Ordinary Differential Equations

Gabriel Nagy

Mathematics Department,

Michigan State University,

East Lansing, MI, 48824.
gnagy@msu.edu

January 18, 2021










Preface

Contents

Chapter 1. First Order Equations

1.1.

1.1.1.
1.1.2.
1.1.3.
1.1.4.
1.1.5.
1.1.6.
1.2

1.2.1.
1.2.2.
1.2.3.
1.2.4.
1.2.5.
1.3.

1.3.1.
1.3.2.
1.3.3.
1.3.4.
1.4.

1.4.1.
1.4.2.
1.4.3.
1.4.4.
1.4.5.
1.5.

1.5.1.
1.5.2.
1.5.3.
1.5.4.
1.5.5.
1.6.

1.6.1.
1.6.2.
1.6.3.
1.6.4.

Linear Constant Coefficient Equations
Overview of Differential Equations
Linear Differential Equations
Solving Linear Differential Equations
The Integrating Factor Method
The Initial Value Problem
Exercises

Linear Variable Coefficient Equations
Review: Constant Coefficient Equations
Solving Variable Coefficient Equations
The Initial Value Problem
The Bernoulli Equation
Exercises

Separable Equations
Separable Equations
Euler Homogeneous Equations
Solving Euler Homogeneous Equations
Exercises

Exact Differential Equations
Exact Equations
Solving Exact Equations
Semi-Exact Equations
The Equation for the Inverse Function
Exercises

Applications of Linear Equations
Exponential Decay
Carbon-14 Dating
Newton’s Cooling Law
Mixing Problems
Exercises

Nonlinear Equations
The Picard-Lindelof Theorem
Comparison of Linear and Nonlinear Equations
Direction Fields
Exercises

Chapter 2.  Second Order Linear Equations

2.1.

Variable Coefficients

111

O T W =

o ¢)

13
14
14
15
17
19
23
24
24
29
32
35
36
36
37
41
46
50
o1
51
52
53
54
59
60
60
69
71
75

7
78



v

2.1.1.
2.1.2.
2.1.3.
2.1.4.
2.1.5.
2.1.6.

2.2

2.2.1.
2.2.2.
2.2.3.
2.2.4.

2.3.

2.3.1.
2.3.2.
2.3.3.
2.3.4.

2.4.

24.1.
2.4.2.
2.4.3.
2.4.4.

2.5.

2.5.1.
2.5.2.
2.5.3.
2.5.4.

2.6.

2.6.1.
2.6.2.
2.6.3.
2.6.4.
2.6.5.

CONTENTS

Definitions and Examples
Solutions to the Initial Value Problem.
Properties of Homogeneous Equations
The Wronskian Function
Abel’s Theorem
Exercises

Reduction of Order Methods
Special Second Order Equations
Conservation of the Energy
The Reduction of Order Method
Exercises

Homogenous Constant Coefficients Equations
The Roots of the Characteristic Polynomial
Real Solutions for Complex Roots
Constructive Proof of Theorem 2.3.2
Exercises

FEuler Equidimensional Equation
The Roots of the Indicial Polynomial
Real Solutions for Complex Roots
Transformation to Constant Coefficients
Exercises

Nonhomogeneous Equations
The General Solution Formula
The Undetermined Coeflicients Method
The Variation of Parameters Method
Exercises

Applications
Review of Constant Coefficient Equations
Undamped Mechanical Oscillations
Damped Mechanical Oscillations
Electrical Oscillations
Exercises

Chapter 3. Power Series Solutions

3.1

3.1.1.
3.1.2.
3.1.3.
3.1.4.

3.2.

3.2.1.
3.2.2.
3.2.3.
3.2.4.

Solutions Near Regular Points
Regular Points
The Power Series Method
The Legendre Equation
Exercises
Solutions Near Regular Singular Points
Regular Singular Points
The Frobenius Method
The Bessel Equation
Exercises

Notes on Chapter 3

Chapter 4. The Laplace Transform Method

4.1.

4.1.1.
4.1.2.

Introduction to the Laplace Transform
Oveview of the Method
The Laplace Transform

78
80
81
85
86
89
90
90
93
98
101
102
102
106
108
111
112
112
115
117
119
120
120
121
125
130
131
131
132
134
136
139

141
143
143
144
151
155
156
156
159
163
168
169

173
175
175
176



4.1.3.
4.1.4.
4.1.5.

4.2.

4.2.1.
4.2.2.
4.2.3.
4.2.4.
4.2.5.

4.3.

4.3.1.
4.3.2.
4.3.3.
4.3.4.
4.3.5.

4.4.

4.4.1.
4.4.2.
4.4.3.
4.4.4.
4.4.5.
4.4.6.

4.5.

4.5.1.
4.5.2.
4.5.3.
4.5.4.

CONTENTS

Main Properties
Solving Differential Equations
Exercises

The Initial Value Problem
Solving Differential Equations
One-to-One Property
Partial Fractions
Higher Order IVP
Exercises

Discontinuous Sources
Step Functions
The Laplace Transform of Steps
Translation Identities
Solving Differential Equations
Exercises

Generalized Sources
Sequence of Functions and the Dirac Delta
Computations with the Dirac Delta
Applications of the Dirac Delta
The Impulse Response Function
Comments on Generalized Sources
Exercises

Convolutions and Solutions
Definition and Properties
The Laplace Transform
Solution Decomposition
Exercises

Chapter 5. Systems of Linear Differential Equations

5.1.

5.1.1.
5.1.2.
5.1.3.
5.1.4.
5.1.5.
5.1.6.

5.2.

5.2.1.
5.2.2.
5.2.3.
5.2.4.

5.3.

5.3.1.
5.3.2.
5.3.3.

5.4.

5.4.1.
5.4.2.
5.4.3.
5.4.4.

General Properties
First Order Linear Systems
Existence of Solutions
Order Transformations
Homogeneous Systems
The Wronskian and Abel’s Theorem
Exercises

Solution Formulas
Homogeneous Systems
Homogeneous Diagonalizable Systems
Nonhomogeneous Systems
Exercises

Two-Dimensional Homogeneous Systems
Diagonalizable Systems
Non-Diagonalizable Systems
Exercises

Two-Dimensional Phase Portraits
Real Distinct Eigenvalues
Complex Eigenvalues
Repeated Eigenvalues
Exercises

180
184
186
187
187
188
190
195
197
198
198
199
200
204
209
210
210
212
214
215
218
221
222
222
224
226
230

231
232
232
234
235
238
242
246
247
247
249
256
259
260
260
263
266
267
268
271
273
275



VI

CONTENTS

Chapter 6. Autonomous Systems and Stability

6.1.

6.1.1.
6.1.2.
6.1.3.
6.1.4.
6.1.5.
6.2.

6.2.1.
6.2.2.
6.2.3.
6.2.4.
6.2.5.
6.2.6.

Flows on the Line

Autonomous Equations

Geometrical Characterization of Stability
Critical Points and Linearization
Population Growth Models

Exercises

Flows on the Plane

Two-Dimensional Nonlinear Systems
Review: The Stability of Linear Systems
Critical Points and Linearization

The Stability of Nonlinear Systems
Competing Species

Exercises

Chapter 7. Boundary Value Problems

7.1

7.1.1.
7.1.2.
7.1.3.
7.1.4.
7.2.

7.2.1.
7.2.2.
7.2.3.
7.2.4.
7.2.5.
7.2.6.
7.3.

7.3.1.
7.3.2.
7.3.3.
7.3.4.

Eigenfunction Problems

Two-Point Boundary Value Problems
Comparison: IVP and BVP
Eigenfunction Problems

Exercises

Overview of Fourier series

Fourier Expansion of Vectors
Fourier Expansion of Functions
Even or Odd Functions

Sine and Cosine Series
Applications

Exercises

The Heat Equation

The Heat Equation (in One-Space Dim)
The IBVP: Dirichlet Conditions

The IBVP: Neumann Conditions
Exercises

Chapter 8. Review of Linear Algebra

8.1.

8.1.1.
8.1.2.
8.1.3.
8.1.4.
8.2.

8.2.1.
8.2.2.
8.2.3.
8.2.4.
8.2.5.
8.2.6.
8.3.

8.3.1.
8.3.2.

Linear Algebraic Systems

Systems of Linear Equations
Gauss Elimination Operations
Linearly Dependence
Exercises

Matrix Algebra

A Matrix is a Function
Matrix Operations

The Inverse Matrix
Computing the Inverse Matrix
Overview of Determinants
Exercises

Figenvalues and Eigenvectors

Eigenvalues and Eigenvectors
Diagonalizable Matrices

277
279
279
281
283
286
290
291
291
292
294
297
299
302

303
304
304
305
308
312
313
313
315
320
321
324
326
327
327
329
332
339

341
342
342
346
349
350
351
351
352
356
358
359
362
363
363
370



8.3.3.

CONTENTS

Exercises

8.4. The Matrix Exponential

8.4.1.
8.4.2.
8.4.3.
8.4.4.

The Exponential Function
Diagonalizable Matrices Formula
Properties of the Exponential
Exercises

Chapter 9. Appendices
A. Overview of Complex Numbers

Al
A2
A.3.
A4,
A5,
A.6.

Extending the Real Numbers
The Imaginary Unit
Standard Notation

Useful Formulas

Complex Functions

Complex Vectors

B. Overview of Power Series
C. Discrete and Continuum Equations

C.1.
C.2.
C.3.
CA4.
C.5.
C.6.

The Difference Equation

Solving the Difference Equation
The Differential Equation
Solving the Differential Equation
Summary and Consistency
Exercises

D. Review Exercises
E. Practice Exams
F. Answers to exercises

Bibliography

VII

375
376
376
378
379
383

385
385
387
387
388
389
391
393
396
400
400
402
403
404
405
409
411
411
412

423



Preface

This is an introduction to ordinary differential equations. We describe the main ideas to
solve certain differential equations, such us first order scalar equations, second order linear
equations, and systems of linear equations. We use power series methods to solve variable
coefficients second order linear equations. We introduce Laplace transform methods to find
solutions to constant coefficients equations with generalized source functions. We provide
a brief introduction to boundary value problems, eigenvalue-eigenfunction problems, and
Fourier series expansions. We end these notes solving our first partial differential equation,
the heat equation. We use the method of separation of variables, where solutions to the
partial differential equation are obtained by solving infinitely many ordinary differential
equations.






CHAPTER 1

First Order Equations

We start our study of differential equations in the same way the pioneers in this field did.
We show particular techniques to solve particular types of first order differential equations.
The techniques were developed in the eighteenth and nineteenth centuries and the equations
include linear equations, separable equations, Euler homogeneous equations, and exact equa-
tions. This way of studying differential equations reached a dead end pretty soon. Most of
the differential equations cannot be solved by any of the techniques presented in the first
sections of this chapter. People then tried something different. Instead of solving the equa-
tions they tried to show whether an equation has solutions or not, and what properties such
solution may have. This is less information than obtaining the solution, but it is still valu-
able information. The results of these efforts are shown in the last sections of this chapter.
We present theorems describing the existence and uniqueness of solutions to a wide class of
first order differential equations.
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4 1. FIRST ORDER EQUATIONS

1.1. Linear Constant Coefficient Equations

1.1.1. Overview of Differential Equations. A differential equation is an equation,
where the unknown is a function and both the function and its derivatives may appear in
the equation. Differential equations are essential for a mathematical description of nature—
they lie at the core of many physical theories. For example, let us just mention Newton’s
and Lagrange’s equations for classical mechanics, Maxwell’s equations for classical electro-
magnetism, Schrédinger’s equation for quantum mechanics, and Einstein’s equation for the
general theory of gravitation. We now show what differential equations look like.

Example 1.1.1.

(a) Newton’s law: Mass times acceleration equals force, ma = f, where m is the particle
mass, a = d>x/dt? is the particle acceleration, and f is the force acting on the particle.
Hence Newton’s law is the differential equation

2
mT2(0) = (120, (1),
where the unknown is x(t)—the position of the particle in space at the time t. As we

see above, the force may depend on time, on the particle position in space, and on the
particle velocity.

Remark: This is a second order Ordinary Differential Equation (ODE).

(b) Radioactive Decay: The amount u of a radioactive material changes in time as follows,

du
E(t) = —ku(t), k>0,

where k is a positive constant representing radioactive properties of the material.
Remark: This is a first order ODE.

(¢) The Heat Equation: The temperature T in a solid material changes in time and in
three space dimensions—labeled by « = (x,y, z)—according to the equation
oT o*r o*T 0*T
—t,m:k(—t,m ~(t,x —t,m), k>0,
5 (h®) 52\ )+8y2( )+ 52 (@)
where k is a positive constant representing thermal properties of the material.
Remark: This is a first order in time and second order in space PDE.

(d) The Wave Equation: A wave perturbation u propagating in time ¢ and in three space
dimensions—labeled by & = (x,y, z)—through the media with wave speed v > 0 is
0*u 5 (0% 0%u 0*u
@(ta T) = (@(ta ) + @(t, ) + @(ta $)>~

Remark: This is a second order in time and space Partial Differential Equation (PDE).

The equations in examples (a) and (b) are called ordinary differential equations (ODE)— the
unknown function depends on a single independent variable, t. The equations in examples
(d) and (c) are called partial differential equations (PDE)—the unknown function depends
on two or more independent variables, ¢, x, y, and z, and their partial derivatives appear in
the equations.

The order of a differential equation is the highest derivative order that appears in the
equation. Newton’s equation in example (a) is second order, the time decay equation in
example (b) is first order, the wave equation in example (d) is second order is time and
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space variables, and the heat equation in example (¢) is first order in time and second order
in space variables.

1.1.2. Linear Differential Equations. We start with a precise definition of a first
order ordinary differential equation. Then we introduce a particular type of first order
equations—Ilinear equations.

Definition 1.1.1. A first order ODE on the unknown y is
y'(t) = f(t,y(t), (1L.L1)

d
where f is given and y' = di; The equation is linear iff the source function f is linear on

its second argument,
y' =a(t)y + b(t). (1.1.2)

The linear equation has constant coefficients iff both a and b above are constants. Oth-
erwise the equation has variable coefficients.

There are different sign conventions for Eq. (1.1.2) in the literature. For example, Boyce-
DiPrima [3] writes it as y' = —ay + b. The sign choice in front of function a is matter of
taste. Some people like the negative sign, because later on, when they write the equation
as ¥y +ay = b, they get a plus sign on the left-hand side. In any case, we stick here to the
convention y’' = ay + b.

Example 1.1.2.

(a) An example of a first order linear ODE is the equation
y' =2y +3.

On the right-hand side we have the function f(¢,y) = 2y + 3, where we can see that
a(t) = 2 and b(t) = 3. Since these coefficients do not depend on ¢, this is a constant
coefficient equation.

(b) Another example of a first order linear ODE is the equation

/

2
Y =—¥y+4t.

In this case, the right-hand side is given by the function f(t,y) = —2y/t + 4t, where
a(t) = —2/t and b(t) = 4¢. Since the coefficients are nonconstant functions of ¢, this is
a variable coefficients equation.

2
(c) The equation 3 = ot 4t is nonlinear.
Y
<
We denote by y : D C R — R a real-valued function y defined on a domain D. Such
a function is solution of the differential equation (1.1.1) iff the equation is satisfied for all
values of the independent variable ¢ on the domain D.

3
Example 1.1.3. Show that y(t) = * — 3 is solution of the equation

Yy =2y+3.
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Solution: We need to compute the left and right-hand sides of the equation and verify they
agree. On the one hand we compute 3 (t) = 2e2!. On the other hand we compute

2y(t)+3 = 2(6% - g) + 3 = 2%,

We conclude that y/(t) = 2y(t) + 3 for all t € R. <

Example 1.1.4. Find the differential equation ¢’ = f(y) satisfied by y(t) = 4 €' + 3.
Solution: (Solution Video) We compute the derivative of y,
y/ =8 th
We now write the right-hand side above, in terms of the original function y, that is,
y=4e*+3 = y-3=4e* = 2(y-3)=8¢"
So we got a differential equation satisfied by y, namely
y =2y — 6.
<
1.1.3. Solving Linear Differential Equations. Linear equations with constant co-

efficient are simpler to solve than variable coefficient ones. But integrating each side of the
equation does not work. For example, take the equation

y =2y+3,

and integrate with respect to ¢t on both sides,
/y’(t)dt:2/y(t)dt+3t+c, ceR

The Fundamental Theorem of Calculus implies y(t) = [ v/ () dt, so we get

y(t) = 2/y(t)dt+3t+c.

Integrating both sides of the differential equation is not enough to find a solution y. We
still need to find a primitive of y. We have only rewritten the original differential equation
as an integral equation. Simply integrating both sides of a linear equation does not solve
the equation.

We now state a precise formula for the solutions of constant coefficient linear equations.
The proof relies on a new idea—a clever use of the chain rule for derivatives.

Theorem 1.1.2 (Constant Coefficients). The linear differential equation

Y =ay+b (1.1.3)
with a # 0, b constants, has infinitely many solutions,
b
y(t) = ce® — =, ceR. (1.1.4)
a

Remarks:

(a) Equation (1.1.4) is called the general solution of the differential equation in (1.1.3).

(b) Theorem 1.1.2 says that Eq. (1.1.3) has infinitely many solutions, one solution for each
value of the constant ¢, which is not determined by the equation.


https://youtu.be/vbfilxKguOA
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(¢) It makes sense that we have a free constant ¢ in the solution of the differential equa-
tion. The differential equation contains a first derivative of the unknown function y,
so finding a solution of the differential equation requires one integration. Every indefi-
nite integration introduces an integration constant. This is the origin of the constant ¢
above.

Proof of Theorem 1.1.2: First consider the case b =0, so ¥y = ay, with a € R. Then,

/

vy =ay = %:a = In(ly)=a = In(ly|)=at+c,

where ¢, € R is an arbitrary integration constant, and we used the Fundamental Theorem
of Calculus on the last step, [In(|y|)’ dt = In(]y|). Compute the exponential on both sides,
y(t) = e = £e® e denote c=+e® = y(t)=ce”, ceR.

This is the solution of the differential equation in the case that b = 0. The case b # 0 can
be converted into the case above. Indeed,

, , b by’ b

Y =ay+b = y :a(erf) = (erf) :a<y+7),
a a a

since (b/a)’ = 0. Denoting § = y + (b/a), the equation above is §' = ay. We know all the
solutions to that equation,

at

b b
gt) =ce™, ceR = y(t)—f—g:ce‘” = y(t)=ce” ——.

Q

This establishes the Theorem. O

Remark: We solved the differential equation above, 4’ = ay, by transforming it into a
total derivative. Let us highlight this fact in the calculation we did,

I(ly) =a = (n(y)—at)' =0 & ¢ty@) =0, with ¢=In(ly(t)]) - at.
The function 1 is called a potential function. This is how the original differential equation
gets transformed into a total derivative,

Yy =ay — ¢ =0
Total derivatives are simple to integrate,
P=0 = 9P=c, c € R.
So the solution is
In(ly)) —at=c, = In(ly])=co+at = y(t)=+e® " =L
and denoting ¢ = £e“ we reobtain the formula
y(t) = ce™.

b
In the case b # 0 a potential function is ¢ (¢, y(t)) = ln(‘y(t) + - D — at.
a

Example 1.1.5. Find all solutions to the constant coefficient equation y’' = 2y + 3.
Solution: (Solution Video) Let’s pull a common factor 2 on the right-hand side of the

equation,
=2(+g) = () =2+ g)
y==2¥T35 yr35) ==W¥"3)
Denoting § = y + (3/2) we get

/

<

7v=2y = =2 = In(g) =2 = In(|g]) =2t+co.

@z‘


https://youtu.be/yTJZLSvGMdA
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We now compute exponentials on both sides, to get
§(t) = +e?T0 = £e? e denote ¢ =4e®, then §(t) =ce*, ceR.

3
2t _ = where ¢ € R. <

. _ 3
Since § =y + =, we get y(t) = ce 5

2

Remark: We converted the original differential equation y’" = 2y + 3 into a total derivative
of a potential function ' = 0. The potential function can be computed from the step

m(gh' =2 = (n(g)-2t)" =0,

3
then a potential function is (¢, y(t)) = ln(’y(t) + §|) — 2t. Since the equation is now
' =0, all solutions are ¥ = ¢,, with ¢, € R. That is

ln(‘y(t)—i—%’)—Qt:co = 1n<‘y(t)+g’)=2t—|—co = y(t)+;:ie2t+"‘°.

2
. 2t 3
If we denote ¢ = e, then we get the solution we found above, y(t) = ce*" — 5

1.1.4. The Integrating Factor Method. The argument we used to prove Theo-
rem 1.1.2 cannot be generalized in a simple way to all linear equations with variable coef-
ficients. However, there is a way to solve linear equations with both constant and variable
coefficients—the integrating factor method. Now we give a second proof of Theorem 1.1.2
using this method.

Second Proof of Theorem 1.1.2: Write the equation with y on one side only,

y' —ay=>o,
and then multiply the differential equation by a function p, called an integrating factor,
py —apy = pb. (1.1.5)
Now comes the critical step. We choose a positive function p such that
—ap=y. (1.1.6)

For any function p solution of Eq. (1.1.6), the differential equation in (1.1.5) has the form
py' +p'y = pb.
But the left-hand side is a total derivative of a product of two functions,
!
(ny) = pb. (1.1.7)

This is the property we want in an integrating factor, u. We want to find a function p such
that the left-hand side of the differential equation for y can be written as a total derivative,
just as in Eq. (1.1.7). We only need to find one of such functions u. So we go back to
Eq. (1.1.6), the differential equation for u, which is simple to solve,

Wo=—-ap = Eo o = (1n(|u\))/:—a = In(ju|) = —at + c.

I
Computing the exponential of both sides in the equation above we get
p=de® % = fe0 e = = e, c, = +e.

Since ¢, is a constant which will cancel out from Eq. (1.1.5) anyway, we choose the integration
constant ¢, = 0, hence ¢; = 1. The integrating function is then

u(t) =e .
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This function is an integrating factor, because if we start again at Eq. (1.1.5), we get
—at ,/

e y aefat y= befat = efat y/ + (e—at)/ y = be—at,

where we used the main property of the integrating factor, —ae= % = (e*‘”)/. Now the
product rule for derivatives implies that the left-hand side above is a total derivative,

(e—at y)/ —be Ot
b /
The right-hand side above can be rewritten as a derivative, be " = (—f e*“t> , hence

(rrosbe) <0 o [rl)e] o

We have succeeded in writing the whole differential equation as a total derivative. The
differential equation is the total derivative of a potential function, which in this case is

Y(t,y) = (y + g) e .

Notice that this potential function is the exponential of the potential function found in the
first proof of this Theorem. The differential equation for y is a total derivative,

dip
—(t,y(t)) =0
L ty() =0,
so it is simple to integrate,
b b
vity®) =c = (y+-)e™=c = y)=cet =
This establishes the Theorem. O

We solve the example below following the second proof of Theorem 1.1.2.

Example 1.1.6. Find all solutions to the constant coefficient equation

y =2y +3 (1.1.8)

Solution: (Solution Video) Write the equation in (1.1.8) as follows,
y' — 2y =3.
Multiply this equation by the integrating factor u(t) = e=2¢,
672ty/ _9e 2t y = 372 o 672ty/ + (672t)’y — 3e 2t
We now solve the same problem above, but now using the formulas in Theorem 1.1.2.

Example 1.1.7. Find all solutions to the constant coefficient equation

Y =2y+3 (1.1.9)

Solution: The equation above is the case of a = 2 and b = 3 in Eq. (1.1.3). Therefore,
using these values in the expression for the solution given in Eq. (1.1.4) we obtain

y(t) = ce® —

DN o


https://youtu.be/j7pf3dKpyQM
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The equation on the far right above is
(e—Qt y)/ — 36_2t.
Rewrite the right-hand side above, / c>0
3 /
—2t v _ (O -2t
(e7%y) = ( 5 € ) .

Moving terms and reordering factors we get

3 ' — t
-0
The equation is a total derivative, ¢’ = 0, of
the potential function
3
d%uy)=:(y+-§)e‘%-
c<O0

Now the equation is easy to integrate,

3\ o
(y + 7) e =c.
_2 F1GURE 1. A few solutions
So we get the solutions to Eq. (1.1.8) for different c.

(Interactive Graph)

y(t) = ce? — ceR. <

VR GV]

1.1.5. The Initial Value Problem. Sometimes in physics one is not interested in all
solutions to a differential equation, but only in those solutions satisfying extra conditions.
For example, in the case of Newton’s second law of motion for a point particle, one could
be interested only in solutions such that the particle is at a specific position at the initial
time. Such condition is called an initial condition, and it selects a subset of solutions of the
differential equation. An initial value problem means to find a solution to both a differential
equation and an initial condition.

Definition 1.1.3. The initial value problem (IVP) is to find all solutions y to
Yy =ay+b, (1.1.10)
that satisfy the initial condition

y(to) = Yo, (1.1.11)

where a, b, to, and y, are given constants.

Remark: The equation (1.1.11) is called the initial condition of the problem.

Although the differential equation in (1.1.10) has infinitely many solutions, the associ-
ated initial value problem has a unique solution.

Theorem 1.1.4 (Constant Coefficients IVP). Given the constants a,b,ty,yo € R, with
a # 0, the initial value problem

Yy =ay+b, y(to) = o,

has the unique solution

y@)::(yo+-§)ea“*%>—-g. (1.1.12)


http://mathstud.io/?input[0]=U2xpZGVyKGMlMkMtNS4uMTAtJTNFMC41JTJDMCklMEFmKHgpJTIwJTNEJTIwYyUyMCU0MGUlNUUoMngpJTIwLSUyMDMlMkYyJTBBUGxvdChmKHgpJTJDJTIweCUzRCU1QjAlMkMyJTVEJTJDJTIweSUzRCU1Qi0yMCUyQzQwJTVEKQ
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Remark: In case t, = 0 the initial condition is y(0) = y, and the solution is
b b
y(t) = (yo+- ) e =2
a a
The proof of Theorem 1.1.4 is just to write the general solution of the differential
equation given in Theorem 1.1.2; and fix the integration constant ¢ with the initial condition.
Proof of Theorem 1.1.4: The general solution of the differential equation in (1.1.10) is
given in Eq. (1.1.4) for any choice of the integration constant ¢,
b
) =ce — =
y(t) = ce® -~
The initial condition determines the value of the constant ¢, as follows

b b
Yo = y(to) = Ceato _ g = c = (yo —+ g)efat().

Introduce this expression for the constant ¢ into the differential equation in Eq. (1.1.10),
b

y(t) = (yo + S)e“(t*t") -

This establishes the Theorem. O

Example 1.1.8. Find the unique solution of the initial value problem

y' =2y +3, y(0) = 1. (1.1.13)

Solution: (Solution Video) All solutions of the differential equation are given by

y(t) = e =2,
where ¢ is an arbitrary constant. The initial condition in Eq. (1.1.13) determines c,
1=y0)=c—=- = c:§.
2 2

.
Then, the unique solution to the initial value problem above is y(t) = % et —

N | o
A

Example 1.1.9. Find the solution y to the initial value problem
y = -3y +1, y(0) = 1.

Solution: (Solution Video) Write the differential equation as ' + 3y = 1, and multiply
the equation by the integrating factor u = 3!, which will convert the left-hand side above
into a total derivative,
eSty/ + 363ty — 3t o eSty/ + (est)’y — 3t
This is the key idea, because the derivative of a product implies
(e3t y),: e3t

The exponential e is an integrating factor. Integrate on both sides of the equation,

1
3t 3t
e = —e” +c.
Y 3

So every solution of the differential equation above is given by

1
y(t):ce_?’t—i—g, ceR.


https://youtu.be/825uaibqYP4
https://youtu.be/VZP3KjB5Ahc
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The initial condition y(0) = 2 selects only one solution,

1 2
1= =c+s = c=:.
y(0)=c 3 c=3

2 _. 1
We get the solution y(t) = 3 e 3 4 3 <

Notes. This section corresponds to Boyce-DiPrima [3] Section 2.1, where both constant
and variable coefficient equations are studied. Zill and Wright give a more concise exposition
in [17] Section 2.3, and a one page description is given by Simmouns in [10] in Section 2.10.
The integrating factor method is shown in most of these books, but unlike them, here we
emphasize that the integrating factor changes the linear differential equation into a total
derivative, which is trivial to integrate. We also show here how to compute the potential
functions for the linear differential equations. In § 1.4 we solve (nonlinear) exact equations
and nonexact equations with integrating factors. We solve these equations by transforming
them into a total derivative, just as we did in this section with the linear equations.
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1.1.6. Exercises.

1.1.1.- Find the differential equation of the
form y' = f(y) satisfied by the function
y(t) = 8¢” — %
1.1.2.- Find constants a, b, so that
y(t) = (t +3) e
is solution of the IVP

Y =ay+e*, y(0)=b
1.1.3.- Find all solutions y of
y' = 3y.

1.1.4.- Follow the steps below to find all so-
lutions of

y = —4y+2
(a) Find the integrating factor u.
(b) Write the equations as a total de-

rivative of a function 1, that is

/

Y =—4dy+2 & ¢ =0

(c¢) Integrate the equation for .
(d) Compute y using part (c).

1.1.5.- Find all solutions of
y' =2y+5

1.1.6.- Find the solution of the IVP
y = —4y+2, y(0)=5.

1.1.7.- Find the solution of the IVP
dy

Ly =sy) -2, y(1)=1,

1.1.8.- Express the differential equation
Yy =6y+1 (1.1.14)
as a total derivative of a potential func-
tion 9 (t,y), that is, find v satisfying
"=6y+1 < Y =0

Integrate the equation for the poten-
tial function % to find all solutions y of
Eq. (1.1.14).

1.1.9.- Find the solution of the IVP
y =6y+1, y(0)=1.

1.1.10.- * Follow the steps below to solve
y' =-3y+5, y(0)=1.

(a) Find any integrating factor u for
the differential equation.

(b) Write the differential equation as a
total derivative of a potential func-
tion .

(¢) Use the potential function to find
the general solution of the differen-
tial equation.

(d) Find the solution of the initial value
problem above.
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1.2. Linear Variable Coefficient Equations

In this section we obtain a formula for the solutions of variable coefficient linear equations,
which generalizes Equation (1.1.4) in Theorem 1.1.2. To get this formula we use the integrat-
ing factor method—already used for constant coefficient equations in § 1.1. We also show
that the initial value problem for variable coefficient equations has a unique solution—just
as happens for constant coefficient equations.

In the last part of this section we turn our attention to a particular nonlinear differential
equation—the Bernoulli equation. This nonlinear equation has a particular property: it can
be transformed into a linear equation by an appropriate change in the unknown function.
Then, one solves the linear equation for the changed function using the integrating factor
method. The last step is to transform the changed function back into the original function.

1.2.1. Review: Constant Coefficient Equations. Let us recall how we solved the
constant coefficient case. We wrote the equation 4’ = ay + b as follows

1=+

The critical step was the following: since b/a is constant, then (b/a)’ = 0, hence

by’ b
(+2) =a(o+2).
a a
At this point the equation was simple to solve,
+ by b
R N In |y + -
(y+ %) a

We now computed the exponential on both sides, to get

! b
Y=o = e ) =era
a

y+ 9‘ — ec0+at — eco eat = y+ é — (ieco)eat7
a a

and calling ¢ = £e® we got the formula

b
t) =ce® — 2
y(t) =ce .

This idea can be generalized to variable coefficient equations, but only in the case where
b/a is constant. For example, consider the case b = 0 and a depending on ¢. The equation
is ¢y’ = a(t) y, and we can solve it as follows,

Loat)y = my) =at) = Wy =A)+ c,

where A = f adt, is a primitive or antiderivative of a. Therefore,

y(t) — :I:eA(t)+Co — :I:eA(t) 6CO

)

so we get the solution y(t) = ceA®, where ¢ = fe.
Example 1.2.1. The solutions of ' = 2ty are y(t) = cet”, where ¢ € R.

However, the case where b/a is not constant is not so simple to solve—we cannot add
zero to the equation in the form of 0 = (b/a)’. We need a new idea. We now show an idea
that works with all first order linear equations with variable coefficients—the integrating
factor method.
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1.2.2. Solving Variable Coefficient Equations. We now state our main result—the
formula for the solutions of linear differential equations with variable coefficiets.

Theorem 1.2.1 (Variable Coeflicients). If the functions a, b are continuous, then

y =a(t)y+b(t), (1.2.1)
has infinitely many solutions given by
y@):ch“)+eA“{/e_A”N(ﬂdu (1.2.2)

where A(t) = [a(t)dt and c € R.

Remarks:

(a) The expression in Eq. (1.2.2) is called the general solution of the differential equation.
(b) The function u(t) = e=(®) is called the integrating factor of the equation.

Example 1.2.2. Show that for constant coefficient equations the solution formula given in
Eq. (1.2.2) reduces to Eq. (1.1.4).

Solution: In the particular case of constant coefficient equations, a primitive, or antideriv-
ative, for the constant function a is A(t) = at, so

y(t) = ce™ + e‘”/efat bdt.

Since b is constant, the integral in the second term above can be computed explicitly,

b b
6at/b67at dt = e <7— e*“t) —
a a

b
Therefore, in the case of a, b constants we obtain y(t) = ce® — — given in Eq. (1.1.4). <
a

Proof of Theorem 1.2.1: Write the differential equation with y on one side only,

y —ay=»,
and then multiply the differential equation by a function p, called an integrating factor,
py —apy=pb. (1.2.3)
The critical step is to choose a function p such that
—ap=y. (1.2.4)

For any function p solution of Eq. (1.2.4), the differential equation in (1.2.3) has the form
py' +p'y = pb.
But the left-hand side is a total derivative of a product of two functions,
!

(ny) = pb. (1.2.5)
This is the property we want in an integrating factor, ;. We want to find a function p such
that the left-hand side of the differential equation for y can be written as a total derivative,
just as in Eq. (1.2.5). We need to find just one of such functions u. So we go back to
Eq. (1.2.4), the differential equation for u, which is simple to solve,

Wo=—ap = %z—a = () =-a = () =-A+c,
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where A = [adt, a primitive or antiderivative of a, and ¢, is an arbitrary constant. Com-
puting the exponential of both sides we get

p=+e®e ™ = p=ce A, ¢, = *e®.

Since ¢; is a constant which will cancel out from Eq. (1.2.3) anyway, we choose the integration
constant ¢, = 0, hence ¢; = 1. The integrating factor is then

p(t) = e A0,
This function is an integrating factor, because if we start again at Eq. (1.2.3), we get
ey —aeAy=etb = ey 4 (e ) y=e,

where we used the main property of the integrating factor, —ae 4 = (e‘A)/. Now the
product rule for derivatives implies that the left-hand side above is a total derivative,

(eiA y)/ =e .

Integrating on both sides we get
(e’A y) = /e*AbdtJrc = (e*Ay) — /efAbdt =c.

The function ¥(t,y) = (e‘A y) — fe_A bdt is called a potential function of the differen-
tial equation. The solution of the differential equation can be computed form the second
equation above, 1) = ¢, and the result is

y(t) = cet® 4 AWM /e_A(t) b(t) dt.
This establishes the Theorem. O

Example 1.2.3. Find all solutions y to the differential equation

3
y’=¥y+t57 t>0.

Solution: Rewrite the equation with y on only one side,

3
/2 :t5.
Y ty

Multiply the differential equation by a function u, which we determine later,
3 3
ut (v =3y) =tut) = wO)y -5y =">£ ).
We need to choose a positive function p having the following property,

Integrating,
3 ) .
mmm:f/;m:fmmm+%:mwr%+% L (o) ),

so we get = (F£e®) |t|73. We need only one integrating factor, so we choose pu = t=3. We
now go back to the differential equation for y and we multiply it by this integrating factor,

3
t_S(y’ — Ey) =t73¢5 = 73y =3ty =1+2
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0¥
Using that —3¢~% = (t73)" and t? = (3) , we get

3, 3y/ 2N/ s v (Y A%
Fyaayy=(5) s e =(0) s () =0
v y=(3 (7y) = (3 v-3
t3
This last equation is a total derivative of a potential function ¢ (t,y) =t 3y — 3 Since the
equation is a total derivative, this confirms that we got a correct integrating factor. Now

we need to integrate the total derivative, which is simple to do,

3 t3 3 t3 5 tG
t3y——=¢c = t3y=c+— = yt)=ct®+—
y—3 y 3 y(t) 3
where c is an arbitrary constant. <

Example 1.2.4. Find all solutions of ty/ = —2y + 4¢2, with ¢ > 0.

Solution: Rewrite the equation as

y = f% y+4t & at) = f%, b(t) = 4t. (1.2.6)
Rewrite again,
y + %y = 4t.
Multiply by a function u,
ny + %uy = pdt.
Choose p solution of
Zh=p = ) =7 = () =2m() =) = () =+

We choose i = t2. Multiply the differential equation by this s,
2y 42y =4tt? = (t*y) =43
If we write the right-hand side also as a derivative,
y) =Y = (Py—t") =0
So a potential function is (¢, y(t)) = t> y(t) — t*. Integrating on both sides we obtain
try—tt=c = ty=c+tt = yt)= t%+t2'
<
1.2.3. The Initial Value Problem. We now generalize Theorem 1.1.4—initial value
problems have unique solutions—from constant coefficients to variable coefficients equations.

We start introducing the initial value problem for a variable coefficients equation—a simple
generalization of Def. 1.1.3.

Definition 1.2.2. The initial value problem (IVP) is to find all solutions y of
y =a(t)y+b(t), (1.2.7)
that satisfy the initial condition

y(to) = Yo, (1.2.8)
where a,b are given functions and ty, y, are given constants.
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Remark: The Equation (1.2.8) is the initial condition of the problem.
Although the differential equation in (1.2.7) has infinitely many solutions, the associated
initial value problem has a unique solution.
Theorem 1.2.3 (Variable coefficients IVP). Given continuous functions a,b, with domain
(t1,t2), and constants t, € (t1,t,) and y, € R, the initial value problem
y' =a)y+0b),  ylt) = v, (1.2.9)
has the unique solution y on the domain (t1,t,), given by

t
y(t) = go eA®) 4 AD) / A6 p(s) ds, (1.2.10)

to

t
where the function A(t) = / a(s)ds is a particular antiderivative of function a.
to

Remark: In the particular case of a constant coefficient equation, where a,b € R, the
solution given in Eq. (1.2.10) reduces to the one given in Eq. (1.1.12). Indeed,

t t b b
A(t) = / ads = a(t —t,), / e~ e5=t) hdg = — = gmalt=to) 4 Z
to to a a
Therefore, the solution y can be written as
y(t) = yo e2(t~t0) 4 ealt=to) (_9 e—alt—to) 9) - (yo + 9) poli—to) _ b
a a a a

Proof Theorem 1.2.3: Theorem 1.2.1 gives us the general solution of Eq. (1.2.9),

y(t) = cet® 4 AW / e Wb(t)dt, ceR.

Let us use the notation K(t) = / e~ AW p(t) dt, and then introduce the initial condition
in (1.2.9), which fixes the constant c,
Yo = y(to) = cetlto) 4 eAt0) (),

So we get the constant c,
c= 1Yo e~ Alto) _ K(t,).

Using this expression in the general solution above,
y(t) = (yo e~ Alto) _ K(t0)> e 4 e K (1) = yo e =AM 4 AW (K (1) — K (t,)).

Let us introduce the particular primitives A(t) = A(t) — A(t,) and K(t) = K(t) — K(t,),
which vanish at t,, that is,
¢ ¢
At) = / a(s)ds,  K(t) = / e~ 4G) b(s) ds.
to to
Then the solution y of the IVP has the form

R ¢
y(t) = yo eV 4 AW / e A b(s) ds

to

which is equivalent to

. t
Y(#) = go AW 4 (AM-Alto) / ¢~(A()=A(10)) b 5) s,

to
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so we conclude that .
y(t) = yo AW 4 Al / e A b(s)ds.

to

Once we rename the particular primitive A simply by A, we establish the Theorem. (]

We solve the next Example following the main steps in the proof of Theorem 1.2.3
above.

Example 1.2.5. Find the function y solution of the initial value problem
ty' + 2y = 4t t >0, y(1) = 2.
Solution: In Example 1.2.4 we computed the general solution of the differential equation,
c
y(lﬁ)zt—Q—i—tQ7 ceR.

The initial condition implies that

1 .
2=y(l)=c+1 = c=1 = yt)=-+t°

<

Example 1.2.6. Find the solution of the problem given in Example 1.2.5, but this time
using the results of Theorem 1.2.3.

Solution: We find the solution simply by using Eq. (1.2.10). First, find the integrating
factor function p as follows:

t
2
At) = —/ Zds=—2[In(t) —In(1)] = —2In(t) = A(t)=In(t"?).
.S
The integrating factor is u(t) = e=4®), that is,

p(t) = e~ = ) o u(t) = 2.
Note that Eq. (1.2.10) contains eA®) = 1/4u(t). Then, compute the solution as follows,

y(t) = ;(2+/t5245d5)

1
2 1 [t
1

— 4
= Sttt -1
2 , 1 1,

<

1.2.4. The Bernoulli Equation. In 1696 Jacob Bernoulli solved what is now known
as the Bernoulli differential equation. This is a first order nonlinear differential equation.
The following year Leibniz solved this equation by transforming it into a linear equation.
We now explain Leibniz’s idea in more detail.

Definition 1.2.4. The Bernoulli equation is

vy =plt)y+q(t)y™. (1.2.11)

where p, q are given functions and n € R.
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Remarks:

(a) For n # 0,1 the equation is nonlinear.
(b) If n = 2 we get the logistic equation, (we’ll study it in a later chapter),

y
' = 177).
y=ry(1- %

(¢) This is not the Bernoulli equation from fluid dynamics.

The Bernoulli equation is special in the following sense: it is a nonlinear equation that
can be transformed into a linear equation.

Theorem 1.2.5 (Bernoulli). The function y is a solution of the Bernoulli equation
y=pt)y+at)y", n#l,

iff the function v = 1/y"=V) is solution of the linear differential equation

v'=—(n—1)p(t)v—(n—1)q).

Remark: This result summarizes Laplace’s idea to solve the Bernoulli equation. To trans-
form the Bernoulli equation for y, which is nonlinear, into a linear equation for v = 1/ y(=1,
One then solves the linear equation for v using the integrating factor method. The last step
is to transform back to y = (1/v)Y/ (=1,

Proof of Theorem 1.2.5: Divide the Bernoulli equation by y",

y _ p()
y7 = g1 +q(t).
Introduce the new unknown v =y~ (™~ and compute its derivative,
v'(t "(t
v = [y—(n—l)]/ _ —(TL _ 1)y—n y/ = _ ( ) _ Y ( )

n—1) @)
If we substitute v and this last equation into the Bernoulli equation we get

,UI

1) pt)v+q(t) = v =—(n-1)pt)v—(n—1)qt).

This establishes the Theorem. O

Example 1.2.7. Find every nonzero solution of the differential equation
v =y+2y°.

Solution: This is a Bernoulli equation for n = 5. Divide the equation by y°,

/
y 1
E = 374 + 2.
Introduce the function v = 1/y* and its derivative v’ = —4(y’/y°), into the differential

equation above,
/
—UZZ’U—FQ = vV=-4v-8 = v +4v=-8

The last equation is a linear differential equation for the function v. This equation can be
solved using the integrating factor method. Multiply the equation by pu(t) = e, then

8
(64%)/ =-8e¥ = eMy= 1 et + e



1.2. LINEAR VARIABLE COEFFICIENT EQUATIONS 21
. 4t : 1/
We obtain that v = ce™ — 2. Since v = 1/y*,
1
oyt
Y

1

4t
=ce " -2 = yYyt)=ft——.
(ce*“ — 2)1/4

Example 1.2.8. Given any constants a,, by, find every solution of the differential equation

y/:aoy+boy3-

Solution: This is a Bernoulli equation with n = 3. Divide the equation by y3,

/
Y Qo
Y %
vy
Introduce the function v = 1/y? and its derivative v/ = —2(y'/y?), into the differential
equation above,
/
—g = aov +b, = vV =-2av—-2b = U +2a0=—2b,.

The last equation is a linear differential equation for v. This equation can be solved using
the integrating factor method. Multiply the equation by u(t) = e2e0t,

/ bo
(eQG.ot,U) — _2b0 eQ(lof, = eQ(Lotv _ _ 0 eant +e
Qo

b
We obtain that v = ce 2% — = Since v = 1/v2,
Qo
1 b 1
—zzce_Q“Ot——O = 75
y Qo (067211025 _ ILO) /

Example 1.2.9. Find every solution of the equation ty’ = 3y + t°y'/3.

Solution: Rewrite the differential equation as
3
y/ _ gy_|_t4y1/3.
This is a Bernoulli equation for n = 1/3. Divide the equation by yl/37

Yy _ § 2/3 4
—yl 7B 7Y +t.
Define the new unknown function v = 1/y("»=1| that is, v = 3?/%, compute is derivative,
2 !/
f = 3 Zf—/g, and introduce them in the differential equation,
Yy

3 / 3 4 4
— — t —_ — 7t'
v = ’U+ = v v

This is a linear equation for v. Integrate this equation using the integrating factor method.
To compute the integrating factor we need to find

moz/%mZQMQZmWy
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Then, the integrating factor is p(t) = e=A(®). In this case we get

Cn(e? (=2 1
p(t) = e M) = () =

=5
Therefore, the equation for v can be written as a total derivative,
1,, 2 2 4 vo2 g\
il —Zy)=2¢ = (——ft):O.
g -39 =3 29

The potential function is 1 (¢, v) = v/t —(2/9)t3 and the solution of the differential equation
is ¥(t,v(t)) = ¢, that is,
2 2 2
t%_ §t3 =c = out)=1¢ (c—i— §t3) = (t) =ct2+§t5.
Once v is known we compute the original unknown y = #v%/2, where the double sign is
related to taking the square root. We finally obtain

y(t) = i((;tQ + gtS)a/Q.

Notes. This section corresponds to Boyce-DiPrima [3] Section 2.1, and Simmons [10)]
Section 2.10. The Bernoulli equation is solved in the exercises of section 2.4 in Boyce-
Diprima, and in the exercises of section 2.10 in Simmons.
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1.2.5. Exercises.

1.2.1.- Find all solutions of
y = 4ty.

1.2.2.- Find the general solution of

/ 2t

y=-yte

1.2.3.- Find the solution y to the IVP
y =y+2e”, y(0)=0.

1.2.4.- Find the solution y to the IVP

sin(t) y(ﬂ)g

t T

ty +2y = 5

I

for t > 0.

1.2.5.- Find all solutions y to the ODE

/

Y

—=—— =4t
(t+1)y

1.2.6.- Find all solutions y to the ODE
ty' +ny =1,

with n a positive integer.

1.2.7.- Find the solutions to the IVP
2ty —y =0, y(0)=3.
1.2.8.- Find all solutions of the equation
y =y — 2sin(t).

1.2.9.- Find the solution to the initial value
problem

ty' =2y + 4t° cos(4t), y(g) =0.
1.2.10.- Find all solutions of the equation
Y +ty =ty
1.2.11.- Find all solutions of the equation
Yy =—zy+62.,/y.

1.2.12.- Find all solutions of the IVP

3

Y =y+-5, y0)=1

Yy

1.2.13.- * Find all solutions of

Yy =ay+by",

where a # 0, b, and n are real constants
with n # 0, 1.
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1.3. Separable Equations

1.3.1. Separable Equations. More often than not nonlinear differential equations
are harder to solve than linear equations. Separable equations are an exception—they can
be solved just by integrating on both sides of the differential equation. We tried this idea
to solve linear equations, but it did not work. However, it works for separable equations.

Definition 1.3.1. A separable differential equation for the function y is
hy)y' = g(t),

where h, g are given functions.

Remark: A separable differential equation is h(y) 3y’ = g(y) has the following properties:
e The left-hand side depends explicitly only on y, so any ¢ dependence is through y.
e The right-hand side depends only on ¢.
e And the left-hand side is of the form (something on y) x y/'.

Example 1.3.1.
£2

(a) The differential equation y’ = T is separable, since it is equivalent to

_y2
1=y =t = {

(b) The differential equation 3’ + y? cos(2t) = 0 is separable, since it is equivalent to

g(t) = — cos(2t),

Ly (2t) = 1
— 1y = —cos
y? h(y) = =.
Y
The functions g and h are not uniquely defined; another choice in this example is:
1
g(t) = cos(2t), h(y) = e

(d) The equation y’ = e¥ + cos(t) is not separable.
e e constant coefficient linear differential equation y’ = a,y + b, is separable, since i
Th tant fficient li differential ti ! by i ble, si it
is equivalent to

. g(t) =1,
/
y+b hly) = ————.
(aoy 0) (y) (aoy+bo)

(f) The linear equation 3y’ = a(t) y + b(t), with a # 0 and b/a nonconstant, is not separable.
<

From the last two examples above we see that linear differential equations, with a # 0,
are separable for b/a constant, and not separable otherwise. Separable differential equations
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are simple to solve. We just integrate on both sides of the equation. We show this idea in
the following example.

Example 1.3.2. Find all solutions y to the differential equation
/

Y
7 = cos(2t).

Solution: The differential equation above is separable, with

o(t) = cos2t),  hly) =~

Therefore, it can be integrated as follows:

Y (1)
_172 =cos(2t) <« /— dt = /COS(Zt) dt + c.

The integral on the right-hand side can be computed explicitly. The integral on the left-hand
side can be done by substitution. The substitution is

u=y(t), du t)ydt = /—— dt = /cos(2t) dt + c.

This notation makes clear that u is the new integation variable, while y(¢) are the unknown
function values we look for. However it is common in the literature to use the same name
for the variable and the unknown function. We will follow that convention, and we write
the substitution as

=y(t), dy=vy'(t = /——dt /cos(2t)dt+c.

We hope this is not too confusing. Integrating on both sides above we get

1 L (2t) +
— = —sin c.
y 2
So, we get the implicit and explicit form of the solution,
1 1 2

g =gt e e wlt) = e

Remark: Notice the following about the equation and its implicit solution:

—éy'zcos@t) & by =g,  hy)=——

y727
iy’:%sin(Zt) & HW=G)., Hy) =

g(t) = cos(2t),
at) = %sin(Qt).

Yy’
e Here H is an antiderivative of h, that is, H(y) = [ h(y) dy.
e Here G is an antiderivative of g, that is, G(t) = [ g(¢) dt.

Theorem 1.3.2 (Separable Equations). If h,g are continuous, with h # 0, then
hy)y = g(t) (1.3.1)

has infinitely many solutions y satisfying the algebraic equation
H(y(t)) = G(t) + ¢, (1.3.2)

where ¢ € R is arbitrary, H and G are antiderivatives of h and g.
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Remark: An antiderivative of h is H(y) = [ h(y)dy, while an antiderivative of g is the
function G(t) = [ g(t) dt.

Proof of Theorem 1.3.2: Integrate with respect to ¢t on both sides in Eq. (1.3.1),

Wy = glt) = /mmmywﬁ:/mwm+a

where ¢ is an arbitrary constant. Introduce on the left-hand side of the second equation
above the substitution

y=y(t), dy=y'(t)dt
The result of the substitution is

[rwoywi= [rwi = [nwdy= [ow e

To integrate on each side of this equation means to find a function H, primitive of h, and
a function G, primitive of g. Using this notation we write

) = [wwds. G0 = [aar
Then the equation above can be written as follows,
H(y) = G@) +c,
which implicitly defines a function y, which depends on ¢. This establishes the Theorem. [J

Example 1.3.3. Find all solutions y to the differential equation
t2
= 1 — y2 .

/

Y

(1.3.3)

Solution: We write the differential equation in (1.3.3) in the form h(y)y" = g(¢),
(1 - y2) y =t
In this example the functions h and g defined in Theorem 1.3.2 are given by
h(y)=(1 -y,  g(t)=t.

We now integrate with respect to ¢ on both sides of the differential equation,

/(1 — () y'(t)dt = /t2 dt + c,

where c is any constant. The integral on the right-hand side can be computed explicitly.
The integral on the left-hand side can be done by substitution. The substitution is

y=yt), dy=yB)dt = /ﬁ—f@»ﬂﬂﬁz/ﬂ—fMy

This substitution on the left-hand side integral above gives,
v
/(lfyz)dy:/tzdtch & yf§:§+c.
The equation above defines a function y, which depends on t. We can write it as
3 3
y () ¢
y(t) — == +c
y(t) — =3 5 T

We have solved the differential equation, since there are no derivatives in the last equation.
When the solution is given in terms of an algebraic equation, we say that the solution y is
given in implicit form. <
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Definition 1.3.3. A functiony is a solution in implicit form of the equation h(y)y' = g(t)
iff the function y is solution of the algebraic equation

H(y(t)) = G(t) +c,

where H and G are any antiderivatives of h and g. In the case that function H is invertible,
the solution y above is given in explicit form iff is written as

y(t) = H ' (G(t) +c).

In the case that H is not invertible or H ! is difficult to compute, we leave the solution
y in implicit form. We now solve the same example as in Example 1.3.3, but now we just
use the result of Theorem 1.3.2.
Example 1.3.4. Use the formula in Theorem 1.3.2 to find all solutions y to the equation
t2
/

Y

Solution: Theorem 1.3.2 tell us how to obtain the solution y. Writing Eq. (1.3.4) as
(1—y?)y =+t
we see that the functions h, g are given by

h(y) =1—y>  g(t) =+t

Their primitive functions, H and G, respectively, are simple to compute,

3
Y
hy) =1-y* = Hy)=y- 7,
t3
gt)y=t* = G@I)= 3
Then, Theorem 1.3.2 implies that the solution y satisfies the algebraic equation
3 3
y () ¢
t) — =—+4c 1.3.5
y - 52 =S e (1.3.5)
where ¢ € R is arbitrary. <

Remark: Sometimes it is simpler to remember ideas than formulas. So one can solve a
separable equation as we did in Example 1.3.3, instead of using the solution formulas, as in
Example 1.3.4. (Although in the case of separable equations both methods are very close.)

In the next Example we show that an initial value problem can be solved even when
the solutions of the differential equation are given in implicit form.
Example 1.3.5. Find the solution of the initial value problem

tQ
= — 0)=1. 1.3.6
V=1 y(0) (1.3.6)
Solution: From Example 1.3.3 we know that all solutions to the differential equation
in (1.3.6) are given by
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where ¢ € R is arbitrary. This constant ¢ is now fixed with the initial condition in Eq. (1.3.6)

3 3 3
y30) 0 1 2 O
- == = lo-=¢ & c¢=22 = t) — =+ 2=,
yl0) == =g+ 3 ¢ ‘T3 v - 3m =5ty
So we can rewrite the algebraic equation defining the solution functions y as the (time

dependent) roots of a cubic (in y) polynomial,
yP(t) — 3y(t) + > +2=0.

Example 1.3.6. Find the solution of the initial value problem
Y +y? cos(2t) =0, y(0) = 1. (1.3.7)

Solution: The differential equation above can be written as
L
—— 3y = cos(2t).
Y2

We know, from Example 1.3.2, that the solutions of the differential equation are

2
H=—"° R.
v = G tee ©€

The initial condition implies that
2
1= 0 =
v =555
So, the solution to the IVP is given in explicit form by

(f) = #
Y= sin(2t) +2°

c=1.

Example 1.3.7. Follow the proof in Theorem 1.3.2 to find all solutions y of the equation
A=t
TR

/

Y

Solution: The differential equation above is separable, with
hy)=4+y°  g(t) =4t -1

Therefore, it can be integrated as follows:

(A+P)y =4t—- < /(4+y3(t))y’(t)dt:/(4t—t3)dt+c.

Again the substitution
y=ylt), dy=y'(t)dt
implies that

4 "
/(4+y3)dy:/(4t—t3)dt+co. & 4y+%:2t2_z+60'

Calling ¢, = 4¢, we obtain the following implicit form for the solution,
yr(t) 4+ 16y(t) — 8t° +t* = ¢,.
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Example 1.3.8. Find the solution of the initial value problem below in explicit form,
2—t

=2 0) = 1. 1.3.8

V=im v (133)
Solution: The differential equation above is separable with
hy)=1+y, gt)=2-t

Their primitives are respectively given by,

Y2

hiy)=1+y = H)=y+7,

2

g =2-1 = G(t):2t—t2.

Therefore, the implicit form of all solutions y to the ODE above are given by
2 t t2
vl g L,

t
y(t) + = 5
with ¢ € R. The initial condition in Eq. (1.3.8) fixes the value of constant ¢, as follows,
2
0 1 3
y(0)+yT():O+c = 1+§:c = c=3.
We conclude that the implicit form of the solution y is given by
2(t 2 3 ‘
y():2t——+7, & Y2 (t) +2y(t) + (1 — 4t —3) =0.

t
The explicit form of the solution can be obtained realizing that y(t) is a root in the quadratic

polynomial above. The two roots of that polynomial are given by

1
vs(t) = 5 [2£V4-42-4-3)] & wnl)=-1%
We have obtained two functions y, and y-. However, we know that there is only one solution
to the initial value problem. We can decide which one is the solution by evaluating them at

—t2 + 4t + 4.

the value ¢t = 0 given in the initial condition. We obtain
y+(0) =-1+ \/ZI: ]-a

y.(0) = -1 - V4= -3.

Therefore, the solution is y,, that is, the explicit form of the solution is

y(t) = —1+/—12 + 4t + 4.
<

1.3.2. Euler Homogeneous Equations. Sometimes a differential equation is not
separable but it can be transformed into a separable equation changing the unknown func-
tion. This is the case for differential equations known as Euler homogenous equations.

Definition 1.3.4. An FEuler homogeneous differential equation has the form

so-r(*0)

Remark:
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(a) Any function F of ¢,y that depends only on the quotient y/t is scale invariant. This
means that F' does not change when we do the transformation y — cy, t — ct,

() =)

For this reason the differential equations above are also called scale invariant equations.

(b) Scale invariant functions are a particular case of homogeneous functions of degree n,
which are functions f satisfying

flet,ey) =" f(y.t).
Scale invariant functions are the case n = 0.

(¢) An example of an homogeneous function is the energy of a thermodynamical system,
such as a gas in a bottle. The energy, F, of a fixed amount of gas is a function of the gas
entropy, S, and the gas volume, V. Such energy is an homogeneous function of degree
one,

E(cS,cV)=cE(S,V), for all c € R.

Example 1.3.9. Show that the functions f; and f> are homogeneous and find their degree,
fAlty) =ty +t® + %%, falty) = 29" + .
Solution: The function f; is homogeneous of degree 6, since
filet,cy) = 't 2y? + et Py 4 A3 By = 8 (M + 1y +t3y%) = B f(t,y).

Notice that the sum of the powers of ¢ and y on every term is 6. Analogously, function f,
is homogeneous degree 4, since

falet,cy) = 2 Py? + ct Py =t (PP + ty?) = ¢ falt, ).

And the sum of the powers of ¢ and y on every term is 4. <

Example 1.3.10. Show that the functions below are scale invariant functions,

Py +ty’ +y°
fl(t7y):%a f2(t7y): d Y Y :

3 + ty2
Solution: Function f; is scale invariant since
cy Yy
cl,ey) = — === f(t,y).
fletiey) = =7 = f(t,y)

The function f5 is scale invariant as well, since

C3t3 + C2t2 cy +ct 02y2 + CSy3 - C3(t3 + t2y + ty2 + y3)
A3t3 + ct c2y? o A3+ ty?)

f2(0t70y): :fQ(tay)

<

More often than not, Euler homogeneous differential equations come from a differential
equation N ¢’ +M = 0 where both N and M are homogeneous functions of the same degree.
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Theorem 1.3.5. If the functions N, M, of t,y, are homogeneous of the same degree, then
the differential equation

N(t,y)y'(t) + M(t,y) =0

is BEuler homogeneous.

Proof of Theorem 1.3.5: Rewrite the equation as

M(t,y)
"(4) = — ) ’
Y= "Ny
. M(t,y) . L
The function f(y,y) = — is scale invariant, because
W= "Ny
M(ct,cy c" M(t,y M(t,y
Fletioy) = — by _ MUy _MOD)_ pq )

N(et,cy) ¢ N(t,y) N(t,y)

where we used that M and N are homogeneous of the same degree n. We now find a function
F such that the differential equation can be written as

()

Since M and N are homogeneous degree n, we multiply the differential equation by “1” in
the form (1/¢)™/(1/t)", as follows,

oy M(ty) /7)o M((E/1), (y/1)  M(1,(y/t) -
VO =~y @m = Memwo) ~ dewm Y oFE)
where
Yy M(17 (y/t))
F(§)=- N(L, (y/0))
This establishes the Theorem. O

Example 1.3.11. Show that (t—y)y' —2y+3t+ y? = 0 is an Euler homogeneous equation.

Solution: Rewrite the equation in the standard form

2 (%—&—i)
t-yy =2y-3t—> = y=~—17

t (t—y)
So the function f in this case is given by

y
2—&——)
(y i

(t—y)
This function is scale invariant, since numerator and denominator are homogeneous of the
same degree, n = 1 in this case,

fty) =

2,2 2

I W A
flct,ey) = (2 : (cj—tcy) . ) - <2yc(t3—ty) t> = f6y).

So, the differential equation is Euler homogeneous. We now write the equation in the form
y' = F(y/t). Since the numerator and denominator are homogeneous of degree n = 1, we
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multiply them by “1” in the form (1/¢)!/(1/t)!, that is
2

Y
o (-3 %) (1/)
-y 0/

Distribute the factors (1/t) in numerator and denominator, and we get

70k Sl (700 BN v =F(Y),

(1—(y/t) t
where )
p(2) - LD =5 /)
t (1—=(y/1))
So, the equation is Euler homogeneous and it is written in the standard form. <

Example 1.3.12. Determine whether the equation (1 —y3)y’ = #? is Euler homogeneous.

Solution: If we write the differential equation in the standard form, y' = f(¢,y), then we
2

t
get f(t,y) = i But

242

flet,ey) = — 4 f(t.y),

1—c3y3
hence the equation is not Euler homogeneous. <

1.3.3. Solving Euler Homogeneous Equations. In § 1.2 we transformed a Bernoulli
equation into an equation we knew how to solve, a linear equation. Theorem 1.3.6 trans-
forms an Euler homogeneous equation into a separable equation, which we know how to
solve.

Theorem 1.3.6. The Euler homogeneous equation

s-r()

for the function y determines a separable equation for v =y/t, given by

Remark: The original homogeneous equation for the function y is transformed into a sep-
arable equation for the unknown function v = y/t. One solves for v, in implicit or explicit
form, and then transforms back to y = twv.

Proof of Theorem 1.3.6: Introduce the function v = y/t into the differential equation,
y = F(v).
We still need to replace 4’ in terms of v. This is done as follows,
y(t) =tov(t) = ¢ @) =ov()+t0'(t).
Introducing these expressions into the differential equation for y we get

r_ /_(F('U)fv) v’ _1
v+tv =Fv) = v—f = m—;

The equation on the far right is separable. This establishes the Theorem. O
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2 + 3y?
Example 1.3.13. Find all solutions y of the differential equation 3’ = %
Y
Solution: The equation is Euler homogeneous, since
At +3c%y? AP+ 3y 2+ 3y°
flet,cy) = = = = f(t,y).

20ct)(cy) — A2ty) 2y
Next we compute the function F. Since the numerator and denominator are homogeneous
degree “2” we multiply the right-hand side of the equation by “1” in the form (1/t2)/(1/t?),

1 Y 2
,_ @32 (3) . ,_1+3(3) |
B YR ()

Now we introduce the change of functions v = y/t,

;o 1+ 302
2w
Since y = twv, then 3y’ = v + ¢ v/, which implies
1—|—3v , 14302 14302 —202 1402
vt =20 o gy = —w= = .
2v 2v 2v 2v

We obtained the separable equation

We rewrite and integrate it,

2v , 1 2v 1
T+~ 1 /+ v /t T
(t

1402
The substitution © = 1 + v2 (t) implies du = 2v(t) v'(t) dt, so

du
/ e + Co = ln(u) = h’l(t) + co S u = eln(t)'f‘co.
But u = (e 50 denoting ¢; = e, then u = ¢it. So, we get

2
1+ =ct = 1+(%) =cat = ylt)==xtVert—1.

<

tly+1) + (y+1)?

t2 '
Solution: This equation is Euler homogeneous when written in terms of the unknown
u(t) = y(t) + 1 and the variable . Indeed, u’ =y, thus we obtain

g =)+ @+1)* o, et o (u)?

Example 1.3.14. Find all solutions y of the differential equation v’ =

fry <:> g —
I u 2 =7t

Therefore, we introduce the new variable v = u/t, which satisfies v = tv and v/ = v + tv'.
The differential equation for v is

!
1
v+t =v40? & t =1 & /%dt:/gdt—i-&
v
with ¢ € R. The substitution w = v(t) implies dw = v’ dt, so

1 1
-2 = — — -1 :1 T —
/w dw / , dt +c¢ < w n(t))+c¢ & w R
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Substituting back v, u and y, we obtain w = v(t) = u(t)/t = [y(t) + 1] /¢, so
y+1 1 t

t () +ec y(t):7ln(\t|)+c -

<

Notes. This section corresponds to Boyce-DiPrima [3] Section 2.2. Zill and Wright study
separable equations in [17] Section 2.2, and Euler homogeneous equations in Section 2.5.
Zill and Wright organize the material in a nice way, they present first separable equations,
then linear equations, and then they group Euler homogeneous and Bernoulli equations in
a section called Solutions by Substitution. Once again, a one page description is given by
Simmons in [10] in Chapter 2, Section 7.



1.3. SEPARABLE EQUATIONS 35

1.3.4. Exercises.

1.3.1.- Find all solutions y to the ODE
,_

)
Express the solutions in explicit form.

Y

1.3.2.- Find every solution y of the ODE
3t° + 4%y — 1+ =0.
Leave the solution in implicit form.
1.3.3.- Find the solution y to the IVP
y =1y, y(0)=1
1.3.4.- Find every solution y of the ODE

ty +v1+t2y =0.

1.3.5.- Find every solution y of the Euler
homogeneous equation
Y +t
Yy = P

1.3.6.- Find all solutions y to the ODE
,_ Pty
ty

1.3.7.- Find the explicit solution to the IVP
(P +2ty)y’ =v°, y(1)=1.

1.3.8.- Prove that if y' = f(¢,y) is an Euler
homogeneous equation and y; (¢) is a so-
lution, then y(t) = (1/k) y1(kt) is also a
solution for every non-zero k € R.

1.3.9.- * Find the explicit solution of the
initial value problem
, At —6t°

— y(0) = —3.
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1.4. Exact Differential Equations

A differential equation is exact when is a total derivative of a function, called potential
function. Exact equations are simple to integrate—any potential function must be constant.
The solutions of the differential equation define level surfaces of a potential function.

A semi-exact differential equation is an equation that is not exact but it can be trans-
formed into an exact equation after multiplication by a function, called an integrating fac-
tor. An integrating factor converts a non-exact equation into an exact equation. Linear
equations, studied in § 1.1 and § 1.2, are a particular case of semi-exact equations. The
integrating factor of a linear equation transforms it into a total derivative—hence, an exact
equation. We now generalize this idea to a class of nonlinear equations.

1.4.1. Exact Equations. A differential equation is exact if certain parts of the differ-
ential equation have matching partial derivatives. We use this definition because it is simple
to check in concrete examples.

Definition 1.4.1. An exact differential equation for y is
N(t,y)y' +M(t,y) =0
where the functions N and M satisfy
atN(tv y) = ayM(tv y)

Remark: The functions N, M depend on ¢, y, and we use the notation for partial derivatives

ON oM
atN = E, 8yM = Ty

In the definition above, the letter y has been used both as the unknown function (in the
first equation), and as an independent variable (in the second equation). We use this dual
meaning for the letter y throughout this section.

Our first example shows that all separable equations studied in § 1.3 are exact.

Example 1.4.1. Show whether a separable equation h(y)y'(t) = g(t) is exact or not.
Solution: If we write the equation as h(y)y’ — g(t) = 0, then

N(t,y) =h(y) = GN(t,y) =0, /
M(t,y) =g(t) = 0,M(t,y) = o,} ON(t,y) = 9, M(t,y),

hence every separable equation is exact. <
The next example shows that linear equations, written as in § 1.2, are not exact.

Example 1.4.2. Show whether the linear differential equation below is exact or not,
y'(t) =alt)y(t) +b(t),  alt) #0.
Solution: We first find the functions N and M rewriting the equation as follows,
Y +at)y—bt)=0 = Nty =1, M(ty)=—a(t)y—b().
Let us check whether the equation is exact or not,
N(t,y) =1 = O:N(t,y) =0,

M(t,y) = ~alt)y ~ ) = ayMu,y):—a(t),} TN O
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So, the differential equation is not exact. <

The following examples show that there are exact equations which are not separable.

Example 1.4.3. Show whether the differential equation below is exact or not,

2y y + 2t +y> = 0.

Solution: We first identify the functions N and M. This is simple in this case, since
2ty)y + (2t +4?) =0 = N(t,y)=2ty, M(ty)=2t+y>
The equation is indeed exact, since
N(t,y) = 2ty = ON(t,y) =2y,
5 = ON(t,y) = 0,M(t,y).
M(ty)=2t+y> = 0,M(t,y) =2y,

Therefore, the differential equation is exact. <

Example 1.4.4. Show whether the differential equation below is exact or not,
sin(t)y’ +t%e¥y’ —y = —ycos(t) — 2teY.
Solution: We first identify the functions N and M by rewriting the equation as follows,
(sin(t) + t%¢¥ — 1)y + (ycos(t) + 2te¥) =0

we can see that

N(t,y) =sin(t) + t%e¥ — 1 = 0N (t,y) = cos(t) + 2te?,
M(t,y) = ycos(t) + 2te" = Ay M (t,y) = cos(t) + 2teV.
Therefore, O, N (t,y) = 0,M(t,y), and the equation is exact. <

1.4.2. Solving Exact Equations. Exact differential equations can be rewritten as a
total derivative of a function, called a potential function. Once they are written in such way
they are simple to solve.

Theorem 1.4.2 (Exact Equations). If the differential equation
N(t,y)y + M(t,y) =0 (1.4.1)

is exact, then it can be written as

dyp

—(t,y(t)) =0,
(1)
where 1 is called a potential function and satisfies
N = 049, M = 0p. (1.4.2)

Therefore, the solutions of the exact equation are given in implicit form as

P(t,y(t)) = ¢, ceR.

Remark: The condition 0, N = 9, M is equivalent to the existence of a potential function—
result proven by Henri Poincaré around 1880.
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Theorem 1.4.3 (Poincaré). Continuously differentiable functions N, M, on t, y, satisfy

N (t,y) = 9, M(t,y) (14.3)
iff there is a twice continuously differentiable function v, depending on t, y such that
dyv(t,y) = N(ty),  0w(t,y) = M(t,y). (1.4.4)

Remarks:

(a) A differential equation defines the functions N and M. The exact condition in (1.4.3)
is equivalent to the existence of 1), related to N and M through Eq. (1.4.4).

(b) If we recall the definition of the gradient of a function of two variables, Vi) = (9,1, 0,v¢),
then the equations in (1.4.4) say that V¢ = (M, N).

Proof of Theorem 1.4.3:
(=) It is not given. See [9].

(<) We assume that the potential function v is given and satisfies
N =0y, M = 0.
Recalling that v is twice continuously differentiable, hence 0,0,¢ = 9,0,%, then we have
ON = 0,0,¢ = 0,0, = Oy M.

|

In our next example we verify that a given function ¢ is a potential function for an
exact differential equation. We also show that the differential equation can be rewritten as
a total derivative of this potential function. (In Theorem 1.4.2 we show how to compute
such potential function from the differential equation, integrating the equations in (1.4.4).)

Example 1.4.5 (Verification of a Potential). Show that the differential equation
2yy + 2t +1y> = 0.
is the total derivative of the potential function (¢, y) = t2 + ty>.

Solution: we use the chain rule to compute the ¢ derivative of the potential function
evaluated at the unknown function y,

Lovtt,u(1) = (0,8) Y + (o)
= (2ty)y' + (2t + °).

So the differential equation is the total derivative of the potential function. To get this
result we used the partial derivatives

Oy =2ty = N, O = 2t + % = M.
<

Exact equations always have a potential function v, and this function is not difficult
to compute—we only need to integrate Eq. (1.4.4). Having a potential function of an exact
equation is essentially the same as solving the differential equation, since the integral curves
of v define implicit solutions of the differential equation.

Proof of Theorem 1.4.2: The differential equation in (1.4.1) is exact, then Poincaré
Theorem implies that there is a potential function v such that

N =0y, M =0du.
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Therefore, the differential equation is given by
0=N(ty)y'(t)+Mlty)
= (09(t,y) v + (0 (t,y))

= Zt.y(0)

where in the last step we used the chain rule. Recall that the chain rule says

SO(u(0) = @) B+ ().

So, the differential equation has been rewritten as a total ¢-derivative of the potential func-
tion, which is simple to integrate,
d

where c is an arbitrary constant. This establishes the Theorem. |

Example 1.4.6 (Calculation of a Potential). Find all solutions y to the differential equation
2y y + 2t +y> = 0.
Solution: The first step is to verify whether the differential equation is exact. We know

the answer, the equation is exact, we did this calculation before in Example 1.4.3, but we

reproduce it here anyway.
N(t,y) =2ty = ON(t,y) =2y,
2 = ON(t,y) = 0,M(t,y).
Mty =2t+y> = 0,M(t,y) =2y.

Since the equation is exact, Lemma 1.4.3 implies that there exists a potential function
satisfying the equations

O(t,y) = M(t,y). (1.4.6)
Let us compute 1. Integrate Eq. (1.4.5) in the variable y keeping the variable ¢ constant,

0,u(t) =2ty = V(t) = [ 2eydy+ (o)

where g is a constant of integration on the variable ¥, so g can only depend on ¢t. We obtain

U(t,y) = ty® + g(t). (1.4.7)
Introduce into Eq. (1.4.6) the expression for the function ¢ in Eq. (1.4.7) above, that is,

Y+ (t) =0p(ty) = M(t,y) =2t +y> = g¢'(t) =2t
Integrate in t the last equation above, and choose the integration constant to be zero,
g(t) = 2.
We have found that a potential function is given by
Y(t,y) = ty* + 2.
Therefore, Theorem 1.4.2 implies that all solutions y satisfy the implicit equation
t () +t* = ¢,

for any ¢ € R. The choice g(t) = t?> + ¢, only modifies the constant c. <
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Remark: An exact equation and its solutions can be pictured on the graph of a potential
function. This is called a geometrical interpretation of the exact equation. We saw that an
exact equation N 3/ + M = 0 can be rewritten as di/dt = 0. The solutions of the differential
equation are functions y such that (¢, y(t)) = ¢, hence the solutions define level curves of
the potential function. Given a level curve, the vector r(t) = (t,y(t)), which belongs to the
ty-plane, points to the level curve, while its derivative 7/(t) = (1,4'(¢)) is tangent to the
level curve. Since the gradient vector Vi) = (M, N) is perpendicular to the level curve,

7"1Vy & - V=0 & M+Ny =0.
We wanted to remark that the differential equation can be thought as the condition v L V1.

As an example, consider the differential equa-
tion

2yy +2t =0,
which is separable, so it is exact. A potential
function is

b =1+

a paraboloid shown in Fig. 2. Solutions y are
defined by the equation t? + y? = ¢, which are
level curves of ¢ for ¢ > 0. The graph of a
solution is shown on the ty-plane, given by

y(t) = £V e —t2

As we said above, the vector (t) = (¢, y(t))
points to the solution’s graph while its deriv-
ative 7/ (t) = (1,4/(¢)) is tangent to the level

Y
cuve. We also know that the gradient vec-
tor Vi = (2t, 2y) is perpendicular to the level
curve. The condition
rLiVYy = V=0, FIGURE 2. Potential ¢ with
is precisely the differential equation, level curve ¢ = c defines a

2t +2yy’ = 0. solution y on the ty-plane.

Example 1.4.7 (Calculation of a Potential). Find all solutions y to the equation
sin(t)y’ 4+ t%e¥Vy —y +ycos(t) + 2te¥ — 3% = 0.

Solution: The first step is to verify whether the differential equation is exact.

N(t,y) = sin(t) + t%e¥ — 1 = BN (t,y) = cos(t) + 2teY,

M (t,y) = ycos(t) + 2te? — 3t* = 8y M (t,y) = cos(t) + 2te.
So, the equation is exact. Poincaré Theorem says there is a potential function ¢ satisfying
I¥(ty) = N(t,y),  Ob(t,y) = M(t,y). (1.4.8)

To compute 1 we integrate on y the equation 9,1 = N keeping ¢ constant,

Oy (t,y) =sin(t) +t%e¥ —1 = P(t,y) = /(sin(t) +t%e¥ — 1) dy + g(t)
where ¢ is a constant of integration on the variable y, so g can only depend on ¢t. We obtain

o(t,y) = ysin(t) + t2e¥ —y + g(t).
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Now introduce the expression above for 1 in the second equation in Eq. (1.4.8),
ycos(t) + 2te? + ¢'(t) = Oup(t,y) = M(t,y) = ycos(t) + 2te?¥ —3t* = ¢'(t) = —3t%

The solution is g(t) = —t3 + ¢,, with ¢, a constant. We choose ¢, = 0, so g(t) = —t3. We
found g, so we have the complete potential function,

Y(t,y) = ysin(t) + t2e¥ —y —t3.
Theorem 1.4.2 implies that any solution y satisfies the implicit equation
y(t)sin(t) + t2e¥® —y(t) -t = c.

The solution y above cannot be written in explicit form. If we choose the constant ¢, # 0
in g(t) = —t3 + ¢, we only modify the constant ¢ above. <

Remark: A potential function is also called a conserved quantity. This is a reasonable name,
since a potential function evaluated at any solution of the differential equation is constant
along the evolution. This is yet another interpretation of the equation diy/dt = 0, or its
integral (¢, y(t)) = c. If we call ¢ = ), = ¢(0,y(0)), the value of the potential function at
the initial conditions, then ¢ (t, y(t)) = .

Conserved quantities are important in physics. The energy of a moving particle is a
famous conserved quantity. In that case the differential equation is Newton’s second law of
motion, mass times acceleration equals force. One can prove that the energy E of a particle
with position function y moving under a conservative force is kept constant in time. This
statement can be expressed by E(t,y(t),y'(t)) = E,, where Ej is the particle’s energy at the
initial time.

1.4.3. Semi-Exact Equations. Sometimes a non-exact differential equation can be
rewritten as an exact equation. One way this could happen is multiplying the differential
equation by an appropriate function. If the new equation is exact, the multiplicative function
is called an integrating factor.

Definition 1.4.4. A semi-exact differential equation is a non-exact equation that can be
transformed into an exact equation after a multiplication by an integrating factor.

Example 1.4.8. Show that linear differential equations y’ = a(t) y + b(t) are semi-exact.

Solution: We first show that linear equations ¥y’ = ay + b with a # 0 are not exact. If we
write them as

Y —ay—b=0 = Ny +M=0 with N=1, M= —ay—b.
Therefore,
O:N = 0, 6yM =—a = ON 7& 6yM

We now show that linear equations are semi-exact. Let us multiply the linear equation by
a function p, which depends only on ¢,

u(t)y' — a(t) u(t) y — p(t) b(t) = 0,

where we emphasized that u, a, b depende only on ¢. Let us look for a particular function
1 that makes the equation above exact. If we write this equation as Ny’ + M = 0, then

N(t,y) =p, M(t,y)=—apy— pb.
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We now check the condition for exactness,
N =y, 9,M = —ap,
and we get that
N = 8y]\~4 } - { p=-ap
the equation is exact 1 is an integrating factor.

Therefore, the linear equation y' = ay + b is semi-exact, and the function that transforms
it into an exact equation is u(t) = e~A®, where A(t) = [ a(t)dt, which in § 1.2 we called
it an integrating factor. <

Now we generalize this idea to nonlinear differential equations.

Theorem 1.4.5. If the equation

N(t,y)y + M(t,y) =0 (1.4.9)
is not exact, with OyN # 0yM, the function N # 0, and where the function h defined as
Oy M — Oy N
h=*4——"_ 1.4.10
- (1.4.10)
depends only on t, not on y, then the equation below is exact,
(" NYy + (e M) =0, (1.4.11)

where H is an antiderivative of h,

H(t) = / h(t) dt.

Remarks:

(a) The function u(t) = e#® is called an integrating factor.
(b) Any integrating factor p is solution of the differential equation

() = h(t) p(t).
(c) Multiplication by an integrating factor transforms a non-exact equation
Ny +M=0
into an exact equation.
(kN)y + (uM) = 0.

This is exactly what happened with linear equations.

Verification Proof of Theorem 1.4.5: We need to verify that the equation is exact,
TNy + (" M)=0 = N(ty) =e"ON(ty), Mty ="M Mt,y).
We now check for exactness, and let us recall 9;(ef’) = (efl) = he®, then
WN =he" N+eo,N,  9,M =e" 9,M.

Let us use the definition of & in the first equation above,

o, = o (M2 0

So the equation is exact. This establishes the Theorem. O

N +0N) = e 9,M = 0,11,
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Constructive Proof of Theorem 1.4.5: The original differential equation
Ny +M=0

is not exact because 0;:N # 0,M. Now multiply the differential equation by a nonzero
function p that depends only on ¢,

(uN)y' + (uM) = 0. (1.4.12)

We look for a function g such that this new equation is exact. This means that p must
satisfy the equation

Du(uN) = B, (uM).
Recalling that p depends only on ¢ and denoting Oy = ', we get

WNA+poN=po,M = ' N=p@,M-—0N).
So the differential equation in (1.4.12) is exact iff holds

N
The solution p will depend only on ¢ iff the function

Oy M (t,y) — O¢N (¢
h(t): Yy (7y) t (7y)
N(t,y)
depends only on ¢. If this happens, as assumed in the hypotheses of the theorem, then we
can solve for y as follows,

RO =b@O e = u)=e"O 1) = [ bl dr
Therefore, the equation below is exact,
(e N)y' + (e M) = 0.
This establishes the Theorem. O

Example 1.4.9. Find all solutions y to the differential equation
( +ty)y' + Bty +y*) =0. (1.4.13)

Solution: We first verify whether this equation is exact:
N(t,y) =t +ty = N (t,y) =2t +y,
M(t,y) = 3ty + ¢ = 0, M(t,y) = 3t + 2y,

therefore, the differential equation is not exact. We now verify whether the extra condition
in Theorem 1.4.5 holds, that is, whether the function in (1.4.10) is y independent;

_ 9yM(ty) — O N(ty)

" N(t,y)
(Bt+2y) — (2t +y)
(t2 + ty)
_ (t+y)
tt+y)
=1 = h=1.
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So, the function h = (0, M — 9,N)/N is y independent. Therefore, Theorem 1.4.5 implies
that the non-exact differential equation can be transformed into an exact equation. We need
to multiply the differential equation by a function p solution of the equation

1
WO =hout) = L=l = mEe)=wme) = 0=t
where we have chosen in second equation the integration constant to be zero. Then, multi-
plying the original differential equation in (1.4.13) by the integrating factor u we obtain

Bty +ty®) + (£ +17y)y' =0. (1.4.14)
This latter equation is exact, since
N(t,y) =t3 +t%y = N (t,y) = 3t2 + 2ty,
M(t,y) = 3t%y + ty? = 9, M (t,y) = 3t> + 2ty,

s0 we get the exactness condition 9, N = 8yM . The solution y can be found as we did in the
previous examples in this Section. That is, we find the potential function 1 by integrating
the equations

ayd](ta y)
atw(ta y)

From the first equation above we obtain

o =t + 1%y = w(t,y)=/(t3+t2y)dy+9<t>-

N(t,y), (1.4.15)
M(t,y). (1.4.16)

Integrating on the right hand side above we arrive to

1
Vity) =ty + S 7y + g(t).
Introduce the expression above for ¢ in Eq. (1.4.16),
3%y + ty” + g/ (t) = B (t,y) = M(t,y) = 3t°y + ty?,
g'(t) = 0.

A solution to this last equation is g(¢t) = 0. So we get a potential function

. 1, .
Vity) =t + 57y
All solutions y to the differential equation in (1.4.13) satisfy the equation

Pyt + 5 (1) =

where ¢, € R is arbitrary. <

We have seen in Example 1.4.2 that linear differential equations with a # 0 are not
exact. In Section 1.2 we found solutions to linear equations using the integrating factor
method. We multiplied the linear equation by a function that transformed the equation

into a total derivative. Those calculations are now a particular case of Theorem 1.4.5, as
we can see it in the following Example.

Example 1.4.10. Use Theorem 1.4.5 to find all solutions to the linear differential equation

y =a(t)y+b(t), a(t) #0. (1.4.17)
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Solution: We first write the linear equation in a way we can identify functions N and M,

y — (a(t)y +b(t)) = 0.
We now verify whether the linear equation is exact or not. Actually, we have seen in
Example 1.4.3 that this equation is not exact, since
N(t,y) =1 = ON(t,y) =0,
M(t,y) = —a(t) y — b(t) = OyM(t,y) = —aft).

But now we can go further, we can check wheteher the condtion in Theorem 1.4.5 holds or
not. We compute the function

ayM(ta y) - 8tN(t7 y) 7a(t) -0

N(t,y) T

and we see that it is independent of the variable y. Theorem 1.4.5 says that we can transform
the linear equation into an exact equation. We only need to multiply the linear equation by
a function p, solution of the equation

W) =—aut) = ()=, A0 = [alt)ar

This is the same integrating factor we discovered in Section 1.2. Therefore, the equation
below is exact,

e AWy — (a(t)e AWy —b(t) e A1) = 0. (1.4.18)
This new version of the linear equation is exact, since
N(t,y) = e *® = N (t,y) = —a(t) e A®),
M(t,y) = —a(t) e "y —b(t) e 4O = 8, M(t,y) = —a(t) e=A®),

Since the linear equation is now exact, the solutions y can be found as we did in the previous
examples in this Section. We find the potential function v integrating the equations

y(t,y) = N(t,y), (1.4.19)

From the first equation above we obtain
opp=e 0 = Yty = /e’A“) dy + g(t).

—A(®) is y independent. We then get

d(ty) =y +g().
We introduce the expression above for ¢ in Eq. (1.4.16),
—a(t) e Wy +¢'(t) = 0 (t,y) = M(t,y) = —a(t)e 1y —b(t) e~ ),
g'(t) = =b(t) e 4.
A solution for function g is then given by

g(t) = — / b(#) e=AD dt.

Having that function g, we get a potential function

wlt) = MOy~ [be)e A ar

The integral is simple, since e
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All solutions y to the linear differential equation in (1.4.17) satisfy the equation

e AW y(t) — /b(t) e AW dt = ¢,

where ¢, € R is arbitrary. This is the implicit form of the solution, but in this case it is
simple to find the explicit form too,

y(t) = AW (co + /b(t) e AW dt).

This expression agrees with the one in Theorem 1.2.3, when we studied linear equations. <

1.4.4. The Equation for the Inverse Function. Sometimes the equation for a
function y is neither exact nor semi-exact, but the equation for the inverse function y~*
might be. We now try to find out when this can happen. To carry out this study it is more
convenient to change a little bit the notation we have been using so far:

(a) We change the independent variable name from ¢ to x. Therefore, we write differential
equations as

dy
N(@.y)y +Mz.y) =0, y=ylz), ¢ =_"
(b) We denote by z(y) the inverse of y(x), that is,

() =2 &  ylx) =u.

(c¢) Recall the identity relating derivatives of a function and its inverse function,

Our first result says that for exact equations it makes no difference to solve for y or its
inverse x. If one equation is exact, so is the other equation.

Theorem 1.4.6. Ny +M =0 is eract < Mz +N=0 is ezxact.

Remark: We will see that for semi-exact equations there is a difference.
Proof of Theorem 1.4.6: Write the differential equation of a function y with values y(z),
N(z,y)y' + M(z,y) =0 and 9,N =9, M.
If a solution y is invertible we denote y~!(y) = x(y), and we have the well-known relation
, 1
e
Divide the differential equation above by %’ and use the relation above, then we get
N(z,y) + M(z,y)z’ =0,

where now y is the independent variable and the unknwon function is z, with values z(y),
and the prime means ' = dz/dy. The condition for this last equation to be exact is

0,M = 0, N,

which is exactly the same condition for the equation Ny’ + M = 0 to be exact. This
establishes the Theorem. ]
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Remark: Sometimes, in the literature, the equations Ny’ + M =0 and N + Mz’ = 0 are
written together as follows,

Ndy+ M dx = 0.
This equation deserves two comments:

(a) We do not use this notation here. That equation makes sense in the framework of
differential forms, which is beyond the subject of these notes.
(b) Some people justify the use of that equation outside the framework of differential forms
dy

by thinking v’ = I as real fraction and multiplying N ¢’ + M = 0 by the denominator,
x
dy
N%—i—M:O = Ndy+ Mdx=0.

d
Unfortunately, 3’ is not a fraction d—y, so the calculation just mentioned has no meaning.
x

So, if the equation for y is exact, so is the equation for its inverse x. The same is not
true for semi-exact equations. If the equation for y is semi-exact, then the equation for
its inverse  might or might not be semi-exact. The next result states a condition on the
equation for the inverse function z to be semi-exact. This condition is not equal to the
condition on the equation for the function y to be semi-exact. Compare Theorems 1.4.5 and
1.4.7.

Theorem 1.4.7. If the equation

Mz +N=0
is not exact, with OyM # 0y N, the function M # 0, and where the function ¢ defined as
- ~ (0yM — 9,N)
M

depends only on y, not on x, then the equation below is exact,
(efM)z' + (eEN) =0

where L is an antiderivative of £,

L(y) = /ﬁ(y) dy.

Remarks:

(a) The function u(y) = e“®) is called an integrating factor.
(b) Any integrating factor p is solution of the differential equation

1 (y) = L(y) u(y).
(c) Multiplication by an integrating factor transforms a non-exact equation
Mz +N=0
into an exact equation.
(uM) ' 4+ (uN) = 0.

Verification Proof of Theorem 1.4.7: We need to verify that the equation is exact,

(el M)a' + (! N)=0 = M(z,y) =W M(z,y), N(z,y) =W N(z,v).
We now check for exactness, and let us recall 9, (el) = (el) = £eL, then

oM =tel M el o,M,  9,N=e9,N.
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Let us use the definition of ¢ in the first equation above,
(OyM — O, N)
M
So the equation is exact. This establishes the Theorem. O

O,M = e*(~ M +0,M) = e 9,N = 0, N.

Constructive Proof of Theorem 1.4.7: The original differential equation
Mx'+N=0

is not exact because 9,M # 0,N. Now multiply the differential equation by a nonzero
function p that depends only on vy,

(uM)z" + (uN) = 0.
We look for a function p such that this new equation is exact. This means that p must
satisfy the equation
8y (M) = 0, (uN).
Recalling that 4 depends only on y and denoting dyp = 1/, we get
WM+ pd,M=pd,N = pM=-p(0,M-—0,N).
So the differential equation (uM)z’ + (uN) = 0 is exact iff holds
;L _(8yM—6wN)
w= M
The solution p will depend only on y iff the function
Oy M (xz,y) — 0. N(z,y
) — DM y) — 9N (ey)
M(z,y)
depends only on y. If this happens, as assumed in the hypotheses of the theorem, then we
can solve for p as follows,

W) =Ly ply) = ply) =", Ly = /f(y) dy.
Therefore, the equation below is exact,
(el M)a' + (e N) =o0.
This establishes the Theorem. (]

Example 1.4.11. Find all solutions to the differential equation
(5ze™¥ 4+ 2cos(3x)) y' + (5e ¥ — 3sin(3z)) = 0.

Solution: We first check if the equation is exact for the unknown function y, which depends
on the variable z. If we write the equation as Ny’ + M = 0, with ¢y = dy/dx, then

N(z,y) =5z e + 2cos(3z) = 0. N(x,y) =5e ¥ — 6sin(3z),
M(z,y) =5eY — 3sin(3z) = OyM(z,y) = —5e Y.

Since 0, N # 0,M, the equation is not exact. Let us check if there exists an integrating
factor p that depends only on x. Following Theorem 1.4.5 we study the function

_ (0yM — 0,N) _ —10e7Y + 6sin(3x)

N - Sze ¥+ 2cos(3x)

which is a function of both x and y and cannot be simplified into a function of x alone.
Hence an integrating factor cannot be function of only .

Let us now consider the equation for the inverse function x, which depends on the
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variable y. The equation is M 2’ + N = 0, with 2’ = dx/dy, where M and N are the same
as before,
M(z,y) =5e ¥ — 3sin(3x) N(z,y) = 5xe ¥ +2cos(3x).

We know from Theorem 1.4.6 that this equation is not exact. Both the equation for y and
equation for its inverse x must satisfy the same condition to be exact. The condition is
0. N = 0y M, but we have seen that this is not true for the equation in this example. The
last thing we can do is to check if the equation for the inverse function x has an integrating
factor p that depends only on y. Following Theorem 1.4.7 we study the function

oyM — 0, N —10e7Y + 6sin(3z
é:—(y z ):—( - ( )>:2 = {(y) =2
M (5e~¥ — 3sin(3z))
The function above does not depend on x, so we can solve the differential equation for u(y),
W) =y uly) = W) =2p) = py)=me?.
Since p is an integrating factor, we can choose j, = 1, hence u(y) = e2¥. If we multiply the
equation for x by this integrating factor we get

e (5e7Y — 3sin(3z)) 2’ + ¥ (5we™¥ + 2cos(3z)) = 0,
(5 — 3sin(3z) e*¥) 2’ + (5z ¥ + 2 cos(3z) e*) = 0.
This equation is exact, because if we write it as Mz’ + N = 0, then
M(z,y) = 5¢¥ — 3sin(3z) % = Dy M (z,y) = 5e¥ — 6sin(3z) e,
N(z,y) = 5z e¥ 4 2cos(3x) e = 0:N(z,y) = 5e¥ — 6sin(3z) e,

that is 8yM = 8, N. Since the equation is exact, we find a potential function ¥ from
dypth = M, 9y = N.
Integrating on the variable x the equation d ¢ = M we get
Y(x,y) = 5x e’ + cos(3z) e + g(y).
Introducing this expression for ¢ into the equation 9,9 = N we get
5zeY +2cos(3z) e + ¢/ (y) = 0y = N = 5ae¥ + 2cos(3z) e??,
hence ¢'(y) = 0, so we choose g = 0. A potential function for the equation for z is
Y(x,y) = 5xe¥ + cos(3z) eV,
The solutions x of the differential equation are given by
5x(y) e’ + cos(3z(y)) e® = c.

Once we have the solution for the inverse function « we can find the solution for the original
unknown y, which are given by

52 €Y@ 4 cos(3z) 2V®) = ¢

<

Notes. Exact differential equations are studied in Boyce-DiPrima [3], Section 2.6, and in
most differential equation textbooks.
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1.4.5. Exercises.

1.4.1.-

(b)

1.4.4.-

Consider the equation

(1+t%)y = —2ty.
Determine whether the differential
equation is exact.

Find every solution of the equation
above.

Consider the equation

tcos(y)y —2yy' = —t — sin(y).
Determine whether the differential
equation is exact.

Find every solution of the equation
above.

Consider the equation

, —2—ye
VS Sy Tien
Determine whether the differential
equation is exact.
Find every solution of the equation

above.

Consider the equation

(62° — xy) + (—a” +ay’)y =0,

with initial condition y(0) = 1.

(a)

(b)

Find an integrating factor p that
converts the equation above into an
exact equation.

Find an implicit expression for the
solution y of the IVP.

1.4.5.- Consider the equation

(2m2y + %) y + 491:3/2 =0,

with initial condition y(0) = —2.

(a)

(b)
(c)

Find an integrating factor u that
converts the equation above into an
exact equation.

Find an implicit expression for the
solution y of the IVP.

Find the explicit expression for the
solution y of the IVP.

1.4.6.- Consider the equation

(c)

(—3z e Y ¢ sin(5z)) v/
+(3e7? + 5cos(5x)) = 0.

Is this equation for y exact? If not,
does this equation have an integrat-
ing factor depending on x?

Is the equation for z = y~ ' exact?
If not, does this equation have an
integrating factor depending on y?
Find an implicit expression for all
solutions y of the differential equa-
tion above.

1.4.7.- * Find the solution to the equation
2%y + 2677 1+ (82 + 267y +-2ty) oy = 0,

with initial condition

y(1) = 2.
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1.5. Applications of Linear Equations

Different physical systems may be described by the same mathematical structure. The
radioactive decay of a substance, the cooling of a material, or the salt concentration on
a water tank can be described with linear differential equations. A radioactive substance
decays at a rate proportional to the substance amount at the time. Something similar
happens to the temperature of a cooling body. Linear, constant coefficients, differential
equations describe these two situations. The salt concentration inside a water tank changes
in the case that salty water is allowed in and out of the tank. This situation is described
with a linear variable coefficients differential equation.

1.5.1. Exponential Decay. An example of exponential decay is the radioactive decay
of certain substances, such as Uranium-235, Radium-226, Radon-222, Polonium-218, Lead-
214, Cobalt-60, Carbon-14, etc. These nuclei break into several smaller nuclei and radiation.
The radioactive decay of a single nucleus cannot be predicted, but the decay of a large
number can. The rate of change in the amount of a radioactive substance in a sample is
proportional to the negative of that amount.

Definition 1.5.1. The exponential decay equation for N with decay constant k > 0 is

N’ = —kN.

Remark: The equation N’ = k N, with k£ > 0 is called the exponential growth equation.

We have seen in § 1.1 how to solve this equation. But we review it here one more time.

Theorem 1.5.2 (Exponential Decay). The solution N of the exponential decay equation
N’ = —k N and intial condition N(0) = N, is

N(t) = Nye .

Proof of Theorem 1.5.2: The differential equation above is both linear and separable.

We choose to solve it using the integrating factor method. The integrating factor is e,

(N +kN)ekt =0 = (MN)=0 = e N=¢ ceR
The initial condition N, = N(0) = ¢, so the solution of the initial value problem is
N(t) = Nye ™.
This establishes the Theorem. ]

Remark: Radioactive materials are often characterized not by their decay constant k£ but
by their half-life 7. This is a time it takes for half the material to decay.

Definition 1.5.3. The half-life of a radioactive substance is the time T such that

There is a simple relation between the material constant and the material half-life.

Theorem 1.5.4. A radioactive material constant k and half-life T are related by the equation

kT =1n(2).
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Proof of Theorem 1.5.4: We know that the amount of a radioactive material as function
of time is given by

N(t) = Nye ",
Then, the definition of half-life implies,
N, 1
70 =Noe ¥ = —kr= ln<§) = k7 =1In(2).
This establishes the Theorem. O

Remark: A radioactive material, IV, can be expressed in terms of the half-life,

N(t) — No e(—t/T) In(2) = N(t) — No eln[g(*t/T)]

= N(t)=N,27Y".
From this last expression is clear that for ¢ = 7 we get N(7) = N,/2.

1.5.2. Carbon-14 Dating. Carbon-14 is a radioactive isotope of Carbon-12. An atom
is an isotope of another atom if their nuclei have the same number of protons but different
number of neutrons. The Carbon atom has 6 protons. The stable Carbon atom has also 6
neutrons, so it is called Carbon-12. Carbon-13 is another stable isotope of Carbon having 7
neutrons. Carbon-14 has 8 neutrons and it happens to be radioactive with half-life 7 = 5730
years. The Carbon on Earth is made up of 99% of Carbon-12 and almost 1% of Carbon-13.
Carbon-14 is very rare, in the atmosphere there is 1 Carbon-14 atom per 102 Carbon-12
atoms.

Carbon-14 is being constantly created in the upper atmosphere—by collisions of Carbon-
12 with outer space radiation—in such a way that the proportion of Carbon-14 and Carbon-
12 in the atmosphere is constant in time. The Carbon atoms are accumulated by living
organisms in that same proportion. When the organism dies, the amount of Carbon-14 in the
dead body decays while the amount of Carbon-12 remains constant. The proportion between
radioactive over normal Carbon isotopes in the dead body decays in time. Therefore, one
can measure this proportion in old remains and then find out how old are such remains—this
is called Carbon-14 dating.

Example 1.5.1. Bone remains in an ancient excavation site contain only 14% of the
Carbon-14 found in living animals today. Estimate how old are the bone remains. Use
that the half-life of the Carbon-14 is 7 = 5730 years.

Solution: Suppose that ¢ = 0 is set at the time when the organism dies. If at the present
time t; the remains contain 14% of the original amount, that means

14
~ 100
Since Carbon-14 is a radioactive substance with half-life 7, the amount of Carbon-14 decays
in time as follows,

N(t) N(0).

N(t) = N(0)27"",
where 7 = 5730 years is the Carbon-14 half-life. Therefore,

14 t
27H/T = — = 2 —og,(14/100) = 1, = 7log,(100/14).
100 T
We obtain that ¢, = 16,253 years. The organism died more that 16,000 years ago. <

Solution: (Using the decay constant k.) We write the solution of the radioactive decay
equation as
N(t)=NO)e ™,  kr=1In(2).
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Write the condition for t;, to be 14 % of the original Carbon-14, as follows,
14 ks 14 14

SN0 = = o fkt1:1n<—),

N —kty _
(0)e 100 100

1 1
S0, t; = Z ln(%). Recalling the expression for k in terms of 7, that is k7 = In(2), we get

In(100/14)

In(2)
We get t; = 16, 253 years, which is the same result as above, since
In(100/14)

In(2)

;=

log,(100/14) =

<

1.5.3. Newton’s Cooling Law. In 1701 Newton published, anonymously, the result
of his home made experiments done fifteen years earlier. He focused on the time evolution
of the temperature of objects that rest in a medium with constant temperature. He found
that the difference between the temperatues of an object and the constant temperature of
a medium varies geometrically towards zero as time varies arithmetically. This was his way
of saying that the difference of temperatures, AT, depends on time as

(AT)(t) = (AT)oe™ "7,

for some initial temperature difference (AT'), and some time scale 7. Although this is called
a “Cooling Law”, it also describes objects that warm up. When (AT), > 0, the object is
cooling down, but when (AT), < 0, the object is warming up.

Newton knew pretty well that the function AT above is solution of a very particular
differential equation. But he chose to put more emphasis in the solution rather than in the
equation. Nowadays people think that differential equations are more fundamental than
their solutions, so we define Newton’s cooling law as follows.

Definition 1.5.5. The Newton cooling law says that the temperature T at a time t of a
material placed in a surrounding medium kept at a constant temperature T satisfies

(AT) = —k (AT),
with AT(t) = T(t)—Ts, and k > 0, constant, characterizing the material thermal properties.
Remark: Newton’s cooling law for AT is the same as the radioactive decay equation.

But now the initial temperature difference, (AT)(0) = T'(0) — T, can be either positive or
negative.

Theorem 1.5.6. The solution of Newton’s cooling law equation (AT) = —k(AT) with
initial data T(0) = Ty is
T(t) = (Ty — Ty) e * + Ty,

Proof of Theorem 1.5.6: Newton’s cooling law is a first order linear equation, which we
solved in § 1.1. The general solution is

(AT)(t) =ce ¥ = T(t)=ce * +T,, ceR,
where we used that (AT)(t) = T(t) — Ts. The initial condition implies
To=T0)=c+T, = c=To—T, = T({t)=(T,—T,)e " +T,.
This establishes the Theorem. ]
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Example 1.5.2. A cup with water at 45 C is placed in the cooler held at 5 C. If after 2
minutes the water temperature is 25 C, when will the water temperature be 15 C?

Solution: We know that the solution of the Newton cooling law equation is
T(t) = (Ty — Ty) e * + T,
and we also know that in this case we have
T, =45  T,=5  T(2)=25.

In this example we need to find ¢; such that T'(¢;) = 15. In order to find that ¢; we first
need to find the constant k,

Tt)=(45-5) e +5 = T(t)=40e * +5.
Now use the fact that T'(2) = 25 C, that is,

1
20=T(2)=40e%* = 1In(1/2)=-2k = k= 5 n(2).
Having the constant k& we can now go on and find the time ¢, such that T'(¢;) = 15 C.

T()=40e""V2D 45 = 10=40e V2D o p =4 Py

1.5.4. Mixing Problems. We study the system pictured in Fig. 3. A tank has a salt
mass Q(t) dissolved in a volume V (¢) of water at a time ¢. Water is pouring into the tank
at a rate r;(t) with a salt concentration g;(t). Water is also leaving the tank at a rate r,(t)
with a salt concentration ¢,(t). Recall that a water rate r means water volume per unit
time, and a salt concentration ¢ means salt mass per unit volume.

We assume that the salt entering in the tank

gets instantaneously mixed. As a consequence ri, ¢i(t)
the salt concentration in the tank is homoge-
neous at every time. This property simplifies
the mathematical model describing the salt in
the tank. Tank
Before stating the problem we want to solve, Instantaneously mixed
we review the physical units of the main fields
involved in it. Denote by [r;] the units of the V(t) Q) "oy do(t)
quantity r;. Then we have
Volume Mass
ril = lrol = e [0 = laol = e FIGURE 3. Description of a
[V] = Volume, [Q] = Mass. water tank problem.

Definition 1.5.7. A Mixing Problem refers to water coming into a tank at a rate r; with
salt concentration q;, and going out the tank at a rate r, and salt concentration q,, so that
the water volume V' and the total amount of salt Q, which is instantaneously mized, in the
tank satisfy the following equations,

VI(t) = ri(t) — ro(t), (1.5.1)
Q'(t) = ri(t) qi(t) — ro(t), 4o (1), (1.5.2)
o(t) = 38 (1.5.3)
ri(t) = 15(t) =0 (1.5.4)
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The first and second equations above are just the mass conservation of water and salt,
respectively. Water volume and mass are proportional, so both are conserved, and we
chose the volume to write down this conservation in Eq. (1.5.1). This equation is indeed
a conservation because it says that the water volume variation in time is equal to the
difference of volume time rates coming in and going out of the tank. Eq. (1.5.2) is the salt
mass conservation, since the salt mass variation in time is equal to the difference of the salt
mass time rates coming in and going out of the tank. The product of a water rate r times a
salt concentration ¢ has units of mass per time and represents the amount of salt entering or
leaving the tank per unit time. Eq. (1.5.3) is the consequence of the instantaneous mixing
mechanism in the tank. Since the salt in the tank is well-mixed, the salt concentration is
homogeneous in the tank, with value Q(¢)/V(t). Finally the equations in (1.5.4) say that
both rates in and out are time independent, hence constants.

Theorem 1.5.8. The amount of salt in the mizing problem above satisfies the equation

Q'(t) = a(t) Q(t) + (1), (1.5.5)
where the coefficients in the equation are given by
To

Proof of Theorem 1.5.8: The equation for the salt in the tank given in (1.5.5) comes
from Eqgs. (1.5.1)-(1.5.4). We start noting that Eq. (1.5.4) says that the water rates are
constant. We denote them as r; and r,. This information in Eq. (1.5.1) implies that V' is
constant. Then we can easily integrate this equation to obtain

V(t) = (ri —7ro)t + Vo, (1.5.7)

where V, = V(0) is the water volume in the tank at the initial time ¢ = 0. On the other
hand, Eqgs.(1.5.2) and (1.5.3) imply that
o

Q1) = rialt) = 75 Q)

Since V(t) is known from Eq. (1.5.7), we get that the function @ must be solution of the
differential equation

() =1 qi(t) — ——— 2 Q(t).

Q) =realt) = sy Q)

This is a linear ODE for the function Q. Indeed, introducing the functions
To

a(t) = ORI b(t) =riqi(t),

the differential equation for ) has the form

Q'(t) = alt) Qt) + bi().

This establishes the Theorem. ]

We could use the formula for the general solution of a linear equation given in Section 1.2
to write the solution of Eq. (1.5.5) for . Such formula covers all cases we are going to
study in this section. Since we already know that formula, we choose to find solutions in
particular cases. These cases are given by specific choices of the rate constants r;, 7,, the
concentration function ¢;, and the initial data constants V, and Q, = Q(0). The study of
solutions to Eq. (1.5.5) in several particular cases might provide a deeper understanding of
the physical situation under study than the expression of the solution @ in the general case.
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Example 1.5.3 (General Case for V(t) = V). Consider a mixing problem with equal
constant water rates r; = r, = r, with constant incoming concentration ¢;, and with a given
initial water volume in the tank V5. Then, find the solution to the initial value problem

Q') =a(t) Q) +b(t),  Q0) =y,
where function @ and b are given in Eq. (1.5.6). Graph the solution function @ for different

values of the initial condition Q,.

Solution: The assumption r; = r, = r implies that the function « is constant, while the
assumption that ¢; is constant implies that the function b is also constant too,
To r
a(t) = —F——~F— = a(t) = —— = a,,
() (ri_ro)t"i‘% () % 0

b(t) =riqi(t) = b(t) =riqi = bo.
Then, we must solve the initial value problem for a constant coefficients linear equation,
Ql(t) = a0 Q(t) + by, Q(0) = Qo,

The integrating factor method can be used to find the solution of the initial value problem
above. The formula for the solution is given in Theorem 1.1.4,

cww{@+%yw,@

Qo

In our case the we can evaluate the constant by/a,, and the result is

b v, b
o=ta)(—2) = i =ah
Then, the solution @) has the form,
Q) = (Qo — @:Vo) e /Y0 + Vs (1.5.8)

The initial amount of salt @), in the tank can be any non-negative real number. The solution
behaves differently for different values of @),. We classify these values in three classes:

(a) The initial amount of salt in the tank is
the critical value Q, = ¢;V,. In this case
the solution @) remains constant equal to
this critical value, that is, Q(t) = ¢; V5.

(b) The initial amount of salt in the tank is

bigger than the critical value, Qo > ¢; V5. ¥
In this case the salt in the tank @ de- ¢ Ve

creases exponentially towards the critical /__
value.

(¢) The initial amount of salt in the tank is
smaller than the critical value, Q, < ¢; V5.
In this case the salt in the tank @ in-
creases exponentially towards the critical
value.

FIGURE 4. The function
in (1.5.8) for a few values of

The graphs of a few solutions in these three
srap the initial condition Q.

classes are plotted in Fig. 4.
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Example 1.5.4 (Find a particular time, for V(¢) = ;). Consider a mixing problem with
equal constant water rates r; = r, = r and fresh water is coming into the tank, hence
¢; = 0. Then, find the time ¢, such that the salt concentration in the tank Q(t)/V(t) is 1%
the initial value. Write that time ¢; in terms of the rate r and initial water volume Vj.

Solution: The first step to solve this problem is to find the solution ) of the initial value
problem

Q'(t) =a®)Q(t) +b(t),  Q0) = Qo,
where function a and b are given in Eq. (1.5.6). In this case they are

0= )t = ) =~

b(t) = ri qi(t) = b(t) = 0.
The initial value problem we need to solve is
r
QB =--Q1,  QO)=Qu
0
From Section 1.1 we know that the solution is given by

Q(t) = Qoe™"/%.

We can now proceed to find the time ¢;. We first need to find the concentration Q(t)/V (¢).
We already have Q(t) and we now that V(t) =V, since r; = r,. Therefore,

QO QW _ % um

vty Vo W
The condition that defines ¢, is

Qlt:) 1 Qo
V(t,) 100 V,'

From these two equations above we conclude that

1 Qo Q) _ Qo
100V, V() Vo '

The time t; comes from the equation

1 —e /o o ln(l)— rty & ln(lOO):r—tl.

100 100/~ V, Vo
The final result is given by
V.
t; = — In(100).
T

<

Example 1.5.5 (Nonzero ¢;, for V(t) = V;). Consider a mixing problem with equal con-
stant water rates r; = r, = r, with only fresh water in the tank at the initial time, hence
@, = 0 and with a given initial volume of water in the tank V;. Then find the function salt
in the tank @ if the incoming salt concentration is given by the function

qi(t) = 2 + sin(2t).

Solution: We need to find the solution @ to the initial value problem

Q'(t) =a() Q) +b(t),  Q(0) =0,
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where function a and b are given in Eq. (1.5.6). In this case we have

a(t) = fm = a(t) = —VO = —aqo,
b(t) = r; ¢ (1) = b(t) =7 [2 +sin(2t)].

We are changing the sign convention for a, so that a, > 0. The initial value problem we
need to solve is
Q'(t) = —a Q) +b(t),  Q0)=0.

The solution is computed using the integrating factor method and the result is

t
Q(t) = efa"t/O €™%h(s) ds,

where we used that the initial condition is ), = 0. Recalling the definition of the function
b we obtain

t
Qt) = e_”ot/ eo® [2 + 5111(23)] ds.
0

This is the formula for the solution of the problem, we only need to compute the integral
given in the equation above. This is not straightforward though. We start with the following
integral found in an integration table,

ks

ks o; _ ¢ :
/e sin(ls) ds = Par [ksin(ls) — Lcos(ls)],

where k and [ are constants. Therefore,

t 2 t eaos t
/O €%[2 4 sin(2s)] ds = [;Oeaos} 0+ [W [ao sin(2s) — QCOS(QS)H ,
= zq(eaot -1)+ L()t [ao sin(2t) — 2 cos(2t)] + 2
Qo Clg + 22 ° ag + 2%

With the integral above we can compute the solution @ as follows,

2 eaot
__—aqpt aot -
Qt) =e % [;O (e ot _ 1) + 7a§ Y [ao sin(2t) — 2cos(2t)] + 7a§ n 22],
recalling that a, = r/V,. We rewrite expression above as follows,
2 2 21 ., 1 B
Q@:a+@¢?—de0+%T?Mmﬂﬁﬂmﬁm. (1.5.9)
<
Y
2 ______ A — = = = = = = D e
Q1)
t

FIGURE 5. The graph of the function @ given in Eq. (1.5.9) for a, = 1.
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1.5.5. Exercises.

1.5.1.- A radioactive material decays at 1.5.4.- A tank initially contains Vo = 100

a rate proportional to the amount

present. Initially there are 50 mil-

ligrams of the material present and after

one hour the material has lost 80% of its

original mass.

(a) Find the mass of the material as
function of time.

(b) Find the mass of the material after
four hours.

(¢) Find the half-life of the material.

1.5.2.- A vessel with liquid at 18 C is placed

in a cooler held at 3 C, and after 3 min-

utes the temperature drops to 13 C.

(a) Find the differential equation satis-
fied by the temperature T of a lig-
uid in the cooler at time ¢t = 0.

(b) Find the function temperature of
the liquid once it is put in the
cooler.

(¢) Find the liquid cooling constant.

1.5.3.- A tank initially contains V5, = 100

liters of water with Qo = 25 grams of
salt. The tank is rinsed with fresh wa-
ter flowing in at a rate of r; = 5 liters
per minute and leaving the tank at the
same rate. The water in the tank is well-
stirred. Find the time such that the
amount the salt in the tank is Q1 = 5
grames.

liters of pure water. Water enters the
tank at a rate of r; = 2 liters per minute
with a salt concentration of ¢1 = 3
grams per liter. The instantaneously
mixed mixture leaves the tank at the
same rate it enters the tank. Find the
salt concentration in the tank at any
time ¢ > 0. Also find the limiting
amount of salt in the tank in the limit
t — oo.

1.5.5.- A tank with a capacity of V,, = 500

liters originally contains Vo, = 200 liters
of water with Qo = 100 grams of salt
in solution. Water containing salt with
concentration of ¢; = 1 gram per liter
is poured in at a rate of r; = 3 liters
per minute. The well-stirred water is
allowed to pour out the tank at a rate
of r, = 2 liters per minute. Find the
salt concentration in the tank at the
time when the tank is about to overflow.
Compare this concentration with the
limiting concentration at infinity time
if the tank had infinity capacity.
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1.6. Nonlinear Equations

Linear differential equations are simpler to solve than nonlinear differential equations. While
we have an explicit formula for the solutions to all linear equations—Theorem 1.2.3—there
is no such formula for solutions to every nonlinear equation. It is true that we solved several
nonlinear equations in §§ 1.2-1.4, and we arrived at different formulas for their solutions,
but the nonlinear equations we solved are only a tiny part of all nonlinear equations.

One can give up on the goal of finding a formula for solutions to all nonlinear equations.
Then, one can focus on proving whether a nonlinear equations has solutions or not. This is
the path followed to arrive at the Picard-Lindel6f Theorem. This theorem determines what
nonlinear equations have solutions, but it provides no formula for them. However, the proof
of the theorem does provide a way to compute a sequence of approximate solutions to the
differential equation. The proof ends showing that this sequence converges to a solution of
the differential equation.

In this section we first introduce the Picard-Lindel6f Theorem and the Picard iteration
to find approximate solutions. We then compare what we know about solutions to linear
and to nonlinear differential equations. We finish this section with a brief discussion on
direction fields.

1.6.1. The Picard-Lindel6f Theorem. We will show that a large class of nonlinear
differential equations have solutions. First, let us recall the definition of a nonlinear equation.

Definition 1.6.1. An ordinary differential equation y'(t) = f(t,y(t)) is called nonlinear
iff the function f is nonlinear in the second argument.

Example 1.6.1.
(a) The differential equation

is nonlinear, since the function f(¢,y) = t?/y? is nonlinear in the second argument.
(b) The differential equation

y'(t) = 2ty(t) + In(y(t))
is nonlinear, since the function f(t,y) = 2ty +1In(y) is nonlinear in the second argument,

due to the term In(y).
(¢) The differential equation

= 2t*

is linear, since the function f(t,y) = 2ty is linear in the second argument.
<

The Picard-Lindeléf Theorem shows that certain nonlinear equations have solutions,
uniquely determined by appropriate initial data.

Theorem 1.6.2 (Picard-Lindeldf). Consider the initial value problem

y'(t) = fty®),  ylte) = v (1.6.1)

If the function f is continuous on the domain D, = [t, — a,t, + a] X [yo — a,yo + a] C R?,
for some a > 0, and f is Lipschitz continuous on y, that is there exists k > 0 such that

[f(t,y2) = (& y)| <K ly2 —wnl,
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for all (t,y2), (t,y1) € Dy, then there exists a positive b < a such that there exists a unique
solution y, on the domain [t, — b, t, + b], to the initial value problem in (1.6.1).

Remark: We prove this theorem rewriting the differential equation as an integral equation
for the unknown function y. Then we use this integral equation to construct a sequence of
approximate solutions {y,} to the original initial value problem. Next we show that this
sequence of approximate solutions has a unique limit as n — oo. We end the proof showing
that this limit is the only solution of the original initial value problem. This proof follows
[15] § 1.6 and Zeidler’s [16] § 1.8. It is important to read the review on complete normed
vector spaces, called Banach spaces, given in these references.

Proof of Theorem 1.6.2: We start writing the differential equation in 1.6.1 as an integral
equation, hence we integrate on both sides of that equation with respect to t,

[y@wzlf@mmw = Wﬁmﬁ[f@mwﬁ- (16.2)

We have used the Fundamental Theorem of Calculus on the left-hand side of the first
equation to get the second equation. And we have introduced the initial condition y () = o.
We use this integral form of the original differential equation to construct a sequence of
functions {yn 52 ,. The domain of every function in this sequence is D, = [t, — a, t, + al.
The sequence is defined as follows,

Yn+1(t) = Yo +/t f(s,yn(s))ds,  n=0,  yo(t) =wo. (1.6.3)

We see that the first element in the sequence is the constant function determined by the
initial conditions in (1.6.1). The iteration in (1.6.3) is called the Picard iteration. The
central idea of the proof is to show that the sequence {y,} is a Cauchy sequence in the
space C(Dy) of uniformly continuous functions in the domain Dy = [t, — b, t, + b] for a small
enough b > 0. This function space is a Banach space under the norm

= ).
lull = masx|u(t)]

See [15] and references therein for the definition of Cauchy sequences, Banach spaces, and
the proof that C (D) with that norm is a Banach space. We now show that the sequence
{yn} is a Cauchy sequence in that space. Any two consecutive elements in the sequence
satisfy

f@wz w—/fswlumﬂ

1Yn+1 — ynll = max| |

max/ |f 7yn *f(ayn 1 ’dS

teD

<k {2%}5/ |Yn(8) — yn—1(s)| ds
< kb ||lyn — Yn—1|l-

Denoting r = kb, we have obtained the inequality

lYnt1 — Ynll <7 lyn — Yn-1ll = Nyn+1 — ynll <™ lyr — yoll-
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Using the triangle inequality for norms and and the sum of a geometric series one compute
the following,

Hyn - yn+m|| = Hyn —Yn+1 +Ynt1 = Ynt2 + 0 F YUng(m—1) — ynerH
”yn - yn+1|| + ||yn+1 - yn+2|| + -+ ||yn+(m71) - yn+mH

N

SO " ") g = o
<r(L4r+r2 4+ +1") lyr — ol
1 —pm
<7t ( 1= >Hy1—yo||
Now choose the positive constant b such that b < min{a, 1/k}, hence 0 < r < 1. In this case
the sequence {y,} is a Cauchy sequence in the Banach space C(Dy), with norm || ||, hence

converges. Denote the limit by y = lim,, ;oo y,. This function satisfies the equation

B =0+ / F(s,(s)) ds

which says that y is not only continuous but also differentiable in the interior of Dy, hence
y is solution of the initial value problem in (1.6.1). The proof of uniqueness of the solution
follows the same argument used to show that the sequence above is a Cauchy sequence.
Consider two solutions y and g of the initial value problem above. That means,

t t

y(t) = yo + t f(s,y(s)ds, §(t) =yo + t f(s,9(s)ds

Therefore, their difference satisfies
t t
Iy =31 = ] [ S v s = [ s6s, 50
to

max/ |f(s,y(s f(s.9(s))| ds

teDy

gk;max/ ly(s) (s)|ds

teDy
<kblly -yl
Since b is chosen so that » = kb < 1, we got that

<
I
<

ly—gll<rly-gll, r<1 = Jy-g[[=0 =
This establishes the Theorem. O

Example 1.6.2. Use the proof of Picard-Lindel6f’s Theorem to find the solution to
y'=2y+3  y(0)=1

Solution: We first transform the differential equation into an integral equation.

/Oy’(s)ds:/o (2y(s)+3)ds = y(t)fy(O):/o (2y(s) +3) ds.

Using the initial condition, y(0) = 1,
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We now define the sequence of approximate solutions:
w=v0 =1 wa®=1+ [ @) +3ds >0
We now compute the first elements in the sequence. We said yo = 1, now y; is given by

¢ ¢
n =20, yl(t)zlJr/(2y0(s)+3)ds:l+/ 5ds =1+ 5t.
0 0

So y1 = 1+ 5t. Now we compute ¥z,

t t
Yo = 1—|—/ (2y1(s)+3) ds = 1+/
0 0

So we've got ya(t) = 1 + 5t + 5t2. Now y3,

t
(2(1+45s)+3) ds = yp = 1+/ (5+10s) ds = 1+5t+5¢°.
0

t t
y3:1—|—/(2y2(8)+3)ds:1—|—/ (2(1 4 5s + 5s) + 3) ds
0 0
so we have,

t
10
y3=1+/ (5+103+1052)ds:1+5t+5t2+§t3.
0

So we obtained y3(t) = 1 + 5t + 5t2 + — 3. We now rewrite this expression so we can get

a power series expansion that can be written in terms of simple functions. The first step is
done already, to write the powers of ¢t as t", for n = 1,2, 3,

5(2
y3(t) = 1+ 5t' + 5% + %tf’
We now multiply by one each term so we get the factorials n! on each term
t t? o 13
y3(t) = 1+5ﬁ+5(2)5+5(2 )5
We then realize that we can rewrite the expression above in terms of power of (2t), that is,
5 (2t) 5 (2t)2 5 (2t)3 5 (2t)2  (2t)3
=1+ - 2 2 =1+ (2 ).
e I TR T BT P S R T

From this last expressionis simple to guess the n-th approximation

2 3 N N k
yN(t)=1+g((2t)+(22t,) +(23t|) +---+(2]Q), )=1+gz(21j'> :
! ! ! el

Recall now that the power series expansion for the exponential

e’”zz(kt!) :1—1—2(;!) = Z(kt') = (e* —1).

k=0 k=1 k=1

Then, the limit N — oo is given by

y(t) = lim yN(t):1+§ i(Zt)k :14‘?(6%—1)7

N—oo 2 k! 2
k=1
One last rewriting of the solution and we obtain
54, 3
t) = —e“" — —.
y(t) = 5 — 3
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Remark: The differential equation 3’ = 2y + 3 is of course linear, so the solution to the
initial value problem in Example 1.6.2 can be obtained using the methods in Section 1.1,

3 3
e -2y =eM3 = eMy=-—SeFre = ylt)=ce’ -3
and the initial condition implies
3 5 5 3
1:y(0):c—§ = c:5 = 3/(t):§ezt_§~

Example 1.6.3. Use the proof of Picard-Lindel6f’s Theorem to find the solution to
Y =ay+b y(0) = o, a,b € R.

Solution: We first transform the differential equation into an integral equation.

/Oy(s)ds:/o (ay(s)+b)ds = y(t)—y(O):/O (ay(s) +b)ds.

Using the initial condition, y(0) = g,

y(t)=y0+/0 (ay(s) + b) ds.

We now define the sequence of approximate solutions:

t
o = 4(0) = g0, %Hw:%+/m%@+w@,n>o
0

We now compute the first elements in the sequence. We said yg = 9o, now y; is given by
t
=0, n®=w+ [ (awls)+b)ds
0

¢
:go‘i_/(ago"_b)ds
0
= 4o + (ago + b)t.
So y1 = 9o + (a o + b)t. Now we compute ¥z,

t
m=%+/hw@+ﬂ%
0

= o + /0 [a(go + (afo + b)s) + b ds

. N N at?

= Go + (afo + 0)t + (ago + b)?
. A A A at? - o
So we obtained y5(t) = §o + (ao + b)t + (a go + 11)7. A similar calculation gives us ys,

R . . at? . a?t3
ys(t) = go + (aflo +b)¢ + (a o +b) =~ + (ado +b) =5
We now rewrite this expression so we can get a power series expansion that can be written
in terms of simple functions. The first step is done already, to write the powers of ¢t as t",
forn=1,2,3,
Nl 2 3

R R . t R t
s(8) = o + (0o + ) Ot (g + D)0 by + (o 1 D)a? &
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We already have the factorials n! on each term ¢". We now realize we can write the power
functions as (at)™ is we multiply eat term by one, as follows
(ago +b) (at)!  (ago+b) (at)®  (ago+b) (at)’
+ + .
1! a 2! a 3!

y3(t) = 9o +

Now we can pull a common factor
at)! at)? at)?

ys(t):ﬂo+(ﬂo+g)< 1 + 9! 3!

From this last expressionis simple to guess the n-th approximation

Jim @) = o+ (50 2) 00

Recall now that the power series expansion for the exponential

eatzz(kt') :1—|—Z(kt') = Z(]:') =(e" —1).

k=0 : k=1 ’ k=1

Notice that the sum in the exponential starts at k£ = 0, while the sum in y, starts at k = 1.
Then, the limit n — oo is given by

y(t) = lim y,(t)

n—roo

= 9o + (?)o-l-g) g(a]:!)k
=1+ (QOJFS) (e = 1),

We have been able to add the power series and we have the solution written in terms of
simple functions. One last rewriting of the solution and we obtain

oty = (go+ ) et~ 2.

a

Remark: We reobtained Eq. (1.1.12) in Theorem 1.1.4.

Example 1.6.4. Use the Picard iteration to find the solution of
y =5ty,  y(0) =1
Solution: We first transform the differential equation into an integral equation.
/t y'(s)ds = /t S5sy(s)ds = y(t)—y(0) = /t 5sy(s)ds.
0 0 0
Using the initial condition, y(0) = 1,
y(t)=1+ /Ot 5sy(s) ds.
We now define the sequence of approximate solutions:

t
Yo=y(0)=1, ypt1(t) =1 +/ 55yn(s)ds, mn =0.
0
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We now compute the first four elements in the sequence. The first one is yo = y(0) = 1, the
second one y; is given by

¢
n=0, yl(t)zl—l-/ 5Sds:1+gt2.
0
So y1 = 1+ (5/2)t2. Now we compute s,

y2 =1+

52
So we obtained ys(t) = 1+ §t2 + 5] t*. A similar calculation gives us ys,

¢
Y3 = 1+/ 5sya(s) ds
0

t 5 9 52 4
:1+/053(1+§s —&—2—38)6[3

! 5 3 5 5
:1—1—/0 (55+?s +2733 )ds
5 52 53
=1+t + =t + 15
* 2 * 8 + 236
. 5, 5%, 5% g . . .
So we obtained y3(t) =1+ §t + 2 t* + 713 t”. We now rewrite this expression so we can
get a power series expansion that can be written in terms of simple functions. The first step
is to write the powers of ¢t as t", for n =1, 2, 3,
5 52 53
D=1+ 20 £ 2 122 L 2 (423
polt) = 1+ () + 5 (2% + o (1)
Now we multiply by one each term to get the right facctorials, n! on each term,
5(12)' 52 (12)2 53 (2)3
t)y=1+ - — —
wlt) =1+ 5ty

No we realize that the factor 5/2 can be written together with the powers of 2,

37 G GO
ys(t) =14+ T + o1 + T
From this last expression is simple to guess the n-th approximation

3

N 5.9k
yN(t) =1 +Z (22!)
k=1

which can be proven by induction. Therefore,

= (320
y(t) = lim yN(t)=1—|—Z 2k' .
k=1 ’

N—o00
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Recall now that the power series expansion for the exponential

at = (at)* = (at)k
e :Z(k') 1+;(k!).

k=0

so we get

Remark: The differential equation y’ = 5ty is of course separable, so the solution to the
initial value problem in Example 1.6.4 can be obtained using the methods in Section 1.3,

/ 5t2
Yost = In(y) = > +e = yit)= gest”.
)

We now use the initial condition,

so we obtain the solution

Example 1.6.5. Use the Picard iteration to find the solution of
y =2y, y(0)=1.

Solution: We first transform the differential equation into an integral equation.

/Oty/(s) ds:/t 2sy(s)ds = y(t) —y(0) =/t 254 y(s) ds.

0 0

Using the initial condition, y(0) = 1,

y(t)=1 +/0 25* y(s) ds.

We now define the sequence of approximate solutions:
t
=0 =1,y =1+ [ 25y, (5)ds, 030
0

We now compute the first four elements in the sequence. The first one is yo = y(0) = 1, the
second one y; is given by

t
2
n =0, yl(t)zl—l—/ 254ds:1+gt5.
0
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So y1 = 1+ (2/5)t°. Now we compute s,

t

yo =1 +/ 254y1(s) ds
0
¢ 2
:1+/ 254 (1+fs5)ds
) 5

t 22
:1+/(254+f59)d3
0 5

2 22 1
=1+ -t° 4+ = —¢'0.
+5 + 5 10

1
So we obtained ys(t) = 1+ gtE’ + b t19. A similar calculation gives us s,

t
y3:1+/ 25t 45 (s) ds
0
¢ 2
:1+/254(1+fs5+—7310)ds
0

t 2 3
2 2° 1
- 4 9 14
—1+/0(28 +€S +?§8 )dS
2 22 1 2211
B T [V
+ ) + 5 10 + 52 2 15
. 2. 221 ,, 2211 ¢ . .
So we obtained y3(t) = 1+ gt + 23 7+ 33 t*?. We now try reorder terms in this last
expression so we can get a power series expansion we can write in terms of simple functions.
This is what we do:
2 22 (t5)2 23 (t5)3
)y =1+ (% + =
2 t5 22 t5 2 23 t5 3
20 2P B @)
5 1! 52 2l 53 3!
G | GeP | G
I TR TR A TR

From this last expression is simple to guess the n-th approximation

(%tS)n
n! "’

yn(t) = 1+Z

which can be proven by induction. Therefore,

(%t5)n
!

y(t) = lim yn() =1+ "

N —oo

Recall now that the power series expansion for the exponential

+ = (at)* > (at)*
R S ST

so we get
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1.6.2. Comparison of Linear and Nonlinear Equations. The main result in § 1.2
was Theorem 1.2.3, which says that an initial value problem for a linear differential equation

y = a(t) y + b(t), y(to) = Yo,
with a,b continuous functions on (¢,t,), and constants t, € (¢;,t,) and y, € R, has the
unique solution y on (t,t,) given by

t
y(t) = A (yo + / e~ A b(s) ds),

to

t
where we introduced the function A(t) = / a(s) ds.

to
From the result above we can see that solutions to linear differential equations satisfiy
the following properties:
(a) There is an explicit expression for the solutions of a differential equations.
(b) For every initial condition y, € R there exists a unique solution.
(c¢) For every initial condition y, € R the solution y(t) is defined for all (1, 2).

Remark: None of these properties hold for solutions of nonlinear differential equations.

From the Picard-Lindel6f Theorem one can see that solutions to nonlinear differential
equations satisfy the following properties:
(i) There is no explicit formula for the solution to every nonlinear differential equation.
(ii) Solutions to initial value problems for nonlinear equations may be non-unique when
the function f does not satisfy the Lipschitz condition.
(iii) The domain of a solution y to a nonlinear initial value problem may change when we
change the initial data y,.
The next three examples (1.6.6)-(1.6.8) are particular cases of the statements in (i)-(iii).
We start with an equation whose solutions cannot be written in explicit form.

Example 1.6.6. For every constant ay, as, as, a4, find all solutions y to the equation
t2
yi(t) + aa v (t) + az y?(t) + a2 y(t) + ar)

y'(t) = ( (1.6.4)

Solution: The nonlinear differential equation above is separable, so we follow § 1.3 to find
its solutions. First we rewrite the equation as

(¥* (1) + aay’(t) + asy®(t) + az y(t) + ar) y' (1) = ¢*.
Then we integrate on both sides of the equation,
/(y4(t) +asy?(t) +az y?(t) + a2 y(t) + a1) y' () dt = /t2 dt + c.
Introduce the substitution v = y(t), so du = y'(¢) dt,
/(u4+a4u3+a3u2+a2u+a1) du = /tht—i—c.

Integrate the left-hand side with respect to uw and the right-hand side with respect to t¢.
Substitute u back by the function y, hence we obtain

L s a4 4 as 3 az t3
)+ —y )+ -y )+ =yl t) = — .
O+ S O+ DO+ Dyt +ay) =5 o

This is an implicit form for the solution y of the problem. The solution is the root of a
polynomial degree five for all possible values of the polynomial coefficients. But it has been
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proven that there is no formula for the roots of a general polynomial degree bigger or equal
five. We conclude that that there is no explicit expression for solutions y of Eq. (1.6.4). <

We now give an example of the statement in (ii), that is, a differential equation which
does not satisfy one of the hypothesis in Theorem 1.6.2. The function f has a discontinuity
at a line in the (¢, u) plane where the initial condition for the initial value problem is given.
We then show that such initial value problem has two solutions instead of a unique solution.

Example 1.6.7. Find every solution y of the initial value problem

y'(t)=y"3(),  y(0)=0. (1.6.5)

Remark: The equation above is nonlinear, separable, and f(¢,u) = u!'/3 has derivative

1 1

Since the function 9, f is not continuous at u = 0, it does not satisfies the Lipschitz condition
in Theorem 1.6.2 on any domain of the form S = [—a,a] x [—a, a] with a > 0.

Solution: The solution to the initial value problem in Eq. (1.6.5) exists but it is not unique,
since we now show that it has two solutions. The first solution is

y:(t) = 0.

The second solution can be computed as using the ideas from separable equations, that is,

/[y(t)]_1/3 y'(t)dt = /dt—i—co.

Then, the substitution u = y(t), with du = y’(t) dt, implies that

/u_l/?’du:/dt—&—co.

Integrate and substitute back the function y. The result is
3 2 ]3/ 2

§[y(t)]2/3:t+co N y(t):[g(t-’-co)

The initial condition above implies

so the second solution is:

<

Finally, an example of the statement in (iii). In this example we have an equation with
solutions defined in a domain that depends on the initial data.

Example 1.6.8. Find the solution y to the initial value problem
y(t)=y*(t),  y(0) = .

Solution: This is a nonlinear separable equation, so we can again apply the ideas in Sect. 1.3.
We first find all solutions of the differential equation,
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We now use the initial condition in the last expression above,

1 1
YHo=y0)=—— = c=——.
Co Yo
So, the solution of the initial value problem above is:
1
y(t) = -1

(yj"f)

This solution diverges at t = 1/yq,, so the domain of the solution y is not the whole real line
R. Instead, the domain is R — {y,}, so it depends on the values of the initial data y,. <

In the next example we consider an equation of the form 3/ (¢) = f(¢,y(t)), where f does
not satisfy the hypotheses in Theorem 1.6.2.

Example 1.6.9. Consider the nonlinear initial
value problem

/ _ 1 u
YO = D D0 - D +3) =1
y(to) = Yo (1.6.6)

Find the regions on the plane where the hypotheses  -------
in Theorem 1.6.2 are not satisfied.

1
A T V (R V =y e

so f is not defined on the lines

(1.6.7)

Solution: In this case the function f is given by: E
t=1, t=—1, uw=2, u=—3. :

See Fig. 6. For example, in the case that the initial
data is t, = 0, yo = 1, then Theorem 1.6.2 implies
that there exists a unique solution on any region R FIGURE 6. Red regions
contained in the rectangle R = (—1,1) x (—3,2). where f in Eq. (1.6.7) is
If the initial data for the initial value problem in not defined.

Eq. (1.6.6) is t = 0, yo = 2, then the hypotheses of

Theorem 1.6.2 are not satisfied. <

1.6.3. Direction Fields. Sometimes one needs to find information about solutions of
a differential equation without having to actually solve the equation. One way to do this is
with the direction fields. Consider a differential equation

y'(t) = ft,y(t)).
We interpret the the right-hand side above in a new way.

(a) In the usual way, the graph of f is a surface in the tyz-space, where z = f(t,y),

(b) In the new way, f(t,y) is the value of a slope of a segment at each point (¢,y) on the
ty-plane.

(¢) That slope is the value of y/(t), the derivative of a solution y at t.

The ideas above suggest the following definition.
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New  Wey

Lo Valaes  as slopes
on  Zhe 2)-plae

FiGURE 7. The function f as a slope of a segment.

Definition 1.6.3. A direction field for the differential equation y'(t) = f(t,y(t)) is the
graph on the ty-plane of the values f(t,y) as slopes of a small segments.

We now show the direction fields of e few equations.

Example 1.6.10. Find the direction field of the equation v’ = y, and sketch a few solutions
to the differential equation for different initial conditions.

Solution: Recall that the solutions are y(t) = y, e’. So is the direction field shown in Fig. 8.
<

I T T S R T T i R R T Tt

FIGURE 8. Direction field for the equation y’ = y.
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sin(y), and sketch a few

Example 1.6.11. Find the direction field of the equation 3’

solutions to the differential equation for different initial conditions.

Solution: The equation is separable so the solutions are

|

csc(y) + cot(y)
for any yo € R. The graphs of these solutions are not simple to do. But the direction field

esc(yo) + cot(yo
is simpler to plot and can be seen in Fig. 9.
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FIGURE 9. Direction field for the equation 3" = sin(y).

Example 1.6.12. Find the direction field of the equation y’ = 2 cos(t) cos(y), and sketch

a few solutions to the differential equation for different initial conditions.

<

Solution: We do not need to compute the explicit solution of 4’ = 2 cos(t) cos(y) to have a

qualitative idea of its solutions. The direction field can be seen in Fig. 10.
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2 cos(t) cos(y).

FIGURE 10. Direction field for the equation g’
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1.6.4. Exercises.

1.6.1.- Use the Picard iteration to find the
first four elements, yo, y1, y2, and ys,
of the sequence {yn }n>( of approximate
solutions to the initial value problem

y =6y+1, y(0)=0.

1.6.2.- Use the Picard iteration to find the
information required below about the
sequence {yn}orq of approximate solu-
tions to the initial value problem

y =3y+5 y(0) =1
(a) The first 4 elements in the sequence,

Yo, Y1, Yo, and ys.
(b) The general term cx(t) of the ap-
proximation

vty =1+ 40,

(¢) Find the limit y(t) = limp— oo Yn (t).

1.6.3.- Find the domain where the solution
of the initial value problems below is

well-defined.
, —4t
(a) y = 77 y(0) = yo > 0.

(b) ¢ = 2ty°, y(0) = yo > 0.

1.6.4.- By looking at the equation coeffi-
cients, find a domain where the solution
of the initial value problem below exists,

(a) (#*—4)y' +2In(t)y = 3t, and initial
condition y(1) = —2.

(b) yl = my
y(—1) = 2.

1.6.5.- State where in the plane with points
(t,y) the hypothesis of Theorem 1.6.2

are not satisfied.

/ y2

(a) y = 5% 3y

(b) ¥ = V1—-t2—y2

and initial condition







CHAPTER 2

Second Order Linear Equations

Newton’s second law of motion, ma = f, is maybe one of the first differential equations
written. This is a second order equation, since the acceleration is the second time derivative
of the particle position function. Second order differential equations are more difficult to
solve than first order equations. In § 2.1 we compare results on linear first and second order
equations. While there is an explicit formula for all solutions to first order linear equations,
not such formula exists for all solutions to second order linear equations. The most one
can get is the result in Theorem 2.1.7. In § 2.2 we introduce the Reduction Order Method
to find a new solution of a second order equation if we already know one solution of the
equation. In § 2.3 we find explicit formulas for all solutions to linear second order equations
that are both homogeneous and with constant coefficients. These formulas are generalized
to nonhomogeneous equations in § 2.5. In § 2.6 we describe a few physical systems described
by second order linear differential equations.

T
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2.1. Variable Coeflicients

We studied first order linear equations in § 1.1-1.2, where we obtained a formula for all
solutions to these equations. We could say that we know all that can be known about
solutions to first order linear equations. However, this is not the case for solutions to second
order linear equations, since we do not have a general formula for all solutions to these
equations.

In this section we present two main results, the first one is Theorem 2.1.2, which says
that there are solutions to second order linear equations when the equation coefficients are
continuous functions. Furthermore, these solutions have two free parameters that can be
fixed by appropriate initial conditions.

The second result is Theorem 2.1.7, which is the closest we can get to a formula for
solutions to second order linear equations without sources—homogeneous equations. To
know all solutions to these equations we only need to know two solutions that are not
proportional to each other. The proof of Theorem 2.1.7 is based on Theorem 2.1.2 plus
an algebraic calculation and properties of the Wronskian function, which are derived from
Abel’s Theorem.

2.1.1. Definitions and Examples. We start with a definition of second order linear
differential equations. After a few examples we state the first of the main results, Theo-
rem 2.1.2, about existence and uniqueness of solutions to an initial value problem in the
case that the equation coefficients are continuous functions.

Definition 2.1.1. A second order linear differential equation for the function y is
Y +a(t)y + ao(t)y = b(t), (2.1.1)

where ay, ay, b are given functions on the interval I C R. The Eq. (2.1.1) above:

(a) is homogeneous iff the source b(t) =0 for all t € R;
(b) has constant coefficients iff a; and a, are constants;
(c) has variable coefficients iff either a, or a, is not constant.

Remark: The notion of an homogeneous equation presented here is different from the Euler
homogeneous equations we studied in § 1.3.

Example 2.1.1.
(a) A second order, linear, homogeneous, constant coefficients equation is
y" +5y +6=0.
(b) A second order, linear, nonhomogeneous, constant coefficients, equation is
y" — 3y + y = cos(3t).
(¢) A second order, linear, nonhomogeneous, variable coefficients equation is
y' + 2ty —In(t)y = .

(d) Newton’s law of motion for a point particle of mass m moving in one space dimension
under a force f is mass times acceleration equals force,

my"(t) = f(t,y(t),y'(t)).
(e) Schrodinger equation in Quantum Mechanics, in one space dimension, stationary, is
h2

oV + V(@) v = B,
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where 1 is the probability density of finding a particle of mass m at the position x
having energy E under a potential V', where & is Planck constant divided by 27. <

Example 2.1.2. Find the differential equation satisfied by the family of functions

y(t) = ¢ et e,

where c;, ¢, are arbitrary constants.

Solution: From the definition of ¥ compute c¢;,

4t 8t

G =ye T —ce

Now compute the derivative of function y
y = dc; et —de, e
Replace ¢; from the first equation above into the expression for 3/,
Y =4(ye ™ —ce et —de,e =y =dy+ (—4—4)ce M,
so we get an expression for ¢, in terms of y and ¢/,

1
L= = §(4y —qy) et
At this point we can compute ¢, in terms of y and 3, although we do not need it for what

follows. Anyway,

y =4y —8c e

1 1
e =ye M — §(4y — y')e4te*8t = ¢ = 3 (4y + 1) e %,

We do not need ¢; because we can get a differential equation for y from the equation for c,.
Compute the derivative of that equation,

1 1
0=c=5My—y)e + 2y -y e = Ady—y)+ 4y —y") =0
which gives us the following second order linear differential equation for y,

y" — 16y = 0.

Example 2.1.3. Find the differential equation satisfied by the family of functions

c
y(t):?l—I—czt, ¢, € R,

Solution: Compute y' = f‘;—; + ¢,. Get one constant from y’ and put it in y,
— ./ ! _ G / Cy
02*y+t*2 = y—?+(y+t—2)t,
so we get
c c 2c
y=—+ty+> = y=—+ty.

Compute the constant from the expression above,
2c
71 =y—ty = 2 =ty—t2y.

Since the left hand side is constant,

0:(201)l:(ty_tZyl)/:y+ty/_2tyl_t2 //7
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so we get that y must satisfy the differential equation

2y’ +ty —y=0.

<
Example 2.1.4. Find the differential equation satisfied by the family of functions
y(x) =z + ey 2?,
where ¢,, ¢, are arbitrary constants.
Solution: Compute the derivative of function y
y'(z) =c1 + 22,
From here it is simple to get cq,
cr=vy — 2.
Use this expression for ¢; in the expression for y,
/
y=( —2cx)r+crat=xy —cx2® = 3= v %
r  x
To get the differential equation for ¥ we do not need c¢;, but we compute it anyway,
v 2y 2y
a=y -2(=-Fr=y -2y +— = a=-y+—.
x x x x
The equation for y can be obtained computing a derivative in the expression for ¢,
11 / / 11 /
0:02297_97_3174_2&:3/7_21/7_’_2&:0 = 2%y’ — 22y +2y=0.
z x2 a2 x3 T 2 x3
<

2.1.2. Solutions to the Initial Value Problem. Here is the first of the two main
results in this section. Second order linear differential equations have solutions in the case
that the equation coefficients are continuous functions. Since the solution is unique when
we specify two initial conditions, the general solution must have two arbitrary integration
constants.

Theorem 2.1.2 (IVP). If the functions a, ao, b are continuous on a closed interval I C R,
the constant t, € I, and y,, y, € R are arbitrary constants, then there is a unique solution
y, defined on I, of the initial value problem

y'+a)y +a)y =0t),  ylto) =%, Y'(t) =11 (2.1.2)

Remark: The fixed point argument used in the proof of Picard-Lindel6f’s Theorem 1.6.2
can be extended to prove Theorem 2.1.2.

Example 2.1.5. Find the domain of the solution to the initial value problem

(t—l)y”—?»ty’—!—Hyzt(t—l), y(2) =1, y'(2) = 0.

Solution: We first write the equation above in the form given in the Theorem above,
3t 4
/! /
YouonY a3

)y:t.
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The equation coefficients are defined on the domain
(—00,1) U (1,3) U (3,00).
So the solution may not be defined at ¢ = 1 or t = 3. That is, the solution is defined in
(—o0,1) or (1,3) or (3,00).
Since the initial condition is at ¢, = 2 € (1, 3), then the domain of the solution is
D =(1,3).

<

2.1.3. Properties of Homogeneous Equations. We simplify the problem with the
hope to get deeper properties of its solutions. From now on in this section we focus on
homogeneous equations only. We will get back to non-homogeneous equations in a later sec-
tion. But before getting into homogeneous equations, we introduce a new notation to write

differential equations. This is a shorter, more economical, notation. Given two functions
ay, G, introduce the function L acting on a function y, as follows,

Ly) =y + a(t)y' + ao(t) y. (2.1.3)

The function L acts on the function y and the result is another function, given by Eq. (2.1.3).

8
Example 2.1.6. Compute the operator L(y) = ty" + 2y’ — 7Y acting on y(t) = t3.

Solution: Since y(t) = t3, then y/(t) = 3t? and y”(t) = 6t, hence
8
L(t%) =t (6t) + 2(3t%) — 7 3 = L(t%) =4t
The function L acts on the function y(¢) = ¢> and the result is the function L(#3) = 4t?. <

The function L above is called an operator, to emphasize that L is a function that acts
on other functions, instead of acting on numbers, as the functions we are used to. The
operator L above is also called a differential operator, since L(y) contains derivatives of y.
These operators are useful to write differential equations in a compact notation, since

Y +at)y +aot)y = f(t)
can be written using the operator L(y) = y” + a,(t) ¥ + ao(t) y as
L(y) = f.
An important type of operators are the linear operators.

Definition 2.1.3. An operator L is a linear operator iff for every pair of functions y,
1o and constants ¢y, ¢, holds

L(Ciyl + CQyQ) == ClL(yl) + CQL(yQ). (2.1.4)

In this Section we work with linear operators, as the following result shows.

Theorem 2.1.4 (Linear Operator). The operator L(y) = y" + a, y' + a0 y, where a,, a, are
continuous functions and y is a twice differentiable function, is a linear operator.
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Proof of Theorem 2.1.4: This is a straightforward calculation:
L(ciys + c2y2) = (s + o) + ay (erys + o) + ao (crys + c292)-
Recall that derivations is a linear operation and then reoorder terms in the following way,
Lcyys + cys) = (cyy + as cayfl + ao ciys) + (s + as cayy + ao C2ys).-
Introduce the definition of L back on the right-hand side. We then conclude that
Lcwys + eya) = e L(ys) + 2 L(y2).

This establishes the Theorem. O
The linearity of an operator L translates into the superposition property of the solutions
to the homogeneous equation L(y) = 0.

Theorem 2.1.5 (Superposition). If L is a linear operator and y,, y, are solutions of the
homogeneous equations L(y,) = 0, L(y,) = 0, then for every constants ¢, ¢, holds

L(C1 Y1+ Co yz) =0.

Remark: This result is not true for nonhomogeneous equations.

Proof of Theorem 2.1.5: Verify that the function y = ¢,y, + ¢,y, satisfies L(y) = 0 for
every constants ¢, ¢,, that is,

L(y) = L(c1y1 + 021,/2) = L(%) +c L(lh) =¢04+c,0=0.

This establishes the Theorem. |
We now introduce the notion of linearly dependent and linearly independent functions.

Definition 2.1.6. Two functions y,, y, are called linearly dependent iff they are propor-
tional. Otherwise, the functions are linearly independent.

Remarks:
(a) Two functions y;, y, are proportional iff there is a constant ¢ such that for all ¢ holds
Y1 (t) = cya(t).

(b) The function y, = 0 is proportional to every other function ys,, since holds y; = 0 = 0 ys,.

The definitions of linearly dependent or independent functions found in the literature
are equivalent to the definition given here, but they are worded in a slight different way.
Often in the literature, two functions are called linearly dependent on the interval I iff there
exist constants ¢, ¢,, not both zero, such that for all ¢ € I holds

Ciy1(t) + Czyz(t) =0.
Two functions are called linearly independent on the interval I iff they are not linearly
dependent, that is, the only constants ¢, and ¢, that for all ¢ € I satisfy the equation
C1y1(t) + Czyz(t) =0

are the constants ¢; = ¢, = 0. This wording makes it simple to generalize these definitions
to an arbitrary number of functions.

Example 2.1.7.

(a) Show that y,(t) = sin(t), y»(t) = 2sin(t) are linearly dependent.
(b) Show that y,(t) = sin(t), y,(t) = tsin(t) are linearly independent.
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Solution:
Part (a): This is trivial, since 2y, () — y,(t) = 0.

Part (b): Find constants ¢;, ¢, such that for all ¢ € R holds
¢, sin(t) + et sin(t) = 0.
Evaluating at t = /2 and ¢ = 37/2 we obtain

3
clJrgcz,:O, cl+§cgz0 = ¢ =0, ¢ =0

We conclude: The functions y; and y, are linearly independent. <

We now introduce the second main result in this section. If you know two linearly
independent solutions to a second order linear homogeneous differential equation, then you
actually know all possible solutions to that equation. Any other solution is just a linear
combination of the previous two solutions. We repeat that the equation must be homoge-
neous. This is the closer we can get to a general formula for solutions to second order linear
homogeneous differential equations.

Theorem 2.1.7 (General Solution). If y, and y, are linearly independent solutions of the
equation L(y) = 0 on an interval I C R, where L(y) = v" + a1y + aoy, and a, a, are
continuous functions on I, then there are unique constants c,, ¢, such that every solution y
of the differential equation L(y) =0 on I can be written as a linear combination

y(t) = cryi(t) + c2ya(t).

Before we prove Theorem 2.1.7, it is convenient to state the following the definitions,
which come out naturally from this Theorem.
Definition 2.1.8.

(a) The functions y, and y, are fundamental solutions of the equation L(y) = 0 iff y,,
Yo are linearly independent and

L(y:) =0, L(y) = 0.
(b) The general solution of the homogeneous equation L(y) = 0 is a two-parameter family
of functions ygen given by
Ygen(t) = c1 ys(t) + 2 9a(1),

where the arbitrary constants c,, ¢, are the parameters of the family, and vy,, y, are
fundamental solutions of L(y) = 0.

2

Example 2.1.8. Show that y, = e and y, = e~2* are fundamental solutions to the equation

y' 4+ —2y=0.

Solution: We first show that y, and y, are solutions to the differential equation, since
Liy) =y +y, -2y =e' +e" —2e' = (14+1-2)e" =0,
L) =y +yb— 2y, =4e 2 —2e72 — 272 = (4 -2 - 2)e* =0.
It is not difficult to see that y; and y, are linearly independent. It is clear that they are not
proportional to each other. A proof of that statement is the following: Find the constants
¢; and ¢, such that

2t 2t

0=c1y1+cgy2:ciet+cge_ teR = 0=ce —2ce”
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The second equation is the derivative of the first one. Take ¢ = 0 in both equations,
O=c,+c,, 0=c—2c, = ¢ =c,=0.

We conclude that y, and y, are fundamental solutions to the differential equation above.<

Remark: The fundamental solutions to the equation above are not unique. For example,
show that another set of fundamental solutions to the equation above is given by,

2 1 1
y:(t) = get + ge 2t Y (t) = g(et —e Qt).

To prove Theorem 2.1.7 we need to introduce the Wronskian function and to verify
some of its properties. The Wronskian function is studied in the following Subsection and
Abel’s Theorem is proved. Once that is done we can say that the proof of Theorem 2.1.7 is
complete.

Proof of Theorem 2.1.7: We need to show that, given any fundamental solution pair,
Y1, Yo, any other solution y to the homogeneous equation L(y) = 0 must be a unique linear
combination of the fundamental solutions,

y(t) = cryi(t) + 2 (1), (2.1.5)

for appropriately chosen constants c¢,, c,.

First, the superposition property implies that the function y above is solution of the
homogeneous equation L(y) = 0 for every pair of constants ¢, ¢,.

Second, given a function y, if there exist constants ¢, ¢, such that Eq. (2.1.5) holds,
then these constants are unique. The reason is that functions y,, y, are linearly independent.
This can be seen from the following argument. If there are another constants ¢, ¢, so that

y(t) = e y(t) + & (1),
then subtract the expression above from Eq. (2.1.5),
0:(01_51)91"‘(02—52)92 = c—¢=0, —0c=0,

where we used that y,, y, are linearly independent. This second part of the proof can be
obtained from the part three below, but I think it is better to highlight it here.

So we only need to show that the expression in Eq. (2.1.5) contains all solutions. We
need to show that we are not missing any other solution. In this third part of the argument
enters Theorem 2.1.2. This Theorem says that, in the case of homogeneous equations, the
initial value problem

L(y) =0, y(to) = di, y/(to) = d,,
always has a unique solution. That means, a good parametrization of all solutions to the
differential equation L(y) = 0 is given by the two constants, d;, d, in the initial condition.
To finish the proof of Theorem 2.1.7 we need to show that the constants ¢; and ¢, are also
good to parametrize all solutions to the equation L(y) = 0. One way to show this, is to
find an invertible map from the constants d;, d,, which we know parametrize all solutions,
to the constants c¢;, ¢,. The map itself is simple to find,

di =¢ y1(to) + Yo (to)
dy = 1y, (to) + c2y5(to)-

We now need to show that this map is invertible. From linear algebra we know that this
map acting on ¢, ¢, is invertible iff the determinant of the coefficient matrix is nonzero,

Yi(to)  Ya2(to)

gt gty = Yalto) Ualte) = i (to)ualto) # 0.
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This leads us to investigate the function

Wia(t) = ya(8) y5(t) — v: (1)ya(t)
This function is called the Wronskian of the two functions y,, y,. At the end of this section
we prove Theorem 2.1.13, which says the following: If y,, y, are fundamental solutions of
L(y) =0on I CR, then Wy,(t) # 0 on I. This statement establishes the Theorem. O

2.1.4. The Wronskian Function. We now introduce a function that provides im-
portant information about the linear dependency of two functions ¥y, y,. This function, W,
is called the Wronskian to honor the polish scientist Josef Wronski, who first introduced
this function in 1821 while studying a different problem.

Definition 2.1.9. The Wronskian of the differentiable functions y,, y, is the function
Wia(t) = ys (), (t) — vy (t)ya(t).

Remark: Introducing the matrix valued function A(t) = Bi Eg zfgg the Wronskian can
1 2
be written using the determinant of that 2 x 2 matrix, Wi,(t) = det(A(¢)). An alternative
L Y1 Yo
notation is: Wy, = .
Py v

Example 2.1.9. Find the Wronskian of the functions:
(a) y:(t) = sin(t) and y,(t) = 2sin(¢). (1d)

(b) yi(t) = sin(t) and y,(t) = tsin(¢). (li)

Solution:

Part (a): By the definition of the Wronskian:

Y1 () yz(t)‘: sin(t) 2sin(¢)
yi(t) yi(t)|  |cos(t) 2cos(t)

We conclude that Wi,(t) = 0. Notice that y; and y, are linearly dependent.
Part (b): Again, by the definition of the Wronskian:

Wio(t) =

’ = sin(t)2 cos(t) — cos(t)2 sin(¢)

_|sin(¢) tsin(t) L . 7 .
Wi,(t) = cos(t) sin(t) + ¢ cos(t)| — sin(t)[sin(t) + ¢ cos(t)] — cos(t)t sin(t).
We conclude that Wi, (t) = sin®(). Notice that y, and y, are linearly independent. <

It is simple to prove the following relation between the Wronskian of two functions and
the linear dependency of these two functions.
Theorem 2.1.10 (Wronskian I). If y,, y, are linearly dependent on I C R, then
W12 = O on 1.

Proof of Theorem 2.1.10: Since the functions y,, y, are linearly dependent, there exists
a nonzero constant ¢ such that y; = cys,; hence holds,

Wi =y1y; —yiy2 = (cy2) y5 — (c4) 92 = 0.
This establishes the Theorem. |

Remark: The converse statement to Theorem 2.1.10 is false. If Wi,(t) = 0 for all ¢t € I,
that does not imply that y, and y, are linearly dependent.
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Example 2.1.10. Show that the functions
yi(t) =12, and yo(t) = |t|t, for teR

are linearly independent and have Wronskian W, = 0.

Solution:

First, these functions are linearly independent, since y,(t) = —y.(t) for ¢ < 0, but
Y1(t) = yo(¢t) for £ > 0. So there is not ¢ such that y,(t) = cy,(t) for all t € R.

Second, their Wronskian vanishes on R. This is simple to see, since y;(t) = —y,(t) for
t <0, then Wiy, =0 for t < 0. Since y,(t) = y,(¢) for ¢ > 0, then W;, =0 for ¢t > 0. Finally,
it is not difficult to see that Wi,(t = 0) = 0. <

Remark: Often in the literature one finds the negative of Theorem 2.1.10, which is equiv-
alent to Theorem 2.1.10, and we summarize ibn the followng Corollary.

Corollary 2.1.11 (Wronskian I). If the Wronskian Wi, (t,) # 0 at a point t, € I, then the
functions y,, y, defined on I are linearly independent.

The results mentioned above provide different properties of the Wronskian of two func-
tions. But none of these results is what we need to finish the proof of Theorem 2.1.7. In
order to finish that proof we need one more result, Abel’s Theorem.

2.1.5. Abel’s Theorem. We now show that the Wronskian of two solutions of a
differential equation satisfies a differential equation of its own. This result is known as
Abel’s Theorem.

Theorem 2.1.12 (Abel). If y,, y, are twice continuously differentiable solutions of
Y+ a (t)y +ao(t)y =0, (2.1.6)
where ay, a, are continuous on I C R, then the Wronskian Wy, satisfies
W/, + a:(t) Wy, = 0.
Therefore, for any t, € I, the Wronskian W1, is given by the expression
Wia(t) = Way(to) e~ 110,
where A, (t) = /t as(s)ds.

to

Proof of Theorem 2.1.12: We start computing the derivative of the Wronskian function,

/
W= (v —viv) =y — v v
Recall that both y; and y, are solutions to Eq. (2.1.6), meaning,

"__ / "o_ /
Yy = —Q1Y;, — Qo Y1, Yy = —A1Yy; — Qo Yo

Replace these expressions in the formula for W/, above,
W1/2 =U (—Ch y; — Qo yz) - (—a1 y; — Qo yl) Yo = W{; = —ay (y1 ZU; - y; yz)
So we obtain the equation
W/, + a.(t) Wy, = 0.
This equation for Wi, is a first order linear equation; its solution can be found using the

method of integrating factors, given in Section 1.1, which results is the expression in the
Theorem 2.1.12. This establishes the Theorem. ]
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We now show one application of Abel’s Theorem.

Example 2.1.11. Find the Wronskian of two solutions of the equation

2y —tt+2)y +(t+2)y=0, t>0.

Solution: Notice that we do not known the explicit expression for the solutions. Neverthe-
less, Theorem 2.1.12 says that we can compute their Wronskian. First, we have to rewrite
the differential equation in the form given in that Theorem, namely,

" (2+1) ’+(3+1) =0
v () (g y)u=0

Then, Theorem 2.1.12 says that the Wronskian satisfies the differential equation
2
Wht) = (5 +1) Walt) = 0.

This is a first order, linear equation for Wi,, so its solution can be computed using the
method of integrating factors. That is, first compute the integral

_/tt<i—|-1) ds:—?ln(%) —(t—to)

2

t
= ln(t—g) — (t —to).
Then, the integrating factor p is given by

ty (i
plt) = 5 e,
which satisfies the condition u(t,) = 1. So the solution, Wy, is given by

(HOWa() =0 = wOWalt) — ulte)Walte) = 0

so, the solution is
2

t
Wia(t) = W12(to)t—2 elt—to)
0

If we call the constant ¢ = Wi,(t,)/[t2e'], then the Wronskian has the simpler form
Wi,(t) = ct?el.
<

We now state and prove the statement we need to complete the proof of Theorem 2.1.7.

Theorem 2.1.13 (Wronskian II). Ify,, y, are fundamental solutions of L(y) =0 on I C R,
then Wiy(t) #0 on 1.

Remark: Instead of proving the Theorem above, we prove an equivalent statement—the
negative statement.

Corollary 2.1.14 (Wronskian II). If y:, y, are solutions of L(y) =0 on I C R and there
is a point t, € I such that Wi,(t,) =0, then y,, y, are linearly dependent on I.

Proof of Corollary 2.1.14: We know that y,, y, are solutions of L(y) = 0. Then, Abel’s
Theorem says that their Wronskian W, is given by

W12(t) = WlZ(to) e_Al(t),
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for any t, € I. Chossing the point t, to be ¢, the point where by hypothesis Wi,(t,) = 0,
we get that
Wi(t) =0 forall tel.

Knowing that the Wronskian vanishes identically on I, we can write

Y1y, — Y192 = 0,
on [. If either y, or y, is the function zero, then the set is linearly dependent. So we
can assume that both are not identically zero. Let’s assume there exists ¢; € I such that
y:(t1) # 0. By continuity, y, is nonzero in an open neighborhood I, C I of ¢;. So in that
neighborhood we can divide the equation above by 32,

£
Y1 Y1 Y1

where ¢ € R is an arbitrary constant. So we conclude that y, is proportional to y, on the
open set I;. That means that the function y(t) = y,(t) — cy,(t), satisfies

Liy)=0,  y(t)=0, ¢'(t)=0.
Therefore, the existence and uniqueness Theorem 2.1.2 says that y(¢) = 0 for all ¢t € I. This
finally shows that y, and y, are linearly dependent. This establishes the Theorem. O
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2.1.6. Exercises.

2.1.1.- Find the constants c and k such that
the function y(t) = ct* is solution of

—y+tPy+4aty=1.

2.1.2.- Let y(t) = c1t+c2 t? be the general
solution of a second order linear differ-
ential equation L(y) = 0. By eliminat-
ing the constants c¢; and cz, find the dif-
ferential equation satisfied by y.

2.1.3.- (a) Verify that y:1(t) = ¢*> and
y2(t) = 1/t are solutions to the dif-
ferential equation

2y’ —2y=0, ¢>0.

(b) Show that y(t) = at® + g is so-
lution of the same equation for all
constants a, b € R.

2.1.4.- Find the longest interval where the
solution y of the initial value problems
below is defined. (Do not try to solve
the differential equations.)

(a) t*y" +6y=2t, y(1) =2,y (1) = 3.
(b) (t—6)y +3ty —y = 1, y(3) =
-1, y'(3) = 2.

2.1.5.- If the graph of y, solution to a sec-
ond order linear differential equation
L(y(t)) = 0 on the interval [a, b], is tan-
gent to the ¢-axis at any point to € [a, b],
then find the solution y explicitly.

2.1.6.- Can the function y(t) = sin(t?) be
solution on an open interval containing
t = 0 of a differential equation

Y +a(t)y +b(t)y =0,

with continuous coefficients a and b7
Explain your answer.

2.1.7.- Compute the Wronskian of the fol-
lowing functions:

(a) F(t) = sin(t),
(b) f(a) =, glx
(c) 1(6) = cos”(8

(t) zzcos(t).

)
), g(6) =1+ cos(26).

2.1.8.- Verify whether the functions yi, 42
below are a fundamental set for the dif-
ferential equations given below:

(8) wa(t) = cos(2t), pa(t) = sin(2t),
y" 4+ 4y = 0.
(b) yi(t) = €', ya(t) = te',
y' =2y +y=0.
() yi(x) ==, a(t) = xe”,
22y —2z(z+2)y + (z+2)y = 0.

2.1.9.- If the Wronskian of any two solu-
tions of the differential equation

Y +pt)y +qt)y=0

is constant, what does this imply about
the coefficients p and ¢?

2.1.10.- * Suppose y; is solution of the IVP

Y o U (0) =0,
Y ary apy1 =0,
' ' y1(0) =5,
and y2 is solution of the IVP
" ’ (2} (0) =0,
y1 taryr +aoyr =0,
y1(0) =1

that is, same differential equation and
same initial condition for the function,
but different initial conditions for the
derivatives. Then show that the func-
tions y1 and y2 must be proportional to
each other,

y1(t) = cya(t)
and find the proportionality factor c.

Hint 1: Theorem 2.1.2 says that the
initial value problem

"y a 0 y(0) =0,
a apy =0,
R O R
has a unique solution and it is y(t) =0

for all ¢.
Hint 2: Find what is the initial value
problem for the function
Ye(t) = y1(t) — cya(t),
and fine tune ¢ to use hint 1.
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2.2. Reduction of Order Methods

Sometimes a solution to a second order differential equation can be obtained solving two
first order equations, one after the other. When that happens we say we have reduced the
order of the equation. We use the ideas in Chapter 1 to solve each first order equation.

In this section we focus on three types of differential equations where such reduction of
order happens. The first two cases are usually called special second order equations and the
third case is called the conservation of the energy.

We end this section with a method that provides a second solution to a second order
equation if you already know one solution. The second solution can be chosen not propor-
tional to the first one. This idea is called the reduction order method—although all four
ideas we study in this section do reduce the order of the original equation.

2.2.1. Special Second Order Equations. A second order differential equation is
called special when either the function, or its first derivative, or the independent variable
does not appear explicitly in the equation. In these cases the second order equation can
be transformed into a first order equation for a new function. The transformation to get
the new function is different in each case. Then, one solves the first order equation and
transforms back solving another first order equation to get the original function. We start
with a few definitions.

Definition 2.2.1. A second order equation in the unknown function y is an equation

y' = flt,y.y).

where the function f : R? — R is given. The equation is linear iff function f is linear in
both arguments y and y'. The second order differential equation above is special iff one of
the following conditions hold:

(a) y' = f(t, % Y'), the function y does not appear explicitly in the equation;
(b) v = fCKy,y'), the variable t does not appear explicitly in the equation.
(c) v' = fCK y,><), the variable t, the function y' do not appear explicitly in the equation.

It is simpler to solve special second order equations when the function y is missing,
case (a), than when the variable ¢ is missing, case (), as it can be seen by comparing
Theorems 2.2.2 and 2.2.3. The case (¢) is well known in physics, since it applies to Newton’s
second law of motion in the case that the force on a particle depends only on the position
of the particle. In such a case one can show that the energy of the particle is conserved.

Let us start with case (a).

Theorem 2.2.2 (Function y Missing). If a second order differential equation has the form
y' = f(t,y'), then v =y satisfies the first order equation v' = f(t,v).

The proof is trivial, so we go directly to an example.

Example 2.2.1. Find the y solution of the second order nonlinear equation y” = —2t (y')?
with initial conditions y(0) = 2, 3/(0) = —1.

Solution: Introduce v = 3’. Then v' = ", and

1
=9t = —=_9 = —-=_¢241¢
v
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1
So, — =t? — ¢, that is, v/ = . The initial condition implies
c

y/ 12 —
1 1

1=y 0)=—= = c¢=1 = ¢y =—-.

Y ( ) c ¢ Y t2 -1
dt
Then, y = / 21 + c¢. We integrate using the method of partial fractions,
1 1 a b
= +

2-1 (t-Dit+D) (-1 (t+1)
1 1
Hence, 1 = a(t + 1) + b(t — 1). Evaluating at t =1 and t = —1 we get a = 2 b= —3 So
L 1[; L
2—1 2Lt—1) @+
Therefore, the integral is simple to do,

1 1
y:§(1n|t—1|—ln|t+1|)+c. 2=y(0)=5(0-0)+c.

We conclude y = (1n\t—1\—1n|t—|—1|)+2, 4

N[ =

The case (b) is way more complicated to solve.
Theorem 2.2.3 (Variable ¢t Missing). If the initial value problem
y'=fwy), w0 =w%,  ¥(0)=u,

has an invertible solution y, then the function

w(y) = v(t(y)),
where v(t) = y'(t), and t(y) is the inverse of y(t), satisfies the initial value problem

MZW7 w(yo):yu

d
where we denoted W = —w.
dy

Remark: The proof is based on the chain rule for the derivative of functions.

Proof of Theorem 2.2.3: The differential equation is y” = f(y,y’). Denoting v(t) = y/'(t)
v' = f(y,v)

It is not clear how to solve this equation, since the function y still appears in the equation.
On a domain where y is invertible we can do the following. Denote t(y) the inverse values
of y(t), and introduce w(y) = v(t(y)). The chain rule implies

v dt‘ ~V(t) v'(t) _ Fy(t), v(t))

_ dw av at ‘ _
gy dth) dyliy)  y(t) iy o(t)

Sy

_ [y, w(y)
) w(y)

w(y)

t(y) v(t)

d d
where w(y) = d—Z, and v'(t) = dit} Therefore, we have obtained the equation for w, namely
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Finally we need to find the initial condition fro w. Recall that

y(t=0)=wo & ty = yo) =0,
y'(t=0) =y < v(t=0) =y
Therefore,
w(y =wo) =v(t(y =10)) =v(t=0) =y = w(y) =y
This establishes the Theorem. |

Example 2.2.2. Find a solution y to the second order equation 3" = 2y /.

Solution: The variable ¢ does not appear in the equation. So we start introduciong the
function v(t) = y'(t). The equation is now given by v'(t) = 2y(t) v(t). We look for invertible
solutions y, then introduce the function w(y) = v(¢(y)). This function satisfies

/ /

. dw dv dt v v
dy dt dy/ley)  y'lew) v ley)
Using the differential equation,
. 2yv dw N
w(y) = — = — =2 = wy) =y +c
W) ==l gy (y) =y
Since v(t) = w(y(t)), we get v(t) = y*(t) + c. This is a separable equation,
vy
y3(t) +c

Since we only need to find a solution of the equation, and the integral depends on whether
¢>0,c=0, c<0, we choose (for no special reason) only one case, ¢ = 1.

d
/ v /dt +c = arctan(y) =1t + coy(t) = tan(t + c).

1492
Again, for no reason, we choose ¢, = 0, and we conclude that one possible solution to our
problem is y(t) = tan(t). <

Example 2.2.3. Find the solution y to the initial value problem
yy" +3()* =0, y0)=1, ¢ (0)=6.

Solution: We start rewriting the equation in the standard form

y" — _3w.
Y
The variable ¢ does not appear explicitly in the equation, so we introduce the function
v(t) = y/(t). The differential equation now has the form v'(t) = —3v?(t)/y(t). We look for
invertible solutions y, and then we introduce the function w(y) = v(t(y)). Because of the
chain rule for derivatives, this function satisfies

) dw dv dt v’ v ) V' (t(y))
w = — =|(— — = — = — = w —
) dy ) (dt dy) ty) Yty vl ) w(y)
Using the differential equation on the factor v/, we get
—303(t 1 —3w? -3

) w yw )
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This is a separable equation for function w. The problem for w also has initial conditions,
which can be obtained from the initial conditions from y. Recalling the definition of inverse
function,

Therefore,

wly =1) =v(t(y = 1)) = v(0) = y'(0) = 6,
where in the last step above we use the initial condition 3’(0) = 6. Summarizing, the initial
value problem for w is

The equation for w is separable, so the method from § 1.3 implies that
In(w) = -3In(y) +co =y ) +ce = wly) =cy > ¢ =e.
The initial condition fixes the constant c,, since
6=wl)=c¢ = wy) =6y">
We now transform from w back to v as follows,
v(t) =w(y(t) =6y7°(t) = ' (t)=6y°(1).

This is now a first order separable equation for y. Again the method from § 1.3 imply that

Y
vy =6 = Z=6t+02
The initial condition for y fixes the constant c,, since
1=y(0) = *=04c¢ = U
- A Ty

So we conclude that the solution ¥ to the initial value problem is
y(t) = (24t +1)%.
<

2.2.2. Conservation of the Energy. We now study case (¢) in Def. 2.2.1—second
order differential equations such that both the variable ¢ and the function 3’ do not appear
explicitly in the equation. This case is important in Newtonian mechanics. For that reason
we slightly change notation we use to write the differential equation. Instead of writing the
equation as y” = f(y), as in Def. 2.2.1, we write it as

my” = f(y),

where m is a constant. This notation matches the notation of Newton’s second law of motion
for a particle of mass m, with position function y as function of time ¢, acting under a force
f that depends only on the particle position .

It turns out that solutions to the differential equation above have a particular property:
There is a function of 3’ and y, called the energy of the system, that remains conserved
during the motion. We summarize this result in the statement below.

Theorem 2.2.4 (Conservation of the Energy). Consider a particle with positive mass m
and position y, function of time t, which is a solution of Newton’s second law of motion

my" = f(y),
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with initial conditions y(to) = yo and y'(ty) = v,, where f(y) is the force acting on the
particle at the position y. Then, the position function y satisfies

1
5mv2 + V(y) = EOv

where E, = $muvg + V(yo) is fized by the initial conditions, v(t) = y'(t) is the particle
velocity, and V' is the potential of the force f—the negative of the primitive of f, that is

Viy) = —/f(y)dy o 1=

Remark: The term T'(v) = $mov? is the kinetic energy of the particle. The term V(y) is

the potential energy. The Theorem above says that the total mechanical energy
E=T)+V(y)
remains constant during the motion of the particle.

Proof of Theorem 2.2.4: We write the differential equation using the potential V,

4

Multiply the equation above by v/,

my (1) (t) = —% Y (1),

Use the chain rule on both sides of the equation above,
d /1 "o d
—|( = =——V(y(t)).
Z(Gmw)?) = -2V
Introduce the velocity v = 3/, and rewrite the equation above as

%(%m v? + V(y)) =0.

This means that the quantity

1
Bly.v) = 5mv* + V(y),

called the mechanical energy of the system, remains constant during the motion. Therefore,
it must match its value at the initial time ¢,, which we called FE, in the Theorem. So we
arrive to the equation
1
Ely.v) = mv® + V(y) = By
This establishes the Theorem. O

Example 2.2.4. Find the potential energy and write the energy conservation for the fol-
lowing systems:
(i) A particle attached to a spring with constant k, moving in one space dimension.

(i) A particle moving vertically close to the Earth surface, under Earth’s constant gravita-
tional acceleration. In this case the force on the particle having mass m is f(y) = mg,
where g = 9.81 m/s%.

(iii) A particle moving along the direction vertical to the surface of a spherical planet with
mass M and radius R.
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Solution:

Case (i). The force on a particle of mass m attached to a spring with spring constant
k > 0, when displaced an amount y from the equilibrium position y = 0 is f(y) = —ky.
Therefore, Newton’s second law of motion says

my"’ = —ky.
The potential in this case is V(y) = %kyz, since —dV/dy = —ky = f. If we introduce the

particle velocity v = 3/, then the total mechanical energy is

1 1
E(y,v) = §mv2 + §ky2.

The conservation of the energy says that
1 5 1 .
—mv? + —ky? = E,,
2NLL + 5 Y 0
where Ej, is the energy at the initial time.
Case (ii). Newton’s equation of motion says: my” = mg. If we multiply Newton’s

equation by y’, we get

d /1
my'y" =mgy = a(im(y’)2+mgy)=0

If we introduce the the gravitational energy

1
E(y,v) = imUQ + mgy,

dE
where v = 4/, then Newton’s law says i 0, so the total gravitational energy is constant,

1 .
vaz +mgy = E(0).

Case (iii). Consider a particle of mass m moving on a line which is perpendicular to the
surface of a spherical planet of mass M and radius R. The force on such a particle when is
at a distance y from the surface of the planet is, according to Newton’s gravitational law,

GMm
fly) = —W,
where G = 6.67 x 10711 SQHIIEg’ is Newton’s gravitational constant. The potential is
GMm
Viy) =— ,
) (R+y)’
since —dV/dy = f(y). The energy for this system is
1 GMm
E(y,v) = =mv? — ———
(y,v) =5 Rty
where we introduced the particle velocity v = 3’. The conservation of the energy says that
1 5 GMm

- 75 . — Lo,

2™ TRty

where Ej, is the energy at the initial time. <
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Example 2.2.5. Find the maximum height of a ball of mass m = 0.1 Kg that is shot
vertically by a spring with spring constant & = 400 Kg/s? and compressed 0.1 m. Use
g =10 m/s?.

Solution: This is a difficult problem to solve if one tries to find the position function y and
evaluate it at the time when its speed vanishes—maximum altitude. One has to solve two
differential equations for y, one with source f; = —ky—mg and other with source fo = —myg,
and the solutions must be glued together. The first source describes the particle when is
pushed by the spring under the Earth’s gravitational force. The second source describes
the particle when only the Earth’s gravitational force is acting on the particle. Also, the
moment when the ball leaves the spring is hard to describe accurately.

A simpler method is to use the conservation of the mechanical and gravitational energy.
The energy for this particle is

1 1
E(t) = 3 mv? + 3 ky* + mgy.

This energy must be constant along the movement. In particular, the energy at the initial
time ¢ = 0 must be the same as the energy at the time of the maximum height, ¢,

1 1 1
E(t=0)=E(ty) = fmv§+§ky§+mgyo:imvﬁdemgyM.

2
But at the initial time we have v, = 0, and y, = —0.1, (the negative sign is because the
spring is compressed) and at the maximum time we also have vy, = 0, hence
Lo s kg
5 kYo +mgyo =mgyn = Yyu =Yo+ 5— Yo
2 2mg
We conclude that y;, = 1.9 m. <

Example 2.2.6. Find the escape velocity from Earth—the initial velocity of a projec-
tile moving vertically upwards starting from the Earth surface such that it escapes Earth
gravitational attraction. Recall that the acceleration of gravity at the surface of Earth is
g = GM/R? = 9.81m/s? and that the radius of Earth is R = 6378 Km. Here M denotes
the mass of the Earth, and G is Newton’s gravitational constant.

Solution: The projectile moves in the vertical direction, so the movement is along one space
dimension. Let y be the position of the projectile, with y = 0 at the surface of the Earth.
Newton’s equation in this case is

y _ GMm
B EEl
We start rewriting the force using the constant g instead of G,
GMm GM mR? gmR?

(R+y)? R (R+y)?  (R+y?

So the equation of motion for the projectile is

muy = — gmR?
YT TRy

The projectile mass m can be canceled from the equation above (we do it later) so the result
will be independent of the projectile mass. Now we introduce the gravitational potential

_ gmR?
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We know that the motion of this particle satisfies the conservation of the energy
1 5,  gmR?

—muv* — = F,,
2 (R+y) °
where v = 3. The initial energy is simple to compute, y(0) = 0 and v(0) = v,, so we get
1, gmR? 1,
—-mv-(t) — ——— = —mv; — gmR.
2™ O~ Ry ~ 2™ Y
We now cancel the projectile mass from the equation, and we rewrite the equation as
29 R?
2 2
v(t) = v — 2gR + ———.
° (R+y(t))

Now we choose the initial velocity v, to be the escape velocity v.. The latter is the smallest

initial velocity such that v(t) is defined for all y including y — co. Since

29 R?

2

vi(t) = 0 and ——F— >0,
0= R+ y0)

this means that the escape velocity must satisfy
vg —29R >0
Since the escape velocity is the smallest velocity satisfying the condition above, that means

2gR = v, =11.2Km/s.
<

Example 2.2.7. Find the time t,, for a rocket to reach the Moon, if it is launched at
the escape velocity. Use that the distance from the surface of the Earth to the Moon is
d = 405,696 Km.

Solution: From Example 2.2.6 we know that the position function y of the rocket satisfies
the differential equation

29 R?
(R+y(t)
where R is the Earth radius, g the gravitational acceleration at the Earth surface, v = 3/,
and v, is the initial velocity. Since the rocket initial velocity is the Earth escape velocity,
v, = Ve = v/2¢gR, the differential equation for y is

(=28 Ly VEER

(R+vy) vVR+y
where we chose the positive square root because, in our coordinate system, the rocket leaving
Earth means v > 0. Now, the last equation above is a separable differential equation for vy,
so we can integrate it,

(R+9)Y?y' =\/29R = 3(R+y3/2 V29 Rt+e¢,

where ¢ is a constant, which can be determined by the initial condition y(¢t = 0) = 0, since
at the initial time the projectile is on the surface of the Earth, the origin of out coordinate
system. With this initial condition we get

vi(t) = v — 29R +

2
C—§R3/2 = 3l R+y3/2 V29 Rt + R3/2 (2.2.1)
From the equation above we can compute an explicit form of the solution function y,

_ (g V29 Rt + R3/2)2/3 - R (2.2.2)
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To find the time to reach the Moon we need to evaluate Eq. (2.2.1) for y = d and get ¢y,

2 1
d?’/2 V29 Rt 3/2, ty = - ——
(R+ R ]\[—’_ R :> M 3 QQR

The formula above gives t,; = 51.5 hours. <

((R+d)*/* — R¥?).

2.2.3. The Reduction of Order Method. If we know one solution to a second
order, linear, homogeneous, differential equation, then one can find a second solution to
that equation. And this second solution can be chosen to be not proportional to the known
solution. One obtains the second solution transforming the original problem into solving
two first order differential equations.

Theorem 2.2.5 (Reduction of Order). If a nonzero function y, is solution to

Y +a(t)y +a(t)y = 0. (2.2.3)
where ay, a, are given functions, then a second solution not proportional to y, is
0=t [ (224
Yo (1) = ys (2t / ———dt, 2.2.4
’ 0]

where A;(t) = [ as(t

Remark: In the first part of the proof we write y,(t) = v(t) y;(t) and show that y, is
solution of Eq. (2.2.3) iff the function v is solution of

yi(t)
Y (t)

In the second part we solve the equation for v. This is a first order equation for for w = v/,
since v itself does not appear in the equation, hence the name reduction of order method.
The equation for w is linear and first order, so we can solve it using the integrating factor
method. One more integration gives v, which is the factor multiplying vy, in Eq. (2.2.4).

v+ (2 + ai(t)) v = 0. (2.2.5)

Remark: The functions v and w in this subsection have no relation with the functions v
and w from the previous subsection.

Proof of Theorem 2.2.5: We write y, = vy, and we put this function into the differential
equation in 2.2.3, which give us an equation for v. To start, compute y, and v, ,

ve=v'yitvy, oy =0y 2y oyl
Introduce these equations into the differential equation,
0= 0"y + 20" y; +vyf) +as (Vg +vy) +acvys
=y 0"+ 2y + ay) v + (U +anyl +aoys) v
The function y, is solution to the differential original differential equation,
Y +ary; +aoys =0,
then, the equation for v is given by

!
Yo"+ 2y, +ayy) v =0. = o'+ (2& —|—a1) v =0.

Yi
This is Eq. (2.2.5). The function v does not appear explicitly in this equation, so denoting
w = v’ we obtain

/
w' + (2&

+a1> w = 0.
Y1
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This is is a first order linear equation for w, so we solve it using the integrating factor
method, with integrating factor

p(t) =32(t) e @ where A, (t) = / as(t) dt.

Therefore, the differential equation for w can be rewritten as a total t-derivative as
—A1(t)
e

yi(t)

(yfeAlw)/:O = yfeAlw:wo =  w(t) =wo

Since v/ = w, we integrate one more time with respect to ¢ to obtain

(0 /ez‘h(t) J
v(t) = w —F— dt + vg.
© ) 2 0

We are looking for just one function v, so we choose the integration constants wy = 1 and
vg = 0. We then obtain

0 /eAl(t) p 0 0 e—A(t) J
v(t) = t = Y (t) =yt / —dt
yi(t) yi(t)
For the furthermore part, we now need to show that the functions y; and y, = vy, are
linearly independent. We start computing their Wronskian,

Y1 VY1

yr (Wys +oyp)
Recall that above in this proof we have computed v’ = w, and the result was w = w, e~ 41 Jy2.
So we get v'y? = w, e~41, and then the Wronskian is given by

Aq

W, = =y (VY +oyl) —oyy, = Wi, =0yl

W12 = Wy e
This is a nonzero function, therefore the functions y, and y, = vy, are linearly independent.
This establishes the Theorem. (|

Example 2.2.8. Find a second solution y, linearly independent to the solution y, (¢t) = t of
the differential equation
t2y" + 2ty’ — 2y = 0.
Solution: We look for a solution of the form y,(t) = ¢ v(¢t). This implies that
Yy =tv' + v, y =to" + 20,
So, the equation for v is given by
0=2*(tv" +20) +2t(tv +v) — 2tv
= 130" + (262 + 26%) 0" + (2t — 2t) v
4
=30 + 4ty = '+ ¥v' =0.
Notice that this last equation is precisely Eq. (?77), since in our case we have
2 2
Yy =1, p(t)z; = tv”—l—[Q—F;t] v = 0.
The equation for v is a first order equation for w = v’, given by
w’ 4 _
E = 7; = U)(t) = Clt 4, Cq € R

Therefore, integrating once again we obtain that

v:czt_?’—i—cg, Cy,c3 €R,
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and recalling that y, = tv we then conclude that
Yy = czt_2 + cst.

Choosing ¢, = 1 and ¢; = 0 we obtain that y,(t) = t~2. Therefore, a fundamental solution
set to the original differential equation is given by

wH=t ) =
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2.2.4. Exercises.

2.2.1.- Consider the differential equation
2y +3ty —3=0, t>0,

with initial conditions
3
y(1) =3, y(1)=3.
(a) Find the initial value problem sat-
isfied by v(t) = y'(t).
(b) Solve the differential equation for v.
(¢) Find the solution y of the differen-
tial equation above.

2.2.2.- Consider the differential equation
yy' +3(y)* =0,
with initial conditions

y(0)=1, 3/(0)=5.

(a) Find the differential equation sat-
isfied by w(y) = wv(t(y)), where
o(t) = o/ (1)

(b) Find the initial condition satisfied
by the function w.

(c) Solve the initial value problem for
the function w.

(d) Use the solution w found above to
set up a first order initial value
problem for y.

(e) Find the solution y of the differen-
tial equation above.

2.2.3.- Solve the differential equation

/

" _yf
Y7’
with initial conditions
1
b0 =1, yO)=¢.
2.2.4.- Use the reduction order method to
find a second solution y2 to the differ-
ential equation

t2 y' + 8ty +12y =0,
knowing that y1(t) = 1/t% is a solution.
The second solution y2 must not contain
any term proportional to y;.

2.2.5.- * Use the reduction order method to
find a solution y2 of the equation
2y 42ty —6y =0
knowing that 1 = t® is a solution to
this equation.

(a) Write y2 = vy1 and find y5 and y5 .

(b) Find the differential equation for v.

(¢) Solve the differential equation for v
and find the general solution.

(d) Choose the simplest function v such
that y2 and y1 are fundamental so-
lutions of the differential equation
above.
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2.3. Homogenous Constant Coefficients Equations

All solutions to a second order linear homogeneous equation can be obtained from any
pair of nonproportional solutions. This is the main idea given in § 2.1, Theorem 2.1.7. In
this section we obtain these two linearly independent solutions in the particular case that
the equation has constant coefficients. Such problem reduces to solve for the roots of a
degree-two polynomial, the characteristic polynomial.

2.3.1. The Roots of the Characteristic Polynomial. Thanks to the work done
in § 2.1 we only need to find two linearly independent solutions to second order linear
homogeneous equations. Then Theorem 2.1.7 says that every other solution is a linear
combination of the former two. How do we find any pair of linearly independent solutions?
Since the equation is so simple, having constant coefficients, we find such solutions by trial
and error. Here is an example of this idea.

Example 2.3.1. Find solutions to the equation

y" + 5y + 6y = 0. (2.3.1)

Solution: We try to find solutions to this equation using simple test functions. For example,
it is clear that power functions y = ¢t won’t work, since the equation
n(n—1)t"2 4 5nt"Y L 6" =0

cannot be satisfied for all £ € R. We obtained, instead, a condition on ¢. This rules out
power functions. A key insight is to try with a test function having a derivative proportional
to the original function,

y'(t) =ry(t).
Such function would be simplified from the equation. For example, we try now with the
test function y(t) = e™. If we introduce this function in the differential equation we get

(P 4+5r+6)e"=0 < r24+5r4+6=0. (2.3.2)

We have eliminated the exponential and any ¢ dependence from the differential equation,
and now the equation is a condition on the constant r. So we look for the appropriate values
of r, which are the roots of a polynomial degree two,

1 1 ry = —27
= (-5+£v25—24) == (-5+1
re=g (BEVH-AM) =5 (-5E]) = {r_3.
We have obtained two different roots, which implies we have two different solutions,
yi(t) = 672tv Yo(t) = e .

These solutions are not proportional to each other, so the are fundamental solutions to the
differential equation in (2.3.1). Therefore, Theorem 2.1.7 in § 2.1 implies that we have found
all possible solutions to the differential equation, and they are given by

y(t) = cre™ + e, c1,C € R, (2.3.3)

<

From the example above we see that this idea will produce fundamental solutions to

all constant coefficients homogeneous equations having associated polynomials with two

different roots. Such polynomial play an important role to find solutions to differential
equations as the one above, so we give such polynomial a name.
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Definition 2.3.1. The characteristic polynomial and characteristic equation of the
second order linear homogeneous equation with constant coefficients

yll + a1yl + aoy =0,

are given by
p(r) = r* + ayr + ao, p(r) = 0.

As we saw in Example 2.3.1, the roots of the characteristic polynomial are crucial to
express the solutions of the differential equation above. The characteristic polynomial is a
second degree polynomial with real coefficients, and the general expression for its roots is

1
ry = 5(—a1 ++/a? — 4a0).

If the discriminant (a? — 4a,) is positive, zero, or negative, then the roots of p are different
real numbers, only one real number, or a complex-conjugate pair of complex numbers. For
each case the solution of the differential equation can be expressed in different forms.

Theorem 2.3.2 (Constant Coeflicients). Ifry are the roots of the characteristic polynomial
to the second order linear homogeneous equation with constant coefficients

y” + a1y/ + apy = O7 (234)
and if c., c. are arbitrary constants, then the following statements hold true.

(a) If r. # r_, real or complex, then the general solution of Eq. (2.5.1) is given by

gent) = e e ™

(b) If ., =r. =1, € R, then the general solution of Eq. (2.3.4) is given by
Ygen (t) = Cs e’ +c tet,

Furthermore, given real constants t,, 1o and y,, there is a unique solution to the initial value
problem given by Eq. (2.3.4) and the initial conditions y(t,) = yo and y'(to) = y;.

Remarks:

(a) The proof is to guess that functions y(¢) = €™ must be solutions for appropriate values of
the exponent constant r, the latter being roots of the characteristic polynomial. When
the characteristic polynomial has two different roots, Theorem 2.1.7 says we have all
solutions. When the root is repeated we use the reduction of order method to find a
second solution not proportional to the first one.

(b) At the end of the section we show a proof where we construct the fundamental solutions
Y1, Yo Without guessing them. We do not need to use Theorem 2.1.7 in this second proof,
which is based completely in a generalization of the reduction of order method.

Proof of Theorem 2.3.2: We guess that particular solutions to Eq. 2.3.4 must be expo-
nential functions of the form y(t) = €™, because the exponential will cancel out from the
equation and only a condition for r will remain. This is what happens,

r2e"t +aet fae™t =0 = r’+ar+a =0.

The second equation says that the appropriate values of the exponent are the root of the
characteristic polynomial. We now have two cases. If r, # r_ then the solutions

y(t) =€ty (t) =€,

are linearly independent, so the general solution to the differential equation is

Ygen(t) = co €™ +coe’ .
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If r, = r_ = 1o, then we have found only one solution y,(t) = €™ and we need to find a
second solution not proportional to .. This is what the reduction of order method is perfect
for. We write the second solution as

y-(t) =v(t)y.(t) = y-(t) =v(t)e™,
and we put this expression in the differential equation (2.3.4),
(V" + 210" +org) €' + (v + rov) ase™ + agve™ = 0.
We cancel the exponential out of the equation and we reorder terms,
v+ (2r0 + )V + (12 + ayro + ag) v = 0.

We now need to use that 7, is a root of the characteristic polynomial, Tg + airo + ao = 0,
so the last term in the equation above vanishes. But we also need to use that the root rq is

repeated,

a 1 a
Toz—éii a%_4ao:_?1 = 2r0+a1:0,

The equation on the right side above implies that the second term in the differential equation
for v vanishes. So we get that

V'=0 = v(t)=c¢ +ct

and the second solution is y-(t) = (¢; + cot) y.(t). If we choose the constant ¢, = 0, the
function y_ is proportional to y.. So we definitely want ¢, # 0. The other constant, ¢, only
adds a term proportional to y., we can choose it zero. So the simplest choice is ¢; = 0,
¢, = 1, and we get the fundamental solutions

Bty =€l y(t) = tent,
So the general solution for the repeated root case is
Ygen(t) = ¢y e + c e,

The furthermore part follows from solving a 2 x 2 linear system for the unknowns ¢, and c..
The initial conditions for the case r, # r_ are the following,

r-to
)

Yo =c.e™ +c e Yy = rico e el

It is not difficult to verify that this system is always solvable and the solutions are

(r-yo — y1) B (7"+yo - 1/1)

“=- (r, —r_)erto’ T (r, —r_)erto’

The initial conditions for the case r- = r. = r, are the following,
Yo = (co + cty) e, yi = c. €™ 4 ro(c, + c-to) ™.
It is also not difficult to verify that this system is always solvable and the solutions are

o = Yo + to(royo - y1) o = (Toyo - yo)

+ ) -

eroto

This establishes the Theorem. O

eroto

Example 2.3.2. Find the solution y of the initial value problem
y'+5y +6y=0, y(0)=1,  y'(0)=-L

Solution: We know that the general solution of the differential equation above is

Ygen (t) = cre ™2 + ce™3,
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We now find the constants ¢, and c. that satisfy the initial conditions above,
1=9y(0)=c +c ¢ =2,
, =
—1=9'(0) = —2¢, — 3c.
Therefore, the unique solution to the initial value problem is

y(t) = 2e72 — 73t

Example 2.3.3. Find the general solution ygcn of the differential equation
29" — 3y’ +y=0.

s

Solution: We look for every solutions of the form y(t) = €™, where r is solution of the

characteristic equation

r.=1
1 )
w2 —3r+1=0 = T:Z(?)im) = 1
r. = 5
Therefore, the general solution of the equation above is
ygen(t) = C+€t + Cfet/Q.
<
Example 2.3.4. Find the solution to the initial value problem
5
%" +6y +y=0, yO0)=1  y(0)=3

Solution: The characteristic polynomial is p(r) = 9r% + 67 + 1, with roots given by

re = %8(761\/36736) = ro=r.= f%.

Theorem 2.3.2 says that the general solution has the form
Ygen (t) = Cy e_t/3 +ct €_t/3.

We need to compute the derivative of the expression above to impose the initial conditions,

/ _ G /3 tY /3
ygcn(t)*iie /+C_(17§)6 /7

3
then, the initial conditions imply that
1=y(0) =c.,
5 ’ Cy = Cy = 1, Cc. = 2
Sy (0)=-Z e
3 =Y (0)=—-5+c
So, the solution to the initial value problem above is: y(t) = (1 + 2t) e~ /3, <

Example 2.3.5. Find the general solution ygen of the equation
y" — 2y +6y=0.

Solution: We first find the roots of the characteristic polynomial,

1
P—2r+6=0 = ri:§(2j:\/4—24) = ry=1+iV5.
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Since the roots of the characteristic polnomial are different, Theorem 2.3.2 says that the
general solution of the differential equation above, which includes complex-valued solutions,
can be written as follows,

Ygon(t) = & eIHVBE L& (-0 & & e,

<

2.3.2. Real Solutions for Complex Roots. We study in more detail the solutions
to the differential equation (2.3.4) in the case that the characteristic polynomial has complex
roots. Since these roots have the form

1

a
ri:_§i§ a? — 4a,

the roots are complex-valued in the case a? — 4a, < 0. We use the notation
af

1

The fundamental solutions in Theorem 2.3.2 are the complex-valued functions

G = elotiB)t g = ela—iB)t

a
ry =a=xif, with a:—é7 B=1/a,—

The general solution constructed from these solutions is
ygen (t) = 6+ e(a+iﬂ)t + c- e(aiiﬁ)ta &+7 C- € (C

This formula for the general solution includes real valued and complex valued solutions.
But it is not so simple to single out the real valued solutions. Knowing the real valued
solutions could be important in physical applications. If a physical system is described by a
differential equation with real coefficients, more often than not one is interested in finding
real valued solutions. For that reason we now provide a new set of fundamental solutions
that are real valued. Using real valued fundamental solution is simple to separate all real
valued solutions from the complex valued ones.

Theorem 2.3.3 (Real Valued Fundamental Solutions). If the differential equation
y' +ary +acy =0, (2.3.5)

where ay, a, are real constants, has characteristic polynomial with complex roots ro = a+if
and complex valued fundamental solutions

Gult) = eHI (1) = elo=i,
then the equation also has real valued fundamental solutions given by

y.(t) = e** cos(Bt), y-(t) = e sin(Bt).

Proof of Theorem 2.3.3: We start with the complex valued fundamental solutions
. (t) = eloatif)t 7.(t) = ela—iB)t.
We take the function g, and we use a property of complex exponentials,
§u(t) = elaTIB = got Bt = ¢ (cog(Bt) + isin(Bt)),

where on the last step we used Euler’s formula e? = cos(#)+isin(#). Repeat this calculation
for y- we get,

3. (t) = e (cos(Bt) + isin(Bt)), §-(t) = e (cos(Bt) — isin(Bt)).
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If we recall the superposition property of linear homogeneous equations, Theorem 2.1.5,
we know that any linear combination of the two solutions above is also a solution of the
differential equation (2.3.6), in particular the combinations

3o (0) = 5 (30 +5.0), -(0) = o2 (5:00) — 3.).

2
A straightforward computation gives
y.(t) = e cos(Bt),  y-(t) = e sin(Bt).
This establishes the Theorem. O

Example 2.3.6. Find the real valued general solution of the equation
y" — 2y + 6y = 0.
Solution: We already found the roots of the characteristic polynomial, but we do it again,
1
r2—2r+6=0 = ri:§(2j:\/4—24) = ry=1+iV5.
So the complex valued fundamental solutions are
Gut) = VAL g (1) = 0TV
Theorem 77 says that real valued fundamental solutions are given by
y.(t) = et cos(V/Bt), y.(t) = e’ sin(V/5t).
So the real valued general solution is given by
Ygen(t) = (c. cos(V5t) 4 ¢ sin(\/gt)) e, ¢, c. eR
<
Remark: Sometimes it is difficult to remember the formula for real valued solutions. One
way to obtain those solutions without remembering the formula is to start repeat the proof

of Theorem 2.3.3. Start with the complex valued solution g, and use the properties of the
complex exponential,

7.(t) = e(IHiVE)E — ot giVBE — o (cos(\/gt) +1 sin(\/gt)).

The real valued fundamental solutions are the real and imaginary parts in that expression.

Example 2.3.7. Find real valued fundamental solutions to the equation

y' +2y +6y=0.

Solution: The roots of the characteristic polynomial p(r) = 72 4+ 2r + 6 are
1

1
rizi[—Qj: 4-24 :5[—2ﬁ: —20] = ry=-1+iV5.

These are complex-valued roots, with
a=—1, B =+/5.
Real-valued fundamental solutions are

yi(t) = et cos(V/5t), Yo (t) = e~ sin(V/51).



108 2. SECOND ORDER LINEAR EQUATIONS

Yin Yo

Second order differential equations with
characteristic polynomials having com-
plex roots, like the one in this exam-
ple, describe physical processes related
to damped oscillations. An example
from physics is a pendulums with fric-
tion. <

FIGURE 1. Solutions from Ex. 2.3.7.

Example 2.3.8. Find the real valued general solution of 3" + 5y = 0.

Solution: The characteristic polynomial is p(r) = r2 + 5, with roots r1 = ++/54. In this
case a = 0, and 8 = /5. Real valued fundamental solutions are

y.(t) = cos(V51), y.(t) = sin(V/51).
The real valued general solution is

Yeen(t) = ¢, cos(V5t) + c. sin(V51), ., c- € R, .

Remark: Physical processes that oscillate in time without dissipation could be described
by differential equations like the one in this example.

2.3.3. Constructive Proof of Theorem 2.3.2. We now present an alternative proof
for Theorem 2.3.2 that does not involve guessing the fundamental solutions of the equation.
Instead, we construct these solutions using a generalization of the reduction of order method.

Proof of Theorem 2.3.2: The proof has two main parts: First, we transform the original
equation into an equation simpler to solve for a new unknown; second, we solve this simpler
problem.

In order to transform the problem into a simpler one, we express the solution y as a
product of two functions, that is, y(t) = u(t)v(t). Choosing v in an appropriate way the
equation for u will be simpler to solve than the equation for y. Hence,

y=w = ¢y =vv+idu = ¢y =u"v+2uv +0v"u.
Therefore, Eq. (2.3.4) implies that

(v + 200" +v"u) + ay (v + v'u) + apuv = 0,

that is,
/
[u”—i— <a1 —|—2v—) u' + ag u]v+(v"+a1 v )u = 0. (2.3.6)
v
We now choose the function v such that
/ /
a1+2%:0 P %:f%. (2.3.7)

We choose a simple solution of this equation, given by

v(t) = e~ t/2,
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Having this expression for v one can compute v’ and v”, and it is simple to check that
2
v +ap = f% . (2.3.8)
Introducing the first equation in (2.3.7) and Eq. (2.3.8) into Eq. (2.3.6), and recalling that

v is non-zero, we obtain the simplified equation for the function u, given by
2

' —ku=0, k= % — ay. (2.3.9)

Eq. (2.3.9) for u is simpler than the original equation (2.3.4) for y since in the former there
is no term with the first derivative of the unknown function.

In order to solve Eq. (2.3.9) we repeat the idea followed to obtain this equation, that
is, express function u as a product of two functions, and solve a simple problem of one of
the functions. We first consider the harder case, which is when &k # 0. In this case, let us
express u(t) = eVt w(t). Hence,

v =vVEeVR w4+ eV = w = keVFw + 2VEkeVF w4+ VRt .

Therefore, Eq. (2.3.9) for function u implies the following equation for function w
0=u"—ku=e""@VEkuw +v") = ' +2Vkuw' =0.

Only derivatives of w appear in the latter equation, so denoting z(t) = w’(t) we have to
solve a simple equation

=2k = a(t) = zee VM, zo € R.

Integrating we obtain w as follows,

R o () = — e 2VRE

/ _
w' = xoe oE
renaming ¢, = —,/(2vk), we obtain
w(t) = VM pe = u(t) = coeVF 4 cem VR
We then obtain the expression for the solution y = uv, given by

y(t) = coe " TR 4o (= VR

Since k = (a2/4 — a,), the numbers
ri:f%ﬂ:\/é & rp = %(7&1:& a%74a0>
are the roots of the characteristic polynomial
r’+a,r+a, =0,
we can express all solutions of the Eq. (2.3.4) as follows
y(t) = coe™" + e, k #0.
Finally, consider the case k = 0. Then, Eq. (2.3.9) is simply given by
u'=0 = u(t)=(c+ecit) Co, 01 € R

Then, the solution y to Eq. (2.3.4) in this case is given by

y(t) = (co + cit) e~ /2,

Since k = 0, the characteristic equation 72 +a; r+a, = 0 has only one root ry, =r_ = —a,/2,
so the solution y above can be expressed as

y(t) = (co + cit) ™, k=0.
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The Furthermore part is the same as in Theorem 2.3.2. This establishes the Theorem. [

Notes.

(a) In the case that the characteristic polynomial of a differential equation has repeated
roots there is an interesting argument to guess the solution y.. The idea is to take a
particular type of limit in solutions of differential equations with complex valued roots.

Consider the equation in (2.3.4) with a characteristic polynomial having complex
valued roots given by r1 = a + i3, with
2
o= —— B=1/a,— afl

4
Real valued fundamental solutions in this case are given by

7. = e*! cos(Bt), G- = e sin(Bt).
We now study what happen to these solutions ¢, and ¢. in the following limit: The
variable t is held constant, « is held constant, and 5 — 0. The last two conditions
are conditions on the equation coefficients, a,, a,. For example, we fix a, and we vary

a, — a?/4 from above.
Since cos(ft) — 1 as  — 0 with ¢ fixed, then keeping « fixed too, we obtain

9.(t) = e“Pcos(Bt) — e = y.(t).

i t
Since Smﬁ(f ) — 1 as 8 — 0 with ¢ constant, that is, sin(f8t) — St, we conclude that
y-(t i t i t
Y ( ) — Sln(ﬂ ) eat — Sln(ﬁ ) teat N teat :y_(t).
B B pt

The calculation above says that the function 4./ is close to the function y_(t) = te** in
the limit 8 — 0, ¢ held constant. This calculation provides a candidate, y-(t) = ty.(t),
of a solution to Eq. (2.3.4). It is simple to verify that this candidate is in fact solution of
Eq. (2.3.4). Since y. is not proportional to y., one then concludes the functions y., y- are
a fundamental set for the differential equation in (2.3.4) in the case the characteristic
polynomial has repeated roots.

(b) Brief Review of Complex Numbers.
o Complex numbers have the form z = a + ib, where 2 = —1.
e The complex conjugate of z is the number Z = a — ib.
e Re(z) = a, Im(z) = b are the real and imaginary parts of 2
e Hence: Re(z) = zi—;z: and Im(z) = S

e The exponential of a complex number is defined as

ea+ib — i (CL + Zb)n )

|
—~ ol
In particular holds e®t% = e ¢,
e Buler’s formula: e?® = cos(b) + isin(b).
e Hence, a complex number of the form et can be written as

et = e%(cos(b) + isin(b)), e = e*(cos(b) — isin(b)).
e From et and e~
1 ) ) 1 . .
3 (et 4 7)) = e cos(b), % (et — e*= ) = ¢ sin(b).

we get the real numbers
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2.3.4. Exercises.

2.3.1.-

(a)

(b)

()

2.3.2.-

Consider the differential equation
y' =7y +12y = 0.

Find the roots r: of the characteris-

tic polynomial associated with the

differential equation.

Use the roots r: above to find fun-

damental solutions y: of the differ-

ential equation.

Solve the differential equation

above with initial conditions

y0) =1, ¥(0)=-1.

Consider the differential equation
y' =8y + 25y =0.

Find the roots r; of the characteris-

tic polynomial associated with the

differential equation.

Use the roots r, above to find real

valued fundamental solutions y. of

the differential equation.

Solve the differential equation

above with initial conditions

y(0) =2, ¢'(0)=2.

111

2.3.3.- Consider the differential equation

(a)

(b)

()

y" — 6y +9y=0.
Find the roots r: of the characteris-
tic polynomial associated with the
differential equation.
Use the roots r: above to find real
valued fundamental solutions y. of
the differential equation.
Solve the differential equation
above with initial conditions

y(0)=1, y'(0)=2.

2.8.4.- * Consider the differential equation

(a)
(b)

y' — 4y +4y=0.
Find one solution of the form
y1(t) = e™.
Use the reduction order method
to find a second solution

y2(t) = v(t) ya(2).
First find the differential equation
satisfied by v(t).
Find all solutions v(t) of the differ-
ential equation in part (b).
Choose a function v such that the
associated solution y2 does not con-
tain any term proportional to y;.
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2.4. Euler Equidimensional Equation

Second order linear equations with variable coefficients are in general more difficult to solve
than equations with constant coefficients. But the Euler equidimensional equation is an
exception to this rule. The same ideas we used to solve second order linear equations with
constant coefficients can be used to solve Euler’s equidimensional equation. Moreover, there
is a transformation that converts Euler’s equation into a linear equation.

2.4.1. The Roots of the Indicial Polynomial. The Euler equidimensional equation
appears, for example, when one solves the two-dimensional Laplace equation in polar coordi-
nates. This happens if one tries to find the electrostatic potential of a two-dimensional charge
configuration having circular symmetry. The Euler equation is simple to recongnize—the
coefficient of each term in the equation is a power of the independent variable that matches
the order of the derivative in that term.

Definition 2.4.1. The FEuler equidimensional equation for the unknown y with singular
point at t, € R is given by the equation below, where a, and a, are constants,

(t—to) 2y +a,(t—to)y +aoy = 0.

Remarks:

(a) This equation is also called Cauchy equidimensional equation, Cauchy equation, Cauchy-
Euler equation, or simply Euler equation. As George Simmons says in [10], “Euler
studies were so extensive that many mathematicians tried to avoid confusion by naming
subjects after the person who first studied them after Euler.”

(b) The equation is called equidimensional because if the variable ¢ has any physical di-
n

d
mensions, then the terms with (¢ — to)"dt—n, for any nonnegative integer n, are actually
dimensionless.

(c) The exponential functions y(t) = €™ are not solutions of the Euler equation. Just

introduce such a function into the equation, and it is simple to show that there is no
constant 7 such that the exponential is solution.

(d) The particular case t, = 0 is
2y +poty + oy = 0.
We now summarize what is known about solutions of the Euler equation.
Theorem 2.4.2 (Euler Equation). Consider the Euler equidimensional equation
(t—to) >y +a,(t—to)y +acy =0,  t>t,, (2.4.1)

where ay, a,, and t, are real constants, and denote by r, the roots of the indicial polynomial
p(r) =r(r—1)+ a;r + ao.
(a) If r. # r_, real or complex, then the general solution of Eq. (2.4.1) is given by

Ygenl(t) = Cu(t — o)™ +(t — )™, t>t, ¢, c- €R.
(b) If r, = r. =1, € R, then the general solution of Eq. (2.4.1) is given by

Ygen(t) = Co (T —to) 0+ (t—t) " In(t —to), t>to, ¢, c-€R
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Furthermore, given real constants t; > t,, Yo and y,, there is a unique solution to the initial
value problem given by Eq. (2.4.1) and the initial conditions

y(t1) = Yo, y,(t1) = Y-

Remark: We have restricted to a domain with ¢ > ¢,. Similar results hold for ¢t < t,. In
fact one can prove the following: If a solution y has the value y(t — ;) at t — ¢, > 0, then
the function § defined as §(t — t,) = y(—(t — t,)), for ¢ —t, < 0 is solution of Eq. (2.4.1)
for t — t, < 0. For this reason the solution for ¢ # t, is sometimes written in the literature,
see [3] § 5.4, as follows,

Ygen(t) = Cult — to|™ + |t — to|™, 7+ # 1,
Ygen(t) = Cu [t —to|™ + e |t —to|° Inft —to], ro=r.=r.

However, when solving an initial value problem, we need to pick the domain that contains
the initial data point ¢;. This domain will be a subinterval in either (—oco,t,) or (t,, 00). For
simplicity, in these notes we choose the domain (¢,, 00).

The proof of this theorem closely follows the ideas to find all solutions of second order
linear equations with constant coefficients, Theorem 2.3.2; in § 2.3. In that case we found
fundamental solutions to the differential equation

y'+ay +acy =0,
and then we recalled Theorem 2.1.7, which says that any other solution is a linear combina-
tion of a fundamental solution pair. In the case of constant coefficient equations, we looked
for fundamental solutions of the form y(t) = €™, where the constant r was a root of the
characteristic polynomial
7"2—|—a17“—|—a0 =0.
When this polynomial had two different roots, r. # r-, we got the fundamental solutions
y+(t) — emt7 y_(t) = et

When the root was repeated, r. = r- = r,, we used the reduction order method to get the
fundamental solutions

Bty =€l y(t) = tent,
Well, the proof of Theorem 2.4.2 closely follows this proof, replacing the exponential function
by power functions.

Proof of Theorem 2.4.2: For simplicity we consider the case t, = 0. The general case
to, # 0 follows from the case t, = 0 replacing ¢t by (¢ — ¢,). So, consider the equation

2y +arty +ay=0, t>0.
We look for solutions of the form y(t) = t", because power functions have the property that
y =rt"t =ty =rt".
A similar property holds for the second derivative,
Y =r(r—-1D)t"? = £y =rr-1t".
When we introduce this function into the Euler equation we get an algebraic equation for r,
[r(r=1)4+ar+a]t"'=0 < r@r—1)+ar+a =0.

The constant r must be a root of the indicial polynomial

p(r) =r(r—1) 4+ a;r + ao.
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This polynomial is sometimes called the FEuler characteristic polynomial. So we have two
possibilities. If the roots are different, r, # r_, we get the fundamental solutions

y(t) =", y(t) =t".
If we have a repeated root r, = r. = o, then one solution is y,(¢) = ¢t"™. To obtain the second
solution we use the reduction order method. Since we have one solution to the equation, y.,
the second solution is

y-(t) = v(t) e (t) = y-(t) = v(t)t".
We need to compute the first two derivatives of y_,
Yy =reut Tt o 7, Yy =ro(ro — v o2 4 20 £ 4o 7o,
We now put these expressions for y_, 4’ and y” into the Euler equation,
t2 (ro(ro — Dot 2 4+ 200" 7071 + 0" #7°) + st (rovt™ !+ 0" ) + aevt™ = 0.
Let us reorder terms in the following way,
OO 4 (2r + a;) VT + [ro(re — 1) + asmo + ao) v = 0.
We now need to recall that r, is both a root of the indicial polynomial,
ro(ro — 1) + ayro + ao =0
and 1, is a repeated root, that is (a; — 1)? = 4a,, hence

-1
7"0:—7(%2 ) = 2ro+a;=1.

Using these two properties of r, in the Euler equation above, we get the equation for v,
VT2 Ly et =0 = Wt =0.

This is a first order equation for w = v/,

wit+w=0 = (tw)=0 = w(t):%.

We now integrate one last time to get function v,
! Wo

V=0 = v(t) = wo In(t) + v,.

So the second solution to the Euler equation in the case of repeated roots is
y-(t) = (woln(t) +vo) £ = y-(t) = wot™ In(t) + vo . (t).
It is clear we can choose v, = 0 and w, = 1 to get
y-(t) =t In(t).

We got fundamental solutions for all roots of the indicial polynomial, and their general
solutions follow from Theorem 2.1.7 in § 2.1. This establishes the Theorem. |

Example 2.4.1. Find the general solution of the Euler equation below for ¢ > 0,
2y + 4ty + 2y =0.
Solution: We look for solutions of the form y(¢) = ¢", which implies that
ty'(t)=rt", Ly t)=rr-1t,
therefore, introducing this function y into the differential equation we obtain

[r(r=1)+4r+2]t"=0 < r(r—1)+4r+2=0.
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The solutions are computed in the usual way,
1 r,=—1
P +3r+2=0 = 71, = 5[—3j:¢9—8] = {r _
So the general solution of the differential equation above is given by

Yeen(t) = cit ™!+ . =2,
Remark: Both fundamental solutions in the example above diverge at ¢t = 0.

Example 2.4.2. Find the general solution of the Euler equation below for ¢ > 0,
t2y" — 3ty +4y=0.
Solution: We look for solutions of the form y(¢) = ¢", then the constant  must be solution
of the Euler characteristic polynomial
r(r—1)—-3r+4=0 < rP—dr+4=0 = r.,=7.=2.
Therefore, the general solution of the Euler equation for ¢ > 0 in this case is given by

ygen(t) - C+t2 + C,t2 hl(t)

<
Example 2.4.3. Find the general solution of the Euler equation below for ¢ > 0,
t2y" — 3ty +13y = 0.
Solution: We look for solutions of the form y(¢) = ¢", which implies that
ty'(t)=rt", Ly O)=r@r-1t,
therefore, introducing this function y into the differential equation we obtain
[r(r—1)=3r+13]t"=0 < r(r—1)—3r+13=0.
The solutions are computed in the usual way,
P dr+13=0 = 71 = 1[4i 36] = {T+:2+3Z:
2 r.=2— 3.
So the general solution of the differential equation above is given by
Ygen(t) = o t2H3) 4 ¢ (2730, (2.4.2)
<

2.4.2. Real Solutions for Complex Roots. We study in more detail the solutions
to the Euler equation in the case that the indicial polynomial has complex roots. Since
these roots have the form

(e, —1) 1

Te= o + 3 (ay — 1)2 — 4da,,
the roots are complex-valued in the case (p, — 1)? — 4¢, < 0. We use the notation
1 —1)2
r, =«a=*if8, with oz:—(a127), 8= aof@%.

The fundamental solutions in Theorem 2.4.2 are the complex-valued functions

7.(t) = tlatiB) g.(t) = la=iB)
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The general solution constructed from these solutions is
Ygen(t) = &, 10T p & pla=iB) 7 & cC.
This formula for the general solution includes real valued and complex valued solutions.
But it is not so simple to single out the real valued solutions. Knowing the real valued
solutions could be important in physical applications. If a physical system is described by a
differential equation with real coefficients, more often than not one is interested in finding
real valued solutions. For that reason we now provide a new set of fundamental solutions
that are real valued. Using real valued fundamental solution is simple to separate all real
valued solutions from the complex valued ones.
Theorem 2.4.3 (Real Valued Fundamental Solutions). If the differential equation
(t—to)?y +ai(t —to)y +acy=0,  t>t, (2.4.3)

where ay, a,, to are real constants, has indicial polynomial with complex roots r, = a £ i
and complex valued fundamental solutions for t > t,,

g+(t) = (t - to)(a+iﬂ)7 g—(t) = (t - to)(a_iﬁ)a
then the equation also has real valued fundamental solutions for t > t, given by

yu(t) = (t — to)* cos(BIn(t — t,)), y-(t) = (t — to)* sin(BIn(t — t,)).

Proof of Theorem 2.4.3: For simplicity consider the case t, = 0. Take the solutions
7.(t) = tlatif) 7.(t) = la—iB)
Rewrite the power function as follows,
Go(t) = tOFB) = yorgiB — gor (7)) — gor iBIn(t) g () = o (IO,
A similar calculation yields
J-(t) = t> e PO,

Recall now Euler formula for complex exponentials, e = cos(6) + isin(6), then we get

gu(t) = t* [cos(B1In(t)) + isin(B1In(t))], g-(t) = t* [cos(B1In(t)) — isin(B1In(t))].

Since g, and . are solutions to Eq. (2.4.3), so are the functions

yi(t) = %[@1@) + QQ(t)], yz(t) = %[?%(t) - g2(t)]

It is not difficult to see that these functions are

y.(t) = t* cos(B1n(t)), y-(t) = t*sin(B1n(t)).
To prove the case having ¢, # 0, just replace t by (¢t —t,) on all steps above. This establishes
the Theorem. (]

Example 2.4.4. Find a real-valued general solution of the Euler equation below for ¢t > 0,
t2y" =3ty +13y =0.
Solution: The indicial equation is r(r — 1) — 3r + 13 = 0, with solutions
r?—4r+13=0 = r,=2+43i, r.=2-3i
A complex-valued general solution for ¢ > 0 is,

Ygen (t) = & t3H3) 12 12730 & ¢ eC.
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A real-valued general solution for ¢ > 0 is

Ygen(t) = c. 1% cos(31n(t)) + c- t*sin(31n(t)) ¢, c. €R.

<

2.4.3. Transformation to Constant Coefficients. Theorem 2.4.2 shows that y(t) =
t™, where r, are roots of the indicial polynomial, are solutions to the Euler equation

2y +aty +ay=0, t>0.

The proof of this theorem is to verify that the power functions y(t) = " solve the differential
equation. How did we know we had to try with power functions? One answer could be, this
is a guess, a lucky one. Another answer could be that the Euler equation can be transformed
into a constant coefficient equation by a change of the independent variable.

Theorem 2.4.4 (Transformation to Constant Coefficients). The function y is solution of
the Euler equidimensional equation
2y +aty +aoy =0, t>0 (2.4.4)
iff the function u(z) = y(t(2)), where t(z) = e, satisfies the constant coefficients equation
i+ (e —1)u+au=0, z € R, (2.4.5)
where y' = dy/dt and 4 = du/dz.

Remark: The solutions of the constant coefficient equation in (2.4.5) are u(z) = €"*, where
r, are the roots of the characteristic polynomial of Eq. (2.4.5),

i+ (@ =1t a, =0,
that is, r, must be a root of the indicial polynomial of Eq. (2.4.4).
(a) Consider the case that r, # r_. Recalling that y(t) = u(z(¢)), and z(t) = In(t), we get
B(t) = u(2()) = €770 = @) — Wy (1) =g
(b) Consider the case that r, = r- = r,. Recalling that y(t) = u(z(t)), and z(t) = In(t), we
get that y,(t) = t™, while the second solution is
y(t) = u(z(t)) = z(t) e *® = In(t) e "® =1In(t) ) =y (t) = In(t) ™.

Proof of Theorem 2.4.4: Given t > 0, introduce t(z) = e*. Given a function y, let
u(z) =y(t(z)) = u(z)=y(e).
Then, the derivatives of u and y are related by the chain rule,

i(2) = 2 = D) 2o = o) 22 =y e

so we obtain
i(z) = ty' (1),
where we have denoted @ = du/dz. The relation for the second derivatives is
i2) = L) L) = (v 0 +v©) L = v v
so we obtain
i(z) =17 y"(t) + y'(t).
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Combining the equations for @ and i we get
2y =i —q, ty = .
The function ¥ is solution of the Euler equation t?y” + a:ty’ + aoy = 0 iff holds
bt—u+au+au=0 = i+ (a;—1)a+au=0.
This establishes the Theorem.
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2.5. Nonhomogeneous Equations

All solutions of a linear homogeneous equation can be obtained from only two solutions that
are linearly independent, called fundamental solutions. Every other solution is a linear com-
bination of these two. This is the general solution formula for homogeneous equations, and it
is the main result in § 2.1, Theorem 2.1.7. This result is not longer true for nonhomogeneous
equations. The superposition property, Theorem 2.1.5, which played an important part to
get the general solution formula for homogeneous equations, is not true for nonhomogeneous
equations.

We start this section proving a general solution formula for nonhomogeneous equations.
We show that all the solutions of the nonhomogeneous equation are a translation by a fixed
function of the solutions of the homogeneous equation. The fixed function is one solution—
it doesn’t matter which one—of the nonhomogenous equation, and it is called a particular
solution of the nonhomogeneous equation.

Later in this section we show two different ways to compute the particular solution of a
nonhomogeneous equation—the undetermined coefficients method and the variation of pa-
rameters method. In the former method we guess a particular solution from the expression of
the source in the equation. The guess contains a few unknown constants, the undetermined
coeflicients, that must be determined by the equation. The undetermined method works for
constant coefficients linear operators and simple source functions. The source functions and
the associated guessed solutions are collected in a small table. This table is constructed by
trial and error. In the latter method we have a formula to compute a particular solution
in terms of the equation source, and fundamental solutions of the homogeneous equation.
The variation of parameters method works with variable coefficients linear operators and
general source functions. But the calculations to find the solution are usually not so simple
as in the undetermined coefficients method.

2.5.1. The General Solution Formula. The general solution formula for homoge-
neous equations, Theorem 2.1.7, is no longer true for nonhomogeneous equations. But there
is a general solution formula for nonhomogeneous equations. Such formula involves three
functions, two of them are fundamental solutions of the homogeneous equation, and the
third function is any solution of the nonhomogeneous equation. Every other solution of the
nonhomogeneous equation can be obtained from these three functions.

Theorem 2.5.1 (General Solution). Every solution y of the nonhomogeneous equation
L(y) = f, (2.5.1)
with L(y) = y" + a1y + aoy, where a4, a,, and f are continuous functions, is given by
Y=c1Ys+ CaYa+ Yp,
where the functions y, and y, are fundamental solutions of the homogeneous equation,

L(y,) =0, L(y,) = 0, and y, is any solution of the nonhomogeneous equation L(y,) = f.

Before we proof Theorem 2.5.1 we state the following definition, which comes naturally
from this Theorem.

Definition 2.5.2. The general solution of the nonhomogeneous equation L(y) = f is a
two-parameter family of functions

ygen(t) =G y1(t) +cya(t) + yp(t)7 (2-5-2)

where the functions vy, and y, are fundamental solutions of the homogeneous equation,
L(y,) =0, L(y,) = 0, and y, is any solution of the nonhomogeneous equation L(y,) = f.
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Remark: The difference of any two solutions of the nonhomogeneous equation is actually a
solution of the homogeneous equation. This is the key idea to prove Theorem 2.5.1. In other
words, the solutions of the nonhomogeneous equation are a translation by a fixed function,
Yp, of the solutions of the homogeneous equation.

Proof of Theorem 2.5.1: Let y be any solution of the nonhomogeneous equation L(y) = f.
Recall that we already have one solution, y,, of the nonhomogeneous equation, L(y,) = f
We can now subtract the second equation from the first,

Ly) = Llyp) =f—f=0 = L(y—yy) =0.
The equation on the right is obtained from the linearity of the operator L. This last equation
says that the difference of any two solutions of the nonhomogeneous equation is solution of
the homogeneous equation. The general solution formula for homogeneous equations says
that all solutions of the homogeneous equation can be written as linear combinations of a
pair of fundamental solutions, y,, y,. So the exist constants ¢;, ¢, such that

Y= Yp=C1Y1+ CaYa
Since for every y solution of L(y) = f we can find constants ¢;, ¢, such that the equation

above holds true, we have found a formula for all solutions of the nonhomogeneous equation.
This establishes the Theorem. (]

2.5.2. The Undetermined Coefficients Method. The general solution formula
in (2.5.2) is the most useful if there is a way to find a particular solution y, of the nonho-
mogeneous equation L(y,) = f. We now present a method to find such particular solution,
the undetermined coefficients method. This method works for linear operators L with con-
stant coefficients and for simple source functions f. Here is a summary of the undetermined
coefficients method:

(1) Find fundamental solutions y;, y, of the homogeneous equation L(y) = 0.
(2) Given the source functions f, guess the solutions y, following the Table 1 below.

(3) If the function y, given by the table satisfies L(y,) = 0, then change the guess to ty,..
If ty, satisfies L(ty,) = 0 as well, then change the guess to t?y,,.

(4) Find the undetermined constants k in the function y, using the equation L(y) = f,
where y is yp, or ty, or t?y,.

f(t) (Source) (K, m, a, b, given.) yp(t) (Guess) (k not given.)

Keat keat

Ko™ + - + K, k™ 4+ -+ + ko

K, cos(bt) + K, sin(bt) k, cos(bt) + k, sin(bt)

(Kpt™ + -+ + K,) e (kt™ + -+ + ko) e

(K, cos(bt) + K, sin(bt)) e** (K, cos(bt) + ks, sin(bt)) et

(Ept™ + - + Ko) (K cos(bt) + Ky sin(bt)) || (kmt™ + -+ + ko) (ky cos(bt) + ks sin(bt))

TABLE 1. List of sources f and solutions y, to the equation L(y,) = f.
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This is the undetermined coefficients method. It is a set of simple rules to find a
particular solution y, of an nonhomogeneous equation L(y,) = f in the case that the source
function f is one of the entries in the Table 1. There are a few formulas in particular cases
and a few generalizations of the whole method. We discuss them after a few examples.

Example 2.5.1 (First Guess Right). Find all solutions to the nonhomogeneous equation

y" =3y — 4y = 3e*.

Solution: From the problem we get L(y) = y” — 3y’ — 4y and f(t) = 3%
(1): Find fundamental solutions y., y. to the homogeneous equation L(y) = 0. Since the
homogeneous equation has constant coefficients we find the characteristic equation

2 —3r—4=0 = r.=4, r.=-1, = y{t)=" y=@t) ="
(2): The table says: For f(t) = 3e* guess y,(t) = ke?'. The constant k is the undetermined
coefficient we must find.
(3): Since y,(t) = ke* is not solution of the homogeneous equation, we do not need to
modify our guess. (Recall: L(y) = 0 iff exist constants c,, c- such that y(t) = c, et +-c_e™".)

(4): Introduce y, into L(y,) = f and find k. So we do that,

1
(22 =6 —4ke? =3 = —6k=3 = k= —5
We guessed that y, must be proportional to the exponential 2! in order to cancel out the
exponentials in the equation above. We have obtained that
Lo

yp(t) = _59

The undetermined coefficients method gives us a way to compute a particular solution y,, of
the nonhomogeneous equation. We now use the general solution theorem, Theorem 2.5.1,
to write the general solution of the nonhomogeneous equation,

_ 1 .
Ygen (t) = ¢, ey et — B e’t.
<

Remark: The step (4) in Example 2.5.1 is a particular case of the following statement.

Theorem 2.5.3. Consider the equation L(y) = f, where L(y) = y"+a, y'+a, y has constant
coefficients and p is its characteristic polynomial. If the source function is f(t) = K e,
with p(a) # 0, then a particular solution of the nonhomogeneous equation is

at

Proof of Theorem 2.5.3: Since the linear operator L has constant coefficients, let us
write L and its associated characteristic polynomial p as follows,

L(y) =y" +ay +ay,  p(r) =r>+ar+ a.

Since the source function is f(t) = K e, the Table 1 says that a good guess for a particular
soution of the nonhomogneous equation is y,(t) = ke®. Our hypothesis is that this guess
is not solution of the homogenoeus equation, since

L(yy) = (a® + aya + ao) ke = p(a) ke, and p(a) # 0.
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We then compute the constant k using the equation L(y,) = f,

K
(a> +aa+ag)ke =Ke™ = pla)ke” =Ke" = k= oa)
pla
. . K . .
We get the particular solution y,(t) = ﬁ e®". This establishes the Theorem. O
pla

Remark: As we said, the step (4) in Example 2.5.1 is a particular case of Theorem 2.5.3,

3 o 3 2t 3 o Lo

t) = = = = t) = —= e,

yp( ) p(2) e (22 _ 6 _ 4) € —6 € yp( ) 2 e

In the following example our first guess for a particular solution y, happens to be a
solution of the homogenous equation.

Example 2.5.2 (First Guess Wrong). Find all solutions to the nonhomogeneous equation

y" — 3y’ — 4y = 3¢t

Solution: If we write the equation as L(y) = f, with f(t) = 3e*, then the operator L is
the same as in Example 2.5.1. So the solutions of the homogeneous equation L(y) = 0, are
the same as in that example,

w(t) =,y =e

The source function is f(t) = 3 e, so the Table 1 says that we need to guess y,(t) = ket
However, this function g, is solution of the homogeneous equation, because

yp=ky. = L(y,) =0.
We have to change our guess, as indicated in the undetermined coefficients method, step (3)
Yp(t) = kt et

This new guess is not solution of the homogeneous equation. So we proceed to compute the
constant k. We introduce the guess into L(y,) = f,
y,=(1+4t)ke*,  yl=B+16t)ke" = [8-3+4 (16— 12—4)t] ke" =3e",
therefore, we get that
3 3
5k=3 = k= s = yp(t) = 5te4t.

The general solution theorem for nonhomogneneous equations says that

3
Ygen(t) = cu et fe et 4+ Stett.

5
In the following example the equation source is a trigonometric function.
Example 2.5.3 (First Guess Right). Find all the solutions to the nonhomogeneous equation
y" — 3y — 4y = 2sin(t).

Solution: If we write the equation as L(y) = f, with f(¢) = 2sin(t), then the operator L
is the same as in Example 2.5.1. So the solutions of the homogeneous equation L(y) = 0,
are the same as in that example,
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Since the source function is f(t) = 2sin(¢), the Table 1 says that we need to choose the
function y,(t) = k, cos(t) + k,sin(¢). This function y, is not solution to the homogeneous
equation. So we look for the constants k;, k, using the differential equation,

Yy, = —ky sin(t) + k, cos(t), Yy, = —kycos(t) — kysin(t),
and then we obtain
[~k cos(t) — ko sin(t)] — 3[—ky sin(t) + k, cos(t)] — 4]k, cos(t) + k, sin(t)] = 2sin(t).
Reordering terms in the expression above we get
(—bky — 3ky) cos(t) + (3ky — Bky) sin(t) = 2sin(t).

The last equation must hold for all ¢ € R. In particular, it must hold for ¢t = 7/2 and for
t = 0. At these two points we obtain, respectively,

3k, — 5k, = 2, klzﬁ,
5k — 3k, = 0,} -

ky = ——.
2Tor
So the particular solution to the nonhomogeneous equation is given by

(1) = 3= [Beon(t) ~ 3sin(1].

The general solution theorem for nonhomogeneous equations implies

1
Ygen(t) = coe* + et + 7 [3cos(t) — 5sin(t)].

<
The next example collects a few nonhomogeneous equations and the guessed function
Yp-

Example 2.5.4. We provide few more examples of nonhomogeneous equations and the
appropriate guesses for the particular solutions.

(a) For y"" — 3y’ — 4y = 3e?'sin(t), guess, y,(t) = [k, cos(t) + kssin(t)] e*'.
(b) For y” — 3y’ — 4y =2t2 €3, guess, y,(t) = (kst? + kit + ko) €.
(c) Fory” — 3y — 4y =2t%e*, guess, y,(t) = (kot® + kol + ko) t €™

)

(d) Fory” — 3y’ — 4y =3t sin(t), guess, yp(t) = (kyt + ko) [ks cos(t) + kysin(t)].
<

Remark: Suppose that the source function f does not appear in Table 1, but f can be
written as f = f; + f,, with f; and f, in the table. In such case look for a particular solution
Yp = Yp; + Ypy, Where L(y,, ) = f1 and L(yp,) = f>. Since the operator L is linear,

L(yp) = L(Yp; +Ypy) = L(yp,) + L(yp,) = fr + o= = L(y) = 1.

Example 2.5.5. Find all solutions to the nonhomogeneous equation

y' — 3y — 4y = 3e* 4 2sin(t).
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Solution: If we write the equation as L(y) = f, with f(¢) = 2sin(t), then the operator L
is the same as in Example 2.5.1 and 2.5.3. So the solutions of the homogeneous equation
L(y) = 0, are the same as in these examples,

yo(t) =€,y (t)=e".

The source function f(t) = 3 €% + 2sin(t) does not appear in Table 1, but each term does,
fi(t) = 3€? and f,(t) = 2sin(t). So we look for a particular solution of the form

Yp = Yp; + Yp,, Where L(ym) = 3€2ta L(pr) = 2sin(t).

We have chosen this example because we have solved each one of these equations before, in
Example 2.5.1 and 2.5.3. We found the solutions

Yp, () = f% e?t, Yp, (t) = %7 (3 cos(t) — 5sin(t)).

Therefore, the particular solution for the equation in this example is

Yp(t) = —% e®' + % (3cos(t) — 5sin(t)).

Using the general solution theorem for nonhomogeneous equations we obtain

1 1
Ygen(t) = cre*t +coe”t — 3 e 4+ T (3cos(t) — 5sin(t)).
<

2.5.3. The Variation of Parameters Method. This method provides a second way
to find a particular solution y, to a nonhomogeneous equation L(y) = f. We summarize
this method in formula to compute y, in terms of any pair of fundamental solutions to the
homogeneous equation L(y) = 0. The variation of parameters method works with second
order linear equations having wvariable coefficients and contiuous but otherwise arbitrary
sources. When the source function of a nonhomogeneous equation is simple enough to
appear in Table 1 the undetermined coefficients method is a quick way to find a particular
solution to the equation. When the source is more complicated, one usually turns to the
variation of parameters method, with its more involved formula for a particular solution.

Theorem 2.5.4 (Variation of Parameters). A particular solution to the equation

L(y) = f,
with L(y) = y" 4+ a,(t) y' + ao(t) y and a4, ao, [ continuous functions, is given by

Yp = U1Y1 + UpYa,

where y;, Yy, are fundamental solutions of the homogeneous equatio L(y) = 0 and the func-
tions u,, u, are defined by

0 12 A gy A OFAO (2.5.3)

Wiy (1) Wiy (1)
where Wy, is the Wronskian of y, and ys.

The proof is a generalization of the reduction order method. Recall that the reduction
order method is a way to find a second solution y, of an homogeneous equation if we already
know one solution y;. One writes y, = uy, and the original equation L(y,) = 0 provides an
equation for u. This equation for u is simpler than the original equation for y, because the
function y, satisfies L(y,) = 0.
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The formula for y, can be seen as a generalization of the reduction order method. We
write ¥, in terms of both fundamental solutions y,, y, of the homogeneous equation,

Yp(t) = u(t) u(t) + ua(t) ().

We put this y, in the equation L(y,) = f and we find an equation relating u, and u,. It
is important to realize that we have added one new function to the original problem. The
original problem is to find y,. Now we need to find u, and wu,, but we still have only one
equation to solve, L(y,) = f. The problem for u,, u, cannot have a unique solution. So we
are completely free to add a second equation to the original equation L(y,) = f. We choose
the second equation so that we can solve for u, and wus,.

Proof of Theorem 2.5.4: Motivated by the reduction of order method we look for a y,,
Yp = U Y1 + Uz Y.

We hope that the equations for u,, u, will be simpler to solve than the equation for y,. But
we started with one unknown function and now we have two unknown functions. So we are
free to add one more equation to fix u,, u,. We choose

uy Y+ uyyp = 0.
Y,

T

In other words, we choose u, = /
2

uy dt. Let’s put this y, into L(y,) = f. We need Yy
(and recall, u} y; + u,y, = 0)
Yp = UL Yy F U Yy F U Yo F U Yy = Yy, = U Yy F U U
and we also need y,,
Yy = Uy Y, +unyy +upy, +usyy
So the equation L(y,) = f is
(i Yy +un g +uy gy +usyy) + an(usy; + us ) + ao(us ys + us ) = f
We reorder a few terms and we see that
ug Yy +up Yy s (Y +asyl +aoyn) +us (Y + any; +acys) = .
The functions y; and y, are solutions to the homogeneous equation,
Yy, +ary; +acy: =0, Yy +asyy +acy, =0,

so u; and u, must be solution of a simpler equation that the one above, given by

uh Y, +uyy, = f. (2.5.4)
So we end with the equations

uy Yy +uy Yy = f

uyyy + uby, = 0.

And this is a 2 x 2 algebraic linear system for the unknowns u}, u}. It is hard to overstate
the importance of the word “algebraic” in the previous sentence. From the second equation
above we compute ul, and we introduce it in the first equation,

Y2 Y2 Y2
Recall that the Wronskian of two functions is Wy, = 4,4} — y,y., we get

’ Yo f ’ yif
ul = — = u, = )
! Wi, 2 W

’ Y
—=u
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These equations are the derivative of Eq. (2.5.3). Integrate them in the variable ¢ and choose
the integration constants to be zero. We get Eq. (2.5.3). This establishes the Theorem. [

Remark: The integration constants in the expressions for u,, u, can always be chosen to
be zero. To understand the effect of the integration constants in the function y,, let us do
the following. Denote by u; and u, the functions in Eq. (2.5.3), and given any real numbers
¢; and ¢, define

ﬁ1=u1+61, QQZUQ‘FCQ.
Then the corresponding solution g, is given by
Yp = Ut Y U Yo = Ut Y1 + U Yo +CLY1 T CY2 =  Yp=Yp+ Y1+ Yo

The two solutions g, and y, differ by a solution to the homogeneous differential equation.
So both functions are also solution to the nonhomogeneous equation. One is then free to
choose the constants ¢; and ¢, in any way. We chose them in the proof above to be zero.

Example 2.5.6. Find the general solution of the nonhomogeneous equation
y" — 5y + 6y =2
Solution: The formula for y, in Theorem 2.5.4 requires we know fundamental solutions to

the homogeneous problem. So we start finding these solutions first. Since the equation has
constant coefficients, we compute the characteristic equation,

1
Pobri6=0 = ri= (6£v25-2) = {

r, =3,
r.=2.

So, the functions y, and ¥y, in Theorem 2.5.4 are in our case given by
yi(t) = e, yo(t) = e
The Wronskian of these two functions is given by
Wiy (1) = (€¥)(2€%) = (3e*)(€*) = Wyy,(1) = —™.

We are now ready to compute the functions u; and u,. Notice that Eq. (2.5.3) the following
differential equations

U = — Yo f U = Y f
1 ? 2 T .
Wylyz Wy1y2
So, the equation for u, is the following,
u, = —e*(2e)(—e™) = =2 = wu=-e%
uy =e3(2e)(—e™) = wj=-2e" = wu,=2e7",

where we have chosen the constant of integration to be zero. The particular solution we are
looking for is given by

yp = (—e72)() + (2e7)() =y, =
Then, the general solution theorem for nonhomogeneous equation implies

Ygen(t) = c. €3 +c_e® + € Cyy e € R
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Example 2.5.7. Find a particular solution to the differential equation
t2y" — 2y =3t* — 1,
knowing that 3, = 2 and y, = 1/t are solutions to the homogeneous equation 2y — 2y = 0.

Solution: We first rewrite the nonhomogeneous equation above in the form given in Theo-
rem 2.5.4. In this case we must divide the whole equation by #2,

2 1 1
y”_ﬁy:g_? = f(t):3_t7~
We now proceed to compute the Wronskian of the fundamental solutions ¥, y,,
o/ —1 1
Wi = () () = @0(3) = Wi®) =3
We now use the equation in (2.5.3) to obtain the functions u; and us,,
1 1 1 1 1
! __ I (42
n=-:0-7)5 =0 (3-5) 5
1 1, 4 1 _5 5 1 1.5 1
- —Zt3% = =1In(t) + =t =24+ = =24 2t
t 3 w=nft) + Gt T3 =3ty

A particular solution to the nonhomogeneous equation above is g, = usy; + uoy,, that is,

gp::[hmt)+-lt—2]02)+-1(—t3+-w(f—h

6 3
:ﬂm@+%—%ﬁ+%
::#m@y+%—%#
:ﬁ%mﬂ+%—%%ay

However, a simpler expression for a solution of the nonhomogeneous equation above is
1
yp = t2In(t) + 3"
<

Remark: Sometimes it could be difficult to remember the formulas for functions u; and wus
in (2.5.3). In such case one can always go back to the place in the proof of Theorem 2.5.4
where these formulas come from, the system

uyy; +upy, = f
uyys + upy, = 0.

The system above could be simpler to remember than the equations in (2.5.3). We end this
Section using the equations above to solve the problem in Example 2.5.7. Recall that the
solutions to the homogeneous equation in Example 2.5.7 are y,(t) = t?, and y,(t) = 1/¢,
while the source function is f(¢) = 3 — 1/¢2. Then, we need to solve the system

1
2 + ugg =0,
-1 1
) _, 1

!/ !
2t u; + u, o P
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This is an algebraic linear system for u] and w}. Those are simple to solve. From the equation
on top we get u), in terms of u}, and we use that expression on the bottom equation,

1 1 1
! 3.7 / ! !
u, = —t"u, = 2tu1+tu1—3—t—2 = “1—{_3?'
Substitue back the expression for ] in the first equation above and we get ul,. We get,

o — 1 1

Yot 33
1

/ 2

U, = =17+ -
2 3

We should now integrate these functions to get u, and u, and then get the particular solution
Up = UsY1 + UsYo. We do not repeat these calculations, since they are done Example 2.5.7.
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2.6. Applications

Different physical systems are mathematically identical. In this Section we show that
a weight attached to a spring, oscillating either in air or under water, is mathematically
identical to the behavior of an electric current in a circuit containing a resistance, a capacitor,
and an inductance. Mathematical identical means that both systems are described by the
same differential equation.

2.6.1. Review of Constant Coefficient Equations. In Section 2.3 we have seen
how to find solutions to second order, linear, constant coefficient, homogeneous, differential
equations,

v +ay +ay =0, ai,a, € R. (2.6.1)

Theorem 2.3.2 provides formulas for the general solution of this equation. We review here
this result, and at the same time we introduce new names describing these solutions, names
that are common in the physics literature. The first step to obtain solutions to Eq. (2.6.1)
is to find the roots or the characteristic polynomial p(r) = 72 + a,r + a,, which are given by

1
ry = —% + 3 Va2 — 4da,.

We then have three different cases to consider.

a) A system is over damped in the case that a? — 4a, > 0. In this case the characteristic
1
polynomial has real and distinct roots, r., r-, and the corresponding solutions to the
differential equation are

y:(t) = ent’ Ya(t) = e,

So the solutions are exponentials, increasing or decreasing, according whether the roots
are positive or negative, respectively. The decreasing exponential solutions originate the
name over damped solutions.

(b) A system is critically damped in the case that a? —4a, = 0. In this case the characteristic
polynomial has only one real, repeated, root, # = —a, /2, and the corresponding solutions
to the differential equation are then,

y1(t) = e—a1t/2’ Ya(t) = temat/2,

(c) A system is under damped in the case that a? — 4a, < 0. In this case the characteristic
polynomial has two complex roots, r+ = a4 37, where one root is the complex conjugate
of the other, since the polynomial has real coefficients. The corresponding solutions to
the differential equation are

y:(t) = e* cos(Bt), y,(t) = e sin(Bt).

1
where o = —% and 8 = 5\/4% —a?.

(d) A system is undamped when is under damped with a, = 0. Therefore, the characteristic
polynomial has two pure imaginary roots r1+ = +,/a,. The corresponding solutions are
oscillatory functions,

Y1 (t) = cos(wst), Y2 (t) = sin(wst).
where w, = \/a,.
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2.6.2. Undamped Mechanical Oscillations. Springs are curious objects, when you
slightly deform them they create a force proportional and in opposite direction to the de-
formation. When you release the spring, it goes back to its original size. This is true for
small enough deformations. If you stretch the spring long enough, the deformations are
permanent.

Definition 2.6.1. A spring is an object that when deformed by an amount Al creates a
force Fs = —k Al, with k > 0.

Consider a spring-body system as shown in Fig. 2.6.2. A spring is fixed to a ceiling and
hangs vertically with a natural length [. It stretches by Al when a body with mass m is
attached to its lower end, just as in the middle spring in Fig. 2.6.2. We assume that the
weight m is small enough so that the spring is not damaged. This means that the spring acts
like a normal spring, whenever it is deformed by an amount Al it makes a force proportional
and opposite to the deformation,

Fyo= -k AL

Here k > 0 is a constant that depends on the type of spring. Newton’s law of motion imply
the following result.

Theorem 2.6.2. A spring-body system with spring constant k, body mass m, at rest with
a spring deformation Al, within the rage where the spring acts like a spring, satisfies

mg = k Al

Proof of Theorem 2.6.2: Since the spring-body system is at rest, Newton’s law of motion
imply that all forces acting on the body must add up to zero. The only two forces acting on
the body are its weight, Fy = mg, and the force done by the spring, Fso = —k Al. We have
used the hypothesis that Al is small enough so the spring is not damaged. We are using
the sign convention displayed in Fig. 2.6.2, where forces pointing downwards are positive.

As we said above, since the body is at rest,
the addition of all forces acting on the body
must vanish,

Fy+Fo=0 = mg=~FkAl
This establishes the Theorem. O

Remark: Rewriting the equation above as
myg
k=—.
Al
it is possible to compute the spring constant k
by measuring the displacement Al and know- Y

ing the body mass m.

FIGURE 2. Springs with weights.

We now find out how the body will move when we take it away from the rest position.
To describe that movement we introduce a vertical coordinate for the displacements, y, as
shown in Fig. 2.6.2, with y positive downwards, and y = 0 at the rest position of the spring
and the body. The physical system we want to describe is simple; we further stretch the
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spring with the body by y, and then we release it with an initial velocity v,. Newton’s law
of motion determine the subsequent motion.

Theorem 2.6.3. The vertical movement of a spring-body system in air with spring constant
k > 0 and body mass m > 0 is described by the solutions of the differential equation
my” +ky=0, (2.6.2)

where y is the vertical displacement function as shown in Fig. 2.6.2. Furthermore, there is
a unique solution to Eq. (2.6.2) satisfying the initial conditions y(0) =y, and y'(0) = v,

y(t) = A cos(wot — @),

|k
with angular frequency w, = p— where the amplitude A > 0 and phase-shift ¢ € (—m, 7],

2
A= yg—l—%, qﬁ:arctan( Yo )
w3 WolYo

Remark: The angular or circular frequency of the system is w, = 1/k/m, meaning that
the motion of the system is periodic with period given by T' = 27 /w,, which in turns implies
that the system frequency is v, = wo/(27).

Proof of Theorem 2.6.3: Newton’s second law of motion says that mass times acceleration
of the body my”(t) must be equal to the sum of all forces acting on the body, hence

my"(t) =Fg+ Fyo+ Fs(t),

where Fs(t) = —ky(t) is the force done by the spring due to the extra displacement y.
Since the first two terms on the right hand side above cancel out, F,; + Fso = 0, the body
displacement from the equilibrium position, y(¢), must be solution of the differential equation

my” (t) + ky(t) = 0.

which is Eq. (2.6.2). In Section ?? we have seen how to solve this type of differential

equations. The characteristic polynomial is p(r) = mr? + k, which has complex roots
ry = f+w? i, where we introduced the angular or circular frequency of the system,
k
W =14/ —.
m

The reason for this name is the calculations done in Section 77, where we found that a
real-valued expression for the general solution to Eq. (2.6.2) is given by

Ygen (t) = ¢4 cos(wot) + ¢, sin(wot).

This means that the body attached to the spring oscillates around the equilibrium position
y = 0 with period T' = 27 /w,, hence frequency vy = wp/(27). There is an equivalent way
to express the general solution above given by

Ygen (t) = A cos(wot — ¢).
These two expressions for y,en are equivalent because of the trigonometric identity
A cos(wot — @) = A cos(wt) cos(d) + Asin(w,t) sin(e),
which holds for all A and ¢, and wet. Then, it is not difficult to see that
clecos(qS),} A=+/c+c3,
<

¢, = Asin(9). ¢ = arctan(%).

C1



134 2. SECOND ORDER LINEAR EQUATIONS

Since both expressions for the general solution are equivalent, we use the second one, in
terms of the amplitude and phase-shift. The initial conditions y(0) = y, and y'(0) = o
determine the constants A and ¢. Indeed,

V2
p=y0)=Acos(e), | JA=\ T
v = y'(0) = Aw, sin(¢). Vo
o= arctan( )
WoYo
This establishes the Theorem. O

Example 2.6.1. Find the movement of a 50 gr mass attached to a spring moving in air
with initial conditions y(0) = 4cm and y'(0) = 40cm/s. The spring is such that a 30 gr
mass stretches it 6 cm. Approximate the acceleration of gravity by 1000 cm/s2.

Solution: Theorem 2.6.3 says that the equation satisfied by the displacement y is given by
my” + ky = 0.
In order to solve this equation we need to find the spring constant, k, which by Theorem 2.6.2

is given by k = mg/Al. In our case when a mass of m = 30gr is attached to the sprint, it
stretches Al = 6 cm, so we get,

30) (1000
BO000) - _ 500 &
6 82

Knowing the spring constant & we can now describe the movement of the body with mass
m = 50 gr. The solution of the differential equation above is obtained as usual, first find the
roots of the characteristic polynomial

[k 5000 1
mrl4+k=0 = T4 = FwWel, Wy =14/— =4/—— = w,=10-.
m 50 S

We write down the general solution in terms of the amplitude A and phase-shift ¢,
y(t) = A cos(wot — @) = y(t) = A cos(10t — ).

To accommodate the initial conditions we need the function y'(t) = —Aw, sin(wyt — ¢). The
initial conditions determine the amplitude and phase-shift, as follows,

y(0) = Acos(e), A =+/16+ 16,
y'(0) = 10Asin(¢)} =

k:

4
40
40 ¢ = arctan(i).
(10)(4)
We obtain that A = 41/2 and tan(¢) = 1. The later equation implies that either ¢ = 7/4 or
¢ = —3n/4, for ¢ € (—m,w]. If we pick the second value, ¢ = —3x /4, this would imply that

y(0) < 0 and ¥'(0) < 0, which is not true in our case. So we must pick the value ¢ = 7/4.

We then conclude: -
y(t) = 4v/2 cos(l(]t - Z)

<

2.6.3. Damped Mechanical Oscillations. Suppose now that the body in the spring-
body system is a thin square sheet of metal. If the main surface of the sheet is perpendicular
to the direction of motion, then the air dragged by the sheet during the spring oscillations will
be significant enough to slow down the spring oscillations in an appreciable time. One can
find out that the friction force done by the air opposes the movement and it is proportional
to the velocity of the body, that is, F; = —dy'(t). We call such force a damping force, where
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d > 0 is the damping coefficient, and systems having such force damped systems. We now
describe the spring-body system in the case that there is a non-zero damping force.

Theorem 2.6.4.

(a) The vertical displacement y, function as shown in Fig. 2.6.2, of a spring-body system
with spring constant k > 0, body mass m > 0, and damping constant d > 0, s described
by the solutions of

my” +dy +ky=0, (2.6.3)

(b) The roots of the characteristic polynomial of Eq. (2.6.3) are ry = —wq £ /w3 — w§,
with damping coefficient wg = % and circular frequency w, = %
(¢) The solutions to Eq. (2.6.3) fall into one of the following cases:
(i) A system with wq > wq is called over damped, with general solution to Eq. (2.6.3)
y(t) =coe™t e et
(ii) A system with wg = wy is called critically damped, with general solution to Eq. (2.6.3)
y(t) = c, e Wit 4 e te @it
(iii) A system with wy < w, is called under damped, with general solution to FEq. (2.6.3)
y(t) = Ae 4 cos(Bt — ¢),

where f = \Jwg — w?.

(d) There is a unique solution to Eq. (2.6.2) with initial conditions y(0) = yo and y'(0) = v,.
Remark: In the case the damping coefficient vanishes we recover Theorem 2.6.3.

Proof of Therorem 2.6.3: Newton’s second law of motion says that mass times acceler-
ation of the body my”(t) must be equal to the sum of all forces acting on the body. In the
case that we take into account the air dragging force we have

my"(t) = Fy + Foo + Fs(t) + Fa(t),

where F;(t) = —ky(t) as in Theorem 2.6.3, and Fy(t) = —dy'(t) is the air -body dragging
force. Since the first two terms on the right hand side above cancel out, Fy, + Fyo = 0,
as mentioned in Theorem 2.6.2, the body displacement from the equilibrium position, y(t),
must be solution of the differential equation

my"(t) + +dy' (t) + ky(t) = 0.

which is Eq. (2.6.3). In Section ?? we have seen how to solve this type of differential
equations. The characteristic polynomial is p(r) = mr? + dr + k, which has complex roots

1 d\?2 k
re =g [-dE V@ —dmk] = - /(5) -5 5 re= ek Jud - ok

2m m

d [k
where wy = o and w, = 4/ —. In Section ?? we found that the general solution of a
m m

differential equation with a characteristic polynomial having roots as above can be divided
into three groups. For the case r. # r_ real valued, we obtain case (ci), for the case r. = r-
we obtain case (cii). Finally, we said that the general solution for the case of two complex
roots r4 = « + Pi was given by

y(t) = €™ (c, cos(Bt) + c;sin(Bt)).
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In our case @ = —wy and 3 = /w? — w3. We now rewrite the second factor on the right-hand
side above in terms of an amplitude and a phase shift,

y(t) = Ae ' cos(Bt — ¢).

The main result from Section 77 says that the initial value problem in Theorem 2.6.4 has a
unique solution for each of the three cases above. This establishes the Theorem. O

Example 2.6.2. Find the movement of a 5Kg mass attached to a spring with constant k£ =
5Kg/ Secs® moving in a mediuith damping constant d = 5Kg/Secs, with initial conditions
y(0) = /3 and ¢'(0) = 0.

Solution: By Theorem 2.6.4 the differential equation for this system is my” +dy’ + ky = 0,
with m =5, k =5, d = 5. The roots of the characteristic polynomial are

d 1 k
ry = —wqgt/wi—wd, Wi= 5= g WO:VE:L

that is,

This means our system has under damped oscillations. Following Theorem 2.6.4 part (ciii),
the general solution is given by
3
y(t) = Ae /2 cos(g t— gb).
We only need to introduce the initial conditions into the expression for y to find out the
amplitude A and phase-shift ¢. In order to do that we first compute the derivative,

y'(t) = —%Ae_t/2 cos(?t— (;S) - ?Ae‘”%in(?t— (i)).

The initial conditions in the example imply,

1 3
V3 =y(0) = Acos(e), 0=1y'(0)= —3 Acos(¢) + % Asin(¢).
The second equation above allows us to compute the phase-shift, since

1 5
tan(¢):ﬁ = ¢=%, or (/):%—77:—%.
If = —57/6, then y(0) < 0, which is not out case. Hence we must choose ¢ = 7/6. With
that phase-shift, the amplitude is given by

\/§=Acos(%) :Ag = A=2.
V3 7r>'

We conclude: y(t) = 2e~"/? cos<7 t— —

<
6

2.6.4. Electrical Oscillations. We describe the electric current flowing through an
RLC-series electric circuit, which consists of a resistance, a coil, and a capacitor connected
in series as shown in Fig. 3. A current can be started by approximating a magnet to the coil.
If the circuit has low resistance, the current will keep flowing through the coil between the
capacitor plates, endlessly. There is no need of a power source to keep the current flowing.
The presence of a resistance transforms the current energy into heat, damping the current
oscillation.
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This system is described by an integro-
differential equation found by Kirchhoff, now
called Kirchhoff’s voltage law, relating the re-
sistor R, capacitor C, inductor L, and the

current [ in a circuit as follows,
= electrlc current

1 t
LI(H)+RI(t)+ / I(s)ds = 0. (2.6.4)
%o FIGURE 3. An RLC circuit.

Kirchhoff’s voltage law is all we need to present the following result.

Theorem 2.6.5. The electric current I in an RLC circuit with resistance R > 0, capaci-
tance C > 0, and inductance L > 0, satisfies the differential equation

1
LI"(t)+RI'(t)+ ol I(t)=0.
The roots of the characteristic polynomial of Eq. (2.6.3) are r4 = —wq + \/wfl — wd, with

LC
in Theorem 2.0.4 parts (c), (d), hold with wg and w, defined here.

R /1
damping coefficient wqg = oL and circular frequency wo, = | —=. Furthermore, the results

Proof of Theorem 2.6.5: Compute the derivate on both sides in Eq. (2.6.4),

L =o,

LI"(t)+ RI'(D) + &

and divide by L,
R
1" e -
1"t +2(57 ) I'() + LCI()

R
Introduce wg = — and w, then Kirchhoff’s law can be expressed as the second

1
2L - VILC’
order, homogeneous, constant coefficients, differential equation
I+ 2wg ' + W21 =0.
The rest of the proof follows the one of Theorem 2.6.4. This establishes the Theorem. [

Example 2.6.3. Find real-valued fundamental solutions to I" + 2wq I’ + w2 I = 0, where
wqg = R/(2L), w2 = 1/(LC), in the cases (a), (b) below.

Solution: The roots of the characteristic polynomial, p(r) = r? + 2wgr + w2, are given by
[“2wg £ /4w —4w?] = 71y =-—wet/wi—w?.

Case (a): R =0. This implies wg = 0, so r+ = +iw,. Therefore,
I, (t) = cos(wot), L(t) = sin(wt).

T+ =

l\')\n—\

Remark: When the circuit has no resistance, the current oscillates without dissipation.
Case (b): R < /4L/C. This implies
4L R?

R<—= &

2 2
C m<ﬁ¢>wd<wo.
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Therefore, the characteristic polynomial has complex roots ry = —wg & iy/w? — w3, hence
the fundamental solutions are

I,(t) = e~ cos(Bt),

L(t) = e ¥ sin(B ),
with 8 = \/w2 — w?. Therefore, the resistance R damps the current oscillations produced
by the capacitor and the inductance. <

I I

FIGURE 4. Typical currents I, I, for case (b).
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2.6.5. Exercises.

2.6.1.- . 2.6.2.- .






CHAPTER 3

Power Series Solutions

The first differential equations were solved around the end of the seventeen century and
beginning of the eighteen century. We studied a few of these equations in § 1.1-1.4 and the
constant coefficients equations in Chapter 2. By the middle of the eighteen century people
realized that the methods we learnt in these first sections had reached a dead end. One reason
was the lack of functions to write the solutions of differential equations. The elementary
functions we use in calculus, such as polynomials, quotient of polynomials, trigonometric
functions, exponentials, and logarithms, were simply not enough. People even started to
think of differential equations as sources to find new functions. It was matter of little time
before mathematicians started to use power series expansions to find solutions of differential
equations. Convergent power series define functions far more general than the elementary
functions from calculus.

In § 3.1 we study the simplest case, when the power series is centered at a regular
point of the equation. The coefficients of the equation are analytic functions at regular
points, in particular continuous. In § ??7 we study the Euler equidimensional equation. The
coeflicients of an Euler equation diverge at a particular point in a very specific way. No
power series are needed to find solutions in this case. In § 3.2 we solve equations with regular
singular points. The equation coefficients diverge at regular singular points in a way similar
to the coefficients in an Euler equation. We will find solutions to these equations using the
solutions to an Euler equation and power series centered precisely at the regular singular
points of the equation.

141
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3.1. Solutions Near Regular Points
We study second order linear homogeneous differential equations with variable coefficients,
y' +p(z)y +q(z)y =0.

We look for solutions on a domain where the equation coefficients p, g are analytic functions.
Recall that a function is analytic on a given domain iff it can be written as a convergent
power series expansions on that domain. In Appendix B we review a few ideas on analytic
functions and power series expansion that we need in this section. A regular point of the
equation is every point where the equation coefficients are analytic. We look for solutions
that can be written as power series centered at a regular point. For simplicity we solve only
homogeneous equations, but the power series method can be used with nonhomogeneous
equations without introducing substantial modifications.

3.1.1. Regular Points. We now look for solutions to second order linear homogeneous
differential equations having variable coeflicients. Recall we solved the constant coeflicient
case in Chapter 2. We have seen that the solutions to constant coefficient equations can
be written in terms of elementary functions such as quotient of polynomials, trigonometric
functions, exponentials, and logarithms. For example, the equation

y'+y=0
has the fundamental solutions y,(z) = cos(z) and y,(z) = sin(z). But the equation
xy"+y’—|—xy:0

cannot be solved in terms of elementary functions, that is in terms of quotients of poly-
nomials, trigonometric functions, exponentials and logarithms. Except for equations with
constant coeflicient and equations with variable coefficient that can be transformed into
constant coefficient by a change of variable, no other second order linear equation can be
solved in terms of elementary functions. Still, we are interested in finding solutions to vari-
able coefficient equations. Mainly because these equations appear in the description of so
many physical systems.

We have said that power series define more general functions than the elementary func-
tions mentioned above. So we look for solutions using power series. In this section we center
the power series at a regular point of the equation.

Definition 3.1.1. A point x, € R is called a regular point of the equation
y' +p(z)y +q(z)y =0, (3.1.1)

iff p, q are analytic functions at x,. Otherwise x, is called a singular point of the equation.

Remark: Near a regular point z, the coefficients p and ¢ in the differential equation above
can be written in terms of power series centered at z,,

oo
p) =po+p1(z—20) +p2(@—a0)> + - =D pp(z— )",
n=0
o0
g@) =qo+q (@ —a0) + @2 (x —w0)> + - =Y qn (x — x)",
n=0

and these power series converge in a neighborhood of x,.

Example 3.1.1. Find all the regular points of the equation
zy +y +2%y=0.
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Solution: We write the equation in the form of Eq. (3.1.1),
/! 1 /
Y+ o +xzy=0.

In this case the coefficient functions are p(z) = 1/z, and ¢(z) = x. The function ¢ is analytic
in R. The function p is analytic for all points in R — {0}. So the point 2, = 0 is a singular
point of the equation. Every other point is a regular point of the equation. <

3.1.2. The Power Series Method. The differential equation in (3.1.1) is a particular
case of the equations studied in § 2.1, and the existence result in Theorem 2.1.2 applies to
Eq. (3.1.1). This Theorem was known to Lazarus Fuchs, who in 1866 added the following: If
the coeflicient functions p and ¢ are analytic on a domain, so is the solution on that domain.
Fuchs went ahead and studied the case where the coefficients p and ¢ have singular points,
which we study in § 3.2. The result for analytic coefficients is summarized below.

Theorem 3.1.2. If the functions p, q are analytic on an open interval (x, — p,xo+p) C R,
then the differential equation

y' +p@)y +q(2)y =0,
has two independent solutions, yi, Y., which are analytic on the same interval.

Remark: A complete proof of this theorem can be found in [2], Page 169. See also [10],
§ 29. We present the first steps of the proof and we leave the convergence issues to the latter
references. The proof we present is based on power series expansions for the coefficients p,
q, and the solution y. This is not the proof given by Fuchs in 1866.

Proof of Thorem 3.1.2: Since the coefficient functions p and ¢ are analytic functions on
(xo — p, To + p), where p > 0, they can be written as power series centered at x,

[e.e] (oo}
p@) = pa@—z)", @)= o (@ —z)".
n=0 n=0
We look for solutions that can also be written as power series expansions centered at x,
(oo}
y(x) = Z ap, (x — x)".
n=0
We start computing the first derivatives of the function vy,
oo oo
y'(z) = Z nay (z — xo)(nil) = y(z)= Z nay, (r — mo)(nil),
n=0 n=1

where in the second expression we started the sum at n = 1, since the term with n = 0
vanishes. Relabel the sum with m = n — 1, so when n = 1 we have that m = 0, and
n =m+ 1. Therefore, we get

y'(@) =Y (m+Dagm (@ —z0)™

m=0
We finally rename the summation index back to n,

o0

y'(z) = Z(n + 1)agg) (x —x0)". (3.1.2)

n=0
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From now on we do these steps at once, and the notation n — 1 = m — n means

"(z) = Z nay, (x — )" = Z(n + a1y (2 — )"
n=1 n=0
We continue computing the second derivative of function y,
y'(@) = 3 nln = Dan (z — 20) "2,
n=2

and the transformation n — 2 = m — n gives us the expression

oo

Y'(@) =Y (n+2)(n+ Dagyz (@ —z0)".
n=0

The idea now is to put all these power series back in the differential equation. We start
with the term

q(x)yz(i (x — x0) )(gamx—xo )

n=0

n

=§:(Z akqn— k) (z — 20)",

n=0 k=0
where the second expression above comes from standard results in power series multiplica-
tion. A similar calculation gives

@)Y = (an @ =) ) (i) m+1)agni1) (@ = o) )
- Z (Z(k + l)a(k+1)pn—k> (z — o)™

n=0 k=0
Therefore, the differential equation " 4+ p(x) ¢y’ + ¢(x) y = 0 has now the form

Z [(n + 2)(71 + 1)a(n+2) + Z [(k + 1)a(k+1)p(n_k) + akq(n_k)]} (x — xo)” =0.
n=0 k=0

So we obtain a recurrence relation for the coefficients a.,,

(n+2)(n+ Dagusz) + >_[(k + Dagi1)Din—k) + @n-r)] =0,

k=0
forn=0,1,2,---. Equivalently,
1 n
) = T )+ 1) > [k + Dagernypn—r) + @hln—r)- (3.1.3)
k=0
We have obtained an expression for a,2) in terms of the previous coefficients a(,41)," -+ , ao

and the coefficients of the function p and ¢. If we choose arbitrary values for the first two
coefficients ag and aq, the the recurrence relation in (3.1.3) define the remaining coefficients
as,as, -+ in terms of ag and a;. The coefficients a,, chosen in such a way guarantee that
the function y defined in (3.1.2) satisfies the differential equation.

In order to finish the proof of Theorem 3.1.2 we need to show that the power series
for y defined by the recurrence relation actually converges on a nonempty domain, and
furthermore that this domain is the same where p and ¢ are analytic. This part of the
proof is too complicated for us. The interested reader can find the rest of the proof in [2],
Page 169. See also [10], § 29. O
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It is important to understand the main ideas in the proof above, because we will follow
these ideas to find power series solutions to differential equations. So we now summarize
the main steps in the proof above:

(a) Write a power series expansion of the solution centered at a regular point x,,
o0
y(z) = Z ap, (T — xo)".
n=0

(b) Introduce the power series expansion above into the differential equation and find a
recurrence relation among the coefficients a,.

(¢) Solve the recurrence relation in terms of free coefficients.
(d) If possible, add up the resulting power series for the solutions y;, y,.

We follow these steps in the examples below to find solutions to several differential
equations. We start with a first order constant coefficient equation, and then we continue
with a second order constant coefficient equation. The last two examples consider variable
coeflicient equations.

Example 3.1.2. Find a power series solution y around the point z, = 0 of the equation
y +cy=0, ceR.
Solution: We already know every solution to this equation. This is a first order, linear,
differential equation, so using the method of integrating factor we find that the solution is
y(x) =ape 7, a, € R.

We are now interested in obtaining such solution with the power series method. Although
this is not a second order equation, the power series method still works in this example.
Propose a solution of the form

o0 o0
Y= Zanxn = ¢ = Znanx("fl).
n=0 n=1

We can start the sum in ¢’ at n = 0 or n = 1. We choose n = 1, since it is more convenient
later on. Introduce the expressions above into the differential equation,

oo o0
E nanx"_l—&—cg apx™ =0
n=1 n=0

Relabel the first sum above so that the functions z”~! and z” in the first and second sum
have the same label. One way is the following,

Z(n +1Dagpin 2" + Z capx” =0
n=0 n=0

We can now write down both sums into one single sum,

o

(n+1)amyr) +can| 2™ =0.
(n+1)

n=0

Since the function on the left-hand side must be zero for every x € R, we conclude that
every coefficient that multiplies " must vanish, that is,

(n+1)amsry +cap, =0, n > 0.
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The last equation is called a recurrence relation among the coefficients a,,. The solution of
this relation can be found by writing down the first few cases and then guessing the general
expression for the solution, that is,

n =20, a; = —Cayg = a; = —Cay,
2
n=1, 20, = —cay = ay = an,
3
n=2, 3a; = —ca, = asz—gao,
A
n =3, day = —cas = a4=an.

which implies that the solution of the differential equation is given by

y(@:aoz(—l)”%w” = y(m)zaoZ% = y(@)=ace ",

<
Example 3.1.3. Find a power series solution y(z) around the point x, = 0 of the equation
y// +y=0.

Solution: We know that the solution can be found computing the roots of the characteristic
polynomial 72 + 1 = 0, which gives us the solutions

y(x) = ao cos(z) + a, sin(z).

We now recover this solution using the power series,
oo oo o0
y = Z ap = oy = Z nap "V, = = Z n(n —1)a, 22,
n=0 n=1 n=2

Introduce the expressions above into the differential equation, which involves only the func-
tion and its second derivative,

3 n(n —1)a, 2" 2 + 3 an " = 0.
=2 =0

Relabel the first sum above, so that both sums have the same factor ™. One way is,

Z(n +2)(n + 1)agqo) 2" + Z an 2" = 0.
n=0 n=0

Now we can write both sums using one single sum as follows,

Z [(R+2)(n+1D)ama) +an]z" =0 = (n+2)(n+1)ap42) +a, =0. n=0.

n=0
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The last equation is the recurrence relation. The solution of this relation can again be found
by writing down the first few cases, and we start with even values of n, that is,

1
n=20, (2)(1)a, = —ag = a4z = —5; o,
1
n=2, (4)(3)ag = —a, = ag = 4 do,
1
n =4, (6)(5)ag = —ay = a6 = — ¢ do.

One can check that the even coefficients as;, can be written as

- (_1)k
= @R’

The coeflicients a,, for the odd values of n can be found in the same way, that is,

1
n=1, (3)(2)az = —a, = a3 = — g i,
1
n =3, (5)(4)as = —as = as = o i,
1
n =25, (7M)(6)ar = —as = a7 =~ 0.

One can check that the odd coefficients asg11 can be written as

(-1)*

A2k+1 = m aq

Split the sum in the expression for y into even and odd sums. We have the expression for
the even and odd coefficients. Therefore, the solution of the differential equation is given by

—a i (_1)k 22k 4 g i (_1)k p2k+1
° e~ (2k)! P2k + 1)) '

One can check that these are precisely the power series representations of the cosine and
sine functions, respectively,

y(x) = ao cos(z) + a, sin(z).
<

Example 3.1.4. Find the first four terms of the power series expansion around the point
o, = 1 of each fundamental solution to the differential equation

y”f:ry/fy:().
Solution: This is a differential equation we cannot solve with the methods of previous

sections. This is a second order, variable coefficients equation. We use the power series
method, so we look for solutions of the form

y:ian(x—l)" = i nay, (r — 1)1 inn—lanx—l) -2,
n=0 n=1 n=2
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We start working in the middle term in the differential equation. Since the power series is
centered at x, = 1, it is convenient to re-write this term as x ¢y’ = [(x — 1) + 1] ¢/, that is,

[ee]
xy = Z napx(z —1)"!

n=1

*Znan [(z—1)+1](z—1)"!

n=1
i w(z—1)" —I—Znan (x —1)" (3.1.4)
n=1 n=1

As usual by now, the first sum on the right-hand side of Eq. (3.1.4) can start at n = 0, since
we are only adding a zero term to the sum, that is,

Znanx—l Znanx—l

while it is convenient to relabel the second sum in Eq. (3.1.4) follows,

Z na,(z —1)"" 1 = Z(n + Dagn(z —1)"
n=1 n=0

so both sums in Eq. (3.1.4) have the same factors (z — 1)™. We obtain the expression

(oo} o0
vy = nan(r—1)"+> (n+ Dagy(z—1)"
n=0 n=0

Z nan + (n+ 1)ag1)] (z — 1) (3.1.5)

In a similar way relabel the index in the expression for 3", so we obtain

o0

y' =D (n+2)(n+ Dagiz(z — 1) (3.1.6)
n=0

If we use Egs. (3.1.5)-(3.1.6) in the differential equation, together with the expression for y,
the differential equation can be written as follows

oo o0 o0

S (n+2)(n+ Dz (@ — 1" =Y [nan + (n+ Dag i) (@ —1)" =Y an(z—1)" =0.

n=0 n=0 n=0
We can now put all the terms above into a single sum,

o0

Z [(n +2)(n+ a2y — (0 + 1)ag41) — nan — an} (x—1)"=0.

n=0

This expression provides the recurrence relation for the coefficients a,, with n > 0, that is,
(n+2)(n+1amye) — (n+1)apery — (n+1)a, =0
(n+1) [(n +2)a(ni2) — Any1) — an:| =0,
which can be rewritten as follows,

(n+2)amt2) — Gnt1) — an = 0. (3.1.7)
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We can solve this recurrence relation for the first four coefficients,

a Qa
n=2~0 20, —ay —a, =0 = CL2:21+2°7
a a
n=1 3a; —a, —a, =0 = a3:21+607
a a
n=2 dag —az —a, =0 = a4:741+760'

Therefore, the first terms in the power series expression for the solution y of the differential
equation are given by

Qo Qy Qo ay 3 Qo a, 4
o sota - (B (5 G0 (5 e
y=ata@-D)+(F+5)@-0 +(F+5)@ -0+ (F+7)@-Dt+
which can be rewritten as
1 1 1
y= ao{l—F*(a?—1)2+*(x—1)3—|—7(x—1)4—|—-~-}
2 6 6
1 1 1
—|—a1[(x—1)+§(x—1)2—|—§(x—1)3+1(g;_1)4+...}
So the first four terms on each fundamental solution are given by
1 5 1 5 1
y1:1+§(:L'71)2+6(:671)3+6(:L‘71)4,
1 1 3 1
y2:(x*1)+§(1*1)2+§(l*1)3+1(i*1)4

<

Example 3.1.5. Find the first three terms of the power series expansion around the point
x, = 2 of each fundamental solution to the differential equation

y' —xy=0.

Solution: We then look for solutions of the form

yzian(x—2"
n=0

It is convenient to rewrite the function zy = [(x — 2) + 2]y, that is,

Ty = Z anx(z —2)
n=0

:Zan[(sc—2)+2]($—2)"

n=0
=Y an(z—2)" Y 2a,(x - 2)" (3.1.8)
n=0 n=0

We now relabel the first sum on the right-hand side of Eq. (3.1.8) in the following way,

o0

Zanm— 2)"tt = Za 2)". (3.1.9)

n=1
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We do the same type of relabeling on the expression for 3",

o}

y' = Z n(n — Da,(z —2)" 2

n=2
- Z(n +2)(n + D)ag,12y(z —2)™.
n=0

Then, the differential equation above can be written as follows

> (n+2)(n+ Dagezy (@ —2)" =D 2an(x—2)" = ap_1)(z—2)" =0
n=0 n=0 n=1
(2)(1)az = 200+ Y [(n+2) (0 + Dauiz) — 200 = Ay (@ = 2)" = 0.

n=1

So the recurrence relation for the coefficients a,, is given by
ay — ag =0, (n+2)(n + 1)agy2) — 20n — a1y =0, n > 1.

We can solve this recurrence relation for the first four coefficients,

n=20 a, —a, =10 = ay = ay,
n=1 (3)(2)as — 2a; —ao =0 = a3:%+%7
ay  ay

=2 4 —2a, —a; = _ o G
n ( )(3)(14 Ay — Gy 0 = Qy 5 + 15

Therefore, the first terms in the power series expression for the solution y of the differential
equation are given by

Q, a . a a
y:ao+a1(x—2)+ao(x—2)2+(EOJrgl)(x—?)er<E°+1—;>(x—2)4+~'

which can be rewritten as

o 1 1
Yy = ao[l—l—(x—Q) +6(x—2)3+6(z—2)4+...}
+a1[(x—2)+é(x—2)3+1—12(x72)4+...}

So the first three terms on each fundamental solution are given by
1
y=1+(z-2)>%+ 6(7’ —2)3,

! (z —2)%

1 .
?/z:($*2)+§(37*2)3+ﬁ

<

3.1.3. The Legendre Equation. The Legendre equation appears when one solves the
Laplace equation in spherical coordinates. The Laplace equation describes several phenom-
ena, such as the static electric potential near a charged body, or the gravitational potential
of a planet or star. When the Laplace equation describes a situation having spherical sym-
metry it makes sense to use spherical coordinates to solve the equation. It is in that case
that the Legendre equation appears for a variable related to the polar angle in the spherical
coordinate system. See Jackson’s classic book on electrodynamics [8], § 3.1, for a derivation
of the Legendre equation from the Laplace equation.
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Example 3.1.6. Find all solutions of the Legendre equation
(1-2®)y" =22y +1(1+1)y =0,

where [ is any real constant, using power series centered at x, = 0.

Solution: We start writing the equation in the form of Theorem 3.1.2,
T zxﬁ) v+ (ll(lj;?)) y=0

It is clear that the coefficient functions

2z l(l+1
o)==, e =

are analytic on the interval |z| < 1, which is centered at z, = 0. Theorem 3.1.2 says that
there are two solutions linearly independent and analytic on that interval. So we write the
solution as a power series centered at x, = 0,

o0
y(r) = Z anp ",
n=0

and we compute its derivative,

(oo} (oo} (oo}
y'(z) = Z nap "1 = Z na, "1 = Z(n + Dagi) =",
n=0 n=1 n=0

where the first equality is the plain derivative, in the second we start the sum at n = 1 since
the first term in the sum is zero, and in the third equality we rename the summation index
n — n — 1, so when the old index starts at one, the new index starts at zero. The second
derivative of y is treated in a similar way,

y'(x) = Z n(n —1a, 2" % = Z n(n —1a, 2" 2 = Z(n +2)(n+ a2 "
n=0 n=2 n=0
Then we continue working as follows,
y" = Z(n +2)(n + 1)agpmqo) 2",
n=0
oo
—z?y = Z —(n — Dnay, 2",

n=0

o0
—2zy = Z —2na, x",
n=0

(l+1)y = i I+ Dap ™.

n=0
The Legendre equation says that the addition of the four equations above must be zero,

Z((n +2)(n + 1)agm42) — (n — Dnap, — 2nay, + (1 + 1)a,) 2™ = 0.

n=0

Therefore, every term in that sum must vanish,

(n+2)(n + 1)agp4e) — (n — 1)na, — 2na, + (1 + 1)a, =0, n

WV
o
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This is the recurrence relation for the coefficients a,,. After a few manipulations the recur-
rence relation becomes

(I—n)(l+n+1)

— >
A(n+2) n+2)(n+1) Qn, nz=0
By giving values to n we obtain,
l(l+1 -1 +2
a2=—(2! )ao7 a3=—7( 2,)(, )a1.
Since ay is related to ag and ajy is related to as, we get,
o (I=2)(1+3) =2+ 1)1+ 3)
“ETTRm T M I
(=3 +4) =3I =-1)(+2)(1+4)
CTTTae 0T T 51

If one keeps solving the coefficients a,, in terms of either ag or a;, one gets the expression,

Y@ = ao {171(151) 2 (FQ)Z(ZZD(H?)) z4+...]
(I-1)(1+2) (I=3)1—1)(I+2)(l+4)
—l—al{x— 3] x3 5] x5+---].

Hence, the fundamental solutions are

(+1) 5 (—-2U0+D)(I+3)
(2! v (4! Dy
(-1(+2) 5 (=HI-DI+2)(+4) ,

Ya(@) = — 3 ” + 3 z° +

The ration test provides the interval where the seires above converge. For function y, we
get, replacing n by 2n,

y(z) =1—

Aon 4o 22 ‘ B ‘_ (l—2n)(l+2n+1)

2 2
— — 00.
Gnt1)@n 1) |z%| — |z|* as n— o

aon x2n

A similar result holds for y,. So both series converge on the interval defined by |z| < 1. <

Remark: The functions y,, y, are called Legendre functions. For a non-integer value of
the constant [ these functions cannot be written in terms of elementary functions. But
when [ is an integer, one of these series terminate and becomes a polynomial. The case
[ being a nonnegative integer is specially relevant in physics. For [ even the function y,
becomes a polynomial while y, remains an infinite series. For [ odd the function y, becomes
a polynomial while the y, remains an infinite series. For example, for [ = 0,1, 2,3 we get,

=0, yl(x)zla

=1, yQ(x):xv

l:27 y1($):1_3$27
5

=3, yg(x):x—gx?’

The Legendre polynomials are proportional to these polynomials. The proportionality fac-
tor for each polynomial is chosen so that the Legendre polynomials have unit length in a
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particular chosen inner product. We just say here that the first four polynomials are

ZZO, y1(35):1a P0:y17 Po(l‘)zl’
lzla y2(x):xa P1:y27 Pl(w):xv
1 1
l:2u y1(m):1_3$27 P2:_§y13 P2($)25(3x2_1)7
5 4 3 1,
=3, yg(x):x—gx , P3:—§y2, P3($)=§(5SL‘ —395).

These polynomials, P,, are called Legendre polynomials. The graph of the first four Le-
gendre polynomials is given in Fig. 1.

Ya

1 Py
: Py :
I Py I

1. EERE:
i P i
A J|
-1

FI1GURE 1. The graph of the first four Legendre polynomials.
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3.1.4. Exercises.

3.1.1.- . 3.1.2.- .
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3.2. Solutions Near Regular Singular Points

We continue with our study of the solutions to the differential equation

y' +p(x)y +q(z)y =0.
In § 3.1 we studied the case where the coefficient functions p and ¢ were analytic functions.
We saw that the solutions were also analytic and we used power series to find them. In
§ 7?7 we studied the case where the coefficients p and g were singular at a point z,. The
singularity was of a very particular form,

_ Do

~ Po ) = o
.13—3)0)7 Q( ) ( PR

T — To)
where p,, ¢, are constants. The equation was called the Fuler equidimensional equation.
We found solutions near the singular point x,. We found out that some solutions were
analytic at x, and some solutions were singular at xo. In this section we study equations
with coefficients p and ¢ being again singular at a point x,. The singularity in this case is
such that both functions below

(7 — 20)p(7), (z — xo)QQ(x)
are analytic in a neighborhood of z,. The Euler equation is the particular case where these
functions above are constants. Now we say they admit power series expansions centered at
Zo. So we study equations that are close to Euler equations when the variable x is close to
the singular point x,. We will call the point z, a regular singular point. That is, a singular
point that is not so singular. We will find out that some solutions may be well defined at
the regular singular point and some other solutions may be singular at that point.

3.2.1. Regular Singular Points. In § 3.1 we studied second order equations

y' +p@)y +q(x)y=0.

and we looked for solutions near regular points of the equation. A point z, is a regular point
of the equation iff the functions p and ¢ are analytic in a neighborhood of x,. In particular
the definition means that these functions have power series centered at xo,

p@) =Y pule—)",  ql@) = gnlz—x0)",
n=0 n=0

which converge in a neighborhood of x,. A point z, is called a singular point of the equation
if the coefficients p and ¢ are not analytic on any set containing z,. In this section we study
a particular type of singular points. We study singular points that are not so singular.

Definition 3.2.1. A point x, € R is a regular singular point of the equation

y' +p@)y +q(x)y=0.

iff both functions P, and Gz, are analytic on a neighborhood containing x,, where

Pao(®) = (& = 2)p(®),  Gap(7) = (2 = 20)*q().

Remark: The singular point z, in an Euler equidimensional equation is regular singular.
In fact, the functions p,, and §,, are not only analytic, they are actually constant. The
proof is simple, take the Euler equidimensional equation

Po / o

11
y +(x—x0)y +(m—:co)2y

:O,
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and compute the functions p,, and g, for the point z,,
- (o Po ) _ ~ (i 2( o ) _

Dro(7) = (@ x")((x —z)) beol@) = (& = ) (@—w2) ™
Example 3.2.1. Show that the singular point of Euler equation below is regular singular,
(x—3)%y" +2(x—3)y +4y=0.

Solution: Divide the equation by (z — 3)2, so we get the equation in the standard form

y + =0.

! 4
VeV T e—s2?

The functions p and q are given by
2 4

p(z) = m’ q(z) = m

The functions ps and g3 for the point x, = 3 are constants,

m@y4zf@Q;§5):z %@%4xf$%6;§p):4

Therefore they are analytic. This shows that x, = 3 is regular singular. <

Example 3.2.2. Find the regular-singular points of the Legendre equation
(1—a*)y" —2zy +1(1+1)y =0,
where [ is a real constant.

Solution: We start writing the Legendre equation in the standard form

w_ 2z ;o +1)

The functions p and q are given by

2z I(1+1)
p(z) = —m7 q(z) = m
These functions are analytic except where the denominators vanish.
) To =1,
l-2z9)=1-2)(1+2)=0 =
r, = —1.

Let us start with the singular point x, = 1. The functions p,, and ¢, for this point are,

esle) = @~ 1pte) = @~ (~rmiryy) = @ = faay
)= o= Vate) = o= 0 () > Bl ==

These two functions are analytic in a neighborhood of z, = 1. (Both $,, and ¢, have no
vertical asymptote at x, = 1.) Therefore, the point z, = 1 is a regular singular point. We
now need to do a similar calculation with the point z; = —1. The functions p,, and ¢, for
this point are,

- 2z - 2x

Pzy () = (z + 1)p(z) = (z + 1)<—m) = Pu(z)= Nk
s(0) = (@ 1P0() = o+ V(o) = (o) = )
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These two functions are analytic in a neighborhood of z; = —1. (Both p,, and g, have no
vertical asymptote at x; = —1.) Therefore, the point x; = —1 is a regular singular point.<i

Example 3.2.3. Find the regular singular points of the differential equation

(z+2)%(@—1)y" +3(z - 1)y +2y=0.

Solution: We start writing the equation in the standard form
, 2
croz? Y arerw o
The functions p and ¢ are given by
3 2
= Grpe -y
The denominators of the functions above vanish at x, = —2 and z; = 1. These are singular

points of the equation. Let us find out whether these singular points are regular singular or
not. Let us start with x, = —2. The functions p,, and §,, for this point are,

3
(x+2)

vy’ + y=0.

p(x) = m,

rfa) = @+ 20(@) = @ +2)(gm) & Bale) =

oy () = (. +2)%q(2) = (z + 2)%%) = {z(2) = —ﬁ.

We see that ¢, is analytic on a neighborhood of z, = —2, but p,, is not analytic on any
neighborhood containing x, = —2, because the function p,, has a vertical asymptote at
T, = —2. So the point z, = —2 is not a regular singular point. We need to do a similar
calculation for the singular point z; = 1. The functions p,, and §,, for this point are,

o B 3 o 3(a-1)
P == 0p@) = @ -D(p) = @ =Ty

~ B ) B ) 2 . 2 —1)

Goo () = (2 — 1)%q(x) = (z — 1) (—(m I 1)) = dn) =~y

We see that both functions p,, and ¢, are analytic on a neighborhood containing z, = 1.
(Both p,, and §,, have no vertical asymptote at ; = 1.) Therefore, the point z; = 1 is a
regular singular point. <

Remark: It is fairly simple to find the regular singular points of an equation. Take the
equation in out last example, written in standard form,

2 /
=0.
Y Y Tt
The functions p and ¢ are given by
3 2
)= —, )= —°-"——.
S P ERL (Sl pepregss T pepug
The singular points are given by the zeros in the denominators, that is z, = —2 and z, = 1.
The point z, is not regular singular because function p diverges at x, = —2 faster than

m. The point z; = 1 is regular singular because function p is regular at z; = 1 and
x

function ¢ diverges at z; = 1 slower than — .
(z—1)
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3.2.2. The Frobenius Method. We now assume that the differential equation

y" +p@)y +q(z)y =0, (3.2.1)
has a regular singular point. We want to find solutions to this equation that are defined
arbitrary close to that regular singular point. Recall that a point z, is a regular singular
point of the equation above iff the functions (z — o) p and (x — x,)? ¢ are analytic at z,. A
function is analytic at a point iff it has a convergent power series expansion in a neighborhood
of that point. In our case this means that near a regular singular point holds

(@ — @) p(x) = an (@ = @)™ = po+p1(x — @) + pa(x — w0)” + -

n=0

o0
(2= 20)q(2) = 3 an (2 = 20)" = go + @& — o) + ga(@ — ) + -+
n=0
This means that near x, the function p diverges at most like (z — x,)~! and function ¢
diverges at most like (z — 2,) 2, as it can be seen from the equations
Po
r)=—< + p2(x —xy) + -+
p(z) (@ — 20 + p1 + pa( o)
do + 41
T —20)% (T — )
Therefore, for py and gy nonzero and z close to z, we have the relations
Po do
T) ~ ————, xT) o~ —— T ™~ Xy,
p( ) (I*I’O) Q( ) (I*IO)Q 0
where the symbol a ~ b, with a, b € R means that |a — b| is close to zero. In other words,
the for x close to a regular singular point z, the coefficients of Eq. (3.2.1) are close to the

coeflicients of the Euler equidimensional equation

q(m):( +q2+".

(x = 20)* y! + po(x — o) Yo + g0 ye = 0,
where py and ¢o are the zero order terms in the power series expansions of (x — z,) p and

(r—1,)? q given above. One could expect that solutions y to Eq. (3.2.1) are close to solutions
ye to this Euler equation. One way to put this relation in a more precise way is

y(z) = ye(x) Zan(az—zo)n = y(x) = ye(x) (a0—|—a1(x_1'o)_|_...)_
n=0

Recalling that at least one solution to the Euler equation has the form y.(z) = (v — )",
where 7 is a root of the indicial polynomial
r(r—1)4por+qo =0,

we then expect that for x close to x, the solution to Eq. (3.2.1) be close to
o0
y(@) = (2 =) > anlw — o).
n=0
This expression for the solution is usually written in a more compact way as follows,
o0
y(@) =Y an(z —zo)"HM,
n=0

This is the main idea of the Frobenius method to find solutions to equations with regular
singular points. To look for solutions that are close to solutions to an appopriate FEuler
equation. We now state two theorems summarize a few formulas for solutions to differential
equations with regular singular points.



160 3. POWER SERIES SOLUTIONS

Theorem 3.2.2 (Frobenius). Assume that the differential equation
y" +p(@)y +q(z)y =0, (3.2.2)

has a reqular singular point x, € R and denote by py, qo the zero order terms in
oo oo

(r—2)p@) =3 pa(@—a30)",  (r—0)2q(a) = 3 gu (@ —a0)".
n=0 n=0

Let r,, r_ be the solutions of the indicial equation
r(r—1)+por+qo =0.

(a) If (r.—r.) is not an integer, then the differential equation in (3.2.2) has two independent
solutions y., y- of the form

oo
ye() = |2 — 20| Zan (x —x0)", with ag=1,
n=0

y-(z) = |x — x|™ Z by (x — o)™,  with by = 1.
n=0

(b) If (r. —r.) = N, a nonnegative integer, then the differential equation in (3.2.2) has two
independent solutions y., y- of the form

o0
yu(2) = |x — xo|™ Z an (x — x)",  with ag =1,
n=0

y-(x) = |z — xo|™ Z b (x — x0)" + cye(x) In|x — o], with by =1.

n=0
The constant ¢ is nonzero if N = 0. If N > 0, the constant ¢ may or may not be zero.

In both cases above the series converge in the interval defined by |x — xo| < p and the
differential equation is satisfied for 0 < |z — x| < p.

Remarks:
(a) The statements above are taken from Apostol’s second volume [2], Theorems 6.14, 6.15.
For a sketch of the proof see Simmons [10]. A proof can be found in [5, 7].

(b) The existence of solutions and their behavior in a neighborhood of a singular point was
first shown by Lazarus Fuchs in 1866. The construction of the solution using singular
power series expansions was first shown by Ferdinand Frobenius in 1874.

We now give a summary of the Frobenius method to find the solutions mentioned in
Theorem 3.2.2 to a differential equation having a regular singular point. For simplicity we
only show how to obtain the solution y,.

(1) Look for a solution y of the form y(x) = Z an (2 — 20) "),
n=0

(2) Introduce this power series expansion into the differential equation and find the indicial
equation for the exponent r. Find the larger solution of the indicial equation.

(3) Find a recurrence relation for the coefficients a,,.

(4) Introduce the larger root r into the recurrence relation for the coefficients a,. Only
then, solve this latter recurrence relation for the coefficients a,,.

(5) Using this procedure we will find the solution gy, in Theorem 3.2.2.
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‘We now show how to use these steps to find one solution of a differential equation near a
regular singular point. We show the case where the roots of the indicial polynomial differ by

an integer. We show that in this case we obtain only solution y.. The solution y. does not
o0

have the form y(z) = Z an (x — 20)™*"). Theorem 3.2.2 says that there is a logarithmic

term in the solution. V?fzodo not compute that solution here.

Example 3.2.4. Find the solution y near the regular singular point z, = 0 of the equation
22y —x(x+3)y + (x+3)y=0.

Solution: We look for a solution of the form
y(z) = Z an "),
n=0

The first and second derivatives are given by

oo (oo}

y'(z) = Z(n +7)an :E(”+T*1), y'(z) = Z(n +7)(n+7r—1an p(ntr=2)
n=0 n=0
In the case r = 0 we had the relation >~ nay, (=1 = oo nay, z(»=1 . But in our

case r # 0, so we do not have the freedom to change in this way the starting value of the
summation index n. If we want to change the initial value for n, we have to re-label the
summation index. We now introduce these expressions into the differential equation. It is
convenient to do this step by step. We start with the term (z + 3)y, which has the form,

(x+3)y=(x+3) Z ap T

n=0

(oo} oo
= Z ap 2D 4 Z 3a, z"*")
n=0 n=0

= agp-1y 2™+ 3a, . (3.2.3)
n=1

n=0
We continue with the term containing y/’,

o0

—x(z+3)y = —(2* + 3z) Z(n + 7)a, 2T
n=0

oo (o)
=— Z(n + 7)a, 2 Z 3(n + r)a, ")

n=0 n=0
= - Z(n + 17— 1Dag_1) =™ - Z 3(n + r)a, 2™, (3.2.4)
n=1 n=0

Then, we compute the term containing y” as follows,
oo
22y = 2? Z(n +r)(n+r—1)a, "2

n=0

= i(n +7)(n 47— 1)a, 2™+, (3.2.5)

n=0
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As one can see from Egs.(3.2.3)-(3.2.5), the guiding principle to rewrite each term is to
have the power function ("*7) labeled in the same way on every term. For example, in
Eqs.(3.2.3)-(3.2.5) we do not have a sum involving terms with factors z(»*7=1) or factors
z("*t7+1)  Then, the differential equation can be written as follows,

o0 oo

Z(n +r)(n+r—1a, ™) — Z(n +r—1)am_1) z(mtm)
n=0 n=1

- Z 3(n+ r)a, ™ + Z An—1) () 4 Z 3a, (") = 0.
n=0 n=1 n=0

In the equation above we need to split the sums containing terms with n > 0 into the term
n = 0 and a sum containing the terms with n > 1, that is,

[r(r—1) = 3r + 3]aoz”+
Z {(n +r)(n+r—1)a, — (n+7—1)ag_1) —3(n+7)an + amp_1) + 3an} 2"t =0,
n=1

and this expression can be rewritten as follows,

[r(r —1) = 3r + 3]agz"+
Z “(n +r)n+r—1)=3n+r)+3lay —(n+r—1- 1)a(n71)} 2 =0
n=1

and then,
[r(r—1) = 3r + 3]aoz"+

Z [[(n +r)(n+r—1)=3n+r—1]a, —(n+r— 2)a(n—1)] 2"t =0

hence,

[r(r—1) —3r+3]az” + Z [(n +r—1(n+r—3)a, —(n+r— Q)G(n_n} 2" = 0.
n=1

The indicial equation and the recurrence relation are given by the equations
r(r—1)—=3r+3=0, (3.2.6)
(n+r—1n+r—-3)a, — (n+7r—2)ap-1) =0. (3.2.7)
The way to solve these equations in (3.2.6)-(3.2.7) is the following: First, solve Eq. (3.2.6) for
the exponent r, which in this case has two solutions r4; second, introduce the first solution
r, into the recurrence relation in Eq. (3.2.7) and solve for the coefficients a,,; the result is
a solution y, of the original differential equation; then introduce the second solution r_ into

Eq. (3.2.7) and solve again for the coeflicients a,,; the new result is a second solution y.. Let
us follow this procedure in the case of the equations above:
2 1 ry = 37
r—4r+3=0 = Ti=§[4i 16 -12| = -
Introducing the value r. = 3 into Eq. (3.2.7) we obtain
(n+2)na, — (n+ 1)ay,—1 =0.

One can check that the solution y. obtained form this recurrence relation is given by

. 2 1 . 1
y+(9c):a0w3[1+§1‘+11‘2+1—5x3+---]
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Notice that r, — r. = 3 — 1 = 2, this is a nonpositive integer. Theorem 3.2.2 says that
the solution y. contains a logarithmic term. Therefore, the solution y. is not of the form
o0

Z anx(r"’"), as we have assumed in the calculations done in this example. But, what does
n=0
happen if we continue this calculation for r. = 17 What solution do we get? Let us find

out. We introduce the value r. = 1 into Eq. (3.2.7), then we get
nn —2)a, — (n—1)a,—1 =0.

One can also check that the solution g. obtained form this recurrence relation is given by

2 . 1 1
i(r) — 2,23 1 4 54 ...
J-(x) (7«237|::L tgat et et },

2 1 1 a
3 2 3 ~ 2
1 .. i| = = — Y.
azm[+3l‘+4x+15x+ 4 aly
So get a solution, but this solution is proportional to .. To get a solution not proportional
to y. we need to add the logarithmic term, as in Theorem 3.2.2. <

3.2.3. The Bessel Equation. We saw in § 3.1 that the Legendre equation appears
when one solves the Laplace equation in spherical coordinates. If one uses cylindrical co-
ordinates insted, one needs to solve the Bessel equation. Recall we mentioned that the
Laplace equation describes several phenomena, such as the static electric potential near a
charged body, or the gravitational potential of a planet or star. When the Laplace equation
describes a situation having cylindrical symmetry it makes sense to use cylindrical coordi-
nates to solve it. Then the Bessel equation appears for the radial variable in the cylindrical
coordinate system. See Jackson’s classic book on electrodynamics [8], § 3.7, for a derivation
of the Bessel equation from the Laplace equation.

The equation is named after Friedrich Bessel, a German astronomer from the first half
of the seventeen century, who was the first person to calculate the distance to a star other
than our Sun. Bessel’s parallax of 1838 yielded a distance of 11 light years for the star
61 Cygni. In 1844 he discovered that Sirius, the brightest star in the sky, has a traveling
companion. Nowadays such system is called a binary star. This companion has the size
of a planet and the mass of a star, so it has a very high density, many thousand times
the density of water. This was the first dead start discovered. Bessel first obtained the
equation that now bears his name when he was studing star motions. But the equation
first appeared in Daniel Bernoulli’s studies of oscillations of a hanging chain. (Taken from
Simmons’ book [10], § 34.)

oo
Example 3.2.5. Find all solutions y(z) = Z a,z"t", with a, # 0, of the Bessel equation
n=0

22y +xy + (22 —a?)y =0, x >0,
where « is any real nonnegative constant, using the Frobenius method centered at z, = 0.

Solution: Let us double check that z, = 0 is a regular singular point of the equation. We
start writing the equation in the standard form,

1 2 — a?
y"—&-fy’—&—( - )y:O7
T T

so we get the functions p(z) = 1/z and ¢(z) = (22 — a?)/2?. It is clear that z, = 0 is a
singular point of the equation. Since the functions

pla) =ap(x) =1, (o) =2%q(x) = (2" — a?)
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are analytic, we conclude that z, = 0 is a regular singular point. So it makes sense to look
for solutions of the form

y(z) = Z anx™tT), x> 0.
n=0

We now compute the different terms needed to write the differential equation. We need,

Py(@) =Y apz™ = y(@) =Y agga",
n=0 n=2

where we did the relabeling n + 2 = m — n. The term with the first derivative is given by
o0
xy(x) = Z(n + r)anzt.
n=0

The term with the second derivative has the form
oo

22y’ () = Z(n +r)(n+r—1Da,z"t.
n=0

Therefore, the differential equation takes the form

Z(n +r)(n+r—1a,z" + Z(n + a2zt
n=0 n=0

+ Z a(n_g)z("“) — Z o? apz™tT) = 0.
n=2 n=0

Group together the sums that start at n = 0,

Z [(n+7)(n+7r—1)+(n+7r)—a?la, 2" + Z agn—_gyz ",
n=0 n=2

and cancel a few terms in the first sum,

o0 o0
Y n+1)? = a?lan 2" £ ag gzt =0,
n=0 n=2

Split the sum that starts at n = 0 into its first two terms plus the rest,

(’I“2 _ (12)a0 "+ [(’I“ + 1)2 _ 0[2] ay x(rJrl)

+ Z [(n+7) = a®]a, () 4 Z A (n—2) 2 = 0.
n=2

n=2

The reason for this splitting is that now we can write the two sums as one,

(r? — a®aga” + [(r + 1)* — a*Ja, 2" + Z{ [(n+7)% = a®|an + ag_g)} 2" = 0.
n=2
We then conclude that each term must vanish,
(r*—a*)a;, =0, [(r+1)*—a’]a; =0, [(n+r)>—c’lan+am_2 =0, n>2. (3.2.8)

This is the recurrence relation for the Bessel equation. It is here where we use that we look
for solutions with a, # 0. In this example we do not look for solutions with a, # 0. Maybe
it is a good exercise for the reader to find such solutions. But in this example we look for
solutions with a, # 0. This condition and the first equation above imply that

P —a?=0 = ry=-+aq,
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and recall that « is a nonnegative but otherwise arbitrary real number. The choice r = r,
will lead to a solution y,, and the choice r = r_ will lead to a solution y_,. These solutions
may or may not be linearly independent. This depends on the value of «, since r, —r. = 2a.
One must be careful to study all possible cases.

Remark: Let us start with a very particular case. Suppose that both equations below hold,
(r? —a?) =0, [(r+1)*—a’] =0.

This equations are the result of both a, # 0 and a; # 0. These equations imply

1

rP=r+1)? = 2r+1=0 = r=—3
But recall that r = +a, and « > 0, hence the case a, # 0 and a; # 0 happens only when
a = 1/2 and we choose 7. = —a = —1/2. We leave computation of the solution y_; 5 as an

exercise for the reader. But the answer is
cos(x) sin(x)

y—1/2(r) = ao NG a, N

From now on we assume that o # 1/2. This condition on «, the equation r
the remark above imply that

2_a%2=0,and

(r+1)>—a® #£0.

So the second equation in the recurrence relation in (3.2.8) implies that a; = 0. Summariz-
ing, the first two equations in the recurrence relation in (3.2.8) are satisfied because

r+ = +a, a; =0.

We only need to find the coefficients a,, for n > 2 such that the third equation in the
recurrence relation in (3.2.8) is satisfied. But we need to consider two cases, r = r, = a and
r.=—a.

We start with the case r = r, = a, and we get

(n? + 2na) a, + An—2y =0 = n(n+2a)a, = —amp_2).
Since n > 2 and « > 0, the factor (n 4 2«) never vanishes and we get

a = — G (n—2)
" n(n+2a)’
This equation and a; = 0 imply that all coefficients agr+1 = 0 for k > 0, the odd coefficients
vanish. On the other hand, the even coefficent are nonzero. The coefficient as is

Qg Qo

2= 752 1 2q) 2T TR0 ta)y

the coefficient a4 is
a2 a2 Qo

“UT A1 200 202+ MTAQ(tra)C+a)

the coefficient ag is

o a4 - a4 N o Ao
T 66 +20)  223)(3+a) T TEEN1 )2+ )3+ a)
Now it is not so hard to show that the general term asg, for £k =0,1,2,--- has the form
(=1)*ao

DT N1+ a)2+a) - (k+a)
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We then get the solution y,

Q
WV
o

b } (3.2.9)

o(x) = agx® |1

Yo(T) = a0 T [ +1«Z:1 2k (kN (14 a)(2+a)--- (k+ )
The ratio test shows that this power series converges for all z > 0. When a, = 1 the
corresponding solution is usually called in the literature as J,,

Jo(z) = 2% [1+i (-1 } a>0
) ZPHE) A+ a)C+a) - kra)T T

We now look for solutions to the Bessel equation coming from the choice r = r. = —q,
with a; =0, and « # 1/2. The third equation in the recurrence relation in (3.2.8) implies

(n? — 2na)a, + -2y =0 = n(n-—2a)a, = —ap_2).

If 2a = N, a nonnegative integer, the second equation above implies that the recurrence
relation cannot be solved for a,, with n > N. This case will be studied later on. Now assume
that 2« is not a nonnegative integer. In this case the factor (n — 2«) never vanishes and
G(n-2)
ap = ———————.
" n(n — 2a)
This equation and a; = 0 imply that all coeflicients agr+1 = 0 for k > 0, the odd coefficients
vanish. On the other hand, the even coefficent are nonzero. The coefficient as is
Qo Qo

2= 02 T 21-a)

the coefficient a4 is
a9 as - Qo
aqs = — = — aqs =
YT T4 =20) T 22(2)2-0) T U —a)(2—a)
the coefficient ag is
a4 a4 (o)

“CTT66-20)  223)(3—a) T TRENI—a)2-a)B—a)
Now it is not so hard to show that the general term asg, for £k =0,1,2,--- has the form
(=1)*ao

kT 9N —a)2—a) - (k—a)
We then get the solution y_

S (=" }
o) =agx® |1 , > 0. 3.2.10
veale) = 0”143 e e G (3:2.10)
The ratio test shows that this power series converges for all x > 0. When a, = 1 the
corresponding solution is usually called in the literature as J_,,

(=1)* }

J-afe) =27 [1+ D i s [cpmry ey N

The function y_, was obtained assuming that 2« is not a nonnegative integer. From the
calculations above it is clear that we need this condition on « so we can compute a, in
terms of a(,_s). Notice that r+ = +a, hence (r. —7.) = 2a. So the condition on « is the
condition (7, — r.) not a nonnegative integer, which appears in Theorem 3.2.2.

However, there is something special about the Bessel equation. That the constant 2«
is not a nonnegative integer means that « is neither an integer nor an integer plus one-
half. But the formula for y_, is well defined even when « is an integer plus one-half, say
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k +1/2, for k integer. Introducing this y_(z41/2) into the Bessel equation one can check
that y_(r41/2) is a solution to the Bessel equation.

Summarizing, the solutions of the Bessel equation function y,, is defined for every non-
negative real number «, and y_,, is defined for every nonnegative real number « except for
nonnegative integers. For a given « such that both y, and y_, are defined, these func-
tions are linearly independent. That these functions cannot be proportional to each other
is simple to see, since for @ > 0 the function y, is regular at the origin x = 0, while y_,,
diverges.

The last case we need to study is how to find the solution y_, when « is a nonnegative
integer. We see that the expression in (3.2.10) is not defined when « is a nonnegative
integer. And we just saw that this condition on « is a particular case of the condition in
Theorem 3.2.2 that (r, — r.) is not a nonnegative integer. Theorem 3.2.2 gives us what is
the expression for a second solution, y_, linearly independent of y,, in the case that « is a
nonnegative integer. This expression is

o0
Y—a(x) = ya(z) In(z) + 2~ Z cnx”.
n=0
If we put this expression into the Bessel equation, one can find a recurrence relation for the
coeflicients ¢,. This is a long calculation, and the final result is

Y-a(r) = ya(z) In(z)

; 70‘@71 r—n — 1) /: n
) e ey

NS (B Bgay) 22
L) S e (1)

with hy =0, h, =1+ % +---+ = for n > 1, and a a nonnegative integer. <
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Notes on Chapter 3

Sometimes solutions to a differential equation cannot be written in terms of previously
known functions. When that happens the we say that the solutions to the differential
equation define a new type of functions. How can we work with, or let alone write down, a
new function, a function that cannot be written in terms of the functions we already know?
It is the differential equation what defines the function. So the function properties must be
obtained from the differential equation itself. A way to compute the function values must
come from the differential equation as well. The few paragraphs that follow try to give sense
that this procedure is not as artificial as it may sound.

Differential Equations to Define Functions. We have seen in § 3.2 that the solutions
of the Bessel equation for a # 1/2 cannot be written in terms of simple functions, such as
quotients of polynomials, trigonometric functions, logarithms and exponentials. We used
power series including negative powers to write solutions to this equation. To study prop-
erties of these solutions one needs to use either the power series expansions or the equation
itself. This type of study on the solutions of the Bessel equation is too complicated for these
notes, but the interested reader can see [14].

We want to give an idea how this type of study can be carried out. We choose a
differential equation that is simpler to study than the Bessel equation. We study two
solutions, C' and S, of this particular differential equation and we will show, using only the
differential equation, that these solutions have all the properties that the cosine and sine
functions have. So we will conclude that these solutions are in fact C(x) = cos(x) and
S(x) = sin(x). This example is taken from Hassani’s textbook [?], example 13.6.1, page
368.

Example 3.2.6. Let the function C' be the unique solution of the initial value problem
C"+C =0, c)=1, C'(0)=0,

and let the function S be the unique solution of the initial value problem
S"+5=0, S()=0, S(0)=1.

Use the differential equation to study these functions.

Solution:
(a) We start showing that these solutions C' and S are linearly independent. We only need
to compute their Wronskian at x = 0.
W(0) = C(0)S'(0) — C'(0) S(0) =1 # 0.

Therefore the functions C' and S are linearly independent.
(b) We now show that the function S is odd and the function C' is even. The function
C(z) = C(—x) satisfies the initial value problem

C"+C=C"+C=0, C0O)=C0)=1, C'(0)=-C"(0)=0.

This is the same initial value problem satisfied by the function C. The uniqueness of
solutions to these initial value problem implies that C(—z) = C(z) for all € R, hence the
function C' is even. The function S(z) = S(—x) satisfies the initial value problem

§"4+5=8"4+8=0, 5(0)=5(0)=0, 5(0)=-5(0)=-1.

This is the same initial value problem satisfied by the function —S. The uniqueness of
solutions to these initial value problem implies that S(—x) = —S(x) for all € R, hence
the function S is odd.
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(c) Next we find a differential relation between the functions C' and S. Notice that the
function —C" is the unique solution of the initial value problem

(=C)"+(=C) =0, =C0)=0, (=C")(0)=C(0)=1.

This is precisely the same initial value problem satisfied by the function S. The uniqueness
of solutions to these initial value problems implies that —C' = S, that is for all € R holds

C'(z) = —S(x).
Take one more derivative in this relation and use the differential equation for C,
S'(z)=-C"(z)=C(z) = S'(z)=C(n).

(d) Let us now recall that Abel’s Theorem says that the Wronskian of two solutions to a
second order differential equation y” + p(z) v’ + ¢(z) y = 0 satisfies the differential equation
W'+ p(z) W = 0. In our case the function p = 0, so the Wronskian is a constant function.
If we compute the Wronskian of the functions C' and S and we use the differential relations
found in (c) we get

W(z) = C(z) S (z) — C'(z) S(z) = C*(x) + S*(x).

This Wronskian must be a constant function, but at z = 0 takes the value W(0) = C?(0) +
S52(0) = 1. We therefore conclude that for all z € R holds

C%*(z) + S*(x) = 1.

(e) We end computing power series expansions of these functions C' and S, so we have a
way to compute their values. We start with function C. The initial conditions say

c)=1, C'(0)=0.

The differential equation at = 0 and the first initial condition say that C”(0) = —C(0) =
—1. The derivative of the differential equation at x = 0 and the second initial condition say
that C""(0) = —C’(0) = 0. If we keep taking derivatives of the differential equation we get

C"(0) = -1, C"(0)=0, CW(0)=1,

and in general,

0 if n is odd,
c) (O) = E .
(=1)% if n =2k, where k=0,1,2,---.
So we obtain the Taylor series expansion
2k

(lzlk)!’

Cla) = 3 (-1
k=0

which is the power series expansion of the cosine function. A similar calculation yields

0 i p2k+1
S(x) :g(_l) my

which is the power series expansion of the sine function. Notice that we have obtained these
expansions using only the differential equation and its derivatives at = 0 together with
the initial conditions. The ratio test shows that these power series converge for all x € R.
These power series expansions also say that the function S is odd and C' is even. <
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Review of Natural Logarithms and Exponentials. The discovery, or invention, of a
new type of functions happened many times before the time of differential equations. Look-
ing at the history of mathematics we see that people first defined polynomials as additions
and multiplications on the independent variable x. After that came quotient of polynomials.
Then people defined trigonometric functions as ratios of geometric objects. For example the
sine and cosine functions were originally defined as ratios of the sides of right triangles.
These were all the functions known before calculus, before the seventeen century. Calculus
brought the natural logarithm and its inverse, the exponential function together with the
number e.

What is used to define the natural logarithm is not a differential equation but integra-
tion. People knew that the antiderivative of a power function f(z) = 2™ is another power
function F(z) = 2™t /(n+ 1), except for n = —1, where this rule fails. The antiderivative
of the function f(z) = 1/x is neither a power function nor a trigonometric function, so at
that time it was a new function. People gave a name to this new function, In, and defined
it as whatever comes from the integration of the function f(z) = 1/x, that is,

ln(x):/lﬁ, x> 0.
1 S

All the properties of this new function must come from that definition. It is clear that this
function is increasing, that In(1) = 0, and that the function take values in (—oo,00). But
this function has a more profound property, In(ab) = In(a) + In(b). To see this relation first

compute
ab a ab
ln(ab):/ ﬁz/ ﬁ-i—/ ﬁ;
1 8 1 8 o S

then change the variable in the second term, § = s/a, so d5 = ds/a, hence ds/s = d§/§, and
“d b ds
In(ab) = / [ 2 Z1n(a) + In(b).
1 S 1 S
The Euler number e is defined as the solution of the equation In(e) = 1. The inverse of the
natural logarithm, In~!, is defined in the usual way,

nly)=2 & In(z)=y, x € (0,00), y € (—00,00).
Since the natural logarithm satisfies that In(z;2,) = In(z) + In(x,), the inverse function
satisfies the related identity In~*(y; 4+ 72) = In" () In"'(y,). To see this identity compute
lnfl(y1 +y,) = lnfl(ln(ml) + ln(gcQ)) = lnfl(ln(xle)) =T,T, = lnfl(yl) lnfl(yQ).

This identity and the fact that lnfl(l) = e imply that for any positive integer n holds

n times n times n times

— —_——
)=t A+ -+ D=ln"*1)---In"H(1)=C--e=e".

This relation says that In~! is the exponential function when restricted to positive integers.
This suggests a way to generalize the exponential function from positive integers to real
numbers, e¥ = In"*(y), for y real. Hence the name exponential for the inverse of the natural
logarithm. And this is how calculus brought us the logarithm and the exponential functions.
Finally notice that by the definition of the natural logarithm, its derivative is In(z) =
1/z. But there is a formula relating the derivative of a function f and its inverse f~1,
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Using this formula for the natural logarithm we see that

1
Yy =——— " =In"'(y).
In other words, the inverse of the natural logarithm, call it now g(y) = In"'(y) = e, must
be a solution to the differential equation

9' () =9).
And this is how logarithms and exponentials can be added to the set of known functions.
Of course, now that we know about differential equations, we can always start with the
differential equation above and obtain all the properties of the exponential function using
the differential equation. This might be a nice exercise for the interested reader.



CHAPTER 4

The Laplace Transform Method

The Laplace Transform is a transformation, meaning that it changes a function into a new
function. Actually, it is a linear transformation, because it converts a linear combination of
functions into a linear combination of the transformed functions. Even more interesting, the
Laplace Transform converts derivatives into multiplications. These two properties make the
Laplace Transform very useful to solve linear differential equations with constant coefficients.
The Laplace Transform converts such differential equation for an unknown function into an
algebraic equation for the transformed function. Usually it is easy to solve the algebraic
equation for the transformed function. Then one converts the transformed function back
into the original function. This function is the solution of the differential equation.

Solving a differential equation using a Laplace Transform is radically different from all
the methods we have used so far. This method, as we will use it here, is relatively new. The
Laplace Transform we define here was first used in 1910, but its use grew rapidly after 1920,
specially to solve differential equations. Transformations like the Laplace Transform were
known much earlier. Pierre Simon de Laplace used a similar transformation in his studies of
probability theory, published in 1812, but analogous transformations were used even earlier
by Euler around 1737.
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4.1. Introduction to the Laplace Transform

The Laplace transform is a transformation—it changes a function into another function.
This transformation is an integral transformation—the original function is multiplied by an
exponential and integrated on an appropriate region. Such an integral transformation is
the answer to very interesting questions: Is it possible to transform a differential equation
into an algebraic equation? Is it possible to transform a derivative of a function into a
multiplication? The answer to both questions is yes, for example with a Laplace transform.
This is how it works. You start with a derivative of a function, y'(¢), then you multiply
it by any function, we choose an exponential e~*!, and then you integrate on ¢, so we get

y(t) = / ety (1) dt,

which is a transformation, an integral transformation. And now, because we have an inte-
gration above, we can integrate by parts—this is the big idea,

y'(t) — /e_St Y (t)dt = et y(t) + s / e St y(t) dt.

So we have transformed the derivative we started with into a multiplication by this constant
s from the exponential. The idea in this calculation actually works to solve differential
equations and motivates us to define the integral transformation y(t) — Y'(s) as follows,

y(t) = ¥ (s) = / =5t y(8) dt.

The Laplace transform is a transformation similar to the one above, where we choose some
appropriate integration limits—which are very convenient to solve initial value problems.

We dedicate this section to introduce the precise definition of the Laplace transform
and how is used to solve differential equations. In the following sections we will see that
this method can be used to solve linear constant coefficients differential equation with very
general sources, including Dirac’s delta generalized functions.

4.1.1. Oveview of the Method. The Laplace transform changes a function into
another function. For example, we will show later on that the Laplace transform changes
a
We will follow the notation used in the literature and we use t for the variable of the
original function f, while we use s for the variable of the transformed function F. Using
this notation, the Laplace transform changes

f(z) =sin(az) into F(x)=

a
s2 4 a?’

We will show that the Laplace transform is a linear transformation and it transforms deriva-
tives into multiplication. Because of these properties we will use the Laplace transform to
solve linear differential equations.

We Laplace transform the original differential equation. Because the the properties
above, the result will be an algebraic equation for the transformed function. Algebraic
equations are simple to solve, so we solve the algebraic equation. Then we Laplace transform
back the solution. We summarize these steps as follows,

f(t) =sin(at) into F(s)=

. Solve the Transform back
differential Algebraic ] )
(1) (2) (3)
N algebraic 22N to obtain y.
eq. for L[y].

eq. for y.
eq. for L[y]. (Use the table.)
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4.1.2. The Laplace Transform. The Laplace transform is a transformation, meaning
that it converts a function into a new function. We have seen transformations earlier in these
notes. In Chapter 2 we used the transformation

Lly@®)] =y"(t) + a1y (t) + ao y(t),

so that a second order linear differential equation with source f could be written as L[y] = f.
There are simpler transformations, for example the differentiation operation itself,

D[f(&)] = f'(t).

Not all transformations involve differentiation. There are integral transformations, for ex-
ample integration itself,

Hf@ﬂlﬂzf@)ﬁ~

Of particular importance in many applications are integral transformations of the form

b
Tmm=/K@ﬂNMu

where K is a fixed function of two variables, called the kernel of the transformation, and a,
b are real numbers or +00. The Laplace transform is a transfomation of this type, where
the kernel is K (s,t) = e~ 5!, the constant a = 0, and b = oo.

Definition 4.1.1. The Laplace transform of a function f defined on Dy = (0,00) is

F(s) = /oo e=LF (1) dt, (4.1.1)

0

defined for all s € Dp C R where the integral converges.

In these note we use an alternative notation for the Laplace transform that emphasizes
that the Laplace transform is a transformation: £[f] = F, that is

] ]:/Oooe-sw ) dt.

So, the Laplace transform will be denoted as either L[f] or F, depending whether we want
to emphasize the transformation itself or the result of the transformation. We will also use
the notation L[f(t)], or L[f](s), or L[f(¢)](s), whenever the independent variables ¢ and s
are relevant in any particular context.

The Laplace transform is an improper integral—an integral on an unbounded domain.
Improper integrals are defined as a limit of definite integrals,

0 N
/ g(t)dt = lim g(t) dt.
to N

— 00 to

An improper integral converges iff the limit exists, otherwise the integral diverges.
Now we are ready to compute our first Laplace transform.

Example 4.1.1. Compute the Laplace transform of the function f(t) = 1, that is, £[1].

Solution: Following the definition,

00 N
L[1] = / e *'dt = lim e "t dt.
0

N—o0 0
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The definite integral above is simple to compute, but it depends on the values of s. For
s =0 we get
N

lim dt = lim N = oo.
N—o0 0 n—o00

So, the improper integral diverges for s = 0. For s # 0 we get

N
1 1
lim e t'dt = lim —-e % = lim —- (6_5N —1).
N—=o0o Jg N—oo 8 0 N—oco 8
For s < 0 we have s = —|s|, hence
. 1, N . 1 S|V
lim —- (e —1)= lim —— (e —1) = —oc0.
N—oo 8 N—oo 8

So, the improper integral diverges for s < 0. In the case that s > 0 we get
1 X 1
lim —— (e *N —1) = -,
N—00 S S

If we put all these result together we get

Example 4.1.2. Compute L[e?], where a € R.

Solution: We start with the definition of the Laplace transform,

Le™ :/ e_St(e“t)dt:/ e~ (=)t gy,
0 0

In the case s = a we get
Lle™] = / 1dt = oo,
0

so the improper integral diverges. In the case s # a we get

N

L[e™] = lim e~ (=Dt gt s # a,

N—00 0

-2y

_ Ji&[é__li) (e _ 1)),

Now we have to remaining cases. The first case is:

s—a<0 = —(s—a)=|s—a/>0 = lim e "I =

7
N—00

so the integral diverges for s < a. The other case is:

s—a>0 = —(s—a)=—|]s—al<0 = lim e "IN =,
N—o00

so the integral converges only for s > a and the Laplace transform is given by

Lle™] = 5> a.

(s—a)
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Example 4.1.3. Compute L[te®!], where a € R.

Solution: In this case the calculation is more complicated than above, since we need to
integrate by parts. We start with the definition of the Laplace transform,

e o] N
Lte™] = / e S'te® dt = lim te~ (=t g¢.,
0 N—oc0 0

This improper integral diverges for s = a, so L[te?!] is not defined for s = a. From now on
we consider only the case s # a. In this case we can integrate by parts,

1 N 1 N
L[te™] = lim [f te~(smatl 4 / e~ (5ma)t dt},
N—oool (s—a) o s—a J,
that is,
N 1 N
L[te™] = lim [— te~(smat) e~ (s}t } . (4.1.2)
Noool (s—a) o (s—a)? 0

In the case that s < a the first term above diverges,

lim — Ne 6=0N — i — Nels=alN = oo,

N—o00 (s—a,) N—oo (s—a)

therefore L[te®] is not defined for s < a. In the case s > a the first term on the right hand
side in (4.1.2) vanishes, since

: _ —(s—a)N — —(s—a)t —
Nh_r)mOC G_a) e 0, G a)te 1eo = 0.
Regarding the other term, and recalling that s > a,
1 1 1
li - —(s—a)N _ 07 - —(s—a)t - -
N e (s —a)Qe (s — a)Qe |t=0 (s —a)?
Therefore, we conclude that
1
Llte™] = ———, ;> a.
[te®] TEE s>a B
Example 4.1.4. Compute L[sin(at)], where a € R.
Solution: In this case we need to compute
[e’e] N
L[sin(at)] = / e *'sin(at) dt = lim e *'sin(at) dt
0 N—00 0

The definite integral above can be computed integrating by parts twice,

N 1 N o a
/ e *'sin(at) dt = —=[e~* sin(at)] ‘ - [e=*" cos(at)]
0 s o S

N g2

N
- 5—2/0 e *'sin(at) dt,

0

which implies that

a? N st . e N_ar st "

<1+ 57)/0 e~ sin(at) dt = —;[e sin(at)] - 8—2[6 cos(at)] r

then we get
/N e *'sin(at) dt = L [—1 [e™*"sin(at)] too [e™*" cos(at)] N]'

0 (52 +a?) 8 0 s> °

and finally we get
/N e~*'sin(at) dt = L. {_1 [e™*"sin(aN) — 0] — 5 [e7*" cos(aN) — 1]}
: (2+a?) L s +
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One can check that the limit N — oo on the right hand side above does not exist for s < 0,
so L[sin(at)] does not exist for s < 0. In the case s > 0 it is not difficult to see that

o'} 2
—st - o S 1 a
so we obtain the final result
£[51n(at)} = 52;]»7/0/2 s> 0.

<

In Table 1 we present a short list of Laplace transforms. They can be computed in the
same way we computed the the Laplace transforms in the examples above.

ft) F(s) = LIf(1)] Dy
fe)y=1 F(s)z% s>0
f(t) =e* F(s) = ! s>a
B ~(s—a)
F(t) =t F(s) = S(RLLD s>0
#(t) = sin(at) F(s) = 82;% s> 0
f(t) = cos(at) F(s) = 52—1—% s>0
(t) = sinh(at) F(s) = ﬁ s> |al
f(t) = cosh(at) F(s) = ﬁ s> |al
ft) = tvest F(s) = (.SZ)!(”H) s>a
at o3 — L S a
f(t) = e** sin(bt) F(s) = G_aZ il >
f(t) = e cos(bt) F(s) = (s—(sa_)Qaj—bQ s>a
. b
f(t) = e sinh(bt) F(s) = Goaf 12 s—a>|bl
_ at _ (S B CL)
f(t) = e cosh(bt) F(s) = Goaro s—a > b

TABLE 1. List of a few Laplace transforms.
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4.1.3. Main Properties. Since we are more or less confident on how to compute
a Laplace transform, we can start asking deeper questions. For example, what type of
functions have a Laplace transform? It turns out that a large class of functions, those that
are piecewise continuous on [0,00) and bounded by an exponential. This last property is
particularly important and we give it a name.

Definition 4.1.2. A function f defined on [0,00) is of exponential order s,, where s, is
any real number, iff there exist positive constants k, T such that

If(#)] < ke forall t>T. (4.1.3)

Remarks:

(a) When the precise value of the constant s, is not important we will say that f is of
exponential order.
. . . 2
(b) An example of a function that is not of exponential order is f(t) = et".
This definition helps to describe a set of functions having Laplace transform. Piecewise
continuous functions on [0, c0) of exponential order have Laplace transforms.

Theorem 4.1.3 (Convergence of LT). If a function f defined on [0,00) is piecewise con-
tinuous and of exponential order s,, then the L[f] exists for all s > s, and there ezists a
positive constant k such that

Proof of Theorem 4.1.3: From the definition of the Laplace transform we know that

N
_ : —st
ey} = Jim [ et
The definite integral on the interval [0, N] exists for every N > 0 since f is piecewise
continuous on that interval, no matter how large N is. We only need to check whether the
integral converges as N — oo. This is the case for functions of exponential order, because

N N N N
/ e St f(t) dt’ g/ e—st|f(t)|dt</ e Stkesot dt:kz/ e~ (57s0)t gy
0 0 0 0

Therefore, for s > s, we can take the limit as N — oo,

k
(s —50)
Therefore, the comparison test for improper integrals implies that the Laplace transform

L[f] exists at least for s > s,, and it also holds that

k
‘ﬂ[f]] < , 5> 8.

S — So

1£[f]| < lim

N—0o0

/ et t| <k Lle*] =

This establishes the Theorem. O

The next result says that the Laplace transform is a linear transformation. This means
that the Laplace transform of a linear combination of functions is the linear combination of
their Laplace transforms.
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Theorem 4.1.4 (Linearity). If L[f] and L[g] exist, then for all a, b € R holds
Llaf +bg] = a L[f] +bL]g].

Proof of Theorem 4.1.4: Since integration is a linear operation, so is the Laplace trans-
form, as this calculation shows,

Llaf + bg] :/ e af(t) + bg(t)] dt
0
:a/ —atf dt—l—b/ —st
0
=aL[f] +bL]g]
This establishes the Theorem. O

Example 4.1.5. Compute L[3t? 4 5 cos(4t)].
Solution: From the Theorem above and the Laplace transform in Table 7?7 we know that

L[3t% + 5 cos(4t)] = 3 L[t*] + 5 L[cos(4t)]

s
=3(5) +3(atm) o>
_E 5s
g3 52 4 42°

Therefore,
55% 4+ 652 + 96
s> 0.

2 = . —
L[3t" + 5 cos(4t)] “AI116) .

The Laplace transform can be used to solve differential equations. The Laplace trans-
form converts a differential equation into an algebraic equation. This is so because the
Laplace transform converts derivatives into multiplications. Here is the precise result.

Theorem 4.1.5 (Derivative into Multiplication). If a function f is continuously differen-
tiable on [0,00) and of exponential order s,, then L[f'] exists for s > s, and

Lf']=sLf] = f(0), s> s. (4.1.4)

Proof of Theorem 4.1.5: The main calculation in this proof is to compute

L[f]= lim Ne*“ f@)dt

N—00 o

We start computing the definite integral above. Since f’ is continuous on [0, c0), that definite
integral exists for all positive IV, and we can integrate by parts,

/ON et p (e de = [ (e (1) :Vf /ON(S)GStf(t) )

=e *Nf(N) —f(0)+s/ e St f(t)dt

We now compute the limit of this expression above as N — oco. Since f is continuous on
[0,00) of exponential order s,, we know that

lim : e St f(t)dt = L[f], 5> So.

N—00 0
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Let us use one more time that f is of exponential order s,. This means that there exist
positive constants k and T such that |f(t)| < ket for t > T. Therefore,

lim e *Nf(N) < lim ke *Ne®N = lim ke 750N =0, s>,
N—o00 N—00 N—00

These two results together imply that £[f'] exists and holds
Lf']=sLf] = f0), s> s
This establishes the Theorem. (]

Example 4.1.6. Verify the result in Theorem 4.1.5 for the function f(t) = cos(bt).

Solution: We need to compute the left hand side and the right hand side of Eq. (4.1.4) and
verify that we get the same result. We start with the left hand side,

2
L[f'] = L]-bsin(bt)] = —b L[sin(bt)] = fbm = L[f]= 7(92%)?.
We now compute the right hand side,
s 52 — 52 — b2
sL[f] — f(0) = s L[cos(bt)] — 1 = SaRE 1= IR
so we get
b2
s L[f] = f(0) = T2y
We conclude that L[f'] = s L[f] — f(0). <

It is not difficult to generalize Theorem 4.1.5 to higher order derivatives.

Theorem 4.1.6 (Higher Derivatives into Multiplication). If a function f is n-times con-
tinuously differentiable on [0,00) and of exponential order s,, then L[f"],---, L[f™] exist
for s > s4 and

LIf"] = s LIf] — s £(0) = (0) (4.1.5)

LI = 57 £f] - 5D f(0) = -+ — f0D) (o). (4.1.6)
Proof of Theorem 4.1.6: We need to use Eq. (4.1.4) n times. We start with the Laplace
transform of a second derivative,
LI = L))
=sL[f'1 - £(0)
= s(s LIf] = £(0)) — f'(0)
=" L[f] = 5 f(0) = f(0).

The formula for the Laplace transform of an nth derivative is computed by induction on n.
We assume that the formula is true for n — 1,

LIFO) = sV L] = 5072 £0) = = fO72(0).
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Since L[f™] = L[(f)~Y)], the formula above on f’ gives

LI D] = D LI = 2 F1(0) — - = () P(0)
=" (s LIf) = £(0) =TT f1(0) = oo = JTD(0)
= s L[] = 577D f(0) = 57 f1(0) = oo = (D).
This establishes the Theorem. O

Example 4.1.7. Verify Theorem 4.1.6 for f”, where f(t) = cos(bt).

Solution: We need to compute the left hand side and the right hand side in the first
equation in Theorem (4.1.6), and verify that we get the same result. We start with the left
hand side,

LI") = L1t cos(o0)] = 12 Lleos(00)] = 17 =5 = LI = —%

We now compute the right hand side,

3 —s3 —b%s

s2L[f] — s f(0) — f(0) = 82 L[cos(bt)] —s —0 = ——— —g=""2 "5

e e
so we get

2 / b25

s*L[f] = s f(0) = f(0) = iR
We conclude that L[] = s% L[f] — s f£(0) — f(0). <

The Laplace transform also satisfies a converse to Theorem 4.1.5, since multiplications
can be transformed into derivatives.

Theorem 4.1.7 (Multiplication into Derivative). If a function f is of exponential order s,
with a Laplace transform F(s) = L[f(t)], then L[t f(t)] exists for s > s, and

Litf(t)] =—F'(s), $ > So. (4.1.7)

Proof of Theorem 4.1.7: From the definition of the Laplace Transform we see that

Lltf(t)] = /OOO e Ut f(t)dt

_ /00<> %(—e—“) F(t)dt

d * —st
d
=~ Ll )]

= —F'(s).

This establishes the Theorem. (]
The result in Theorem 4.1.7 can be generalized to higher powers.

Theorem 4.1.8 (Higher Powers into Derivative). If a function f is of exponential order s,
with a Laplace transform F(s) = L[f(t)], then L[t"™ f(t)] exists for s > s, and
LI f(0)] = (=1)"F"M(s), 5> s0, (4.1.8)
dn

where we denoted F(") = —F.
ds™
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Proof of Theorem 4.1.8: We use induction one more time. The case n = 1 is done in
Theorem 4.1.7. We now assume that
d’n
n

£ 5] = (1) L0,
and we try to show that a similar formula holds for n 4+ 1. But this is the case, since

£ f(0)) = £ (¢ 7 (1))
= (-1 ),

since t f(t) satisfies the hypotheses in Theorem 4.1.7, since f(¢) does. Then we use Theorem
4.1.7 one more time,
d’ﬂ

LIt F(1)],
& et rw)

dr d

-)"—(=1)—L[f(t
0 L eis),

(nt1) (n+1)
=(-1) mﬁ[f(t)]
= (—1)(n D prtD (),

This establishes the Theorem. O

LI f()] = (-1)"

)

4.1.4. Solving Differential Equations. The Laplace transform can be used to solve
differential equations. We Laplace transform the whole equation, which converts the differ-
ential equation for y into an algebraic equation for L[y]. We solve the Algebraic equation
and we transform back.

) ) . Solve the Transform back
differential 1) Algebraic (2) aleebraic (3) to obtain
eq. for y. - eq. for L[y]. - 8 - v
E eq. for L[y]. (Use the table.)

Example 4.1.8. Use the Laplace transform to find y solution of
y'+9y=0,  y(0) =1, ¥'(0)=uy.

Remark: Notice we already know what the solution of this problem is. Following § 2.3 we
need to find the roots of

p(ry=r*+9 = r,=+3i,

and then we get the general solution
y(t) = ¢, cos(3t) + c-sin(3t).

Then the initial condition will say that

y(t) = yo cos(3t) + % sin(3t).
We now solve this problem using the Laplace transform method.
Solution: We now use the Laplace transform method:

Lly" + 9y] = L]0] = 0.

The Laplace transform is a linear transformation,

Lly"]+9L[y] = 0.
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But the Laplace transform converts derivatives into multiplications,
s Lly] = sy(0) —y'(0) +9L[y] = 0.

This is an algebraic equation for L[y]. It can be solved by rearranging terms and using the
initial condition,

(52 +9 Lyl =sy+ys = Lyl =1y

s
@+9) M @ro)
But from the Laplace transform table we see that

S . 3
poarl L[sin(3t)] = Pl

Llcos(3t)] =
therefore,
1. .
Ly} = yo Llcos(31)] + v 5 Llsin(31)].
Once again, the Laplace transform is a linear transformation,

Lly] = L]y, cos(3t) + % sin(3t)].

We obtain that

y(t) = yo cos(3t) + % sin(3t).
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4.1.5. Exercises.

4.1.1.- 4.1.5.-
(a) Compute the definite integral (a) Compute the definite integral
N g N
In :/ —- In :/ e 5t sin(2t) dt.
4 T 0
(b) Use the result in (a) to compute (b) Use the result in (a) to compute
I /°° dx F(s) = L]sin(2t)].
= =
4 Indicate the domain of F.
4.1.2.-
(a) C te the definite integral 4.1.6.-
a) Lotnpute the f] fite mtegra (a) Compute the definite integral
Iy = ~tat. N
N /5 ¢ Iy :/ e %" cos(2t) dt.
0

b) Use th It i t t
(b) Use the result in (a) to compute (b) Use the result in (a) to compute

I= /500 e *dt. F(s) = L[cos(2t)].

Indicate the domain of F'.

4.1.3.-
(a) Compute the definite integral 4.1.7.- Use the definition of the Laplace
transform to compute
fv= / e et F(s) = Llsinh(at)]
0 - )
(b) Use the result in (a) to compute and indicate the domain of F.
_ 2t
F(s) = L[e™]. 4.1.8.- * Use the definition of the Laplace
Indicate the domain of F. transform to compute
4.1.4.- F(s) = L[cosh(at)],

(a) Compute the definite integral and indicate the domain of F.

N
In = / e tte 2 dt.
0
(b) Use the result in (a) to compute

F(s) = L[te ™.

Indicate the domain of F.



4.2. THE INITIAL VALUE PROBLEM 187

4.2. The Initial Value Problem

We will use the Laplace transform to solve differential equations. The main idea is,

diff tial Algebrai Solve the Transform back
ifferential eq. ebraic eq.
d ﬂ) & d ﬂ algebraic eq. Q) to obtain y(t).
for y(¢). for L[y(t)].
for Ly(t)]. (Use the table.)

We will use the Laplace transform to solve differential equations with constant coeffi-
cients. Although the method can be used with variable coefficients equations, the calcula-
tions could be very complicated in such a case.

The Laplace transform method works with very general source functions, including step
functions, which are discontinuous, and Dirac’s deltas, which are generalized functions.

4.2.1. Solving Differential Equations. As we see in the sketch above, we start with
a differential equation for a function y. We first compute the Laplace transform of the whole
differential equation. Then we use the linearity of the Laplace transform, Theorem 4.1.4, and
the property that derivatives are converted into multiplications, Theorem 4.1.5, to transform
the differential equation into an algebraic equation for L[y]. Let us see how this works in a
simple example, a first order linear equation with constant coefficients—we already solved
it in § 1.1.

Example 4.2.1. Use the Laplace transform to find the solution y to the initial value prob-
lem

Yy +2y=0, y(0)=3.

Solution: In § 1.1 we saw one way to solve this problem, using the integrating factor method.
One can check that the solution is y(t) = 3¢~ 2. We now use the Laplace transform. First,
compute the Laplace transform of the differential equation,

L[y +2y] = L[0] = 0.
Theorem 4.1.4 says the Laplace transform is a linear operation, that is,
Lly]+2L[y] =0.

Theorem 4.1.5 relates derivatives and multiplications, as follows,

(s£l) - () +2£L) =0 = (s+2)Lly] = y(0).

In the last equation we have been able to transform the original differential equation for y
into an algebraic equation for L[y]. We can solve for the unknown L[y] as follows,

=20 o ’

Lly] = ,
s+2 ] s+2
where in the last step we introduced the initial condition ¢(0) = 3. From the list of Laplace
transforms given in §. 4.1 we know that
1 3

L[e™] = privl 3L[e™ 2]

3 —2t
P = L[3e .

So we arrive at L[y(t)] = L[3 e~2!]. Here is where we need one more property of the Laplace
transform. We show right after this example that

Llyt)] =LBe ] = y(t)=3e2.

This property is called one-to-one. Hence the only solution is y(t) = 3 e~ 2. <
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4.2.2. One-to-One Property. Let us repeat the method we used to solve the differ-
ential equation in Example 4.2.1. We first computed the Laplace transform of the whole
differential equation. Then we use the linearity of the Laplace transform, Theorem 4.1.4, and
the property that derivatives are converted into multiplications, Theorem 4.1.5, to trans-
form the differential equation into an algebraic equation for L[y]. We solved the algebraic
equation and we got an expression of the form

Lly®)] = H{(s),

where we have collected all the terms that come from the Laplace transformed differential
equation into the function H. We then used a Laplace transform table to find a function h
such that

We arrived to an equation of the form

Lly(t)] = LI(t)].

Clearly, y = h is one solution of the equation above, hence a solution to the differential
equation. We now show that there are no solutions to the equation L[y] = L[h] other than
y = h. The reason is that the Laplace transform on continuous functions of exponential
order is an one-to-one transformation, also called injective.

Theorem 4.2.1 (One-to-One). If f, g are continuous on [0,00) of exponential order, then

Llfl=Llgl = f=g

Remarks:

(a) The result above holds for continuous functions f and g. But it can be extended to
piecewise continuous functions. In the case of piecewise continuous functions f and g
satisfying £[f] = L[g] one can prove that f = g+ h, where h is a null function, meaning
that f;T h(t)dt =0 for all T > 0. See Churchill’s textbook [4], page 14.

(b) Once we know that the Laplace transform is a one-to-one transformation, we can define
the inverse transformation in the usual way.

Definition 4.2.2. The inverse Laplace transform, denoted L™, of a function F is

LTFG6)] =f() & F(s)=L[fO)].

Remarks: There is an explicit formula for the inverse Laplace transform, which involves
an integral on the complex plane,
1 at+ic
L7YE(s)]| = =— lim et F(s)ds.

t 27 c=oo e

See for example Churchill’s textbook [4], page 176. However, we do not use this formula in
these notes, since it involves integration on the complex plane.

Proof of Theorem 4.2.1: The proof is based on a clever change of variables and on
Weierstrass Approximation Theorem of continuous functions by polynomials. Before we get
to the change of variable we need to do some rewriting. Introduce the function u = f — g,
then the linearity of the Laplace transform implies

Lu] = L[f — g] = L[f] = L[g] = 0.
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What we need to show is that the function w vanishes identically. Let us start with the
definition of the Laplace transform,

o0
Clu] = / e~ u(t) dt.
0
We know that f and g are of exponential order, say s,, therefore u is of exponential order
So, meaning that there exist positive constants k and T such that
lu(t)| < ke>, t>T.

Evaluate L[u] at § = s; +n+ 1, where s, is any real number such that s; > s, and n is any
positive integer. We get

= / e~ (srtnti)t u(t)dt = / e o1t g= (D)t u(t) dt.

s 0 0

L[u]

We now do the substitution y = e~%, so dy = —e~* dt,

1

E[U]L = /lo ¥ty u(—1In(y)) (—dy) =/ y*t " u(—In(y)) dy.

0

Introduce the function v(y) = y* u((—In(y)), so the integral is

= / y" v(y) dy. (4.2.1)

We know that L[u] exists because u is continuous and of exponential order, so the function
v does not diverge at y = 0. To double check this, recall that t = —In(y) — oo as y — 0%,
and u is of exponential order s,, hence

lim |v(y)| = lim e™**|u(t)| < lim e~ (1750t =,
y—0* t—o0 t—00

L[u)

Our main hypothesis is that L[u] = 0 for all values of s such that L[u] is defined, in particular
5. By looking at Eq. (4.2.1) this means that

1
/y"v(y)dyzo, n=123---.
0

The equation above and the linearity of the integral imply that this function v is perpen-
dicular to every polynomial p, that is

/ () vly) dy = 0, (4.2.2)

for every polynomial p. Knowing that, we can do the following calculation,

/ V2(y) dy = / (o(y) — py) vly) dy + / ' p() oly) dy.

The last term in the second equation above vanishes because of Eq. (4.2.2), therefore

/0 2 (y) dy = / (v(y) — p()) v() dy

</|v(y> )] [v()] dy

< (o) [ o)~ (o) (423

We remark that the inequality above is true for every polynomial p. Here is where we use the
Weierstrass Approximation Theorem, which essentially says that every continuous function
on a closed interval can be approximated by a polynomial.
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Theorem 4.2.3 (Weierstrass Approximation). If f is a continuous function on a closed
interval [a,b], then for every € > 0 there exists a polynomial q. such that

I, 1f(y) —ac(y)| <e

The proof of this theorem can be found on a real analysis textbook. Weierstrass result
implies that, given v and € > 0, there exists a polynomial p. such that the inequality
n (4.2.3) has the form

/ov%y)dy\ max [v(y |/|v pe)| dy < max v(y)|c.

y€[0,1] y€[0,1]

Since € can be chosen as small as we please, we get

1
/ v (y) dy = 0.
0
But v is continuous, hence v = 0, meaning that f = g. This establishes the Theorem. [

4.2.3. Partial Fractions. We are now ready to start using the Laplace transform to
solve second order linear differential equations with constant coefficients. The differential
equation for y will be transformed into an algebraic equation for L[y]. We will then arrive
to an equation of the form L[y(¢)] = H(s). We will see, already in the first example below,
that usually this function H does not appear in Table 1. We will need to rewrite H as a
linear combination of simpler functions, each one appearing in Table 1. One of the more
used techniques to do that is called Partial Fractions. Let us solve the next example.

Example 4.2.2. Use the Laplace transform to find the solution y to the initial value prob-
lem

y' =y =2y=0, y0)=1  y'(0)=0.
Solution: First, compute the Laplace transform of the differential equation,
Lly" —y —2y] = L[0] =0.
Theorem 4.1.4 says that the Laplace transform is a linear operation,
Lly" = L] 2Ly =

Then, Theorem 4.1.5 relates derivatives and multiplications,

|2 L1 = 5(0) =y (O] = [s Lly] = y(0)] 21y =
which is equivalent to the equation
(s* =5 =2) Ly = (s = 1) y(0) + ¥/ (0).

Once again we have transformed the original differential equation for y into an algebraic
equation for L[y]. Introduce the initial condition into the last equation above, that is,

(82 —s—2)Lly] = (s — 1).

Solve for the unknown L[y] as follows,
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The function on the right hand side above does not appear in Table 1. We now use partial
fractions to find a function whose Laplace transform is the right hand side of the equation
above. First find the roots of the polynomial in the denominator,

S+ = 27

1
$$—5-2=0 = sy=-[1£V/1+8 =
2 s_ = —1,

that is, the polynomial has two real roots. In this case we factorize the denominator,
(s—1)

-2+

The partial fraction decomposition of the right-hand side in the equation above is the fol-

lowing: Find constants a and b such that

(s—1) a b

G-2+1) s—2 s+l

Lly] =

A simple calculation shows

(s—1) __a b a(s+1)+b(s—2) s(a+b)+(a—2b)
(s—2)(s+1) s-2 s+1  (s=2)(s+1)  (s=2)(s+1)
Hence constants a and b must be solutions of the equations
1 b 2% erb=t
G-v=starnr@-m = {70
. 1 2
The solution is a = 3 and b = 3" Hence,
1 1 2 1
Lly] =

3(-2) 3(s+1)
From the list of Laplace transforms given in § 7?7, Table 1, we know that
1 1 1

at] _ _ P2t _ —t
E[e]—s_a = T3 L[e*'], porag] L[e™"].
So we arrive at the equation
R e S | —t
Lly) = 5 £le™) + 5 Lle ]—5[3(6 +2e )}
We conclude that
y(t) = %(ezt +2e7").

<

The Partial Fraction Method is usually introduced in a second course of Calculus to in-
tegrate rational functions. We need it here to use Table 1 to find Inverse Laplace transforms.
The method applies to rational functions

Q(s)
P(s)’

where P, () are polynomials and the degree of the numerator is less than the degree of the
denominator. In the example above

R(s) =

(s—1)

R(s) = m
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One starts rewriting the polynomial in the denominator as a product of polynomials degree
two or one. In the example above,

(s—1)
(s—2)(s+1)
One then rewrites the rational function as an addition of simpler rational functions. In the
example above,

R(s) =

a n b
(s—2) (s+1)
We now solve a few examples to recall the different partial fraction cases that can appear
when solving differential equations.

R(s) =

Example 4.2.3. Use the Laplace transform to find the solution y to the initial value prob-
lem
y' =4y +4y=0, y(0)=1, y(0)=1L

Solution: First, compute the Laplace transform of the differential equation,

Lly" —4y" +4y] = L£[0] = 0.
Theorem 4.1.4 says that the Laplace transform is a linear operation,

Lly"] = 4L[y'] +4Lly] = 0.
Theorem 4.1.5 relates derivatives with multiplication,

|2 1) = 5y(0) =/ (0)] — 4[5 £ly] — y(0)] + 4141 = 0,
which is equivalent to the equation
(s* —ds +4) L[y] = (s — 4) y(0) +y'(0).
Introduce the initial conditions y(0) = 1 and ¢’(0) = 1 into the equation above,
(s> —4s+4) Ly =s— 3.
Solve the algebraic equation for L[y],
(s—3)

Ly = 5.
Ll ey
We now want to find a function y whose Laplace transform is the right hand side in the

equation above. In order to see if partial fractions will be needed, we now find the roots of
the polynomial in the denominator,

1
$?—ds+4=0 = si=§[4j: 16 —16] = s, =s_=2.

that is, the polynomial has a single real root, so L[y] can be written as

(s—3)

(s —2)*

This expression is already in the partial fraction decomposition. We now rewrite the right

hand side of the equation above in a way it is simple to use the Laplace transform table in
§ 77,

Ly =

(s—2)+2-3 (s—2) 1 1 1
Lly] = = - Lly] = -
] (s 2)2 oo GooE T M=o GTae
From the list of Laplace transforms given in Table 1, § 7?7 we know that
1 1
Ll = —— = = L[e*],

s—a s—2
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1 1
(s —a)? (s —2)?

L[te™] = = L[te*].

So we arrive at the equation
Lly] = L[e*] — L[te*] = L[e* —te*] =  y(t)=e* —te.
<

Example 4.2.4. Use the Laplace transform to find the solution y to the initial value prob-
lem
y'—4y +4y =3¢, y(0)=0,  y(0)=0.

Solution: First, compute the Laplace transform of the differential equation,

" / 1
Lly" — 4y + 4y = L[3 €] :3(8_1).

The Laplace transform is a linear operation,

3
s—1
The Laplace transform relates derivatives with multiplication,

Lly"| =4 LY +4Ly =

3
|2 Lly) = 59(0) =y ()] =4[5 £ly] —y(O)] +4£ly) = —,
But the initial conditions are y(0) = 0 and 3/(0) = 0, so
3
s—1

(s> —4s+4) Ly =
Solve the algebraic equation for L[y],
3
Ll = (s —1)(s2—4s+4)

We use partial fractions to simplify the right-hand side above. We start finding the roots of
the polynomial in the denominator,

1
2 —4s+4=0 = si:§[4ﬁ: 16 —16] = s, =s5_=2.

that is, the polynomial has a single real root, so L[y] can be written as

3
=6
The partial fraction decomposition of the right-hand side above is
3 _a bs+c a(s—2)* 4 (bs+c)(s—1)
G-DE-2° (-1 (s-2¢7 (s =1)(s —2)?

From the far right and left expressions above we get
3=a(s—2)%+(bs+c)(s—1)=a(s®* —4s+4)+bs* —bs+cs—c
Expanding all terms above, and reordering terms, we get
(a4+b)s*+(—4a—b+c)s+(4a—c—3)=0.
Since this polynomial in s vanishes for all s € R, we get that
a+b=0, a=3
—4a—b+c=0, = b=-3
da—c—-3=0. c=9.
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So we get
3 3 —3s+9
E = =
W= GG so1 7 Goop
One last trick is needed on the last term above,
3549 B(s-249+9 _ 3(s-2 , 6+9 3 3
G-27 (-27 -2 -27 (-2 (-2

So we finally get
3 3 3

Lly] = — .
W= 6o T eoee
From our Laplace transforms Table we know that
1 1 2t]

E[e“t}zis_a = 8_2:£[6

9

L[te™] = = L[te?].

s-af — (s-2p
So we arrive at the formula

Lly] =3 L[e'] = 3L +3L[te*] = L[3(e" — & +te)]
So we conclude that y(t) = 3 (e! — * 4 te?'). 4

Example 4.2.5. Use the Laplace transform to find the solution y to the initial value prob-
lem

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
Solution: First, compute the Laplace transform of the differential equation,
Lly" — 4y + 4y] = L[3sin(2t)].

The right hand side above can be expressed as follows,

U S
£[3 31n(2t)] = 3£[Sln(2t)] =3 21 02 =2 e

Theorem 4.1.4 says that the Laplace transform is a linear operation,

6
nm o 4 / 4 - -
L") - ALY+ ALY = 5
and Theorem 4.1.5 relates derivatives with multiplications,
6
2 o ) . . -
[ Ll = sy(0) = y'(0)] — 4 [s Lly) — y(0)] + 4Ll = 5=

Reorder terms,

6
(s2 —4s+4) L[y = (s — 4) y(0) + 4/ (0) + R
Introduce the initial conditions y(0) = 1 and y'(0) = 1,
6

s24+4°

(s> —4s+4) L[y =5 — 3+

Solve this algebraic equation for L[y], that is,
(s —3) n 6
(s2—4s+4)  (s2—4+4)(s2+4)
From the Example above we know that s — 4s + 4 = (s — 2)2, so we obtain
1 1 6

Llyl=—5~ PRI ey (4.2.4)

Lly] =
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From the previous example we know that

1 1
Le* —te*] = - 4.2.5
le el s—2 (s—2)2 ( )
We know use partial fractions to simplify the third term on the right hand side of Eq. (4.2.4).
The appropriate partial fraction decomposition for this term is the following: Find constants

a, b, ¢, d, such that

6 _as+b+ c n d
(s —2)2(s24+4) s2+4 (s—2) (s—2)2

Take common denominator on the right hand side above, and one obtains the system

a+c=0,
—4a+b—2c+d=0,
4a —4b+ 4c = 0,

4b — 8c+4d = 6.

The solution for this linear system of equations is the following:

3 3 3
= b= S d="2.
0, ¢ 8’ 4
Therefore,
6 3 s 3 1 3 1

(5—272(2+4) 857+4 B8(s—2) d(s—22
We can rewrite this expression above in terms of the Laplace transforms given in Table 1,
in Sect. 7?7, as follows,

TP TE s Cleos20] - 216+ 7 £t

and using the linearity of the Laplace transform,

6 3 3 3
m = £ |:§ COS(2t) — é €2t + Z t€2t:| . (426)

Finally, introducing Egs. (4.2.5) and (4.2.6) into Eq. (4.2.4) we obtain
Llyt) =L[(1-1t)e* + % (—1+2t)e* + g cos(2t)].
Since the Laplace transform is an invertible transformation, we conclude that
y(t) = (1 —t)e* + g (2t —1)e*" + g cos(2t).
<
4.2.4. Higher Order IVP. The Laplace transform method can be used with linear

differential equations of higher order than second order, as long as the equation coefficients
are constant. Below we show how we can solve a fourth order equation.

Example 4.2.6. Use the Laplace transform to find the solution y to the initial value prob-

lem ,
y(0)=1,  4'(0)=0,

@ 4y =0
Yy Y ) y”(()) - 9, y///(o) —0.

Solution: Compute the Laplace transform of the differential equation,

Ly® — 4y] = £[0] = 0.
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The Laplace transform is a linear operation,
LlyW) -4 L[y =0,

and the Laplace transform relates derivatives with multiplications,

[ £ly) = 5* y(0) — 5> 4/ (0) — 5"(0) — y"(0)] —4.£ly] = 0.
From the initial conditions we get
[84 L[y] —53—0—&—25—0} —ALy=0 = (sT-Lly=5-25 = Ly = ((8:4__2;)).

In this case we are lucky, because

s(s? —2) s
W=y~ @y
Since s
L[cos(at)] = T
we get that

Lly] = Llcos(V2t)] = y(t) = cos(V/2t).
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4.2.5. Exercises.

4.2.1.- . 4.2.2.- .
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4.3. Discontinuous Sources

The Laplace transform method can be used to solve linear differential equations with dis-
continuous sources. In this section we review the simplest discontinuous function—the step
function—and we use steps to construct more general piecewise continuous functions. Then,
we compute the Laplace transform of a step function. But the main result in this section
are the translation identities, Theorem 4.3.3. These identities, together with the Laplace
transform table in § 4.1, can be very useful to solve differential equations with discontinuous
sources.

4.3.1. Step Functions. We start with a definition of a step function.

Definition 4.3.1. The step function at t =0 is denoted by u and given by

0 t<0,
u(t) = {1 t>0. (4.3.1)

Example 4.3.1. Graph the step u, u.(t) = u(t — ¢), and u_.(t) = u(t + ¢), for ¢ > 0.

Solution: The step function u and its right and left translations are plotted in Fig. 1.

u u u
u(t) u(t —c) u(t+c)
1 | — ?
1 _
of t 0 ¢ t —c 0 t

FIGURE 1. The graph of the step function given in Eq. (4.3.1), a right and
a left translation by a constant ¢ > 0, respectively, of this step function.

<

Recall that given a function with values f(¢) and a positive constant ¢, then f(¢—c) and
f(t+c) are the function values of the right translation and the left translation, respectively,
of the original function f. In Fig. 2 we plot the graph of functions f(t) = e, g(t) = u(t) e
and their respective right translations by ¢ > 0.

fqa ft)=¢l fa fM=ul)et  fa ft)=u(t—c)et=¢
1 1 1l

[

L
ol t t ol t ol ¢ t

FIGURE 2. The function f(t) = e, its right translation by ¢ > 0, the
function f(t) = u(t) e* and its right translation by c.

Right and left translations of step functions are useful to construct bump functions.
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Example 4.3.2. Graph the bump function b(t) = u(t — a) — u(t — b), where a < b.

Solution: The bump function we need to graph is

0 t<a,
bt)=u(t—a)—u(t—b) < bt)=L1 a<t<b (4.3.2)
0 t=>0b.

The graph of a bump function is given in Fig. 3, constructed from two step functions. Step
and bump functions are useful to construct more general piecewise continuous functions.

u u u
u(t —a u(t—0b b(t
) . (t—a) ) .( ) ) . .()
0 a b t 0 a b t 0] a b t

FIGURE 3. A bump function b constructed with translated step functions.

Example 4.3.3. Graph the function
F(t) = [ult =1) —u(t = 2)] . y 1(t)

Solution: Recall that the function

b(t) = u(t —1) — u(t — 2), ////

is a bump function with sides at t = 1 andf t = 2. 1
Then, the function
_ at

is nonzero where b is nonzero, that is on [1, 2), and
on that domain it takes values e®*. The graph of

o R FIGURE 4. Function f.
f is given in Fig. 4. <

4.3.2. The Laplace Transform of Steps. We compute the Laplace transform of a
step function using the definition of the Laplace transform.

Theorem 4.3.2. For every number ¢ € R and and every s > 0 holds

—CS8

e
Llu(t —c)] = 1 s
- for ¢ <.

for ¢>0,

Proof of Theorem 4.3.2: Consider the case ¢ > 0. The Laplace transform is

Llu(t —c)] = /OOO e tu(t —c)dt = /COO e St dt,
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where we used that the step function vanishes for ¢ < ¢. Now compute the improper integral,

—CS —CS

e

Llu(t — o) = lim —~ (e — o) = € = Llu(t—c) =

N—o00 S S S

Consider now the case of ¢ < 0. The step function is identically equal to one in the domain
of integration of the Laplace transform, which is [0, c0), hence

Llu(t —c)] = /000 e Stu(t —c)dt = /000 e stdt = L[1] = 1

S

This establishes the Theorem. O

Example 4.3.4. Compute L[3u(t — 2)].
Solution: The Laplace transform is a linear operation, so

L3u(t —2)] = 3 Llu(t — 2)],

3 /725
and the Theorem 4.3.2 above implies that L[3u(t — 2)] = c <
5
Remarks:
(a) The LT is an invertible transformation in the set of functions we work in our class.
(b) LIf)=F & L£7UF]=f.
6—35
Example 4.3.5. Compute E_l{ }
5
6—38 6—35
Solution: Theorem 4.3.2 says that = L[u(t —3)],s0 L7! [ } =u(t —3) <
s

4.3.3. Translation Identities. We now introduce two properties relating the Laplace
transform and translations. The first property relates the Laplace transform of a translation
with a multiplication by an exponential. The second property can be thought as the inverse
of the first one.

Theorem 4.3.3 (Translation Identities). If L[f(t)](s) exists for s > a, then
Llu(t —c)f(t —c)] =e " L[f(t)], s> a, c=20 (4.3.3)
Lle f(#t)] = L[f#)](s - c), s>a+c, ceR.

Example 4.3.6. Take f(t) = cos(t) and write the equations given the Theorem above.

Solution:
s Llu(t —c) cos(t —c)] =e™ 82%
L[cos(t)] =
Z11 ) . C+)
[6 COS(t)} B (87 _0)21.

Remarks:
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(a) We can highlight the main idea in the theorem above as follows:
L [right-translation (uf)] = (exp) (L[f]),
L][(exp) (f)] = translation(L[f]).
(b) Denoting F(s) = L[f(t)], then an equivalent expression for Egs. (4.3.3)-(4.3.4) is
Clu(t — ) f(t - )] = e P(s),
Ll f(t)] = F(s —c).
(c) The inverse form of Eqs. (4.3.3)-(4.3.4) is given by,
L7 e F(s)] = u(t — ) f(t — ¢), (4.3.5)
L7UF(s —¢)] = e f(t). (4.3.6)

(d) Eq. (4.3.4) holds for all ¢ € R, while Eq. (4.3.3) holds only for ¢ > 0.
(e) Show that in the case that ¢ < 0 the following equation holds,

lel
Clult+leD e+ le)] = e (£lpw] = [ e fie)ar).

Proof of Theorem 4.3.3: The proof is again based in a change of the integration variable.
We start with Eq. (4.3.3), as follows,

Llu(t—c)f(t—c)] = /000 e Su(t —c)f(t—c)dt

:/ e Sft—c)dt, T=t—c, dr=dt, c>0,
= / e 3T f(7) dr
0

oo
= e_cs/ e T f(r)dr
0
— e L), s>a
The proof of Eq. (4.3.4) is a bit simpler, since

clet 0] = [ e et sayan= [T e 00 de = £lfENs o)

] ]

which holds for s — ¢ > a. This establishes the Theorem. O

Example 4.3.7. Compute L[u(t — 2) sin(a(t — 2))].

Solution: Both L[sin(at)] = 52—?—% and Llu(t —c¢)f(t — ¢)] = e~ L]f(¢)] imply
E[u(t —2) sin(a(t — 2))] = e % L[sin(at)] = e 32—(&1—7@'
We conclude: L [u(t — 2) sin(a(t — 2))] = %. <

Example 4.3.8. Compute L[e* sin(at)].

Solution: Since L[e“ f(t)] = L[f](s — ¢), then we get
3t o _ a .
L[e* sin(at)] = G_3Zia’ s> 3.
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Example 4.3.9. Compute both L[u(t — 2) cos(a(t —2))] and L[e3* cos(at)].

Solution: Since £ [cos(at)] = 5, then

_ s
s2+a
(s —3)

(s —3)2+a?

S

Llu(t —2) cos(a(t —2))] =e > a7

L[e* cos(at)] =

Example 4.3.10. Find the Laplace transform of the function

0 t<1,

ft) = { (12—2+2) t>1. (4.3.7)

Solution: The idea is to rewrite function f so we can use the Laplace transform Table 1,
in § 4.1 to compute its Laplace transform. Since the function f vanishes for all ¢ < 1, we
use step functions to write f as

) =u(t —1)(t* — 2t +2).
Now, notice that completing the square we obtain,
2 —24+2=>-2t+1)—1+2=(t—-1)* +1.
The polynomial is a parabola t? translated to the right and up by one. This is a discontinuous
function, as it can be seen in Fig. 5.
So the function f can be written as follows,

@) = u(t =1) (¢ = 1)° +ult - 1). yp ult=1)[(t-1)%+1]

Since we know that L[t?] = 3273’ then
Eq. (4.3.3) implies
LIf(#)] = Llu(t = 1) (t = 1)*] + Llu(t = 1)]

1
_s 2 _s1 |
=€ ° - +e °— 1
S S o
so we get 0 1 ¢
LIF0)] = S (24 57). FIGURE 5. Function f given
s 4 in Eq. (4.3.7).

Example 4.3.11. Find the function f such that L[f(t)] = ¢

Solution: Notice that

o) = () = L= gz (5 f(g )
Recall that L[sin(at)] = ﬁ, then
1 —4s :
LIF(0) = e Cfsin(V51)L

But the translation identity
e~ LIf(1)] = Llult - ) (¢ - o)
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implies
LI ()] = % Cu(t — 4)sin (V5 (¢ — 4))],

hence we obtain

flt) = % u(t —4) sin(\ﬁ (t— 4))
<
Example 4.3.12. Find the function f(¢) such that L[f(t)] = =1
pre Seo.ns C (5—2)2+3°
Solution: We first rewrite the right-hand side above as follows,
C(s—-1-1+1)
o (s—-2) n 1
C(5—2)24+3  (s—2)2+3
(-2 1 3
(s—22+(V3)? V3 (s—22+(v3)°
= Llcos(V31t)](s — 2) + % L[sin(V31)](s — 2).
But the translation identity L[f(¢)](s — ¢) = L[e“" f(¢)] implies
LIft)] = L[e* cos(\/gt)] + %E[e% sin(v31)].
So, we conclude that
2t
f(t) = 6’73 {\/g cos(\/gt) + sin(\/gt)}.
<
Example 4.3.13. Find £~} [ 26_38}
ple 4.3.13. il
Solution: Since £7! [ﬁ] = sinh(at) and £7"[e™* f(s)] =u(t —¢) f(t — ¢), then
a2y s 2 a2eTy o _
L [82_4] =L [e 32—4} = L {52_4} = u(t — 3) sinh(2(¢ — 3)).
<
) ) 6_25
Example 4.3.14. Find a function f such that L[f(¢)] = ot

Solution: Since the right hand side above does not appear in the Laplace transform Table
in § 4.1, we need to simplify it in an appropriate way. The plan is to rewrite the denominator
of the rational function 1/(s%+s—2), so we can use partial fractions to simplify this rational
function. We first find out whether this denominator has real or complex roots:

=1,

= -2

1 s
se=5[-1EVITS] = {;

We are in the case of real roots, so we rewrite

2 4s5—2=(s—1)(s+2).
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The partial fraction decomposition in this case is given by

1 __a b (a+b)s+(2a—0b) N a+b=0,
(s—1)(s+2) (s—1) (s+2)  (s—1)(s+2) 2a —b=1.
The solution is ¢ = 1/3 and b = —1/3, so we arrive to the expression
_1 —2s 1 1 —2s 1
Arl=ge " 173 5o
Recalling that
1
L at] _
e = ——,

and Eq. (4.3.3) we obtain the equation
1 1
LIf(t)] = 3 E[u(t —2) e(t_2)] ~3 E[u(t —2) 6_2(t_2)]
which leads to the conclusion:
1 . e .
— o (t—2) _ —2(t—2)
f(t) = 3 u(t—2) [e e ]

<

4.3.4. Solving Differential Equations. The last three examples in this section show
how to use the methods presented above to solve differential equations with discontinuous
source functions.

Example 4.3.15. Use the Laplace transform to find the solution of the initial value problem
Y+ 2y = u(t —4), y(0) = 3.

Solution: We compute the Laplace transform of the whole equation,

6—43

Ly +2 L[y = Llu(t - 4)] = —

From the previous section we know that

—4s 6748
= (s +2) Lyl = y(0) +

[s Lly] — y(0)] +2L[y) =

5
We introduce the initial condition y(0) = 3 into equation above,
3 1
Lyl = —= +e ™ = Ly =3L[ ] +e " :
V=559 s(s +2) ] [=™] s(s +2)

We need to invert the Laplace transform on the last term on the right hand side in equation
above. We use the partial fraction decomposition on the rational function above, as follows

1 _e, b a(s+2)+bs  (a+b)s+(2a) a+b=0,
s(s+2) s (s+2) s(s+2) s(s+2) 2a =1.
We conclude that ¢ = 1/2 and b = —1/2, so
#_1[1_;}
s(s+2) 2Lls (s+2))

We then obtain
Lly] =3L[e ] +

|:674S 1 o 6745 1 i|
s (s +2)

1
2
=3Le] + % (£lu(t — 4] = £[u(t - 4) 72077,
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Hence, we conclude that
1
y(t) = 3e 2 + 5 u(t —4) [1 — (372(1‘/74)} .

<

Example 4.3.16. Use the Laplace transform to find the solution to the initial value problem

5 1 0<t<nm
" / _ _ / _ _ =
y'+y +qy=0t),  y(0)=0, y(0)=0, bt)= { 0 t>n. (4.3.8)
Solution: From Fig. 6, the source function b can be written as
b(t) = u(t) — u(t — m).
UT u b
u(t u(t —m T u(t) —u(t—m
. (t) . . (t—m) . ( )? (t—m)
0 ™ t o] ™ t 0 ™ t

FIGURE 6. The graph of the u, its translation and b as given in Eq. (4.3.8).

The last expression for b is particularly useful to find its Laplace transform,

L[b(t)] = Llu(t)] = Llu(t —m)] = é +e " % = Lbt)]=1—-eT) 1

s
Now Laplace transform the whole equation,

Lly")+ £1y) + 5 £l = £

Since the initial condition are y(0) = 0 and y’(0) = 0, we obtain
1

(2 45+ g) Lyl =(1-eT) é = =) m

Introduce the function

H(s) = !

5
3(524—3—1—1)

That is, we only need to find the inverse Laplace transform of H. We use partial fractions to
simplify the expression of H. We first find out whether the denominator has real or complex

roots:
52—1—5—1—320 = s = %[—1im7
so the roots are complex valued. An appropriate partial fraction decomposition is
1 a (bs +¢)

BT N CETS)

= y(t)=LT[H(s)] = L7 [e™™ H(s)].

Therefore, we get

1=a(s2+s+z>+s(bs+c)=(a+b)s2+(a+c)s+ga.
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This equation implies that a, b, and ¢, satisfy the equations

5
a+b=0, a+c=0, -a=1.

4
. 4 4 4
The solution is, a = R b= — c= —% Hence, we have found that,
1 4r1 1
H(s):—:—[——ﬁ]
(52—&-5—1—%)8 5ls (324—3—&—%)

Complete the square in the denominator,

52+s+§—[32+2(1)s+1}—1+§—(s+1)2+1
4 2 41 4 4 2 ’

Replace this expression in the definition of H, that is,
4 {1 _ &}
5t [(s+3)" +1]

Rewrite the polynomial in the numerator,

(s+1)*(s+1+1>*<:er1)+1
a 2 2/ 2 2’

H(s) =

hence we get

H(s)—é[l (s-f—%) 1 1 }
S+ 1 2 [y ]
Use the Laplace transform table to get H(s) equal to

4

H(s) = R [E[l] - E[e_t/2 cos(t)] — %E[e‘t/2 sin(t)]} )

equivalently

Denote

h(t)
Recalling L[y(t)]

g [1 — e 2 cos(t) — %e‘t/Q sin(t)] = H(s) = L[h(t)].
H(s)+e ™ H(s), we obtain L[y(t)] = L[h(t)] + e ™ L[h(t)], that is,
y(t) = h(t) + u(t — m)h(t — 7).

<

Example 4.3.17. Use the Laplace transform to find the solution to the initial value problem
sin(t) 0<t<m

" /5 /
e Fu=a. w0 =0 yor=o a0 ={ 0 TSI s

Solution: From Fig. 7, the source function g can be written as the following product,

g(t) = [u(t) — u(t — )] sin(t),
since u(t) — u(t — 7) is a box function, taking value one in the interval [0, 7] and zero on
the complement. Finally, notice that the equation sin(t) = —sin(¢t — 7) implies that the
function g can be expressed as follows,

g(t) = u(t) sin(t) —u(t — ) sin(t) = g(t) = u(t) sin(t) + w(t — ) sin(t — 7).

The last expression for g is particularly useful to find its Laplace transform,
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v g

g(t
. . (t)
y" 0 ™ t

FIGURE 7. The graph of the sine function, a square function u(t) —u(t —m)
and the source function g given in Eq. (4.3.9).

1 1
Llgit)] =-——— B e
=t
With this last transform is not difficult to solve the differential equation. As usual, Laplace
transform the whole equation,

Ll + £ly') + 2 £ly] = £lg)

Since the initial condition are y(0) = 0 and y'(0) = 0, we obtain
1

(824—8—1—%) (s2+1)

<52 + s+ Z) Lly] = (1 + e*“) = Ly = (1 + e*”)

(s*+1)

Introduce the function

H(s) = ! Syt = LV H ()] + L e Hs)).

(52—&—84—%)(324—1)

That is, we only need to find the Inverse Laplace transform of H. We use partial fractions
to simplify the expression of H. We first find out whether the denominator has real or
complex roots:

5 1
2

so the roots are complex valued. An appropriate partial fraction decomposition is
H(s) 1 (as+) (es+d)
s) = = .
(s2+s+2)(s241) (s2+s+5) (s2+1)

Therefore, we get

1= (as+b)<82+1>+<cs+d)(82+s+g>7

equivalently,

1=(a+6)83+(b+c+d)s2+(a+§c+d>s+(b+§d>.
This equation implies that a, b, ¢, and d, are solutions of

a+c=0, b+c+d=0, a—l—gc—&-d:O, b—i—%d:l.

Here is the solution to this system:

16 12 16 4
Cl—ﬁ7 b—ﬁ, C__ﬁ, d—ﬁ
We have found that,
(4s+3) (—4s+1)

s2+s+32) (s2+1)

H(s):—[(
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Complete the square in the denominator,
5 1 1 1 5 142
2 2
el e el
s+s+4 [s+25+4 4+4 5+2 +1
4 (4s+3 —4s+1
H(S):l—[ I 2) ( 3 ):|
T+ +1]  (2+1)

Rewrite the polynomial in the numerator,

(4s+3):4(s+%—%)+3:4(s+%)+1,
hence we get
(s):i{ 2 p —4 T2
e R A N CED MR

Use the Laplace transform Table in 1 to get H(s) equal to

(s+3) 1 s 1 }

H(s) = 4 [4[: [e*t/2 Cos(t)] + L [e*t/2 Sin(t)] — 4 L]cos(t)] + L[sin(t)]} ,

17
equivalently
H(s)=L [% (4e_t/2 cos(t) + e /2 sin(t) — 4 cos(t) + sin(t))] .
Denote
h(t) = 4 4e7M2 cos(t) + e /2 sin(t) — dcos(t) +sin(t)| =  H(s) = L[h(t)].
17

Recalling L[y(t)] = H(s) + e~ ™ H(s), we obtain L[y(t)] = L][h(t)] + e~ ™ L[h(t)], that is,
y(t) = h(t) + u(t — m)h(t — ).
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4.3.5. Exercises.

4.3.1.- . 4.3.2.- .
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4.4. Generalized Sources

We introduce a generalized function—the Dirac delta. We define the Dirac delta as a limit
n — oo of a particular sequence of functions, {d, }. We will see that this limit is a function
on the domain R — {0}, but it is not a function on R. For that reason we call this limit a
generalized function—the Dirac delta generalized function.

We will show that each element in the sequence {d,,} has a Laplace transform, and this
sequence of Laplace transforms {£[d,]} has a limit as n — co. We use this limit of Laplace
transforms to define the Laplace transform of the Dirac delta.

We will solve differential equations having the Dirac delta generalized function as source.
Such differential equations appear often when one describes physical systems with impulsive
forces—forces acting on a very short time but transfering a finite momentum to the system.
Dirac’s delta is tailored to model impulsive forces.

4.4.1. Sequence of Functions and the Dirac Delta. A sequence of functions is
a sequence whose elements are functions. If each element in the sequence is a continuous
function, we say that this is a sequence of continuous functions. Given a sequence of func-
tions {y,}, we compute the lim,,_,, y,(t) for a fixed t. The limit depends on ¢, so it is a
function of ¢, and we write it as

Jim g, (1) = y(?).

The domain of the limit function y is smaller or equal to the domain of the y,,. The limit
of a sequence of continuous functions may or may not be a continuous function.

Example 4.4.1. The limit of the sequence below is a continuous function,

1
{fn(t) = sin((l + f)t)} — sin(t) as n — 0.

n

As usual in this section, the limit is computed for each fixed value of ¢. <
However, not every sequence of continuous functions has a continuous function as a

limit.
Example 4.4.2. Consider now the following se-
quence, {u,}, forn > 1,

U,
0, t<0
1
up(t) = ™ 09?; (4.4.1)
1, t>-—.
n

This is a sequence of continuous functions whose
limit is a discontinuous function. From the few
graphs in Fig. 8 we can see that the limit n — oo
of the sequence above is a step function, indeed,
lim,, o0 up (t) = 4(t), where

a(t) {0 for t<0,
u =
1 for ¢>0. FIGURE 8. A few func-

tions in the sequence

We used a tilde in the name u because this step
function is not the same we defined in the previous {un}.
section. The step u in § 4.3 satisfied u(0) =1. <

Exercise: Find a sequence {u, } so that its limit is the step function u defined in § 4.3.
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Although every function in the sequence {u,} is continuous, the limit @ is a discon-
tinuous function. It is not difficult to see that one can construct sequences of continuous
functions having no limit at all. A similar situation happens when one considers sequences
of piecewise discontinuous functions. In this case the limit could be a continuous function,
a piecewise discontinuous function, or not a function at all.

We now introduce a particular sequence of piecewise discontinuous functions with do-
main R such that the limit as n — oo does not exist for all values of the independent variable
t. The limit of the sequence is not a function with domain R. In this case, the limit is a
new type of object that we will call Dirac’s delta generalized function. Dirac’s delta is the
limit of a sequence of particular bump functions.

Definition 4.4.1. The Dirac delta generalized function is the limit

5() = lim 5,(0).

n

for every fized t € R of the sequence functions {6,}32 1,

In(t)=n [u(t) —u(t— l)} (4.4.2)

The sequence of bump functions introduced above

can be rewritten as follows, On
0, t<0
1 -
_Jon 0<t<= 8,(t)
6n(t) - 1 n 3 — ®
0, t=-—. :
n 1
We then obtain the equivalent expression, | 5,(t)
1 2\t
5 0 for t#£0, 2t
(t){oo for t=0. o
Remark: It can be shown that there exist infin- L 0, (1)
itely many sequences {,,} such that their limit as 1 T X
n — oo is Dirac’s delta. For example, another L !
sequence is L !
% 1 N
on(t) =n [u(t—&—%) —u(t—Z—)} o 11 1 f
) il
0, t< —— 32
1 2n
=< n —-——<t< — FIGURE 9. A few func-
2n 1 2n tions in the sequence
0, t> o {60}

The Dirac delta generalized function is the function identically zero on the domain
R — {0}. Dirac’s delta is not defined at ¢t = 0, since the limit diverges at that point. If we
shift each element in the sequence by a real number ¢, then we define

0(t —c¢) = lim §,(t —¢), ceR.

n—roo
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This shifted Dirac’s delta is identically zero on R — {¢} and diverges at t = ¢. If we shift
the graphs given in Fig. 9 by any real number ¢, one can see that

c+1
/ St — )t =1

for every n > 1. Therefore, the sequence of integrals is the constant sequence, {1,1,---},
which has a trivial limit, 1, as n — oo. This says that the divergence at ¢ = c of the sequence
{d,} is of a very particular type. The area below the graph of the sequence elements is always
the same. We can say that this property of the sequence provides the main defining property
of the Dirac delta generalized function.

Using a limit procedure one can generalize several operations from a sequence to its
limit. For example, translations, linear combinations, and multiplications of a function by
a generalized function, integration and Laplace transforms.

Definition 4.4.2. We introduce the following operations on the Dirac delta:

()6t —c)+g(t)o(t —c) = lim [f(t)6n(t — ) + g(t) 6, (t — 0)],

n—r oo

n— o0

b b
/ S(t—cydt = tim | o,(t—c)dt,
£15(t - ¢)) = lim L6(t — ).

Remark: The notation in the definitions above could be misleading. In the left hand
sides above we use the same notation as we use on functions, although Dirac’s delta is not
a function on R. Take the integral, for example. When we integrate a function f, the
integration symbol means “take a limit of Riemann sums”, that is,

b—a
—

b n

/a f@) dt:nll_{réoz(:)f(xi) Az, z; = a+ 1Az, Azx =
=

However, when f is a generalized function in the sense of a limit of a sequence of functions

{fn}, then by the integration symbol we mean to compute a different limit,

b b
/ ft)ydt = lim [ fu(t)dt.
a n—oo a
We use the same symbol, the integration, to mean two different things, depending whether
we integrate a function or a generalized function. This remark also holds for all the oper-
ations we introduce on generalized functions, specially the Laplace transform, that will be
often used in the rest of this section.

4.4.2. Computations with the Dirac Delta. Once we have the definitions of op-
erations involving the Dirac delta, we can actually compute these limits. The following
statement summarizes few interesting results. The first formula below says that the infinity
we found in the definition of Dirac’s delta is of a very particular type; that infinity is such
that Dirac’s delta is integrable, in the sense defined above, with integral equal one.

nc+e€
Theorem 4.4.3. For every c € R and € > 0 holds, / o(t—c)dt=1.

CcC—€
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Proof of Theorem 4.4.3: The integral of a Dirac’s delta generalized function is computed
as a limit of integrals,

c+te c+te
/ St —cydt = tim [ 8,y

C—€ —€

If we choose n > 1/¢, equivalently 1/n < ¢, then the domain of the functions in the sequence
is inside the interval (¢ — €, ¢ + €), and we can write

c+e c+ o 1
/ O(t —c¢)dt = lim ndt, for — <e.
Cc—e n—oo c n

Then it is simple to compute

n— 00 n—oo

cte 1
/c O(t —c¢)dt = lim n(c—kﬁ—c):lim 1=1

This establishes the Theorem. O

The next result is also deeply related with the defining property of the Dirac delta—the
sequence functions have all graphs of unit area.

b
Theorem 4.4.4. If f is continuous on (a,b) and ¢ € (a,b), then / ft)o(t—c)dt = f(c).

Proof of Theorem 4.4.4: We again compute the integral of a Dirac’s delta as a limit of
a sequence of integrals,

b

/bé(t o) f(t)dt = lim [ Sn(t—c)f(t)dt

= lim bn[u(t—c)—u(t—c—l)} f(t)dt

n—oo [ n
= nhﬂn;(} j n f(t) dt, < (b—o),

To get the last line we used that ¢ € [a,b]. Let F be any primitive of f, so F(t) = [ f(t)dt.
Then we can write,

—

n—oo

b
/ 0(t—c) f(t)dt = lim n F(ch%) — F(c)]

= lim i) [F(c+ %) — F(0)]
= F'(c)
= f(o).
This establishes the Theorem. O

In our next result we compute the Laplace transform of the Dirac delta. We give two
proofs of this result. In the first proof we use the previous theorem. In the second proof we
use the same idea used to prove the previous theorem.

e~ for ¢>=0,

Theorem 4.4.5. For all s € R holds L[6(t — ¢)] = {0 P <0
or ¢<0.
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First Proof of Theorem 4.4.5: We use the previous theorem on the integral that defines
a Laplace transform. Although the previous theorem applies to definite integrals, not to
improper integrals, it can be extended to cover improper integrals. In this case we get

e~ for ¢>0,

L6t —c)] = S5t —c)dt =
16t =)l /0 ¢ (t=c) {0 for ¢ <0,
This establishes the Theorem. O

Second Proof of Theorem 4.4.5: The Laplace transform of a Dirac’s delta is computed
as a limit of Laplace transforms,

Lot —c)] = lim L[6,(t — )]

n—roo

= lim £[n[u(t—c) —u(t—c— E)H

n—00 n
i 1
= li t—c)—u(t—c——)] e dt.
Jim ; nfu(t—c) —u(t—c n)]e
L 1
The case ¢ < 0 is simple. For — < |¢| holds
n
L[o(t —¢)] = lim 0dt = L[o(t—¢)]=0, forseR, ¢<0.
n—oo 0
Consider now the case ¢ > 0. We then have,
c+1
L[§(t —c¢)] = lim ne St dt.
n—oo c
For s = 0 we get
c—i—l
L[6(t —¢)] = lim ndt=1 = L[§{t—c)]=1 fors=0, c=0.
n— o0 c
In the case that s # 0 we get,
c+1 _s
_ — 1 " —st — 1 7? —cs _ ,—(c+2)s\y _ —cs q; (]‘ —€ ")
L[6(t — ¢)] nl;ngo i ne **dt nl;ngo . (e e )=e nlgl;o (f)
n

The limit on the last line above is a singular limit of the form ¢, so we can use the ’Hopital

0
rule to compute it, that is,

i NOR i, <"s> = Jmemr =1
n n?2
We then obtain,
Lo(t—c)]=e"% fors#0, c=0.
This establishes the Theorem. O

4.4.3. Applications of the Dirac Delta. Dirac’s delta generalized functions describe
impulsive forces in mechanical systems, such as the force done by a stick hitting a marble.
An impulsive force acts on an infinitely short time and transmits a finite momentum to the
system.
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Example 4.4.3. Use Newton’s equation of motion and Dirac’s delta to describe the change
of momentum when a particle is hit by a hammer.

Solution: A point particle with mass m, moving on one space direction, x, with a force F’
acting on it is described by

ma=F & ma"(t)=F(, xz(t)),
where 2(t) is the particle position as function of time, a(t) = z”(t) is the particle acceleration,
and we will denote v(t) = 2/(t) the particle velocity. We saw in § 1.1 that Newton’s second
law of motion is a second order differential equation for the position function z. Now it is
more convenient to use the particle momentum, p = mv, to write the Newton’s equation,

mz’ =mv' = (mv) =F = p =F
So the force F' changes the momentum, P. If we integrate on an interval [t,,,] we get
to
Bp=plts) = plt) = [ F(t.a(0)de.
t1

Suppose that an impulsive force is acting on a particle at ¢, transmitting a finite momentum,
say po. This is where the Dirac delta is uselful for, because we can write the force as

F(t) = pod(t —to),
then F'=0 on R — {t,} and the momentum transferred to the particle by the force is
to+At
Ap:/ Do 0(t — to) dt = po.
to— At

The momentum tranferred is Ap = p,, but the force is identically zero on R — {t,}. We have
transferred a finite momentum to the particle by an interaction at a single time t,. <

4.4.4. The Impulse Response Function. We now want to solve differential equa-
tions with the Dirac delta as a source. But there is a particular type of solutions that will
be important later on—solutions to initial value problems with the Dirac delta source and
zero initial conditions. We give these solutions a particular name.

Definition 4.4.6. The impulse response function at the point ¢ > 0 of the constant
coefficients linear operator L(y) = y" + a1y + aoy, is the solution ys of

L(ys) =0(t—¢c),  y5(0)=0,  y5(0)=0.
Remark: Impulse response functions are also called fundamental solutions.

Theorem 4.4.7. The function ys is the impulse response function at ¢ > 0 of the constant
coefficients operator L(y) = y" + a, y' + aoy iff holds

-]

where p is the characteristic polynomial of L.

Remark: The impulse response function ys at ¢ = 0 satifies

w=c )
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Proof of Theorem 4.4.7: Compute the Laplace transform of the differential equation for
for the impulse response function s,

E[y//} + ay ,C[y/] + aoﬁ[y] = [:[5(1} _ C)] — o C8,
Since the initial data for ys is trivial, we get
(82 + ass + ao) Lly] = e~ .

Since p(s) = s% + a;s + a, is the characteristic polynomial of L, we get

—CS8

e e—CS
=50 =500
All the steps in this calculation are if and only ifs. This establishes the Theorem. O

Example 4.4.4. Find the impulse response function at t = 0 of the linear operator
Lly) =y" +2y +2y.

Solution: We need to find the solution ys of the initial value problem
yg + 2y</5 + 2y5 = 5(t)ﬂ y6(0) = 0’ yfs(o) =0.

Since the souce is a Dirac delta, we have to use the Laplace transform to solve this problem.
So we compute the Laplace transform on both sides of the differential equation,

Llys1+2LMys] +2L[ys] = LB =1 = (s*+25+2) Llys] =1,

where we have introduced the initial conditions on the last equation above. So we obtain

1
Llys] = m

The denominator in the equation above has complex valued roots, since

si:%[—Qi\/zl—S,

therefore, we complete squares s? + 2s +2 = (s + 1)2 + 1. We need to solve the equation

Clul = | !

(CESEE LleT'sin(t)] = ys(t) = "sin(t).

<

Example 4.4.5. Find the impulse response function at t = ¢ > 0 of the linear operator
Ly) =y" +2y" +2y.

Solution: We need to find the solution ys of the initial value problem
s +2ys +2ys =06(t—c), ys(0) =0, y5(0)=0.

We have to use the Laplace transform to solve this problem because the source is a Dirac’s
delta generalized function. So, compute the Laplace transform of the differential equation,

L]+ 2 Llys] + 2 Llys) = L[5t — ¢)].
Since the initial conditions are all zero and ¢ > 0, we get

e*CS

2 __ ,—cs —
(s*+2s+2)Llys] =e =  Llys] = T

Find the roots of the denominator,

s$+25+2=0 = si:%[—2ﬁ:\/4—8



4.4. GENERALIZED SOURCES 217

The denominator has complex roots. Then, it is convenient to complete the square in the
denominator,

2
2425 +2= [52+2(§)s+1} 14 2=(s+1)2+1.

Therefore, we obtain the expression,

—CSs

Recall that L[sin(t)] = ﬁ, and L[f](s — ¢) = L[ f(¢)]. Then,
1 [P —cs —t .
Grnrgr - Kot = Ll =em Lle sin(t)]

Since for ¢ > 0 holds ™ L[f](s) = Llu(t — ¢) f(t — ¢)], we conclude that
ys(t) = u(t —¢) e sin(t — ¢).

Example 4.4.6. Find the solution y to the initial value problem
Yy —y=-200(t—3), y(0) =1, y'(0) = 0.

Solution: The source is a generalized function, so we need to solve this problem using the
Lapace transform. So we compute the Laplace transform of the differential equation,

L") =Lyl = -20Lp(t-3)] = (5> =1L —s5=-20e",

where in the second equation we have already introduced the initial conditions. We arrive
to the equation

BCET R

which leads to the solution

y(t) = cosh(t) — 20 u(t — 3) sinh(t — 3).

= L]cosh(t)] — 20 L[u(t — 3) sinh(t — 3)],

Example 4.4.7. Find the solution to the initial value problem
y' +dy=06(t—m) —5(t —2n), y(0) =0, y'(0) = 0.

Solution: We again Laplace transform both sides of the differential equation,
LIy +4Ly| = L6t —7)] = L[6(t —27)] = (s°+4)L[y]=e ™ —e 2™,

where in the second equation above we have introduced the initial conditions. Then,

e~ TS 67271"8
S R Ry
e~ TS 2 6727rs 2

2 (s2+4) 2 (s2+44)
1 ) 1 .
= §£ [u(t — ) sin[2(t — 77)]} - 5[: [u(t — 2m) sin[2(t — 277)]}.
The last equation can be rewritten as follows,

y(t) = %u(t —7) sin [2(t — 7r)] — % u(t — 2m) sin [Q(t — 27r)],
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which leads to the conclusion that
1
y(t) = 3 [u(t — ) — u(t — 2m)] sin(2¢).
<

4.4.5. Comments on Generalized Sources. We have used the Laplace transform to
solve differential equations with the Dirac delta as a source function. It may be convenient
to understand a bit more clearly what we have done, since the Dirac delta is not an ordinary
function but a generalized function defined by a limit. Consider the following example.

Example 4.4.8. Find the impulse response function at ¢ = ¢ > 0 of the linear operator
Liy) =y
Solution: We need to solve the initial value problem

y'(t)=dt—c),  y(0)=0.
In other words, we need to find a primitive of the Dirac delta. However, Dirac’s delta is not

even a function. Anyway, let us compute the Laplace transform of the equation, as we did
in the previous examples,

Ly W] =LPE—-o] = sLyM]-y0) =" = Llyt)]=

But we know that

—CS8

€

= Llut—c)] = Lly@®)]=Lult—c)] = yt)=ult—rc).

Looking at the differential equation y/(t) = 6(¢ — ¢) and at the solution y(t) = u(t — ¢) one
could like to write them together as

u'(t—c)=48(t—c). (4.4.3)
But this is not correct, because the step function is a discontinuous function at ¢ = ¢, hence
not differentiable. What we have done is something different. We have found a sequence of
functions u,, with the properties,
lim wu,(t—c) = u(t —¢), lim u, (t—c) =6(t—c),

n— oo n—oo

and we have called y(t) = u(t — ¢). This is what we actually do when we solve a differential
equation with a source defined as a limit of a sequence of functions, such as the Dirac delta.
The Laplace transform method used on differential equations with generalized sources allows
us to solve these equations without the need to write any sequence, which are hidden in the
definitions of the Laplace transform of generalized functions. Let us solve the problem in
the Example 4.4.8 one more time, but this time let us show where all the sequences actually
are.

Example 4.4.9. Find the solution to the initial value problem
y'(t) =0(t —c), y(0) =0, ¢ >0, (4.4.4)
Solution: Recall that the Dirac delta is defined as a limit of a sequence of bump functions,

0(t —c) = lim §,(t —c), 5n(t—c):n{u(t—c)—u<t—c—l>], n=12---.

n—00 n
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The problem we are actually solving involves a sequence and a limit,
y'(t) = Jim dn(t —c), y(0) = 0.
We start computing the Laplace transform of the differential equation,
£y (0] = £] lim b, (¢ = o).
We have defined the Laplace transform of the limit as the limit of the Laplace transforms,
LIy (0] = lim L[5, (t o).
If the solution is at least piecewise differentiable, we can use the property
LIy (t)] = s LIy(t)] — y(0).
Assuming that property, and the initial condition y(0) = 0, we get

L) =1 Jim Lo, -0) = L) = m SO

§ m—oo n—00 S

Introduce now the function y,(t) = u,(t — ¢), given in Eq. (4.4.1), which for each n is the
only continuous, piecewise differentiable, solution of the initial value problem

Yn(t) = 0n(t —c),  ya(0) =0.
It is not hard to see that this function u,, satisfies
L[]0, (t — ¢)]

Ll ()] = ==
Therefore, using this formula back in the equation for y we get,

Lly®)] = lm Lluy(t)].

n—oo

For continuous functions we can interchange the Laplace transform and the limit,

Lly(®)] = £] lim_u, (1)),
So we get the result,

y(t) = lim w,(t) = y(t)=u(t—c).
n—oo

We see above that we have found something more than just y(¢) = u(t — ¢). We have found

y(t) = 1~>Holo “/’n,(t - C)a

n

where the sequence elements u,, are continuous functions with u, (0) = 0 and

. _ _ . 12 _a) = _
nh_r}l;@lm(t c) =u(t—c), nlgroloun(t c)=0(t—c)

Finally, derivatives and limits cannot be interchanged for u,,
. / . !/
nh_}rrgo [ur, (t —¢)] # [nh—>Holo un (t —c)]

so it makes no sense to talk about y’. <

When the Dirac delta is defined by a sequence of functions, as we did in this section,
the calculation needed to find impulse response functions must involve sequence of functions
and limits. The Laplace transform method used on generalized functions allows us to hide
all the sequences and limits. This is true not only for the derivative operator L(y) =y’ but
for any second order differential operator with constant coefficients.
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Definition 4.4.8. A solution of the initial value problem with a Dirac’s delta source
y'tay tay=06t—c, y0)=v,  Y(0)=uy, (4.4.5)
where ay, o, Yo, Y1, and ¢ € R, are given constants, is a function
y(t) = lim y,(t),
where the functions y,, with n > 1, are the unique solutions to the initial value problems
Untayptaoyn=0n(t—c),  yn(0) =5,  y,(0)=ui, (4.4.6)
and the source 0, satisfy lim, o 0,(t —c) = 0(t — ¢).

The definition above makes clear what do we mean by a solution to an initial value problem
having a generalized function as source, when the generalized function is defined as the limit
of a sequence of functions. The following result says that the Laplace transform method
used with generalized functions hides all the sequence computations.

Theorem 4.4.9. The function y is solution of the initial value problem
y'tay tay=96t-c, y0)=v, Y(0)=y, =0,
iff its Laplace transform satisfies the equation

(2 0] = st = 9:) + s (s LIy] — ) — a0 Lly] = ™"

This Theorem tells us that to find the solution y to an initial value problem when the source
is a Dirac’s delta we have to apply the Laplace transform to the equation and perform the
same calculations as if the Dirac delta were a function. This is the calculation we did when
we computed the impulse response functions.

Proof of Theorem 4.4.9: Compute the Laplace transform on Eq. (4.4.6),

Llyy] + a: Ly, ] + ao Llyn] = L[0n(t — )]

Recall the relations between the Laplace transform and derivatives and use the initial con-
ditions,

Llyn) = s Llyn) — sy — v, LY'] = 5 L{yn] — b,
and use these relation in the differential equation,

(% + ass + ao) Llyn] — sy0 — Y1 — asyo = L[0,(t — ¢))],
Since ¢, satisfies that lim,, o, 0, (t — ¢) = §(¢t — ¢), an argument like the one in the proof of
Theorem 4.4.5 says that for ¢ > 0 holds

Lop(t—c)]=L[0{t—c)] = lim L[o(t—c)]=e".

n— oo

Then
CcS .

(s> + ars +ao) lim Lyn] — sYo — Y1 — a1y = €~
n— o0

Interchanging limits and Laplace transforms we get
(32 +ass +ao) LIy — sYo — Y1 — aryo = €,
which is equivalent to
(s* LIyl = syo — y1) + a1 (s LIy = yo) — a0 LIy] = ™.
This establishes the Theorem. O
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4.4.6. Exercises.

4.4.1.- * Find the solution to the initial 4.4.2.- .
value problem

y" — 8y’ + 16y = cos(nt) §(t — 1),
y(0)=0, y(0)=0.

221
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4.5. Convolutions and Solutions

Solutions of initial value problems for linear nonhomogeneous differential equations can be
decomposed in a nice way. The part of the solution coming from the initial data can be
separated from the part of the solution coming from the nonhomogeneous source function.
Furthermore, the latter is a kind of product of two functions, the source function itself and
the impulse response function from the differential operator. This kind of product of two
functions is the subject of this section. This kind of product is what we call the convolution
of two functions.

4.5.1. Definition and Properties. One can say that the convolution is a general-
ization of the pointwise product of two functions. In a convolution one multiplies the two
functions evaluated at different points and then integrates the result. Here is a precise
definition.

Definition 4.5.1. The convolution of functions f and g is a function f % g given by

(f*g)(t / f(r)g(t —7)d (4.5.1)

Remark: The convolution is defined for functions f and g such that the integral in (4.5.1) is
defined. For example for f and g piecewise continuous functions, or one of them continuous
and the other a Dirac’s delta generalized function.

Example 4.5.1. Find f * g the convolution of the functions f(t) = e~* and g(t) = sin(#).

Solution: The definition of convolution is,
t
(f*g)(t) = / e Tsin(t — 1) dr.
0
This integral is not difficult to compute. Integrate by parts twice,
t t
/ e " sin(t —7)dr = [e*T cos(t — T)] — {677 sin(t — T)} — / e " sin(t — 1) dr,
0 0
that is,
t
2/ e " sin(t —71)dr = [6_7 cos(t — T)]
0

We then conclude that

t t

0 0

¢ t
=e ' —cos(t) — 0 +sin(t).

0

- [e_T sin(t — T)]

0

(f*g)(t) = z[e”" +sin(t) — cos(t)]. (4.5.2)

<

N =

Example 4.5.2. Graph the convolution of
f(7) = u(r) —u(r — 1),

() 2¢7% for 70
A 0 for 7<0.

Solution: Notice that

() 2¢%" for 7<0
N7 = 0 for 7>0.
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Then we have that
20201 for <t
0 for T>t¢.

gt =7) = g(=(7 = 1)) {

In the graphs below we can see that the values of the convolution function f % g measure
the overlap of the functions f and g when one function slides over the other.

Z=-02 / Z-02 20 Tui
z = v Z T g g v 7
s e Pt
p 3 t i T " 7
Z-135 20 Z-2.5 5 -
T T z = T T B 3 Tz T Tz
o= £e§ = feg
T Tt ' z 3 14 1 r
F1GURE 10. The graphs of f, g, and f xg.
<

A few properties of the convolution operation are summarized in the Theorem below.
But we save the most important property for the next subsection.

Theorem 4.5.2 (Properties). For every piecewise continuous functions f, g, and h, hold:
(i) Commutativity: fxg=g=x[;

(ii) Associativity: fx(gxh)=(fxg)*h;

(iii) Distributivity: — f*(g+h)=fxg+ f*h;

(iv) Neutral element: f*0=0;
(v) Identity element: f 6= f.
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Proof of Theorem 4.5.2: We only prove properties (i) and (v), the rest are left as an
exercise and they are not so hard to obtain from the definition of convolution. The first
property can be obtained by a change of the integration variable as follows,

(f )t /f gt — ) d

Now introduce the change of variables, 7 =t — 7, which implies d7 = —d7, then

(f #9)(t /f #)(-1) d

so we conclude that
(f+g)(t) = (g% f)(t).
We now move to property (v), which is essentially a property of the Dirac delta,

/f 5(t —7)dr = f(t).

This establishes the Theorem. O

4.5.2. The Laplace Transform. The Laplace transform of a convolution of two func-
tions is the pointwise product of their corresponding Laplace transforms. This result will
be a key part in the solution decomposition result we show at the end of the section.

Theorem 4.5.3 (Laplace Transform). If both L[g] and L[g] exist, including the case where
either f or g is a Dirac’s delta, then

L[f = g] = L[f] L]g]. (4.5.3)

Remark: It is not an accident that the convolution of two functions satisfies Eq. (4.5.3).
The definition of convolution is chosen so that it has this property. One can see that this is
the case by looking at the proof of Theorem 4.5.3. One starts with the expression L[f] L[g],
then changes the order of integration, and one ends up with the Laplace transform of some
quantity. Because this quantity appears in that expression, is that it deserves a name. This
is how the convolution operation was created.

Proof of Theorem 4.5.3: We start writing the right hand side of Eq. (4.5.1), the product
L[f] L[g]. We write the two integrals coming from the individual Laplace tranbforms and
we rewrite them in an appropriate way.

c)eld = [ e a] [T et ai

- /Ooo e g (f) (/OOO et f(t) dt) di
_ /0 o) ( /0 T emat gy dt) df,
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where we only introduced the integral in ¢ as a constant inside the integral in t. Introduce
the change of variables in the inside integral 7 =t + ¢, hence d7 = dt. Then, we get

L[f] Llg] = /OOO 9(®) (/:o e F(r — ) dT) di (4.5.4)
= /000 /:0 e 5T g(t) f(r —t)drdt. (4.5.5)

Here is the key step. We must switch the order of
integration. From Fig. 11 we see that changing the
order of integration gives the following expression,

clf] £lg) = / / =57 o(@) f(r — ) didr. ,
o Jo
Then, is straightforward to check that Ao

ctiel = [ e ([ atd - dai) ar SEEn
0 T

bt

[ e nma

=Lgxfl = L[fIL[g] = L[f *g].
This establishes the Theorem. O

FIGURE 11. Domain of
integration in (4.5.5).

Example 4.5.3. Compute the Laplace transform of the function u(t) = /t e 7 sin(t —
T)dr. ’
Solution: The function v above is the convolution of the functions
fy=e"",  g(t) =sin(t),
that is, u = f % g. Therefore, Theorem 4.5.3 says that
Llu) = L[f = g] = L[f] L]g]-

Since,

1 . 1
S+1’ ‘C[g] :‘C[bln(t)]_ 82+17

we then conclude that L[u] = L[f * g] is given by

LIf]=Lle™] =

Lfsg=— .
[f q] (S + 1)(82 I 1)
t
Example 4.5.4. Use the Laplace transform to compute u(t) = / e~ 7 sin(t — 1) dr.
0
Solution: Since u = f x g, with f(¢) = e~¢ and g(t) = sin(#), then from Example 4.5.3,

1
Llu] = L[f xg] = CESNCES)
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A partial fraction decomposition of the right hand side above implies that

11 (1-s)
Ll = §<(s+1) N (s2+1))

_ 1 1 1 i
= 5((s+1) + (s2+1) B (82+1))
= %(L[e_t} + Llsin(t)] — ﬁ[COS(t)])'
This says that

u(t) = S (¢ +sin(t) — cos ).

So, we recover Eq. (4.5.2) in Example 4.5.1, that is,

(f*g)(t) = 5 (e " +sin(t) — cos(t)),

N =

<

t

Example 4.5.5. Find the function g such that f(t) = / sin(47) g(t—7) d7 has the Laplace
s 0

(s2+16)((s —1)249)°

Solution: Since f(t) = sin(4t) * g(¢), we can write

(2+16)((s—1)2+9) L[f] = L[sin(4t) * g(t)]

transform  L[f] =

= L[sin(4t)] L]g]

4
= m Llgl,
so we get that
4 ] 1 s
——— L[g] = = Llg=-—"——-
)R e To T sy L P v
We now rewrite the right-hand side of the last equation,
1 (s—1+1) 1 (s—1) 1 3
Lol =1G-mese = =3 ((5—1)2+32 *3 (5—1)2+32>’

that is,

Llg] = i (E[cos(?)t)](s — 1)+ %E[Sin(St)](s - 1)) - (g[ef cos(3t)] + %L’[et sin(3t)]),

RNy

which leads us to , !
g(t) = 1 e (COS(St) +3 sin(3t)>
<

4.5.3. Solution Decomposition. The Solution Decomposition Theorem is the main
result of this section. Theorem 4.5.4 shows one way to write the solution to a general initial
value problem for a linear second order differential equation with constant coefficients. The
solution to such problem can always be divided in two terms. The first term contains
information only about the initial data. The second term contains information only about
the source function. This second term is a convolution of the source function itself and the
impulse response function of the differential operator.
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Theorem 4.5.4 (Solution Decomposition). Given constants aq, as, Yo, Y1 and a piecewise
continuous function g, the solution y to the initial value problem

y' +ay +acy=yg(t), y(0) =y, ¥ (0) =y, (4.5.6)

can be decomposed as

y(t) = yn(t) + (ys = 9) (1), (4.5.7)
where yy, is the solution of the homogeneous initial value problem
Yo +asyy +aoyn =0, ya(0) =vo,  y;,(0) =y, (4.5.8)

and ys s the impulse response solution, that is,

ys +a1ys +aoys = 6(t), ys(0) =0, y5(0)=0.

Remark: The solution decomposition in Eq. (4.5.7) can be written in the equivalent way

y(t) = yn(t) +/0 ys(T)g(t — 7)dr.

Also, recall that the impulse response function can be written in the equivalent way

yéiﬁfl{;(—sﬂ, c#0, and y(;:ﬁ’l[]%], c=0.

Proof of Theorem4.5.4: Compute the Laplace transform of the differential equation,
LIy")+ as L] + a0 LIy] = L[g(t)].
Recalling the relations between Laplace transforms and derivatives,
Lly"] = 57 Lyl = Yo — v, Lly'] = s L[y] = vo.
we re-write the differential equation for y as an algebraic equation for L[y],
(s + ars + ao) LY — syo — y1 — aryo = L[g(1)]-
As usual, it is simple to solve the algebraic equation for L[y],
(s +a:)yo + 41 1
(s2+as+a,) (s2+as+a,)
Now, the function yy, is the solution of Eq. (4.5.8), that is,
(s +a)yo+us
L =

[yh] (82 + a5+ ao)

And by the definition of the impulse response solution ys we have that

1
Llys) = Frasta)

—CS

Lly) = Llg(®)]-

These last three equation imply,
Lly] = LIyn] + L[ys] L[g()]-

This is the Laplace transform version of Eq. (4.5.7). Inverting the Laplace transform above,

y(t) = yn(t) + L7 Llys] Lo ()]

Using the result in Theorem 4.5.3 in the last term above we conclude that

y(t) = yn(t) + (ys * 9)(1)-
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Example 4.5.6. Use the Solution Decomposition Theorem to express the solution of
y'+2y +2y=9g(@t), y(0)=1, y'(0)=-1
Solution: We first find the impuse response function

ys(t) = L1 [Zﬁ}, p(s) = 5%+ 25 + 2.

since p has complex roots, we complete the square,
2 +25+2=52+25+1-1+2=(s+1)>+1,

so we get
1

RS -
us () (s+1)2+1
We now compute the solution to the homogeneous problem
Y 2y, +2y, =0,  yp(0)=1, y,(0)=-1L
Using Laplace transforms we get
Llys] + 2 Llyn] + 2 Lyn] =0,
and recalling the relations between the Laplace transform and derivatives,
(s* Llyn] = syn(0) = y1,(0)) +2(Lyh] = s Llyn] — yn(0)) + 2L[yn] = 0,
using our initial conditions we get (52 +2s+2) L[ys] —s+1—2 =0, so
(s+1) (s+1)

Ll = s ~ Gt

] = ys(t) = e " sin(t).

so we obtain
yn(t) = E[e_t cos(t)}.

Therefore, the solution to the original initial value problem is

y(t) =yn(t) + (ys x9)(t) = y(t) =e " cos(t) + /0/ e " sin(r) g(t — 1) dt.

Example 4.5.7. Use the Laplace transform to solve the same IVP as above.
y'+2y +2y=g(t), y(0)=1, y(0)=-1

Solution: Compute the Laplace transform of the differential equation above,
Ly T+ 2Ly +2L[y] = Llg(t)],
and recall the relations between the Laplace transform and derivatives,
Lly"] = s Lly] = sy(0) —y'(0), LIyl = sLly] - y(0).
Introduce the initial conditions in the equation above,
Lly" =Lyl —s(1) = (-1), Lly]=sLly -1,
and these two equation into the differential equation,
(s +25+2)Lly] —s+1—2=L[g(t)].

Reorder terms to get

(s+1) 1
s2+254+2)  (s2+25+2)

Lly] = ( L[g(t)].
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Now, the function yy, is the solution of the homogeneous initial value problem with the same
initial conditions as y, that is,

(s+1) (s+1) —t
L = = =L t)].
vl (s2+2s+2) (s+1)2+1 e cos(t)
Now, the function y;s is the impulse response solution for the differential equation in this

Example, that is,

1 1
L = = = —t g .
eL1ys] (2+25+2) (s+1)2+1 Lle™ sin(®)
If we put all this information together and we get
Llyl = Llyn] + Llys] LIg1)] = y(t) = yn(t) + (y5 x 9)(1),

More explicitly, we get

ot

y(t) = e " cos(t) + /0 e Tsin(7) g(t — 7) dr.
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4.5.4. Exercises.

4.5.1.- .

4. THE LAPLACE TRANSFORM METHOD

4.5.2.- .



CHAPTER 5

Systems of Linear Differential Equations

Newton’s second law of motion for point particles is one of the first differential equations
ever written. Even this early example of a differential equation consists not of a single
equation but of a system of three equation on three unknowns. The unknown functions are
the particle three coordinates in space as function of time. One important difficulty to solve
a differential system is that the equations in a system are usually coupled. One cannot solve
for one unknown function without knowing the other unknowns. In this chapter we study
how to solve the system in the particular case that the equations can be uncoupled. We call
such systems diagonalizable. Explicit formulas for the solutions can be written in this case.
Later we generalize this idea to systems that cannot be uncoupled.

231
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5.1. General Properties

This Section is a generalization of the ideas in § 2.1 from a single equation to a system of
equations. We start introducing a linear system of differential equations with variable coef-
ficients and the associated initial value problem. We show that such initial value problems
always have a unique solution. We then introduce the concepts of fundamental solutions,
general solution, fundamental matrix, the Wronskian, and Abel’s Theorem for systems. We
assume that the reader is familiar with the concepts of linear algebra given in Chapter 8.

5.1.1. First Order Linear Systems. A single differential equation on one unknown
function is often not enough to describe certain physical problems. For example problems
in several dimensions or containing several interacting particles. The description of a point
particle moving in space under Newton’s law of motion requires three functions of time—
the space coordinates of the particle—to describe the motion together with three differential
equations. To describe several proteins activating and deactivating each other inside a cell
also requires as many unknown functions and equations as proteins in the system. In this
section we present a first step aimed to describe such physical systems. We start introducing
a first order linear differential system of equations.

Definition 5.1.1. An n x n first order linear differential system is the equation
2 (t) = A(t) =(t) + b(t), (5.1.1)

where the n X n coefficient matriz A, the source n-vector b, and the unknown n-vector x are
given in components by

api(t) - a(t) bi(t) x4 (1)
Alt)= | o, k= ] w) =
an1(t) o ann(t) bn(t) Zp(t)

The system in 5.1.1 is called homogeneous iff the source vector b= 0, of constant coef-
ficients iff the matriz A is constant, and diagonalizable iff the matrixz A is diagonalizable.

Remarks:
z3(t)
(a) The derivative of a a vector valued function is defined as @/ (t) =
(1)

n

y the definition of the matrix-vector product, Eq. (5.1.1) can be written as
b) By the definiti f th i d Eq. (5.1.1 b i
2y (t) = an (t) 2 (t) + -+ + a1n(t) 2a(t) + b1 (1),

2, () = an1(t) 21 (8) + -+ + ann(t) 0 (t) + ba(1).
(¢) We recall that in § 8.3 we say that a square matrix A is diagonalizable iff there exists
an invertible matrix P and a diagonal matrix D such that A = PDP~!.

A solution of an n x n linear differential system is an n-vector valued function @, that
is, a set of n functions {z,,--- ,z,}, that satisfy every differential equation in the system.
When we write down the equations we will usually write « instead of x(t).

Example 5.1.1. The case n = 1 is a single differential equation: Find a solution x; of

o = a1 (t) zy + by(t).
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Solution: This is a linear first order equation, and solutions can be found with the inte-
grating factor method described in Section 1.2. <

Example 5.1.2. Find the coefficient matrix, the source vector and the unknown vector for
the 2 x 2 linear system

1‘/1 = an(t) T, + Cl12(t) Ty + g1(t),
xh = a1 (t) 1 + age(t) o, + go(t).

Solution: The coefficient matrix A, the source vector b, and the unknown vector x are,

ao=[ofd o) vo=[0) 0= [0

Example 5.1.3. Use matrix notation to write down the 2 x 2 system given by
Th = a4 — 25,

T, = —T; + T,
Solution: In this case, the matrix of coefficients and the unknown vector have the form
1 -1 _lza(t)
A= [—1 1} e = [wg(t) '
This is an homogeneous system, so the source vector b = 0. The differential equation can
be written as follows,

/

Ty =Ty — Ty x! 1 —1| |z

= —x +x L}} - {1 1] [xl} o= e
2 = 1 2 2 2

<
Example 5.1.4. Find the explicit expression for the linear system ' = Ax+ b, where
1 3 et )
=l il o=l )
Solution: The 2 x 2 linear system is given by
x! 1 3] [z, et 2 = xy + 3, + €,
/1 = 3 1 + 2 3t ~ / 3¢
Ly T € Ty = 3Ty + Ty + 27",
<

Example 5.1.5. Show that the vector valued functions z(*) = E et and 2@ = B] et

are solutions to the 2 x 2 linear system @ = Ax, where A = B :;} .

Solution: We compute the left-hand side and the right-hand side of the differential equation
above for the function (") and we see that both side match, that is,

@ 3 =20 |2 o A 2t o |2] 2 Ly |2 2\ |2 2
Az —{2 _2:||:1:|6 —|:26 —216, e =1 (e>—12e,
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so we conclude that (")’ = Az(*). Analogously,

@ _ |3 20|11 ¢ |-l ¢ |1 e e |1 A Y
Az _[2—2][2}6 _{—26_ 2| ¢ 7 ¥ _2(e>_ 2] >
so we conclude that (2’ = Az®. <

Example 5.1.6. Find the explicit expression of the most general 3 x 3 homogeneous linear
differential system.

Solution: This is a system of the form « = A(t) x, with A being a 3 x 3 matrix. Therefore,
we need to find functions x,, x,, and x5 solutions of

li = au(t) Ty + alz(t) Lo + ai13 (t) I3

(121(t) Ty + 22 (t) Ty + a3 (t) I3

as1 (t) ;4 aza(t) xy + azs(t) as.

I
12

/
ZL‘B

<

5.1.2. Existence of Solutions. We first introduce the initial value problem for linear
differential equations. This problem is similar to initial value problem for a single differential
equation. In the case of an n x n first order system we need n initial conditions, one for
each unknown function, which are collected in an n-vector.

Definition 5.1.2. An Initial Value Problem for an n x n linear differential system is
the following: Given an n X n matriz valued function A, and an n-vector valued function b,
a real constant t,, and an n-vector x,, find an n-vector valued function x solution of

¥ = A(t) z+ b(t), z(ty) = .

Remark: The initial condition vector @, represents n conditions, one for each component
of the unknown vector .

Example 5.1.7. Write down explicitly the initial value problem for ¢ = {?} given by
2

J — Az, m(O)E], AB ﬂ

Solution: This is a 2 x 2 system in the unknowns x,, x,, with two linear equations
Tl = x + 32,
xh = 33, + X,

and the initial conditions x;(0) = 2 and x,(0) = 3. <

The main result about existence and uniqueness of solutions to an initial value problem
for a linear system is also analogous to Theorem 2.1.2

Theorem 5.1.3 (Existence and Uniqueness). If the functions A and b are continuous on
an open interval I C R, and if x, is any constant vector and t, is any constant in I, then
there exist only one function , defined an interval I C I with t, € I, solution of the initial
value problem

¥ = A(t) z+ b(t), x(ty) = . (5.1.2)
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Remark: The fixed point argument used in the proof of Picard-Lindel6f’s Theorem 1.6.2
can be extended to prove Theorem 5.1.3. This proof will be presented later on.

5.1.3. Order Transformations. There is a relation between solutions to n x n sys-
tems of linear differential equations and the solutions of n-th order linear scalar differential
equations. This relation can take different forms. In this section we focus on the case of
n = 2 and we show two of these relations: the first order reduction and the second order
reduction.

It is useful to have a correspondence between solutions of an nxn linear system and an n-
th order scalar equation. One reason is that concepts developed for one of the equations can
be translated to the other equation. For example, we have introduced several concepts when
we studied 2-nd order scalar linear equations in § 2.1, concepts such as the superposition
property, fundamental solutions, general solutions, the Wronskian, and Abel’s theorem. It
turns out that these concepts can be translated to 2 x 2 (and in general to n x n) linear
differential systems.

Theorem 5.1.4 (First Order Reduction). A function y solves the second order equation

Y+ a(t)y + ao(t)y = b(t), (5.1.3)

iff the functions x; =y and x, = 3y are solutions to the 2 X 2 first order differential system
T = xy, (5.1.4)

xh = —ao(t) xy — as(t) xo + b(t). (5.1.5)

Proof of Theorem 5.1.4:
(=) Given a solution y of Eq. (5.1.3), introduce the functions z; = y and z, = y’. Therefore
Eq. (5.1.4) holds, due to the relation

zy =y =,
Also Eq. (5.1.5) holds, because of the equation
v, =9y" = —a,(t)y —a,(t)y +b(t) =z =—ae(t)x —ay(t)z, +b(t).
(«=) Differentiate Eq. (5.1.4) and introduce the result into Eq. (5.1.5), that is,
o) =, = x]=—a(t)z, —ay(t)z; +0b(t).
Denoting y = z1, we obtain,
Y +a(t)y + ao(t)y = b(t).
This establishes the Theorem. ]
Example 5.1.8. Express as a first order system the second order equation

y" + 2y + 2y = sin(at).

Solution: Introduce the new unknowns
=y, T,=vy = T, =ux,
Then, the differential equation can be written as
x, + 2z, + 23, = sin(at).

We conclude that
T = 1y, x, = —2x; — 2z, + sin(at).
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Remark: The transformation in Theorem 5.1.4 can be generalized to n xn linear differential
systems and n-th order scalar linear equations, where n > 2.

We now introduce a second relation between systems and scalar equations.

Theorem 5.1.5 (Second Order Reduction). Any 2 X 2 constant coefficients linear system

¥ =Azx, with x= [ml} , can be written as second order equations for x, and x,,
2

' —tr(A) 2 +det(A)z= 0. (5.1.6)

Furthermore, the solution to the initial value problem o = Az, with x(0) = @, also solves
the initial value problem given by Eq. (5.1.6) with initial condition

z(0) = xo, 2 (0) = Awx,. (5.1.7)

Remark: In components, Eq. (5.1.6) has the form
z} —tr (A) 2} + det(A) z, = 0, (5.1.8)
xl —tr (A) 2 + det(A) z, = 0.

First Proof of Theorem 5.1.5: We start with the following identity, which is satisfied by

every 2 X 2 matrix A, (exercise: prove it on 2 X 2 matrices by a straightforward calculation)
A? —tr (A) A+det(A) I =0.

This identity is the particular case n = 2 of the Cayley-Hamilton Theorem, which holds for
every n X n matrix. If we use this identity on the equation for &’ we get the equation in
Theorem 5.1.5, because

t' = (Az) = Ad = A2z = tr (A) Az — det(A)[=.
Recalling that Az = @/, and Iz = x, we get the vector equation
' —tr(A) 2 +det(A)z= 0.

The initial conditions for a second order differential equation are (0) and «/(0). The first
condition is given by hypothesis, (0) = a,. The second condition comes from the original
first order system evaluated at ¢ = 0, that is «/(0) = Ax(0) = Am,. This establishes the
Theorem. ]

Second Proof of Theorem 5.1.5: This proof is based on a straightforward computation.

Denote A = |11 @12 , then the system has the form
az1  a22

T, = a1 Ty + a12 T, (5.1.10)
T = a1 Ty + A2 Ty. (5.1.11)
We start considering the case ajs # 0. Compute the derivative of the first equation,
2 = a1 2 + ajp ).
Use Eq. (5.1.11) to replace z/, on the right-hand side above,
2} = a1 2] + ar2(az @1 + axe @,).
Since we are assuming that a;2 # 0, we can replace the term with z, above using Eq. (5.1.10),
(2] — a11 @)

1 !
Ty = 011 %, + 612021 Ty + Q12022 a
12
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A simple cancellation and reorganization of terms gives the equation,
zy = (a11 + ag2) o) + (a12a21 — ar1a92) 1.
Recalling that tr (A) = a1 + agg, and det(A) = aj1a92 — A12a21, We get
2 —tr (A) 2z} + det(A) z, = 0.

The initial conditions for x, are x,(0) and 2(0). The first one comes from the first compo-
nent of z(0) = x,, that is

21(0) = Tos. (5.1.12)
The second condition comes from the first component of the first order differential equation
evaluated at t = 0, that is @/(0) = Ax(0) = Ax,. The first component is

21(0) = a11 Toy + @12 Toa- (5.1.13)

Consider now the case aj2 = 0. In this case the system is

Ty = an T

:17; = Q21 T1 + 22 Ty.
In this case compute one more derivative in the first equation above,

2! = ay .
Now rewrite the first equation in the system as follows
ass (=2} +arp @) = 0.
Adding these last two equations for x; we get
) — a1 @)+ age (=2, + a1 2,) =0,

So we get the equation

7
Ty —

(a11 + aze) 2} + (ar1a22) z, = 0.
Recalling that in the case a12 = 0 we have tr (A) = a11 + a2, and det(A) = aj1a22, we get
@) —tr (A) 2} + det(A) z, = 0.
The initial conditions are the same as in the case aj2 # 0. A similar calculation gives x,
and its initial conditions. This establishes the Theorem. ]
Example 5.1.9. Express as a single second order equation the 2 x 2 system and solve it,
T, = —x; + 3y,
Th =21 — Ty
Solution: Instead of using the result from Theorem 5.1.5, we solve this problem following
the second proof of that theorem. But instead of working with x,, we work with x,. We start

computing x; from the second equation: x, = x} + z,. We then introduce this expression
into the first equation,

(@) + @) = —(2, + 3,) + 32, = ) +a,=—a, — x5 + 315,
so we obtain the second order equation
xy + 2z}, — 2z, = 0.
We solve this equation with the methods studied in Chapter 2, that is, we look for solutions

of the form x,(t) = e, with r solution of the characteristic equation

1
P24+22r—2=0 = ri:§[—2j: 1+8] = rp=-1++3.
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Therefore, the general solution to the second order equation above is
Ty =y AL e(lﬂ/gﬁ, ¢, c- € R
Since z, satisfies the same equation as x,, we obtain the same general solution

x, =@, 6(1+\/§)t 1 é 6(1*\/§>t7 ¢, 6. €R.

Example 5.1.10. Write the first order initial value problem

T ey

as a second order initial value problem for z;. Repeat the calculations for x,.

Solution: From Theorem 5.1.5 we know that both x, and z, satisfy the same differential
equation. Since tr (A) =144 =5 and det(A4) = 4 — 6 = —2, the differential equations are

" / P - o
Ty —oxy —2x, =0, Ty — DTy — 225 = 0.

From the same Theorem we know that the initial conditions for the second order differential
equations above are (0) = x, and @/ (0) = A x, that is

REXOINNE poo Ja@] [1o2] [5]  [17
2(0) = L;Q(O)] - {6] 2(0) = [xz(()) 3 4] |6] T [39)
therefore, the initial conditions for x; and xz, are

z,(0) =5, z(0) =17, and  2,(0) =6, 2(0)=39.
<

5.1.4. Homogeneous Systems. Solutions to a linear homogeneous differential sys-
tem satisfy the superposition property: Given two solutions of the homogeneous system,
their linear combination is also a solution to that system.

Theorem 5.1.6 (Superposition). If the vector functions ), ) are solutions of
V' = Az®) 2 = Az,
then the linear combination = a Y +bx®, for all a,b € R, is also solution of

¥ =Az

Remark: This Theorem contains two particular cases:

(a) a=0b=1: If ) and ® are solutions of an homogeneous linear system, so is z(*) +z(2).
(b) b=0 and a arbitrary: If () is a solution of an homogeneous linear system, so is az(*).

Proof of Theorem 5.1.6: We check that the function = = az® + bz® is a solution of
the differential equation in the Theorem. Indeed, since the derivative of a vector valued
function is a linear operation, we get

= (aa:(l) + bw(2))/ =az® +ba?’
Replacing the differential equation on the right-hand side above,
o =aAzV) +bAL®.
The matrix-vector product is a linear operation, A(a:c(l) + biL'(Q)) =a Az +b Az hence,

= A(aw(l) + bm(z)) = o =Azx
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This establishes the Theorem. O

Example 5.1.11. Verify that =(*) = E] e=2 and z® = [_ﬂ et and z(V + 2 are

solutions to the homogeneous linear system

;o |1 -3
T = Ax, A—[g 1]

Solution: The function ) is solution to the differential equation, since

1 1 -3| |1 —2 1
(17— _ —2t (1) — -2t _ -2t _ _ —2t
V' = -2 [J e Az\Y = [3 1] [1} e = [2] e = -2 [1] e ‘.

We then conclude that «(Y)’ = Az(Y). Analogously, the function =(® is solution to the
differential equation, since

-1 1 -3 (-1 —4 -1
(2) 7 _ 4t (2) _ 4t __ 4t 4t
T —4|:1:|6, Az —{_3 1:||:1:|6 —|:4:|€ —4|:1:|6.

We then conclude that 2’ = Az(>. To show that z(*) + 2(® is also a solution we could
use the linearity of the matrix-vector product, as we did in the proof of the Theorem 5.1.6.
Here we choose the straightforward, although more obscure, calculation: On the one hand,

2t 4t

e % —e / —2e7 2t _ 4ett
gV + 2 = |:62t n 64t] = (2% +a0) = {_Qezt + 464t] '

On the other hand,

A(m(i) T :1:(2)) _ { 1 —3] [e—% — 641 _ { =2t _ oAt _ 3o-2t _ 3.4t } 7

-3 1 e—2t +€4t —36_2t +3€4t +€_2t +€4t
that is,
—2e7 2t — et
Az +2®) = {_26—215 + 46415}
We conclude that (w(l) + m(z))' = A(x(l) + m(2))‘ <

We now introduce the notion of a linearly dependent and independent set of functions.

Definition 5.1.7. A set of n vector valued functions {&1),--- ™} is called linearly
dependent on an interval I € R iff for all t € I there exist constants ¢y, -+ , ¢y, not all of
them zero, such that it holds

V() + -+ e, 2™ () = 0.

A set of n vector valued functions is called linearly independent on I iff the set is not
linearly dependent.

Remark: This notion is a generalization of Def. 2.1.6 from two functions to n vector valued
functions. For every value of t € R this definition agrees with the definition of a set of linearly
dependent vectors given in Linear Algebra, reviewed in Chapter 8.
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We now generalize Theorem 2.1.7 to linear systems. If you know a linearly independent
set of n solutions to an n x n first order, linear, homogeneous system, then you actually know
all possible solutions to that system, since any other solution is just a linear combination of
the previous n solutions.

Theorem 5.1.8 (General Solution). If {21, --- 2™} is a linearly independent set of so-
lutions of the n X n system ¥ = Az, where A is a continuous matriz valued function, then
there exist unique constants ¢y, - , ¢y such that every solution x of the differential equation
o = Ax can be written as the linear combination

a(t) = ey @ () + -+ cp ™ (D). (5.1.14)
Before we present a sketch of the proof for Theorem 5.1.8, it is convenient to state the

following the definitions, which come out naturally from Theorem 5.1.8.

Definition 5.1.9.

(a) The set of functions {x),--- 2™} is a fundamental set of solutions of the equation
x = Axiff the set {x(V),--- 2™} is linearly independent and =V’ = Az, for every
1=1,---,n.

(b) The general solution of the homogeneous equation ¥ = Ax denotes any vector valued
function xzen that can be written as a linear combination

wgen(l‘) = m(i)(t) 4+ 4ep, 2(7) (t)7

where &V, - ™ are the functions in any fundamental set of solutions of @ = A,
while ¢y, -+ , ¢y are arbitrary constants.

Remark: The names above are appropriate, since Theorem 5.1.8 says that knowing the
n functions of a fundamental set of solutions is equivalent to knowing all solutions to the
homogeneous linear differential system.

Example 5.1.12. Show that the set of functions {w(i) = [ﬂ e 2t 2 = [_11] e4t} is a

. 1 —
fundamental set of solutions to the system & = Az, where A = [_ 3 13 ] .
Solution: In Example 5.1.11 we have shown that () and () are solutions to the differential
equation above. We only need to show that these two functions form a linearly independent
set. That is, we need to show that the only constants c,, ¢, solutions of the equation below,
for all t € R, are ¢; = ¢, = 0, where

B —ot 4t
0=cia +c,2? =¢, H e ? + ¢ { 11} et = [Z_zt G } [cl} = X(t) e,

e Cy

where X (t) = [z (t), 2@ (t)] and ¢ = [zl] . Using this matrix notation, the linear system

2
for ¢;, ¢, has the form

X(t)e=0.

We now show that matrix X (¢) is invertible for all ¢ € R. This is the case, since its
determinant is

e—2t oAt

e—2t 4t

det(X(t)) = .

=2 42" =2e* £0 forallteR.
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Since X (t) is invertible for ¢ € R, the only solution for the linear system above is ¢ = 0,
that is, ¢; = ¢, = 0. We conclude that the set {w(1)7 :L‘(Q)} is linearly independent, so it is a
fundamental set of solution to the differential equation above. <

Proof of Theorem 5.1.8: The superposition property in Theorem 5.1.6 says that given any
set of solutions {a:(l)7 e ,w(”)} of the differential equation = A x, the linear combination
x(t) = ¢; D (t) + - + ¢, ™ (t) is also a solution. We now must prove that, in the case
that {w(l), e ,w(")} is linearly independent, every solution of the differential equation is
included in this linear combination.

Let x be any solution of the differential equation # = A . The uniqueness statement
in Theorem 5.1.3 implies that this is the only solution that at ¢, takes the value x(t,). This
means that the initial data x(t,) parametrizes all solutions to the differential equation. We
now try to find the constants {c,,--- , ¢, } solutions of the algebraic linear system

x(to) = ¢, & (to) + - + cn 2™ (t).
Introducing the notation

Cy

Cn
the algebraic linear system has the form
x(ty) = X (to) c.

This algebraic system has a unique solution ¢ for every source x(t,) iff the matrix X (t,)
is invertible. This matrix is invertible iff det(X(t,)) # 0. The generalization of Abel’s

Theorem to systems, Theorem 5.1.11, says that det (X(to)) # 0 iff the set {z®), ... 2™} is
a fundamental set of solutions to the differential equation. This establishes the Theorem. [J

Example 5.1.13. Find the general solution to differential equation in Example 5.1.5 and
then use this general solution to find the solution of the initial value problem

J — Az, m(O)ZM, A:B _;]

Solution: From Example 5.1.5 we know that the general solution of the differential equation

above can be written as
2 1 _
z(t) = ¢ L} e+, [2} et

Before imposing the initial condition on this general solution, it is convenient to write this
general solution using a matrix valued function, X, as follows

o) =% so| 2] =+ a0 =x0

e Cy
where we introduced the solution matrix and the constant vector, respectively,
2¢?t et c
X(t) = = .
(t) [ o2t 9e—t| c c
The initial condition fixes the vector e, that is, its components c;, c,, as follows,

-1

z0)=X(0)c = c=[X(0)] 0).
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Since the solution matrix X at ¢ = 0 has the form,

X(0) = E ﬂ = [X(Oﬂ_l :é [21 —21}7

introducing [X (0)} ! in the equation for ¢ above we get
. 1 2 =1 (1] _[-1 ¢ = —1,
€= 3 |-1 2 5 | 3 - c = 3.
We conclude that the solution to the initial value problem above is given by
R P2 R VR B ) R
x(t) = L] e~ +3 {2} e ’.
<
5.1.5. The Wronskian and Abel’s Theorem. From the proof of Theorem 5.1.8

above we see that it is convenient to introduce the notion of solution matrix and Wronskian
of a set of n solutions to an n x n linear differential system,

Definition 5.1.10.

(a) A solution matriz of any set of vector functions {x),---  &™}, solutions to a dif-
ferential equation ¥ = Az, is the n X n matriz valued function
X(t)=[zV(t), -, 2™ (t)]. (5.1.15)
Xis called a fundamental matriz iff the set {x) --- 2™} is a fundamental set.

(b) The Wronskian of the set {z),--- 2™} is the function W (t) = det(X(t)).

Remark: A fundamental matrix provides a more compact way to write the general solution
of a differential equation. The general solution in Eq. (5.1.14) can be rewritten as

Cq Cq
Tgen (t) = clm(l)(t) 4 cnm(")(t) = [:B(l)(t), coe (™ (t)] Sl =X({t)e, c=
Cn, Cn
This is a more compact notation for the general solution,
Zzen(t) = X (1) c (5.1.16)

Remark: The definition of the Wronskian in Def 5.1.10 agrees with the Wronskian of
solutions to second order linear scalar equations given in Def. 2.1.9, § 2.1. We can see
this relation if we compute the first order reduction of a second order equation. So, the
Wronskian of two solutions y;, y, of the second order equation y” + a,y’ + aoy = 0, is

Y1 Y
Yi Y,

Now compute the first order reduction of the differential equation above, as in Theorem 5.1.4,

Wy1y2 =

[
T = Xy,
/
:U2 = —QoT1 — A1T5.

The solutions ¥, y, define two solutions of the 2 X 2 linear system,

o
Yy Ya



5.1. GENERAL PROPERTIES 243

The Wronskian for the scalar equation coincides with the Wronskian for the system, because
[CONNC))
x

Zy 1
1) ng)

Y Y2
/

Yy y;

Wy1y2 =

N = det([:c(l), w(z)]) =W.
2

Example 5.1.14. Find two fundamental matrices for the linear homogeneous system in
Example 5.1.11.

Solution: One fundamental matrix is simple to find, we use the solutions in Example 5.1.11,

¥ 0 ) ¥ fe—2t  _ ot
= [z, 2] = (t) = 2t et

A second fundamental matrix can be obtained multiplying by any nonzero constant each

solution above. For example, another fundamental matrix is

[2¢—2t 3e4t]

X = [2:1:(1),3a:(2)] = f((t): oot et

<

Example 5.1.15. Compute the Wronskian of the vector valued functions given in Exam-

ple 5.1.11, that is, () = B] e~2 and 2 = [11} et
Solution: The Wronskian is the determinant of the solution matrix, with the vectors placed
in any order. For example, we can choose the order [:c(l),w(z)]. If we choose the order

[m(z), m(l)], this second Wronskian is the negative of the first one. Choosing the first order
for the solutions, we get
=2t it

6—275 e4t

We conclude that W (t) = 2¢2t. <

W(t) = det ([, z?]) =

3t —t
Example 5.1.16. Show that the set of functions {ac(l) = {2663,5} , 2 = {_e ]} is

linearly independent for all ¢t € R.

e3t e—t

93t _264, that is,

Solution: We compute the determinant of the matrix X (¢) = [

e3t eft

U)(t) = 2€3t _26715

=2 -2 = w(t)=—4e*#£0 tcR.

<

We now generalize Abel’s Theorem 2.1.12 from a single equation to an n X n linear
system.

Theorem 5.1.11 (Abel). The Wronskian function W = det(X(t)) of a solution matriz

X = [m(l), e ,m(")] of the linear system @ = A(t)x, where A is an n X n continuous matrizc
valued function on a domain I C R, satisfies the differential equation
W'(t) = tr [A(t)] W(2). (5.1.17)

where tr (A) is the trace of A. Hence W is given by

W) = W(ts)e®®,  a(t) = / tr (A(r)) dr.

to
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where ty is any point in I.

Remarks:

(a) In the case of a constant matrix A, the equation above for the Wronskian reduces to
W(t) = W (to) et (D (=000,

(b) The Wronskian function vanishes at a single point iff it vanishes identically for all ¢ € I.

(¢) A consequence of (b): n solutions to the system @’ = A(t)x are linearly independent at
the initial time ¢, iff they are linearly independent for every time ¢t € I.

Proof of Theorem 5.1.11: The proof is based in an identity satisfied by the determinant
of certain matrix valued functions. The proof of this identity is quite involved, so we do not
provide it here. The identity is the following: Every n X n, differentiable, invertible, matrix
valued function Z, with values Z(t) for t € R, satisfies the identity:

d - L d
= det(2) = det(2) tr (Z %Z).

We use this identity with any fundamental matrix X = [m(l), cee m(")} of the linear homo-
geneous differential system @/ = Awx. Recalling that the Wronskian w(t) = det(X(t)), the
identity above says,

W/(t) =W(t)tr [X ' (t) X'(t)].
We now compute the derivative of the fundamental matrix,

X = [;B(l)/’... 7w(ﬂ)/] = [Aw(1)7... ,A:c(")} = AX,
where the equation on the far right comes from the definition of matrix multiplication.
Replacing this equation in the Wronskian equation we get
W(t)=W(t)tr (X TAX) = W) tr (X X" A4) = W(t)tr (A),
where in the second equation above we used a property of the trace of three matrices:
tr (ABC) = tr (CAB) = tr (BCA). Therefore, we have seen that the Wronskian satisfies
the equation
W'(t) = tr [A(t)] W(2),

This is a linear differential equation of a single function W : R — R. We integrate it using
the integrating factor method from Section 1.2. The result is

W(t) = W(t)e®®,  a(t) = /t tr [A(r)] dr.

This establishes the Theorem. O

Example 5.1.17. Show that the Wronskian of the fundamental matrix constructed with
the solutions given in Example 5.1.3 satisfies Eq. (5.1.17) above.

Solution: In Example 5.1.5 we have shown that the vector valued functions z(*) = [ﬂ et

and z(? = B] e~ ! are solutions to the system @ = Az, where A = B :g] . The matrix
26215 eft
X(t) = LQt 26—4

is a fundamental matrix of the system, since its Wronskian is non-zero,

2€2t e—t
€2t 26—t

W(t) = =del —e! = W(t) = 3.
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We need to compute the right-hand side and the left-hand side of Eq. (5.1.17) and verify
that they coincide. We start with the left-hand side,

W'(t) = 3et = W(t).
The right-hand side is
tr (A)W(t) = (3—=2)W(t) =W ().
Therefore, we have shown that W (t) = tr (A) W(t). <
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5.1.6. Exercises.

5.1.1.- . 5.1.2.- .
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5.2. Solution Formulas

We find an explicit formula for the solutions of linear systems of differential equations with
constant coefficients. We first consider homogeneous equations and later on we generalize
the solution formula to nonhomogeneous equations with nonconstant sources. Both solution
formulas for linear systems are obtained generalizing the integrating factor method for linear
scalar equations used in § 1.1, 1.2. In this section we use the exponential of a matrix, so the
reader should read Chapter 8, in particular § 8.3, and § 8.4.

We also study the particular case when the coefficient matrix of a linear differential
system is diagonalizable. In this case we show a well-known formula for the general solution
of linear systems that involves the eigenvalues and eigenvectors of the coefficient matrix. To
obtain this formula we transform the coupled system into an uncoupled system, we solve
the uncoupled system, and we transform the solution back to the original variables. Later
on we use this formula for the general solution to construct a fundamental matrix for the
linear system. We then relate this fundamental matrix to the exponential formula for the
solutions of a general linear system we found using the integrating factor method.

5.2.1. Homogeneous Systems. We find an explicit formula for the solutions of first
order homogeneous linear systems of differential equations with constant coefficients. This
formula is found using the integrating factor method introduced in § 1.1 and 1.2.

Theorem 5.2.1 (Homogeneous Systems). If A is an n X n matriz, t, € R is an arbitrary
constant, and x, is any constant n-vector, then the initial value problem for the unknown
n-vector valued function x given by

17/ = A$7 w(to) = Zo,
has a unique solution given by the formula

oft) = A1) g (5.2.1)

Remark: See § 8.4 for the definitions of the exponential of a square matrix. In particular,
recall the following properties of e, for a constant square matrix A and any s,t € R:

d
f@At:AeAtZBAtA

At\—1 At
dt )=

eAseAt — eA(ert).

)

Proof of Theorem 5.2.1: We generalize to linear systems the integrating factor method

used in § 1.1 to solve linear scalar equations. Therefore, rewrite the equation as @ — A x = 0,

where 0 is the zero n-vector, and then multiply the equation on the left by e=4?,

e My —eMAz=0 = e M —AeMz=0,

since e 4*A = Ae~“4*. We now use the properties of the matrix exponential to rewrite the
system as

e Mo + (e_At)l r=0 = (e_At:v)/ = 0.
If we integrate in the last equation above, and we denote by ¢ a constant n-vector, we get

e Mrty=c = xt)=ee,

where we used (e*At)fl = et If we now evaluate at t = t, we get the constant vector ¢,

@ = x(ty) = e =  c=e AMog,

Using this expression for ¢ in the solution formula above we get

ot) = eMe Moy, = g(t) = A0 g,
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This establishes the Theorem. O

Example 5.2.1. Compute the exponential function e?

valued function @ solution to the initial value problem

d = Az, AB ﬂ m(O)mo[mm].

and use it to express the vector-

Loz

Solution: The exponential of a matrix is simple to compute in the case that the matrix
is diagonalizable. So we start checking whether matrix A above is diagonalizable. Theo-
rem 8.3.8 says that a 2 x 2 matrix is diagonalizable if it has two eigenvectors not proportional
to each other. In oder to find the eigenvectors of A we need to compute its eigenvalues,
which are the roots of the characteristic polynomial
(1-2X) 2

2 (I1-2X)

The roots of the characteristic polynomial are

A=12%=4 & I=1£2 & X\ =3 A =-1

p(A) = det(A — A\p) =

’:(1—/\)2—4.

The eigenvectors corresponding to the eigenvalue A\, = 3 are the solutions v* of the linear
system (A — 3I3)v" = 0. To find them, we perform Gauss operations on the matrix

w2 20l e e e e[

The eigenvectors corresponding to the eigenvalue A. = —1 are the solutions v~ of the linear
system (A + Iy)v” = 0. To find them, we perform Gauss operations on the matrix

1 1 —1
AJrIQ—B 3}%{0 O] = v =-v; = v'—[l}.

Summarizing, the eigenvalues and eigenvectors of matrix A are following,

, |1 _ -1
A =3, U—L], and A\. = —1, ’U_{l}'

Then, Theorem 8.3.8 says that the matrix A is diagonalizable, that is A = PDP~!, where

1o _[3 0 L4 1[1 1
P‘[1 1}’ D‘[o —1]’ P _2[—1 1}'

Now Theorem 7?7 says that the exponential of At is given by

At Dt _1_1 -1 eSt 0 1 1 1
T =kl _[1 10 etf2[-1 1]

so we conclude that . , . .
L(e +et) (% —et)
At _ 1
e = 2 |:(63t _ e*t) (6316 +67t) . (5-22)
Finally, we get the solution to the initial value problem above,
1 (6315 +67t) (6315 o e*t) Z
_ At _ — ) ) 01
at) = eTay = 2 {(6“”’ —e ) (e )| |zonl|
In components, this means
x(t) = 1 (w01 + To2) "3" + (To1 — Top) €7
2 | (zo1 + To2) et — (To1 — To2) e t|”
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5.2.2. Homogeneous Diagonalizable Systems. A linear system o = A x is diago-
nalizable iff the coefficient matrix A is diagonalizable, which means that there is an invertible
matrix P and a diagonal matrix D such that A = PDP~!. (See § 8.3 for a review on diag-
onalizable matrices.) The solution formula in Eq. (5.2.1) includes diagonalizable systems.
But when a system is diagonalizable there is a simpler way to solve it. One transforms the
system, where all the equations are coupled together, into a decoupled system. One can solve
the decoupled system, one equation at a time. The last step is to transform the solution
back to the original variables. We show how this idea works in a very simple example.

Example 5.2.2. Find functions z,, x, solutions of the first order, 2x2, constant coefficients,
homogeneous differential system

/
Ty = Ty — Tg,

/
Ty = —Iy + T

Solution: As it is usually the case, the equations in the system above are coupled. One
must know the function x5 in order to integrate the first equation to obtain the function x.
Similarly, one has to know function z; to integrate the second equation to get function zs.
The system is coupled; one cannot integrate one equation at a time. One must integrate
the whole system together.

However, the coefficient matrix of the system above is diagonalizable. In this case the
equations can be decoupled. If we add the two equations equations, and if we subtract the
second equation from the first, we obtain, respectively,

(ry + 1) =0, (ry — 1) = 2(zy — x3).

To see more clearly what we have done, let us introduce the new unknowns y; = x; + x5,
and y, = x; — x,, and rewrite the equations above with these new unknowns,

=0,  y,=2y.

We have decoupled the original system. The equations for x; and zo are coupled, but we
have found a linear combination of the equations such that the equations for y, and y, are
not coupled. We now solve each equation independently of the other.

yy=0 = y=c,
Yp =210 = Y= e,
with ¢;, ¢, € R. Having obtained the solutions for the decoupled system, we now transform
back the solutions to the original unknown functions. From the definitions of y; and y, we

see that
1 1
w1=§(y1+y2)7 x2:§(y1_y2)-
We conclude that for all ¢;, ¢, € R the functions x,, x, below are solutions of the 2 x 2

differential system in the example, namely,

x4 (t) = % (c1 +coe?), 2,(t) = 2).

(s —cye

| =

<

The equations for x,; and x, in the example above are coupled, so we found an appropri-
ate linear combination of the equations and the unknowns such that the equations for the
new unknown functions, y; and y,, are decoupled. We integrated each equation indepen-
dently of the other, and we finally transformed the solutions back to the original unknowns
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x; and x,. The key step is to find the transformation from z,, =, to vy;, y,. For general
systems this transformation may not exist. It exists, however, for diagonalizable systems.

Remark: Recall Theorem 8.3.8, which says that an n x n matrix A diagonalizable iff A
has a linearly independent set of n eigenvectors. Furthermore, if )\;, v(¥) are eigenpairs of
A, then the decomposition A = PDP~! holds for

P=[v®, ... o™], D =diag [As, -+, An] -

For diagonalizable systems of homogeneous differential equations there is a formula for
the general solution that includes the eigenvalues and eigenvectors of the coefficient matrix.

Theorem 5.2.2 (Homogeneous Diagonalizable Systems). If the n X n constant matriz A

is diagonalizable, with a set of linearly independent eigenvectors {'v(l), e ,v(”)} and corre-
sponding eigenvalues {\y, -+, \p}, then the system @ = Ax has a general solution

Tgon (1) = c; Mt o) 4o e, Mt o™, (5.2.3)
Furthermore, every initial value problem o (t) = Ax(t), with x(t,) = @, has a unique
solution for every initial condition x, € R™, where the constants cy,--- ,c, are solution of

the algebraic linear system

T, =, eMto () oL Cn eMto (1) (5.2.4)

Remark: We show two proofs of this Theorem. The first one is just a verification that
the expression in Eq. (5.2.3) satisfies the differential equation @ = A x. The second proof
follows the same idea presented to solve Example 5.2.2. We decouple the system, we solve
the uncoupled system, and we transform back to the original unknowns. The differential
system is decoupled when written in the basis of eigenvectors of the coefficient matrix.

First proof of Theorem 5.2.2: Each function () = e v(9) for i = 1,--- ,n, is solution
of the system o = A x, because

20 =2 M, A = A (M) = N A = N N o),
hence (9 = Az, Since A is diagonalizable, the set
{:,3(1) (t) = eMto® .o g () = et ,U(n)}

is a fundamental set of solutions to the system. Therefore, the superposition property says
that the general solution to the system is

w(t) = eklt /U(i) + a4 Cn, e)\nt ,U(n).
The constants ¢, - - - , ¢, are computed by evaluating the equation above at ¢, and recalling

the initial condition x(t,) = @,. This establishes the Theorem. O

Remark: In the proof above we verify that the functions (¥ = e*it v(®) are solutions,
but we do not say why we choose these functions in the first place. In the proof below we
construct the solutions, and we find that they are the ones given in the proof above.

Second proof of Theorem 5.2.2: Since the coefficient matrix A is diagonalizable, there
exist an invertible matrix P and a diagonal matrix D such that A = PDP~!. Introduce
this expression into the differential equation and multiplying the whole equation by P!,

P la(t)=P ' (PDP") aft).

Notice that to multiply the differential system by the matrix P~ means to perform a very
particular type of linear combinations among the equations in the system. This is the linear
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combination that decouples the system. Indeed, since matrix A is constant, so is P and D.
In particular P12/ = (P_l:zz)/, hence
(P~ 'z) =D (P '=).
Define the new variable y = (Pflm). The differential equation is now given by
Y (t) = Dy(t).

Since matrix D is diagonal, the system above is a decoupled for the variable y. Transform
the initial condition too, that is, P~'a(t,) = P~'x,, and use the notation y, = P~1x,, so
we get the initial condition in terms of the y variable,

Y(to) = Yo
Solve the decoupled initial value problem y/(t) = D y(t),
y1(t) = A (1), yi(t) = e e, o et
: = = ylt)=|
Valt) = A tn(0), alt) = e, emetnt
Once y is found, we transform back to =,
cpeM?
a(t) = Py(t) = [o, - o] | | =Mt ol oo ey ey,
cp et

This is Eq. (5.2.3). Evaluating it at ¢, we get Eq. (5.2.4). This establishes the Theorem. O

Example 5.2.3. Find the vector-valued function « solution to the differential system
; |3 {12
¥ =Ax, m(O)—[Q}, A_[Q 1}

Solution: First we need to find out whether the coefficient matrix A is diagonalizable or
not. Theorem &8.3.8 says that a 2 x 2 matrix is diagonalizable iff there exists a linearly
independent set of two eigenvectors. So we start computing the matrix eigenvalues, which
are the roots of the characteristic polynomial

A2

p(A) = det(A — Alp) = ‘(1 2 (1-2)

’(1»24.

The roots of the characteristic polynomial are
A=1)2=4 & =142 & M\=3 A\ =-1

The eigenvectors corresponding to the eigenvalue A\, = 3 are the solutions v* of the linear
system (A — 3I3)v" = 0. To find them, we perform Gauss operations on the matrix

—2 2 1 -1 .. .
A—SIQ—[z _2}%[0 0] = v =v = 1)|:1:|.
The eigenvectors corresponding to the eigenvalue A. = —1 are the solutions v~ of the linear
system (A + I3)v" = 0. To find them, we perform Gauss operations on the matrix

2 2 1 1 -1
A—i—Ig:[Q 2}%{0 0] = v =-v; = v'[l}.
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Summarizing, the eigenvalues and eigenvectors of matrix A are following,

., |1 _ N
A =3, ’U—|:1:|, and A= -1, v—{l}.

Once we have the eigenvalues and eigenvectors of the coefficient matrix, Eq. (5.2.3) gives us

the general solution
1 -1
_ . 3t —t
z(t) =c.e [J—i—c-e [1],

where the coeflicients ¢, and c. are solutions of the initial condition equation

N 1 -1 [e]  [3 ] 171 1]73
ST 1] T |2 1 1]]el| ™ |2 el T2 l-1 1| 2|
We conclude that ¢, = 5/2 and ¢. = —1/2, hence

5 4 |1 1, -1 1 [5e3t et
w(t) = 5 (idt |:1:| — 5 € t |: 1:| = ﬂ:(t) = 5 |:5€3t - e_t:| .

Example 5.2.4. Find the general solution to the 2 x 2 differential system

. 13
r = Az, A_{g 1}.

Solution: We need to find the eigenvalues and eigenvectors of the coefficient matrix A. But
they were found in Example 8.3.4, and the result is

=4, o= m and A =-2 )= [_11] .

With these eigenpairs we construct fundamental solutions of the differential equation,

A =14, o) = m = 2(t) = " m 7

v we[]] e dween [

Therefore, the general solution of the differential equation is

x(t) = c, et E} +ee [ 1} , ci,c. € R,
<

The formula in Eq. 5.2.3 is a remarkably simple way to write the general solution of the
equation = Az in the case A is diagonalizable. It is a formula easy to remember, you
just add all terms of the form e*:! v*, where \;, ¥* is any eigenpair of A. But this formula
is not the best one to write down solutions to initial value problems. As you can see in
Theorem 5.2.2, we did not provide a formula for that. We only said that the constants
i, ,Cp are the solutions of the algebraic linear system in (5.2.4). But we did not write
the solution for the ¢’s. It is too complicated in this notation, though it is not difficult to
do it on every particular case, as we did near the end of Example 5.2.3.

A simple way to introduce the initial condition in the expression of the solution is with
a fundamental matrix, which we introduced in Eq. (5.1.10).
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Theorem 5.2.3 (Fundamental Matrix Expression). If the n xn constant matriz A is diago-

nalizable, with a set of linearly independent eigenvectors {v(l), e ,v(")} and corresponding
eigenvalues {Ay, -+, An}, then, the initial value problem ¥ = Ax with x(t;) = x, has a
unique solution given by

2(t) = X ()X (to) ™ xo (5.2.5)
where X (t) = [e)‘lt v . et v(")] is a fundamental matriz of the system.

Proof of Theorem 5.2.3: If we choose fundamental solutions of = A x to be
{a:(1)(t) =Mty o M () = et v(n)},
then the associated fundamental matrix is
X(t) = [e’\lt v et v(")] ,

We use this fundamental matrix to write the general solution of the differential system as
Xgen(t) = c; MPvV) o e MtvW = X (1) ¢, c=

The equation from the initial condition is now
T =2(ty) = X(to) e = c= X(t,) 'm,

which makes sense, since X (¢) is an invertible matrix for all ¢ where it is defined. Using this
formula for the constant vector ¢ we get,

alt) = X(OX(to) " .
This establishes the Theorem. O

Example 5.2.5. Find a fundamental matrix for the system below and use it to write down
the general solution to the system

;L 12
r =Ax, A—{2 1].

Solution: One way to find a fundamental matrix of a system is to start computing the
eigenvalues and eigenvectors of the coefficient matrix. The differential equation in this
Example is the same as the one given in Example 5.2.3, where we found that the eigenvalues
and eigenvectors of the coefficient matrix are

., |1 _ -1
A =3, ’U—|:1:|, and A\ = —1, v—{l}.

We see that the coefficient matrix is diagonalizable, so with the eigenpairs above we can
construct a fundamental set of solutions,

From here we construct a fundamental matrix

x0= [ ]
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Then we have the general solution zen (t) = X (t)c, where ¢ = {?} , that is,
et —e 7t fe. 1 ¢ |—1
Lgen (t) = |:63t et :| [C} A wgen(ﬂ = Cy et |:1:| +c.e ¢ [ 1:| .

<

Example 5.2.6. Use the fundamental matrix found in Example 5.2.5 to write down the
solution to the initial value problem

/ . | @os . 1 2
¥ =Az, w(O)—mo—LUOJ, A—{Q 1].

Solution: In Example 5.2.5 we found the general solution to the differential equation,
3t —t
e —e s
Tgen (1) = L’st —t } { } .
The initial condition has the form

] =0 =xoe= [} ]

We need to compute the inverse of matrix X (0),
171 1
-1 _

X0 =3 [1 1}’
so we compute the constant vector c,

el 111 1 |ze

c.|  21-1 1| |xpl|’
So the solution to the initial value problem is,

3t _ 1 1 1
_ -1 _ e e”f] 1 Tos
o) = XOXO "5 & o= |55 1] ]

If we compute the matrix on the last equation, explicitly, we get,

alt) = = [(63t e ) (e - et)] [xm] |

9 (€3t _ eft) (e3t _’_eft) Tog

Remark: In the Example 5.2.6 above we found that, for A = [1

2
9 J, holds

1 1 (6375 —i—e_t) (6375 _ e—t)
xoxo) " =5 [T o).

which is precisely the same as the expression for e/* we found in Eq. (5.2.2) in Example 5.2.2,

] [ |

This is not a coincidence. If a matrix A is diagonalizable, then e(*=%) = X (#)X (t,)~*. We
summarize this result in the theorem below.
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Theorem 5.2.4 (Exponential for Diagonalizable Systems). If an nxn matriz A has linearly
independent eigenvectors {0(1)7 e ,v(”)} with corresponding eigenvalues {\y, -+, \p}, then

et — X ()X (t,) 71,

where X (t) = [eklt O N ,U(n)] _

Proof of Theorem 5.2.4: We start rewriting the formula for the fundamental matrix
given in Theorem 5.2.3,
eMt L. 0
X(t) = [U(l)e/\1t7... ’fu(")e)\nt:l = [v(i)’... ,'u(")] : o,
0 ... et

The diagonal matrix on the last equation above can be written as

eMt L. 0

At
)

JeMt].

: .| = diag [e
0 ... et
If we recall the exponential of a matrix defined in § 8.4, we can see that the matrix above
is an exponential, since

diag [e’\it, e ,eATLt] =Pt where Dt = diag [)xlt, e ,)\nt}.

One more thing, let us denote P = [v(l), e ,v(")], as we did in § 8.3. If we use these two
expressions into the formula for X above, we get
X(t) = PePt.

Using properties of invertible matrices, given in § 8.2, and the properties of the exponential
of a matrix, given in § 8.4, we get

X(to) ™! = (PePlo) ™! = ¢~ Plopt,
where we used that (eDtO)fl = e~ P%_ These manipulations lead us to the formula
X)X (t) "' = PePle™Plop=t o X(1)X(t,) "' = PeP-t0) p~L,
Since A is diagonalizable, with A = PDP~!, we known from § 8.4 that
PeP(t—to) p—1 _ ,Alt—to)

We conclude that
X(t)X (to) ™" = eA(F=t0),
This establishes the Theorem. O

Example 5.2.7. Verify Theorem 5.2.4 for matrix A = [:1)) ﬂ and t, = 0.
Solution: We known from Example 5.2.4 that the eigenpairs of matrix A above are

=4, o= H and A

1
I
N
N
2
<
Il
|
==
| I
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This fundamental matrix at ¢ = 0 is

X(O):E _11], = X(0)7'=

Therefore we get that
- a4 _—21 171 1 1[(eft 4+ e72t) (et — =2t
1 _ e e < _
X(t)X(0)"" = L4t e—Qt] 5 {_1 J =3 {(eu Ce2) (et 4em2t)|

On the other hand, e4? can be computed using the formula e4* = PeP*P~1 where

[at 0 -1 411 1
P R e RS

Then we get
a1 —1] [e* 0 1 1) _ et —e2t
ST 1o e g |-1 1] |eft e

so we get

We conclude that et = X ()X (0)~'. <

5.2.3. Nonhomogeneous Systems. The solution formula of an initial value problem
for an nonhomogeneous linear system is a generalization of the solution formula for a scalar
equation given in § 1.2. We use the integrating factor method, just as in § 1.2.

Theorem 5.2.5 (Nonhomogeneous Systems). If A is a constant n X n matriz and b is a
continuous n-vector function, then the initial value problem

Z(t) = Aa(t) + b(t),  @(to) = a,

has a unique solution for every initial condition t, € R and x, € R™ given by
t

a(t) = A1) g, 4 A0 / e ATb(r) dr. (5.2.:6)

Jto
Remark: Since e*4% are constant matrices, an equivalent expression for Eq. (5.2.6) is

t
o(t) = et 4 eAt/ e~ ATb(7) dr.

to

In the case of an homogeneous system, b = 0, we get Eq. (5.2.1).

Proof of Theorem 5.2.5: We generalize to linear systems the integrating factor method
used in § 1.2 to solve linear scalar equations. Therefore, rewrite the equation as © — Az = b,
and then multiply the equation on the left by e=4%,

ey —eMAz=e"Mb = M —AeMz=e""h,
since e"4*A = Ae~4*. We now use the formulas for the derivative of an exponential,
e Aty + (e_At)/ z=e¢ b = (e_Atzc)/ =e Ap.
If we integrate on the interval [t,,t] the last equation above, we get

e Ala(t) — e~ AMogty) = / L ATb(r) dr.

to
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—At)_l — eAt,

If we reorder terms and we use that (e

¢
z(t) = eAteAlog + eAt/ e_ATb(T) dr.

to

At e*AtO — eA(tfto)

Finally, using the group property of the exponential, e , we get

t
x(t) = eAlt—to) g 4 eAt/ e AT b(r)dr,

to

This establishes the Theorem.

Example 5.2.8. Find the vector-valued solution « to the differential system

o= Aw+b, m(O)m, A[; ﬂ bH

257

Solution: In Example 5.2.3 we have found the eigenvalues and eigenvectors of the coefficient

matrix, and the result is

)\1 = 37 ’U(l) = |:}:| 5 and )\2 = —]., ‘1)(2) == |:_11:| .

The eigenvectors above say that A is diagonalizable,

B . 1o 30
A=PDP!, P_L 1}, D_{O e

We also know how to compute the exponential of a diagonalizable matrix,

1 —1]fe3* o1 1 1
At _ p Dtp—1 _ -l
A | FAIE i
so we conclude that

2 (¥ —e7t) (3t 4e7?)

The solution to the initial value problem above is,

S ot ) ISR (ot Y iy

¢
x(t) = eMay + eAt/ e ATbdr.
0

Since
a1 (€ +et) (3 —e )] [3 1 5e3t 1 et
€ =5 (e3t —e7t) (3 +eh) 2

in a similar way

a1 {(e?ﬂ +eT) (e ef)} H ! [3e‘°" - } .

5 (6737 _ 67) (6737' 4 eT)

Integrating the last expresion above, we get

t 1 [—e™3t —¢t 1
— AT _
/0 e bdr = 5 [egtJret} + [0} .
Therefore, we get

9 |5edt — et B (€3t _e—t) (€3t +e—t)

o) . [563t 4 e:t} 1 [(e3t Lty (e - e_t)] [; [:e—3t _ et} . [1“
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Multiplying the matrix-vector product on the second term of the left-hand side above,
1 [5e3t 4 e~ 1], 1[(e+e7)
x(t) = 3 {56375 —et| T ol T 2 (3t — e )|
We conclude that the solution to the initial value problem above is

33t et —1
z(t) = { 363t _ ot .

Remark: The formula in Eq. (5.2.6) is also called the variation of parameters formula. The
reason is that Eq. (5.2.6) can be seen as

a(t) = an(t) + (1)
where @, (t) = e is solution of the homogeneous equation @ = Az, and z, is a
particular solution of the nonhomogeneous equation. One can generalize the variation of
parameters method to get x, as follows,

(1) = X (1) u(t),
where X (¢) is a fundamental matrix of the homogeneous system, and u are functions to be
determined. If one introduce this @, in the nonhomogeneous equation, one gets
X'u+Xu=AXu+b
One can prove that the fundamental matrix satisfies the differential equation X’ = AX. If
we use this equation for X in the equation above, we get

AXu+Xdu =A4AXu+b = Xud=0b

A(t—to)

so we get the equation

W=X"'b = u(t):/[X(T)]_l b(r) dr.

to
Therefore, a particular solution found with this method is

x,(t) = X(t)/t X(7)"t b(r) dr.

If we use that X (#,)~! and X (¢,) are constant matrices, we get
t
(1) = X(0) [X(t) "X ()] [ X(7) " b(r)ar
to

= X)X (to)™" | X(to)X(r)™" b(7)dr

to

:X(t)X(to)*l/ (X ()X (to) ]

to

-1

b(r)dr.

Now, one can also prove that eA(t=%) = X (#)X (t,)~" for all n x n coefficient matrices, no
just diagonalizable matrices. If we use that formula we get

t
x,(t) = e 7t0) / e~ A1) p(1) dr.

to
So we recover the expression in Eq. (5.2.6) for & = @, + x,. This is why Eq. (5.2.6) is also
called the variation of parameters formula.
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5.2.4. Exercises.

5.2.1.- Use the exponential formula in
Eq. (5.2.1) to find the solution of the
initial value problem

¥ =Az, z(0) =z

5 =2
A= [ ’ _1].
5.2.2.- Use the exponential formula in

Eq. (5.2.1) to find the solution of the
initial value problem

where

¥ =Az, z(0) =z

where

5.2.83.- * Follow the proof of Theorem 5.2.2
to find the general solution of the sys-
tem

= Az, 2(0) =z

T =2
A= {12 -—3}'
(a) Find the eigenvalues and eigenvec-

tors of the coefficient matrix.
(b) Find functions y1, y2 of the form

where

Y1 = 1171 + Q122
Y2 = Q21T1 + Q2272

so that the differential equation for

_ |
y_bJ
is decoupled.

(c¢) If we write the differential equation
for y as
¥y =By,
find the matrix B.
(d) Solve the differential equation for y.
(e) Use the solution y to find the so-
lution x of the original differential
equation. Write the solution as
a(t) = c1 2V (t) + c2 2P (2),

and give explicit expressions for
2V (t) and 2P (¢).
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5.3. Two-Dimensional Homogeneous Systems

2 x 2 linear systems are important not only by themselves but as approximations of
more complicated nonlinear systems. They are important by themselves because 2 x 2
systems are simple enough so their solutions can be computed and classified. But they
are non-trivial enough so their solutions describe several situations including exponential
decays and oscillations. In this Section we study 2 x 2 systems in detail and we classify them
according the eigenvalues of the coefficient matrix. In a later Chapter we will use them as
approximations of more complicated systems.

5.3.1. Diagonalizable Systems. Consider a 2 x 2 constant coefficient, homogeneous
linear differential system,

2 = Az, A— |:a11 a12:| 7
Aoy Ao
where we assume that all matrix coefficents are real constants. The characteristic polynomial
of the coefficient matrix is p(\) = det(A — AI). This is a polynomial degree two with real
coefficients. Hence it may have two distinct roots—real or complex—or one repeated real
root. In the case that the roots are distinct the coefficient matrix is diagonalizable, see
Chapter 8. In the case that the root is repeated, the coefficient matrix may or may not be
diagonalizable. Theorem 5.2.2 holds for a diagonalizable 2 x 2 coefficient matrix and state
it below in the notation we use for 2 x 2 systems.

Theorem 5.3.1 (Diagonalizable Systems). If the 2 X 2 constant matriz A is diagonalizable
with eigenpairs A+, v'F), then the general solution of @ = Ax is

Lo (t) = ¢, M 0l e Myl (5.3.1)

We classify the 2 x 2 linear systems by the eigenvalues of their coefficient matrix:

(i) The eigenvalues A,, A are real and distinct; o
(i) The eigenvalues Ay = « & i are distinct and complex, with A, = \_;
(iii) The eigenvalues A\, = A\. = X, is repeated and real.

We now provide a few examples of systems on each of the cases above, starting with an
example of case (7).

Example 5.3.1. Find the general solution of the 2 x 2 linear system

’ 13
r=Axz, A[g 1].

Solution: We have computed in Example 8.3.4 the eigenpairs of the coefficient matrix,
., |1 _ -1
A =4, U—|:1:|, and A= —2, v_{l}.

This coefficient matrix has distinct real eigenvalues, so the general solution to the differential
equation is

1 _ -1
Toen (t) = e L] +c.e” { 1} .
<4

We now focus on case (7). The coefficient matrix is real-valued with the complex-valued
eigenvalues. In this case each eigenvalue is the complex conjugate of the other. A similar
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result is true for nxn real-valued matrices. When such nxn matrix has a complex eigenvalue
A, there is another eigenvalue . A similar result holds for the respective eigenvectors.

Theorem 5.3.2 (Conjugate Pairs). If an nxn real-valued matriz A has a complex eigenpair
A, v, then the complex conjugate pair X\, 0 is also an eigenpair of matriz A.

Proof of Theorem 5.3.2: Complex conjugate the eigenvalue eigenvector equation for A
and v, and recall that matrix A is real-valued, hence A = A. We obtain,

Av=X v & Av=)7,

This establishes the Theorem. O

Complex eigenvalues of a matrix with real coefficients are always complex conjugate
pairs. Same it’s true for their respective eigenvectors. So they can be written in terms of
their real and imaginary parts as follows,

A =a+if, o) = a+ib, (5.3.2)

where o, 5 € R and a, b € R".

The general solution formula in Eq. (5.3.1) still holds in the case that A has complex
eigenvalues and eigenvectors. The main drawback of this formula is similar to what we
found in Chapter 2. It is difficult to separate real-valued from complex-valued solutions.
The fix to that problem is also similar to the one found in Chapter 2: Find a real-valued
fundamental set of solutions. The following result holds for n x n systems.

Theorem 5.3.3 (Complex and Real Solutions). If Ay = a£if are eigenvalues of an n xn
constant matriz A with eigenvectors v'¥) = a =+ ib, where o, B € R and a, b € R™, and
n > 2, then a linearly independent set of two complex-valued solutions to ¥ = Ax is

{:13(+) (t) = eMt o™ 2O () = Mt o), }. (5.3.3)
Furthermore, a linearly independent set of two real-valued solutions to € = A x is given by

{2 (t) = (@ cos(Bt) — bsin(t)) e, 2 (t) = (asin(Bt) + b cos(8t)) e*'}.  (5.3.4)

Proof of Theorem 5.3.3: Theorem 8.3.9 implies the set in (5.3.3) is a linearly independent
set. The new information in Theorem 5.3.3 above is the real-valued solutions in Eq. (5.3.4).
They are obtained from Eq. (5.3.3) as follows:

) = (a+ib) oA
= e (a+ib) e*Pt
= e (a+ib) (cos(Bt) £ isin(Bt))
= e (a cos(Bt) — b sin(Bt)) +ie* (a sin(Bt) + b cos(Bt)).

Since the differential equation & = A is linear, the functions below are also solutions,

o) = 5(& +07) = (a cos(B1) b sinAn) "

1
z? = 2f(:c’” — ') = (asin(Bt) + b cos(Bt)) e*.
)
This establishes the Theorem. O

Example 5.3.2. Find a real-valued set of fundamental solutions to the differential equation

; 12 3
* = Az, A= {_3 2} . (5.3.5)
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Solution: Fist find the eigenvalues of matrix A above,

2-x2 3

0_‘ -3 (2-))

‘—()\2)2+9 = Ai =243

Then find the respective eigenvectors. The one corresponding to A is the solution of the
homogeneous linear system with coefficients given by

[2_ (E; ) 2 - (23+ 32‘)] - [_—?; —?’n] - [:i —11} ~ [—11 —Zz] - [(1) (Z)} '

Therefore the eigenvector v* = [zi] is given by
2

+ S + + . + 77’ .
vy =—v, = v,=1, v =-i, = v:{l}, Av =2+ 3.

The second eigenvector is the complex conjugate of the eigenvector found above, that is,

v = m A=2— 3.

-]

Then, the real and imaginary parts of the eigenvalues and of the eigenvectors are given by

Notice that

0 [—1
a=2, 8 =23, a—[l], b= O]

So a real-valued expression for a fundamental set of solutions is given by

T = (m cos(3t) — [_01} sin(3t)> e = 2= 22;8?)} e,

2 = (m sin(3t) + [ 01] cos(3t)> 2 = 2= b;‘l’éfﬂ 2,

<

We end with case (iii). There are no many possibilities left for a 2 x 2 real matrix that
both is diagonalizable and has a repeated eigenvalue. Such matrix must be proportional to
the identity matrix.

Theorem 5.3.4. FEvery 2 x2 diagonalizable matriz with repeated eigenvalue Ay has the form

A= Al

Proof of Theorem 5.3.4: Since matrix A diagonalizable, there exists a matrix P invertible
such that A = PDP~!. Since A is 2 x 2 with a repeated eigenvalue \,, then

A0
D= [O )\] =X L.

Put these two fatcs together,
A=PX\IP ' =)\PP ' =)\I.
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Remark: The general solution @ze, for @ = Al x is simple to write. Since any non-zero
2-vector is an eigenvector of \,I,, we choos the linearly independent set

(o=l =i}

Using these eigenvectors we can write the general solution,

2

5.3.2. Non-Diagonalizable Systems. A 2 x 2 linear systems might not be diagonal-
izable. This can happen only when the coefficient matrix has a repeated eigenvalue and all
eigenvectors are proportional to each other. If we denote by A the repeated eigenvalue of
a 2 x 2 matrix A, and by v an associated eigenvector, then one solution to the differential
system # = Az is

2 (1) = M.

Every other eigenvector v associated with A is proportional to v. So any solution of the form
veM is proportional to the solution above. The next result provides a linearly independent
set of two solutions to the system o = Ax associated with the repeated eigenvalue \.

Theorem 5.3.5 (Repeated Eigenvalue). If an 2 X 2 matriz A has a repeated eigenvalue
A with only one associated eigen-direction, given by the eigenvector v, then the differential
system @ (t) = Ax(t) has a linearly independent set of solutions

{2(t)=eMv, 2(t)=eM (vi+w)},
where the vector w is one of infinitely many solutions of the algebraic linear system
(A= MN)w=w. (5.3.6)
Remark: The eigenvalue X is the precise number that makes matrix (A—AI) not invertible,
that is, det(A — AI) = 0. This implies that an algebraic linear system with coefficient
matrix (A — AI) is not consistent for every source. Nevertheless, the Theorem above says

that Eq. (5.3.6) has solutions. The fact that the source vector in that equation is v, an
eigenvector of A, is crucial to show that this system is consistent.

Proof of Theorem 5.3.5: One solution to the differential system is 2()(t) = e v. Inspired
by the reduction order method we look for a second solution of the form

22 (t) = M u(t).
Inserting this function into the differential equation @ = A & we get
v+du=Au = (A-AN)u=1.
We now introduce a power series expansion of the vector-valued function wu,
u(t) = U + Ut + wpt® + -,
into the differential equation above,

(A=A (o + wit + wt® + ) = (ws + 2wt + -+ ).
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If we evaluate the equation above at ¢ = 0, and then its derivative at t = 0, and so on, we
get the following infinite set of linear algebraic equations

(A= ADuy = uy,

(A=A u, = 2u,,

(A—A)u, = 3u,

Here is where we use Cayley-Hamilton’s Theorem. Recall that the characteristic polynomial
p(A) = det(A — AI) has the form

p(N) = A2 — tr (A) X + det(A).
Cayley-Hamilton Theorem says that the matrix-valued polynomial p(A) = 0, that is,
A? —tr (A) A+ det(A) T =0.
Since in the case we are interested in matrix A has a repeated root A, then
PN =A=N2=22—2XA+ A2
Therefore, Cayley-Hamilton Theorem for the matrix in this Theorem has the form
0=A2-20A+ X1 = (A-A)?=0.

This last equation is the one we need to solve the system for the vector-valued u. Multiply
the first equation in the system by (A — AI) and use that (A — AI)? = 0, then we get

0=(A-A)’uy=(A-A)u, = (A—X)u, =0.

This implies that u, is an eigenvector of A with eigenvalue A. We can denote it as u, = v.
Using this information in the rest of the system we get

(A= M)y, = v,
(A-XHv=2u, = u,=0,
(A=MN)u,=3us = us=20,

We conclude that all terms u, = u; = --- = 0. Denoting u, = w we obtain the following
system of algebraic equations,

(A= XM)w=w,

(A= X)v=0.

For vectors v and w solution of the system above we get w(t) = w+ tv. This means that
the second solution to the differential equation is

22 (1) = eM (tv + w).
This establishes the Theorem. O

Example 5.3.3. Find the fundamental solutions of the differential equation

, 1 (-6 4
r = Ax, A_i 1 ol
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Solution: As usual, we start finding the eigenvalues and eigenvectors of matrix A. The
former are the solutions of the characteristic equation

0:’(§1>‘) 1

3 1

=(r+2)(x ) Fo = A2+l =(A+1
1 (“L ) <+2 + 1 +2X4+1=(A+1)%
Therefore, there solution is the repeated eigenvalue A = —

. The associated eigenvectors
are the vectors v solution to the linear system (A + I)v 0,
{(—2 +1) 1

s PN [ Y L [

0 0} = v = 20,.
Choosing v, = 1, then v; = 2, and we obtain

A=—1, 'v{ﬂ

Any other eigenvector associated to A = —1 is proportional to the eigenvector above. The
matrix A above is not diagonalizable. So. we follow Theorem 5.3.5 and we solve for a vector
w the linear system (A + I)w

= v. The augmented matrix for this system is given by,
1
1 2 1 -2 —4 1 -2 —4
I g P B B B B
We have obtained infinitely many solutions given by
w— 2 " —4
= || w ol

As one could have imagined, given any solution w, the cv + w is also a solution for any

¢ € R. We choose the simplest solution given by

w— —4
=1 ol
Therefore, a fundamental set of solutions to the differential equation above is formed by

- f]. o= [

. (5.3.7)

<
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5.3.3. Exercises.

5.3.1.- . 5.3.2.- .
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5.4. Two-Dimensional Phase Portraits

Figures are easier to understand than words. Words are easier to understand than
equations. The qualitative behavior of a function is often simpler to visualize from a graph
than from an explicit or implicit expression of the function.

Take, for example, the differential equation

Y
/ I
/(1) = sin(y(1)). ”
This equation is separable and the solution can \
be obtained using the techniques in Section 1.3. I —

They lead to the following implicit expression for |
the solution , /

— In|esc(y) + cot(y)‘ =t+ec 0 \ t
Althoug