into the usual definition of a group. For
example in their book Algebra [55], Mac Lane and Birkhoff give the definition:
“A group G is a set G together with a binary operation G x G —— G, written
(a,b) — ab such that

i This operation is associative.
ii There is an element v € G with ua = a = au for all a € G.
iii For this element u, there is to each element a € G an element a’ € G with
ad’ =u=da.

Now even though this was written by Saunders Mac Lane, one of the fathers
of category theory, there is no mention of the functions ¢ and ¢ that are part
of our definition of a group in the category Set! Of course the existence of the
element u guaranteed by the above definition allows us to define the function
¢ :1——= G by ((*x) = u. But a priori it appears that a group in the above
sense might allow several different such elements u and therefor several different
group objects in Set. Of course this is not the case as it is an easy theorem
that there is only one such element wu.

Similarly the existence for each a € G of @’ with aa’ = u = d’a allows us
(perhaps with the aid of the axiom of choice!) to define an ¢ : G —= G so that
at(a) = u = t(a)a. Again there is an a priori possibility that there might be
many such functions leading to many different group objects in Set associated
to a particular group. But again this is not in fact the case as another easy
theorem shows that such an element a’ is unique for each a and so there is only
one such function ¢ (and the axiom of choice is not needed.)

For more details, see the material on groups in Section B.2.5 of the Catalog
of Categories. Also look at Mac Lane and Birkhoff [55, II].

This kind of issue comes up rather regularly when moving between the
standard set based definitions and those reformulated to fit category theory.
In these early stages we will usually write a bit about the issues, but then
we will leave it to the reader without comment unless there are particularly
interesting issues.

There is also the category of Abelian groups in ¥ which is a subcategory
of the category of groups in ¥. That’s the content of the next exercise where
you've already done the work for in the last exercise and in exercise 1.93.

Exercise 1.106. Show that there is a category with objects the commutative
groups in ¥ and as morphisms the group morphisms between commutative
groups.

This is an opportunity to point out a subtlety that occasionally confuses
newcomers to category theory. With the usual definition of groups and monoids
(that is as sets with a binary operation), it is quite true that the category of
groups is a subcategory of the category of monoids. But if we look at the
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definition we have given of monoid and group in the category Set, it is not
true that every group is a monoid! The reason for this is that each group has
the inverse function (¢) in addition to binary operation (u) and the identity
(¢). In principal it might be the case that we could have two group objects
(G, u, ¢, ) and (G, w, ¢, ) where the only difference is the inverse morphism.
In the category of sets this cannot happen — we know that if an element in a
monoid has an inverse, the inverse is unique — and that is why the category of
groups is a subcategory of the category of monoids. In a general category with
finite products there are no elements to have inverses, unique or no. Indeed
the role of objects in categories is a very secondary one, so the notion of a
subcategory is interesting primarily for the examples arising as subcategories
of familiar categories. Even more interesting is the situation illustrated by the
relations between magmas, monoids and groups in a category. Every group
object does have an underlying monoid object, and each monoid object has an
underlying magma object — in both cases the underlying object is gotten by
simply “forgetting” the extra structure, i.e., the underlying monoid of a group
is gotten by forgetting the inverse, while the underlying magma of a monoid
is gotten by forgetting the identity. Moreover the group morphisms between
two group objects is a subset of the monoid homomorphisms between the two
underlying monoids, and equally well a subset of the magma homomorphism
between the two underlying magmas. This is a very common situation and is
codified in the discussion of based categories and forgetful functors coming up
in Sections II.5 and III.2.6.

Just as with the categories of magmas and monoids in a category, the
category Groupe, directly inherits various properties from %. Again you've
already done most of the next exercise in exercise 1.94.

Exercise 1.107. Prove that if € is any category with finite products, then
Group., is a category with finite products.

For any object C' and any monoid object M, the set of morphisms Hom(C, M)
is naturally a monoid (see page 59.) Similarly for any group object G, the set
of morphisms Hom(C, G) is naturally a group — the multiplication and identity
come from the monoid structure that G gives as a monoid. The inverse on
Hom(C, G) is just ¢, where ¢ is the inverse on G.

’ Exercise 1.108. Verify that ¢, is indeed the inverse on Hom(C, G) as claimed.

For the next two exercises, most of the work was back in exercises 1.95 and
1.96.

Exercise 1.109. Verify the above assertion that if h : G ——= H is a group
morphism, then for any C Hom(e, h) is a group homomorphism.
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Exercise 1.110. Verify that if G is a group in ¥, and h : D — C' is any
morphism, then ~A* : Hom(C, G) — Hom(D, G) is a group homomorphism.

Finally we see that, just as for magmas and monoids, if Hom(e, G) is always
a group and gives group homomorphisms, then G is a group.

Theorem 1.8 Let G be an object in €. Suppose that for every object C in
€ the Hom set Hom(C, G) is a group in such a way that for every morphism
h : C —— D the function h* : Hom(D,G) — Hom(C, G) is a group homo-
morphism. Then there are unique morphisms p, ¢, and ¢ so that (G, u, ¢, t)
is a group in € inducing the group structure in Hom(C, Q)

Exercise 1.111. Prove Theorem I.8.

Combining this proposition with Theorem 1.5 gives us

Theorem 1.9 Let G be an object in €. Suppose that for every object C in
€ the Hom set Hom(C, G) is an Abelian group in such a way that for every
morphism h : C — D the function h* : Hom(D,G) — Hom(C,G) is
a group homomorphism. Then there are unique morphisms u, ¢, and v so
that (G, p, ¢, t) is an Abelian group in € inducing the group structure in
Hom(C, G)

To date we have some of the elementary definitions regarding monoids and
groups, but no actual development of any interesting information about these
categories themselves, not even such simple results as the isomorphism the-
orems for groups. We could in fact develop that material in a fairly direct
manner, but it is much more worth while to first develop some of the machin-
ery of category theory which we can then apply.



Chapter 11

Constructing Categories

Examples of categories abound, and we saw that familiar notions in the cate-
gory of sets generalize to other bases categories to give even more categories.
But category theory also suggests other ways of getting more categories — prod-
ucts and sums of categories, subcategories, quotient categories, functor cate-
gories, etc. These are particularly important as a way of organizing complexity,
especially when we study functors and functor categories will come in the next
chapter.

II.1 Duality and Dual Category

Two points determine a line and, in the projective plane, two lines always
intersect in a point. This is an ancient example of the duality between lines
and points with Pappus’ Theorem (see [68]) on nine points and nine lines being
perhaps the first duality theorem. Today there are dozens if not hundreds of
duality theorems in mathematics, many of them key results.

Duality pairs up objects and relations in a complementary fashion so that
there are dual theorems with dual proofs. The simplest examples of duality
include negation of propositions in logic (where for example the “and” oper-
ation is dual to “or”), dual polyhedra (see [67]) where faces and vertices are
swapped (the dual of the cube is the octahedron; the dual of the dodecahedron
is the icosahedron; while the tetrahedron is its own dual), and pairing regions
and vertices in planar graphs.

More sophisticated examples include Poincaré Duality (see [4]) in algebraic
topology and Pontryagin Duality (see [69]) for topological groups.

Category theory is another area where duality plays an important role.
What makes it particularly interesting is that a great many of the other notions
of duality can be expressed by duality for categories. The starting point is the
definition of the dual of a category.

Definition I1.1: Associated to any category % is a dual or opposite category
denoted €°P. The objects and morphisms of €°P are exactly the objects and

69
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morphisms of %, but f is a morphism from A to B in % iff f is a morphism
from B to A in %°P. Finally composition is reversed in %°P from what it is
iné€. lf h=gf in €, then h = fgin €°P.

Clearly (€°P)°P is just €.

Although the definition of the dual category is a very simple formality, it has
a great deal of force. The first import is that it reduces the number of proofs
in category theory by a factor of 2! The reason for this is that when we prove
a theorem for all categories, it of course applies not only to each particular
category, but also to its dual category. But the theorem applied in the dual
category is (usually) another different theorem in the original category. Here
are some simple examples that where we have already done twice the work that
was needed.

First we note that section and retract are dual concepts. If f: A ——= B is
a section of g : B——> A in ¢, then f: B—— Aisaretract of g: A—— B
in €°P.

€ €°P
B > B B = B
\ / \ /
A A
Similarly epimorphism and monomorphism are dual concepts. If the mor-
phism f: A——s= B is an epimorphism in ¢, then f: B>— A is a monomor-
phism in €°P. If gf = hf = g=hin €, then fg= fh=g=hin €°P (and
conversely.)
Next note that final object and initial object are dual concepts, i.e., if X

is a final object in the category %, then X is an initial object in the category
P

@ @
c--'->X C=<-'--X

For each object C there is the unique morphism C' ——= X in % and the
unique morphism X — C in €°P.

As our final examples for the moment we see that product and sum are
dual concepts. Suppose (X,a: X —= A,b: X —— B) is a product of A and
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Bin %, then (X,a: A——= X,b: B—— X) isasum of A and B in %°P:

€ %op
A A
f a f a
c--->X C<---X
b b

g g9
B B

For each pair of morphisms f : C —= A and g : C — B in % there
is a unique morphism C' —— X in ¥ making the left diagram commute, and
in ¥°P for each pair of morphisms f: A ——= C and g : B—— C there is a
unique morphism X —— C making the right diagram commute. We’ve only
indicated this for pairs of objects, but you should easily see that it is true for
arbitrary products and sums as well.

Now consider the following pairs of propositions:

1.

a)

b)

If a morphism f has a section, then f is an epimorphism. (See
exercise 1.10.)

If a morphism f has a retract, then f is a monomorphism. (See
exercise 1.16.)

(Proposition I.1) If P with m; : P —= A; and P’ with # : P’

—> A, are both products of Ay,--- A, then (mq,---,7,) : P
— P’ is an isomorphism with (n{,--- ,n}): P’ — P as inverse.
(Proposition 1.2) If S with ¢; : A; — S and S’ with  : 4; —= 5"
are both sums of Ay, -, A,, then [t1,--- ,1,] : & —= S is an
isomorphism with [¢], -+ ,¢]: S ——= 5" as inverse.

For any family of two or more objects, Ay, -+, A,, in € prove that

7, A; is isomorphic to IT'"' A; x A,,. (See exercise 1.34.)

For any family of two or more objects, A1,---, Ay, in % prove that
¥ 1 A; is isomorphic to Z?:_llAi + A,,. (See exercise 1.49.)

Suppose f : P —— Ax B is an isomorphism. Prove that (P, 7 f, ma f)
is also a product of A and B. (See exercise 1.35.)

Suppose f : A+ B —— S is an isomorphism. Prove that (S, ft1, fi2)

is also a sum of A and B. (See exercise 1.50.)

Definet: A x B——= B x A by t; = ma,t; = m;. Prove that t is an
isomorphism. (See exercise 1.36.)
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b) Define f: A+ B——= B+ A by f1 =2, fo = t1. Prove that f is an
isomorphism. (See exercise 1.51.)

6. a) Any two final objects in € are isomorphic, and the isomorphism is
unique. (See exercise 1.69.)
b) Any two initial objects in ¢ are isomorphic, and the isomorphism
is unique. (See exercise 1.73.)

7. a) In any category with a final object, 1 x A = A. (See exercise 1.71.)

b) In any category with an initial object, 0 + A = A. (See exercise
1.74.)

These are pairs of dual propositions. In all cases each proposition is a logical
consequence of the other because each applies equally well to dual categories.
In our proofs of these results (most being in the Solutions (Appendix C)), we
have tried to write the proofs to emphasize the duality.Going forward we will
prove only one of the dual theorems of interest, and indeed may use the dual
theorem without even explicitly stating it.

There are a number of well known results in mathematics that are truly
about dual categories. One of the simplest, and one of the motivating examples
in the development of the original definitions of category theory, is that the
category of finite dimensional vector spaces over a fixed field is self-dual, i.e., it
is “equivalent” to its own dual category. To justify that will be one of the early
goals of Chapter III (Functors).

II.2 Quotient Categories

Besides subgroups, subrings, subspaces, etc., there are also quotient groups,
quotient rings, quotient spaces, etc. Similarly there is the notion of a quotient
category.

The initial motivating examples of quotient categories are the various homo-
topy categories in algebraic topology. For more details look at in the Catalog of
Categories at the homotopy category of topological space (B.9.6), the category
of H-Spaces (B.9.7), the homotopy category of Kan complexes (B.10.2), and
the homotopy category of chain complexes (B.11.4).

As a preliminary to the definition of a quotient category, we need to specify
the kind of equivalence relation that is relevant.

Definition I1.2: A congruence ~on a category is an equivalence relation on
the morphisms in the category such that

i If f ~ g, then f and g have the same domain and codomain.

ii If f~gandh~kand hf is defined, then hf ~ kg.

If ~ is a congruence on the category %, define €/ ~ as the category with
the same objects as €, and with the morphisms from A to B in €/ ~ the
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equivalence classes of ¢'(A, B) with respect to the equivalence relation ~. The
identity morphism on A is the equivalence class of 14, and the composition
of equivalence classes is the equivalence class of the composition of any two
morphisms in the equivalence classes.

Exercise II.1. Verify that €/ ~ as described above is in fact a category.

Definition I1.3: ¥’/ ~ is called the quotient category of € by the congruence

~.

11.3 Product of Categories

Along with subcategories and quotient categories, there are also products of
categories. Here is the definition.

Definition I1.4: % are two categories, the product category &/ x % has
as objects the pairs (A, B) with A an object of &/and B an object of Pand as
morphisms the pairs (f,g) with f a morphism in «7and ¢ a morphism in %.
The domains, codomains, composition, and identities are exactly as expected:
if f:Ag—= A; and f': A] —= Ay in &while g : By —= By and ¢’ : B;
— By in 4, then (f,g) : (Ao, Bo) — (A1, B1) and (f',¢') : (A1, B1) —>
(A2, B2) in &7 x %B. Moreover (f',g')(f,9) = (f'f,g'9) and 14,5y = (14,1B).

The domain of (f,g) is the pair (domain(f), domain(g)) and the cod while
the of objects from &7 and % respectively, while the morphisms are similar
pairs of morphisms.

Exercise I1.2. Verify that o7 x 4 is indeed a category.

We’ve only defined the product of two categories, but the definition actually
extends to the product of any indexed family of categories as follows:

Definition IL.5: If (4; : i € I) is an indexed family of categories with I
any set, then we define the product category II;c;%; with the objects being
indexed families of objects (C; : ¢ € I) and the morphisms being indexed
families of of morphisms (f; : i € I).

The only (apparent) issue in this construction is that we are treading close
to foundational issues when the objects in these categories do not form a set.
This can be addressed, but we will just refer to the discussions mentioned
earlier, cf. page 5.
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II.4 Sum of Categories

Besides products of categories there are also sums of categories. Here is the
definition.

Definition I1.6: If (% : i € I) is an indexed family of categories with I any
set, then we define a category X;c;%; with the objects being pairs (C, i) with
i € I and C an object of €;. There are no morphisms from (C, i) to (D, j)
unless ¢ = j in which case every morphism f : C' ——= D in %; gives a morphism

(f,i): (C,1) —= (D,1).

’ Exercise I1.3. Verify that 3;c;%;, as defined above, is indeed a category.

II.5 Concrete and Based Categories

The overwhelming majority of the familiar categories (see the Catalog of Cat-
egories (Appendix B)) come from the category of sets by defining the objects
of the new category as sets with some additional structure (e.g., a binary op-
eration [as with Monoid] or a family of subsets [as with Top]), while the new
morphisms are defined to be functions between the sets which in some fashion
preserve the structure.

Rather than trying to specify just what is meant by a structure we will
abstract this situation to get the following (tentative) definition.

Definition II.7: A concrete category is a category % and a specification of
the underlying sets and functions in Set. This last means that for each object
C of € there is specified a set U(C) and each morphism f : C ——= D of €
there is a function U(f) : U(C) —= U(D). Moreover U has to satisfy some
consistency conditions:

1 U(le) = 1y
2. U(gf) =U(9)U(f)
it f,f: C——=Dand U(f) =U(f'), then f = f'.

The image here is that U(C') is the underlying set of the object, i.e., the set
gotten by forgetting about the structure. Similarly U(f) is the function that
preserves the structure. The three consistency conditions say that the identity
function preserves the structure, that composition of the morphisms in the new
category is just composition of functions, and that the only morphisms in the
new category are indeed just suitable functions.

This is labeled a tentative definition because as soon as we have the defini-
tion of a functor we will restate this definition and see that U is just a faithful



I1.5. CONCRETE AND BASED CATEGORIES (0]

functor from % to Set, called the underlying or forgetful functor (details in
definition ITI.8 and Section III.2.6.)

Exercise II.4. There are many categories listed in the Catalog of Categories
(Appendix B) that are quite naturally concrete categories. The first and sim-
plest is the category of sets itself. There U is just the identity on objects and
morphisms.

Decide which of the categories in the Appendix are naturally concrete categories
and for those describe a forgetful functor. [This is a trivial exercise, particularly
as the answer in each case is in the article for the given category. It is just an
excuse to get you to review these categories and reflect on concrete categories.
Not all of the categories listed are concrete categories, but proving that there

is no forgetful functor can be non-trivial.]

This is also a special case of a more general phenomenon that we saw repeat-
edly in Section I.4. Much as with concrete categories, the various categories of
algebraic objects were constructed from some base category by defining the ob-
jects of the new category as objects in the base category with some additional
structure (e.g., a binary operation as with magmas in a category, Magma.,),
while the new morphisms were defined to be morphisms in the base category
which respected the structure.

Again rather than trying to specify just what is meant by a structure we
will abstract this situation to get the following (tentative) definition.

Definition I1.8: A based category on a base category 4 is a category %
and a specification of the objects and morphisms in #. This last means that for
each object C of € there is specified an object U(C) in £ and each morphism
f: C ——= D of € there is a morphism U(f) : U(C) —= U(D). Moreover U
has to satisfy the consistency conditions:

L. U(le) = 1yo)
2. U(gf) =U(@U(f)

it f,f: C——=D and U(f) =U(f'), then f = f’.

This too is labeled a tentative definition because it also will be superseded
as soon as we have the definition of a functor and can restate this definition as
saying that U is just a faithful functor from € to % (details in definition III.8
and Section II1.2.6.)

The next exercise is just looking at a very few of the multitude of examples
of based categories that will naturally occur in these notes.
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Exercise I1.5. For each of the following situations, confirm that we do have
a based category as asserted. [Again this exercise is trivial and just intended
to get you to reflect on based categories.]

1. Group based on Set

2. Group based on Monoid

Monoid based on Magma

Group based on ¢

Groupy based on Monoid¢

Monoid¢ based on Magma.,.

Magma., based on & (see Section 1.4.1, in particular exercise 1.83.)

LieGroup based on Manifold

© ® N e oo W

Moduler based on Ab

11.6 Morphism Categories

For any category there are a variety of associated categories where the ob-
jects of the new category are certain morphisms from the original category.
Throughout this section let € be a fixed category.

e The first and simplest example is the case where we consider all the
morphisms as the objects of our new category. The category €2, called
the morphism category of ¢, has as objects the morphisms of ¢, while
a morphism in €2 from f: A——= B to f' : A/ ——= B’ is a pair (h, k) of
% -morphisms so that

A—" sy

! f

!
B ; B

commutes.

The identity morphism on f is the pair (14, 15), while the composition
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of (h,k): f—— f' with (W, k") : f' ——= 7 is (Wh,k'k) as in

h I

A AI Aw
|
f f! Vi
J/l
B— =B — =B

That 42 is a category follows immediately from the fact that % is a
category.

The explanation for the notation ¢? and the connection with the arrow
category 2 is in Section I11.6.7 below.

e The next interesting case arises when we restrict our morphisms to have
a fixed domain. For C' a fixed object of ¢, the Category of objects
under C, written (C' | %) has as objects morphisms in ¢ with domain
C, while a morphism in (C' | €) is a €-morphism between the codomains
that makes the following triangle commute:

D D’

So here k is a morphism from f to f' in (C | ).

(C | %) is immediately seen to be the subcategory of €2 consisting of
just those “objects” with domain C' and just the “morphisms” of the form
(1C> k)

Both objects under C' and the following definition of objects over C' are
examples of the more general and useful construction of comma cate-
gories which will be discussed in Section IV.1 where the notation will be
expanded and discussed.

As an example, considering Set, the category of sets, and C to be a final
object 1, i.e., any fixed one element set, we see that (Set | 1) is essen-
tially the same as the category Set, of pointed sets. (Cf. Section 1.3.2,
especially page 38, and Section B.1.7.) For a function from 1 to any set
S is completely determined the point sg € S (the base point) that is the
image of the function, and a morphism in (Set | 1) is exactly a function
that takes base point to base point. Formally what we see is that the
category (Set | 1) is isomorphic to the category Set.,, and this will essen-
tially be a proof of that fact as soon as we actually define “isomorphism
of category” which we will do in definition II1.6 on page 81.
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e The dual to the notion of the category of objects under C is of the

category of objects over C, written (¢ | C). Here the objects are
morphisms in ¥ with codomain C, and a morphism is a %-morphism
between the codomains that making the triangle commute:

B h B

c

Here h is a morphism (in (¢ | C)) from g to ¢'.

Again (¢ | C) is a subcategory of €2 consisting of just those “objects”
with codomain C and just the “morphisms” of the form (h,1¢).

By contrast with (Set | 1), the category (1 | Set) is really the same as

Set itself. For any set S there is a unique function from S to 1, and for
any function f: S ——=5’, the triangle

S ! s

commutes.

This argument really is just using the fact that 1 is a final object in Set.
The same argument shows that for any category with final object the
category (¢ | 1) is isomorphic to €.

Dually for any category with initial object 0, the category (0 | &) is
isomorphic to 7.
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Functors and Natural
Transformations

ITII.1 What is a Functor?

A functor is a morphism from one category to another. Here is the actual
definition.

Definition III.1: A functor F from € to 2 assigns to each object A in €
an object F(A) in 2 and to each morphism f : A —= B in ¥ a morphism
F(f): F(A) — F(B). Moreover F'(14) = 1p(a) for every object in A in ¥,

and whenever A —> B %> in €, F(gf) =F(9)F(f) in 2.

The canonical examples of functors are € (C, o) : € — Set, the Hom func-
tors.For each object A of ¥ we have the set € (C, A) and for each morphism f :
A —— B we have the function f, = Hom(C, f) : Hom(C, A) — Hom(C, B)
from Definition 1.7. Clearly (14). is the identity function on %(A, A), and
(9f)« = g« f« is exactly the associative law in €.

But we have another canonical example: €' (e,C) : ¥ — Set. For each
object A of ¥ we have the set ¥(A,C) and for each morphism f : A —
B we have the function f* = Hom(f,C): Hom(B,C) — Hom(A,C) from
Definition 1.8. And this is not a functor because (gf)* = f*g* rather than
(9f) =g*f*

This is sufficiently important that it too gets a definition.

Definition III.2: A contravariant functor F from % to Z assigns to each
object A in ¢ an object F(A) in & and to each morphism f: A—= Bin % a
morphism F(f) : F(B) —= F(A). Moreover F'(14) = 1p(4) for every object

in A in ¥, and whenever AloB i €, F(gf) =F(f)F(g) in 2.

Sometimes for emphasis a functor is called a covariant functor. To confuse
things a bit, a few authors have used the term cofunctor. for contravariant

79
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functor.

So we also have the contravariant Hom functors €' (e, C) : € — Set.

As we would expect for “morphisms of categories”, there are identity func-
tors and composition of functors.

Definition III.3: The identity functor 14 : ¥ ——= % has 1¢(C) = C and
1¢(f) = f for every object C and morphism f in €. This is clearly a functor.

Definition III.4: For two functors F' : & —= % and G :  — €, the
composition GF : &/ — € has GF(A) = G(F(A)) and GF(f) = G(F(f))
for every object A and morphism f in /. And again it is clear that the
composition is a functor.

The same definition applies equally well if either F'; G or both are con-
travariant functors. Note that if just one is a contravariant functor, then the
composition is a contravariant functor, while if both are covariant or both are
contravariant, then the composition is covariant.

For every category we have the special, but unnamed, contravariant func-
tor € — €°P which takes every object and every morphism to itself, but in
the dual category. More, every contravariant functor F' : € — 2 uniquely
factors into € — €°P —— & with the first functor here being the special
contravariant functor and the second being a covariant functor. So every con-
travariant functor F' : ¥ ——= 2 can be considered as a functor from €°P
— & which we will also call F'.

Of course it is also the case that every contravariant functor F': € —= &
when composed with the special canonical contravariant functor from ¥ —
P°P gives a covariant functor from to 2°P. Again as no confusion should
result, this composite will also be called F.

Just as we have functions of several variables, we naturally have functors
of several variables as well. Our very first example is Hom : 4 x ¥ —— Set.
We'll leave it as an exercise in choosing clear notation to verify that Hom is
indeed a functor of two variables, or, as it is often called, a bifunctor. Here
is the actual definition.

Definition ITI.5: A bifunctor from categories ¢ and % to Z is a functor from
E x P to 9. A bifunctor from categories ¥ and % to Z which is contravariant
in the first argument and covariant in the second is a functor from €°P x Z to

2.

There are similar definitions of a bifunctor which is covariant in the first and
contravariant in the second arguments, and of a bifunctor which is contravariant
in both arguments.

More generally a multifunctorfrom categories €1, ..., €, to 2 which is
covariant in some arguments and contravariant in the others is a functor from
a suitable product of the categories corresponding to covariant arguments and
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the duals of the categories corresponding to the contravariant arguments to 2.
The full formal definition of a multifunctor would be long and tedious defi-
nition without providing additional insight, so we settle for this informal state-
ment.
The most basic example of a bifunctor is Hom.

Exercise ITI.1. Verify that Hom is a bifunctor from ¢ and ¢ to Set which
is contravariant in the first argument.

It is also possible to compose multifunctors in much the same way we can
compose functions of multiple variables, but the actual complicated definition
will not be spelled out but just used as needed.

Now that we have functors, composition of functors and identity functors,
we immediately get the notion of an isomorphism of categories.

Definition ITI.6: A functor F : &f —— A is an isomorphismof categories
iff there is an inverse functor F~' : 4 —— & so that F7'F = 1, and
FF1 =1g4.

Applications of category theory within particular categories systematically
ignore the difference between isomorphic objects. Correspondingly two isomor-
phic categories are “the same” from the standpoint of category theory. But
isomorphism of categories is more stringent than is truly interesting. There
are many categories that are not isomorphic, perhaps because one has more
isomorphic copies of some object than the other, but are truly equivalent. The
interesting notion for functors is not that they be inverses, but only that they
be “naturally equivalent”, one of the original concepts introduced when Eilen-
berg and Mac Lane defined categories and functors. The definition and further
discussion is in section IIL.5.

Before we get there we need to record a couple of other definitions, and see
a small sampling of the diversity of functors in our universe.

Part of a functor, F', is a function

F : Hom(A, B) — Hom(F'(A), F(B))

Definition ITI.7: A functor F' is full iff the function between the Hom sets
is surjective for all objects.

This is, of course, closely connected to the notion of a full subcategory (see
definition 1.12 and also the next section.)

Definition ITI.8: A functor F' is faithful iff the function between the Hom
sets is injective for all objects.
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I1I1.2 Examples of Functors

IT11.2.1 Subcategories and Inclusion Functors

Way back in Section 1.1.2 we defined subcategories. Just as with other sub-
objects, there are inclusion morphisms associated with subcategories, but we
weren’t prepared to explain them because functors were not yet defined. Now
we can state the obvious definition.

Definition II1.9: For any subcategory . of € the inclusion functor. —= %
takes each object and morphism in . into the same object and morphism in

€.

The definition of a subcategory is exactly what is needed to ensure that the
inclusion functor is in fact a functor.

Every inclusion functor is faithful,and . is a full subcategory exactly if the
inclusion functor is full.

I11.2.2 Quotient Categories and Quotient Functors

Definition IT1.10: If 4/ ~ is the quotient category of € by the congruence
~, there is the quotient functorwhich takes each object in % into the same
object in ¢’/ ~ and each morphism into its equivalence class of morphisms.

The quotient functor is always full. It is only faithful when the quotient
functor is an isomorphism, that is when ~ is the equality equivalence relation.

II1.2.3 Product of Categories and Projection Functors

As this is category theory this definition is quite unsound — where is the Univer-
sal Mapping Property? That lacunae is rectified with the following definition.

Definition III.11: The projection functors 7, : Il;c;6; — €; are 7;(C; :
iEI):Cj andﬁj(fill.EI)ij.

Now for any family of functors F; : ¥ ——= %; we have the functor F :
¢ — 7 : IL;c1%; defined on objects by F(C) = (F;(C) : i € I) and on
morphism by F(f) = (F;(f) : ¢ € I). And the Universal Mapping Property |,
F' is the unique functor such that m; F' = F; for all ¢ € I, is easily checked:

1. Each 7; is a functor. The initial part of that, m; taking objects to objects
and morphisms to morphisms is clear. The other parts are:

a) That m; takes identity morphisms to identity morphisms is the ob-
servation that the identity morphism on (C;: ¢ € 1) is (1¢; : 4 € I)
and ; applied to this gives 1¢;;
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b) That m; preserves composition of morphisms is noting that (g; : i €
I)(fz 11 E I) = (ngz RS I) and Wz((gz RS I)(fz RS I)) :ngz
2. Fis a functor. Again the initial part is clear. The rest is:
a) F takes identity morphisms to identify morphisms: The identity
morphism on (C; : ¢ € I)is (1¢, : 4 € I) and F applied to this is

(Fi(lg,) i € I) = (1p,c,) : @ € I) (because each F; is a functor.)
And this is the identity on (F;(C;) : ¢ € I) which is F(C; : i € I).

b) F preserves composition of morphism:

F((gi:ieD(fi:iel)=F(g;fi:i€l)
= (Fi(g:ifi):1€1)
= (Filgi)Fi(fi) »ie )
= (Fi(gi) s i € )(Fi(fi) s i € I)
=F(g;:ie)F(fi:iel)

¢) That F is the unique functor whose composition with the m; is F;
is immediate from the definition of IL;<;%; and the ;.

Exercise ITI.2. Give examples to show that projection functors need not be
either faithful or full.

Remember this just means there is some situation where € (Cy, Cy)x Z(D1, D2)
—%(C1,C3), (f,g9) — f, is not injective, and some possibly different situa-
tion where this function is not surjective.

I11.2.4 Sum of Categories and Injection Functors
And here is the appropriate Universal Mapping Property.

Definition II1.12: The injection functors ¢; : € — X;c1%; are ¢;(C) =
(C, ) and ¢;(f) = (f,J)-

Now for any family of functors F; : ¥ ——= %; we have the functor F :
¢ — 7 : I;c1%; defined on objects by F(C) = (F;(C) : i € I) and on
morphism by F(f) = (F;(f) : ¢ € I). And the Universal Mapping Property,
that F' is the unique functor such that m; F' = F; for all i € I, is easily checked:

For any family of functors F; : €; ——= % we have the functor F' : 3;c/%;
—> % defined on objects by F(C,i) = F;(C) and on morphisms (f,7) : (C,1)
—> (D,1i) is F;(f). The Universal Mapping Property, that F' is the unique
functor such that Fi; = F; for all i € I is easily checked:

1. Each ¢; is a functor. The initial part of that, ¢; taking objects to objects
and morphisms to morphisms is clear. The other parts are:
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a) That ¢; takes identity morphisms to identity morphisms for ¢;(1¢) =
(1¢, 1) which is the identity morphism on ¢;(C) = (C, ).

b) ¢; preserves composition of morphisms for the only compositions to
be preserved are gf where g and f and in %;, and then ¢;(gf) =

(9f.1) = (9,9)(f, 1) = i(g)es(f)-
2. Fis a functor. Again the initial part is clear. Here is the rest.

a) I takes identity morphisms to identify morphisms: The identity
morphism on (C, ¢) is 1¢ and F applied to this is (F;(1¢),i) =
(1F,(c), 1) (because each Fj is a functor.) And this is the identity on
F(C,i).

b) F' preserves composition of morphism:

F((g,9)(f,4)) = F(gf.i)
= Fi(9f)
= Fi(9)Fi(f)
= F(g,9)F(f,7)

¢) That F is the unique functor with Fv; = F; for all ¢ in T is immediate
from the definition of ¥;c;%; and the ¢;.

I11.2.5 Constant Functors

The very simplest functors are the constant functors.

Definition ITI.13: Let D be any object in the category . Then for any
category € the constant functor from % to Zdetermined by D is the functor
of the same name D : ¥ — 2 where D(C) = D and D(f) = 1p for all
objects and morphisms in %.

When S : € — 2 is a constant functor there is a unique object D in &
with § = D and we say that D is the object selected by S.

There are constant contravariant functors as well, indeed every constant
functor is both covariant and contravariant!

Constant functors are so trivial that they may not seem worthy of consid-
eration, but in Sections IV.1 and V.1 we will see they are quite useful.

Recall from Section 1.1.3 the category 1 with just one object and one mor-
phism. Constant functors are characterized by the fact that they factor through
1,ie., F: ¥ ——= 2 is constant iff there is a commutative triangle
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with D some object in & (the one selected by F'.)

I11.2.6 Forgetful Functors

Back in Section II.5 when discussing Concrete and Based Categories are ten-
tative definitions of concrete and based categories. We can now give the final
definitions.

Definition I11.14: A based category on a base category £ is a category €
together with a faithful functor U : 4 — £.

Definition ITI.15: A concrete category is a category based on Set.

In all cases the functor U to the base category is called the underlying
or forgetful functor. The commonly used phrase is “forgetful functor” rather
than “underlying functor” which would suggest using the letter F' rather than
the nearly universal use of the letter U. The reason for using U even when
calling it the forgetful functor is the close association of forgetful functors with
free functors (cf. Sections II1.2.12, III.4, V.4.1) for which the letter F' will be
reserved.

If o is a subcategory of £, then the inclusion functor & — % (see Sec-
tion I11.2.1) is faithful and so & together with the inclusion functor exhibits it
as a category based on #. While most inclusion functors do not fit our intuitive
notion of a forgetful functor, there are examples that do — Ab — Group, just
forget that an Abelian group is commutative; Group — Monoid, just forget
that a group has inverses; Monoid — Semigroup, just forget that a monoid
has an identity element; Semigroup — Magma, just forget that a semigroup
is associative — are all examples, as are all the of possible compositions.

I11.2.7 The Product Functor

If € is a category with finite products, fix an object C of ¥ and consider
xC': € —— € where for each object A we have XxC(A) = A x C and for each
morphism f: A——= B we have xC(f) = f x 1¢.

Exercise II1.3. Show that xC as defined in the previous paragraph is a
functor.

Duality applies here to give a sum functor with everything left as an exercise.

Exercise IT1.4. For ¥ a category with finite sums and C' an object of €, show
there is a functor +C : ¥ — % which takes each object to its sum with C.
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I11.2.8 The Sum Bifunctor

If € is a category with finite sums, define 4+ : ¢ x € —= € by +(C1,Cs) =
C1+ Cz and +([f1, f2]) = fi + fo

Exercise II1.5. Confirm that + is a functor.

Duality applies here to give a product bifunctor with everything left as an
exercise.

Exercise II1.6. For ¢ a category with finite products, show there is a bifunc-
tor from % to itself which takes each pair of objects and each pair of morphisms
to their respective products.

I11.2.9 Power Set Functor

In the category of sets, let P(X) denote the set of all subsets of X (cf. 185.)
And for any function f : X —=Y and any S C X define P(f) to be the direct
image of f.

PHIS) = f(5) ={ylFz € S,y = f(x)}
P(X) is called the power set of X.
Notation: As mentioned in the Introduction, we will occasionally, as above,

use the two symbols 3 and V from mathematical logic. The symbol 3 is short-
hand for “there exists”, while V is used in place of “for all”.

’ Exercise ITIL.7. Verify that P : Set —— Set is a functor.

The power set actually gives rise to a contravariant functor as well. Let
P(X) denote the set of all subsets of X, but for any function f : X —= Y
and any 7' C Y define P(f)(T) = f~Y(T) = {z|f(z) € T},

’ Exercise III.8. Verify that P : Set —— Set is a contravariant functor.

111.2.10 Monoid Homomorphisms are Functors

Recall (see p. 5) that a monoid can be considered as a small category with
one object. If M and N are two monoids, then a monoid homomorphism
h : M —— N takes the identity in M to the identity in N and satisfies
h(mm') = h(m)h(m'). But that exactly says that h “is” a functor between
these two one object categories.
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I11.2.11 Forgetful Functor for Monoid

Consider the category Monoidy of monoids in category ¢ andrecall that a
monoid (M, u,¢) in € consists of an object, M, a binary operation, y and an
identity, ¢. Define U : Monoidy —= € by U(M,u,{) = M and U(f) = f

for f any monoid morphism.

’ Exercise IT1.9. Verify that U is a functor. ‘

U is called the underlying or forgetful functor.

There are obvious variations on this for categories of magmas, categories of
Abelian monoids, categories of groups and categories of Abelian groups. You
should also see immediately how to define U : Groupy —— Monoid.atC
and U : Monoid¢y — Magma.,. Indeed when we consider the category
of sets, there are also obvious forgetful functors from the categories of rings,
topological spaces, posets, etc.

I11.2.12 Free Monoid Functor

Closely related to the forgetful functor U : Monoid —— Set is the functor
F : Set — Monoid defined as follows: F'(A) = A* the monoid of strings on
the alphabet A. A* consists of all finite sequences of elements of A, including
the empty sequence. (See exercise 1.14 on page 15.) The binary operation in
A* is concatenation — if (a1, a9, - ,a,) and (by,- -+ ,by,) are two such strings,
their product is (a1, ag, -, an, b1, ,by). This product is clearly associative,
and the empty string is the identity.

For a function f : A—— B, define F'(f) : A* ——= B* by F(f)(a1,az2, -+ ,a,) =
fla1)f(az)--- f(ay,) INOTE: Writing g(x1, z2, - - - , ®y,) rather than g((z1, 22, -+ ,2p))
is an extremely common abuse of notation that we will happily adopt without
further comment.]

F' as so defined is clearly a functor.

Now suppose that f : A ——= U(M) is any function from a set A to (the
underlying set of) a monoid M. Then we can define a monoid homomorphism
frrA =M by S5O = 1 and f*ar,az,- an) = flar)f(az)- - fan):
[Note that () denotes the empty sequence and (aj,az, - ,ay) is a sequence
of n elements, while f(a;)f(as)--- f(a,) is the product of n elements in the
monoid M ]

’ Exercise II1.10. Verify that f* is indeed a monoid homomorphism. ‘

Clearly f* is the unique monoid homomorphism extending f,i.e.,if h : A* —= M
is a monoid homomorphism such that h(a) = f(a) for every a € A, then h = f*.

This is called the Universal Mapping Property for the free monoidA*
generated by A. This is just one of a multitude of “free” gadgets that we will
encounter and systematize in Section V.4.1.
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Another way of stating this result is that we have a function
Set(A,U(M)) — Monoid(A*, M)

which is a bijection.

Exercise ITI.11. Show that this function is in fact an isomorphism (i.e., a
bijection.)

We will see that this is an example, and a very important one, where U and
F are a pair of adjoint functors. (See section V.6, page 136)

I11.2.13 Polynomial Ring as Functor

Consider the category, CommutativeRing, of commutative rings with iden-
tity. If R is a commutative ring, then we get a new commutative ring R[X],
the polynomial ring in one variable with coefficients in R. Moreover if h :
R —— S is a homomorphism in CommutativeRing, then A can be ex-
tended to a homomorphism, H, from R[X] to S[X] by defining H(X_ ,a;X?) =

¥ h(a;)X?. This allows us to define a functor F : CommutativeRing
— CommutativeRing by F(R) = R[X] and F(h) = H.

’ Exercise III1.12. Verify that F is indeed a functor.

I11.2.14 Commutator Functor

For any group G, the commutatorof two elements g1,92 € G is [g1,92] =
919297 'g5 ' The commutator, [G,G], of G is {[g1,g2]|91,92 € G}. Moreover
if f: G ——= H is any group homomorphism, then f([G,G]) C [H, H], so
fllG,G] : |G,G] — [H, H] is a group homomorphism. (For more information,
see Mac Lane and Birkhoff [55, I11.10,X11.4].)

Define C : Group — Group by C(G) = [G,G] and C(f) = f|[G, G] for
any group G and any group homomorphism f: G — H.

Exercise II1.13. Prove that C as above is in fact a functor.

I111.2.15 Abelianizer: Groups Made Abelian

Continuing where with the material in the previous section, [G, G] is a normal
subgroup of G, and G/[G,G] is an Abelian group. As noted, if f: G —= H
is any group homomorphism, then f([G,G]) C [H, H], so there is a unique
homomorphism f : G/[G,G] —= H/[H, H] with pgf = fpc where pg and
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pg are the projection homomorphisms to G/[G, G] and H/[H, H] respectively.
(For more information, see Mac Lane and Birkhoff [55, II1.10, XII.4].)
Define A : Group — Ab as follows: for each group G, A(G) is G/|G, G,

while if f: G —— H is a group homomorphism, then A(f) = f.

’ Exercise II1.14. Prove that A as above is in fact a functor.

The functor A is called the Abelianizer, and A(G) = G/[G,G] is often
called “G' made Abelian.”

Next let I : Ab —— Group denote the inclusion functor of the subcategory
of Abelian groups into the category of groups. If f : G ——= I(H) is a group
homomorphism into an Abelian group H, then h([G,G]) C [H,H] =0 as H is
commutative. So f : G/[G,G] —= H/0 = H. Thus we have a function from
Group(G,I(H)) —= Ab(A(G), H).

’ Exercise II1.15. Show that this function is in fact an isomorphism.

This is another example where A and I are a pair of adjoint functors. (See
Section V.6.) We’'ll see that adjoint functorsare very common indeed.

I11.2.16 Discrete Topological Space Functor

Recall that a topological space consists of a set X, and a topology T C P(X),
whose elements are called the open sets of the topology, satisfying certain
axioms. (For details see sections B.9.3 and B.19.5.) In particular SP(X) is a
topology on X, called the discrete topology.

The category Top has as objects topological spaces and as morphism con-
tinuous functions, i.e., functions for which the inverse of every open set is an
open set. If (X, P(X)) is a discrete topological space, then all functions from
X to any other topological space are continuous. So if we define F' : Set
— Top by F(X) = (X,P(X)) and F(f) = f, then F is clearly a func-
tor. Moreover Top(F(X),Y) = Set(X,U(Y)) where U : Top —> Set is
the forgetful functor. And this is yet another example of an adjoint pair of
functors.

Exercise II1.16. Verify all of the details in the above two paragraphs.

The last few examples are going to be lacking crucial details, and are in-
cluded just to indicate a very few of the great many advanced topics where
functors arise.
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I11.2.17 The Lie Algebra of a Lie Group

To every Lie group,i.e., a group object in the category of smooth manifolds,
we associate a Lie algebraas follows. (Details will be found in most modern
books on differential geometry, for example Lang’s Differential and Riemannian
Manifolds [40],though the way we introduce the Lie product is different but
equivalent.)

As with any manifold,there is at each point ¢ € G a tangent space which
is a vector space ofthe same dimension as the group which we will denote by
T,. For each element g € G the function Ly : G — G given by L,(z) = gx
is a smooth function with inverse L,-1, and so the differential of L, is an
isomorphism between T, the tangent space at the identity, and Tj,.

Considering T, the commutatorfunction G x G — G given by (g,h) —
ghg~th~!sends (e, e) to e and so induces a bilinear function T, x T, —= T,
which we denote by [u,v]. This makes T, into a Lie algebra, which is usually
denoted by g. Beyond that if f : G ——= H is any Lie group homomorphism,
then of course f(e) = e and df : T,(G) —= T.(H) is not only a linear trans-
formation, it is also a Lie algebra homomorphism as well. The result is that
we have the basic functor LieGroup —— LieAlgebra which is fundamental
in the study of Lie groups.

111.2.18 Homology Theory

As we mentioned back in the introduction a key impetus for the introduction
of categories and functors was the realization that a good description of the
homology and cohomology groups requires them. In particular Eilenberg and
Steenrod [22] define a homology theory by giving axioms for a sequence of
functors from an “admissible” topological category to the category of Abelian
groups. The admissible categories consists of certain pairs (X, A) with A C X
of topological spaces, while the morphisms f : (X, A) — (Y, B) (homotopy
classes) are continuous functions f : X —= Y with f(A) C B. There is
more, involving natural transformations (topic of the next section) and exact
sequences which we will finally discuss in Chapter XIV.

II1.3 Categories of Categories

We now have the makings of a category: objects, namely categories, and mor-
phisms, namely functors, but as we noted near the beginning (cf. page 5) there
is no category of all categories, for much the same reason there is no set of all
sets. We can make the following definition.

Definition ITI.16: Cat, the category of small categories, has as objects
all small categories, and as morphisms all functors between small categories.

Recall that monoids can be regarded as small categories with one object (cf.
page 5), and as we note below monoid homomorphisms are exactly functors
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between such categories. This tells us that Monoid, the category of monoids,
is a subcategory of Cat. A better way of saying this is that we have a functor
Monoid ——= Cat which takes each monoid to the corresponding category
with a single element, and each monoid homomorphism to the corresponding
functor. This functor is faithful, and produces an isomorphism of categories
between Momnoid and the full subcategory of all small categories with a single
object.

The use of monoids was essentially arbitrary. For any of the other struc-
tures which can be regarded as categories and the morphisms between them
as functors we have the same situation — a faithful functor from the category
of structures into Cat which gives an isomorphism with a full subcategory of
Cat. In particular Set “is” a subcategory of Cat, the full subcategory of all
small discrete categories.

For more details look at the examples in Section B.19 in the Catalog of
Categories (Appendix B).

The discussion of product of categories back in Section I1.3 shows that Cat
has products and we include that proposition here for the record.

Proposition II1.9 The category Cat of small categories has products.

The result just proved is actually stronger. It says that products (and not
just finite products) of arbitrary families of small categories have the Universal
Mapping Property for products.

In the same way, the discussion of sum of categories back in Section II.4
shows that Cat has sums. Which we formally note here.

Proposition II1.10 The category Cat of small categories has sums.

The result just proved is actually stronger. It says that sums (and not
just finite sums) of arbitrary families of small categories have the Universal
Mapping Property for sums.

The best known difficulty in naive set theory is Russell’s Paradox: If
there were a set of all sets, €2, then there would be a set of all ordinary sets
O = {5]S € Q&S ¢ S}. But this is not possible as O ¢ O implies O € O and
O € O implies O ¢ O. So from this we conclude that 2 cannot exist.

There is an analogous argument that can be made about a category of all
categories: If there were a category of all categories, ¥, then consider the full
subcategory & of all ordinary categories where an ordinary category is one
which is not an object in itself. Just as in Russell’s Paradox, the category &
is ordinary iff it is not ordinary. So we conclude that & cannot exist and so €
cannot exist.

Reflection on this analogy reveals a significant issue. The most fundamental
principle of set theory is the Axiom of Specification: If A is any set and P(x)
is a boolean predicate on the elements of A (i.e., P(x) is either true or false for
every element of A), then there exists a set B whose elements are exactly those
elements = of A for which P(z) is true. (For more detail see section A.2 in the
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Appendix on Set Theory. Also read the discussion in Halmos’ Naive Set Theory
[29, Section 2].) By contrast it is not clear we can select a full subcategory
from the objects of an arbitrary category using an arbitrary boolean predicate.
Tacitly we have been freely assuming that we can do this, and we will continue
to do so. It appears that we can always find a way to deal with this issue using
a suitable choice for our foundations, but in these notes we have been and will
continue to blithely ignore all these foundational details.

II1.4 Digraphs and Free Categories

Back in Section 1.1.3 we considered two small categories by looking at the
following diagrams.

Co—1)

N
\ /

But these are also two just two small digraphs (see Section B.8.2.) There is
a close connection between digraphs and categories that will be explored here.
Indeed one approach to defining categories is to start with directed graphs as
precursors and define categories as graphs with additional structure — see Barr
and Wells [3, Secs. 1.3, 1.4, 2.1] and Mac Lane [53, Sec. IL.7]

From Section B.8.2 in the Catalog of Categories we recall the two basic
definitions.

Definition II1.17: A directed graph or digraphG consists of a pair (V,
E) of sets together with a two functions init:E ——V and ter:F —— V.

The elements of V' are the vertices or nodes of G, while the elements of
E are the edges or arcs. The vertex init(e) is the initial vertex of the edge,
and ter(e) is the terminal vertex. The edge e is said to be directed from init(e)
to ter(e).

Definition ITI.18: Let G and H be digraphs. A homomorphism from G
to H, f : G—— H is a pair of functions fy : V(G) —= V(H) and fg : E(G)
—— FE(H) init(fg(e)) = fv (init(e)) and ter(fr(e)) = fv (ter(e)).

And with them we also have the category Digraph of digraphs

This is sufficiently reminiscent of the domain/codomain aspect of cate-
gories that it it is no surprise to have the forgetful functor from U : Cat
—— Digraph that just forgets the identities and composition of a category.
In more detail, U sends each small category % to the digraph with vertices the
objects of €, edges the morphisms of €, init(e) the domain of e, and ter(e)
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the codomain of e. Each functor F' takes objects to objects and morphisms to
morphisms, thereby producing a digraph homomorphism.

Definition IT1.19: The graph U(%) is called the (underlying) graph of
the category %.

Of course for consistency this should be called the digraph of the cate-
gory, but the phrase “graph of the category” is the one commonly used in the
category theory literature. The reason for the discrepancy is that there are
many varieties of graphs and usually the most common type under discussion
is blessed with the name “graph”, while other get various adjectives attached.
So many books on graph theory would use the phrase “directed multigraph
with loops” for what is here called a digraph, while books on category theory
such as Barr and Wells [3] and MacLane [53] use just “graph”, but don’t dis-
cuss other types of graphs. Here both digraphs and ordinary graphs will be
considered, whence both names.

The view of categories by diagrams of arrows as at the beginning of this
section or in Section 1.1.3 is actually just looking at the graph of the category.
In particular we saw that there are some digraphs which are uniquely the graph
of a category, while there are other digraphs which are not the graph of any
category.

There is no composition of edges in a digraph, but there is a closely related
notion in graph theory.

Definition II1.20: A path in a digraph G is a finite sequence (e1,- - ,e,) of
edges with ter(e;) = init(ej4q) for j = 1,...,n — 1. This is called a path of
length n from init(e1) to ter(e,). In addition, for each vertex v there is a path
of length 0 from v to itself. For convenience we will write this as 1,.

And paths lead from the forgetful functor U : Cat —— Digraph to the free
category functor F' : Digraph —— Cat defined as follows: For each digraph
G, F(Q) is the category with objects the vertices of G, while the morphisms are
are all the paths in G. The identity morphism on the vertex v is the zero length
path 1, introduced above. If p = (e1,--- ,e,) is a path from vo(= init(e1)) to
vn(= ter(ey,)), then we define the domain of p to be vy and the codomain to be
V. In particular the domain and codomain of 1,, is v. Composition is concate-
nation of sequences, i.e., if p is a path from vy to v, and ¢ = (ep4+1, -, €m)
is a path from v, t0 Vp4m, then gp = (e1, - ,€n,€nt1,- - ,€m). Clearly com-
position is associative and the zero length paths are identities for composition,
so F(G) is a category as desired.

Now if f : G —— H is a digraph homomorphism, then F(f) must be a func-
tor from F(G) to F(H). It is defined to be fy on the objects, i.e., the vertices,
while on the morphisms, i.e., the paths, F'(f)(1,) is defined to be 1y, (,) while
forp = (e1,- -+ ,e,) apath from vy to v, we define F'(f)(p)tobethepath(fr(e1), -, fe(en)).
The definition of a digraph homomorphism ensures that F(f)(p) is indeed a
path that goes from F(f)(vo) to F(f)(vn). Clearly F(f)(qp) = F(f)(a)F(f)(p),
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so F(f) is a functor as claimed.

For any digraph homomorphism f : G ——= U(%) there is an associated
functor f : F(G) —= %. On objects, i.e., vertices of G, it is f(v) = fv(v),
while on morphisms, i.e., paths in G, it is f(el, < ven) = frlen) - fr(er)
where this last is composition of morphisms in .

Exercise II1.17. Verify that f is indeed a functor.

Clearly f* is the unique functor extending f, i.e., if h : F/(G) —= % is any
functor with h(v) = fy(v) for every vertex and h(e) = fg(e) for every edge,
then h = f.

This is very similar to the Universal Mapping Property for the free monoid
generated by a set (see Section II1.2.12), and leads to the following definition.

Definition ITI.21: A free category generated by a digraph G is a category
ZF together with a digraph homomorphism ¢ : G — U(.%) with the following
Universal Mapping Property: For any digraph homomorphism f : G —= U (%)

there is a unique functor f :.% ——= % such that U(f)i = f.

The definition of F'(G) given above is the explicit construction of a free
category. To see that we need to define i : G ——= UF(G) which is just
iv(v) = v and ig(e) = (e), i.e., each edge goes into a path of length one. And
the above discussion gives us the following proposition.

Proposition II1.11 For each digraph G, the category F(G) together with the
digraph homomorphism i : G —— UF(G) defined above is a free category
generated by G.

This is yet another of the multitude of “free” gadgets that we will encounter
and systematize in Section V.4.1.

Just as with free monoids, another way of stating this result is that we have
a function Digraph(G,U (%)) — Cat(F(G), %) which is a bijection.

Exercise III1.18. Show that this function is in fact an isomorphism.)

We will see shortly that this is another example where U and F' are a pair
of adjoint functors. (See section V.6.)

Here are some simple examples of digraphs and the associated free category.
First note that there is an empty digraph with no vertices and no edges. The
associated free category in this case is the empty category 0. In this case the
graph of the category 0 is just the empty graph as well.

Next consider the digraph with one vertex and no edges. The associated
free category is the category 1 with the one object and just the single identity
morphism on that object.
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Slightly more generally, there is the discrete digraph with an arbitrary set
V' of vertices, but no edges. Then the associated free category is the category
with V' as the set of objects and with no morphisms other than the identity
morphism for each object, i.e., the discrete categoryassociated to the set V' (cf.
Section B.19.1 in the Catalog of Categories.)

Now look at the digraph

e

)

*

with one vertex and one edge from x to itself (called a loop in the digraph.)
This is the graph of the category 1 which we just saw is the free category on
the digraph with one vertex and no edges. In this case the free category on
this digraph, which we will call .#, has, of course, just the one object *, but
an infinity of morphisms, namely 1, (e), (e, e), (e, e, e),---. For convenience we
will rewrite these as 1,e,e2,e3,---. Of course the exponent is the number of
terms in the composition. On reflection this is seen to be the free monoid on
one generator (considered as a category with one object.)

Note the large difference between the free category generated by that di-
graph and the category 1 that produced the digraph. This free category is ac-
tually F(U(1)), i.e., the free category generated by the underlying graph of 1.
Exercise II1.18 shows there is a bijection Digraph(G,U (%)) = Cat(F(G), %)
for any digraph G and category ¢. Taking ¥ = 1 and G = U(1) we see there
is a distinguished functor ¢ : F(U(1)) —= 1 corresponding to the identity
homomorphism on U(1). In this particular case ¢ is clear: it takes the unique
object in .% into the unique object in 1 and takes all the morphisms in .%# into
the unique morphism in 1.

There is an easy generalization which is worth doing in stages. Look at the
digraph

€

O

*

with one vertex and two distinct loops on that edge. In this case the free cate-

gory has a much greater variety of morphisms: 1, (e), (f), (e,e), (e, f), (f,e), (f, f), (e;e,e), (e, e, f), -+,
but this is just the free monoid generated by the set {e, f} (cf. Section I11.2.12.)

More generally we have the following proposition.

Proposition IT1.12 The free category generated by the digraph having just
one vertex, v, and as edges a set E/ of loops is the free monoid generated by E
(considered as a category with one object.)

There is another way of viewing this which is helpful. Recall that in any
category € we always have the monoid of endomorphisms % (C,C) for each
object C. For the free category % generated by the digraph having just one
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vertex, v, and a set E of loops on that vertex we see that .% (v, v) is the free
monoid generated by E.
Next look at the following digraph.

eoCO—f>1361

which is the graph of the category 2 (cf. Sections I.1.3 and B.20.3.)

Writing % for the associated free category, we immediately see from the
description of the construction of a free category that .% (0, 0) is the free monoid
generated by eq (i.e., the elements of .#(0,0) are the morphisms ej* for some
natural number m), while % (1,1) is the free monoid generated by ey, #(1,0)
is empty, and the morphisms in .%(0,1) all have the form ef]* fe} for natural
numbers m and n.

Here % is F(U(2)), the free category generated by the underlying graph
of 2. Again exercise I11.18 shows there is a bijection Digraph(U(2),U(2)) =
Cat(F(U(2)),2), so there is a distinguished functor ¢ : F(U(2)) — 2 corre-
sponding to the identity homomorphism on U(2). The next exercise asks you
to describe this functor.

’ Exercise II1.19. Describe the canonical functor ¢ : F'(U(2)) — 2 in detail. ‘

As a last example, in exercise 1.2 the following diagram

TN

0<—1Q

N

was seen, in the terminology of this section, not to be the graph of any category.

Exercise II1.20. Describe in detail the free category generated by the above
digraph.

II1.5 Natural Transformations

As Eilenberg-Mac Lane first observed, “category” has been defined
in order to define “functor” and “functor” has been defined in order
to define “natural transformation”.

Saunders Mac Lane [53, p. 18]

Definition II1.22: For two functors F,G : &/ —= 8. A natural transfor-
mation 7 : F —— G, assigns to each object A of & a morphism 74 : F(A) —= G(A)
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in 4 such that the diagrams

A natural transformation is more naturally called a morphism of functors
or a functor morphism. We will use all of these on various occasions. As the
subscript on the name of a natural transformation, e.g., the A on 74, is usually
redundant, we will often omit it.

Natural transformations compose: If F,G,H : o —= 2 are functors
with 7 : FF —— G and 0 : G —— H natural transformations, then o7 : F
——> H has (67)4 = 0a474. And for any functor there is, of course, an identity
morphism 1p : F'—— F with 1p4 = 1p) and 71g =7, 1go = 0.

Definition I11.23: A natural transformation 7 : F' ——= G is a natural
equivalence or natural isomorphism iff there is a natural transformation
771 G—=Fwithtr ' =1¢g and 7717 = 1p.

It is equivalent simply to require that for each object A of & the morphism
T4 be an isomorphism, for then the morphisms 7';1 are the components of the
required 771,

As mentioned earlier isomorphism of categories (see definition III.6) is too
strict a notion. The useful alternative is the weaker notion of equivalence of
categories.

Definition II1.24: The functor F' : &/ ——= £ is an equivalence of cate-
gories iff there is a functor G : Z —— &/ with GF naturally isomorphic to
1o and F'G naturally isomorphic to 14.

Examples of natural transformations abound. The simplest are those be-
tween constant functors.

Exercise II1.21. Let D and D’ objects of 9. Show that natural transfor-
mations between the constant functors D and D’ correspond to morphisms
between the objects.

The most common home for natural transformations is functor categories
which we will define and produce shortly, but first let’s see some stand alone
examples of natural transformations.
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II1.6 Examples of Natural Transformations

I11.6.1 Dual Vector Spaces

The first example of a natural equivalence to appear in print was that of finite
dimensional vector spaces and their double duals. It is hard to do better, so
we will continue the tradition.

Consider the category ¥ of vector spaces over a field K. We have the
contravariant functor D(e) = ¥ (e, K). For any vector space V, D(V) is called
the dual space of V' and is usually written as V*. If f: V ——= W is a linear
transformation, then we have the dual linear transformation D(f) : D(W)
— D(V) which we will write as f*: W* ——= V*. (Notice this is consistent
with definition 1.8 and is part of the reason for that definition.) The elements
of V* are called linear functionals on V.

The second dual or double dual is just gotten by iterating the dual
space construction DD(V) = D(D(V)), and DD is a functor from ¥ to itself.
7 : 1y — DD is the familiar construction: each v € V' defines 7(v) € V** by
7(v)(v*) = v*(v) for every v* € V*.

All of the difficulty here is getting notation straight. To verify that 7
is a natural transformation we must show that if f : V ——= W is a linear
transformation and f** : V** —— W** is its double dual, then f**7 = 7f.
And that is easy once you understand that if v** € V**| then L**(v**)(wx) =
v**(w * f) for w : W —— K, an element of W*.

Warning: Here we have v, v*, v**, w, w*, and w**. The only relations here
are that v € V, v* € V*, etc. In particular v* is not the result of applying
some * operator to v.

Exercise I11.22. Verify that 7 : 1y ——= DD as defined above is a natural
transformation. Also verify that 7y is injective.

From this we see that when restricting to ¥, the full subcategory of finite
dimensional vector spaces, we find 7 is a natural isomorphism. And this in
turn shows that D : ¥ —— ¥ is an equivalence of categories. The category
of finite dimensional vector spaces is self-dual!

I11.6.2 Free Monoid Functor

In Section II1.2.12 we introduced the forgetful functor U : Monoid — Set
and the related free monoid functor F' : Set ——= Monoid. Here we will meet
a related natural transformation. This is leading up to the material on adjoint
functors in section V.6

First, there is a natural transformation 7 : 1get —= UF with n4(a) = (a).
[Here (a) is the sequence with just one term, a.]

Exercise 111.23. Verify that n : 1ge¢ —= UF is indeed a natural transfor-
mation.
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Second, there is a natural transformation € : FU — Intonoid With e(mq, ma, -+ ,my,) =
mims - -my. [Here (mq,me,---,my) is a sequence of n elements from the
monoid M (considered as a set), while myms ---m,, is the product of those
elements in the monoid.]

Exercise I11.24. Verify that € : FU — lmonoid 1S indeed a natural trans-
formation.

In that earlier discussion we presented a function Set(A, U(M)) — Monoid(F(A4), M).
Let’s get that in another way. If f: A——= U(M) is any function from the set
A into the underlying set of the monoid M, then we have the homomorphism
F(f): F(A) —= FU(M). We compose that with ey to get eprF(f) : F(A)

— M.

Exercise III.25. Show that the function Set(A,U(M)) ——
Monoid(F(A), M) given by f — eF(f) is the same function specified in Sec-
tion II1.2.12.

Finally, we can get the inverse function explicitly. If h : F(A) —= M is a
monoid homomorphism, then we can forget that and consider it just as a func-
tion between sets, i.e., U(h) : UF(A) — U(M). But then U(h) composed
with 74 gives the function U(h)na : A — U(M), and this is the desired
inverse.

Exercise III.26. Show that the function Monoid(F(4),M) —
Set(A,U(M)) given by h +— U (h)n is the inverse of the function of the preced-
ing exercise.

Exercise II1.27. Show that Monoid(F'(e),e) is naturally equivalent to
Set(e,U(e)) with both considered as functors from Set°® x Monoid to
Monoid.

This is the basic mojo for adjoint functors, but we will go through it a
couple more times before we finally make state the theorem.

I11.6.3 Commutator and Abelianizer

Refer back to sections I11.2.14 and II1.2.15 for the basic information used here.
Recall that we have the commutator functor C' : Group —— Group, the
inclusion functor I : Ab —— Group and the Abelianizer A : Group — Ab.
There are also a number of interesting natural transformations among them.

First define ¢ : C — lgroup by taking itg : [G,G] —= G to be the
inclusion of the subgroup.
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Exercise IT1.28. Verify that ¢ as defined above is a natural transformation.

Next define 7 : lgroup —> A by m¢ : G — G/[G, G] is the canonical
homomorphism from G to the quotient group G/[G, G].

’ Exercise IT1.29. Verify that 7 as defined above is a natural transformation. ‘

Using this we define a function Ab(A(G), A) — Group(G, I(A)) as fol-
lows. If f : A(G) —= A is a homomorphism of Abelian groups, then we
consider it as a group homomorphism and get I(f) : JA(G) — I(A), so we
get TA(f) : G —=I(A).

Now observe that the functor AI : Ab ——= Ab is “take an Abelian group
and produce its quotient group modulo the commutator subgroup (which is
0)”, i.e., it is the identity functor. So of course we have the identity natural
transformation 1 : Al ——= 1ap.

And that allows us to define a function from Group(G, I(A)) — Ab(A(G), A)
via: For g : G ——=I(A) we get

which is in Ab(A(G), A).

Exercise II1.30. Show that the two functions just defined are inverse to one
another and give bijections between Ab(A(G), A) and Group(G, I(A)).

That and a tiny bit more work gives the following result.

Exercise III.31.  Show that Ab(A(e),e) is naturally equivalent to
Group(e, I(e)) with both considered as functors from Group®® x Ab to Set.

R

This is another, simpler, example of the basic mojo for adjoint functors.
Also this factorization of G —= A (G a group, A an Abelian group) through
G/|G, G] was understood and named “natural” before natural transformations
were defined. Indeed it was one of the examples that inspired Eilenberg and
Mac Lane to give the name to natural transformations.

I11.6.4 The Discrete Topology and the Forgetful Functor

In Section I11.2.16 on the Discrete Topology Functor we introduced the forgetful
functor U : Top —— Set and the discrete topological space functor F' : Set
— Top.

In direct analogy to what we did the the last two sections we first define a
natural transformation 77 : 1get —= UF. Note that F equips a set with the
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discrete topology, while U just throws it away. So we take ng = 1g. Clearly
that is a natural transformation.

From this trivial natural transformation we get a function Top(F(S), X)
— Set(S,U(X)): If f: F(S) — X is a continuous function, then we get
the plain old function U(f) : UF(S) — U(X). Composing that with ng : S
—UF(S) we get U(f)ns : S —U(X).

[Yes, this really is a lot of formalism for a trivial observation, but its best
to start with the easy cases!]

Second, there is a natural transformation € : FU —— lqop with e = 17.
[¢ is more interesting than n as FU takes a topological space, (X, T), and
produces the topological space (X, P(X)). So it is key to observe that 1x :
(X,P(X)) — (X, T) is always continuous.]

Exercise II1.32. Verify that ¢ : FU —— lpop is indeed a natural transfor-
mation.

Again we can use this natural transformation to define a function Set (S, U(X))
—— Top(F(S),X): If f: S ——= U(X) is any function, then we get F(f) :
F(S)—=FU(X), and ex F(f) : F(S) —= X is in Top(F(S), X).

Exercise II1.33. Show that the two functions just defined are inverse to one
another and give bijections between Top(F(S), X) and Set(S,U(X)).

That and a tiny bit more work gives

Exercise III.34. Show that Top(F(e),e) is naturally isomorphic to
Set(e, I(e)) with both considered as functors from Set°® x Top to Set.

Yes, this is the basic mojo for adjoint functors once again. So the proof
of the theorem of which this is an example (which is coming in Section V.6)
should be old hat.

I11.6.5 The Godement Calculus

We’ve noted that composition of functors, and also the composition of natural
transformations. But we can also form other composites of functors and natural
transformations. The Godementcalculus extends and codifies this. Although
The primary use of this material is in Chapter XV (2-Categories), definitions
II1.25 (of BF) and I11.26 (of Ga) are used extensively not only throughout
these notes, but in the literature of category theory as a whole.

Godement’s 1958 book Topologie Algébrique et Théorie des Faisceaur [26]was
very influential in introducing the mathematical world to the importance of
sheaves which had been introduced by Leray and developed by Cartan, Lazard
and others a few years earlier. Part of this was also demonstrating that cate-
gory theory was more than just a convenient language. As an incidental aspect
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of this Godement presented “cing regles de calcul fonctoriel” and these are now
commonly known as the Godement calculus of natural transformations.

Other discussions can be found in Barr and Wells [3]and Arbib and Manes
[1].Much of this can also be found in other sources, without mention of the
Godement calculus, under the names “vertical composition” and “horizontal
composition”, for example see Mac Lane [53, Sec. IL.5].

Definition IT1.25: Suppose F : B — € and G, G’ : € —= P are func-
tors and 8 : G —= G’ is a natural transformation. Then SF is the natural
transformation from GF to G'F defined by SFp = Bp(p)

Exercise II1.35. Verify that SF as just defined is indeed a natural transfor-
mation from GF to G'F.

Definition IT1.26: Suppose F, F' : B—— % and G : € —= 2 are functors
and o : F ——= F’ is a natural transformation. Then Ga is the natural
transformation from GF to GF’ defined by Gag = G(ag).

Exercise IT1.36. Verify that Ga as just defined is indeed a natural transfor-
mation from GF to GF'.

I11.6.6 Functor Categories

Once again We have the makings of new categories: objects, now functors,
and morphisms, this time natural transformations. And again there are set
theoretic foundations place some limitations — we are not able to prove the
existence of the category of all functors between two arbitrary categories. But
if . is a small category, while % is any category, then we can make the

Definition II1.27: The functor category %~ has as objects all functors
from . to €, and as morphisms the natural transformations between them.

If € is a small category, then € is also a small category. For details about
these set theoretic issues, see Mac Lane [53, Sec. 11.4]

I11.6.7 Examples of Functor Categories

The first example of a functor category is both universal and trivial. FEwvery
category is a functor category! More precisely, let 1 be the category that has
exactly one object and one morphism (cf. Section B.20.2 in the Catalog of
Categories (Appendix B).)
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Exercise II1.37. Define the diagonal functor A : € —= €1 so on objects
A(C) = C, the constant functor selecting C' and on morphisms A just selects
the corresponding natural transformation between the relevant constant func-
tors. (See Section ITI.2.5 and exercise I11.21.) Verify that A is an isomorphism.

The category 1 is almost the simplest case of a discrete category, i.e., a
category that has only identity morphisms. (Cf. Section B.19.1 in the Catalog
of Categories (Appendix B) for more discussion.) And the above exercise is
just a special case of

Exercise IT1.38. If Z is a discrete finite category with n objects, show that
€7 = €™ where € is the n-fold product of € with itself.

The very simplest case of a discrete category is the empty category 0. The
functor category €° is isomorphic to 1 as the only functor is the empty functor
and the only natural transformation of the empty functor is the identity natural
transformation.

Another simple example of a functor category is % where 2 is the morphism
category discussed in Sections 1.1.3 and B.20.3. The category 2 is illustrated

C04’>1Q

where the two circular arrows are the identity maps.

We introduced 2% back in Section II.6 with a quite different definition:
the morphism category of % has as objects the morphisms of ¥, while a
morphism in €2 from f : A —= B to f' : A/ —= B’ is a pair (h,k) of
% -morphisms so that

A A’
f f
B— B’

commutes.

But these are really the “same” or, more formally, the two categories are
isomorphic. To see this let us for the moment write .# for the morphism
category of ¢ as above and €2 for the functor category.

Define a functor from .# to %2 as follows: An object f in .# (ie., a
morphism f : A—— B in €) goes to the object F' in ¢’? which is the functor
F:2 — % with F(0) = A, F(1) = B and F(!) = f. And a morphism
(h,k) : f —= f' in .# to the morphism 7 : F —= F’ in ¢? which is the
natural transformation 79 : F(0) —= F'(0) = h: A ——= A’ and 7 : F(1)
— F'(1) =k : B—— B’. The commuting square we must have to complete
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the verification that this is a natural transformation is
To

F(0) —= F(0)

F() F'()

which is exactly the square

!
B ; B

which is guaranteed to commute by the definition of a morphism in .#. This
is clearly a functor.

And the inverse functor from %2 to .# takes each object F of €2 to the
object F(!) of .#, and each morphism 7 : F' ——= F’ goes to the morphism
(10,71) in . This is also clearly a functor and equally clearly the inverse of
the previous functor.

From now on we will always write 42 for these categories and use whichever
description is convenient for the purpose at hand.

I11.6.8 Discrete Dynamical Systems

The simplest type of discrete dynamical system consists of a set, S — the state
space, and a transition function ¢ : S ——= S. The image is that this models
a system which starts in some initial state and then moves from state to state
by application of the function ¢. The items of interest are the “flows” in the
dynamical system which are the sequences (s, s1, S2, -+ ) from S where sg € S
is some initial state and then s; = t(sg), s2 = t(s1), ete.

If (R,tgr) and (S, tg) are two discrete dynamical systems, then a morphism
f:(R,tr) — (S, ts) is a function f : R——= S with tgf = ftr. Clearly such
a morphism produces a function taking the flows on (R, tg) to those on (S, tg)
by f(ro,ri,72,-+) = (f(ro), f(r1), f(r2),---). We will use Z for the category
of discrete dynamical systems.

Next consider the category Set" where Nis the additive monoid of natural
numbers considered as a small category with one object. 0 is the identity
morphism of N, so we will also use it for the unique object as well.

We are going to define a functor from Set" to 2, the category of discrete
dynamical systems. Observe that an element of Set", i.e., a functor from Nto
Set, assigns to the object 0 some set S and to each n in Nsome function S
— 5. Writing ¢t : S ——= S for the function assigned to 1 € N by the functor



II1.6. EXAMPLES OF NATURAL TRANSFORMATIONS 105

we note that the function assigned to an integer n > 1 is f™, the composition
of f with itself n times. So an object in Set" is completely determined by
the pair (S,t) which is exactly an object in 2! And every such pair defines a
functor from Nto Set.

For good measure, if (R, tr) and (S, tg) are two such pairs defining functors
in Set", a natural transformation between them is a function 7 : R — S such
that 7t = ¢%,7 which certainly includes the requirement that 7t = tg7 and
so is a morphism in Z. Actually 7tg = tr7 implies Tt% = t’37 so in fact we
have an isomorphism of categories Set" 2 2.






Chapter 1V

Constructing Categories - Part 11

IV.1 Comma Categories

An extremely versatile and useful construction of categories has the unenlight-
ening name “comma category”. In his thesis [45], Lawvere began a program
to develop category theory as a foundation for mathematics separate and in-
dependent of set theory. As part of that he associated with any two functors S
and T with common codomain another category (F,T). Unfortunately he gave
this construction no name, but it’s value was soon recognized and, for lack of
anything better, the name comma category was soon attached. To this day no
good name has appeared even though the notation has changed. (The origin of
the original notation is explained in example 5 below. The use of the notation
(S,T) is just so common that some alternative notation is essential.)

Definition IV.1: For any two functors S : &/ —= € and T : B — €
with common codomain, define the category (S | T') whose objects are triples
(A, f, B) where A is an object of &7, B is an object of #, and f : S(A) — T(B)
is a morphism in €. A morphism from (A, f, B) to (A’, f’, B') is a pair of mor-
phisms (a,b) witha: A — A", b: B—— B’ and T(b)f = f'S(a). This is
summarized in the following diagram:

S(a)

5(4) 5(4) —= S(4)
object (A, f,B): f morphism (a,b): f lf’
7(5) T(B) - T(B)

Examples and Special Cases

1. (C' | €) — Category of objects under C

107
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The first special case occurs with S being a constant functor C' for some
object C' in ¥, and T the identity functor on 4. We then have the
category of objects under C and written (C' | €). This is also known
as the coslice category with respect to C. The objects (C, f, B) can
be simplified to (B, f) as C is constant; and f : C'—— T'(B) simplifies to
f: C —— B. Aswell amorphism (¢,b) : (B, f) — (B’, f) simplifies to
b: B——> B’ (as ¢ must be identity morphism on C) with the following
diagram commuting.

C

!
B h B

This example, as well as the next two, were presaged in Section II.6

. (¢ | C) — Category of objects over C

Similarly, S might be the identity functor and T a constant functor: this
is the category of objects over C' (where C is the object of € selected
by T'), written (¢ | C'). This is also known as the slice category over
C. Tt is the dual concept to objects-under-C'. The objects are pairs
(B, f) with f: B——= C, while the morphisms are just morphisms b : B
—— B’ in € with the following diagram commuting.

B b B

C

(¢ | €) — Morphism Category of €

When both S and T are the identity functor l¢, the comma category
(¢ | €¢) is immediately seen to be the same as the category €2 as
discussed in Sections II1.6 and II1.6.7.

(A]T)and (S| B)

In either of the above two cases, the identity functor may be replaced
with some other functor; this yields a family of categories particularly
useful in the study of Universal Mapping Properties, the topic of the next
chapter. For example, if T is the forgetful functor carrying a monoid
to its underlying set, and S is a constant functor selecting the set A,
then (A | T) is the comma category whose objects are pairs (A4, f : A
—— T(M)) with f a function from the set A to the underlying set of
some monoid M.
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5. (A] B)

Another special case occurs when both S and T are constant functors
with domain the category 1. If S selects A and T selects B, then the
comma category produced is equivalent to the set of morphisms between
A and B. (Strictly, it is a discrete category — all the morphisms are
identity morphisms — which may be identified with the set of its objects.)

6. (e | Set)

The category of pointed sets is a comma category (e | Set), with e being
(a functor selecting) any singleton set, and Set (the identity functor of)
the category of sets. Each object of this category is a set, together with a
function selecting some element of the set: the "base point”. Morphisms
are functions on sets which map base points to base points. Similarly
there is the category of pointed spaces (e | Top).

7. (Set | D) — the category of graphs

The category of graphs is (Set | D), with the functor D taking a set s
to s x s. The objects (a,b, f) then consist of two sets and a function; a
is an indexing set, b is a set of nodes, and f : @ —= b X b chooses pairs
of elements of b for each input from a. That is, f picks out certain edges
from the set of possible edges. A morphism in this category is made
up of two functions, one on the indexing set and one on the node set.
They must "agree” according to the general definition above, meaning
that (g,h) : (a,b, f) —= (', b, f') must satisfy f'g = S(h)f. In other
words, the edge corresponding to a certain element of the indexing set,
when translated, must be the same as the edge for the translated index.

In addition to providing a very general method of constructing additional
categories, comma categories are closely related to universal mapping proper-
ties which are the topic of the next chapter. In addition comma categories
themselves arise from a universal mapping property. The starting point for
this discussion is to note that there are “projection” functors g and 7 from
(S 1 T)to o and to 8. On objects the functors are mg(A, f,B) = A and
mr(A, f, B) = B, while on morphisms they are ws(a,b) = a and 7r(a,b) = b.
Of course this is equivalent to specifying the functor < wg,mp >: (S | T)
—— o/ X % and we will use this in Proposition V.14 below.

There is also a canonical natural transformation « : S7, ——= T4 defined
by a(a,r,B) = f. Verification that 7 and pig are functors and that « is a
natural transformation consists of a simple use of the definition of (S | T') and
is left for the reader.

The more interesting result is that (S | T') is universal in this regard as
captured in the next proposition.

Proposition IV.13 Starting with functors S : o/ —= € and T : B — €,
suppose there is a category P together with functors Py : 9 —— & and
Pyp : 9 ——= % and a natural transformation B : SPy — TPg. Then there
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is a unique functor P : 9 — (S | T) such that Py = Iz P, Py = [P
and B = aP

Exercise IV.1. Unwind the conditions in the above proposition to see what
P must be, and thereby prove the proposition.




Chapter V

Universal Mapping Properties

Beyond the foundational concepts of category, functor and natural transfor-
mation, the most important idea in category theory is that of a “universal
mapping property”. We've mentioned various universal mapping properties
along the way to this point, without ever making the term precise. In this
chapter we will finally give precision to that term, but in many different ways
and still without giving a precise meaning to that phrase! Rather we will define
universal elements, universal arrows, representable functors, adjoint functors,
Kan extensions and a number of other concepts, and show that in some sense
that they are all equivalent. But they are also all useful in different ways and
important ways. This chapter is fundamental for everything that follows in
these notes.

The notion of universal mappings probably started with Poincaré’s study of
universal covering surfaces (see Dieudonné [15, Part 3, Sec. 1.2]), and topology
is the source of a very large collection of important examples both many that
predate category theory and some that drove the development of category
theory itself.

Another important motivating source of universal mappings was the notion
of free structures in algebra. Indeed Pierre Samuel in “On universal map-
pings and free topological groups” [64] was probably the first to use the phrase
“universal mapping” in print. The approach that he used — in terms of sets
with structures — was then substantially developed by Bourbaki[9, IV.3] in his
Elements of Mathematics: Theory of Sets

Neither Samuel nor Bourbaki discussed categories, rather they wrote of
structures and species of structures, and in this context the problem of “uni-
versal mappings” becomes: Given a set F with a structure S and appropriate
mappings f : E —— F into sets with a compatible structure 7', find a “uni-
versal set” Fj and suitable mapping u : E —— Fj so that every f: E ——= F
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factors uniquely as f = fou.

(E,8) —— (Fo,T)
|
' fo

\i
(F,T)

Nicely presented example applications of this approach are to be found in
Bourbaki[9, IV.3.] and include free algebraic structures, rings and fields of
fractions, tensor product of modules, completion of a uniform space, Stone-
Cech compactification, free topological groups, almost periodic functions on a
topological group and the Albanese variety of an algebraic variety.

The approach via category theory encompasses all of this and much more,
so all of these examples will be treated at some point in these notes, mostly in
Chapter VII. Refer to the index for specific locations

V.1 Universal Elements

The simplest of the many formalizations of the notion of “universal mapping
property” is the notion of a universal element for a functor to the category of
sets.

Definition V.1: A universal element for a functor H : ¥ —— Set is a pair
(F,u) with F' an object of ¥ and u € H(F') satisfying the following Universal
Mapping Property: For each pair (C,c) with C an object of € and ¢ € H(C)
there is a unique morphism ¢ : F — C so that H(¢)(u) = c.

F weH(F)

|

|

|

I H(?)
|

|

v

C ceH(C)

This definition applies equally well to a contravariant functor considered as
a functor from %°P to Set. Writing it out directly in terms of %, a universal
element for a contravariant functor H is a pair (F, u) with F' an object of ¢ and
u € H(F) satisfying the following Universal Mapping Property: for each pair
(C,¢) with Cq an object of € and ¢ € H(C) there is a unique morphism ¢ : C
—— F'so that H(¢)(u) = ¢. The only change from the definition for a functor
is that the morphism € is reversed (and the functor reverses morphisms.)
Example: For any category 4 define the constant functor H : ¥ —— Set
to take every object to the final object 1 = {0} and every morphism to the
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unique function from 1 to itself. Then H has a universal element iff ¢ has an
initial object,and the universal element consists of the initial object and the
unique element in one point set.

Equally well we have the constant contravariant functor H : €°P —— Set,
and it has a universal element iff ¥ has a final object with the object in the
universal element being the final object.

Compare this discussion with the original discussion of the universal map-

ping properties of initial (37) and final (37) objects.
Example: The first example of a universal mapping property was for prod-
ucts, and that fits here very well. Fixing C; and Cs, two objects of the category
%, define the functor H : ¥ — Set on an object C by H(C) = {(f1, f2) :
fi: Cp —= C,Afy : Cy —> C} and on a morphism f : C —= D by
H(f)(f1, f2) = (ff1, ff2). (The easy verification that H is a functor is left to
the reader.) Then a universal element for H consists of an object Cy x Cy of €
and an element (71, 7m2) € H(Cy x Cs) such that for every object C' of € and
every (f1, f2) € H(C) there is a unique morphism (f1, f2) : C1 x Cy —= C
(using the notation for products) with H({f1, f2))(m1,m2) = (f1, f2). Of course
this is just another way of writing that (f1, f2) is the unique morphism such
that m1(f1, f2) = f1 and ma(f1, f2) = f2. We summarize thus by saying that
a product of C7 and Cs is a universal element for the functor H. This again
emphasizes very well that a product of two objects is not just an object.

Sums fit here equally well. For fixed objects C7 and Cy there is the con-

travariant functor K : € —— Set defined by K(C) = {(f1,f2) : f1 : C
— C1,Afz : C —= C5} and on a morphism f : D — C by H(f)(f1, f2) =
(f1f, f2f). Then a universal element for K consists of an object Cy + Cs and
an element (11,t2) € K(C1 + C3) such that for every object C' of € and every
(f1,f2) € K(C) there is a unique morphism [fy, fo] : C —= C; + Cy (us-
ing the notation for sums) with H([f1, f2])(t1,t2) = (f1, f2). Of course this
is just another way of writing that [f1, f2] is the unique morphism such that
[f1, f2]tr = f1 and [f1, f2]te = fo. We summarize that by saying that a sum
of 1 and (5 is a universal element for the functor K. This again emphasizes
very well that a sum of two objects is not just an object.
Example: The other early example of a universal mapping property was
the free monoid (see 87.) It fits here by taking a fixed set A and defining
the functor H : Monoid —— Set on a monoid M to be H(M) = {f : A
—— U(M)} and on a homomorphism h : M — N to be H(h)(f) = fU(h).
(Here U is the forgetful functor from Monoid to Set. Again verification that
H is indeed a functor is left to the reader.) Now a universal element for H
is a monoid A* and an element of H(A*), i.e., a function ¢ : A — U(A*)
such that every monoid M and each function f : A —= U(M) there is a
unique monoid homomorphism f* : A* —= M extending f, i.e., the universal
mapping property of the free monoid generated by A.
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V.2 Universal Arrows

Definition V.2: For a functor U : ¥ —= % and an object B of £, a
universal arrow from B to U is a pair (F,u) where F' is an object of ¢ and
u : B —= U(F) satisfying the following Universal Mapping Property: For
each pair (C, f) with f : B——= U(C) in £ there is a unique f : F —= C so

that f = U(f)u.
F U(F)
|
|

i B U(f)

'
C U(0)

Again, this definition applies equally well to a contravariant functor con-
sidered as a functor from €°P to Z. Writing it out directly in terms of %, a
universal arrow for a contravariant functor U is a pair (F, ) with F" an object
of € and u : D —— U(F) satisfying the Universal Mapping Property: for
each pair (C,¢) with C an object of € and ¢ : B ——= U(C) there is a unique
morphism ¢ : C — F so that H(¢)(u) = ¢. And again the only change from
the definition for a functor is that the morphism € is reversed (and the functor
reverses morphisms.)

Universal elements are really examples of universal arrows — there is a nat-
ural correspondence between the elements of a set S and the morphisms from
a final object, 1, and S. So a universal element for a functor H : ¥ —— Set
is “the same” as a universal arrow from a final object 1 in Set to H.

Universal arrows are equally well examples of universal elements! Starting
with a functor U : ¥ —= % and an object B of 4, define a new functor
H :% —— Set as H(e) = €(B,U(e)). Then a universal element for H is a
pair (F,u) where F is an object of ¥ and u € € (B,U(F)), i.e., a morphism
u: B——= U(F), and the universal mapping property for the universal element
is just another way of writing the universal mapping property of the universal
arrow.

V.3 Representable Functors

Definition V.3: A representable functor F' : ¥ —— Set is one natu-
rally equivalent to a Hom functor Hom(C,e) : ¥ —— Set. Explicitly, F is
representable iff there is an object C' and a natural equivalence 1 : Hom(C, e)

= F
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Proposition V.14 The functor F : € —— Set is representable iff it has a
universal element. If (U, u) is a universal element for F, then

IR

n: Hom(U,e) —= F

is defined by no(f) = fo(u). And if

o

1 : Hom(U,e) — F'
is a natural isomorphism, then (U,ny (1)) is a universal element for F.

Proof: With (U, u) a universal element for F' we verify that no(f) = fi(u)
does indeed define a natural transformation, i.e., that for any g : C ——= D
this square commutes:

nc

Hom(U,C) —— F(C)
gx F(g)

HOIIl(U, D) T> F(D)

Which, for each f € Hom(U, C), requires

F(g)nc(f) = F(g9)F(f)(u)
= F(gf)(u)
=np(gf)
=np(9+(f))
= 77Dg*<f)

Going the other way, to show that for each object C' and each ¢ € F(C),
there is f : U —= C with f(u) = ¢ it suffices to show that for each morphism
¢ € Hom(U, C) = F(C) there is an f with f.(1y) = ¢, and for that we can take

f=ec

V.4 Initial and Final Objects

We'’ve exhibited initial and final objects as universal elements, but we can
equally well see that universal arrows are special cases of initial and final ob-
jects! Given the datum for a universal arrow, i.e., a functor U : € —= % and
an object B of %, we have the comma category (see Section IV.1) (B | U)
which has as objects the pairs (C, f : B ——= U(C)) while a morphism from
(C,f: B—=U(C)) to (C', f' : B——=U(C")) is a morphism g : C —= C’
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in ¥ so that
u(c)
/
B \ U(g)
U
commutes.

In this category an initial object is an object (F,u : B ——= U(F')) where
for any other object (C, f : B —— U(C)) there is a unique morphism f : F
— (' in ¥ so that

commutes. And that is exactly the definition of a universal arrow from B to
U. Tt is worthwhile to summarize this in a proposition.

Proposition V.15 Let U be a functor from €to Band B an object of A, then
a universal arrow from B to U is an initial object of (B | U), and conversely.

V.4.1 Free Objects

As mentioned above the motivating source of the name “universal mappings”
was the notion of free structures in algebra. The context of based categories
seems to give the best home for this notion. So let U : 4 —— % be a category
based on & and B and object of £.

Definition V.4: A free object in ¥ generated by an object B of £ is an
object F' of € together with a morphism ¢ : B —= U(F) in £ satisfying
the following Universal Mapping Property: For every object C' in € and every
morphism f : B — U(C) there is a unique morphism f : F —= C

F U(F)
[
[
If B U(f)

y
C U(c)
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V.5 Limits and Colimits

The most familiar and widely used universal mapping properties are limits and
colimits. Our very first examples of limits and colimits were products and
coproducts, with initial and final objects close behind. As with these, other
limits and colimits are most immediately associated with the internal structure
of a category. But the preservation and creation of limits is also an important
structural property of functors.

In various guises, and with various names, limits (and colimits) well predate
the introduction of categories and functors. In most cases the universal map-
ping property was not made explicit, often because it was essentially trivial.
For example the null space of a linear transformation has the following univer-
sal mapping property: For any linear transformation L : V ——= W between
two vector spaces over a field K there is the inclusion N(L) — V of the null
space of L, i.e., the subspace of V consisting of all vectors v with L(v) = 0. If
K : U ——=V is any other linear transformation with LK = 0, then there is a
unique linear transformation K : U — N(L) such that the following diagram
commutes:

!

w

L

This is representative of a number of similar situations. For example L
might be a group homomorphism whereupon we similarly have the kernel of L,
a normal subgroup, in place of N(L). In the category of sets the situation is
more complicated as there is no direct analog of the kernel for functions, but
rather the equivalence relation

E={(21,72) : 21,22 € X with f(21) = f(z2)}

defined by the function (see exercise 1.31 on page 22.) Here for any pair of
functions ¢1,92 : Z —= X with fg1 = fg2 there is a unique function g : Z
—— F such that g; = m¢g and g2 = m2g. This is summarized in the following
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commutative diagram.

Another similar construction occurs when discussing fiber spaces in topol-
ogy. A fiber space is a continuous surjection p : E — B. (Of course F and
B must be topological spaces, and there are usually additional conditions that
are imposed such as requiring that F is “locally a product”.) If f : A—— B'is
any continuous function, then there is a pullback of p along f which is a fiber
space p : f*E ——= A with the universal mapping property captured in the
following commutative diagram:

This last universal mapping property is suitable and sufficiently important
to state in an arbitrary category.

Definition V.5: Given morphisms f : A——= C and g : B—— C, a pullback
of f and g is a pair of morphisms 74 : AXcB——> Aandng: AX¢cB——B
satisfying the universal mapping property:
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This is indeed a generalization of the previous examples — they are all special
cases for suitably chosen categories and morphisms.

Just as with products and final objects and universal mapping objects in
general, pullbacks need not exist, but when they do they are unique up to
a unique isomorphism. The statement and proof of this result for arbitrary
limits, not just pullbacks, is in Proposition V.16.

Exercise V.1. Verify that pullbacks always exist in Set. For functions
f:A——=C and g: B——= C, define

AxcB={(a,b):ac A,be BA f(a)=g(b)} CAx B

and define the two projection functions to be the restrictions of the projections
on A x B, then show that this has the requisite universal mapping property.

Products, final objects and all the versions of pullbacks are examples of
limits. Just as for products and final objects there are the dual notions of
coproducts and initial objects, there is a dual to the notion of pullbacks. These
are called pushouts and are a fundamental examples of colimits. We could just
say that a pushout is a pullback in the dual category, but it is worthwhile to
spell out the definition explicitly in the category itself.

Definition V.6: Given morphisms f : C —= A and g : C —— B, a pushout
of f and g is a pair of morphisms 14 : A—= A+cBandig: B—= A+¢ B
satisfying the universal mapping property:

So again pushouts need not exist, but when they do they are unique up to
a unique isomorphism.

Various familiar constructions in various parts of mathematics are examples
of pushouts. For any linear transformation L : V ——= W between two vector
spaces over a field K there is the cokernel of L which is W/Im(L). This is the
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pushout of L and 0 as shown here.

The universal mapping property here is “K L = 0 implies there exists a unique
linear transformation K with K = KQ”.

Just as with pullbacks, this is representative of a number of similar situa-
tions. For example L might be a group homomorphism whereupon we similarly
have the cokernel of L, which is the quotient of W by the normal subgroup
generated by the image of L in place of N(L).

In the category of sets the situation is considerably less familiar, just as
coproducts of sets are less familiar than products. Also there is no direct
analog of the cokernel for functions, rather for f : X ——= Y there is the
“amalgamated sum” Y +x Y which is the quotient of the disjoint union of Y
with itself (Y +Y") by the equivalence relation that identifies elements coming
from a common element of X. In detail,

Y+Y ={(y;,1): i € {0,1} Ay; €Y}

(see definition 1.35) and Y +x Y is (Y +Y)/ ~ where ~ is the equivalence
relation generated by the requirement that (f(x),0) ~ (f(z),1) for all z € X
(see the discussion on page 192.)

Here for any pair of functions gg, g1 : Y —— Z with gof = ¢1f there is a
unique function g : Y +x Y ——= Z such that gy = gtg and g1 = ge1. This is
summarized in the following commutative diagram.

This construction is most commonly used in topology under the name “ad-
junction space”. When X and Y are topological spaces, A is a subspace of Y
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(with the inclusion function ¢ : A — Y) and f : A—— X is a continuous func-
tion (which is called the attaching map.) Then the pushout X +,4 Y is called
an adjunction space and is constructed by taking the disjoint union of X and
Y modulo the equivalence relation generated by requiring that a is equivalent
to f(a) for all a € A. Intuitively we think of the spaces X and Y being glued
together along the subspace A, with the function f providing the glue.

A simple and important example arises when X and Y are each a closed
disk, A is the bounding circle and f is the inclusion. Then the adjunction
space is (homeomorphic to) the 2-sphere. This works equally well when X
and Y are both closed n-balls (or n-cells) and A is the bounding n™*-sphere to
give the (n+1)-sphere. Iteratively attaching cells of various dimensions leads
to the definition of CW-complexes, an important class of spaces much used in
algebraic topology. For information on CW-complexes look at Lundell [48] or
Hatcher [30].

V.5.1 Cones and Limits

All of the examples take the form of some common “diagram” of objects and
morphisms from the category ¢ and then considering an object with a univer-
sal family of mappings into the diagram. A number of different ways have been
developed for specifying what is meant by a suitable diagram, using graphs, di-
agram schemes, free categories and, the method used here, arbitrary categories.
(For discussions of the various approaches see Barr and Wells [3], Popescu and
Popescu [63], and Mac Lane [54].)

For any small category D and arbitrary category ¢ we have the diagonal
functor A : ¥ —= %P which on objects has A(C) = C, the constant functor
selecting C, and on morphisms just selects the corresponding natural transfor-
mation between the relevant constant functors. For any functor F' : D —= %
we also have the constant functor 1 — %P which selects F', and from these
we can form the comma category (A | F'). It is helpful to describe the objects
and morphisms somewhat more concretely. From the general definition, an
object (C,¢: C ——= F,1) in (A | F) consists of an object C from % and the
unique object 1 in 1 together with a natural transformation ¢ from the con-
stant functor selecting C' to the functor F'. The object 1 being unvarying, this
is the same as saying an object C' together with a natural transformation ¢ : C
——> F. And this is, for each object D in D, a morphism ¢p : C —= F(D)
(in ¥) such that for every morphism f: D ——= D’ of D the diagram

is commutative.
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Definition V.7: Let F': D ——= % be a functor. A cone over F' is an object
C of ¥ and a natural transformation ¢ : C —— F' from the constant functor
C to F. This is the same as saying that for every morphism f : D —— D’ of

D the triangle
C
7 X

FD) =5 F(D)

commutes.

A morphism from the cone (C, ¢) to the cone (C’,¢’) is a morphism f : C
—— (' with ¢'f = ¢. (NB the morphism f : C' ——= C’ can be considered
equally well as a morphism in ¢ and as a natural transformation between the
two constant functors.)

Clearly there is a category of cones over F' with objects and morphism as
in the preceding definition. We write this category as € /F'.

When the category D is very small a functor can be conveniently specified
by giving the objects and morphisms that are the values of the functor. For
example we will speak of “a pair of morphisms” instead of talking about “the
functor that maps the two non-trivial morphisms in D to the pair of morphisms
of interest”. We will be equally casual when we actually need to talk about
that category D and just describe it as

e —>eo
e —>e0

This category has four distinct objects with the corresponding four identity
morphisms, the two morphisms indicated and no other morphisms.
This is all preliminary to giving the actual definition of a limit.

Definition V.8: Let F' : D ——= ¥ be a functor. A limit for F' is a final
object (L, ¢) in €/F. This is also called a universal cone over F and is a cone
¢ : L —— F with the universal mapping property that for any cone v : N
—> F there is a unique morphism u : N —— L such that for every object D
of D ¢pou = ¢p. Explicitly, this says for for every morphism f : D1 ——= Do
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in D this diagram is commutative:

N
|
|
u|
YDy \IV/ YDy
1, (2o
FDy) =5 F(D2)

As with all universal mapping objects limits are essentially unique.

Proposition V.16 Let F: D ——= % be a functor. If ¢ : L —=F and ¢' : L'
——= F are both limits of F, then there is a unique isomorphism v : L —= L’
such that ¢'u = ¢.

Proof: The proof is much the same as every other uniqueness proof for
universal mapping properties. As L’ is a limit of F' and ¢ is a cone over F
there is a unique morphism v : L’ —— L such that ¢'u = ¢. And as L is a
limit of F' and ¢’ is a cone over F there is a unique morphism v : L' —— L
such that ¢v = ¢’. Next we note that ¢'uv = ¢v = ¢’ whence uv must be
17, as that is the unique morphism which composed with ¢ gives ¢. Finally as
dvu = ¢'u = ¢ we equally well conclude that vu = 1.

As with other universal mapping objects we will use this to justify referring
to the limit of the functor F', and we will write lim F' for the object of the
cone over F' that is its limit. For each object D of D we will write 7p : lim F
—— F(D) for the component of the natural transformation 7 : lm FF—— F
that is the remaining part of the limit.

Examples

1. Final Object

The 0 empty category is the initial category, i.e., there is a unique
(empty!) functor from O to any other category 4. A cone over the
empty functor is nothing but an object of % as a natural transformation
from C' to that empty functor is vacuous. So a universal cone in this case
is just an object 1 where there is a unique morphism from every object
to 1, i.e., a final object in €.

2. Initial Object

Curiously initial objects are also limits in an even more extreme manner,
as the limit of the identity functor 1.
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Proposition V.17 If lim1¢ exists in €, then lim 14 is an initial object
n E, and if € has an initial object then it is a limit for 1¢.

Proof: Recall that a cone over the identity functor 1¢ is a natural
transformation ¢ : D —— 1l¢ from some constant functor D selecting
the corresponding object in ¥. This is a family of morphisms ¥¢ : D
—— (' having the property that for every morphism f : C ——= C’ the

triangle
D
7N
!
C 7 C

commutes. A limit for 1 is a universal cone (L, ) which is final in
% /1¢%. Consider in particular the triangle

L
X
L %0 C

For every object C this commutes just because ¢ is a cone over 1. But
this says that ¢¢r is not only a cone over 14 but is the same cone as ¢
from which we conclude that ¢y must be 1;,. Now considering

L
2N
L 7 C

with f an arbitrary morphism from L to C' we see that ¢c = for, = [ as
¢r = 1. So for each object C' there is exactly one morphism (¢¢) from
L to C which is just what it means for L to be an initial object of %.

For the other direction, if 0 is an initial object of ¥, then we certainly
have a cone over 14 given by ! : 0 ——= 14 with !¢ being the unique
morphism from 0 to C. We also see that !y must be 1 as there is exactly
one morphism from 0 to 0.

Now suppose ¥ : D — 1 is a cone over 1¢, then in particular we have
g : D — 0 which is a cone morphism from % to !, i.e., the following
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diagram commutes:

C c’

In order to show that 0 is the limit of 1¢ we have to verify that g is the
unique such morphism. But if g : D —— 0 is such a morphism then in
particular we have vy =lgg = g.

3. Product

When D is a finite discrete category with objects 1,--- ,n, a functor from
D to ¢ simply selects n objects C1,---,C,. A cone over the functor
selecting (Cq,---,Cy) is just a family of morphisms f; : C —— C; and
a limit (universal cone) is an object II ; C; and a family of morphisms

., -, Ty satisfying the universal mapping property that for any family
of morphisms f; : C —— C; there exists a unique morphism (f,--- , fn) :
c HH?:lci with 7Ti<f17 o 7fn> = fz

Of course as advertised this is exactly the universal mapping property for
the product of Cy,---,C,, in ¥.

The empty category is actually the discrete category with zero objects,
so this is yet again reinforcing the remark that the final object is just the
empty product!

While the above discussion assumed that D was a finite discrete category,
that was relevant only to connecting the limit of a functor from D to ¥
with the prior discussion of products. This allows us to define the product
of an arbitrary family of objects in % to be the limit of a functor from
some discrete category which selects those objects. From this point on
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we will freely use diagrams such as the following:

fiieD
s 1 e
fi "
Cj

Of course just because we can define products of arbitrary families of
objects, that says noting about existence of such product. In particular
while assuming all products of two objects exists guarantees that all finite
products exists, it says nothing about existence of products of infinite
families. This will be discussed further in section V.5.3

Proposition V.18 Suppose that in the category € all products exist,
i.e., for every functor F : 9 —= € with 9 any discrete category, the
product lim F' exists, then € is preordered.

Proof: Suppose that f,g : B—— C in ¥, and consider product P =
15 C where & is a proper class. For each D in 2 take fp: B——= P to
be the unique morphism such that 7p fp = f and np, fp = g for D’ # D.
If ¢ is not equal to f, then each of the fp is distinct and so Hom(B, P)
is a proper class contrary to the definition of a category. Whence we
conclude that any parallel morphisms are equal, which is the definition
of a preordered category!

Kernel

Whenever % is a category with a zero object, we can define the kernel of
a morphism.

Definition V.9: A kernel of f: C —— D is a morphism k: K —=C
with

a) fk=0, and

b) If g is any morphism with fg = 0, then there is a unique morphism
g so that g = kg.

As always with universal mapping properties the item of interest is the
morphism %k (which determines K), but it is K which is named as Ker(f).
Following the usual practice we will often write of “the kernel Ker(f)
of f”, but it must be understood that this tacitly includes the specific
morphism k : Ker(f) —= C. Of course the reason for this is that in
the most familiar categories the kernel of a morphism is a subset of the
domain and the morphism k is just the inclusion
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In general a morphism may not have a kernel, but if it does it is unique
in the strong sense that when & : K —— C and &’ : K’ — C are two
kernels of f : C —— D, there is a unique isomorphism &k : K —— K’
with ¥’k = k. The inverse being &k’ : K’ —= K.

An easy but important observation is that every kernel is a monomor-
phism.

Proposition V.19 In any category with zero object, if k : Ker(f) —= C
is a kernel, then it is a monomorphism.

Proof: Suppose g7 and g2 are morphisms to Ker(f) and kg1 = kg2. Then
fkg1 and fkgs are both zero morphisms, so there is a unique morphism
g so that kg = kg;. But both g; and go have that property so they must
be equal.

While every kernel is a monomorphism, the converse is not true.

Exercise V.2. Give an example of a monomorphism that is not a kernel.
(Hint: Consider the inclusion of N into Z in the category of monoids.)

We'’ve previously noted that the category theory notion of monomor-
phism does not capture all the meaning associated with injective homo-
morphisms. This is part of that and leads to the following definitions.

Definition V.10: In a category with zero, a normal monomorphism
is a morphism that is the kernel of some morphism.

Definition V.11: A normal category is a category with zero in which
every monomorphism is normal.

The most familiar examples of normal categories are the categories of
modules, including the category of Abelian groups and the category of
vector spaces over a particular field. These are all example of Abelian
categories and will be discussed at length in Chapter XIII.

Examples of kernels abound. In the category of groups there is the usual
notion of the kernel of a group homomorphism h : G — G’, namely
Ker(h) = {g € G : h(g) = 1} where 1 is the identity element in G’. Then
the inclusion morphism ¢ : Ker(h) — G is a kernel of h according to
the above definition.

Similarly in the category of modules over a particular ring there is again
the usual notion of the kernel of a module homomorphism i : M —— M’
as Ker(h) = {m € M : h(m) = 0} where 0 is the zero element in M.
Again the inclusion morphism ¢ : Ker(h) —= M is a kernel of h as above.
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This last includes kernels for homomorphisms of Abelian groups (Z-
modules) and null spaces for linear transformations (K-modules for the
base field K.) At the same time it is really a special case of the kernel
of a group homomorphism as all that is being used here is the kernel of
the module homomorphism considered as a homomorphism of (Abelian)
groups. In Chapter XIII on Abelian Categories, we will see that in a
certain sense these are all the interesting cases, but we will also see the
value of the abstraction.

A more general case is the category of monoids. Again conventionally the
kernel of a monoid homomorphism h : M —— M’ is Ker(h) = {m € M :
h(m) = 1} where 1 is the identity element in M’. Again the inclusion
morphism ¢ : Ker(h) — M is a kernel of h as above. This includes the
kernel of group homomorphisms as a special case, but we will see later
that this illustrates that the notion of a kernel is only useful in special
cases.

There are numerous other cases in algebra where it is common to speak

of kernels that are not captured by this definition. For example in
the category of commutative rings it is usual to define the kernel of a
ring homomorphism f : R —= S as Ker(f) = {r € R : f(r) = 0}.
But this is an ideal of R rather than a subring. Indeed the category
CommutativeRing has no zero object (as the rings in CommutativeRing
all have 1 different from 0), so the definition of a kernel given in this sec-
tion simply does not apply.

5. Equalizer

Kernels are specializations of the more general notion of equalizers which
concerns two morphisms between the same objects.

Definition V.12: Two morphisms are parallel if they have the same
domain and the same codomain. This is usually written symbolically as

e = e or just —=.
g

Definition V.13: An equalizer of parallel morphisms f and g is a
morphism k with

a) fk = gk, and

b) If h is any morphism with fh = gh, then there is a unique morphism
h so that h = kh.

Kernels are special cases of equalizers where one of the two parallel mor-
phisms is a zero morphism. Just as with kernels, equalizers need not
exist, but if they do exists any two equalizers of the same parallel pair
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are isomorphic via the unique morphisms between guaranteed by the def-
inition.

Besides the examples of kernels, equalizers also arise in the category of
sets and related categories. In Set if f,g : X ——= Y are two parallel
functions, then taking K — {x € X : f(z) = g(z)} and k : K —
X the inclusion function exhibits k as an equalizer of f and g. This
same construction serves in the category Top of topological spaces and
continuous maps where K is simply considered as a subspace of X.

Equalizers are also called difference kernels because in certain situations
they arise as the kernel of the difference of two morphisms. For example
in all categories of modules the Hom-set natural structure of an Abelian
group, so for any pair of morphisms f,g : M —— N there is the mor-
phism f—g: M —— N with f—g(m) = f(m)— g(m). And in this case
the kernel of f — g is an equalizer of f and g. This situation prevails in
all preadditive categories as will be discussed in Chapter XIII.

Just as every kernel is a monomorphism, so is every equalizer and with
essentially the same proof. Suppose that & : K ——= C' is an equalizer
of f,g: C —— D and hy, hy are morphisms to Ker(f) with khy = khs.
Then fkh, = gkhy, so there is a unique morphism h so that kh = kh;.
But both h; and hy have that property so they must be equal.

6. Pullback

Pullbacks were defined back on page 118 as examples of limits, and here
is that remark made precise. When D is the category

[ ]
[ ]
a functor F' from D to %’selects three objects A, B and C in € together
with two morphisms f: A——=C and g: B—— C, i.e., the diagram

e —>

B

A c

and the limit of F' is exactly the pullback of f and g as previously defined.

Equalizers are just pullbacks where the morphisms are parallel, i.e., they
have the same domain as well as the same codomain.

In the category of sets the canonical pullback of f and g is the subset
A x¢ B = (a,b) € A x Bsuchthatf(a) = g(b),
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of A x B together with the restrictions of the projection maps 7, and mo
to Ax¢c B .

This example motivates another way of characterizing the pullback: as
the equalizer of the morphisms fry,gme : A x ¢ B —Z C.

Exercise V.3. Verify that in any category with finite products, pullbacks and
equalizers, the pullback of f: A ——= C and g : B —— C is the equalizer of
fm and gms.

This shows that pullbacks exist in any category with binary products and
equalizers.

Clearly in any category with a terminal object 1, the pullback A x 1B is
just the product A x B.

Every square
P

X

Y ——2Z

where (P, p, q) is a pullback of (f, g) is called a Cartesian square.

Proposition V.20 Any morphism f : X —=Y is a monomorphism iff the
commutative square

is Cartesian.

V.5.2 Cocones and Colimits

Everything in the previous section has a dual, but these dual notions are suffi-
ciently common and important that this section provides all of the definitions
and results explicitly, though the proofs follow from the dual results so nothing
further need be said.

The dual of a cone is a cocone, again a family of commuting triangles but
now pointing down.

Definition V.14: Let FF : D —— ¥ be a functor. A cocone over F is
an object C' of ¥ and a natural transformation ¢ : I —— C from F to the
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constant functor C. This is the same as saying that for every morphism f : D
——= D' of 9 this triangle commutes:

A morphism from the cocone (C,¢) to the cocone (C’,¢’) is a morphism
f:C—=C" with ¢f = ¢'.

Clearly there is a category of cocones over F' with objects and morphism
as in the preceding definition. We will denote this category by F/¥%.

Dual to the notion of a limit is a colimit which is a universal cocone just as
a limit is a universal cocone..

Definition V.15: Let F' : D —= % be a functor. A colimit for F' is an
initial object (C, ¢) in F//%. This is also called a universal cocone over F and
is a cocone ¢ : FF —— C with the universal mapping property that for any
cocone 1 : F ——= B there is a unique morphism u : C ——= B so u¢ = .
Explicitly, this says for for every morphism f : D —— D’ in D this diagram is
commutative:

F
F(D) & F(D')
¢D ¢D/
C
Yp | Ypr
|
b |
Y
B

Proposition V.21 Let F: D ——= % be a functor. If p: F —=C and ¢ : F
— B are both colimits of F', then there is a unique isomorphismu : B —C
such that ugp = 1.

As with other universal mapping objects we will use this to justify referring
to the colimit of the functor F', and we will write lim /' for the object of the
cocone over F' that is its limit. We will write ¢ : /' —— lim F' for the natural
transformation that is the remaining part of the colimit.

Examples
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1. Initial Object

The 0 empty category is the initial category, i.e., there is a unique
(empty!) functor from 0 to any other category €. A cocone over the
empty functor is nothing but an object of ¢ as a natural transformation
from C to that empty functor is vacuous. So a universal cocone in this
case is just an object 0 where there is a unique morphism from every
object to 0, i.e., an initial object in % .

. Final Object

A final objects is the colimit of the identity functor 1¢, and conversely.

Proposition V.22 If limlg exists in €, then limle is a final object in
€, and if € has a final object 1 then it is the colimit of 1.

Sum

Sums are the duals of products, and they occur as colimits of functors on
discrete categories.

When D is a finite discrete category with objects 1,2,--- ,n, a functor
from D to % simply selects n objects Cy, ..., C,. A cocone over the
functor selecting (C1, - - - , C,,) is just a family of morphisms f; : C; —= C
and a colimit (universal cocone) is an object X7 ;C; and a family of
morphisms ¢, - , L, satisfying the universal mapping property that for
any family of morphisms f; : C; ——= C there exists a unique morphism

[fla"' afn] : Z:L:lclﬁc with [fl)"' 7fn]Li = fi'

C;

Of course as advertised this is exactly the universal mapping property for
the sum of Cy,---,C, in ¥.

The empty category is actually the discrete category with zero objects,
so this is yet again reinforcing the remark that the initial object is just
the empty sum!

While the above discussion assumed that D was a finite discrete category,
that was relevant only to connecting the colimit of a functor from D to
% with the prior discussion of sums. This allows us to define the sum of
an arbitrary family of objects in ¥ to be the colimit of a functor from
some discrete category which selects those objects. From this point on
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we will freely use diagrams such as the following:

Of course just because we can define sums of arbitrary families of objects,
that says noting about existence of such product. In particular while
assuming all sums of two objects exists guarantees that all finite sums
exists, it says nothing about existence of sums of infinite families. This
will be discussed further in section V.5.3.

4. Cokernel

Dual to kernels are cokernels, and just as with kernels they can be defined
in any category that has a zero object (a self-dual notion.)

Definition V.16: In a category with a zero object, a cokernel of f : E
——> D is a morphism ¢ : D —— C with

a) c¢f =0, and
b) If g is any morphism with gf = 0, then there is a unique morphism
g so that g = ge.

As always with universal mapping properties the item of interest is the
morphism ¢ (which determines C), but it is C' which is named as Coker(f).
Following the usual practice we will often speak of “the cokernel Coker( f)
of f”, but it must be understood that this tacitly includes the specific
morphism ¢ : D —— Coker(f).

In general a morphism may not have a cokernel, but if it does it is unique
in the strong sense that when ¢ : D —= C and ¢/ : D —— C’ are two
cokernels of f : E ——= D, there is a unique isomorphism ¢ : C —= ('
with &’ = ¢. The inverse being ¢’ : ¢/ — C.

Of course just as every every kernel is a monomorphism, every cokernel
is an epimorphism, a fact we record as a proposition.

Proposition V.23 In any category with zero object, if ¢ : B — Coker(f)
is a cokernel, then it is an epimorphism.

While every cokernel is an epimorphism, the converse is not true.

Exercise V.4. Give an example of an epimorphism that is not a cokernel.
(Hint: Consider the inclusion of N into Z in the category of monoids.)
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We’ve previously noted that the category theory notion of epimorphism
does not capture all the meaning associated with surjective homomor-
phisms. This is part of that and leads to the following definitions.

Definition V.17: A morphism in a category with zero is a normal
epimorphism provided it is the cokernel of some morphism.

Definition V.18: A conormal category is a category in which every
epimorphism is conormal.

The most familiar examples of conormal categories are all categories of
modules, including the category of Abelian groups and the category of
vector spaces over a particular field. These are all example of Abelian
categories and will be discussed at length in Chapter XIII.

In the category of modules over a ring there is again the notion of the
cokernel of a module homomorphism being the quotient of the codomain
by the image. This includes cokernels for homomorphisms of Abelian
groups (Z-modules) and cokernel for linear transformations (K-modules
for the base field K.) At the same time it is really a special case of the
cokernel of a group homomorphism as all that is being used here is the
cokernel of the module homomorphism considered as a homomorphism
of (Abelian) groups. In Chapter XIIT on Abelian Categories, we will see
that in a certain sense these are all the interesting cases.

Coequalizer

Cokernels are specializations of the more general notion of coequalizers
which concerns two parallel morphisms.

Definition V.19: An coequalizer of parallel morphisms f and g is a
morphism ¢ with

a) ¢f = cg, and

b) If h is any morphism with i f = hg, then there is a unique morphism
h so that h = hc.

Cokernels are special cases of equalizers where one of the two parallel
morphisms is a zero morphism. Just as with cokernels, equalizers need
not exist, but if they do exists any two coequalizers of the same parallel
pair are isomorphic via the unique morphisms between guaranteed by the
definition.

Coequalizers are also called difference cokernels because in certain situ-
ations they arise as the kernel of the difference of two morphisms. For
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example in all categories of modules the Hom-set is naturally an Abelian
group, so for any pair of morphisms f,g : M —— N there is the mor-
phism f—g: M — N with f —g(m) = f(m) — g(m). And in this case
the cokernel of f — g is an coequalizer of f and g. This situation prevails
in all preadditive categories as will be discussed in Chapter XIII.

Just as every cokernel is an epimorphism, so is every coequalizer.

6. Pushout

Pushout are the duals of pullbacks and provide a good example of the
value of alternative views of duality. The diagram category for a pullback
is

[ ]

o« —>o
so a pushout in the category % can be described as the limit of a functor
from this diagram category to %°P. But that diagram can equally well

be considered as a functor from the dual of the diagram category to €,
and usually we consider the diagram category D

e ———————>eo

and specific diagrams like

!

C A
gl
B
So the pushout A x ¢B of f and g is the colimit of the functor from D
to ¥ that selects f and g.

By duality, exercise V.3 shows that in any category with finite sums and
coequalizers, the pushout A+ Bof f:C —= Aand g: C —= B is
the coequalizer of +1 f and tag.

This is the abstract justification of the construction of pushouts in Set
given on page 119.

Dual to the results for pullbacks, this shows that pushouts exist in any
category with binary sums and coequalizers, and that in a category with
an initial object 0, the pushout X +¢ Y is just the sum X + Y.
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Every square

Y P
f J
X—g>Z

where (P, p, q) is a pushout of (f,g) is called a coCartesian square.

Proposition V.24 Any morphism f : X ——= Y is an epimorphism iff the
commutative square
ly

Y Y

f 1y

X —f> Y
is coCartesian.

Of course this is the dual of proposition V.20, so no additional proof is
needed.

V.5.3 Complete Categories

Definition V.20: A category is complete if it has all small limits.
Theorem V.10 small products and kernels implies complete
Definition V.21: A category is cocomplete if it has all small colimits.

Theorem V.11 small sums and cokernels implies cocomplete

V.6 Adjoint Functors

“Adjoints are everywhere”

That slogan, useful for anyone studying categories, has already been re-
inforced by the examples of adjoint functors provided in a number of earlier
exercises. See exercises I11.11, IIT1.15, ITI.16, I11.18, IIT1.25, II1.27, 111.31, and
I11.34.

No definition has been provided to this point, so this section will provide
the definition, including a number of alternative formulations, and some basic
theory about adjoint functors.
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The basic context for adjoints consists of two functors U : .# — . and
F : . —> . [Throughout this section we will generally use these names
as they are intended to suggest the underlying and free functors between the
category of modules (or monoids) and the category of sets.]

The basic definition is in terms of natural transformations ¢ : 1o —= UF
and n : FU — 1 4, while the memorable formulation is in terms of the
bifunctors .# (F(e),e) and . (e, U(e)) both from .#°P x .# to Set.

As bifunctors these are both functors from .#°P x .# to Set. So for each
pair of morphisms (f : T ——= S, h: M — N) we have the induced functions
A (F(f),h) and Z(f,U(h)). This notation is so cumbersome that we will
usually use the notation (F(f),h). and (f,U(h)). in its place. Notice that
for example (f,U(h)).«(g) = U(h)gf so that this is a direct extension of the
notation first introduced in definitions 1.7 and 1.8. In particular in the case
that f is an identity morphism, we will write h, instead of .Z(F(S),h) and
U(h)s instead of .#(S,U(h)). Similarly when h is an identity morphism, we
will write F'(f)* instead of .Z (F(f), M) and f* instead of .7(f,U(M)).

The first observation is that the natural transformations € and 7 induce
natural transformations ¢ : 4 (F(e),e) —= (e, U(e)) and ¢ : . (e,U(e))
—— #(F(e),9) defined as follows.

If s € (S, U(M)), then ¢sa(s) = nuF(s)

P(s) 22 Fu(m)

nm
¢S,1\/:N\ ‘/

M
while for m € #Z(F(S), M), the definition is g pr(m) = U(m)e

U(m)
UF(S) = U (M)

es
1 %\l(m)

S

To verify that ¢ and v are natural transformations requires checking that
for all morphisms ¢t : T'—— S in . and n: M —— N in .# the following are
commutative squares.

¢s,M Vs, m

AM(F(S), M) — (5, U(M)) Z(8,U(M)) A (F(S), M)
<F(t>7n>*l (tU (). (tU (). l(F(t)m)*
A (F(T),N) Z(T,U(N)) L (T,U(N)) — —— M (F(T),N)

YT, N



138 CHAPTER V. UNIVERSAL MAPPING PROPERTIES

This is easily done by explicit calculation. In the first square (¢, U(n)).«¢s a(m) =
U(n)U(m)est and ¢ v (F(t),n)«(m) = U(n)U(m)UF(t)er. But as ¢ is a nat-
ural transformation we have est = UF(t)er and so the square is commutative.

Similarly in the second square (F'(t),n).¥s,m(s) = nnmF (s)F(t) and Y v (¢, U(n))«(s) =
nnFU(n)F(s)F(t). But as n is a natural transformation we have ny FU(n) =
nny and so the square is commutative.

The second result is that when (Un)(eU) = 1y and (Fe)(nF) = 1p the
above natural transformations ¢ and 1 are natural isomorphisms that are in-
verse to one another. The first assumption gives the commutative diagram

UF(s) U(nar)
UF(S) UFUM) —— 22y

Lu )
€s EU(M)

S

U (M)

S

and shows that ¢s s m(s) = U(nam)UF (s)es = s, while the second assump-
tion gives the commutative diagram

F(es) FU(m)

F(S) ————— FUF(S) ———— FU(M)
) nF(S)J M
F(S) m M

and shows that ¥s p¢s am(m) =y FU(m)F (eg) = m.
This result leads to the following definition and theorem.

Definition V.22: An adjunction between two functors U : # —— . and
F : ¥ ——s M/ consists of two natural transformations n : FU — 1_4 and
€: 1y — UF satisfying

U UrU — 2 U = 1y

U

F- L pUF F=1p

We write F' 4 U when there is an adjunction between F' and U. This is also
described by saying that F' is the left adjoint of U and U is the right adjoint
of F. The natural transformation 7 is the unit of the adjunction, while ¢ is
the counit of the adjunction.

The notation adjoint and coadjoint has also been used, but it was never
generally agreed which was which, so the right/left terminology is dominant.

The discussion of the second result above is a detailed statement and proof
of the following theorem.
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Theorem V.12 An adjunction F 4 U induces a natural equivalence between
the bifunctors A (F(e),e) and ./ (e,U(e)).

The converse of this theorem is true as well.

Theorem V.13 If the bifunctors .4 (F(e),e) and #(e,U(e)). are naturally
equivalent, then FF 1 U.

Proof: This is our third result and just as with the first two most of the

interest is in the details. Suppose that ¢ : #(F(e),0) —= .S (e, U(e)) is a

natural equivalence with ¢ : .7 (e, U(e)) — .# (F(e),e) its inverse. Then for

each object S of . we can define 5 = ¢g r(s)(1r(s)) € (S, UF(S)), and for

each object M of .# we can define ny = Yy y,m(lu(M)) € A (FU(M), M).
Starting with h : F(S) —= M, the commutative diagram

@s,F(5)

AM(F(S),F(S)) ———= F(S,UF(S))

h*‘/ ‘/U(h)*

A (F(S), M) (5, U(M))

Ps, M

gives us that ¢s ar(h) = U(h)es by considering the image of 1p(g) € . (F(S), F'(S))
along the two different paths from .Z (F(S), F(S)) to .7(S,U(M)).
In the same way, starting with f : S ——= U (M), the commutative diagram

YU (M), m

L UM),U(M)) — A (FU(M), M)

lF(f)*

M (F(S), M)

Iz

(S.UM) ——
gives us that 1s 1 (f) = nar F(f) by considering the image of 1y(ar) € -7 (U(M), U(M))
along the two different paths from #(U(M),U(M)) to 4 (F(S), M).

That € is a natural transformation from 15 to UF and 7 is a natural
transformation from F'U to 1_y4 follows from the commutative square:

b1, F(T)

AM(F(T), F(T)) — = Z(T,UF(T))

F(f)” f*

A (F(S), F(T)) 7 (S, UF(T))

P35, F(T)

Just note that the path along the top and right takes 1p(1) to er and then
to fer, while the path down and left take 1p(7) to F(f) and then, using the
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above characterization of ¢, to UF(f)eg. The equality of these two is exactly
what is needed to verify the naturality of e.

The naturality of n : FU — 1 _4 follows from the commutativity of the
following square in essentially the same fashion.

YU (M), M

FUM),UM)) —22 4(FU(M), M)
U(h). hy

S (UM),U(N)) ———— M (FU(M),N)

YU (M), N

While the natural equivalence “.# (F(S), M) = .7 (S, M)” is much easier to
remember than the definition in terms of € and 7, the definition of an adjunction
has the advantage of applying to arbitrary categories, not just locally small
categories.

Lawvere introduced comma categories (see section IV.1) as a way of cap-
turing the “#Z(F(S),M) = (S, M)” specification of adjoints without the
restriction to locally small categories. His treatment was done entirely inside
a suitable category of categories. A tainted version (because elements appear
here) follows.

For any functor F' : .¥ ——= .# we also have the functor 1 4 : 4 — #
and so the comma category (F' | #) (i.e., (F | 1.4). Recall that the objects
of the comma category are triples (S, f, M) where S is an object of ./, M is
an object of #, and f : F(S) —= M is a morphism in .#. A morphism from
(S, f, M) to (S, f', M') is a pair of morphisms (s,m) with s : S —= 5", m: M
—— M’ and mf = f'F(s). This is summarized in the following diagram:

F(s
F(s) F(S) — " F(S')
object (S, f,M): f morphism (s,m): f r
M M _ M

The comma category (F | .#) is in many ways the bifunctor .# (F(e),e)
made into a category.

Similarly for any functor U : # —— . we also have the comma category
(. | U) where the objects of the comma category are triples (S, g, M) where
S is an object of ¥, M is an object of 4, and g : S — U (M) is a morphism
in .. A morphism from (S, g, M) to (S’,¢’, M’) is a pair of morphisms (s, m)
with s : S ——= 85", m: M —= M’ and U(m)g = ¢'s. This is summarized in
the following diagram:
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S S§——— 9
object (S,g,M): 9 morphism (s,m): 9 q
U(M) U(M) ———= U (M)

Lawvere’s insight was that F' 4 U is almost equivalent to (F' | #) = (& |
U). There is one additional detail — requiring that the following diagram is
commutative

(F | A) (Z10)

N

X M

where the two functors to . X .# are the canonical functors discussed in con-
nection with the Universal Mapping Property of comma categories (page 109).

In more detail, we have projection functors from (F | .Z) to Sand to .# .
Taken together they define a canonical functor from (F' | .#) to . x .4 which
is given by taking each morphism (s,m) in (F | .#) to (s, m) as a morphism
in . x 4. Equally well there is again a canonical functor from (. | U) to
& X M and again it takes each morphism (s,m) in (. | U) to the same pair
considered as a morphism in . X ..

Here is the theorem.

Theorem V.14 An isomorphism 0 : (F | #) — (. | U) for which

0

(F | .#) (7 1U)

N

X M

commutes is equivalent to an adjunction between F and U. (The two functors
to S x M are the canonical functors just defined.)

Proof: The proof of this theorem is gotten by adapting the proofs of Theo-
rems V.12 and V.13.
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A natural transformation 1 : FU ——=1_4 gives rise to the functor 6 : (F' |
M) — (< | U) defined as taking the morphism

F(s)
F(S) ———=F(5")

M M’

in (F | A) to the morphism

§———> g

ns s
UF(S) UT@) UF(S')

U(f) U’

U(M) U(M')

U(m)

in (< |0).

To check that 0 is a functor, note that applying 0 to (1g, 1), the identity
morphism on the object (S, f, M) of (F' | .#), produces (1g,1ps), the identity
morphism on the object 6(S, f, M) = (S,U(f)es, M) of (¥ | U), while verifi-
cation that 6((s’,m')(s,m)) = 6(s’,m')0(s,m) is easily seen by inspecting the
following commutative diagram which comes directly from the definitions:

S/ SII

€s Eg/ Eg

UF(s) , UF(s") "
UF(S) — > UF(S") —— > UF(S")

Uu(s) U uf”)

UM U(M")

U(m) U(m’)

Clearly 6 commutes with the projections to . x .
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Similarly a natural transformation € : 15 —— UF gives rise to the functor
£: (¥ | U)——= (F | A) which takes the morphism

§—>——> g

U(M) U(M')

U(m)

in (¥ | U) to the morphism

F(s) )
F(S) ————F(5")
F(g) F(g")
FU(M) — o= FU(M)

M m M/

in (F | .#). Checking that £ is a functor is much the same as for 6, as is
verifying that £ commutes with the projections to . x .Z .

To see that 6 and & are inverse to one another, we first show that the
equation (nF)(Fe) = 1p implies €6 is the identity on (F | .#), and then that
the equation (Un)(eU) = 1y implies 6¢ is the identity on (. | U).

Applying £60 to the morphism (s,m) : (S, f,M) — (S, f',M') gives
(s,m) © (S,€0(f), M) —> (5,€0(f"), M") where €0(f) = na FU(f)F(es)
As 7 is a natural transformation nas FU(f)F(es) = fnrs)F(es) and that to-
gether with the hypothesis (nF')(Fe) = 1p gives £0(f) = f, which is the desired
result.

The similar verification that the equation (Un)(eU) = 1y implies 6§ =
1(# v is left as the next exercise.

The proof of the converse is in steps much as above. Starting with a functor
0:(F | A#)— (¥ | U) commuting with the projections to . x .#
consider for each object S of .7the object 6(F'(S), 1p(sy, F'(S)) of (¥ | U). The
hypothesis that # commutes with the two projections to . x .# guarantees this
has the form (5, eg, F/(S)), and this defines the morphism eg : S —= UF(S).

This actually defines a natural transformation € : 1o —— UF with the
naturality coming by noting that

€s

§——= S~ UF(S)
s UF(s)

Sl

UF(S')

Eg/
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is commutative because it is the image under 6 of the commutative square

1p
F(S) ———=F(S)
F(s)l lF(s)
F(s’ F(s’
(8) ——— F(5")
Next we notice that 6 takes the morphism (1g, f) : (S, 1p(s), F'(S)) —
(S, f.M) in (F | .4) to the morphism (Ls, f) : (5.5, F(S)) —> (S,0(f), M)

in (¥ | U), and from that we see that 0(f) = U(f)es.

Similarly starting with a functor £ : (U | A#) —— (F | .# commuting with
the projections to . x .#, define, for each object M of .#, the morphism 7, :
FU(M) — M by the formula &(U (M), 1y(ary, U(M)) = (U(M),nar, M)

Again this defines the natural transformation n : FU —— 1 4 with the
square

nnM

FUM) —2 M

FU(m) m

FU(M') M’

vy

being commutative because it is the image under ¢ of the commutative square

1y ()

UM) ———=U(M)

U(m)L JU(m)

UM)————U(M)

1U(M/)

And we see that & takes the morphism (g, 157) : (S, 9, M) —= (U(M), 151, M)
in (. | U) to the morphism (g, 1as) : (S,&(g), M) —= (S, nn, M) in (F | A,
and from that we see that £(g) = na F(g).

Now £0(f) = nuFU(f)F(es) = fnrs)Er(s), so &0 = l(r| 4) implies
(nF)(Fe) = 1p.

Equally 0¢(g) = U(nm)UF(g9)es = U(nar)ev () g, so 0 = 1oy implies
(UU)(iU) = ly.

Exercise V.5. Complete the proof of the above theorem by showing that
(Un)(eU) = 1y implies 0§ = 1 1)
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V.7 Kan Extensions

RF
k
n \\ §F
N
N
N
X m MF
LF
N
N
€ \ OF
N
N
Q
X MF

V.7.1 Ends and Coends

From wikipedia

a dinatural transformation o between two functors S, 7 : €°P x € —= 2,
written « : S——T, is a function which to every object ¢ of % associates
an arrow o : S(c,¢) —= T(c,c) of 2 and satisfies the following coherence
property: for every morphism f : ¢ —= ¢’ of € the diagram

S(c,c) L>T(c, c)

S(f,1) T(1,f)
S(c,e) T(c, ")
S(1,f) T(f,1)

S(c,c) L>T(c’,c’)

commutes.

From wikipedia

an end of a functor S : €°P x € —= £ is a universal dinatural transfor-
mation from an object e of 2" to S.

More explicitly, this is a pair (e,w), where e is an object of 2" w : e——=S
is a dinatural transformation, such that for every dinatural transformation
3 : x——=S there exists a unique morphism h : x — ¢ of X with 8, = w, o h
for every object a of €.

By abuse of language the object e is often called the end of the functor S
(forgetting w) and is written e = [ S(c,c) or just [ S.

Coend

The definition of the coend of a functor S : ¥°P x € ——= Z  is the dual
of the definition of an end. Thus, a coend of S consists of a pair (d, ), where
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d is an object of 2" and ¢ : S—d is a dinatural transformation, such that
for every dinatural transformation « : S— >z there exists a unique morphism
g:d——1x of & with v, = g o (, for every object a of €.

The coend d of the functor S is written d = [ S(c,c) or f%& S.



Chapter VI

More Mathematics in a Category

VI.1 Relations In Categories

When we discussed subobjects and quotient objects back in Section 1.2.4 we
saw that in Set, the category of sets, equivalent quotient objects corresponds
exactly to the quotient sets with respect to an equivalence relation. We also
noted we did not even have the notion of an equivalence relation on an object
for general categories. As promised we will here give the needed definition and
relate it to quotient objects.

In Set a relation on a set S is defined as a subset of S x S. We could follow
that definition and define a relation on an object C' as a subobject of C' x C,
but that restricts the definition to those categories where C' x C exists. Instead
we note that specifying a subobject R of C' x C, i.e., a monomorphism d : R
> (C x C, is equivalent to giving a pair of morphisms (dg,d;) from R to C
where fdy = fdy and gdy = gdy, implies f = g. That gives rise to the following
definitions.

[For convenience we will write (dy,d;) : R —— C as shorthand for dy : R
——>Candd;: R—=C\]

Definition VI.1: A pair of morphisms (dg,d;) : R —— C is jointly monic,or
is a monic pair provided dof = di f and dpg = dy1 g, implies f =g

Definition VI.2: A relation on an object C is a pair of morphisms (dy, d;) :
R —— C' which are jointly monic.

Exercise VI.1. Verify that if the product C' x C exists, then dg, d; are jointly
monic iff (dy,d;) : R— C x C' is monic.

Recall that an equivalence relation on a set satisfies the three conditions
of being reflexive, symmetric, and transitive. (See Mac Lane and Birkhoff [55,
Sec. 1.11] for details.) So we want to translate these notions to the setting of

147
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category theory.

For sets, a relation, R is reflexive iff (¢, ¢) is always in R. That’s the same
as saying that the diagonal A is a subset of R, and that in turn is the same
as requiring the diagonal morphism to factor through (do,d;), i.e., there is a
function r : C —— R with (dp,d1)r = A which is the same as saying that
dor = 1¢ and dir = 1¢. And that gives us a definition of reflexive relation
which is valid in any category.

Definition VI.3: A relation dy,d; : R —= C is reflexive iff there is a
morphism 7 : C —— R such that dod = 1¢ = d1d.

Note this says dg and d; have r as a common retract.

As often, the Hom functors gives us a way of reflecting our knowledge of
Set to a general category. If dy,d; : R ——= C is a relation, then for any
object X, the pair Hom(X, dy), Hom(X, d;) : Hom(X, R) — Hom(X,C) is a
relation on Hom(X, C) in Set. The next exercise shows that reflexive relations
are preserved (dp, dy a reflexive relation implies Hom(e, dy), Hom(e,d;) is a
reflexive relation) and reflected (Hom(e,dp), Hom(e,d;) a reflexive relation
implies dy, d; a reflexive relation.)

Exercise VI.2. Suppose that in € the pair dy, d; (both morphisms from R
to C) is a relation on C. Show that it is a reflexive relation iff for every object
X, the pair Hom(X, dy) and Hom(X,d;) is a reflexive relation on Hom(X, C)
in Set.

Similarly, for sets a symmetric relation is one where (¢,¢’) € R <=
(d,c) € R. That’s the same as saying that the pair (d;,do) defines the same
relation as the pair (dp,d;) which in turn is the same as saying there is an
isomorphism 7 : R — R with d; = dy7, which gives us the general definition
we want.

Definition VI.4: A relation dy,d; : R —— C is symmetric iff there is an
isomorphism 7 : R ——= R with d; = dgT.

Exercise VI.3. Suppose that in € the pair (dg,d;) : R —— C is a relation
on C. Show that it is a symmetric relation iff for every object X, the pair
(Hom(X,dy), Hom(X,dy)) is a symmetric relation on Hom(X,C) in Set.

Definition VI.5: A relation dg,d; : R —— C' is transitive iff

Exercise VI.4. Suppose that in % the pair (dg,d;) : R —— C is a relation
on C. Show that it is a transitive relation iff for every object X, the pair
(Hom(X,do), Hom(X,dy)) is a transitive relation on Hom(X, C) in Set.
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Definition VI.6: An equivalence relation on an object C is a relation on
C that is reflexive, symmetric, and transitive.

Of course we are usually interested in equivalence relations because they
allow us to define quotient objects, so our next definition makes that connec-
tion.

Definition VI.7: If (dy,d;) : R—— C is an equivalence relation on C, then
a quotient of C by R is an object C/R and a morphism ¢ : C — C/R
satisfying the following Universal Mapping Property:

1. qdy = qdy, and

2. if f is any morphism with fdy = fd, then f factors uniquely through g,
i.e., there is a unique morphism f with fq = f.

C/R

q |

|

do \
I

R%C f
’ \

The morphism ¢ is called “the” quotient morphism and the object C/R
is called “the” quotient object of C' modulo R. This common terminology is
misleading in that the equivalence relation is actually the pair of morphisms
(do,d1), not their common domain R, while as with all universal mapping
properties, the object C/R and the morphism ¢ are only determined up to a
unique isomorphism.

Of course we already have a definition of a quotient object, and in the cate-
gory of sets we know quotient objects (i.e., equivalence classes of epimorphisms,
see definition 1.25) correspond to quotients modulo an equivalence relation. So
the next step is to see the extent that extends to general categories. The first
stage is observing that the quotient morphism ¢ is always an epimorphism.

Treated in Popescu and Popescu [63, pp. 54-56].

!
\
y

D

Definition VI.8: A regular monomorphism is an equalizer of a pair.

Definition VI.9: A extremal monomorphism is a monomorphism that
cannot be factored by an epimorphism that is not an isomorphism.






Chapter VII

Algebraic Categories

Rhetorical algebra, as instructions written entirely with words and numbers for
solving various concrete arithmetic problems, appeared around four millenia
ago in Babylonia and Egypt.

How many apples are needed if four persons of six receive one-third, one-
eighth, one-fourth, and one-fifth, respectively, of the total number, while the
fifth receives ten apples, and one apple remains left for the sixth person?

(Eves, Great Moments in Mathematics (Before 1650), 1980, pp. 127-128.)

Algebra slowly changed to the geometric algebra of the classical Greek
mathematicians and the Vedic Indian mathematicians, and still later evolved
into syncopated algebra using abbreviations and some symbols. Finally in the
16th century symbolic algebra emerged with the use of symbols for addition,
subtraction, multiplication, exponents, coefficients, unknowns, radicals, etc.
By this time the primary preoccupation of algebra had become understanding
roots of polynomial equations, and this led to the acceptance of negative and
then complex numbers. After the invention of analytic geometry by Descartes
and Pascal, it also led increasingly to the intertwinning of algebra and geome-
try.

During the 17th and 18th centuries the Fundamental Theorem of Algebra
(FTA) slowly emerged along with an understanding of the complex numbers.
This culminated with the proof of the FTA at the end of the 18th century.
By this time abstract algebra was emerging as attention shifted from solving
polynomial equations to studying the number systems and other mathemati-
cal structures that arose while understanding the theory of equations. Euler,
Gauss, Cauchy, Abel and others all used groups in their work throughout the
18th and 19th centuries but without the name. FEarly in the 19th century
Galois explicitly recognized groups in his invention of Galois theory, and they
have been an important unifying concept every since. In addition Hamilton
(with the invention of Quaternions), Grassmann (in his study of vectors and
Grassmann algebras), Cayley (studying the Octonions) and Boole (with his
algebraic treatment of basic logic) developed the immediate precursors of ab-
stract algebra as we know it today.
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Although the axiomatic approach to mathematics was one of the impor-
tant contributions of classical Greek mathematics, its applicability to algebra
did not come to the fore until the latter part of the 19th century. At the
turn of the century the impact of non-Euclidean geometry, the antimonies of
axiomatic set theory, and the general recognition of the general value of the
axiomatic approach to algebra lead to the recognition of the subject called
Universal Algebra. Indeed the first book on this subject was published by A.
N. Whitehead [70] in 1898.

Whitehead clearly recognized and stated the basic goal of a comparative
study of various systems of finitary operations on a set, with the intention of
understanding the common properties of such varied algebraic structures as
monoids, groups, rings, Boolean algebra and lattices. When Whitehead pub-
lished his book, the knowledge of these structures was insufficiently developed
to provide the experience needed to develop a general theory. It was not until
the 1930s that Birkhoff began publishing results in the area that is the subject
of this chapter.

The first section here develops the basics of the theory in much the fashion
expounded by Birkhoff [5], while later sections discuss the approach through
category theory that was developed by Lawvere [45].

VII.1 Universal Algebra

As a first step into universal algebra consider a fixed set §2 (the set of operator
symbols) and a function arity : § —— N giving the arity of the operator.
An Q-algebra A is a set |A| (the carrier of A) and for each w € Q of arity
n = arity(w) an operator o, : |A|" — | A]

For general information on universal algebra consult the books of that title
by P. M. Cohn [13] and G. Grétzer [27].

VIIL.2 Algebraic Theories

The original source for this material is Lawvere’s thesis [45] which is available
in the Theory and Application of Categories Reprint Series.
See the article “Algebraic Categories” by Pedicchio and Rovatti [61].

VII.3 Internal Categories

One of the most fascinating aspects of the theory of categories is its reflective
nature. One aspect of that is that it is quite natural to define categories and
functors within a category, at least one that has finite limits. Throughout this
section we will take .# to be a Cartesian category.

Definition VII.1: An internal category in . consists of
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Definition VII.2:

Definition VII.3:






Chapter VIII

Cartesian Closed Categories

Suppose that ¥ is a Cartesian category, i.e., one with all finite products. Then
for each object C' of ¥ there is the functor e xC' : ¥ ——= 7. When this functor
has a right adjoint it is written as ¢ A category where all such functors have
right adjoints is called a Cartesian closed category.

VIII.1 Partial Equivalence Relations and Modest Sets

Definition VIII.1: A partial equivalence relation ~ on a set A is a binary
relation on A that is symmetric (a ~ o’ = o’ = a) and transitive (¢ = o' and
a ~d =a=a).

Note that the difference between a partial equivalence relation and an equiv-
alence relation (see definition A.24) is that a partial equivalence relation need
not be reflexive, i.e., a = a is not guaranteed. So every equivalence relation
is a partial equivalence relation but the converse is not true with an example
being the relation {(0,0)} on {0,1}. In other words we have 0 & 0 and nothing
more. Clearly this is symmetric and transitive, but it is not reflexive as 1 ~ 1
is false.

The phrase “partial equivalence relation” will be used sufficiently often that
we will frequently use the abbreviation PER.

The reason for the word “partial” is because all PERs are similar to the
example. When = is a PER on the set A, consider the subset D = {a € A:a =
a}. Notice that if a and a’ are elements of A and a ~ «a, then by symmetry
a’ =~ a and by transitivity both a =~ a and o’ ~ a’ so both a and a’ are in
D. That means =~ can be considered as a relation on D, and there it is an
equivalence relation. D is called the domain of definition of the PER =~ and
we may write D(=) to emphasize the relation, particularly when considering
more than one PER.

The converse is equally well true — if D is a subset of A and ~ is an
equivalence relation on D, the =~ may equally well be considered as a relation
on A and it is a partial equivalence relation on A. So an alternative description
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of a PER on A is an equivalence relation on some subset of A.

Equivalence relations on sets are closely related to quotient sets (see the
discussions in sections 1.26 and A.27), so in a certain sense a PER on A is
much the same thing as a quotient of a subset of A, a perspective we will
explore further.

For ~4 a PER on A and ~p is a PER on B, a function f : A ——= B is
compatible when a ~4 o' = f(a) ~p f(a’). This tells us that

f(D(=4)) € D(~p)
and so we can consider
fIp(za) : D(ma) —> D(~B)
Going one step further we also have the quotient maps g4 : D(x4