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Complex Numbers and the Complex Plane Complex Numbers and Their Properties

Complex Numbers

The imaginary unit i =
√
−1 is defined by the property i2 = −1.

Definition (Complex Number)

A complex number is any number of the form z = a + ib where a and b

are real numbers and i is the imaginary unit.

The notations a + ib and a + bi are used interchangeably.

The real number a in z = a + ib is called the real part of z and the
real number b is called the imaginary part of z .

The real and imaginary parts of a complex number z are abbreviated
Re(z) and Im(z), respectively.

Example: If z = 4− 9i , then Re(z) = 4 and Im(z) = − 9.

A real constant multiple of the imaginary unit is called a pure

imaginary number.

Example: z = 6i is a pure imaginary number.
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Complex Numbers and the Complex Plane Complex Numbers and Their Properties

Equality of Complex Numbers

Two complex numbers are equal if the corresponding real and
imaginary parts are equal.

Definition (Equality)

Complex numbers z1 = a1 + ib1 and z2 = a2 + ib2 are equal, written
z1 = z2, if a1 = a2 and b1 = b2.

In terms of the symbols Re(z) and Im(z), we have

z1 = z2 if Re(z1) = Re(z2) and Im(z1) = Im(z2).

The totality of complex numbers or the set of complex numbers is
usually denoted by the symbol C.

Because any real number a can be written as z = a+ 0i , the set R of
real numbers is a subset of C.
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Complex Numbers and the Complex Plane Complex Numbers and Their Properties

Arithmetic Operations

If z1 = a1 + ib1 and z2 = a2 + ib2, the operations of addition,
subtraction, multiplication and division are defined as follows:

Addition:

z1 + z2 = (a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2).

Subtraction:

z1 − z2 = (a1 + ib1)− (a2 + ib2) = (a1 − a2) + i(b1 − b2).

Multiplication:

z1 · z2 = (a1 + ib1)(a2 + ib2) = a1a2 − b1b2 + i(b1a2 + a1b2).

Division:

z1

z2
=

a1 + ib1

a2 + ib2
=

a1a2 + b1b2

a22 + b22
+ i

b1a2 − a1b2

a22 + b22
.
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Complex Numbers and the Complex Plane Complex Numbers and Their Properties

Laws of Arithmetic

The familiar commutative, associative, and distributive laws hold for
complex numbers:

Commutative laws:

z1 + z2 = z2 + z1
z1z2 = z2z1

Associative laws:

z1 + (z2 + z3) = (z1 + z2) + z3
z1(z2z3) = (z1z2)z3

Distributive law:
z1(z2 + z3) = z1z2 + z1z3

In view of these laws, there is no need to memorize the definitions of
addition, subtraction, and multiplication.
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How to Add, Subtract and Multiply

Addition, Subtraction, and Multiplication can be performed as
follows:
(i) To add (subtract) two complex numbers, simply add (subtract) the

corresponding real and imaginary parts.
(ii) To multiply two complex numbers, use the distributive law and the fact

that i2 = −1.

Example: If z1 = 2 + 4i and z2 = −3 + 8i , find
(a) z1 + z2; (b) z1z2.
(a) By adding real and imaginary parts, the sum of the two complex

numbers z1 and z2 is

z1 + z2 = (2 + 4i) + (−3 + 8i) = (2− 3) + (4 + 8)i = − 1 + 12i .

(b) By the distributive law and i2 = −1, the product of z1 and z2 is

z1z2 = (2 + 4i)(−3 + 8i) = (2 + 4i)(−3) + (2 + 4i)(8i)
= − 6− 12i + 16i + 32i2 = (−6− 32) + (16− 12)i
= − 38 + 4i .
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Complex Numbers and the Complex Plane Complex Numbers and Their Properties

Zero and Unity

The zero in the complex number system is the number 0 + 0i ;

The unity is 1 + 0i .

The zero and unity are denoted by 0 and 1, respectively.

The zero is the additive identity in the complex number system: For
any complex number z = a + ib,

z + 0 = (a + ib) + (0 + 0i) = a+ ib = z .

Similarly, the unity is the multiplicative identity: For any complex
number z = a + ib, we have

z · 1 = (a + ib)(1 + 0i) = a + ib = z .
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Conjugates

Definition (Conjugate)

If z is a complex number, the number obtained by changing the sign of its
imaginary part is called the complex conjugate, or simply conjugate, of
z and is denoted by the symbol z̄. In other words, if z = a + ib, then its
conjugate is z̄ = a − ib.

Example: If z = 6 + 3i , then z̄ = 6− 3i . If z = −5− i , then
z̄ = − 5 + i .

If z is a real number, then z̄ = z .

The conjugate of a sum and difference of two complex numbers is the
sum and difference of the conjugates:

z1 + z2 = z̄1 + z̄2, z1 − z2 = z̄1 − z̄2.
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More Properties of Conjugates

Moreover, we have the following three additional properties:

z1z2 = z̄1z̄2,

(

z1

z2

)

=
z̄1

z̄2
, ¯̄z = z .

The sum and product of a complex number z with its conjugate z̄ is a
real number:

z + z̄ = (a + ib) + (a − ib) = 2a;
zz̄ = (a + ib)(a − ib) = a2 − i2b2 = a2 + b2.

The difference of a complex number z with its conjugate z̄ is a pure
imaginary number:

z − z̄ = (a + ib)− (a − ib) = 2ib.

We obtain

Re(z) =
z + z̄

2
; Im(z) =

z − z̄

2i
.
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How to Divide

To divide z1 by z2:

multiply the numerator and denominator of z1
z2

by the conjugate of z2.

z1

z2
=

z1

z2
· z̄2
z̄2

=
z1z̄2

z2z̄2
;

Then use the fact that z2z̄2 is the sum of the squares of the real and
imaginary parts of z2.

Example: If z1 = 2− 3i and z2 = 4 + 6i , find z1
z2
.

z1

z2
=

2− 3i

4 + 6i
=

2− 3i

4 + 6i
· 4− 6i

4− 6i
=

8− 12i − 12i + 18i2

42 + 62

=
−10− 24i

52
= − 10

52
− 24

52
i = − 5

26
− 6

13
i .
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Additive and Multiplicative Inverses

In the complex number system, every number z has a unique additive

inverse: The additive inverse of z = a + ib is its negative, −z , where
−z = −a − ib.

For any complex number z , we have z + (−z) = 0.

Similarly, every nonzero complex number z has a multiplicative

inverse: For z 6= 0, there exists one and only one nonzero complex
number z−1 such that zz−1 = 1. The multiplicative inverse z−1 is the
same as the reciprocal 1

z
.

Example: Find the reciprocal of z = 2− 3i and put the answer in the
form a + ib.

1

z
=

1

2− 3i
=

1

2− 3i
· 2 + 3i

2 + 3i
=

2 + 3i

4 + 9
=

2 + 3i

13
.

Therefore,
1

z
= z−1 =

2

13
+

3

13
i .
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Comparison with Real Analysis

Many of the properties of the real number system R hold in the
complex number system C, but there are some truly remarkable
differences as well:

(i) For example, the concept of order in the real number system does not
carry over to the complex number system: We cannot compare two
complex numbers z1 = a1 + ib1, b1 6= 0, and z2 = a2 + ib2, b2 6= 0, by
means of inequalities.

(ii) Some things that we take for granted as impossible in real analysis,
such as ex = −2 and sin x = 5 when x is a real variable, are perfectly
correct and ordinary in complex analysis when the symbol x is
interpreted as a complex variable.
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Complex Numbers and the Complex Plane Complex Plane

Complex Numbers and Points

A complex number z = x + iy is uniquely determined by an ordered
pair of real numbers (x , y).

The first and second entries of the ordered pairs correspond, in turn,
to the real and imaginary parts of the complex number.

Example: The ordered pair (2,−3) corresponds to the complex
number z = 2− 3i . Conversely, z = 2− 3i determines the ordered
pair (2,−3). The numbers 7, i and −5i are equivalent to
(7, 0), (0, 1), (0,−5) respectively.

Because of the correspondence between a
complex number z = x + iy and one and
only one point (x , y) in a coordinate plane,
we shall use the terms complex number
and point interchangeably.
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Complex Numbers and the Complex Plane Complex Plane

Complex Numbers and Vectors: Modulus

A complex number z = x + iy can also
be viewed as a two-dimensional position
vector, i.e., a vector whose initial point is
the origin and whose terminal point is the
point (x, y).

Definition (Modulus of a Complex Number)

The modulus of a complex number z = x + iy , is the real number
|z | =

√

x2 + y2.

The modulus |z | of a complex number z is also called the absolute

value of z .

Example: If z = 2− 3i , then |z | =
√

22 + (−3)2 =
√
13. If z = −9i ,

then | − 9i | =
√

(−9)2 = 9.
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Properties of the Modulus

For any complex number z = x + iy , the product zz̄ is the sum of the
squares of the real and imaginary parts of z :

zz̄ = x2 + y2.

This yields the relations:

|z |2 = zz̄ and |z | =
√
zz̄.

The modulus of a complex number z has the additional properties:

|z1z2| = |z1||z2| and

∣

∣

∣

∣

z1

z2

∣

∣

∣

∣

=
|z1|
|z2|

.

In particular, when z1 = z2 = z , we get |z2| = |z |2.
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Complex Numbers and the Complex Plane Complex Plane

Addition and Subtraction Geometrically

The addition of complex numbers z1 = x1 + iy1 and z2 = x2 + iy2
takes the form (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), i.e., it is simply
the component definition of vector addition.

The difference z2 − z1 can be drawn either starting from the terminal
point of z1 and ending at the terminal point of z2, or as the position
vector with terminal point (x2 − x1, y2 − y1).

Thus, the distance between z1 = x1 + iy1 and z2 = x2 + iy2 is the
same as the distance between the origin and (x2 − x1, y2 − y1).
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Complex Numbers and the Complex Plane Complex Plane

Sets of Points in the Complex Plane

Example: Describe the set of points z in the complex plane that
satisfy |z | = |z − i |.
The given equation asserts that the distance from a point z to the
origin equals the distance from z to the point i . Thus, the set of
points z is a horizontal line:
|z | = |z − i | ⇔

√

x2 + y2 =
√

x2 + (y − 1)2 ⇔ x2 + y2 =
x2 + (y − 1)2 ⇔ x2 + y2 = x2 + y2 − 2y + 1.

Thus, y = 1
2 , which is an equation of

a horizontal line. Complex numbers sat-
isfying |z | = |z − i | can be written as
z = x + 1

2 i .
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Complex Numbers and the Complex Plane Complex Plane

Comparing Moduli

Since |z | is a real number, we can compare the absolute values of two
complex numbers.

Example: If z1 = 3 + 4i and z2 = 5− i , then

|z1| =
√
25 = 5 and |z2| =

√
26

and, consequently, |z1| < |z2|.
A geometric interpretation of the last in-
equality is that the point (3, 4) is closer to
the origin than the point (5,−1).
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Complex Numbers and the Complex Plane Complex Plane

The Triangle Inequality

Consider the triangle

The length of the side of the triangle corre-
sponding to z1 + z2 cannot be longer than
the sum of the lengths of the remaining
two sides. In symbols

|z1 + z2| ≤ |z1|+ |z2|.

From the identity z1 = z1 + z2 + (−z2), we get
|z1| = |z1 + z2 + (−z2)| ≤ |z1 + z2|+ | − z2| = |z1 + z2|+ |z2|. Hence
|z1 + z2| ≥ |z1| − |z2|. Because z1 + z2 = z2 + z1,
|z1 + z2| = |z2 + z1| ≥ |z2| − |z1| = − (|z1| − |z2|). Combined with
the last result, this implies

|z1 + z2| ≥ ||z1| − |z2||.
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Complex Numbers and the Complex Plane Complex Plane

The Triangle Inequality: More Consequences

We have shown that

||z1| − |z2|| ≤ |z1 + z2| ≤ |z1|+ |z2|.

By replacing z2 by −z2, we get
|z1 + (−z2)| ≤ |z1|+ |(−z2)| = |z1|+ |z2|, i.e.,

|z1 − z2| ≤ |z1|+ |z2|.

Replacing z2 by −z2, we also find

|z1 − z2| ≥ ||z1| − |z2||.

The triangle inequality extends to any finite sum of complex numbers:

|z1 + z2 + z3 + · · ·+ zn| ≤ |z1|+ |z2|+ |z3|+ · · ·+ |zn|.
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Establishing Upper Bounds

Find an upper bound for
∣

∣

∣

−1
z4−5z+1

∣

∣

∣
if |z | = 2.

Since the absolute value of a quotient is the quotient of the absolute

values and | − 1| = 1,
∣

∣

∣

−1
z4−5z+1

∣

∣

∣
= 1

|z4−5z+1| . Thus, we want to find a

positive real number M such that 1
|z4−5z+1| ≤ M. To accomplish this

task we want the denominator as small as possible. We have

|z4 − 5z + 1| = |z4 − (5z − 1)| ≥ ||z4| − |5z − 1||.
To make the difference in the last expression as small as possible, we
want to make |5z − 1| as large as possible. We have

|5z − 1| ≤ |5z |+ | − 1| = 5|z |+ 1.

Using |z | = 2,

|z4−5z+1| ≥ ||z4|−|5z−1|| ≥ ||z |4−(5|z |+1)| = ||z |4−5|z |−1| = 5.

Hence for |z | = 2, we have 1
|z4−5z+1| ≤

1
5 .
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Polar Form of Complex Numbers
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Complex Numbers and the Complex Plane Polar Form of Complex Numbers

Polar Coordinates

A point P in the plane whose rectangular coordinates are (x , y) can
also be described in terms of polar coordinates.
The polar coordinate system consists of

a point O called the pole;
the horizontal half-line emanating from the pole called the polar axis.

If
r is the directed distance from the pole to P ,
θ an angle (in radians) measured from the polar axis to the line OP ,

then the point P can be described by the ordered pair (r , θ), called
the polar coordinates of P :
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The Polar Form of a Complex Number

Suppose that a polar coordinate system is
superimposed on the complex plane with

the pole O at the origin;

the polar axis coinciding with the
positive x-axis.

Then x , y , r and θ are related by x = r cos θ, y = r sin θ.

These equations enable us to express a nonzero complex number
z = x + iy as

z = (r cos θ) + i(r sin θ) or z = r(cos θ + i sin θ).

This is called the polar form or polar representation of the complex
number z .
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Complex Numbers and the Complex Plane Polar Form of Complex Numbers

The Polar Form of a Complex Number

In the polar form z = r(cos θ + i sin θ), the coordinate r can be
interpreted as the distance from the origin to the point (x , y).

We adopt the convention that r is never negative so that we can take
r to be the modulus of z : r = |z |.
The angle θ of inclination of the vector z , always measured in radians
from the positive real axis, is positive when measured
counterclockwise and negative when measured clockwise.

The angle θ is called an argument of z and is denoted by θ = arg(z).

An argument θ of a complex number must satisfy the equations

cos θ =
x

r
and sin θ =

y

r
.

An argument of a complex number z is not unique since cos θ and
sin θ are 2π-periodic.
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Complex Numbers and the Complex Plane Polar Form of Complex Numbers

Example: Expressing a Complex Number in Polar Form

Express −
√
3− i in polar form.

With x = −
√
3 and y = −1, we obtain

r = |z | =
√

(−
√
3)2 + (−1)2 = 2.

Now y
x
= −1

−
√
3
= 1√

3
. We know that tan π

6 = 1√
3
.

However, the point (−
√
3,−1) lies in

the third quadrant, whence, we take the
solution of tan θ = −1

−
√
3
= 1√

3
to be

θ = arg(z) = π
6 + π = 7π

6 .

It follows that a polar form of the number is z = 2(cos 7π
6 + i sin 7π

6 ).
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Complex Numbers and the Complex Plane Polar Form of Complex Numbers

The Principal Argument

The symbol arg(z) represents a set of values, but the argument θ of a
complex number that lies in the interval −π < θ ≤ π is called the
principal value of arg(z) or the principal argument of z .
The principal argument of z is unique and is represented by the
symbol Arg(z), that is,

−π < Arg(z) ≤ π.

Example: If z = i , some values of arg(i) are π
2 ,

5π
2 , −3π

2 , and so on.
However, Arg(i) = π

2 .

Similarly, the argument of −
√
3− i that lies in the interval (−π, π),

the principal argument of z , is Arg(z) = π
6 − π = −5π

6 . Using Arg(z),
we can express this complex number in the alternative polar form:
z = 2(cos (−5π

6 ) + i sin (−5π
6 )).

In general, arg(z) and Arg(z) are related by

arg(z) = Arg(z) + 2πn, n = 0,±1,±2, . . . .
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Complex Numbers and the Complex Plane Polar Form of Complex Numbers

Multiplying and Dividing in Polar Form

Suppose z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2), where
θ1 and θ2 are any arguments of z1 and z2, respectively.
Then

z1z2 = r1r2[cos θ1 cos θ2 − sin θ1 sin θ2 + i(sin θ1 cos θ2 + cos θ1 sin θ2)]

z1

z2
=

r1

r2
[cos θ1 cos θ2 + sin θ1 sin θ2 + i(sin θ1 cos θ2 − cos θ1 sin θ2)].

From the addition formulas for the cosine and sine, we get

z1z2 = r1r2[cos (θ1 + θ2) + i sin (θ1 + θ2)]

and z1

z2
=

r1

r2
[cos (θ1 − θ2) + i sin (θ1 − θ2)].

The lengths of z1z2 and z1
z2

are the product of the lengths of z1 and z2
and the quotient of the lengths of z1 and z2, respectively.

The arguments of z1z2 and z1
z2

are given by
arg(z1z2) = arg(z1) + arg(z2) and arg( z1

z2
) = arg(z1)− arg(z2).
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Example of Multiplication and Division in Polar Form

We have seen that for z1 = i and z2 = −
√
3− i , Arg(z1) =

π
2 and

Arg(z2) = −5π
6 , respectively. Thus, arguments for the product and

quotient z1z2 = i(−
√
3− i) = 1−

√
3i and z1

z2
= i

−
√
3−i

= −1
4 −

√
3
4 i

are:

arg(z1z2) =
π

2
+ (−5π

6
) = − π

3

and

arg

(

z1

z2

)

=
π

2
− (−5π

6
) =

4π

3
.
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Integer Powers of a Complex Number

We can find integer powers of a complex number z from the
multiplication and division formulas.

If z = r(cos θ + i sin θ), then

z2 = r2[cos (θ + θ) + i sin (θ + θ)] = r2(cos 2θ + i sin 2θ).

Since z3 = z2z , we also get

z3 = r3(cos 3θ + i sin 3θ), and so on.

For negative powers, taking arg(1) = 0,

1

z2
= z−2 = r−2[cos (−2θ) + i sin (−2θ)].

A general formula for the n-th power of z , for any integer n, is

zn = rn(cos nθ + i sin nθ).

When n = 0, we get z0 = 1.
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Complex Numbers and the Complex Plane Polar Form of Complex Numbers

Calculating the Power of a Complex Number

Compute z3 for z = −
√
3− i .

A polar form of the given number is z = 2[cos (7π6 ) + i sin (7π6 )].
Using the previous formula, with r = 2, θ = 7π

6 , and n = 3, we get

z3 = (−
√
3− i)3

= 23
(

cos (3
7π

6
) + i sin (3

7π

6
)

)

= 8

(

cos (
7π

2
) + i sin (

7π

2
)

)

= − 8i ,

since cos (
7π

2
) = 0 and sin (

7π

2
) = − 1.
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Complex Numbers and the Complex Plane Polar Form of Complex Numbers

De Moivre’s Formula

When z = cos θ + i sin θ, we have |z | = r = 1, whence, we obtain de

Moivre’s Formula:

(cos θ + i sin θ)n = cos nθ + i sin nθ.

Example: If z =
√
3
2 + 1

2 i , calculate z3.

Since cos π
6 =

√
3
2 and sin π

6 = 1
2 , we get:

z3 = (
√
3
2 + 1

2 i)
3

= (cos π
6 + i sin π

6 )
3

= cos (3π
6 ) + i sin (3π

6 )
= cos π

2 + i sin π
2

= i .
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Complex Numbers and the Complex Plane Polar Form of Complex Numbers

Some Remarks

(i) It is not true, in general, that Arg(z1z2) = Arg(z1) + Arg(z2) and
Arg( z1

z2
) = Arg(z1)− Arg(z2).

(ii) An argument can be assigned to any nonzero complex number z .
However, for z = 0, arg(z) cannot be defined in any way that is
meaningful.

(iii) If we take arg(z) from the interval (−π, π), the relationship between
a complex number z and its argument is single-valued; i.e., every
nonzero complex number has precisely one angle in (−π, π).
But there is nothing special about the interval (−π, π).
For the interval (−π, π), the negative real axis is analogous to a
barrier that we agree not to cross (called a branch cut). If we use
(0, 2π) instead of (−π, π), the branch cut is the positive real axis.

(iv) The “cosine i sine” part of the polar form of a complex number is
sometimes abbreviated cis, i.e., z = r(cos θ + i sin θ) = rcisθ.
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Subsection 4

Powers and Roots
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n-th Complex Roots of a Complex Number

Recall from algebra that −2 and 2 are said to be square roots of the
number 4 because (−2)2 = 4 and (2)2 = 4.

In other words, the two square roots of 4 are distinct solutions of the
equation w2 = 4.

Similarly, w = 3 is a cube root of 27 since w3 = 33 = 27.

In general, we say that a number w is an n-th root of a nonzero
complex number z if wn = z , where n is a positive integer.

Example: w1 =
1
2

√
2 + 1

2

√
2i and w2 = − 1

2

√
2− 1

2

√
2i are the two

square roots of the complex number z = i .

We will demonstrate that there are exactly n solutions of the equation
wn = z .
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Roots of a Complex Number

Suppose z = r(cos θ + i sin θ) and w = ρ(cosφ+ i sinφ) are polar
forms of the complex numbers z and w .

wn = z becomes ρn(cos nφ+ i sin nφ) = r(cos θ + i sin θ).

We can conclude that ρn = r and cos nφ+ i sin nφ = cos θ + i sin θ.

Let ρ = n
√
r be the unique positive n-th root of the real number r > 0.

The definition of equality of two complex numbers implies that
cos nφ = cos θ and sin nφ = sin θ. Thus, the arguments θ and φ are
related by nφ = θ + 2kπ, where k is an integer, i.e., φ = θ+2kπ

n
.

As k takes on the successive integer values k = 0, 1, 2, . . . , n − 1, we
obtain n distinct n-th roots of z .

These roots have the same modulus n
√
r but different arguments.

The n nth roots of a nonzero complex number z = r(cos θ + i sin θ)
are given by

wk = n
√
r

[

cos

(

θ + 2kπ

n

)

+ i sin

(

θ + 2kπ

n

)]

, k = 0, 1, . . . , n − 1.
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Example: Finding Cube Roots

Find the three cube roots of z = i .

We are solving w3 = i . With r = 1, θ = arg(i) = π
2 , a polar form of

the given number is given by z = cos (π2 ) + i sin (π2 ). From the
previous work, with n = 3, we then obtain

wk =
3
√
1(cos

π
2 + 2kπ

3
+ i sin

π
2 + 2kπ

3
), k = 0, 1, 2.

Hence the three roots are,

k = 0, w0 = cos π
6 + i sin π

6 =
√
3
2 + 1

2 i ;

k = 1, w1 = cos 5π
6 + i sin 5π

6 = −
√
3
2 + 1

2 i ;

k = 2, w2 = cos 3π
2 + i sin 3π

2 = − i .
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The Principal n-th Root

The symbol arg(z) really stands for a set of arguments for a complex
number z .

Similarly, z1/n is n-valued and represents the set of n n-th roots wk of
z .

The unique root of a complex number z obtained by using the
principal value of arg(z), with k = 0, is referred to as the principal

n-th root of w .

Example: Since Arg(i) = π
2 and wk = 3

√
1(cos

π

2
+2kπ

3 + i sin
π

2
+2kπ

3 ),
k = 0, 1, 2,

w0 =

√
3

2
+

1

2
i

is the principal cube root of i .

The choice of Arg(z) and k = 0 guarantees that when z is a positive
real number r , the principal n-th root is n

√
r .
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Geometry of the n Complex n-th Roots

Since the roots have the same modulus, the n n-th roots of a nonzero
complex number z lie on a circle of radius n

√
r centered at the origin

in the complex plane.

Since the difference between the arguments of any two successive
roots wk and wk+1 is 2π

n
, the n nth roots of z are equally spaced on

this circle, beginning with the root whose argument is θ
n
.

To illustrate, look at the three cube roots of i :

w0 =
√
3
2 + 1

2 i ;

w1 = −
√
3
2 + 1

2 i ;

w2 = −i .
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Example: Fourth Roots of a Complex Number

The four fourth roots of z = 1 + i .

r =
√
2 and θ = arg(z) = π

4 . From our formula, with n = 4, we obtain

wk =
8
√
2

[

cos

( π
4 + 2kπ

4

)

+ i sin

( π
4 + 2kπ

4

)]

, k = 0, 1, 2, 3.

We calculate

k = 0, w0 =
8
√
2(cos π

16 + i sin π
16 );

k = 1, w1 =
8
√
2(cos 9π

16 + i sin 9π
16 );

k = 2, w2 =
8
√
2(cos 17π

16 + i sin 17π
16 );

k = 3, w3 =
8
√
2(cos 25π

16 + i sin 25π
16 ).
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Remarks on Complex Roots

(i) The complex number system is closed under the operation of
extracting roots. This means that for any z ∈ C, z1/n is also in C.
The real number system does not possess a similar closure property
since, if x is in R, x1/n is not necessarily in R.

(ii) Geometrically, the n nth roots of a complex number z can also be
interpreted as the vertices of a regular polygon with n sides that is
inscribed within a circle of radius n

√
r centered at the origin.

(iii) When m and n are positive integers with no common factors, then we
may define a rational power of z , i.e., zm/n: It can be shown that the
set of values (z1/n)m is the same as the set of values (zm)1/n. This
set of n common values is defined to be zm/n.
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Circles

Suppose z0 = x0 + iy0.

The distance between the points z = x + iy and z0 = x0 + iy0 is

|z − z0| =
√

(x − x0)2 + (y − y0)2.

Thus, the points z = x + iy that satisfy the
equation

|z − z0| = ρ, ρ > 0,

lie on a circle of radius ρ centered at the point
z0.

Example:
(a) |z | = 1 is an equation of a unit circle centered at the origin.
(b) By rewriting |z − 1 + 3i | = 5 as |z − (1 − 3i)| = 5, we see that the

equation describes a circle of radius 5 centered at the point z0 = 1− 3i .
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Disks and Neighborhoods

The points z that satisfy the inequality |z − z0| ≤ ρ can be either on
the circle |z − z0| = ρ or within the circle.

We say that the set of points defined by |z − z0| ≤ ρ is a disk of
radius ρ centered at z0.

The points z that satisfy the strict inequality |z − z0| < ρ lie within,
and not on, a circle of radius ρ centered at the point z0. This set is
called a neighborhood of z0.

Occasionally, we will need to use a neighborhood of z0 that also
excludes z0. Such a neighborhood is defined by the simultaneous
inequality 0 < |z − z0| < ρ and called a deleted neighborhood of z0.

Example: |z | < 1 defines a neighborhood of the origin, whereas
0 < |z | < 1 defines a deleted neighborhood of the origin;
|z − 3 + 4i | < 0.01 defines a neighborhood of 3− 4i , whereas the
inequality 0 < |z − 3 + 4i | < 0.01 defines a deleted neighborhood of
3− 4i .
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Open Sets

A point z0 is called an interior point of a set S of the complex plane
if there exists some neighborhood of z0 that lies entirely within S .

If every point z of a set S is an interior point, then S is said to be an
open set.

Example: The inequality Re(z) > 1 defines a right half-plane, which
is an open set. All complex numbers z = x + iy for which x > 1 are
in this set. E.g., if we choose z0 = 1.1 + 2i , then a neighborhood of
z0 lying entirely in the set is defined by |z − (1.1 + 2i)| < 0.05.

Example: The set S of points in the complex plane defined by
Re(z) ≥ 1 is not open because every neighborhood of a point lying on
the line x = 1 must contain points in S and points not in S .
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Additional Examples of Open Sets
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Boundary and Exterior Points

If every neighborhood of a point z0 of a set S contains at least one
point of S and at least one point not in S , then z0 is said to be a
boundary point of S .

Example: For the set of points defined by Re(z) ≥ 1, the points on
the vertical line x = 1 are boundary points.

Example: The points that lie on the circle |z − i | = 2 are boundary
points for the disk |z − i | ≤ 2 as well as for the neighborhood
|z − i | < 2 of z = i .

The collection of boundary points of S is called the boundary of S.

Example: The circle |z − i | = 2 is the boundary for both the disk
|z − i | ≤ 2 and the neighborhood |z − i | < 2 of z = i .

A point z that is neither an interior point nor a boundary point of a
set S is said to be an exterior point of S, i.e., z0 is an exterior point
of a set S if there exists some neighborhood of z0 that contains no
points of S.
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Interior, Boundary and Exterior Points

Typical set S with interior, boundary, and exterior.

An open set S can be as simple as the complex plane with a single
point z0 deleted.

The boundary of this “punctured plane” is z0;
The only candidate for an exterior point is z0. However, S has no
exterior points since no neighborhood of z0 lies entirely outside the
punctured plane.

George Voutsadakis (LSSU) Complex Analysis October 2014 51 / 67



Complex Numbers and the Complex Plane Sets of Points in the Complex Plane

Annulus

The set S1 of points satisfying the inequality ρ1 < |z − z0| lie exterior
to the circle of radius ρ1 centered at z0.

The set S2 of points satisfying |z − z0| < ρ2 lie interior to the circle of
radius ρ2 centered at z0.

Thus, if 0 < ρ1 < ρ2, the set of points satisfying the simultaneous
inequality ρ1 < |z − z0| < ρ2 is the intersection of the sets S1 and S2.
This intersection is an open circular ring centered at z0, called an
open circular annulus.

By allowing ρ1 = 0, we obtain a deleted neighborhood of z0.
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Connected Sets and Domains

If any pair of points z1 and z2 in a set S can be connected by a
polygonal line that consists of a finite number of line segments joined
end to end that lies entirely in the set, then the set S is said to be
connected.

An open connected set is called a domain.

Example: The set of numbers z satisfying Re(z) 6= 4 is an open set
but is not connected: it is not possible to join points on either side of
the vertical line x = 4 by a polygonal line without leaving the set.

Example: A neighborhood of a point z0 is a connected set.
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Region

A region is a set of points in the complex plane with all, some, or
none of its boundary points.

Since an open set does not contain any boundary points, it is
automatically a region.
A region that contains all its boundary points is said to be closed.

Example: The disk defined by |z − z0| ≤ ρ is an example of a closed
region and is referred to as a closed disk.

Example: A neighborhood of a point z0 defined by |z − z0| < ρ is an
open set or an open region and is said to be an open disk.

If the center z0 is deleted from either a closed disk or an open disk,
the regions defined by 0 < |z − z0| ≤ ρ or 0 < |z − z0| < ρ are called
punctured disks. A punctured open disk is the same as a deleted
neighborhood of z0.

A region can be neither open nor closed.

Example: The annular region defined by 1 ≤ |z − 5| < 3 contains only
some of its boundary points, and so it is neither open nor closed.
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General Annular Regions

We have defined a circular annular region given by ρ1 < |z − z0| < ρ2.

In a more general interpretation, an annulus or annular region may
have the appearance shown on the right.
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Bounded Sets

We say that a set S in the complex plane is bounded if there exists a
real number R > 0 such that |z | < R every z in S , i.e., S is bounded
if it can be completely enclosed within some neighborhood of the
origin.

Example: The set S shown below is bounded because it is contained
entirely within the dashed circular neighborhood of the origin.

A set is unbounded if it is not bounded.

Example: The sets on the rightmost figures above are unbounded.
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Extended Real Number System

On the real line, we have exactly two directions and we represent the
notions of “increasing without bound” and “decreasing without
bound” symbolically by x → +∞ x → −∞, respectively.

We can avoid ±∞ by dealing with an“ideal point” called the point

at infinity, which is denoted simply by ∞.

We identify any real number a with a point (x0, y0):

The farther the point (a, 0) is from the origin,
the nearer (x0, y0) is to (0, 1). The only point
on the circle that does not correspond to a real
number a is (0, 1). We identify (0, 1) with ∞.

The set consisting of the real numbers R adjoined with ∞ is called
the extended real-number system.
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Extended Complex Number System

Since C is not ordered, the notions of z either “increasing” or
“decreasing” have no meaning.

By increasing the modulus |z | of a complex number z , the number
moves farther from the origin.

In complex analysis, only the notion of ∞ is used because we can
extend the complex number system C in a manner analogous to that
just described for the real number system R.

We associate a complex number with a point on a unit sphere called
the Riemann sphere:

Because the point (0, 0, 1) corresponds
to no number z in the plane, we corre-
spond it with ∞. The system consist-
ing of C adjoined with the “ideal point”
∞ is called the extended complex-

number system.
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Complex Roots of Quadratic Equations

Consider the quadratic equation

ax2 + bx + c = 0,

where the coefficients a 6= 0, b and c are real.

Completion of the square in x yields the quadratic formula:

x =
−b ±

√
b2 − 4ac

2a
.

When D = b2 − 4ac < 0, the roots of the equation are complex.

Example: The two roots of x2 − 2x + 10 = 0 are

x =
−(−2)±

√

(−2)2 − 4(1)(10)

2(1)
=

2±
√
−36

2
.

√
−36 =

√
36

√
−1 = 6i . Therefore, the complex roots of the

equation are
z1 = 1 + 3i , z2 = 1− 3i .
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The Quadratic Formula for Complex Coefficients

The quadratic formula is perfectly valid when the coefficients a 6= 0, b
and c of a quadratic polynomial equation

az2 + bz + c = 0

are complex numbers.

Although the formula can be obtained in exactly the same manner,
we choose to write the result as

z =
−b + (b2 − 4ac)1/2

2a
.

When D = b2 − 4ac 6= 0, the symbol (b2 − 4ac)1/2 represents the set
of two square roots of the complex number b2 − 4ac .

Thus, the formula gives two complex solutions.

In the sequel to keep notation clear, we reserve the use of the symbol√
to real numbers where

√
a denotes the nonnegative root of the

real number a ≥ 0.
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Using the Quadratic Formula

Solve the quadratic equation z2 + (1− i)z − 3i = 0.

Apply the quadratic formulas, with a = 1, b = 1− i and c = −3i :

z =
−(1− i) + [(1 − i)2 − 4(−3i)]1/2

2
=

1

2
[−1 + i + (10i)1/2].

To compute (10i)1/2 we rewrite in polar form with r = 10, θ = π
2 ,

and use
wk =

√
r(cos

θ + 2kπ

2
+ i sin

θ + 2kπ

2
), k = 0, 1.

Thus, the two square roots of 10i are:
w0 =

√
10(cos π

4 + i sin π
4 ) =

√
10( 1√

2
+ 1√

2
i) =

√
5 +

√
5i and

w1 =
√
10(cos 5π

4 + i sin 5π
4 ) =

√
10(− 1√

2
− 1√

2
i) = −

√
5−

√
5i .

Going back to the quadratic formula, we obtain

z1 =
1

2
[−1 + i + (

√
5 +

√
5i)], z2 =

1

2
[−1 + i + (−

√
5−

√
5i)],

or z1 =
1
2 (
√
5− 1) + 1

2 (
√
5 + 1)i , z2 = − 1

2 (
√
5 + 1)− 1

2 (
√
5− 1)i .
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Factoring a Quadratic Polynomial

By finding all the roots of a polynomial equation we can factor the
polynomial completely.

If z1 and z2 are the roots of az2 + bz + c = 0, then az2 + bz + c

factors as
az2 + bz + c = a(z − z1)(z − z2).

Example: We found that the quadratic equation x2 − 2x +10 = 0 has
roots z1 = 1+ 3i and z2 = 1− 3i . Thus, the polynomial x2 − 2x + 10
factors as
x2 − 2x +10 = [x − (1 + 3i)][x − (1− 3i)] = (x − 1− 3i)(x − 1+ 3i).

Example: Similarly, z2 + (1− i)z − 3i = (z − z1)(z − z2) =
[z − 1

2(
√
5− 1)− 1

2 (
√
5 + 1)i ][z + 1

2(
√
5 + 1) + 1

2(
√
5− 1)i ].
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Differential Equations: The Auxiliary Equation

The first step in solving a linear second-order ordinary differential
equation ay ′′ + by ′ + cy = f (x) with real coefficients a, b and c is to
solve the associated homogeneous equation ay ′′ + by ′ + cy = 0.

The latter equation possesses solutions of the form y = emx .

To see this, we substitute y = emx , y ′ = memx , y ′′ = m2emx into
ay ′′ + by ′ + cy = 0:
ay ′′+by ′+ cy = am2emx +bmemx + cemx = emx (am2+bm+ c) = 0.

From emx(am2 + bm + c) = 0, we see that y = emx is a solution of
the homogeneous equation whenever m is root of the polynomial
equation am2 + bm + c = 0.

This equation is known as the auxiliary equation.
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Differential Equations: Complex Roots of the Auxiliary

When the coefficients of a polynomial equation are real, the complex
roots of the equation must always appear in conjugate pairs.

Thus, if the auxiliary equation possesses complex roots α+ iβ,
α− iβ, β > 0, then two solutions of ay ′′ + by ′ + cy = 0 are complex
exponential functions y = e(α+iβ)x and y = e(α−iβ)x .

In order to obtain real solutions of the differential equation, we use
Eulers formula e iθ = cos θ + i sin θ, θ real.

We obtain e(α+iβ)x = eαxe iβx = eαx (cos βx + i sinβx) and
e(α−iβ)x = eαxe−iβx = eαx (cos βx − i sinβx).
Since the differential equation is homogeneous, the linear
combinations y1 =

1
2(e

(α+iβ)x + e(α−iβ)x ),

y2 =
1
2i (e

(α+iβ)x − e(α−iβ)x ) are also solutions.

These expressions are real functions

y1 = eαx cosβx and y2 = eαx sinβx .
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Solving a Differential Equation

Solve the differential equation y ′′ + 2y ′ + 2y = 0.
We apply the quadratic formula to the auxiliary equation

m2 + 2m + 2 = 0.

We obtain the complex roots m1 = − 1 + i and m2 = m1 = − 1− i .

With the identifications α = − 1 and β = 1, the preceding formulas
give the two solutions

y1 = e−x cos x and y2 = e−x sin x .

The general solution of a homogeneous linear n-th-order differential
equations consists of a linear combination of n linearly independent
solutions.
Thus, the general solution of the given second-order differential
equation is

y = c1y1 + c2y2 = c1e
−x cos x + c2e

−x sin x ,

where c1 and c2 are arbitrary constants.
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Exponential Form of a Complex Number

In general, the complex exponential ez is the complex number defined
by ez = ex+iy = ex(cos y + i sin y).

The definition can be used to show that the familiar law of exponents
ez1ez2 = ez1+z2 holds for complex numbers.
This justifies the results presented on differential equations.

Euler’s formula is a special case of this definition.
Euler’s formula provides a notational convenience for several concepts
considered earlier in this chapter, e.g., the polar form of z

z = r(cos θ + i sin θ)
can now be written compactly as z = re iθ. This convenient form is
called the exponential form of a complex number z .

Example: i = eπi/2 and 1 + i =
√
2eπi/4.

Finally, the formula for the n nth roots of a complex number becomes

z1/n = n
√
re i(θ+2kπ)/n , k = 0, 1, 2, . . . , n − 1.
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