
Acta Numerica (2005), pp. 1–148 c© Cambridge University Press, 1999

Lie-group methods

Arieh Iserles

Department of Applied Mathematics and Theoretical Physics,

University of Cambridge, England

Email: a.iserles@damtp.cam.ac.uk

Hans Z. Munthe-Kaas

Department of Computer Science,

University of Bergen, Norway

Email: hans@ii.uib.no

Syvert P. Nørsett

Institute of Mathematics,

Norwegian University of Science and Technology

Trondheim, Norway

Email: norsett@math.ntnu.no

Antonella Zanna

Department of Computer Science,

University of Bergen, Norway

Email: anto@ii.uib.no

Many differential equations of practical interest evolve on Lie groups or on
manifolds acted upon by Lie groups. The retention of Lie-group structure
under discretization is often vital in the recovery of qualitatively-correct ge-
ometry and dynamics and in the minimisation of numerical error. Having
introduced requisite elements of differential geometry, this paper surveys the
novel theory of numerical integrators that respect Lie-group structure, high-
lighting theory, algorithmic issues and a number of applications.

2 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

CONTENTS

1 Numerical analysts in Plato’s temple 2
2 Theory and background 8
3 Runge–Kutta on manifolds and RK-MK 36
4 Magnus and Fer expansions 40
5 Quadrature and graded algebras 54
6 Alternative coordinates 70
7 Adjoint methods 88
8 Computation of exponentials 96
9 Stability and backward error analysis 103
10 Implementation, error control and DiffMan 107
11 Applications 112
References 132
A List of methods 137
B Fast computation of 3D rotations 146

1. Numerical analysts in Plato’s temple

“Ageometretos medeis eisito”: let nobody enter who does not understand geometry.
These were the words written at the entrance to Plato’s Temple of the Muses. Are
numerical analysts welcome in Plato’s temple?

Historically, the answer is negative. Computational mathematics is all about
rendering mathematical phenomena in an algorithmic form, amenable to sufficiently
precise, affordable and robust number crunching. A mathematical phenomenon
can be approached in one of two ways: either by exploring its qualitative features
(which, to a large extent, are synonymous with geometry or, at the very least,
can be formulated in geometric terminology) or by approximating its quantitative
character. Although only purists reside completely at either end of the spectrum,
it is fair to point out that numerical analysis, by its very ‘rules of engagement’,
is what ‘quantitative mathematics’ is all about. Ask a numerical analyst “How
good is the solution?” and the likely answer will address itself to a subtly different
question, “How small is the magnitude of the error?”.

In principle, the emphasis on quantitative aspects in mathematical computing
served it well. It is hard to imagine modern technological civilisation without the
multitude of silent computer programs in the background, flying the airplanes,
predicting the weather, making sense of CAT scans, controlling robots, identifying
fingerprints, keeping reactions from running away and predicting the behaviour of
stock markets. This is the success story of numerical analysis, of this ‘quantitative
number crunching’, and nothing should be allowed to obscure it. So, perhaps if
we are doing so well everywhere else, we might cede Plato’s temple to our more

Lie-group methods 3

‘pure’ brethren and sisters: let them engage in sterile intellectual discourse while
we change the world!

The main contention of this review and of the emerging discipline of geometric
integration is that this approach, although tempting, is at best incomplete, at worst
badly misguided. The history is not just a heroic tale of numerical algorithms
fleshing out mathematical concepts as numbers and graphs. Progress has always
occurred along parallel, intertwined tracks: both better theoretical understanding
of qualitative attributes of a mathematical construct and its better computation.
The airplane-flying, weather-predicting and CAT-scanning programs can do their
job only because they deliver an answer that explains in a satisfactory manner
qualitative features, as well as producing the ‘right’ numbers! Indeed, an artificial
dichotomy of quantitative and qualitative aspects of mathematical research is in our
opinion misleading and it serves ill mathematical and applied communities alike.

On the one hand, computation tells pure mathematics what to prove. Phenomena
are often initially identified when observed under discretization and subsequently
subjected to the full rigour of mathematical analysis. A familiar case in point
is the discovery of solitons in the solution of the Korteweg–de Vries equation by
Zabusky and Kruskal (1965), an event which launched a whole new mathematical
discipline, other examples abound. Indeed, we are so used to rely on the computer
as a laboratory of pure mathematics that it is difficult to imagine the heroic work
of Gaston Julia (1918) on the geometry of fractals while bearing in mind that he
has had no access to computers, never able to easily calculate a sequence of rational
iterations or to visualise a fractal on a computer monitor!

On the other hand, qualitative analysis tells computation, quite literally, what to
compute. Every seasoned numerical analyst knows that the procedure of ‘discretise
everything in sight and throw it on a computer’ works only with toy problems. The
more we know about the qualitative behaviour of the underlying mathematical
construct, the more we can identify the right computational approach, concentrate
resources at the right place, focus on features that influence more the quantitative
behaviour and, by the conclusion of the computation, have well-founded expectation
that the graph on the computer monitor corresponds to a genuine solution of the
problem in hand.

Moreover, consumers of numerical calculations are not interested just in numbers,
graphs and impressive visualisation. Very often it is the qualitative features, most
conveniently phrased in the language of geometry, that draw genuine interest in
applications: periodicity, chaoticity, conservation of energy or angular momentum,
reduction to lower-dimensional manifolds, symmetry, reversibility,

The contention of this review is not just that the contribution of geometry to
computation in the special case of time-evolving systems of differential equations is
absolutely crucial, but that the terminology of differential geometry, and in partic-
ular Lie groups, creates the right backdrop to this process. The following example
will help to elucidate this point, while serving as a convenient introduction to the
theme of this paper.

4 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

Let us denote by SN the set of all N ×N real symmetric matrices and consider
the solution of the isospectral flow

Y ′ = B(Y)Y − Y B(Y), t ≥ 0, Y (0) = Y0 ∈ SN , (1.1)

where the (sufficiently smooth) function B maps SN to N×N real skew-symmetric
matrices. The solution itself remains in SN for all t ≥ 0. Such flows occur in
a variety of applications. Perhaps the earliest (and the best known) is the Toda
lattice of material points subjected to nearest-neighbour interaction. It has been
demonstrated by Flaschka that, in the case of an exponential interaction potential,
the underlying Hamiltonian system can be rendered in the form (1.1), where Y is
tridiagonal and B maps




α1 β1 0 · · · 0

β1 α2 β2
. . .

...

0
. . .

. . .
. . . 0

...
. . . βN−2 αN−1 βN−1

0 · · · 0 βN−1 αN




to




0 β1 0 · · · 0

−β1 0 β2
. . .

...

0
. . .

. . .
. . . 0

...
. . . −βN−2 0 βN−1

0 · · · 0 −βN−1 0




(Toda 1981). Another important application of (1.1) is to Lax pairs in fluid dynam-
ics, whence SN need be replaced by a suitable function space, B is a differential
operator and the outcome is a partial differential equation of a hyperbolic type
(Toda 1981). Before we mention another application of isospectral flows, we need
to single out their most remarkable qualitative feature which, coincidentally, ex-
plains their name: as the time evolves, the eigenvalues of Y (t) stay put! Upon a
moment’s reflection, this renders such flows interesting in the context of numerical
algebra. Indeed, the classical QR algorithm is intimately related to sampling the
solution of (1.1) at unit intervals (Deift, Nanda and Tomei 1983). Many other itera-
tive algorithms can be phrased in this terminology and, perhaps more importantly,
many interesting algorithms rely on this construct in the first place. Pride of place
belongs here to methods for the inverse eigenvalue problem: seeking a matrix of
a given structure that possesses a specified set of eigenvalues (or singular values).
Such problems are important in a wide range of applications, ranging from the the-
ory of vibrations to control theory, tomography, system identification, geophysics,
all the way to particle physics. Isospectral flows are a common denominator to per-
haps the most powerful approach toward the design of practical algorithms for the
inverse eigenvalue problem, which has been pioneered in the main by Chu (1998).
Suppose that we are seeking a matrix in a class T ⊂ SN with the eigenvalues
η ∈ R

N . Often it is possible to design a matrix function B so that attractive fixed
points of (1.1) lie in T . In that case, letting Y (0) = diag η results in a flow that
converges to the solution of the inverse eigenvalue problem.

As an example of such a procedure we mention the inverse eigenvalue problem

Lie-group methods 5

for Toeplitz matrices. Thus, T consists of symmetric N ×N Toeplitz matrices:

X ∈ T ⇔ xk,l = t|k−l|, k, l = 1, 2, . . . , N,

where t0, t1, . . . , tN−1 are arbitrary real numbers. Such problems are important
in the design of control systems but, remarkably, even the very existence of a
solution has been until very recently an open problem, which has been answered
by Landau (1994) in a beautiful, yet non-constructive, existence proof. Following
(Chu 1993, Trench 1997), we let

bk,l(Y) =




yk,l−1 − yk+1,l, 1 ≤ k < l ≤ N,
0, 1 ≤ k = l ≤ N,
yk+1,l − yk,l−1, 1 ≤ l < k ≤ N

be a Toeplitz annihilator. Note thatB is indeed skew symmetric and that B(Y) = O

for Y ∈ T : thus, a solution is a fixed point.
While remarking that many important questions with regard to the convergence

of the above algorithm are still wide open, we should draw the reader’s attention
to a crucial observation. For numerical purposes, sooner or later we must replace
(1.1) by a computational time-stepping scheme. Will such a scheme respect the
eigenstructure of Y ? This is not simply an optional extra since the whole point
of the exercise is to evaluate an answer in T . Yet, as proved in (Calvo, Iserles
and Zanna 1997), the most popular numerical methods, multistep and Runge–
Kutta schemes, do not respect isospectral structure and they fail to converge to the
correct element of T : the error on the eigenvalues, of the same order of magnitude
as the error in the numerical trajectory itself, is unacceptable.

An alternative, proposed by Calvo et al. (1997), is to observe that all the elements
of the isospectral manifold

I(η) = {X ∈ SN : σ(X) = η},

where σ(X) denotes the spectrum of X, can be written in the form X = QY0Q
T,

where Y0 = diag η is our initial condition and Q ∈ SO(N), the set of all N × N
real orthogonal matrices with unit determinant. The main idea is to seek, in place
of (1.1), a differential equation that is satisfied by Q(t) in the representation

Y (t) = Q(t)Y0Q(t)T, t ≥ 0. (1.2)

It is easy to ascertain that this equation has the form

Q′ = B(QY0Q
T)Q, t ≥ 0, Q(0) = I (1.3)

and that, provided we can solve it while retaining orthogonality, we can easily
recover the solution of the original isospectral flow.

To illustrate our point, let us consider a simple numerical experiment. We choose

6 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

0 50 100 150 200 250
10

-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Toeplitz error (CFE)
Eigenvalue error (CFE)
Toepliz error (FE)
Eigenvalue error (FE)

Fig. 1.1. Toeplitz error and error on the eigenvalues versus number of iterations
for a 5 × 5 symmetric inverse eigenvalue problem when solved with the Forward
Euler scheme (FE) and the Cayley-based Forward Euler (CFE). Although both

methods converge asymptotically to a Toeplitz matrix, the error on the
eigenvalues of CFE stays within machine accuracy while the error of FE is

completely determined by the choice of integration step size.

η = [1, 2, 3, 4, 5]T, and solve the symmetric inverse eigenvalue problem (1.1), where
the matrix function B is the Toeplitz annihilator introduced above. We consider
first the standard Forward Euler (FE) scheme,

Yn+1 = Yn + h[B(Yn), Yn], n ∈ Z
+,

with initial condition Y0 = diag(η) and step size h = 1
10 . The Toeplitz error,

‖B(Yn)‖2, is plotted in Figure 1.1 as a dotted line. Clearly, as n tends to infinity,
the Toeplitz error becomes progressively smaller and Yn tends to a Toeplitz matrix,
as the theory predicted. Do the eigenvalues stay put? The answer is negative, since
the FE scheme is not isospectral, as proven in Calvo et al. (1997). Therefore the
error on the eigenvalues after the first step is of the same order of the error of FE
and is carried along the whole integration (dash-dotted line in Figure 1.1).

Consider next the iteration

Qn+1 =
(
I − 1

2hB(Yn)
)−1 (

I + 1
2hB(Yn)

)
,

Yn+1 = Qn+1YnQ
T
n+1,

n ∈ Z
+,

which is equivalent to solving (1.3) with a modified version of the Forward Euler
scheme based on the Cayley expansion (note that Qn+1 is orthogonal) in tandem

Lie-group methods 7

with a similarity transformation for the update Yn+1. This scheme, to which we
will refer as CFE (Cayley-type Forward Euler), is explicit, has the same order
of accuracy and requires only slightly more computations than the more classical
FE. However, unlike FE, it is isospectral by design and preserves the eigenvalues
to machine accuracy. In conclusion, FE tends to a Toeplitz matrix with wrong
eigenvalues, while CFE, a simple modification of FE that instead preserves the
qualitative features of the flow, tends to a Toeplitz matrix with the right eigenvalues.
The Toeplitz and the eigenvalue error of CFE are displayed in Figure 1.1 and
correspond to the dashed and ‘plus’ lines respectively.

The set SO(N) in which the matrix Q of the above example evolves is an instance
of a Lie group, a concept that will be described and debated in great detail in
Section 2, while (1.2) and (1.3) are special instances of a group action and a Lie-
group equation.

Let us comment briefly on the contents of this review. In Section 2 we have as-
sembled the common mathematical denominator underlying this paper: elements of
differential geometry, Lie groups and algebras, homogeneous spaces and differential
equations evolving on such objects. Section 3 is devoted to Runge–Kutta–Munthe-
Kaas schemes, the most natural approach to Lie-group solvers in our setting. In
Section 4 we describe expansions, originally due to Magnus and to Fer, which can
be converted into interesting computational tools. Section 5 is concerned with a
make-or-break issue for many Lie-group methods, multivariate quadrature of mul-
tilinear forms over polytopes. We demonstrate there that some very technical tools
from Lie-algebra theory can be used to a great effect in reducing the numerical
cost. Lie-group methods are typically based on local imposition of a convenient
coordinate system in the group. In Section 6 we debate less conventional choices
of the coordinate map, which are suitable for important Lie groups and equations
of practical interest. The theme of Section 7 is time-symmetric methods that, by
design, exhibit many favourable features, while the concern of Section 8 is the prac-
tical approximation of a matrix exponential from a Lie algebra, so that the result
lies in the right Lie group. Stability issues are addressed in Section 9, while Sec-
tion 10 reviews practical issues of implementation and error control and introduces
the DiffMan package. A sample of the many applications of Lie-group methods is
presented in Section 11. Finally, in Appendix A we list practical Lie-group meth-
ods, while Appendix B displays useful explicit formulae for integration in SO(3),
perhaps the single Lie group with most important relevance to problems in science
and engineering.

The purpose of this survey is not to cover the entire corpus of Lie-group methods
but to present a unified introduction to a young discipline that is likely to undergo
many exciting further developments. We have omitted many interesting methods
and papers, with due apologies to their authors, to keep our narrative more focused
and clear. Only the future can tell which methods and techniques will survive.

It is vital throughout the paper to distinguish what exactly is the type of objects
under consideration. We will be often mixing in our formulae elements of Lie

8 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

groups and Lie algebras, scalars, matrices and vectors. To assist the reader, we
have adhered to a consistent naming convention:

• Elements in a Lie algebra are denoted by the Roman letters a, b, . . . , h and
A,B, . . . ,H and by the Greek letters α, β, . . . , ξ and ∆,Θ,Ξ.

• Elements in a Lie group are denoted by the Roman letters p, q, . . . , z and
P,Q, . . . , Z and by the remaining Greek letters: π, ρ, . . . , ω and Υ,Φ,Ψ,Ω.

• Elements in an abstract construct (e.g., an abstract Lie group) are denoted
mostly with lower-case letters. However, as soon as we are concerned with
specific representation, we reserve lower-case letters for scalars, upper case for
matrices and lower-case, boldfaced letters for vectors.

• Special elements deserve special names. Thus, I is the identity in a Lie group,
while O is the zero of a Lie algebra. A generic Lie group will be denoted by
G and a generic Lie algebra by g. In general, we reserve Gothic font for Lie
algebras.

• As in all naming conventions, we make obvious compromises with standard
mathematical practice and common sense. Proper names remain unchanged:
thus, sin t is the familiar sine function, not an element of a group, {Bk}k∈Z+

are Bernoulli numbers, Φ is the set of roots of a Lie algebra, h is the step size of
a time-stepping algorithm and so on. We also employ a plethora of integration
variables, summation indices, constants etc. Occasionally variables evolve in
structures which are neither Lie groups nor Lie algebras, e.g. the isospectral
manifold I(η). In all these cases, which should be obvious from the context,
we use ad hoc notation.

2. Theory and background

Lie groups and Lie algebras are mathematical objects which have originated in
the seminal work of Sophus Lie (1842–1899) on solving differential equations by
quadrature, using symmetry methods. Originally these concepts were quite con-
crete, related to flows of differential equations on R

N . Early in the twentieth
century an abstract view of Lie group theory emerged, commencing from the work
of Elie Cartan on the classification of Lie algebras. The advantage of abstract for-
mulation is that it simplifies mathematical analysis, and hence this presentation
has become dominant throughout mathematical literature. However, the abstract
theory is concentrating on understanding mathematical structures rather than ex-
posing applications in solving differential equations. Hence it is not at all clear
to most applied mathematicians that Lie groups are really very useful objects also
in applied and computational mathematics, and it might be difficult to find the
motivation to learn an abstract theory.

We believe that the original idea of arriving at Lie algebras via continuous actions
on a domain should be an excellent starting point for computationally-oriented
mathematicians, and in fact for many applications it is important to keep this view
in focus. In this presentation we will commence from this perspective and gradually

Lie-group methods 9

move towards somewhat more abstract formulations. Eventually, in Section 2.5 we
will return to concrete matrix formulation, concentrating on the numerical solution
of matrix differential equations of the form

Y ′ = A(t, Y)Y, t ≥ 0, Y (0) = Y0,

where Y and A(t, Y) are N ×N matrices. It turns out that all our solution tech-
niques can be derived in this concrete matrix setting and without major modifi-
cations they can be applied to more general situations. All the algorithms of this
paper will be derived within the matrix framework, and hence the theory from this
point and up to Section 2.5 might be read in a relaxed manner, without the need
to master all the details at first reading.

Numerical integration of ordinary differential equations (ODEs) is traditionally
concerned with solving initial value problems evolving on R

N ,

y′ = f(t,y), t ≥ 0, y(0) = y0, y(t) ∈ R
N ,

where f is a vector field on R
+ × R

N . Well-known numerical integrators, such as
Runge–Kutta and multistep methods, advance a time-stepping procedure by adding
vectors in R

N ,
yn+1 = yn + han,

where an = an(h,yn, . . .) is computed by the given numerical method and h is the
time step. One might say that classical integrators are formulated using a set of
‘basic motions’ given by translations on R

N to advance the numerical solution.
A major motivation for Lie group methods is the possibility of replacing the

domain R
N with more general configuration spaces and replacing translations on

R
N by more general families of ‘basic motions’ on the domain. For example, if y(t)

is a vector known to evolve on a sphere, one might consider rotations yn+1 = Qnyn,
where Qn is an orthogonal matrix, as basic motions. We have already encountered
another example, isospectral flows (1.1). In that case Y (t) evolves on the isospectral
manifold I(σ(Y0)) and this is the right configuration space. Moreover, the natural
‘basic motions’ are (1.2) and they rest upon the fact that any two elements in
I(σ(Y0)) are similar via an orthogonal matrix. A generalisation of the last example
does not require any more that Y0 is symmetric and that the matrix function B
is skew symmetric: any nonsingular initial value and sufficiently smooth matrix
function will do. The flow remains isospectral but the elements of the configuration
space are no longer orthogonally similar. The representation (1.2) is valid, however,
if we allow Q(t) to range across all possible nonsingular real matrices and replace
QT with Q−1.

An important reason why a manifold, rather than the entire R
N , is a suitable

configuration space is that it often expresses crucial geometric attributes of the
underlying differential system, e.g. conservation laws, symmetries or symplectic
structure. As will be seen in the sequel, an added bonus of this approach is that it

10 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

frequently leads to interesting numerical advantages, in particular to slower error
accumulation.

In seeking abstractions and generalisations of classical numerical methods it is
important to bear in mind abstractions in pure-mathematical treatment of differen-
tial equations. However, the transition from pure to computational mathematics is
not straightforward. Whenever a pure mathematician says “There exists an animal
such that. . . ”, an applied mathematician must add questions like “Can we compute
this animal efficiently?” and “How can we represent it in software?”.

2.1. Vector fields and flows on manifolds

A cornerstone of all abstract mathematical presentations of differential equations is
the concept of differential manifolds as the definition of domains on which differen-
tial equations evolve. A good general introduction to manifolds and to differential
geometry are (Abraham and Marsden 1978) and (Guillemin and Pollack 1974).

Intuitively one should think of a d-dimensional manifold as being a smooth do-
main which in a (small) neighbourhood of any point ‘looks like’ R

d, but typically
looks different globally. It is known that any d-dimensional manifold can be rep-
resented as a d-dimensional surface embedded in R

N for some N ≥ d. This is a
conceptually very useful view of manifolds. It is, however, also important to know
that all geometric properties of manifolds exist independently of any particular
representation1.

It is possible to discuss these properties in a coordinate-free language, which is
independent of any particular representation. Although this abstract presentation
is mathematically very elegant and it provides vital clues toward writing good
software in an object-oriented language (Engø, Marthinsen and Munthe-Kaas 1999),
it requires quite a bit of work to present and comprehend. The advantage of the
abstract language is that it focuses on the essential structures. However, in most
of the applications we will deal with, the manifolds exist naturally as surfaces
embedded in R

N , and furthermore it is fully possible to understand and use the
numerical techniques we will discuss in this paper without knowing the abstract
theory of manifolds. We have therefore decided to base our discussion on the
following very concrete definition.

Definition 2.1 A d-dimensional manifold M is a d-dimensional smooth surface
M ⊂ R

N for some N ≥ d.

It should be made crystal clear that all the numerical techniques we are about to
present rely solely on those properties of M that exist independently of any partic-
ular embedding in R

N . We believe that a reader with knowledge of coordinate-free

1 Existence independently of representations should in fact be taken as the very definition

of a geometric property.

Lie-group methods 11

Fig. 2.1. Examples of manifolds embedded in R
3: a sphere, a doubly-twisted

Möbius-strip-like torus and a twisted ribbon.

presentations will have no difficulty whatsoever in translating the algorithms and
results to a more general setting.

Example 2.1 It is easy to construct examples of manifolds by a number of ways.
An example of abstract definition is the specification of an atlas of local coordinate
charts. However, given our focus on ‘concrete’ manifolds, we present examples
already embedded in R

N .

• Any smooth surface will do and few familiar examples are displayed in Fig-
ure 2.1. Smoothness is important: the torus

{(cosψ + ρ cos θ, sinψ + ρ sin θ, ρ cos θ) : 0 ≤ ψ, θ ≤ 2π}

is a manifold for ρ ∈ (0, 1) but not when ρ = 1, because of a singularity at
the origin.

• An important representation of a manifold is as a smooth subset of solutions
of a smooth algebraic equation, g(x) = 0. Thus, for example, g(x) = ‖x‖2

2−1
defines a unit sphere.

• The algebraic-equation representation is of direct relevance to geometric in-
tegration, since conservation laws and integrals of differential systems are
nothing else but algebraic equations constant along the solution trajectory.
Thus, for example, a Hamiltonian system with Hamiltonian energy H(p, q)
evolves on the manifold {H(p, q) = H(p(0), q(0)) : p, q ∈ R

N}.
• The set O(N) of all N×N orthogonal matrices is a manifold, since X ∈ O(N)

is equivalent to g(X) = ‖XTX − I‖2
2 = 0. So is also SL(N), the set of all

N ×N matrices with unit determinant, since g(X) = detX − 1 is a smooth
function.

• A Stiefel manifold is the set of all real M×N matrices X such that XTX = I:
typically M > N , such matrices are ‘long and skinny’ and XXT 6= I.

• A Grassmann manifold is a Stiefel manifold, equivalenced by O(M). In other
words, we identify X1,X2 such that XT

1 X1 = XT
2 X2 = I if there exists an

12 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

orthogonal M ×M matrix Q such that X1 = QX2. An alternative interpre-
tation of a Grassmann manifold is as the set of all N -dimensional subspaces
of R

M .

The single most important property of a manifold is the existence of tangents
to the manifold in any point p ∈ M. If we think of the manifold as a surface in
R

N , then a tangent at p can be defined as a vector a such that dist(p+ εa,M) =
O(ε2). This construction of a tangent is relying on the embedding of M in R

N ,
on the linear-space structure of R

N and even on the metric structure of R
N . An

alternative way to define tangents is by differentiating a curve. This approach has
the advantage of making no use of the embedding of M in R

N and hence makes
sense also on general manifolds.

Definition 2.2 Let M be a d-dimensional manifold and suppose that ρ(t) ∈ M
is a smooth curve such that ρ(0) = p. A tangent vector at p is defined as

a =
dρ(t)

dt

∣∣∣∣
t=0

.

The set of all tangents at p is called the tangent space at p and denoted by TM|p. It
has the structure of a d-dimensional linear space: if a, b ∈ TM|p then a+b ∈ TM|p
and αa ∈ TM|p for any real α. The collection of all tangent spaces at all points
p ∈ M is called the tangent bundle of M and denoted by TM =

⋃
p∈M TM|p.

Note that whereas it is fine to add tangents based at the same point , there is in
general no rule for adding tangent vectors based at different points. Thus, to specify
a tangent completely we need to provide both the basepoint p and the tangent itself.
Hence TM is a 2d-dimensional space, with elements (p,a) consisting of all possible
tangents a for all possible basepoints p.

Definition 2.3 A (tangent) vector field on M is a smooth function F : M → TM
such that F (p) ∈ TM|p for all p ∈ M. The collection of all vector fields on M is
denoted by X(M).

Addition and scalar multiplication of vector fields are defined pointwise in a
natural way as (F +G)(p) = F (p)+G(p) and (αF)(p) = α(F (p)). If F,G ∈ X(M)
then also F +G ∈ X(M) and αF ∈ X(M) for all real α.

Definition 2.4 Let F be a tangent vector field on M. By a differential equation
(evolving) on M we mean a differential equation of the form

y′ = F (y), t ≥ 0, y(0) ∈ M, (2.1)

where F ∈ X(M). Whenever convenient, we allow F in (2.1) to be a function of
time, F = F (t,y). The flow of F is the solution operator Ψt,F : M → M such
that

y(t) = Ψt,F (y0)

Lie-group methods 13

solves (2.1).

Note that we can find the vector field F from Ψt,F by differentiation,

F (y) =
d

dt
Ψt,F (y)

∣∣∣∣
t=0

.

F is often called the infinitesimal generator of the flow Ψt,F .
By reparametrizing time (or scaling the vector field) we can see that the flow

operator satisfies the identity

Ψα,F = Ψ1,αF . (2.2)

The task of computing the flow of a given vector field is often called the exponen-
tiation of the vector field . We will occasionally employ the notation

Ψ1,F ≡ exp(F) ⇔ Ψt,F ≡ exp(tF).

Computation of a flow is a particular example of an exponential map. We will
return to a more general definition of exponential maps later. The notation Ψ will
be used when we want to emphasise that we are discussing flows of vector fields, and
exp whenever the map can be conveniently given the more general interpretation.

Recall our goal of integrating (2.1) numerically, using a chosen set of ‘basic mo-
tions’ to advance the numerical solution. If the analytical solution evolves on M
it is natural to choose a set of basic motions which are everywhere tangent to M,
which will produce a numerical solution also evolving on M. It is useful to consider
also these basic motions as flows of a finite or infinite collection of vector fields,
B1, B2, If we want an efficient solver, we must be able to compute the flow, i.e.
exponentiate these Bis, efficiently.

From the standpoint of geometry, numerical integration of ODEs is concerned
with the task of approximating the exponential of a general vector field F by expo-
nentials originating in a family of simpler vector fields B1, B2,

Example 2.2 Let M = R
N and let Ta stand for the constant vector field,

Ta(y) = a for some vector a ∈ R
N . The flow of Ta is translation along a,

Ψt,Ta(y0) = y0 + ta.

The set of all translations can be obviously used to advance the numerical solution
in any desired direction on R

N . Note that translations commute,

Ψt1,Ta◦Ψt2,Tb
(y0) = y0 + t1a + t2b = Ψt2,Tb

◦Ψt1,Ta(y0).

Generally flows do not commute. We will later see that a major difference between
traditional numerical integrators and Lie-group methods is that the former are

14 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

Φs,t(y0)

•
Ψs,F

22

y0

st[F,G](y0)+h.o.t
ccHHHHHHHHH

•

Ψt,G

KK

%
#
!
�
�
�
�

Ψs,F
,, •

Ψt,G

BB

�
�

�
�

�
	

�

Fig. 2.2. A geometric interpretation of the commutator.

based on a set of commuting flows whereas the latter allow more general flows as
basic movements to advance the solution.

The degree to which the flows of two vector fields fail to commute is measured
by the commutator of the two vector fields. Consider two general vector fields F
and G and their flows Ψs,F and Ψt,G. To investigate commutativity, we form the
following composition of the flows,

Φs,t = Ψs,F ◦Ψt,G◦Ψ−s,F ◦Ψ−t,G ≡ exp(sF)◦ exp(tG)◦ exp(−sF)◦ exp(−tG) (2.3)

(see Figure 2.2). Obviously the flows commute if Φs,t(y) = y for all s, t ≥ 0 and

all y ∈ R
N . However, this is a nonlinear condition that in many cases may be

difficult to compute or verify. One of the fundamental ideas due to Sophus Lie was
the observation that such nonlinear conditions can be turned into equivalent linear
infinitesimal conditions. To accomplish this we want to linearise Φs,t for small s
and t. Since Φ0,t(y) = Φs,0(y) = y for all y, we must have

Φs,t(y) = y + stH(y) + O(s2t) + O(st2) (2.4)

for some vector field H. This vector field H is called the commutator , or the Jacobi
bracket of F and G, and it is written as H = [F,G].

Lemma 2.1 Given two vector fields F,G on R
N , the commutator H = [F,G] can

be computed componentwise at a given point y ∈ R
N as

Hi(y) =
N∑

j=1

{
Gj(y)

∂Fi(y)

∂yj
− Fj(y)

∂Gi(y)

∂yj

}
. (2.5)

(Note that many authors define the commutator with an opposite sign. The com-
mutator as given here is often called the (-)Jacobi bracket .)

Lie-group methods 15

Proof. From (2.3) and (2.4) we get

H =
∂2

∂s∂t
exp(sF)◦ exp(tG)◦ exp(−sF)◦ exp(−tG)

∣∣∣∣
s=t=0

.

Since ∂
∂s exp(sF)◦ exp(tG)◦ exp(−sF)

∣∣
s=0

= 0, this simplifies to

H = [F,G] =
∂2

∂s∂t
exp(sF)◦ exp(tG)◦ exp(−sF)

∣∣∣∣
s=t=0

. (2.6)

Neglecting higher order terms in s and t, Euler’s integration scheme yields

Ψs,F ◦Ψt,G◦Ψ−s,F (y) = y − sF (y) + tG(y1) + sF (y2) + h. o. t,

where
y1 = y − sF (y) , y2 = y − sF (y) + tG(y1).

Hence (2.6) implies that

Hi(y) =
∂

∂s
Gi(y1) +

∂

∂t
Fi(y2)

∣∣∣∣
s=t=0

=

N∑

j=1

{
−∂Gi(y)

∂yj
Fj(y) +

∂Fi(y)

∂yj
Gj(y)

}
.

2

We will now review the most salient properties of the commutator.

Lemma 2.2 If F,G ∈ X(M) then H = [F,G] ∈ X(M).

Proof. The function

ρ(t) = exp(
√
tF)◦ exp(

√
tG)◦ exp(−

√
tF)◦ exp(−

√
tG)(y0)

is a curve that evolves on M. The tangent defined by this curve is [F,G](y0). 2

Dividing the polygon of Figure 2.2 into infinitesimally small rectangles, we can
verify that

Lemma 2.3 Two flows Ψs,F and Ψt,G commute if and only if [F,G] = 0.

From (2.5) one may prove the following important features of the commutator
which should be familiar in the special case (which we will encounter soon again)
of a commutator of two matrices.

Lemma 2.4 The commutator of vector fields satisfies the identities

[F,G] = −[G,F] (skew symmetry), (2.7)

[αF,G] = α[F,G] for α ∈ R, (2.8)

[F +G,H] = [F,H] + [G,H] (bilinearity), (2.9)

0 = [F, [G,H]] + [G, [H,F]] + [H, [F,G]] (Jacobi’s identity). (2.10)

16 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

Example 2.3 Let LA denote the linear vector field on R
N , given by some matrix

A, that is LA(y) = Ay. The solution of the linear equation y′ = Ay is given as

y(t) =

∞∑

j=0

(tA)j

j!
y0 = expm(tA)y0,

where expm denotes the classical matrix exponential. Hence

Ψt,LA
(y0) ≡ exp(tLA)(y0) = expm(tA)y0.

(This motivates the name ‘exponentiation’ for computing the flow.) Now let us
compute the commutator of two linear vector fields from (2.5),

[LA, LB]i(y) =
∑

j,k,l

(
Bj,kyk

∂Ai,lyl

∂yj
−Aj,kyk

∂Bi,lyl

∂yj

)

=
∑

j,k

(Ai,jBj,k −Bi,jAj,k) yk.

Thus

[LA, LB] = LC where C = AB −BA, (2.11)

the familiar definition of a commutator from linear algebra. Note that linear vector
fields constitute a complete family of vector fields, closed under commutators and
linear combinations, LA + LB = LA+B and αLA = LαA.

In applications of Lie group integrators to partial differential equations (PDEs)
it is often useful to consider a more general version of (2.5). Let y be a point in a
(finite or infinite-dimensional) linear space M. By a vector field F on M we mean
some operator (linear or nonlinear) such that the (ordinary or partial) differential
equation

∂y

∂t
= F (y)

is well defined. An infinite-dimensional example is a parabolic PDE, where y be-
longs to some function space on a domain and F is a spatial differentiation operator,
e.g. F (y) = ∇2y. If F and G are two vector fields on M then

[F,G](y) =
∂

∂s
[F (y + sG(y)) −G(y + sF (y))]

∣∣∣∣
s=0

. (2.12)

The proof is very similar to that of Lemma 2.1 and it is straightforward to verify
that in the finite-dimensional case (2.12) reduces to (2.5). Note that if F and G are
linear operators then (2.12) yields immediately [F,G](y) = F (G(y)) −G(F (y)), as
we saw in Example 2.3.

Lie-group methods 17

Example 2.4 Let y ∈ R
N and consider the set of all affine linear vector fields

F(A,a)(y) = Ay + a

where A is an N ×N matrix and a ∈ R
N . Let us compute the commutator of two

such vector fields F(A,a) and F(B,b). By inserting these vector fields in (2.12) we
obtain

[
F(A,a), F(B,b)

]
(y) =

∂

∂s
{A(y + s(By + b)) + a −B(y + s(Ay + a)) − b}

∣∣∣∣
s=0

= ABy +Ab −BAy −Ba.

Thus

[
F(A,a), F(B,b)

]
= F(C,c), where (C, c) = (AB −BA,Ab −Ba). (2.13)

We note that the set of all affine linear vector fields is yet another example of a
collection of vector fields closed under linear combination and commutation.

2.2. Lie algebras, Lie groups and Lie group actions

A problem, fundamental to numerical analysis of differential equations on manifolds,
is to determine the set of all possible flows that can be obtained by composing a given
set of basic flows. If we restrict the discussion to ‘sufficiently small t’, important
information is provided by the so-called BCH formula.

Theorem 2.5. (Baker–Campbell–Hausdorff) For sufficiently small t ≥ 0 we
have

exp(tF)◦ exp(tG) = exp(tH),

where H = bch(F,G) can be constructed from iterated commutators of F and G.
The first few terms are

H = F +G+ 1
2 t[F,G] + 1

12 t
2 ([F, [F,G]] + [G, [G,F]]) + O(t3).

Higher order terms can be obtained by recursion (Varadarajan 1984).

Definition 2.5 A Lie algebra of vector fields is a collection of vector fields which
is closed under linear combination and commutation. In other words, letting g

denote the Lie algebra,

B ∈ g ⇒ αB ∈ g for all α ∈ R.

B1, B2 ∈ g ⇒ B1 +B2, [B1, B2] ∈ g

Given a collection of vector fields B = {B1, B2, . . .}, the least Lie algebra of vector
fields containing B is called the Lie algebra generated by B.

18 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

We arrive at the following conclusion. Let g be the Lie algebra generated by
the set B = {B1, B2, . . .} of vector fields. For small t, the combination of flows of
vector fields in B yields the flow of a vector field in g. Furthermore, the flow of any
vector field in g can, provided t ≥ 0 is small enough, be approximated arbitrarily
well by composing flows of vector fields in B. Thus the Lie algebra contains (for
small t ≥ 0) all the information about composition of flows.

Until now we have discussed vector fields and flows on a manifold . Yet, whether
we wish engage in mathematical analysis or produce software for solving ODEs, it
is natural to ask are there important properties of vector fields and flows that can
be specified (and possibly programmed) independently of which manifold they are
acting upon? This question will lead us to the abstract definition of Lie algebras
and Lie groups. The ‘glue’ that connects an abstract Lie algebra to concrete vector
fields on a manifold is called a Lie algebra homomorphism, and abstract Lie groups
are connected to flows on a manifold via a Lie group action. To elucidate this state
of affairs, let us commence with an important example.

Example 2.5 In Example 2.3 we have shown that there exists natural corre-
spondence between N×N matrices and linear vector fields defined on R

N . We can
illustrate this as

A 7→ LA

αA 7→ αLA

A+B 7→ LA + LB

AB −BA 7→ [LA, LB]

A linear subspace of matrices closed under matrix commutation, [A,B] ≡ AB−BA,
is called a matrix Lie algebra. The arrow is an example of a Lie algebra homomor-
phism, a linear map between two Lie algebras which preserves commutators.

Even the computation of flows of linear vector fields and compositions of such
flows can be transformed into linear algebra operations. To achieve this, we must
specify how a given N×N matrix P corresponds to a motion on our domain R

N .
The simplest possible choice is motions by matrix–vector products. Define thus the
map

Λ(P,y) = Py.

Identifying a matrix P with the motion Λ(P, ·) leads to the correspondence

P 7→ Λ(P, ·)
expm(sA) 7→ Λ(expm(sA), ·) = Ψs,LA

expm(sA) expm(tB) 7→ Λ(expm(sA) expm(tB), ·) = Ψs,LA
◦Ψt,LB

.

Note that the latter of these identifications rely on the associative property of the

Lie-group methods 19

map Λ,
Λ(P,Λ(R,y)) = Λ(PR,y).

Motivated by this example, we now proceed to precise mathematical definition
of the underlying concepts in a more abstract setting.

Definition 2.6 A Lie algebra is a linear space V equipped with a Lie bracket , a
bilinear, skew-symmetric mapping

[· , ·] : V ×V → V

that obeys identities (2.7–10) from Lemma 2.4.

Definition 2.7 A Lie algebra homomorphism is a linear map between two Lie
algebras, ϕ : g → h, satisfying the identity

ϕ([v, w]g) = [ϕ(v), ϕ(w)]h, v, w ∈ g.

An invertible homomorphism is called an isomorphism.

Definition 2.8 A Lie group is a differential manifold G equipped with a product
· : G×G → G satisfying

p·(q ·r) = (p·q)·r ∀ p, q, r ∈ G (associativity),

∃I ∈ G such that I ·p = p·I = p ∀ p ∈ G (identity element),

∀p ∈ G ∃ p−1 ∈ G such that p−1 ·p = I (inverse),

The maps (p, r) 7→ p·r and p 7→ p−1 are smooth functions (smoothness).

Definition 2.9 An action of a Lie group G on a manifold M is a smooth map
Λ : G×M → M satisfying

Λ(I,y) = y ∀y ∈ M
Λ(p,Λ(r,y)) = Λ(pr,y) ∀p, r ∈ G, y ∈ M. (2.14)

If this relation does hold only in a local sense, for all elements p and r sufficiently
close to the identity I ∈ G, we say that Λ is local action.

2.3. From finite to infinitesimal and back

Given a set of flows on a domain we can find their vector fields by differentiation.
From the discussion above we know that if the flows are closed under composition
then the vector fields are closed under Jacobi brackets and linear combinations,
hence form a Lie algebra. On the other hand, provided we know the vector fields, we
may recover the corresponding flows by integrating differential equations. Similar
correspondence between the finite and the infinitesimal is fundamental in abstract

20 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

Lie theory. We will review here a number of basic results, interpreting them in
the terminology of group actions on a manifold. Let G be a Lie group, acting on
a manifold M through Λ : G×M → M and let ρ(t) ∈ G be a curve such that
ρ(0) = I, the identity of G. This curve produces a flow Λ(ρ(t), ·) on M and by
differentiation we find a vector field

F (y) =
d

dt
Λ(ρ(t), y)

∣∣∣∣
t=0

.

The collection of all such vector fields forms a Lie algebra. Note that in order to
produce F it is only necessary to know the tangent to ρ(t) at t = 0. Thus the set
of all tangents at identity can be endowed with a structure of a Lie algebra.

Definition 2.10 The Lie algebra g of a Lie group G is defined as the linear space
of all tangents to G at the identity I. The Lie bracket in g is defined as

[a, b] =
∂2

∂s∂t
ρ(s)σ(t)ρ(−s)

∣∣∣∣
s=t=0

(2.15)

where ρ(s) and σ(t) are two smooth curves on G such that ρ(0) = σ(0) = I,
ρ′(0) = a and σ′(0) = b.

Note that the bracket defined in (2.15) is essentially the same as (2.6). From this
it is straightforward to verify that the correspondence between elements in g and
vector fields on M is an algebra homomorphism.

Lemma 2.6 Let λ∗ : g → X(M) be defined as

λ∗(a)(y) =
d

ds
Λ(ρ(s), y)

∣∣∣∣
s=0

, (2.16)

where ρ(s) is a curve in G such that ρ(0) = I and ρ′(0) = a. Then λ∗ is a linear
map between Lie algebras such that

[a, b]g = [λ∗(a), λ∗(b)]X(M).

Thus we can go from the finite to the infinitesimal (from groups and group actions
to algebras and algebra homomorphisms) by differentiation. To do the opposite and
move from the infinitesimal to the finite, we must somehow compute flows of vector
fields. A discussion of this process leads to the general definition of the exponential
mapping.

Suppose G is a Lie group with Lie algebra g and let Λ : G×M → M be a group
action. A given fixed element a ∈ g corresponds to a vector field λ∗(a) ∈ X(M).
We want to compute the flow of this field. Let us first assume for simplicity that G
is a matrix group.

Lie-group methods 21

Lemma 2.7 For a fixed A ∈ g the flow of λ∗(A), i.e. the solution of

y′(t) = λ∗(A)(y(t)) for y(0) = y0 ∈ M

can be expressed in the form

y(t) = Λ(S(t), y0)

where the curve S(t) ∈ G satisfies the matrix differential equation

S′(t) = AS, t ≥ 0, S(0) = I,

which has the explicit solution

S(t) = expm(tA), t ≥ 0.

Proof. We assume that y(t) = Λ(S(t), y0). Differentiation results in y′(t) =
∂1Λ(S′(t), y0), where ∂1 is the derivative with respect to the first argument. On
the other hand, to compute λ∗(A) we pick a curve R(s) ∈ G such that R′(0) = A
and R(0) = I. From (2.14) we get

y′(t) = λ∗(A)(y(t)) =
∂

∂s
Λ(R(s),Λ(S(t), y0))

∣∣∣∣
s=0

=
∂

∂s
Λ(R(s)S(t), y0)

∣∣∣∣
s=0

= ∂1Λ(R′(0)S(t), y0) = ∂1Λ(AS(t), y0).

Thus
S′(t) = AS(t).

Obviously S(0) = I. The explicit solution is easily verified. 2

Lemma 2.7 holds unaltered for a general group G if we define the product of an
element of an algebra a ∈ g with an element of a group σ ∈ G as

aσ ≡ d

ds
ρ(s)σ

∣∣∣∣
s=0

, (2.17)

where ρ(s) ∈ G is a smooth curve such that ρ′(0) = a and ρ(0) = I. We also define
the exponential mapping so that the flow of λ∗(a) is of the form Λ(exp(ta), ·):
Definition 2.11 Let G be a Lie group and g its Lie algebra. The exponential
mapping exp : g → G is defined as exp(a) = σ(1) where σ(t) ∈ G satisfies the
differential equation

σ′(t) = aσ(t), σ(0) = I.

These definitions lead to the following general form of Lemma 2.7.

22 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

Theorem 2.8 Let Λ : G×M → M be a group action and λ∗ : g → X(M) the
corresponding Lie algebra homomorphism (2.16). For any a ∈ g the flow of the
vector field F = λ∗(a), i.e. the solution of the equation

y′(t) = F (y(t)) = λ∗(a)(y(t)), t ≥ 0, y(0) = y0 ∈ M,

is given as
y(t) = Λ(exp(ta), y0).

Let us at this point make a small detour to introduce the adjoint representation
which is fundamental in many contexts. By splitting (2.15) into two smaller steps,
we obtain:

Definition 2.12 Let p ∈ G and let σ(t) be a smooth curve on G such that σ(0) = I

and σ′(0) = b ∈ g. The adjoint representation is defined as

Adp(b) =
d

dt
pσ(t)p−1

∣∣∣∣
t=0

(2.18)

The derivative of Ad with respect to the first argument is denoted ad. Let ρ(s)
be a smooth curve on G such that ρ(0) = I and ρ′(0) = a. Definition 2.10 now
yields:

ada(b) ≡ d

ds
Adρ(s)(b)

∣∣∣∣
s=0

= [a, b]. (2.19)

The following formulae show that Ad is both a linear group action (of G on g)
and also that for a fixed argument p it is a Lie-algebra isomorphism of g onto itself:

Adp(a) ∈ g for all p ∈ G, a ∈ g. (2.20)

Adp◦Adq = Adpq (2.21)

Adp(a+ b) = Adp(a) + Adp(b) (2.22)

Adp([a, b]) = [Adp(a),Adp(b)] (2.23)

Note that according to (2.22) both Adp and ada are linear in their second argument,
hence they may be regarded as matrices acting on the linear space g. This gives
meaning to the following important formula relating Ad, ad and the exponential
mapping:

Adexp(a) = expm(ada). (2.24)

2.4. Differential equations on manifolds

We wish to return to general differential equations on manifolds, as given in (2.1).
In order to construct and implement numerical solvers for this equation, we require
a concrete way of representing the vector field F (y). Herewith we describe a very
general approach presented in (Munthe-Kaas and Zanna 1997).

Lie-group methods 23

Assumption 2.1 Given a differential equation y′(t) = F (t, y) on a manifold M,
we assume the existence of a Lie algebra g, a Lie algebra homomorphism λ∗ : g →
X(M) and a function a : t×M → g such that the equation can be written in the
form

y′(t) = λ∗(a(t, y))(y) (2.25)

If λ∗ is known from the context and no confusion is likely, we will usually write
equation (2.25) in the shorthand form

y′(t) = a(t, y)y.

In many important examples the function a depends only on t and not on y.
These equations, y′(t) = a(t)y, are called equations of Lie type, or linear-type Lie-
group equations. Some of the algorithms to be presented in the sequel are aimed
at the general equation (2.25), while others are aimed at exploiting the special
structure of linear equations.

Given an equation to be solved, an important challenge is to find a ‘good’ homo-
morphism λ∗. It is not difficult to see that any differential equation can be written
in the form (2.25). We might for example let g = X(M) and choose λ∗ as the
identity map, which would trivially render any equation in this form. However, in
order to construct practical solution algorithms we need to make some additional
assumptions about g. We will usually assume that either all the elements of g, or
at least a particular basis of g can be exponentiated efficiently. To achieve this,
one might embed M in a linear space R

n, and let g be the set of all translations
on R

n, since translations are trivial to exponentiate. This choise will, however, fail
to capture much of the structure of the equations to be solved. In fact we will
see that for this choice most of our numerical solution techniques will reduce to
classical Runge–Kutta methods. The task of finding a ‘good action’ is in many
respects similar to the task of finding a good preconditioner in the theory of itera-
tive methods for solving linear algebraic equations Ax = b. In both cases we want
to find some approximation to our original equation which is both simple to solve
and which captures some important structural feature of the equation. The two
extreme choices, on the one hand g = X(M) and on the other hand g as a set of all
translations on R

n, are similar to preconditioning a linear system with the matrix
A itself or on the other hand choosing the identity matrix as preconditioner.

Let us now examine briefly a number of examples of equations presented in the
form of Assumption 2.1. A useful approach to find a good action is the following:

1 Given a differential equation written in a familiar form, look at the terms and
see if it is possible to find related equations which are simpler to integrate.

2 Check that the family of simpler equations forms a Lie algebra. Find a suitable
representation g for the algebra and the corresponding homomorphism λ∗.

3 Check that the original equation can be written in the form (2.25). This is
not possible only in the case where there exist some points on M where the

24 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

vector fields in the Lie algebra do not generate the direction of the original
equation. In this case one must search for a larger Lie algebra.

Example 2.6 (Orthogonal matrix flows) Matrix differential equations of the
form

Y ′ = A(t, Y)Y, t ≥ 0, Y (0) = Y0 ∈ O(N), (2.26)

where A : R
+ × O(N) → so(N), are called orthogonal flows – we have already

encountered such a flow in (1.3). It is well known that the exact solution Y (t) is
an orthogonal matrix for all t ≥ 0 (Dieci, Russell and van Vleck 1994). A simpler
family of equations is given by

Y ′ = CY, t ≥ 0, Y (0) = Y0 ∈ O(N), (2.27)

where C is any constant matrix in so(N). The solution of (2.27) is given as

Y (t) = expm(tC)Y0, t ≥ 0.

From (2.11) we find that if F (Y) = CY and G(Y) = DY then [F,G](Y) = (CD −
DC)Y . Thus, the family of simple vector fields is a Lie algebra isomorphic to so(N).
We have λ∗(C)(Y) = CY , hence (2.26) is in the form (2.25) if a(t, Y) = A(t, Y).
Note that also the flow of (2.27) is orthogonal, hence any numerical method based
on the composition of such flows will yield a solution which retains orthogonality.

Example 2.7 (Isospectral matrix flows) We have already encountered such
flows in Section 1, in (1.1). With slightly greater generality, we write them in the
form

Y ′ = B(t, Y)Y − Y B(t, Y), t ≥ 0, Y (0) = Y0 ∈ SN , (2.28)

where B : R
+ × SN → so(N). The analytical solution Y (t) is a family of matrices

with eigenvalues invariant under the flow. A simpler family of equations is given
by

Y ′(t) = CY − Y C, t ≥ 0, Y (0) = Y0 ∈ SN , (2.29)

where again C ∈ so(N) is constant. The solution of this equation is given explicitly
in the form

Y (t) = expm(tC)Y0 expm(−tC), t ≥ 0. (2.30)

We may now proceed, exactly like in the previous example, to find the brackets of
such vector fields. An alternative route, already anticipated in (1.2), is to note that
the basic flows in (2.30) are given by the orthogonal matrix group O(N) acting on
Y ∈ SN . We have the action Λ : O(N) × SN → SN given by

Λ(Q,X) = QXQT for any Q ∈ O(N).

By differentiation, similarly to Lemma 2.6, we find that λ∗(C)(Y) = CY − Y C.
Hence (2.28) is in the form (2.25) if a(t, Y) = B(t, Y). The basic flow (2.30) is
isospectral since it is a similarity transformation, hence also any numerical method
based on this flow is automatically isospectral.

Lie-group methods 25

Note that, essentially, these two examples are identical, except for the action
involved. Hence in a computer implementation we might reuse the implementation
of the Lie algebra and the Lie group, while simply changing the action: there is
no need to develop separate computational approach to orthogonal and isospectral
flows! This illustrates the importance of working with abstractly-defined groups and
algebras rather than tying these concepts to flows and vector fields on particular
manifolds.

Example 2.8 (ODEs on R
N) Consider an ordinary differential equation in the

familiar form required by all classical numerical integrators,

y′(t) = g(t,y), t ≥ 0, y(0) = y0 ∈ R
N , (2.31)

where g : R × R
N → R

N . A simple family of basic flows is given by translations,
e.g.

z′ = a,

where a ∈ R
N is constant. The algebra of these flows can be identified with R

N

and, since translations commute, we obtain the trivial bracket [a, b] = 0 for all
a, b ∈ R

N . The algebra homomorphism is given here simply as the identity map,
hence the equation is in the form (2.25) if a(t,y) = g(t,y). This choice yields
nothing new compared to classical integration schemes.

A more interesting choice is choosing linear vector fields as basic flows,

z′ = Az.

We already know from Example (2.3) that the Lie algebra of these is gl(N), the set
of all N×N matrices with the usual matrix bracket. However, these flows cannot
produce everywhere all possible tangent directions. Indeed, at y = 0 these flows
cannot produce any nonzero tangent. Therefore, using this action, it is generally
not possible to write (2.31) in the form (2.25).

We might finally consider a combination of translations and linear maps, i.e. the
set of all affine linear maps given by equations of the form

z′ = Az + b for A ∈ gl(N), b ∈ R
N .

The Lie algebra can be identified with all pairs (A, b) where A is a matrix and b

a vector and we have already seen in Example (2.4) that the bracket is given as
[(A, b), (C,d)] = (AC − CA,Ad − Cb). The algebra homomorphism is

λ∗(A, b)(y) = Ay + b.

In this situation there are many possible choices of a function a(t,y) such that
(2.31) acquires the form (2.25). No matter what we pick as the matrix part, it is
always possible to adjust the vector so that

λ∗(a(t,y))(y) = g(t,y).

26 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

A natural choice is local linearization, namely letting the matrix part be the Jaco-
bian of g at y,

Jg(t,y)i,j =
∂gi(t,y)

∂yj
.

The resulting a : R ×M → g is

a(t,y) = (Jg(t,y), g(t,y) − Jg(t,y)y) .

Possible advantages of using affine motions to advance the solution of stiff ODEs
are a subject of ongoing research.

Example 2.9. (ODEs on a sphere) Many mechanical problems involve rota-
tions in a 3-space. In Appendix B we list useful formulae for fast computations in
SO(3). As a simple example we will consider a motion on the surface of a sphere.

y′(t) = a(y(t)) × y(t), (2.32)

where a,y ∈ R
3. If ‖y(0)‖2 = 1 then y(t) evolves on the unit sphere S

2 ⊂ R
3. A

simpler system that also evolves on S
2 is given by

y′(t) = c × y(t), (2.33)

for any fixed vector c. To compute the commutator of two equations of the
form (2.33), we employ the hat map (B.1) taking a 3-vector c to a 3 × 3 ma-
trix ĉ, such that c×y = ĉy. Using (B.2) we see that the commutator of the vector
fields c×y and d×y is given by (c×d)×y. Thus the Lie algebra in this example
may be identified with (R3,×), the real 3-space with the Lie bracket

[c,d] = c×d

given by a vector product. The simplified equation (2.33) is a matrix equation
y′ = ĉy with solution

y(t) = expm(tĉ)y0,

where expm(tĉ) can be computed fast using the Rodrigues formula (B.10).

Example 2.10. (Parabolic PDEs) The final example in this section is chosen
to illustrate the diversity of problems that may be tackled with the machinery of
Lie-group methods. This example involves infinite-dimensional Lie algebras, a topic
that is technically more demanding than the finite-dimensional case. There are
several ways to circumvent the mathematical problems, we may either discuss the
problem after it has been discretised in space (and has become finite dimensional),
or we may plunge straight ahead using the available techniques, disregarding possi-
ble mathematical difficulties. We will henceforth follow the latter approach, being
aware that resulting algorithms must be verified by other means.

Lie-group methods 27

Suppose that we wish to integrate a parabolic PDE with coefficients varying in
space and time, e.g. the heat equation

∂u(t,x)

∂t
= ∇ · (µ(x)∇u(t,x)) ,

where u is the temperature and µ the heat conductivity of the material. With
greater generality, consider equations of the form

∂u(t,x)

∂t
= L(u), (2.34)

where L is an elliptic operator. To simplify the discussion, we wish to neglect
boundary conditions, so suppose that u is defined on the unit square with periodic
boundary conditions. Thus, u should be thought of as a ‘point’ on the infinite-
dimensional manifold M = C∞(T), the collection of all smooth functions on a torus.
It is well known that (classical) explicit integrators for parabolic PDEs are typically
stiff and stability analysis leads to severe step size restriction: ∆t < c(∆x)2 for
explicit finite-difference methods. A family of simpler equations, which can be
solved exactly, explicitly and very efficiently with the Fast Fourier Transform (FFT)
is the set of all parabolic equations with constant coefficients of the form

∂u(t,x)

∂t
= µ̄∇2u(t,x),

where µ̄ is constant. However, just like in Example 2.8, these equations cannot
move an arbitrary point u ∈ M in an arbitrary direction. (In other words, they
do not define a transitive action on M). Hence, we enlarge the family of simplified
equations by adding an inhomogeneous term,

∂u(t,x)

∂t
= µ̄∇2u(t,x) + b(x), (2.35)

where b ∈ C∞(T). Also this equation is easy to solve using FFTs. Letting the flows
of (2.35) define our group action on M, we see that the corresponding Lie algebra
g can be identified with pairs (µ̄, b). The Lie-algebra action is given by

λ∗((µ̄, b))(u) = µ̄∇2u+ b.

Using this action we see that any equation of the form (2.34) can be cast into the
form (2.25) by choosing the function a : R×M → g as

a(u) = (µ̄,L(u) − µ̄∇2u) (2.36)

for some choice of µ̄. For example, if L(u) = ∇ · (µ(x)∇u(t,x)), we would let µ̄ be
some averaged value of µ(x).

28 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

In order to define the whole structure of g, we need to determine the Lie bracket.
Let F and G be two vector fields on M defined at a point u as

F (u) = µ̄∇2u+ f(x)

G(u) = ν̄∇2u+ g(x).

Using (2.12), we obtain

[F,G](u) =
∂

∂s

[
µ̄∇2(u+ s(ν̄∇2u+ g)) + f − ν̄∇2(u+ s(µ̄∇2u+ f)) − g

]∣∣∣∣
s=0

= 0 · ∇2u+ µ̄∇2g − ν̄∇2f.

Thus, the bracket on g = R×C∞(T) is

[(µ̄, f), (ν̄, g)] = (0, µ̄∇2g − ν̄∇2f).

It is interesting to note that also the bracket can be computed efficiently using
FFTs.

This type of equations is considered in greater detail and various numerical ex-
amples are given in (Munthe-Kaas and Lodden n.d.). It turns out that, at least
in some cases, it is possible to construct explicit integrators based on this action
that are not subjected to any step size restriction involving the spatial discretiza-
tion ∆x. Thus, the methods are stable regardless of how spatial discretization is
chosen. This is a topic of ongoing research, and many aspects of these integrators
are currently incompletely understood.

We will return to more examples and to numerical experiments in Section 11.
Before discussing numerical algorithms, we need to study some important properties
of the exponential map.

2.5. Much Ado about something

In this section we have emphasised a general view of differential equations on man-
ifolds, based on Lie groups acting on manifolds. This outlook is important not
just for the sake of mathematical beauty or abstraction but, as we hope to have
persuaded the reader, also from the point of view of applications and computation.
However, insofar as clarity of exposition is concerned, it is often better to restrict
ourselves to the far simpler, familiar and more intuitive matrix theory.

In fact, it turns out that for all the algorithms that we present in this paper it
is quite straightforward to translate results derived in matrix setting to the more
general setting of local Lie-group actions on some domain. The following theorem of
Ado underscores the importance of studying the matrix case (Olver 1995, Varadara-
jan 1984).

Theorem 2.9. (Ado’s theorem) Any finite-dimensional Lie algebra is isomor-
phic to a subalgebra of the matrix algebra gl(N) for some N ≥ 1.

Lie-group methods 29

Although similar result does not hold for all finite-dimensional Lie groups, it is
true that whenever we are given a finite-dimensional local Lie group action, we can
always find an equivalent local action by a matrix Lie group. More information on
these topics can be found in (Olver 1995) and (Varadarajan 1984).

Aware of the danger of rules-of-a-thumb being mathematically imprecise, it is
nonetheless worthwhile to summarise these results as follows.

For practically any concept in general Lie theory there exists a corresponding
concept within matrix Lie theory. Vice versa, practically any result which holds in
the matrix case remains valid within the general Lie theory.

The above remark is even more important in numerical context, since computa-
tion always takes place in a finite-dimensional setting. Even if the original equation
evolves on an infinite-dimensional manifold, its practical computation must sooner-
or-later involve a discretization to a finite-dimensional formulation.

At this point it is time to wake up the readers who have surfed through the
general theory in a relaxed manner. We will restate the main definitions in the
concrete form in which they appear within the matrix theory. It is worthwhile to
compare these definitions to the corresponding general definitions above.

Definition 2.13 A real matrix Lie group is a smooth subset G ⊆ R
n×n, closed

under matrix products and matrix inversion. We let I ∈ G denote the identity
matrix.

Definition 2.14 The Lie algebra g of a matrix Lie group G is the linear subspace
g ⊆ R

n×n consisting of all matrices of the form

g =

{
A ∈ R

n×n : A =
dρ(s)

ds

∣∣∣∣
s=0

}
,

where ρ(s) ∈ G is a smooth curve such that ρ(0) = I. The space g is closed under
matrix additions, scalar multiplication and the matrix commutator

[A,B] = AB −BA. (2.37)

Complex matrix Lie groups and algebras are defined similarly.
The time has come to introduce some of the main dramatis personae of our survey,

concrete examples of Lie groups and algebras. In each case it is easy to verify that
all the axioms of a group or an algebra, as the case might be, are fulfilled, and we
leave this as an exercise to the reader.

• The set of all real N ×N nonsingular matrices is a (multiplicative) Lie group,
the general linear group GL(N). The corresponding Lie algebra is the set
R

N×N of all N ×N real matrices which, in keeping with our terminology, we
denote by gl(N).

The general linear group and algebra can be defined over other fields than

30 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

R, in which case we communicate this in the second argument. For example,
GL(N ; C) consists of all nonsingular N ×N complex matrices.

• All members of GL(N) with unit determinant form the special linear group
SL(N). Its Lie algebra, sl(N), consists of all matrices in gl(N) with zero
trace.

• N ×N real orthogonal matrices form the orthogonal group O(N), whose Lie
algebra so(N) consists of N ×N skew-symmetric matrices.

The set SO(N) = SL(N)∩O(N), consisting of N×N real orthogonal matrices
with unit determinant, is the special orthogonal group. Its Lie algebra is
so(N), whch we have just encountered. This is not contradictory: we never
claimed that two different Lie groups must have different Lie algebras! As
a matter of fact, more is true: If G is a Lie group and GId its connected
component such that I ∈ GId (precisely the situation with O(N) and SO(N),
respectively) then they produce the same Lie algebra.

• The set of all (2N) × (2N) real matrices X such that XJXT = J , where

J =

[
ON IN

−IN ON

]
,

is the symplectic group and denoted by Sp(N). (The Jacobian of the flow of a
Hamiltonian ODE system evolves in Sp(N).) The corresponding Lie algebra,
sp(N), consists of F ∈ gl(2N) such that FJ + JFT = O.

• All the matrices X ∈ SL(4) such that XJXT = J , where

J =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 ,

form the Lorenz group SO(3, 1). Its Lie algebra so(3, 1) is made out of all
F ∈ gl(4) such that FJ + JFT = O.

• As an example of complex Lie groups, we mention the unitary group U(N ; C)
of all N×N complex unitary matrices: X ∈ U(N ; C) if and only if XXH = I.
The Lie algebra corresponding to U(N ; C) is the set u(N ; C) of all skew-
Hermitian matrices in gl(N ; C).

The unitary group should not be confused with O(N ; C), the group of all
N ×N complex orthogonal matrices, whose Lie algebra is so(N ; C).

• Similarly to the case of O(N) and SO(N), we obtain the special unitary group
intersecting U(N ; C) with SL(N ; C). Its Lie algebra, su(N ; C), is made out
of N ×N complex skew-Hermitian matrices with zero trace.

Lie-group methods 31

Definition 2.15 A differential equation on a matrix Lie group is an equation of
the form

Y ′ = A(t, Y)Y, t ≥ 0, Y (0) ∈ G, (2.38)

where A : R×G → g and AY is the usual matrix product between A ∈ g and Y ∈ G.

The reader may verify that this is the special case of the general form of a
differential equation on a manifold, given in Assumption 2.1, where M = G is a
matrix Lie group and the action Λ is taken to be the left (matrix) multiplication
in G,

Λ(R, Y) = RY.

Using (2.16) we find
λ∗(A)(Y) = AY.

Since g is defined as the collection of all tangent directions at I ∈ G and matrix
multiplication by Y is an invertible mapping, we see that any tangent at Y can be
written in the form AY and all differential equations on G can be written in the
form (2.38).

Definition 2.16 The exponential mapping expm : g → G is defined as

expm(A) =
∞∑

j=0

Aj

j!
. (2.39)

Note that expm(O) = I, and that for A sufficiently near O ∈ g the exponential
has a smooth inverse given by the matrix logarithm logm : G → g.

Definition 2.17 The adjoint representation, Ad, and its derivative, ad, are de-
fined as

AdP (A) = PAP−1 (2.40)

adA(B) = AB −BA = [A,B]. (2.41)

Table 2.1. Correspondence between the matrix case and general Lie theory

Matrix case General case

AY , A ∈ g, Y ∈ G λ∗(a)(y), a ∈ g, y ∈ M
Y ′ = A(Y, t)Y y′ = λ∗(a(y, t))(y)

RY , R, Y ∈ G Λ(r, y), r ∈ G, y ∈ M
expm(A) =

∑∞
j=0A

j/j! Definition 2.11

[A,B] = AB −BA Definition 2.10

PAP−1, P ∈ G, A ∈ g Definition 2.12

32 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

It is easy to verify that (2.20–23) hold in the matrix case, while (2.24) is far from
being an obvious identity even in that case.

Table 2.1 summarises the correspondence between the matrix case and the general
case.

2.6. The differential of the exponential map

We have introduced the exponential mapping exp : g → G as the fundamental
solution of the equation y′ = ay, or more explicitly in the matrix case as expA =∑∞

j=0A
j/j!. For development of numerical algorithms it is essential to discuss the

derivative of the exponential map. This will first be used to deduce an infinitesimal
version of the BCH formula and in the following chapters to derive a variety of
different numerical algorithms for differential equations on Lie groups.

To simplify the exposition we will restrict the proofs to matrix theory. The results
are, however, valid in an abstract setting. The reader is referred to (Varadarajan
1984) for proofs in a general context.

Given a scalar function a(t) ∈ R, the derivative of the exponential is given as
d exp(a(t))/dt = a′(t) exp(a(t)). One might have hoped for a similar result also
when A(t) is a matrix. However, due to the fact that in general [A,A′] 6= O, this is
not the case and we must correct this formula. Note that d exp(A(t))/dt must be
tangent to G in the point P (t) = exp(A(t)). We have seen in Section 2.5 that any
such tangent can be written as C(t)P (t), where C(t) ∈ g. Furthermore, general
properties of d/dt imply that B(t) must depend only on A(t) and A′(t), and that
the dependence on A′ is linear. This function is denoted by dexp.

Definition 2.18 The differential of the exponential mapping is defined as the
‘right trivialised’ tangent of the exponential map, i.e. as a function dexp : g×g → g

such that

d

dt
exp(A(t)) = dexpA(t)(A

′(t)) exp(A(t)). (2.42)

Just like the functions AdA and adA defined in (2.40) and (2.41) respectively,
also dexpA is linear in its second argument for a fixed A. Hence we may regard all
these as being matrices acting on g. In fact dexpA is an analytic function of the
matrix transformation adA:

dexpA =
expm(adA) − I

adA
. (2.43)

This formula should be read as a power series in the following manner: Since

ex − 1

x
= 1 + 1

2!x+ 1
3!x

2 + 1
4!x

3 · · · + 1
(j+1)!x

j + · · · ,

Lie-group methods 33

we obtain

dexpA(C) = C + 1
2! [A,C] + 1

3! [A, [A,C]] + 1
4! [A, [A, [A,C]]] + · · ·

=

∞∑

j=0

1

(j + 1)!
adj

AC.
(2.44)

The fact that dexpA is an analytic function in ada makes it easy to invert the
matrix dexpA simply by inverting the analytic function,

dexp−1
A =

adA

expm(adA) − I
. (2.45)

Recall that
x

ex − 1
= 1 − 1

2x+ 1
12x

2 − 1
720x

4 + · · · =
∞∑

j=0

Bj

j!
xj ,

where Bj are Bernoulli numbers (Abramowitz and Stegun 1970). Thus,

dexp−1
A (C) = C − 1

2 [A,C] + 1
12 [A, [A,C]] + · · · =

∞∑

j=0

Bj

j!
adj

A(C). (2.46)

Note that, except for B1, all odd-indexed Bernoulli numbers vanish. Hence dexp−1
A +

1
2adA is an even function of adA. We have based the formulae here on right trivi-
alisations, i.e. tangents at a point P ∈ G being written as CP , C ∈ g. It is equally
possible to derive formulae based on left trivialisations, tangents written in the form
C̃P . If PC = C̃P , we observe that C̃ = P−1CP = AdP−1(C). Using (2.24), we
compute the left-trivialised formulae as

Adexp(−A) dexpA = exp(ad−A)
exp(adA) − I

adA
=

I − exp(ad−A)

adA
= dexp−A.

Hence

d

dt
exp(A(t)) = dexpA(t)(A

′(t)) exp(A(t)) = exp(A(t)) dexp−A(t)(A
′(t)). (2.47)

Thus we can arrive at the left versions by changing the sign of every commutator.
Note that dexp−1

A (C) and dexp−1
−A(C) differ only in the sign of the term ± 1

2 [A,C].
The definition of dexp in Definition 2.18 can be generalised to any smooth func-

tion ψ : g → G:

Definition 2.19 Given a smooth function ψ : g → G, we define the right trivial-
ized tangent of ψ as the function dψ : g×g → g defined such that

d

dt
ψ(A(t)) = dψA(t)(A

′(t))ψ(A(t)). (2.48)

The function dψ is always linear in the second argument, A′.

34 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

Let us now apply dexp and dexp−1 to obtain a differential equation for the BCH
formula. Going back to Theorem 2.5, we define a function bch : g×g → g such
that

expm(bchAB) = expm(A) expm(B).

We may compute C = bch(A,B) by integrating a differential equation. Let C(t) =
bch(tA,B). Clearly C(0) = B, and we seek C(1). Writing

expm(C(t)) = expm(tA) expm(B),

we find by differentiation that

dexpCt(C
′(t)) exp(C(t)) = dexptA(A) exp(tA) exp(B) = A exp(C(t))

⇒ C ′(t) = dexp−1
C(t)(A).

We have proved: the following result.

Lemma 2.10 The function C = bch(A,B) can be computed by integrating the
differential equation

C ′(t) = dexp−1
C(t)(A), 0 ≤ t ≤ 1, C(0) = B, (2.49)

from t = 0 to t = 1.

In this light the dexp−1 function may be regarded as a kind of ‘infinitesimal BCH
generator’. A more concise presentation of this idea is given in (Engø 1998). A sym-
bolic algorithm to compute the BCH from this formula can be found in (Munthe-
Kaas and Owren 1999).

2.7. Crouch–Grossman methods

The discipline of Lie-group methods owes a great deal to the pioneering work of
Peter Crouch and his coworkers, who were the first to introduce in a systematic,
mathematically-sophisticated manner ODE methods that evolve on manifolds. It is
interesting to note that their work was primarily motivated by problems in robotics
and control theory.

The main algorithm originating in this circle of ideas is the method of rigid frames
of Crouch and Grossman (1993). It has been originally stated in a more general
formalism of differential equations evolving on manifolds. To fit the method into
our narrative and to simplify its exposition we restrict our discussion to Lie-group
equations.

In essence, the Crouch–Grossman approach is an attempt to apply a Runge–
Kutta method to (2.1) (or, in a Lie-group context, to (2.38)) by repeatedly freezing
and thawing coefficients and keeping the flow in the correct configuration space.
The solution of a ‘frozen’ Lie-group equation,

Y ′ = A(t̃, Ỹ)Y t ≥ t∗, Y (t∗) = Y∗,

Lie-group methods 35

is simply expm((t − t∗)A(t̃, Ỹ))Y∗. Freezing (2.38) at tn and letting Yn+1 =
dexp(hA(tn, Yn))Yn, where Ym ≈ Y (tm), tm = mh, results in a first-order method
of very little merit. This can be remedied in the following procedure. We choose
constants ck, bl, ak,l, 1 ≤ l < k ≤ ν and let

Xk = ehak,k−1Fk−1ehak,k−2Fk−2 · · · ehak,1F1Yn

Fk = A(tn + ckh,Xk),



 k = 1, 2, . . . , ν,

Yn+1 = ehbνFν ehbν−1Fν−1 · · · ehb1F1Yn.

(2.50)

In other words, we model the solution as a product of ν ‘frozen’ steps. Note that
Xk ∈ G, Fk ∈ g, hence, as required, Yn+1 ∈ G.

The method (2.50) might appear to the initiated as a ‘Lie-group version’ of a
Runge–Kutta scheme, an analogy that we have deliberately reinforced by employing
notation that will be reserved in the sequel to RK schemes. Yet, order conditions
are considerably more challenging than in the classical RK case: they are nonlinear
in the weights b1, b2, . . . , bν and there are more of them!

Moderate headway can be made by elementary means and a great deal of algebra.
Thus, Crouch and Grossman (1993) have derived three-stage methods of order
three, for example

X1 = Yn, F1 = A(tn,X1),

X2 = e
3
4 hF1Yn, F2 = A(tn + 3

4h,X2),

X3 = e
17
108 hF2e

119
216 hF1Yn, F3 = A(tn + 17

24h,X3),

Yn+1 = e
13
51 hF3e−

2
3 hF2e

24
17 hF1Yn.

Inquiry into higher-order methods, though, requires more than algebra and elbow
grease. The situation is further complicated by the fact that (2.50) is typically
formulated in considerably more abstract manner, in a manifold setting: this does
not make order analysis any simpler!

The order of classical RK methods is nowadays determined by a method due
to Butcher (1963), which identifies expansion terms of both the exact and the
approximate solution with rooted trees. Remarkably, similar approach can be gen-
eralised to Crouch–Grossman methods and this has been accomplished by Owren
and Marthinsen (1999b). Details of their work are outside the scope of this survey
and we refer the readers to the primary source. Let us just mention that, unlike the
classical RK case, there are no fourth-order methods of this kind with four stages
and ν = 5 is required. Moreover, Owren and Marthinsen (1999b) extended (2.50)
to implicit methods, whereby ak,l is given for all k, l = 1, 2, . . . , ν and

Xk = ehak,νFν ehak,ν−1Fν−1 · · · ehak,1F1Yn, k = 1, 2, . . . , ν.

This allows for better order/stages ratio but the downside is the need to solve

36 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

nonlinear equations in Lie groups. Classical methods, e.g. the Newton–Raphson
technique, are of little use here since, unless iterated to convergence, they are
unlikely to deliver a solution which resides in the Lie group G. Recently, however,
Owren and Welfert (1996) developed two variants of Newton’s method that always
evolve in G. This brings implicit versions of (2.50) within the realm of computation,
although they are expensive.

The mainstream of research into Lie-group methods has moved in the last few
years away from the Crouch–Grossman approach. The main reason is that the
RK-MK methods, the theme of the next section, provide a considerably more con-
venient, intuitive and easy-to-analyse means of translating Runge–Kutta formalism
to a Lie-group setting. Yet, it would be unfair to pronounce Crouch–Grossman
methods as unviable or of purely historical interest. Firstly, in their more general
setting, Crouch–Grossman methods can be made (with some effort!) to evolve on
arbitrary smooth manifolds, while the scope of RK-MK is restricted to group ac-
tions. Secondly, in the present stage in the lifetime of geometric integration we
are denied the comfort of discarding lines of inquiry simply because of our current,
incomplete understanding.

3. Runge–Kutta on manifolds and RK-MK

In this section we describe a class of numerical integration schemes for comput-
ing (2.38), or more generally (2.25). The methods have become known under
the name of RK-MK-type schemes. We will later see that they might just as
well be called integration schemes based on canonical coordinates of the first kind.
These methods were originally developed in a series of four papers, (Munthe-Kaas
1995, Munthe-Kaas and Zanna 1997, Munthe-Kaas 1998) and (Munthe-Kaas 1999).

A major motivation behind the first of these papers was an attempt to under-
stand and specify the basic operations underlying classical Runge–Kutta methods
for integration of differential equations. Abstract specifications of mathematical
structures are fundamental in theoretical computer science as a tool for structuring
software. An object-oriented program consists of a collection of program modules
which interact in a well-specified manner. A module could e.g. represent some
mathematical structure, like a linear space, a Lie algebra or a Lie group. The basic
idea of object-oriented programming is that particular representations of the math-
ematical structure to be modelled should be hidden within the program module,
and that interactions between different program modules should be independent
of particular representations. Although this approach to programming has been
very successful for discrete problems, considerably less has been done within areas
of continuous mathematics, such as integration of differential equations. Much in-
sight about the important underlying structures can be gained by studying ‘pure’
mathematical definitions, since these focus more on what the essential mathemati-
cal structures are, rather than on how they can be represented. Thus it is natural,
for example, to specify that domains of differential equations should be differential

Lie-group methods 37

manifolds and that the right hand side of the equation should be a vector field on
the manifold.

Seen from this perspective, classical integration schemes such as Runge–Kutta
methods contain ‘type errors’ in their formulation. As an example, consider the
trapezoidal rule

yn+1 = yn +
h

2
[f(yn) + f(yn+1)].

All the operations are valid if y and f are vectors. However, if y is a point on
a manifold and f a vector field, then this expression involves addition of tangent
vectors at different base points, and also the addition of a point on a manifold and
a tangent to the manifold, both being invalid operations in the context of general
manifolds.

In (Munthe-Kaas 1995) classical Runge–Kutta methods are reformulated using
coordinate-independent operations on a Lie group. It is shown there that the
Butcher theory for order conditions of Runge–Kutta methods (Butcher 1963, Hairer,
Nørsett and Wanner 1993) can be reformulated in a geometrical language, replac-
ing the ‘Butcher trees’ with commutators in a Lie algebra. The outcome is a
so-called Lie–Butcher theory. Although the resulting algorithms respect Lie-group
structure, they can, in the simplest version, attain at most order two for a general
non-commutative Lie group. In the sequel, (Munthe-Kaas 1998), the Lie–Butcher
order theory is improved, order conditions derived to arbitrary order in general Lie
groups and explicit methods of Runge–Kutta type presented up to order four. The
paper (Munthe-Kaas and Zanna 1997) generalises the theory from equations on
Lie groups to equations evolving on more general manifolds acted upon by a Lie
group. In the final of these papers, (Munthe-Kaas 1999), it is shown that similar
methods of arbitrarily high order can be constructed and analysed in a relatively
simple manner, without employing the Lie–Butcher theory.

In this section our goal is to arrive at the main ideas of the algorithms while
employing a minimal amount of formal theory. We have therefore decided not to
discuss the general Lie–Butcher theory since this would require a significant amount
of Lie theory, beyond what we have already introduced in Section 2. The interested
reader is referred to (Munthe-Kaas 1998) for details on Lie–Butcher series. We will
continue along the lines of (Munthe-Kaas 1999), but instead of proofs for the general
equation (2.25) we restrict the discussion mainly to the simple matrix case (2.38).

We have seen that classical Runge–Kutta methods are valid and ‘type-correct’
only for differential equations evolving in a linear space V , since then the configu-
ration space and the space of vector fields coincide. If the analytical solution of the
differential equation evolves on some linear subspace W ⊂ V , then it is easy to show
that a consistent numerical integrator will also evolve on W (up to a departure due
to roundoff errors). On the other hand, if the differential equation evolves on some
nonlinear manifold embedded in V , it is much more difficult to devise numerical
algorithms that stay on the right submanifold. It is well known that traditional
ν-stage Runge–Kutta methods preserve quadratic submanifolds if the coefficients

38 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

satisfy the condition

bkbl = bkak,l + blal,k, k, l = 1, 2, . . . , ν

(Cooper 1987), while Calvo et al. (1997) show that this condition is also neces-
sary. In the same paper it is also shown that it is in general impossible to devise
classical Runge–Kutta methods that preserve arbitrary cubic submanifolds. Linear
multistep methods or truncated Taylor expansions cannot in general preserve even
quadratic submanifolds (Iserles 1997).

In the case of equations on a Lie group G, recall that the local structure in
a neighbourhood of any point can be described by the Lie algebra g, which is a
linear space. Even better, if H is a Lie subgroup of G, then there exists a (linear!)
subalgebra h of g describing the local structure of H. Given a differential equation
evolving on H, it is in general impossible to devise classical integration scheme that
will evolve on H. On the other hand, if an equation is evolving on h, so will almost
any reasonable numerical integrator. It thus seems to be a good idea to try to solve
a differential equation in the Lie algebra rather than in the Lie group!

Given the equation Y ′ = A(t, Y)Y , Y (0) = Y0, we call the map

g ∋ A 7→ expm(A)Y0 ∈ G (3.1)

canonical coordinates of the first kind (Varadarajan 1984). This defines a smooth
invertible map between a neighbourhood of O ∈ g and a neighbourhood of Y0 ∈ G.
We say that these coordinates are centred about Y0 ∈ G. A crucial step is ‘pulling
back’ the equation from G to g using this map.

Lemma 3.1 For small t ≥ 0 the solution of (2.38) is given by

Y (t) = expm(Θ(t))Y0.

where Θ ∈ g satisfies the differential equation

Θ′(t) = dexp−1
Θ(t)(A(t, Y)) Θ(0) = O (3.2)

and the dexp−1 operator has been defined in (2.46).

Proof. Differentiation of Y (t) = exp(Θ(t))Y0 yields

Y ′(t) = dexpΘ(t)(Θ
′(t)) exp(Θ(t))Y0 = dexpΘ(t)(Θ

′(t))Y (t).

The lemma follows from Y ′(t) = A(t, Y)Y (t). 2

Equation (3.2) is absolutely crucial to the entire business of Lie-group methods.
It has been originally stated by Felix Hausdorff (1906), although some attribute it to
John Edward Campbell, who might have published it few years earlier. (The names
of both, together with Henry Frederick Baker, have been immortalised in the BCH

Lie-group methods 39

formula, cf. Theorem 2.5.) The corresponding result for the general case (2.25) is
given in (Munthe-Kaas 1999).

Note that the proof uses no other property of the exponential mapping than the
definition of dexp. Hence the argument can be easily generalised, replacing exp
with a general coordinate map ψ and dexp with dψ as discussed in Definition 2.19.
This will be used in Section 6.

The simplest and most natural solution strategy is to apply a classically-formu-
lated Runge–Kutta method to (3.2), rather than to the original equation (2.38).
At each step we choose a coordinate system of the form (3.1), centred at the last
known point Yn. Let us consider briefly the details of this algorithm. Recall that a
ν-stage Runge–Kutta method is defined by constants {ak,l}ν

k,l=1, {bl}ν
l=1, {ck}ν

k=1,
usually written as a Butcher tableau

c1 a1,1 a1,2 · · · a1,ν

c2 a2,1 a2,2 · · · a2,ν

...
...

...
...

cν aν,1 aν,2 · · · aν,ν

b1 b2 · · · bν

(Hairer et al. 1993). Applied to a standard vector equation y′ = f(t,y), a single
step of length h from yn to yn+1 is given by

θk = yn +

ν∑

l=1

ak,lf l,

fk = hf(tn + ckh,θk),





k = 1, . . . , ν,

yn+1 = yn +

ν∑

l=1

blf l.

(3.3)

Applying this scheme to (3.2), we obtain the RK-MK algorithm. The following
equations describes a single RK-MK step from Yn ∈ G to Yn+1 ∈ G:

Θk =

ν∑

l=1

ak,lFl,

Ak = hA(tn + ckh, expm(Θk)Yn),

Fk = dexp−1
Θk

(Ak),





k = 1, . . . , ν,

Θ =

ν∑

l=1

blFl,

Yn+1 = expm(Θ)Yn.

(3.4)

The same algorithm also integrates the general equation (2.28), provided we replace
expm(Θ)Yn with its general form Λ(exp(Θ), Yn).

40 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

In order to complete this algorithm, we need to provide practical means for
computing dexp−1

Θk
(Ak). In some cases there exists fast direct algorithms for this,

see Appendix B. Note that even if dexp−1 is approximated, the resulting algorithm
will evolve on the correct manifold. In general one may use the expansion (2.46),
truncated to the order of the underlying Runge–Kutta scheme, and the resulting
algorithm will obtain the same order as the underlying Runge–Kutta scheme, while
staying on the correct manifold. For high order methods, a significant number of
commutators must be computed if dexp−1 is computed using (2.46). In Section 5.3
the structure of so called free Lie algebras is used to dramatically reduce the number
of commutators.

Examples of specific methods based on (3.4) feature in Appendix A, where, in
a more general setting, it is redesignated as (A.1). Here we just stress again the
main difference between (3.3) and (3.4): the latter acts in the Lie algebra g, which
is a linear space, thereby respecting Lie-group structure.

4. Magnus and Fer expansions

There are several possible points of departure for our description of Magnus and
Fer expansions. Perhaps the simplest and the most intuitive is the scalar linear
differential equation

y′ = a(t)y, t ≥ 0, y(0) = y0.

Its solution, y(t) = exp
(∫ t

0
a(ξ)dξ

)
y0, is familiar to all well-trained mathematics

undergraduates. Bearing in mind that the definition of the exponential can be
easily extended from scalars to matrices, one might have perhaps hoped that its
obvious generalisation,

expm

(∫ t

0

A(ξ)dξ

)
Y0, (4.1)

is the solution of the matrix linear system

Y ′ = A(t)Y, t ≥ 0, Y (0) = Y0. (4.2)

Unless A(t1) and A(t2) commute with each other for all t1, t2 ≥ 0, this is, unfor-
tunately, misplaced hope. Before offering possible remedies to this state of affairs,
we mention that if Y0 ∈ G, a Lie group, and A lies in its Lie algebra g (whence
(4.2) is a Lie-group equation) then (4.1) evolves in G. Bearing in mind the advis-
ability of respecting Lie-group structure, we need to ‘correct’ (4.1) without losing
this feature.

Two possible remedies suggest themselves. Firstly, we may seek a correction ∆(t)
evolving in the Lie algebra g so that

Y (t) = expm

(∫ t

0

A(ξ)dξ + ∆(t)

)
Y0.

Lie-group methods 41

Alternatively, we may correct with V (t) in the Lie group G,

Y (t) = expm

(∫ t

0

A(ξ)dξ

)
V (t).

This gives rise to Magnus and Fer expansions, respectively.

Both Magnus (1954) and Fer (1958) expansions originated within a non-numerical
context and they have found extensive use, e.g. in mathematical physics, quantum
chemistry, control theory and stochastic differential equations as a perturbative
tool in the investigation of linear systems (4.2). Fashioning them into a numerical
weapon is nontrivial and will occupy us in this and next sections.

4.1. Magnus expansions and rooted trees

Our point of departure is the dexpinv equation (2.46) which we recall for com-
pleteness of exposition: the solution of (4.2) can be written in the form Y (t) =
expm(Θ(t))Y0, t ≥ 0, where

Θ′ = dexp−1
Θ A =

∞∑

k=0

Bk

k!
adk

ΘA, t ≥ 0, Θ(0) = O, (4.3)

{Bk}k∈Z+ being Bernoulli numbers. As a first step, we attempt to solve (4.3) by
Picard iteration,

Θ[0](t) ≡ O,

Θ[m+1](t) =

∫ t

0

dexp−1
Θ[m](ξ)

A(ξ)dξ =
∞∑

k=0

Bk

k!

∫ t

0

adk
Θ[m](ξ)A(ξ)dξ, m = 0, 1,

42 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

Rearranging terms for simplicity, we obtain

Θ[1](t) =

∫ t

0

A(ξ1)dξ1,

Θ[2](t) =

∫ t

0

A(ξ1)dξ1 − 1
2

∫ t

0

[∫ ξ1

0

A(ξ2)dξ2, A(ξ1)

]
dξ1

+ 1
12

∫ t

0

[∫ ξ1

0

A(ξ2)dξ2,

[∫ ξ1

0

A(ξ2)dξ2, A(ξ1)

]]
dξ1 + · · ·

Θ[3](t) =

∫ t

0

A(ξ1)dξ1 − 1
2

∫ t

0

[∫ ξ1

0

A(ξ2)dξ2, A(ξ1)

]
dξ1

+ 1
12

∫ t

0

[∫ ξ1

0

A(ξ2)dξ2,

[∫ ξ1

0

A(ξ2)dξ2, A(ξ1)

]]
dξ1

+ 1
4

∫ t

0

[∫ ξ1

0

[∫ ξ2

0

A(ξ3)ξ3, A(ξ2)

]
dξ2, A(ξ1)

]
dξ1

− 1
24

∫ t

0

[∫ ξ1

0

[∫ ξ2

0

A(ξ3)dξ3,

[∫ ξ2

0

A(ξ3)dξ3, A(ξ2)

]]
dξ2, A(ξ1)

]
dξ1

− 1
24

∫ t

0

[∫ ξ1

0

[∫ ξ2

0

A(ξ3)dξ3, A(ξ2)

]
dξ2,

[∫ ξ1

0

A(ξ2)dξ2, A(ξ1)

]]
dξ1

− 1
24

∫ t

0

[∫ ξ1

0

A(ξ2)dξ2,

[∫ ξ1

0

[∫ ξ2

0

A(ξ3)dξ3, A(ξ2)

]
dξ2, A(ξ1)

]]
dξ1 + · · ·

and so on. The Picard theorem implies that Θ(t) = limm→∞ Θ[m](t) exists in a
suitably small neighbourhood of the origin and the above first few iterations indicate
that it can be expanded as a linear combination of terms that are composed from
integrals and commutators acting recursively on the matrix A. This is the Magnus
expansion

Θ(t) =
∞∑

k=0

Hk(t), (4.4)

where each Hk is a linear combination of terms that include exactly k+ 1 integrals
(or – and later we will see that it boils down to the same thing – k commutators).

Lie-group methods 43

Thus,

H0(t) =

∫ t

0

A(ξ1)dξ1,

H1(t) = − 1
2

∫ t

0

[∫ ξ1

0

A(ξ2)dξ2, A(ξ1)

]
dξ1,

H2(t) = 1
12

∫ t

0

[∫ ξ1

0

A(ξ2)dξ2,

[∫ ξ1

0

A(ξ2)dξ2, A(ξ1)

]]
dξ1

+ 1
4

∫ t

0

[∫ ξ1

0

[∫ ξ2

0

A(ξ3)dξ3, A(ξ2)

]
dξ2, A(ξ1)

]
dξ1,

H3(t) = − 1
24

∫ t

0

[∫ ξ1

0

[∫ ξ2

0

A(ξ3)dξ3,

[∫ ξ2

0

A(ξ3)dξ3, A(ξ2)

]]
dξ2, A(ξ1)

]
dξ1

− 1
24

∫ t

0

[∫ ξ1

0

[∫ ξ2

0

A(ξ3)dξ3, A(ξ2)

]
dξ2,

[∫ ξ1

0

A(ξ2)dξ2, A(ξ1)

]]
dξ1

− 1
24

∫ t

0

[∫ ξ1

0

A(ξ2)dξ2,

[∫ ξ1

0

[∫ ξ2

0

A(ξ3)dξ3, A(ξ2)

]
dξ2, A(ξ1)

]]
dξ1

− 1
8

∫ t

0

[∫ ξ1

0

A(ξ2)dξ2,

[∫ ξ1

0

A(ξ2)dξ2,

[∫ ξ1

0

A(ξ2)dξ2, A(ξ1)

]]]
dξ1.

It is possible to derive the next few sets Hk with enough perseverance and perhaps
a little help from a computer algebra package. Yet, it is evident that the terms
are becoming increasingly complex. A considerably more transparent form of the
Magnus expansion, amenable for easy recursive derivation and easier discussion of
computational issues, can be obtained by associating each term in the expansion
with a rooted binary tree, an approach that has been pioneered by Iserles and
Nørsett (1999).

Let us recall briefly relevant terminology of graph theory (Harary 1969).

• Let V = {v1, v2, . . . , vr} be a finite set of distinct vertices and E ∈ V × V

a set of edges. (The edges (vi, vj) and (vj , vi) are identified with each other.)
We say that G = 〈V ,E 〉 is a graph.

• The ordered set {(vsl
, vtl

) : l = 1, 2, . . . , r} of edges is a path from vi ∈ V to
vj ∈ V , i 6= j, if s1 = i, tl = sl+1, l = 1, 2, . . . , r − 1 and tr = j.

• The graph is said to be connected if there is a path between any two distinct
vertices. It is a tree if exactly one path links every two vertices.

• A rooted tree is the pair T = (G, w), where G is a tree and w ∈ V is its root.
There exists natural partial order on T : we say that vi ≺ vj if vi precedes
vj in the unique path extending from the root w to vj . In that case vi is the

44 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

ancestor of vj , while vj is the successor of vi. (Thus, the root is the ancestor
of all vertices in V \ {w}.)

• If vi ≺ vj and there is no vk ∈ V such that vi ≺ vk ≺ vj , we say that vi is the
parent of vj (most graph-theory texts adopt a more sexist definition) and vj

the child of vi. Childless vertices are called leaves.
• If each vertex in a rooted tree has at most two children, T is called a binary

tree. If each vertex has either exactly two children or is a leaf, T is said to be
a strictly binary tree.

It is always worthwhile to draw a pictorial representation of a graph, whereby edges
are merely undirected lines extending between vertices, which are denoted by black
discs. The graph-theoretical convention is that the root is always placed at the
bottom, although computer scientists occasionally defy gravity by locating it at
the top. We will follow the mathematical convention.

We commence our investigation of the Magnus expansion by rewriting (4.4) in
the form

Θ(t) =

∞∑

k=0

Hk(t) =

∞∑

k=0

∑

τ∈Tk

α(τ)

∫ t

0

Cτ (ξ)dξ, t ≥ 0, (4.5)

Thus, each Cτ for τ ∈ Tk is made out of exactly k integrals and k commutators,
while each α(τ) is a scalar constant. Recalling how the expansion has been obtained
from Picard’s iteration, we observe that the terms Cτ can be obtained by just two
composition rules:

1 The index set T0 is a simpleton, T0 = {τ◦}, say, and Cτ◦(t) = A(t);

2 If τ1 ∈ Tm1
and τ2 ∈ Tm2

then there exists τ ∈ Tm1+m2+1 such that

Cτ (t) =

[∫ t

0

Cτ1
(ξ)dξ, Cτ2

(t)

]
. (4.6)

Although this observation makes the expansion somewhat more transparent, much
greater transparency is obtained by identifying the index sets Tk with subsets of
binary rooted trees, in a manner that makes the above composition rules stand out
pictorially. We express the relationship between the index τ and the term Cτ (t) by
the map τ ; Cτ (t).

1 We let T0 consist of the single rooted tree with one vertex, r , and

r ; A(t).

2 Suppose that Tm1
∋ τ1 ; Cτ1

(t) and Tm2
∋ τ2 ; Cτ2

(t). Then

Tm1+m2+1 ∋ r

r

@@ �

τ1
τ2

;

[∫ t

0

Cτ1
(ξ)dξ, Cτ2

(t)

]
. (4.7)

Lie-group methods 45

Thus, (4.6) is ‘coded’ in graph terminology by denoting integration by adding a
root to a tree, while commutation is denoted by joining two trees with a common
root. It is possible to show that all the terms in the Magnus expansion can be
obtained in this manner (Iserles and Nørsett 1999).

To derive T1 we have just one option, m1 = m2 = 0, and the outcome is a single
tree,

τ1 = r, τ2 = r ⇒ τ = r@@ ��
r r

r

.

There are two possibilities in T2, namely m1 = 0, m2 = 1 and m1 = 1, m2 = 0.
They yield

τ1 = r, τ2 = r@@ ��
r r

r

⇒ τ = r

r

r

@@
@@

��
��r

rr

r

,

τ1 = r@@ ��
r r

r

, τ2 = r ⇒ τ = r@@ ��
r r

r@@ ��
r r

r

.

Next, we construct T3:

τ1 = r, τ2 = r

r

r

@@
@@

��
��r

rr

r

⇒ τ = r

r

r

r

@@
@@

@@

��
��

��

r

r

r

r

r

r

,

τ1 = r, τ2 = r@@ ��
r r

r@@ ��
r r

r

⇒ τ = r@@ ��
r r

r

r@@ ��
r r

r@@ ��
r r

r

,

46 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

τ1 = r@@ ��
r r

r

, τ2 = r@@ ��
r r

r

⇒ τ = rQ
Q

�
�

r r@@ ��
r r

r

r@@ ��
r r

r

,

τ1 = r

r

r

@@
@@

��
��r

rr

r

, τ2 = r ⇒ τ = r@@ ��
r r

r

r

r

@@
@@

��
��r

rr

r

,

τ1 = r@@ ��
r r

r@@ ��
r r

r

, τ2 = r ⇒ τ = r@@ ��
r

r@@ ��
r r

r@@ ��
r r

r

r

.

The principle should be quite clear by now, as should be the correspondence be-
tween trees and expansion terms which, indeed, can be ‘read’ directly from the
graph. Thus, the last tree can be ‘recited’ as “the integral of A, commuted with A,
integrated, commuted with A, integrated and commuted with A”.

We now have a recursive algorithm to derive the Cτ s but recall that, to complete
our description of (4.5), we also require the constants α(τ). Fortunately, also this
can be deduced from the tree formalism. We thus commence by letting α(r) = 1
and continue by observing that each tree in ∪k∈NTk can be written in a unique
form as

τ = r

r

r

r

@@
@@

@@

��
��

��

r

r

r

r@@ ��
r r

τ1

τ2

τ3

τs

..
.

(4.8)

for some s ≥ 1. We can assume by induction that α(τi) are already known for
i = 1, 2, . . . , s. In that case it has been proved in (Iserles and Nørsett 1999) that

α(τ) =
Bs

s!

s∏

i=1

α(τi). (4.9)

Note that B2m+1 = 0 for m ≥ 1. This implies that many (although, unfortunately,
not too many. . .) terms in (4.5) vanish.

Lie-group methods 47

We can now write the first terms of the Magnus expansion in a tree formal-
ism, using the convention that linear combination of trees corresponds to a linear
combination of expansion terms,

Θ(t) = r

r

− 1
2 r

r@@ ��
r r

r

+ 1
12 r

r

r

r

@@
@@

��
��r

rr

r

+ 1
4 r

r@@ ��
r r

r@@ ��
r r

r

− 1
8 r

r@@ ��
r

r@@ ��
r r

r@@ ��
r r

r

r

− 1
24 r

r@@ ��
r r

r

r@@ ��
r r

r@@ ��
r r

r

− 1
24 r

rQ
Q

�
�

r r@@ ��
r r

r

r@@ ��
r r

r

− 1
24 r

r@@ ��
r r

r

r

r

@@
@@

��
��r

rr

r

+ · · · .

(4.10)

Note that the coefficient corresponding to the last tree in T3 vanishes, this being a
consequence of (4.9) and of B3 = 0.

It is relatively easy to continue the expansion to higher-order terms. Moreover,
it is easy to prove that

τ ∈ Tk ⇒
∫ t

0

Cτ (ξ)dξ = O
(
tk+1

)
, k ∈ Z

+ (4.11)

for every sufficiently-smooth matrix function A. On the face of it, this gives a
handy device to truncate the Magnus expansion to obtain an approximant of given
order – we will bother later about the calculation of multivariate integrals. This,
however, is grossly misleading, since the naive estimate (4.11) can be improved a
very great deal: far fewer terms are required!

4.2. Convergence of the Magnus expansion

Before we proceed to improve the estimate (4.11) and even consider the question
of designing a realistic numerical algorithms based on the Magnus expansion, we
need to examine the issue of convergence.

It has been proved in (Iserles and Nørsett 1999) that convergence takes place
for sufficiently small t ≥ 0, but the result was unduly pessimistic. A considerably
better (and in a well-defined sense optimal) estimate has been obtained by Blanes,
Casas, Oteo and Ros (1998). Herewith we present briefly a short and elegant proof
due to Moan (1998).

Theorem 4.1 Suppose that the Lie algebra g is equipped with the norm ‖ · ‖.

48 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

The Magnus expansion (4.4) absolutely converges in this norm for every t ≥ 0 such
that ∫ t

0

‖A(ξ)‖dξ ≤
∫ 2π

0

dξ

4 + ξ[1 − cot(ξ/2)]
≈ 1.086868702. (4.12)

Proof. Integrating (4.3) and taking norms, we have by the triangle inequality and
the trivial bound ‖adk

BA‖ ≤ (2‖B‖)k‖A‖ that

‖Θ(t)‖ =

∥∥∥∥
∫ t

0

dexp−1
Θ(ξ)A(ξ)dξ

∥∥∥∥ ≤
∫ t

0

‖ dexp−1
Θ(ξ)A(ξ)‖dξ

≤
∫ t

0

∞∑

k=0

|Bk|
k!

(2‖Θ(ξ)‖)k‖A(ξ)‖dξ =

∫ t

0

g(2‖Θ(ξ)‖)‖A(ξ)‖dξ,

where
g(x) = 2 +

x

2

(
1 − cot

x

2

)
.

We now use a Bihari-type inequality from (Moan 1998): suppose that h, g, v ∈
C(0, t∗) are positive and that g is nondecreasing. Then

h(t) ≤
∫ t

0

g(h(ξ))v(ξ)dξ, t ∈ (0, t∗)

implies that

h(t) ≤ g̃−1

(∫ t

0

v(ξ)dξ

)
, t ∈ (0, t∗∗), where g̃(x) =

∫ x

0

dξ

g(ξ)

and t∗∗ ∈ (0, t∗] is such that g̃
(∫ t

0
v(ξ)dξ

)
is bounded in (0, t∗∗). In our case h(t) =

2‖Θ(t)‖, v(t) = ‖A(t)‖ and g(t) are all positive and the latter is nondecreasing for
t ∈ (0, 2π). Therefore,

‖Θ(t)‖ ≤ 1
2 g̃

−1

(∫ t

0

‖A(ξ)‖dξ
)

and ‖Θ(t)‖ is bounded, provided that g̃
(∫ t

0
‖A(ξ)‖dξ

)
is bounded. The latter holds

as long as condition (4.12) is satisfied. 2

The condition of Theorem 4.1 has been recently improved for a more relaxed
convergence framework. Moan (n.d.) proved that the Magnus expansion converges
in norm for all t ∈ (0, t∗) with regard to the Euclidean norm,

lim
m→∞

∥∥∥∥∥Θ(t) −
m∑

k=0

Hm(t)

∥∥∥∥∥
2

= 0,

Lie-group methods 49

provided that ∫ t∗

0

‖A(ξ)‖2dξ < π. (4.13)

Magnus expansion cannot be expected to converge always. In its numerical im-
plementation, this means that the expansion (like any other numerical method for
ODEs) need be advanced in a time-stepping fashion, rather than being applied
globally. Yet, the condition of Theorem 4.1 is not unduly restrictive and (4.13)
is even less so. It might be problematic for stiff systems, a subject that has not
received much attention in the study of Lie-group methods. An important excep-
tion is the use of Magnus expansions in the calculation of Sturm–Liouville spectra,
where an elegant device allows to integrate the equations way beyond the formal
upper bound (4.12) (cf. Section 11.2 and (Moan 1998)).

4.3. Power of a tree and time symmetry

Following Iserles, Nørsett and Rasmussen (1998), we say that a tree τ ∈ ∪k∈Z+Tk

is of power m if m ≥ 0 is the least integer such that

Cτ (t) = O(tm)

for all sufficiently smooth matrix functions A. Letting Fm be the set of all trees of
power m and truncating the Magnus expansion,

Θp(t) =

p−1∑

m=0

∑

τ∈Fm

α(τ)

∫ t

0

Cτ (ξ)dξ, (4.14)

it is trivial to verify that Θp(t) = Θ(t) + O
(
tp+1

)
and we have an order-p approxi-

mant.
We already know from (4.11) that τ ∈ Tk implies τ ∈ Fm for some m ≥ k. How

large canm get, though? The main mechanism that increases order is commutation.
Thus, suppose that

Cτi
(t) = Dit

mi + Eit
mi+1 + Fit

mi+2 + · · · , i = 1, 2.

Then

[∫ t

0

Cτ1
(ξ)dξ, Cτ2

(t)

]

=
1

m1 + 1
[D1,D2]t

m1+m2+1 +

(
1

m1 + 1
[D1, E2] +

1

m1 + 2
[E1,D2]

)
tm1+m2+2

+

(
1

m1 + 1
[D1, F2] +

1

m1 + 2
[E1, E2] +

1

m1 + 3
[F1,D2]

)
tm1+m2+3 + · · · .

50 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

In general, [D1,D2] 6= O, hence the new term resides in Fm1+m2+1. However,
cancellation takes place in the important special case τ1 = τ2, whence

[∫ t

0

Cτ1
(ξ)dξ, Cτ1

(t)

]

=
1

(m1 + 1)(m1 + 2)
[D1, E1]t

2m1+2 +
2

(m1 + 1)(m1 + 3)
[D1, F1]t

2m1+3 + · · ·

and the new term is in F2m1+2, a gain of one unit.
While F0 = { r}, we observe that F1 = ∅ and

F2 =

{

r@@ ��
r r

r
}

F3 =





r

r

r

@@
@@

��
��r

rr

r

, r@@ ��
r r

r@@ ��
r r

r




,

F4 =





r

r

r

r

@@
@@

@@

��
��

��

r

r

r

r

r

r

, r@@ ��
r r

r

r@@ ��
r r

r@@ ��
r r

r

, r@@ ��
r r

r

r

r

@@
@@

��
��r

rr

r

, r@@ ��
r

r@@ ��
r r

r@@ ��
r r

r

r





.

In general, the number of terms counted according to power is significantly smaller
than similar enumeration by the number of commutators. It is possible to prove
that

lim sup
k→∞

(#Tk)1/k = 4, lim sup
m→∞

(#Fm)1/m ≈ 3.11674 (4.15)

(Iserles and Nørsett 1999, Iserles et al. 1998). As an example of the reduction in
cardinality, compare #T6 = 132 with #F6 = 21.

Using the ‘truncation by power’ (4.14) is thus aptly justified. However, before
we rush to pronounce this as the ‘correct’ truncated Magnus expansion, we need
to pay attention to yet another device that reduces the number of terms in the
expansion.

Let Φt be the flow corresponding to the differential equation (4.2), Φt(Y0) = Y (t).
It is obvious that the flow is time symmetric, Φ−t ◦Φt = Id, since integrating from
0 to t and back to 0 returns us to the original initial value. What is far less obvious,
yet has been proved in (Iserles et al. 1998), is that the truncation by power (4.14)
respects time symmetry. In other words, let

Φ̃t(Y0) = eΘp(t)Y0, t ≥ 0.

Lie-group methods 51

Then Φ̃−t ◦ Φ̃t = Id. This is remarkable, since any analytic time-symmetric map
St can be represented in the form St = eFt where the map Ft is expandable in odd
powers of t only (Hairer et al. 1993). This fits our framework perfectly.

Theorem 4.2 The function Θp can be expanded in odd powers of t and

Θ2q−1(t) = Θ(t) + O
(
t2q+1

)
, q ∈ N.

Therefore, truncating by power with odd p leads to a gain of an extra unit of
order! This is a critical observation which leads to substantial savings in high-order
Magnus expansions.

It is important to realise that it is not true that individual elements in H2q−1,
q ≥ 2, are O

(
t2q+1

)
: it is their linear combination that knocks out the O

(
t2q
)

term!
We may now re-examine the expansion (4.10), truncating by power and identi-

fying the order. Reverting from trees to standard notation, we have

Θ(t) =

∫ t

0

A(ξ)dξ . order 2 (4.16)

− 1
2

∫ t

0

∫ ξ1

0

[A(ξ2), A(ξ1)]dξ . order 4 (4.17)

+ 1
12

∫ t

0

∫ ξ1

0

∫ ξ1

0

[A(ξ2), [A(ξ3), A(ξ1)]]dξ

+ 1
4

∫ t

0

∫ ξ1

0

∫ ξ2

0

[[A(ξ3), A(ξ2)], A(ξ1)]dξ

− 1
24

∫ t

0

∫ ξ1

0

∫ ξ1

0

∫ ξ3

0

[A(ξ2), [[A(ξ4), A(ξ3)], A(ξ1)]]dξ

− 1
24

∫ t

0

∫ ξ1

0

∫ ξ2

0

∫ ξ2

0

[[A(ξ3), [A(ξ4), A(ξ2)]], A(ξ1)]dξ

− 1
8

∫ t

0

∫ ξ1

0

∫ ξ2

0

∫ ξ3

0

[[[A(ξ4), A(ξ3)], A(ξ2)], A(ξ1)]dξorder 6 (4.18)

+ · · ·

Very often entries of A and its commutators can be integrated explicitly, e.g.
when they are polynomials or trigonometric functions. In that case the truncated
Magnus expansions (4.16–18), say, can be computed explicitly. However, a more
comprehensive numerical approach to Magnus expansions requires the computation
of multivariate integrals. Although at the first glance this may appear as a very
formidable task, it turns out that the special structure of ‘Magnus integrals’ renders
them amenable to very effective and affordable numerical treatment. We defer the
discussion of this issue to Section 5.

52 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

4.4. Fer expansions

At the first instance, we wish to represent the solution of (4.2) in the form

Y (t) = e
R

t

0
A(ξ)dξV (t), t ≥ 0. (4.19)

Direct differentiation yields

V ′ =

[
d

dt
e−

R

t

0
A(ξ)dξ

]
Y + e−

R

t

0
A(ξ)dξY ′

=

[
d

dt
e−

R

t

0
A(ξ)dξ

]
e

R

t

0
A(ξ)dξV + e−

R

t

0
A(ξ)dξAe

R

t

0
A(ξ)dξV

=
[
Ad expm(−

R

t

0
A(ξ)dξ)A(t) − dexp expm(−

R

t

0
A(ξ)dξ)A(t)

]
V.

Recalling from (2.24) and (2.43) that

Ad expm(E)D = eadED,

dexpED =
eadE − I

adE
D,

we deduce that the correction term V itself obeys a linear differential equation,

V ′ =

[
(I + adE) e−adE − I

adE
D

]
V, t ≥ 0, V (0) = Y0,

where

D = A(t), E =

∫ t

0

A(ξ)dξ.

This is indeed the main step in constructing the Fer expansion: the correction V
in (4.19) satisfies the equation

V ′ =

[∞∑

k=1

(−1)k k

(k + 1)!
adk

R

t

0
A(ξ)dξA(t)

]
V, t ≥ 0, V (0) = Y0. (4.20)

The idea is now to iterate (4.20). Thus, we let B0 = A and generate the sequence
{Bm}m∈Z+ recursively, where

Bm(t) =

∞∑

k=1

(−1)k k

(k + 1)!
adk

R

t

0
Bm−1(ξ)dξBm−1(t), t ≥ 0, m ∈ N. (4.21)

The Fer expansion of the solution of (4.2) is

Y (t) = e
R

t

0
B0(ξ)dξe

R

t

0
B1(ξ)dξe

R

t

0
B2(ξ)dξ · · ·Y0, t ≥ 0. (4.22)

Lie-group methods 53

This expansion was introduced by Fer (1958) who, remarkably, did not recognise
that it respects Lie-group structure. It was rediscovered by Iserles (1984) in a
numerical context but, again, Lie groups were not mentioned. Finally, Zanna (1996)
recognised (4.22) as a Lie-group solver. In (Zanna and Munthe-Kaas 1997) it is
shown that this expansion can be understood as a version of so-called Lie reduction.
From this it follows that if g is solvable (cf. Section 6.5) then the expansion in (4.2)
is exact for a finite product of exponentials.

The first step in a numerical implementation of the Fer expansion (4.22) is trun-
cation of the infinite product. To this end it is vital to recognise the rate of decay of
the matrices Bm. Assuming that Bm(t) = O(tpm), m ∈ Z

+, it is easy to verify from
(4.21) that pm = 2pm−1 + 2. This, in tandem with p0 = 0, yields pm = 2m+1 − 2
and we deduce that

e
R

t

0
B0(ξ)dξe

R

t

0
B1(ξ)dξ · · · e

R

t

0
Bs−1(ξ)dξY0 = Y (t) + O

(
t2

s+1−1
)
. (4.23)

Thus, we obtain an approximant of order 2s+1 − 2: the order grows exponentially
with s (Iserles 1984)!

Of course, if we are interested in an order-p Fer approximant to the solution of
(4.2), there is no need to carry out the summation in (4.21) ad infinitum. Systematic
analysis of order conditions necessary for the formation of Fer approximants of
various orders has been carried out by Zanna (1998) using the same binary rooted
trees that we have already encountered in our analysis of the Magnus expansion.
Identifying A with the single-vertex tree, we have the following explicit form of a
Fer approximant of any given order:

Order 2: s = 1,

B0(t) : r.

Order 3: s = 2,

B0(t) : r,

B1(t) : 1
2 r@@ ��

r r

r

.

Order 4: s = 2,

B0(t) : r,

B1(t) : 1
2 r@@ ��

r r

r

+ 1
3 r

r

r

@@
@@

��
��r

rr

r

.

54 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

Order 5: s = 2,

B0(t) : r,

B1(t) : 1
2 r@@ ��

r r

r

+ 1
3 r

r

r

@@
@@

��
��r

rr

r

+ 1
8 r

r

r

r

@@
@@

@@

��
��

��

r

r

r

r

r

r

.

Order 6: s = 2,

B0(t) : r,

B1(t) : 1
2 r@@ ��

r r

r

+ 1
3 r

r

r

@@
@@

��
��r

rr

r

+ 1
8 r

r

r

r

@@
@@

@@

��
��

��

r

r

r

r

r

r

+ 1
30 r

r

r

r

r

@@
@@

@@
@@

��
��

��
��

r

r

r

r

r

r

r

r

.

Order 7: s = 3,

B0(t) : r,

B1(t) : 1
2 r@@ ��

r r

r

+ 1
3 r

r

r

@@
@@

��
��r

rr

r

+ 1
8 r

r

r

r

@@
@@

@@

��
��

��

r

r

r

r

r

r

+ 1
30 r

r

r

r

r

@@
@@

@@
@@

��
��

��
��

r

r

r

r

r

r

r

r

+ 1
144 r

r

r

r

r

r

@@
@@

@@
@@

@@

��
��

��
��

��

r

r

r

r

r

r

r

r

r

r

,

B2(t) : 1
8 rQ

Q
�

�
r r@@ ��

r r

r

r@@ ��
r r

r

.

and so on. Note that just a subset of ‘Magnus trees’ occurs in the expansion.
This representation of expansion terms as linear combination of trees is central to
the application of the multivariate quadrature algorithms of the next section and
derivation of practical numerical methods for the Fer expansion.

5. Quadrature and graded algebras

5.1. Multivariate quadrature over polytopes

Casting our eyes again over the Magnus method (4.16–18) and considering its nu-
merical implementation, let us discuss the computation of the first four integrals,
noting that each need be carried out over a different polytope:

Lie-group methods 55

I1(t) =

∫ t

0

A(ξ)dξ over the line segment
0 t

I2(t) =

∫ t

0

∫ ξ1

0

[A(ξ2), A(ξ1)]dξ over the triangle @
@@

0 t
0

t

I3(t) =

∫ t

0

∫ ξ1

0

∫ ξ1

0

[A(ξ2), [A(ξ3), A(ξ1)]]dξ over the prism @
@@

��

��

@
@@

0 t
0

t

0
t

I4(t) =

∫ t

0

∫ ξ1

0

∫ ξ2

0

[[A(ξ3), A(ξ2)], A(ξ1)]dξ over the pyramid @
@@

��
HHH

0 t
0

t

0

t

Unless we can replace all these integrals by affordable and accurate quadrature, the
Magnus method (and by the same token the Fer method) of non-trivial order is of
little but theoretical value. Yet, multivariate quadrature is notoriously expensive
in terms of function evaluations (Cools 1997). Fortunately, the special nature of
integrals occurring within the context of Magnus and Fer expansions renders them
particularly suitable for numerical quadrature with a remarkably small number of
function evaluations (Iserles and Nørsett 1999).

We commence by observing that, time-stepping with step h > 0, each Magnus
or Fer expansion term is of the form

I(h) =

∫

S
L(A(ξ1), A(ξ2), . . . , A(ξs))dξ, (5.1)

where L is a multilinear form, while S is a polytope of a special form,

S = {ξ ∈ R
s : ξ1 ∈ [0, h], ξl ∈ [0, ξml

], l = 2, 3, . . . , s},

where ml ∈ {1, 2, . . . , l − 1}, l = 2, 3, . . . , s. Thus, for example,

∫ t

0

∫ ξ1

0

∫ ξ1

0

[A(ξ2), [A(ξ3), A(ξ1)]]dξ and

∫ t

0

∫ ξ1

0

∫ ξ2

0

[[A(ξ3), A(ξ2)], A(ξ1)]dξ

yield s = 3 and

L(E1, E2, E3) = [E2, [E3, E1]], m2 = 1, m3 = 1

and
L(E1, E2, E3) = [[E3, E2], E1], m2 = 1, m3 = 2

respectively.
Following Iserles and Nørsett (1999), we propose to discretise I(h) as follows:

Choose ν distinct quadrature points, c1, c2, . . . , cν ∈ [0, 1], evaluate Ak = hA(ckh),

56 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

k = 1, 2, . . . , ν and form the quadrature

K(h) =
∑

k∈Cν
s

bkL(Ak1
, Ak2

, . . . , Aks
), (5.2)

where Cν
s is the set of all combinations of length s from the set {1, 2, . . . , ν}. The

weights are

bk =

∫

S̃

s∏

i=1

ℓki
(ξi)dξ, (5.3)

where

S̃ = {ξ ∈ R
s : ξ1 ∈ [0, 1], ξl ∈ [0, ξml

], l = 2, 3, . . . , s}

is the polytope S scaled to the unit cube and

ℓj(x) =

ν∏

i=1
i6=j

x− cj
ci − cj

, j = 1, 2, . . . , ν,

are the familiar cardinal polynomials of Lagrange’s interpolation. Note that (5.3)
are interpolatory weights: they follow naturally by substituting the interpolation
polynomial at the quadrature points,

Ã(t) = h−1
ν∑

k=1

ℓk

(
t

h

)
Ak (5.4)

in place of A(t) in (5.1) and carrying out the integration explicitly. Conceptually,
(5.2) recycles ν function values at all possible combinations at the s ‘slots’ of the
multilinear function L.

How well does the quadrature (5.2) approximate the integral (5.1)? The answer is
straightforward in the case s = 1, L(E) = E, since we recover standard univariate
interpolatory quadrature, which is of order ν+m, where m ≥ 0 is the largest integer
so that

∫ 1

0

ξi−1c(ξ)dξ = 0, i = 1, 2, . . . ,m where c(t) =

ν∏

k=1

(t− ck) (5.5)

is the collocation polynomial.

Theorem 5.1 The orthogonality condition (5.5) implies that the quadrature rule
(5.2) is of order ν+m for all polytopes S and all multilinear forms L. In particular,
if c1, c2, . . . , cν are the roots of the Legendre polynomial Pν , shifted to the interval
[0, 1] (Gauss–Legendre points), then the quadrature is of order 2ν.

Lie-group methods 57

We do not propose to present the proof from (Iserles and Nørsett 1999), which
is long, technical and not particularly illuminating. In the sequel, in the context
of Magnus methods for nonlinear Lie-group equations, we describe a much clearer
argument due to Zanna (1999) that explains why a suitable linear combination
of quadratures (5.2) approximates the truncated Magnus expansion to the order
reported in Theorem 5.1. Instead, we present an example, the quadrature of the
four integrals that have opened this subsection using (5.2) at three Gauss–Legendre
points.

Letting ν = 3, hence order six, we have

c1 = 1
2 −

√
15

10 , c2 = 1
2 , c3 = 1

2 +
√

15
10 ,

whence

ℓ1(x) =
5 +

√
15

6
− 10 +

√
15

3
x+

10

3
x2,

ℓ2(x) = −2

3
+

20

3
x− 20

3
x2,

ℓ3(x) =
5 −

√
15

6
− 10 −

√
15

3
x+

10

3
x2.

Insofar as the univariate integral I1 is concerned, we have the familiar Gauss–
Legendre quadrature,

I1(h) ≈ 1
18 (5A1 + 8A2 + 5A3),

while, after taking into account skew-symmetry of commutators, the quadrature of
the planar integral is

I2(h) ≈
√

15
54 (2[A1, A2] + [A1, A3] + 2[A2, A3]].

Insofar as the two cubic integrals are concerned, we are interested (cf. (4.18)) in
their linear combination which, after a great deal of simplification, yields

1
12I3(h) + 1

4I4(h) ≈ 1
27216 (94[A1, [A1, A2]] + 45[A1, [A1, A3]]

+ 194[A1, [A2, A3]] − 152[A2, [A1, A2]] + 152[A2, [A2, A3]] (5.6)

− 194[A3, [A1, A2]] − 45[A3, [A1, A3]] − 94[A3, [A2, A3]]).

Before any attempts are made either to anoint (5.2) as a new wonder-quadrature
or to expand efforts to optimise its calculation, we hasten to say that it is subopti-
mal! Indeed, it is an immediate consequence of Theorem 4.2 that 1

12I3(h)+
1
4I4(h) =

O
(
h4
)
, rather than O

(
h3
)
. Moreover, some commutators can be expressed in terms

of other commutators. Although all this can be done on an ad hoc basis, it is sig-
nificantly better and more efficient to understand this phenomenon mathematically
and apply the fruits of our understanding not just to truncated Magnus method
but also to other Lie-group solvers.

58 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

Quadrature (5.2) scores exceedingly well in terms of function evaluations: the
number of function evaluations required to compute all the integrals in a Magnus
expansion to requisite order is the same as the cost of the corresponding univariate
Gauss–Legendre quadrature! The trade-off, though, is that this approach requires
a very large volume of linear-algebra calculations, since the number of all combi-
nations is inordinately large. Fortunately, the cost of linear algebra can be reduced
a very great deal by exploiting the theory of free Lie-algebras. This salutary ex-
ample of a mathematical theory purer than a driven snow finding a very practical
application in the design of numerical algorithms is told in the remainder of this
section.

5.2. The self-adjoint basis

The first step in the effort to improve the multivariate quadrature formula (5.2)
is a change of basis. As suggested first by Munthe-Kaas and Owren (1999), we
choose c1 < c2 < · · · cν symmetric with respect to 1

2 and replace the function values
A1, A2, . . . , Aν with the solution of the Vandermonde system

ν∑

l=1

(ck − 1
2)l−1Bl = Ak, k = 1, 2, . . . , ν. (5.7)

We say that {B1, B2, . . . , Bν} is a self-adjoint basis and note for future reference
that Gauss–Legendre points in [0, 1], being symmetric with respect to 1

2 , lead to
such basis.

Proposition 5.2 Given a sufficiently smooth matrix function A, it is true that
Bl = clh

lA(l−1)(1
2h) + O

(
hl+1

)
, where cl 6= 0 is a scalar constant, l = 1, 2, . . . , ν.

Moreover, each h−lBl can be expanded in even powers of h.

It follows from the proposition that the interpolating polynomial can be written
in the form

Ã(t) = h−1
ν−1∑

l=0

Bl(
t
h − 1

2)l. (5.8)

Substituting this into (5.1) allows us to rephrase the quadrature formula (5.2) in a
considerably more convenient form,

K̄(h) =
∑

l∈Cν
s

b̄lL(Bl1 , Bl2 , . . . , Bls), (5.9)

where

b̄l =

∫

S̄

s∏

i=1

(ξi − 1
2)li−1dξ. (5.10)

Lie-group methods 59

Proposition 5.3. (Munthe-Kaas and Owren (1999)) Suppose that a linear
combination of integrals I(h) can be expanded in odd powers of h. Then so can be
the linear combination of quadratures (5.9).

Recall from Section 4.3 that Magnus series, truncated by power, conform with
the assumptions of Proposition 5.3: at a stroke, roughly half commutators go away.
Yet, this is but the first of three important savings that are a consequence of the
change of a basis.

An element F ∈ g constructed from the basis terms B1, B2, . . . , Bν by the stan-
dard Lie-algebra operations of linear combination and commutation is said to be
of grade m if F = O(hm) for all sufficiently smooth matrix functions A. This is
denoted by ω(F) = m. We note from Proposition 5.2 that ω(Bl) = l, l = 1, 2, . . . , ν.
Moreover, the grade is inherited under commutation, e.g. ω([Bk, Bl]) = ω(Bk) +
ω(Bl) and, with greater generality,

ω(L(Bl1 , Bl2 , . . . , Bls)) = |l| =

ν∑

i=1

li.

By the definition of the grade, this is equivalent to

L(Bl1 , Bl2 , . . . , Bls) = O
(
h|l|
)
.

Thus, as long as we are interested in an order-p quadrature, we can discard higher-
order terms in (5.10). The outcome is

K̂(h) =
∑

l∈Ĉν,p
s

b̄lL(Bl1 , Bl2 , . . . , Bls), (5.11)

where Ĉν,p
s ⊆ Cν

s such that

l ∈ Ĉν,p
s ⇔ |l| ≤ p.

Let us recall the four integrals from Section 5.1. We presently obtain using (5.11)
the following order-6 quadrature formulae using Gauss–Legendre points with ν = 3.

In line with (5.7), we let B1 = A2, B2 =
√

15
10 (A3−A1) and B3 = 20

3 (A3−2A2+A1).

I1(h) ≈ B1 + 1
12B3,

I2(h) ≈ 1
6 [B2, B1] − 1

120 [B3, B2],

I3(h) ≈ − 1
8 [B1, [B2, B1]] + 1

80 [B2, [B2, B1]] − 1
120 [B1, [B3, B1]]

+ 1
480 [B1, [B3, B2]] + 1

240 [B2, [B3, B1]] − 7
480 [B3, [B2, B1]]

− 1
160 [B1, [B3, B1]],

I4(h) ≈ 1
24 [B1, [B2, B1]] + 1

80 [B2, [B2, B1]] − 1
120 [B1, [B3, B1]]

− 1
1440 [B1, [B3, B2]] − 1

720 [B2, [B3, B1]] + 7
1440 [B3, [B2, B1]]

+ 1
480 [B1, [B3, B1]].

60 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

Moreover, consistently with Proposition 5.3, we have

1
12I3(h) + 1

4I4(h) ≈ 1
240 [B2, [B2, B1]] − 1

360 [B1, [B3, B1]].

Just two terms survive!
Taken together, throwing away terms of high enough grade and the removal of

terms with even |l| after summation removes a high proportion of commutators.
Having said this, the most important feature of the self-adjoint basis that allows us
to reduce the computational cost has not been mentioned mentioned yet!

We have already exploited skew symmetry of the commutator in the derivation
and ‘beautification’ of our integration formulae. This is a fairly transparent pro-
cedure. However, let us recall that the commutator is also subject to the Jacobi
identity (2.10). This allows for a very powerful mechanism to express commuta-
tors as linear combinations of other commutators and leads to results that are of
importance not just to Magnus expansions, but also to RK-MK methods and the
evaluation of the BCH formula. This is the theme of the next subsection.

5.3. Free Lie algebras

In the previous subsections we have seen how to construct an approximation to the
solution Y of the Lie-group differential equation Y ′ = A(t)Y by means of linear
combinations of matrices G1, G2, . . . , Gν ∈ g, whereby the Gi are either ‘samples’
of the matrix function A(t), in which case Gi = hA(cih), or terms of the self-adjoint
basis, in which case the Gis coincide with the matrices Bi of Section 5.2.

It is clear that, if we want to make the best out of the properties of the com-
mutator (skew-symmetry and Jacobi identity) it is useful to depart from specific
representations (Ais and Bis) and treat the Gis as abstract objects in an abstract
algebra g that embodies the structure that is common to all Lie algebras but noth-
ing more. This is the main idea behind free Lie algebras, a formalisation of a Lie
algebra whose terms can be generated by means of brackets of pairwise elements
and such that there are no reducing mechanisms other than skew-symmetry and
the Jacobi identity of the commutator.

More precisely, the following definition formalises the concept of free Lie algebras
presented above (Munthe-Kaas and Owren 1999) .

Definition 5.1 Let I be a set of indices, either finite or countable. A Lie algebra
g is free over the set I if

i) For every index i ∈ I there exists Gi ∈ g;
ii) For any Lie algebra h and any function i ∈ I 7→ Hi ∈ h there exists a unique

Lie algebra homomorphism π : g → h such that π(Gi) = Hi for all i ∈ I.

Moreover, S = {Gi}i∈I is called the set of generators of the free Lie algebra g.

In our exposition it is useful to think of a free Lie algebra (FLA) as a linear space
and to describe it in terms of a basis. One of the most popular is a Hall basis H that

Lie-group methods 61

contains the generators, S ⊆ H (Bourbaki 1975). All elements of H are produced
by recursive commutation of generators. We can associate a length function to each
element in the following fashion: ℓ(Gi) = 1 for Gi ∈ S and ℓ(H) = ℓ(H1) + ℓ(H2)
for all H ∈ H \ S, where H = [H1,H2]. Intuitively, we may say that the length
of H corresponds to how many commutators of generators are needed to construct
H. In other words, the length function merely counts commutators.

The Hall basis H can be endowed with a total ordering defined recursively on
the length ℓ of its elements. In general, we say that G ≺ H if ℓ(G) < ℓ(H). If
ℓ(G) = ℓ(H) then G ≺ H if G precedes H in lexicographic order. Moreover, to
take into account skew-symmetry and the Jacobi identity, we require that

• elements of length two [Gi, Gj] are included in H if Gi ≺ Gj ;
• elements of length greater or equal to three are included in H if they are of

the form [Hi, [Hj ,Hk]], with Hi,Hj ,Hk, [Hj ,Hk] ∈ H and moreover Hj �
Hi ≺ [Hj ,Hk].

An example of the first terms of a Hall basis generated by three elements G1, G2, G3

is given by

G1, G2, G3, [G1, G2], [G1, G3],
[G2, G3], [G1, [G1, G2]], [G1, [G1, G3]], [G2, [G1, G2]], [G2, [G1, G3]],
[G2, [G2, G3]], [G3, [G1, G2]], [G3, [G1, G3]], [G3, [G2, G3]],

We shall not go into details of algorithmic construction of the Hall basis, which
can be found in (Bourbaki 1975, Munthe-Kaas and Owren 1999). It is interesting,
however, to mention how fast the number of elements of the Hall basis grows:
assuming that I is finite and consists of ν indices (equivalently, S consists of ν
generators), the linear subspace of terms of length exactly equal to m has dimension

ρm =
1

m

∑

d|m
µ(d)νm/d,

the sum being carried over all integers d dividing m, a result known as Witt’s
formula. The function µ is the Möbius function, defined as follows: assume that d
can be factorized as d = dn1

1 dn2
2 · · · dnq

q , with each di a prime number and ni ≥ 1.
Then

µ(d) =





1, d = 1,
(−1)q, ni = 1 for all i = 1, 2, . . . , q,
0. otherwise.

The number ρm grows quite fast, as illustrated in Table 5.1 for ν = 3.
Why is all this relevant to our discussion? Let us represent G1 = A1, G2 =

A2, . . . , Gν = Aν , where Ai = hA(cih), for i = 1, . . . , ν. Since Ai = O(h), a
term containing exactly m commutators corresponds to a combination that is at
least of order O(hm). Thus, in order to have a numerical approximation of order

62 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

Table 5.1. Dimension of linear spaces of words of length equal to m in the Hall
basis generated by G1, G2 and G3.

m 1 2 3 4 5 6 7 8 9 10

ρm 3 3 8 18 48 116 312 810 2184 5580

p, the number of linearly-independent terms that we need to take into account
is bounded by

∑p
m=1 ρm or, because of Theorem 4.2, by

∑p−1
m=1 ρm if the ci are

symmetrically distributed with respect to 1
2 . For instance, for a sixth-order Gauss–

Legendre scheme (ν = 3), this leads to 80 linearly independent terms of the Hall
basis, not counting the number of commutators involved!

The growth of ρm can be reduced introducing a grading ω of the FLA g, as
suggested by Munthe-Kaas and Owren (1999). Assume that

ω(Gi) = ωi ∈ N, Gi ∈ S, i = 1, 2, . . . , ν.

The grading propagates in a natural manner in the Hall basis H: for all H ∈ H of
the form H = [H1,H2] we let

ω(H) = ω(H1) + ω(H2).

A consequence of the grading is that the Hall basis H splits into a disjoint union of
sets of grade m,

H =

∞⋃

m=1

Hm, Hm = {H ∈ H : ω(H) = m},

consequently g becomes a direct sum of subspaces,

g =

∞∐

m=1

gm, gm = spanHm,

and we say that g is a graded FLA algebra.
The fundamental result on the dimension of gm is due to Munthe-Kaas and

Owren (1999).

Theorem 5.4 Let g be the graded FLA generated by S = {G1, G2, . . . , Gν},
with grades ω1, ω2, . . . , ων respectively. Denote by λ1, λ2, . . . , λr the roots of the
rth degree polynomial

p(z) = 1 −
ν∑

i=1

zωi , r = max
1≤i≤ν

ωi.

Lie-group methods 63

Then

dim gm = ρ̄m =
1

m

∑

d|m

(
r∑

i=1

λ
m/d
i

)
µ(d). (5.12)

To illustrate the benefits of the grading, Table 5.2 displays dimgm, for m =
1, 2, . . . , 10 for a graded algebra generated by G1, G2, G3 with weights ω1 = 1, ω2 =
2, ω3 = 3. Comparison with Table 5.1 reveals a significant reduction in the number
of linearly independent terms. The results have been obtained using the Matlab

package DiffMan, which will be further discussed in Section 10.2 (Engø et al. 1999).

Table 5.2. Dimension of linear spaces of terms of weight exactly equal to m (top)
and weight at most m (bottom) in the Hall basis generated by G1, G2 and G3 with
weights 1, 2 and 3 respectively.

m 1 2 3 4 5 6 7 8 9 10

ρ̄m 1 1 2 2 4 5 10 15 26 42
m∑

i=1

ρ̄i 1 2 4 6 10 15 25 40 66 108

Linking again with the theory of Section 5.1–2, the case of a graded algebra with
generators G1, . . . , Gν and weights 1, 2, . . . , ν, corresponds to the realization

Gi =
hi

(i− 1)!
A(i−1)(ξi), i = 1, 2, . . . , ν,

where A(i−1)(ξi) is the (i − 1)th derivative of the function A for some ξi ∈ (0, h).
The weight ωi merely indicates that Gi is an O

(
hi
)

term. Moreover,

Ã(t) = h−1
ν∑

i=1

Gi(
t
h)i,

is exactly the collocation polynomial (5.4), the information about the nodes ci
being hidden in the Gis. The equivalence is revealed by means of the Vandermonde
transformation

Ai =

ν∑

j=1

cj−1
j Gj , i = 1, . . . , ν.

This procedure applies to all kinds of collocation, whether with symmetric nodes
or otherwise. In particular we deduce from Table 5.2 that with three collocation
points is is possible to obtain order six with at most 15 terms! A substantial saving,
compared with 80 using an ungraded algebra. . . .

To reduce further the dimension of the graded FLA, we exploit the argument

64 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

of Theorem 5.2, assuming that the collocation points are symmetric in [0,1] with
respect to 1

2 . We construct

Ã(t) = h−1
ν∑

i=1

Gi(
t
h − 1

2)i,

where Gi ≡ Bi are the self-adjoint basis introduced in Section 5.2. Theorem 5.2
implies that only terms with odd grades need be considered! As an example, if
S = {G1, G2, G3}, with weights 1, 2 and 3 respectively, then the growth of the
dimension of the graded FLA is given by

m 1 2 3 4 5 6 7 8 9 10
m∑

i=1

i odd

ρ̄i 1 1 3 3 7 7 11 11 37 37

and comparison with Table 5.2 is remarkable. In particular, we deduce that for
methods based on three symmetric collocation points (for instance a sixth-order
Gauss–Legendre), we need at most seven terms of the graded Hall basis H. Letting
Gi = Bi, the seven terms are

B1, B3, [B1, B2], [B2, B3], [B1, [B1, B3]], [B2, [B1, B2]], [B1, [B1, [B1, B2]]].

Bounds on the number of independent terms for different orders are given below for
methods based on Gauss–Legendre quadrature. The sharpest bound corresponds
to the case of a graded FLA including only odd terms.

ν (stages) 1 2 3 4 5

2ν (order of the method) 2 4 6 8 10
2ν−1∑

i=1

ρi 1 5 80 3304 > 10000

2ν−1∑

i=1

ρ̄i 1 3 10 33 111

2ν−1∑

i=1

i odd

ρ̄i 1 2 7 22 73

It is important to note that

p−1∑

i=1

ρ̄i odd

(
p∑

i=1

ρi respectively

)

in the case of the self-adjoint (non self-adjoint resp.) basis is an upper bound on
the number of linearly-independent commutators required for a method of order p.

Lie-group methods 65

We have seen the advantage of changing the basis in the case of linear equations
Y ′ = A(t)Y . Similar savings can be also achieved in the case of explicit RK-MK
methods for the general equation Y ′ = A(t, Y)Y . By combining the stage values
Ai computed by the algorithm, we seek linear combinations Bi of highest-possible
grade. However, in order to obtain an explicit method, we must require that Bi

are related to Ai by a triangular matrix. Optimal combinations can be found using
linear algebra and the theory of B-series. The details can be found in (Munthe-Kaas
and Owren 1999). It turns out that in this case it is in general not possible to change
basis in such a way that ω(Bi) = i: the weights grow slower. The method (A.7)
originates in the classical four-stage RK4 scheme. The resulting basis Bi has the
grading 1, 2, 3, 3, and the scheme has just two commutators. Similar savings have
been realised for the seven-stage DOPRI5(4) method in (Munthe-Kaas and Owren
1999).

5.4. Reducing further the number of commutators

The theory of free Lie algebras allows us to derive an upper bound on the number
of linearly independent terms required to obtain numerical methods of given order,
taking into account skew-symmetry and the Jacobi identity of the commutator. It
also provides algorithms to compute the requisite pattern of dependency, e.g. in
terms of the Hall basis.

Although the theory of free Lie algebras estimates the numbers of commutators
for a method of order p, this by no means indicates the least number of commutators
required for a method of a given order.

For general N × N matrices, the computation of the commutator is an O
(
N3
)

operation, a cost that quickly adds up when we consider methods of order three
and higher.

At present there is no theory that systematically reduces the number of commuta-
tors to minimum. However, we shall present a technique, due to Blanes, Casas and
Ros (1999) that gives, true for today, the least number of commutators for methods
based on Gauss–Legendre and Newton–Cotes quadratures up to order ten. Before
proceeding further, it is important to remark that the content of this section ap-
plies to linear Lie group problems Y ′ = A(t)Y solved with Magnus-type/RK-MK
methods based on symmetric nodes in [0, 1]. It is convenient to illustrate the proce-
dure with an example. Let us thus construct a sixth-order Gauss–Legendre method
based on the collocation nodes

c1 = 1
2 −

√
15

10 , c2 = 1
2 , c3 = 1

2 +
√

15
10 .

Using the toolbox of graded algebras, we obtain

Θ = B1 + 1
12B3 − 1

12 [B1, B2] + 1
240 [B2, B3] + 1

360 [B1, [B1, B3]]

− 1
240 [B2, [B1, B2]] + 1

720 [B1, [B1, [B1, B2]]].

66 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

Since in the self-adjoint basis Bi = O
(
hi
)
, note that Θ includes terms with odd

powers of h only and, in this form, can be evaluated by computing just seven
commutators.

Let us focus on the portion of Θ consisting of single commutators,

C2 = − 1
12 [B1, B2] + 1

240 [B2, B3].

The first fundamental observation is that terms of the form [Bi, Bj] can only be
obtained if one of the indices is even and the other is odd. Therefore, we look for
a linear combination

[b1B1 + b3B3, b2B2] (5.13)

for some real coefficients bi, that equals C2. This can be achieved by choosing for
instance b1 = − 1

12 , b3 = − 1
240 and b2 = 1. Note that computing (5.13) requires

one commutator only instead of two. In general, given B1, B2, . . . , Bν , terms of the
form

ν−1∑

i=1

ν∑

j=i+1

ki,j [Bi, Bj]

may be replaced by a single commutator,



ν/2∑

i=1

b2i−1B2i−1,

ν/2∑

j=1

b2jB2j




provided that the coefficients {bi}1≤i≤ν and {ki,j}1≤i<j≤ν are compatible up to the
order of the method.

Next, let us consider terms with double commutators. Let us focus on

− 1
240 [B2, [B1, B2]].

Since C2 = − 1
12 [B1, B2] + O

(
h5
)
, evaluating the term − 1

20 [B2, C2] in place of
− 1

240 [B2, [B1, B2]] amounts to the calculation of just one commutator. Note that
− 1

20 [B2, C2] = − 1
240 [B2, [B1, B2]] + O

(
h7
)
, hence the approximation retains the

odd-power of h expansion and the error introduced is subsumed in the local trun-
cation error of the method.

Finally, let us consider the combination

1
360 [B1, [B1, B3]] + 1

720 [B1, [B1, [B1, B2]]]. (5.14)

Clearly, [B1, B3] is not obtained from (5.13) using the linearity of the bracket, and
needs to be taken into account. However, [B1, B2] conforms with (5.13) and we can
replace it with C2, introducing only odd-powered error in h which is also subsumed
in the local truncation error. In summary, (5.14) can be replaced by the term

C3 = [B1, [B1,
1

360B3 − 1
60C2]]

Lie-group methods 67

which requires the computation of two commutators. Therefore, Θ can be computed
in the form

Θ = B1 + 1
12B3 + C2 + C3,

requiring four commutators only.
It is difficult to formalise the last two steps, involving two or more commutators.

The reduction in the number of commutators has, in present state of knowledge,
to be done on a case-by-case analysis.

Some examples of methods for linear problems obtained by means of graded alge-
bras, made more economic with the technique of Blanes et al. (1999), are described
in Appendix A.2.

5.5. Nonlinear problems: collocation methods

Magnus and Fer expansions presented in Section 4 have been designed for linear
problems, when the matrix function A depends on time only. When A = A(t, Y),
though, multivariate integrals appearing in (5.1) depend on Ak = hA(ckh, Y (ckh)),
namely also on the value of the unknown variable Y at quadrature points. Assume
that the quadrature points c1, c2, . . . cν obey the orthogonality conditions (5.5) for
some m ≤ ν, hence the corresponding univariate interpolatory quadrature has order
p = ν +m. Since each Ak is a multiple of h, it is clear that the values Ak can be
replaced by hA(ckh,Xk), where Xk is an approximation to Y (ckh) of order at least
p − 1. Following this point of view, it is possible to derive Xk ≈ Y (ckh) with a
numerical method of order p− 1. For instance, using an RK-MK method of order
p − 1 and a Magnus (or Fer) expansion of order p is a Lie-group equivalent of a
predictor–corrector method in classical numerical ODE theory.

A more elegant approach, due to Zanna (1999), is to construct suitable approxi-
mants to Xks using directly the underlying principle of collocation methods. Pro-
ceeding as in Section 5.1, we replace the function A(t, Y) by its Lagrangian inter-
polating polynomial

Ã(t, Y) = h−1
ν∑

k=1

ℓk

(
t

h

)
Ak

where Ak = hA(ckh,Xk), k = 1, 2, . . . , ν. The corresponding dexpinv equation is
integrated by means of Picard iterations á la Section 4, obtaining the usual order
trees for the Magnus and the Fer expansion. The main difference with the linear
case is that now the same order trees are also employed to evaluate the integration
coefficients for the internal stages Xk. At each internal stage we need to calculate
quadratures of the form (5.2),

Kl(h) =
∑

j∈Cν
s

al;jL(Aj1 , Aj2 , . . . , Ajs
),

where Cν
s is the set of all combinations of length s from the set {1, 2, . . . , ν}. The

68 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

integration weights are different from those in (5.2) and are defined as

ak;j =

∫

S̃k

s∏

i=1

ℓji
(ξi)dξ,

where

S̃k = {ξ ∈ R
s : ξ1 ∈ [0, ck], ξl ∈ [0, ξml

], l = 2, 3, . . . , s}

is the polytope S̃ scaled to the [0, ck]-cube instead of the unit cube. The weights
bj are recovered by substituting ck = 1.

Theorem 5.5 Let c1, c2, . . . , cν be ν collocation nodes and let p = ν +m, where
m is the largest index such that (5.5) is satisfied. Assume that the Magnus or Fer
expansion is truncated to include all trees of power q ≤ p for the evaluation of Yn+1,
and of power q ≤ p− 1 for the intermediate stages. Then the resulting scheme has
order p.

We sketch the main idea and refer the reader to (Zanna 1999) for details. The
starting point is the Alekseev–Gröbner lemma, a nonlinear version of the variation
of constants formula whose proof can be found in (Nørsett and Wanner 1981),
stating that, if y is the solution of the differential equation y′ = f(t,y) with initial
condition y0, and if w(t) is a C1 approximation to y such that w(t0) = y0, then

y(t) − w(t) =

∫ t

t0

Φ(t, ξ,w(ξ))[f(ξ,w(ξ)) − w′(ξ)]dξ,

where Φ(t, ξ,w(ξ)) is the partial derivative of the the solution passing through
(ξ,w(ξ)) with respect to the initial condition w(ξ). In the usual classical collocation
setting for RK methods, w corresponds to the case when the function f is replaced
by a collocation polynomial: at the nodes it is true that f(tn + ckh,w(tn + ckh))−
w′(tn + ckh)) = 0, hence the error reduces solely to quadrature error.

In our Lie-group setting the main difference consists in the fact that only the
function A(t, Y) is collocated, and not the whole right-hand side A(t, Y)Y . How-
ever, this can be viewed as a collocation method in the algebra g, where classical
analysis remains valid.

Lie-group methods 69

A typical example of such collocation methods is the fourth-order scheme

X1 = Yn,

A1 = hA(tn,X1),

X2 = expm{ 5
24A1 + 1

3A2 − 1
24A3 − 1

2 (11
240 [A1, A2] + 5

576 [A1, A3]

+ 1
72 [A2, A3])}Yn,

A2 = hA(tn + 1
2h,X2),

X3 = expm{ 1
6A1 + 2

3A2 + 1
6A3 − 1

2 (2
15 [A1, A2] + 1

30 [A1, A3]

+ 2
15 [A2, A3])}Yn,

A3 = hA(tn + h,X3),

Yn+1 = expm{ 1
6A1 + 2

3A2 + 1
6A3 − 1

2 (2
15 [A1, A2] + 1

30 [A1, A3]

+ 2
15 [A2, A3])}Yn

for n ∈ Z
+, with the Gauss–Lobatto quadrature points c1 = 0, c2 = 1

2 and c3 = 1
(Zanna 1998). Note that the coefficients of the Ai’s are the classical Runge–Kutta
coefficients of Lobatto collocation scheme with the same quadrature points (Hairer
et al. 1993), while the coefficients of the commutator terms [Ai, Aj] are evaluated
by integrating

ak;i,j − ak;j,i =

∫ ck

0

∫ ξ1

0

ℓi(ξ1)ℓj(ξ2)dξ2dξ1 −
∫ ck

0

∫ ξ1

0

ℓj(ξ1)ℓi(ξ2)dξ2dξ1,

a term corresponding to the power-three tree in the Magnus expansion (cf. Sec-
tion 4).

A useful formula for evaluating the ak;i,js corresponding to the power-three tree
is given by

{ak;i,j}ν
i,j=1 = a(ck), k = 1, 2, . . . , ν, (5.15)

where a(θ) is the ν × ν matrix function of the scalar argument θ defined as

a(θ) = V −TT (θ)HJT (θ)V −1,

where J = diag(1, 1
2 ,

1
3 , . . .

1
ν), T (θ) = diag(θ, θ2, . . . , θν), V is the Vandermonde

matrix

V =




1 c1 · · · cν−1
1

1 c2 · · · cν−1
2

...
...

...
1 cν · · · cν−1

ν


 ,

and finally H is the Hilbert matrix with entries Hi,j = 1
i+j , i, j = 1, 2, . . . , ν.

70 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

This formula is reminiscent of the matrix representation of the standard Runge–
Kutta matrix of a collocation method (Nørsett and Wanner 1981). This is not a
coincidence: the methods of Zanna (1998) generalise the concept of collocation to
the special multivariate integrals that occur in Magnus or Fer expansions.

6. Alternative coordinates

All the methods so far, whether applied to Lie groups or in a homogeneous-space
setting, have been based on the exponential map. In other words, we represented
the solution as an exponential (RK-MK and Magnus methods) or as a product of
exponentials (Crouch–Grossman and Fer methods). It is entirely legitimate to query
to which extent this renders such methods unduly expensive and non-competitive.

Sometimes the exact computation of the exponential is easy: a case in point is the
application of Magnus expansions to the computation of Sturm–Liouville spectra in
Section 11.2, since the exponential of an element in sl(2) can be evaluated exactly
with great ease. In other cases the exponential can be replaced by a suitable
approximation δ : g → G, δ(z) ≈ ez. This is the case with quadratic Lie groups: A
Lie group G is quadratic if

G = {X ∈ GL(N) : XPXT = P}, (6.1)

where P ∈ GL(N) is a given matrix. Many Lie groups that appear in applications
are of this kind, for example O(N), Sp(N) and O(N,M). Moreover, some complex
groups can be brought into this framework by replacing the transpose T by the
Hermitian (i.e., conjugate) transpose H.

The Lie algebra of the quadratic Lie group (6.1) is

g = {B ∈ gl(N) : BP + PBT = O} (6.2)

and it is easy to prove that δ : g → G whenever δ(z) = eγ(z) and γ is an odd
function, analytic in the neighbourhood of the origin (Celledoni and Iserles 1998).
An important case occurs when γ(z) = log q(z)−log q(−z), where q is a polynomial,
and it leads to rational functions δ(z) = q(z)/q(−z). In particular, diagonal Padé
approximants to the exponential are of this form (Baker 1975) and they can be
applied very effectively in place of the exponential.

Yet, for some algebras there exists no analytic nonconstant function δ : g → G
except for the (scaled) exponential. This, in particular, is the case with SL(N)
(Kang and Zai-jiu 1995). In yet other cases, although we may replace the expo-
nential with, say, a Padé approximant with impunity, the sheer size of the system
renders this impractical when the number of variables is large. In that case there
exist two possibilities. Firstly, we may endeavour to approximate the exponential
of a matrix by some nonstandard means while keeping the outcome in a Lie group.
This is the theme of Section 8. In the present section we consider another approach,
which disposes of the dexpinv equation (2.46) altogether.

Lie-group methods 71

The research into ‘alternative coordinates’ is in a fairly preliminary stage and
just two surrogates to the dexpinv equation have been identified so far, the Cayley
transform and canonical coordinates of the second kind. We consider them in detail
in the remainder of this section.

6.1. The Cayley transform and RK–Cayley methods

Let G be a quadratic Lie group. The main idea is to replace the exponential with
the Cayley transform. Thus, given the Lie-group equation Y ′ = A(t, Y)Y , where
A : R

+ × G → g, we seek a solution in the form

Y (t) = cay[∆(t)]Y0 = [I − 1
2∆(t)]−1[I + 1

2∆(t)]Y0, t ≥ 0, (6.3)

and at the first instance seek a differential equation for ∆. More generally, we
may solve the homogeneous-space equation (2.26) replacing the exponential with
the Cayley action but, for the sake of simplicity, the discussion is restricted to the
‘straight’ Lie-group case.

It is important to realise that our approach has no connection whatsoever with
approximating the exponential. True, δ(z) = (1+ 1

2z)/(1− 1
2z) is a special case of a

Padé approximant to the exponential, δ(z) = expm(z)+O
(
z3
)
, but this is entirely

coincidental: as a matter of fact, we could have replaced, at the cost of slightly
more complicated coefficients, the number 1

2 with an arbitrary nonzero constant.
So far, everything is exact and no approximation has taken place.

It is an easy exercise, left to the reader, to ascertain that the function ∆ in (6.3)
obeys the differential equation

∆′ = dcay−1
∆ A(cay(∆)Y0, t) = A− 1

2 [∆, A]− 1
4∆A∆, t ≥ 0, ∆(0) = O. (6.4)

Note the presence of the term ∆A∆ in the above equation. In general, we cannot
expect such a term to reside in g, but quadratic Lie algebras (6.2) are an excep-
tion. For future reference we note that the more general symmetric triple product
[[D,E, F]]3 = DEF+FED resides in g for all D,E, F ∈ g and quadratic Lie groups
g. (The reason for this notation will be clear in Section 6.3.) Applying (6.2) thrice,

P (DEF)T = PFTETDT = −FPETDT = FEPDT = −FEDP.
Therefore

(DEF + FED)P + P (DEF + FED)T

= (DEF + FED)P − (FED +DEF)P = O

and indeed [[D,E, F]]3 ∈ g. This confirms that no illicit terms have crept into (6.4)
and ∆′ evolves in g. (To be more precise, it evolves in Tg, except that the latter
can be identified with g.)

The simplest implementation of (6.3) to quadratic Lie-group solvers is by em-
ploying Runge–Kutta methods in the Lie algebra, similarly to RK-MK, except that
expm and dexp−1 in (3.4) need be replaced by cay and dcay−1 respectively. This
has been accomplished systematically by Engø (1998).

72 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

6.2. Cayley expansions

Proceeding like in Section 4.1 and subjecting (6.4) to Picard iteration, we observe
that the solution ∆ can be expanded quite similarly to the Magnus expansion of
the dexpinv equation (4.3),

∆(t) =

∫ t

0

A(ξ)dξ − 1
2

∫ t

0

∫ ξ1

0

[A(ξ2), A(ξ1)]dξ

+ 1
4

∫ t

0

∫ ξ1

0

∫ ξ2

0

[[A(ξ3), A(ξ2)], A(ξ1)]dξ3dξ2dξ1

− 1
4

∫ t

0

∫ ξ1

0

∫ ξ1

0

A(ξ2)A(ξ1)A(ξ3)dξ3dξ2dξ1 + · · · .

We seek to expand ∆, in greater generality, in a manner similar to (4.5),

∆(t) =

∞∑

k=0

∑

τ∈Sk

α(τ)Dτ (t), t ≥ 0, (6.5)

where each Dτ for τ ∈ Sk is made out of exactly k+ 1 integrals. (Note that, unlike
(4.5), the ‘exterior’ integral is already included in the expansion term – intuitively

speaking, Dτ (t) =
∫ t

0
Cτ (ξ)dξ. This makes the notation somewhat simpler and

more transparent.) Following upon the construction of Iserles (1999b), we identify
three composition rules that are needed to assemble the terms in (6.5).

1 S0 = {τ◦}, and

Dτ◦(t) =

∫ t

0

A(ξ)dξ;

2 If τ1 ∈ Sk−1, k ≥ 1, then there exists τ ∈ Sk such that

Dτ (t) =

∫ t

0

[∫ t

0

Dτ1
(ξ), A(ξ)

]
dξ; (6.6)

3 If k ≥ 2 and τ1 ∈ Sk−j , τ2 ∈ Sj−1 for some 1 ≤ j ≤ k then there exists τ ∈ Sk

such that

Dτ (t) =

∫ t

0

Dτ1
(ξ)A(ξ)Dτ2

(ξ)dξ. (6.7)

Note that the outcome resides in the Lie algebra, as long as α(τ̃) = α(τ) where τ
has been given in (6.7) and

Dτ̃ (t) =

∫ t

0

Dτ2
(ξ)A(ξ)Dτ1

(ξ)dξ

is the conjugate term of Dτ̃ (t). (The existence of such a term is assured by the
third composition rule.)

Lie-group methods 73

Similarly to the association between rooted binary trees and terms in the Magnus
expansion, we wish to render the structure of the above composition rules clearer by
using graph theory. The presence of three, rather then two, composition rules makes
this goal different and ‘plain’ rooted binary trees are no longer adequate for the
task in hand. Instead, following Iserles (1999b), we employ rooted bicolour binary
trees: each vertex can be of one of two colours, black or white. The composition
rules are interpreted in the following manner, borrowing as much as possible from
the construction in Section 4.

1 S0 = {
r

r

} and

r

r

;

∫ t

0

A(ξ)dξ;

2 If Sk−1 ∋ τ1 ; Dτ1
(t) then (6.6) corresponds to

Sk ∋ r

r@��
r

τ1

;

∫ t

0

[Dτ1
(ξ), A(ξ)]dξ;

3 Letting Sk−j ∋ τ1 ; Dτ1
(t) and Sj ∋ τ1 ; Dτ2

(t), (6.7) corresponds to

Sk ∋ r

b@ �
τ1 τ2

; Dτ (t) =

∫ t

0

Dτ1
(ξ)A(ξ)Dτ2

(ξ)dξ.

Unlike the case of the Magnus expansion, the derivation of the coefficients α(τ)
is straightforward and does not require any recursion. Given τ ∈ ∪ Sk, we denote
by γ(τ) the number of white nodes therein. It is possible to prove that α(τ) =
(−1)k+γ(τ)2−k and the outcome is the Cayley expansion

∆(t) =
∞∑

k=0

(−1)k

2k

∑

τ∈Sk

(−1)γ(τ)Dτ (t) (6.8)

= r

r

− 1
2 r

r@@ ��
r r

r

+ 1
4 r

r@@ ��
r r

r@@ ��
r r

r

− 1
4 r

b@@ ��
r r

r r

− 1
8 r

r@@ ��
r

r@@ ��
r r

r@@ ��
r r

r

r

74 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

+ 1
8 r

r@@ ��
r r

b@@ ��
r r

r r

+ 1
8 r

b@@ ��
r r

r@@ ��
r r

r

r

+ 1
8 r

b@@ ��
r r

r r@@ ��
r r

r

+ · · · .

Note that the last two trees above are conjugate and that they have the same
weights. This is true in general, since if τ and τ̃ are conjugate then they have the
same number of white vertices, γ(τ) = γ(τ̃). Therefore, conjugate trees translate
into (scaled) symmetric triple products and we stay safely within the Lie algebra.

Absolute convergence of the Cayley expansion (6.8) was proved in (Iserles 1999b)

for t ∈ (0, t∗), provided that
∫ t

0
‖A(ξ)‖dξ < 2, a result that can be somewhat

improved for some norms and Lie algebras. However, inasmuch as convergence in
norm with respect to ‖ · ‖2 is concerned, the Magnus-expansion condition (4.13) of
Moan (n.d.) remains valid in the present setting.

Similarly to the case of Magnus expansions, it makes sense to truncate the series
(6.8) by power,

∆(t) ≈
p−1∑

m=0

∑

τ∈Gm

(−1)β(τ)+γ(τ)

2β(τ)
Dτ (t), (6.9)

where β(τ) + 1 is the number of integrals in Dτ (in other words, τ ∈ Sβ(τ)), while
Gm stands for the set of trees of power m,

τ ∈ Gm ⇐⇒ Dτ (t) = O
(
tm+1

)

for all sufficiently-smooth matrix functions A. The mechanism that allows m to
exceed β(τ) is subtly different from that of Magnus expansions (4.14) since, ex-
cept for the second tree in the expansion (6.9), we never encounter an instance of
Dτ (t) =

∫
[Dτ1

,D′
τ1

]. Instead, we say that a tree is basic if it has no black nodes
with two children (equivalently, if the corresponding expansion term contains no
commutators). The first few basic trees are

r

r

, r

b@@ ��
r r

r r

, r

b@@ ��
r r

r b@@ ��
r r

r r

, r

b@@ ��
r r

b@@ ��
r r

r r

r

,

Each basic tree has an even number of vertices and it is easy to verify that if τ ∈ S2m

and τ is basic then

A(t) = A0 + O(t) ⇒ Dτ (t) = cA2m+1
0 t2m+1 = O

(
t2m+2

)

Lie-group methods 75

where c 6= 0 is scalar. In other words, τ ∈ G2m and nothing is gained. However, as
soon as we form the tree

τ = r

r@@��
r

τ1

,

where τ1 is basic, it is trivial to notice that τ ∈ G2m+2, a ‘gain’ of one unit in
power. Needless to say, this gain is inherited each time τ features as a component
of a larger tree.

Truncating by power economises on the number of components: it has been
proved in (Iserles 1999b) that

lim sup
k→∞

(#Sk)1/k = 3 and lim sup
m→∞

(#Gm)1/m = 2.69805 . . .

(in either case there is substantial saving in comparison with the Magnus expansion,
cf. (4.15)). However, a very important feature of Magnus expansions is unfortu-
nately lost: The Cayley expansion (6.9), truncated by power, is no longer time
symmetric! (We should perhaps emphasise that the role of time symmetry survives
when the exponential is replaced with the Cayley transform: it still implies even
order.) In other words, if we truncate the Cayley expansion (with all the integrals
evaluated exactly) so that p = 3, say, in (6.9), the order will be just three.

Similarly to (4.16–18), we conclude by presenting Cayley expansions in standard
notation, rather than in a tree terminology.

∆(t) =

∫ t

0

A(ξ)dξ .order 2

− 1
2

∫ t

0

∫ ξ1

0

[A(ξ2), A(ξ1)]dξ

+ 1
4

∫ t

0

∫ ξ1

0

∫ ξ2

0

[[A(ξ3), A(ξ2)], A(ξ1)]dξ . order 3

76 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

− 1
4

∫ t

0

∫ ξ1

0

∫ ξ1

0

A(ξ2)A(ξ1)A(ξ3)dξ . order 4

− 1
8

∫ t

0

∫ ξ1

0

∫ ξ2

0

∫ ξ3

0

[[[A(ξ4), A(ξ3)], A(ξ2)], A(ξ1)]dξ order 5

+ 1
8

∫ t

0

∫ ξ1

0

∫ ξ2

0

∫ ξ2

0

[A(ξ3)A(ξ2)A(ξ4), A(ξ1)]dξ

+ 1
8

∫ t

0

∫ ξ1

0

∫ ξ2

0

∫ ξ1

0

[A(ξ3), A(ξ2)]A(ξ1)A(ξ4)dξ

+ 1
8

∫ t

0

∫ ξ1

0

∫ ξ1

0

∫ ξ3

0

A(ξ2)A(ξ1)[A(ξ4), A(ξ3)]dξ

+ 1
16

∫ t

0

∫ ξ1

0

∫ ξ2

0

∫ ξ3

0

∫ ξ4

0

[[[[A(ξ5), A(ξ4)], A(ξ3)], A(ξ2)], A(ξ1)]dξ

− 1
16

∫ t

0

∫ ξ1

0

∫ ξ2

0

∫ ξ3

0

∫ ξ1

0

[[A(ξ4), A(ξ3)], A(ξ2)]A(ξ1)A(ξ5)dξ

− 1
16

∫ t

0

∫ ξ1

0

∫ ξ1

0

∫ ξ3

0

∫ ξ4

0

A(ξ2)A(ξ1)[[A(ξ5), A(ξ4)], A(ξ3)]dξ order 6

+ · · · .

The above expansion underscores the importance of time symmetry in reducing
the number of terms: compare the order-6 truncation with (4.18). We hasten to
reassure the disappointed reader that not all is lost: time symmetry and even order
will be regained in the next subsection.

6.3. Quadrature of the Cayley expansion and hierarchical algebras

In principle, the terms in the Cayley expansion (6.9) can be approximated exactly
like ‘Magnus integrals’, since they are all consistent with (5.1): integrals of a mul-
tilinear form L over a polytope S. The theory of Section 5.1–2 is robust enough to
cater for symmetric triple products, not just commutators.

Thus, to obtain a third-order method we truncate by power,

∆(t) ≈ r

r

− 1
2 r

r@@ ��
r r

r

− 1
4 r

b@@ ��
r r

r r

, (6.10)

and replace integrals by quadrature using a self-adjoint basis. More specifically, we

evaluate hA at the Gauss–Legendre points (1
2 ±

√
3

6)h, denote these function values

by A1, A2 and let B1 = 1
2 (A1 +A2), B2 =

√
3(A2 −A1). The relevant fourth-order

Lie-group methods 77

quadratures are

r

r

: B1,

r

r@@ ��
r r

r

: − 1
6 [B2, B1],

r

b@@ ��
r r

r r

: 1
3B

3
1 + 1

12B1B2B1 − 1
24B2B

2
1 − 1

24B
2
1B2

but we can throw away the last three terms with complete impunity: after all, we
want a third-order method! The outcome is

B1 + 1
12 [B2, B1] − 1

12B
3
1 . (6.11)

Just to be on the safe side, we expand the solution, only to find that, lo and behold,
the order of (6.11) is four. Not the order of (6.10), we hasten to say: the miracle
has occurred just as the integrals have been replaced by quadrature!

This is not a serendipitous coincidence. Quadrature recovers time symmetry,
thereby boosting the order of an odd-order truncation (6.9) (Iserles 1999b). Thus,
herewith for example a sixth-order method, where B0, B1, B2 have been obtained
from order-six Gauss–Legendre quadrature:

B1 + 1
12B3 + 1

12 [B2, B1] − 1
12B

3
1 − 1

240 [B3, B2] − 1
240 [[B3, B1], B1]

− 1
240 [[B2, B1], B2] − 1

48B1B3B1 − 3
320 [B2, B

3
1] + 7

960B1[B2, B1]B1

+ 1
960 [[[B2, B1], B1], B1] + 1

120B
5
1 .

(6.12)

Having hopefully learnt something from our analysis of discretised Magnus ex-
pansions in Section 5, our next question is whether all the terms in (6.12) are
necessary or can we perhaps replace some with linear combinations of other terms.
In other words, we wish to repeat here the discussion from Section 5.3, except that
in the present situation we should reckon with two operations: commutation and
the symmetric triple product, the latter characteristic of quadratic Lie algebras.
Wishing to derive the dimension of linear spaces of graded free algebras, along the
lines of Section 5.3, a natural temptation is to express symmetric triple products
in terms of commutators, but this soon leads to mushrooming complexity. More
effective approach is described in (Iserles and Zanna 2000).

Let (g,+) be an Abelian group over a field of zero characteristic and introduce
a countable family of m-nary operations

[[· , . . . , ·]]m :

m times︷ ︸︸ ︷
g × g × · · · × g → g, m ∈ N,

78 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

which is subject to the following three axioms:

1 Alternate symmetry: For all F1, F2, . . . , Fm ∈ g

[[F1, F2, . . . , Fm]]m + (−1)m[[Fm, Fm−1, . . . , F1]]m = O;

2 Multilinearity: [[F1, F2, . . . , Fm]]m is linear in each of its m arguments;
3 Hierarchy condition: For all F1, . . . , Fm, E1, . . . , Es ∈ g and 1 ≤ l ≤ m it is

true that

[[F1, . . . , Fl−1, [[E1, . . . , Es]]s, Fl+1, . . . , Fm]]m

= [[F1, . . . , Fl−1, E1, . . . , Es, Fl+1, . . . , Fm]]m+s−1

− (−1)s[[F1, . . . , Fl−1, Es, . . . , E1, Fl+1, . . . , Fm]]m+s−1.

The triple (g,+, {[[· · ·]]m}m∈N) has been called by Iserles and Zanna (2000) a hi-
erarchical algebra. It is easy to see that each hierarchical algebra is a Lie algebra
(with the commutator defined as [· , ·] = [[· , ·]]2, while each quadratic Lie algebra
is hierarchical with

[[F1, . . . , Fm]]m = F1F2 · · ·Fm − (−1)mFmFm−1 · · ·F1, F1, . . . , Fm ∈ g.

We now proceed along the same path as Section 5.3, choose a set G1, G2, . . . , Gν

of generators and define a free hierarchical algebra (FHA) similarly to Definition 5.1.
We endow the generators with grading ω and extend it to FHA in a natural manner,

ω([[Hi1 ,Hi2 , . . . ,Hir
]]r =

r∑

k=1

ω(Hk).

One should not take the analogy with FLA too far, since FHA require subtly
different approach. At the heart of the discussion of Section 5.3 it the fact that,
using for example the Hall basis, we can express every element of a FLA as a linear
combination of primitive terms of the form

[Gi1 , [Gi1 , [. . . , [Gir−1
, Gir

] · · ·]]].
In the case of FHA Iserles and Zanna (2000) prove that the primitive ‘building
blocks’ can be chosen of the form

[[Gi1 , Gi2 , . . . , Gir
]]r.

The method of proof is constructive, repeatedly using the three axioms. Antici-
pating future discussion, we exemplify it with one of the terms in the sixth-order
Cayley expansion (6.12), assuming that ν ≥ 2:

[[[[[[G2, G1]]2, G1]]2, G1]]2
Axiom 3

= [[[[G2, G1]]2, G1, G1]]3 − [[G1, [[G2, G1]]2, G1]]3
Axiom 3

= ([[G2, G1, G1, G1]]4 − [[G1, G2, G1, G1]]4)

− ([[G1, G2, G1, G1]]4 − [[G1, G1, G2, G1]]4)
Axiom 1

= [[G2, G1, G1, G1]]4 − 3[[G1, G2, G1, G1]]4.

Lie-group methods 79

Let gm be the set of all the grade-m elements in the FHA g. Similarly to FLA,
we can express g as a direct sum of gm for m ∈ N. The dimension of each gm has
been characterised in (Iserles and Zanna 2000).

Theorem 6.1 Let g be the graded FHA generated by S = {G1, G2, . . . , Gν},
with grades ω1, ω2, . . . , ων respectively. Denote by λ1, λ2, . . . , λr the roots of the
rth degree polynomial

p(z) = 1 −
ν∑

i=1

zωi , r = max
1≤i≤ν

ωi,

and assume that they are all distinct. Then

σ̄2m = 1
2

r∑

l=1

λ−m−1
l

p′(λl)

{
2 − λ−m

l − 1
2 [p(λ

1/2
l) + p(−λ1/2

l)]
}

σ̄2m+1 = 1
2

r∑

l=1

λ
−m−3/2
l

p′(λl)

{
−λ−m−1/2

l + 1
2 [p(λ

1/2
l) − p(−λ1/2

l)]
}
,

(6.13)

where σ̄m = dimgm, m ∈ N.

The proof is long and technical. Its main step is in demonstrating that

∞∑

m=1

tm dim gm = 1
2

[
1

p(t)
+

p(t)

p(t2)

]
.

Table 6.1. Dimensions (6.13) of graded FHA for ν = 3 in two cases: ωi ≡ 1 and
ωi = i.

m 1 2 3 4 5 6 7 8 9 10

ωi ≡ 1 σ̄m 3 3 18 36 135 351 1134 3240 9963 29403

ωi = i σ̄m 1 1 3 3 8 11 25 39 80 134

Comparison with Tables 5.1–2 demonstrates that the dimension of graded sub-
spaces of FHA grows larger than in the FLA case. This is hardly a surprise. A
Lie algebra is closed with respect to just one binary operation, commutation, in
addition to the usual linear-space operations. A hierarchical algebra, however, is
closed with respect to a countable number of operations! On the face of it, there
are infinitely more ways of forming terms in FHA. Fortunately, the hierarchy con-
ditions mean that the operations are interconnected and the growth in dimension
is not as bad as we might have expected.

The ratio of the dimensions ρ̄m and σ̄m from (5.12) and (6.13) respectively can

80 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

be determined asymptotically. The dominant zero of polynomial p, λ1, say, is in
(1,∞) and simple. Iserles and Zanna (2000) proved that

σ̄m

ρ̄m
= − λ1m

2p′(λ1)
[1 + o(1)], m≫ 1.

The method of proof of Theorem 6.1 is constructive and it naturally leads to a
basis and to algorithmic means of its construction. We refer the reader to (Iserles
and Zanna 2000) for details, here just presenting the results for ν = 2 and the
grades ω(Gi) = i. The basis of gm is denoted by Bm.

B1 : {[[G1]]1},
B2 : {[[G2]]1},
B3 : {[[G3]]1, [[G1, G2]]2, [[G1, G1, G1]]3},
B4 : {[[G1, G3]]2, [[G1, G1, G2]]3, [[G1, G2, G1]]}
B5 : {[[G2, G3]]2, [[G1, G2, G2]]3, [[G1, G1, G3]]3, [[G2, G1, G2]]3,

[[G1, G3, G1]]3, [[G1, G1, G1, G2]]4,]]G1, G1, G2, G1]]4, [[G1, G1, G1, G1, G1[[5}.

We conclude by going back to the sixth-order Cayley expansion (6.12) and rep-
resenting it in the FHA basis. As before, we let Gi = Bi and ωi = i. The outcome,
after long but straightforward algebra, is

[[B1]]1 . grade 1

+ 1
12 [[B3]]1 − 1

12 [[B1, B2]]2 − 1
24 [[B1, B1, B1]]3 . grade 3

+ 1
240 [[B2, B3]]2 + 1

240 [[B1, B2, B2]]3 − 1
240]]B1, B1, B3]]3 − 1

240 [[B2, B1, B2]]3

− 1
160 [[B1, B3, B1]]3 + 1

120 [[B1, B1, B1, B2]]4 − 1
240 [[B1, B1, B2, B1]]4

+ 1
240 [[B1, B1, B1, B1, B1]]5 . grade 5

Note that, thanks to time symmetry, only odd-grade elements enter the expansion.

6.4. Canonical coordinates of the second kind I: A naive approach

The main idea of the present section is to consider alternatives to the standard
exponential map expm : g → G, which we can write in the form

g ∋
d∑

k=1

θkCk ∼ (θ1, θ2, . . . , θd) → expm

(
d∑

k=1

θkCk

)
∈ G, (6.14)

where d = dimg and C = {C1, C2, . . . , Cd} is a basis of the Lie algebra. The map
(6.14) induces (at least locally, near the identity) a coordinate system in the Lie
group which has been termed by Varadarajan (1984) the canonical coordinates of
the first kind. An alternative to (6.14) (which, incidentally, explains why we have

Lie-group methods 81

insisted to write it in such a strange form) are the canonical coordinates of the
second kind (CCSK),

g ∋
d∑

k=1

θkCk ∼ (θ1, θ2, . . . , θd) → eθ1C1eθ2C2 · · · eθdCd ∈ G. (6.15)

Why should we consider (6.15)? On the face of it, we have replaced a single
exponential with d exponentials (and the whole exercise becomes really interesting
when d ≫ 1!), hardly a sensible point of departure. However, as long as C is ap-
propriately chosen, the computation of each expm(θkCk) can be exceedingly cheap
and, moreover, the approach lends itself naturally to the exploitation of sparsity:
as long as we can expect that there should be no component in the Ck direction,
say (or that it is suitably small), we can drop the relevant exponential from the
product.2 A useful analogy is the distinction between Householder reflections and
Givens rotations in numerical algebra.

It is possible to approach the issue of CCSK within the context of this survey from
two distinctive points of view. Although ultimately they are closely related, they
follow different philosophy, the first ‘naive’ and the other more mathematically
sophisticated. This subsection is devoted to the more ‘naive’ approach, which
associates CCSK with splittings.

Splitting methods have rich history throughout numerical analysis of differen-
tial equations and they are exceedingly useful in geometric integration, e.g. in the
computational of Hamiltonian systems (Sanz Serna and Calvo 1994, Yoshida 1990)
and in the recovery of integrals and conservation laws (McLachlan, Quispel and
Robidoux 1998). Yet, the splitting of a flow into components corresponding to
elements of a basis allows a significant enhancement of the technique. For simplic-
ity, let us assume that we are solving the linear Lie-group equation (4.2), namely
Y ′ = A(t)Y , t ≥ 0. We express the solution in the form

Y (t) = eθ1(t)C1eθ2(t)C2 · · · eθd(t)CdY0, t ≥ 0, (6.16)

where θ1, θ2, . . . , θd are scalar functions. It has been proved by Wei and Norman
(1964) that such functions always exist locally (and, in the case of solvable Lie
algebras or for 2 × 2 real matrices, globally). The exact derivation of θ1, θ2, . . . , θd

is, needless to say, impossible in general, otherwise we could have written down the
solution of (4.2) explicitly! Instead, we replace the θks with polynomials, which are
chosen so as to match suitable order conditions at t = 0.

Letting t = 0 in (6.16), we note that θk(0) = 0, k = 1, 2, . . . , d. To obtain more

2 We return to this point in far greater detail in Section 8.

82 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

useful order conditions we differentiate Y . Brief algebra confirms that

A(t) = Y ′(t)Y −1(t)

=

d∑

k=1

θ′i(t)e
θ1(t)C1 · · · eθk−1(t)Ck−1Cke−θk−1(t)Ck−1 · · · e−θ1(t)C1

=
d∑

k=1

θ′k(t)Ad expm[θ1(t)C1] · · ·Ad expm[θk−1(t)Ck−1]Ck.

(6.17)

Letting t = 0 in (6.17) we obtain the first-order condition

A(0) =

d∑

k=1

θ′k(0)Ck.

Recalling that A(0) ∈ g, we can expand it in the elements of C and this yields
θ′k(0) explicitly.

Higher-order conditions can be obtained by differentiating (6.17) and massaging
the formulae with a great deal of (fairly unpleasant) algebra. Thus, for example,

A′ =
d∑

k=1

θ′′kAdeθ1C1 · · ·Adeθk−1Ck−1Ck

+

d∑

k=1

k−1∑

l=1

θ′kθ
′
lAdeθ1C1 · · ·AdeθlCl [Cl,Adeθl+1Cl+1 · · ·Adeθk−1Ck−1Ck]

and, letting t = 0, we have

d∑

k=1

θ′′(0)Ck = A′(0) −
d∑

k=1

k−1∑

l=1

θ′k(0)θ′l(0)[Cl, Ck].

Recall that C is a basis of g, hence there exist scalars cjk,l such that

[Ck, Cl] =

d∑

j=1

cjk,lCj , k, l = 1, 2, . . . , d.

They are called the structure constants of g and play an important role in the
theory of Lie algebras (Olver 1995, Varadarajan 1984). Using structure constants
and observing that A′(0) ∈ g can be expanded in elements of C, we obtain

d∑

k=1

θ′′k(0)Ck = A′(0) +

d∑

j=1

d∑

k=1

k−1∑

l=1

θ′k(0)cjk,lθ
′
l(0)Cj , (6.18)

Lie-group methods 83

hence second-order conditions.
Typically, the dimension d is quite large, for example dim so(N) = 1

2 (N − 1)N
and dim sl(N) = N2 − 1. Thus, in principle it might be costly to evaluate θ′′k(0),
k = 1, 2, . . . , d in (6.18). Higher-order conditions are substantially costlier still.
Yet, the cost can be reduced a very great deal by the right choice of the basis C.

The most suitable basis C is provided by a root-space decomposition of the (non-
nilpotent) Lie algebra g. Deferring our discussion of this construct to the next
subsection, we describe in a more nontechnical setting the special case of so(N).
To this end we choose the basis

C = {Ck,l = ekeT
l − ele

T
k : 1 ≤ k < l ≤ N},

where ej ∈ R
N is the jth unit vector. Note that

B ∈ so(N) ⇒ B =
N−1∑

k=1

N∑

l=k+1

bk,lCk,l

and that U = expm(tCk,l) is a rigid rotation in the (k, l) plane: it coincides with
the identity matrix, except for

[
uk,k uk,l

ul,k ul,l

]
=

[
cos t sin t

− sin t cos t

]
.

Therefore, multiplying a matrix with expm(tCk,l) is cheap. Moreover, it is easy to
verify that

[Cr,s, Ck,l] =





Ck,s, r = l, s 6= k,
Cl,r, r 6= l, s = k,
Cr,k, r 6= k, s = l,
Cs,l, r = k, s 6= l,
O, otherwise,

r < s, k < l,

where we identify Ci,j with −Cj,i for i > j. The condition (6.18) simplifies to

θ′′k,l(0) = a′k,l(0) −
N∑

i=1

ak,i(0)ai,l(0), 1 ≤ k < l ≤ N,

where A(t) =
∑N−1

k=1

∑N
l=k+1 αk,l(t)Ck,l. This requires O

(
N3
)

flops altogether, in

comparison with O
(
N6
)

if sparsity of structure constants is disregarded. Similar
construction can be applied in other Lie algebras.

In principle, we can go on to derive θ
(i)
k (0) for i = 0, 1, . . . , p, but this procedure,

even while utilising root-space decomposition, becomes progressively more expen-
sive for larger orders p. Herewith we present a device which, to our knowledge, is

84 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

new and which allows one to obtain order p while computing one less derivative.
Observing that (6.16) is sensitive to the ordering of the basis, the main idea is to
alternate the order of elements of C while time-stepping the numerical method.
Thus, suppose that tm = mh and

Y2n+1 = eθ2n,1(t2n+1)C1eθ2n,2(t2n+1)C2 · · · eθ2n,d(t2n+1)CdY2n,

Y2n+2 = eθ2n+1,d(t2n+2)Cdeθ2n+1,d−1(t2n+2)Cd−1 · · · eθ2n+1,1(t2n+2)C1Y2n+1,

where θm,k are p-degree polynomials. Without loss of generality, we assume that
θm,k are consistent with order p for m = 0, 1, . . . , 2n. Let

X(t) = eθ2n+1,d(t)Cdeθ2n+1,d−1(t)Cd−1 · · · eθ2n+1,1(t)C1Y2n+1,

hence Y2n+1 = X(t2n+1) and Y2n+2 = X(t2n+2). Repeatedly multiplying by in-
verted exponentials, we obtain

Y2n+1 = e−θ2n+1,1(t)C1e−θ2n+1,2(t)C2 · · · e−θ2n+1,d(t)CdX(t)

Assuming that the θ2n+1,k are chosen consistently with order p and letting t = t2n

we deduce that

Y2n+1 = e−θ2n+1,1(t2n)C1e−θ2n+1,2(t2n)C1 · · · e−θ2n+1,d(t2n)CdY2n + O
(
hp+1

)
.

In other words, we may take θ2n+1,k(t2n) = −θ2n,k(t2n+1), k = 1, 2, . . . , d. This, to-

gether with the values of θ
(i)
2n+1,k(t2n+1), i = 0, 1, . . . , p−1, is just right to determine

the θ2n+1,ks consistently with order p.

6.5. Canonical coordinates of the second kind II: Admissible bases

The technique of canonical coordinates of the second kind can be enhanced a great
deal at the cost of increased mathematical sophistication. The point of departure for
our discussion, presently based on the important paper of Owren and Marthinsen
(1999a), is the equation (6.17). We rewrite it in the form

d∑

k=1

θ′kAd expm(θ1C1)Ad expm(θ2C2) · · ·Ad expm(θk−1Ck−1)Ck = A(t). (6.19)

Here θ1, θ2, . . . , θd are known and we seek the scalars θ′1, θ
′
2, . . . , θ

′
d.

Suppose that we have the means to solve (6.19) for arbitrary inputs θ1, θ2, . . . , θd

(in (6.17) we needed just θ = 0). This yields a differential equation

θ′ = g(θ, A(t)), t ≥ 0, θ(0) = 0. (6.20)

Once the solution of (6.20) is known (or adequately approximated), we can use it

Lie-group methods 85

to advance the solution of the Lie-group equation (4.2) through the CCSK repre-
sentation (6.16). Moreover, the argument extends at once to nonlinear Lie-group
equations Y ′ = A(t, Y)Y , where A : G ×R

+ → g. Again, we represent the solution
in the CCSK form (6.16), except that now

g = dccsk−1
θ A = g(θ, A(t,eθ1C1eθ2C2 · · · eθdCdY0))

in the dccskinv equation (6.20).
Applying a Runge–Kutta method, say, to (6.20) results in time-stepping scheme

that is guaranteed to respect Lie group structure. In effect, the only difference
between the RK-MK methods of Section 3 and such methods is that, in place of
canonical coordinates of the first kind and the dexpinv equation, they utilise canon-
ical coordinates of the second kind and the dccskinv equation. All this motivates a
thorough discussion of the problem how to invert an equation of the form (6.19).

Letting Fk = Ad expm(θkCk), vk = θ′k, k = 1, 2, . . . , d, we commence by writing
(6.20) as

d∑

k=1

vkF1F2 · · ·Fk−1Ck = A.

Let Pl be a projection on the trailing d− l coordinates,

Pl

d∑

k=1

ckCk =

d∑

k=l+1

ckCk,

and set F̂l = I − Pl + PlAl, l = 1, 2, . . . , d. We can easily verify that

F̂lCk =

{
FlCk, l < k,
Ck, l ≥ k.

Owren and Marthinsen (1999a) say that C is an admissible ordered basis (AOB) if
for every θ1, θ2, . . . , θd it is true that

F1F2 · · ·FkPk = F̂1F̂2 · · · F̂kPk, k = 1, 2, . . . , d− 1. (6.21)

Provided that C is an AOB, it is simple to prove that our equation can be rewritten
in the form

d∑

k=1

vkF̂1F̂2 · · · F̂d−1Ck = F̂1F̂2 · · · F̂d−1F = A, (6.22)

where F =
∑d

k=1 vkCk. In the sequel we will see that in a number of important

cases AOB implies that each F̂k can be inverted very cheaply.
At a first glance, the AOB condition (6.21) is exceedingly demanding. Surpris-

ingly, it is often achievable but we need to introduce a little bit more Lie-algebra
theory before being in position to describe exactly how. The following brief extract
should be ideally supplemented by perusing a Lie-algebra monograph: The book of
Varadarajan (1984) is a good place to start.

86 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

• A subalgebra h of a Lie algebra g is an ideal if [h,g] ⊆ h.
• The Lie algebra g is solvable if there exists m ∈ Z

+ such that g(m) = {0},
where g(0) = g and g(i+1) = [g(i),g(i)] ⊆ g(i).

• The radical of g, denoted by Radg, is the maximal solvable ideal in g. We
say that the Lie algebra is semisimple if Radg = {0}.
If definitions have become hazy by now, let us just point out that all specific
Lie algebras in this survey (and in known applications within its framework)
are semisimple, inclusive of sl(N), so(N) and sp(N). (All these three Lie
algebras are, as a matter of fact, simple: their only ideals are {0} and the
algebra itself.)

• An element in g is semisimple if all the roots of its minimal polynomial are
distinct: in a matrix representation it means that the element can be diago-
nalised.

• A subalgebra is toral if all its elements are semisimple. It is easy to see that
every toral algebra must be abelian: in a matrix representation we can restate
this by saying that the elements of the subalgebra share all eigenvectors, hence
they commute.

• Unless g is nilpotent, it possesses a nonzero maximal toral subalgebra. Such
subalgebra, which we denote by h, is unique up to an isomorphism.
If g is a simple algebra, h is also known (subject to an equivalent definition)
as a Cartan subalgebra.

• Suppose that g is a linear space over C. We denote by h
∗

the dual space of
a maximal toral subalgebra. It consists of all linear functionals h → C. The
nonzero functional α ∈ h

∗
is a root if there exists f ∈ g \ {0} such that

[h, f] = α(h)f, h ∈ h.

In a matrix representation, α(H) is an eigenvalue of the commutator operator
generated by H ∈ h, while F can be ‘translated’ into its eigenvector.

• Denote the set of all roots of g by Φ. It is possible to prove that g can be
subjected to the root-space decomposition

g = h ⊕
∐

α∈Φ

gα, (6.23)

where gα = {f ∈ g : [h, f] = α(h)f, h ∈ h} 6= {0}.
• The decomposition (6.23) motivates the choice of a Chevalley basis of the Lie

algebra g: we choose one basis vector for each one-dimensional subspace gα,
α ∈ Φ, and combine it with an arbitrary basis of h.

• There exists an integer k∗ ≥ 1 such that adk∗+1
h = 0 for every h ∈ gα, α ∈ Φ.

Many of the above concepts can be illustrated briefly with an example, and we
choose sl(N,C). It is semisimple (as a matter of fact, we have already mentioned
that it is a simple Lie algebra). Using the standard representation of sl(N,C) as

Lie-group methods 87

matrices of zero trace, we can easily identify a maximal toral subalgebra h with
diagonal zero-trace matrices. Setting Ek,l = ekeT

l , k, l = 1, 2, . . . , N , we may choose
the basis {Ek,k − Ek+1,k+1 : k = 1, 2, . . . , N − 1} for h. Moreover, given

h ∋ H =

N∑

k=1

hkEk,k,

N∑

k=1

hk = 0,

and letting h0 = 0, we verify easily that

[H,Er,s] = (hr − hr−1 − hs + hs−1)Er,s, r, s = 1, 2, . . . , N, r 6= s.

Hence we identify the root α(H) = hr − hr−1 − hs + hs−1 and construct our basis
by placing there Er,s for every r 6= s and appending to this the above basis of h.
Note that this results in N2 −1 terms, matching exactly the dimension of sl(N,C).

To determine k∗ we compute

ad2
Er,s

Ek,l =

{
Er,s, k = s, l = r,
O, otherwise,

r 6= s, k 6= l ⇒ ad3
Er,s

Ek,l = O

and ad2
Er,s

(Ek,k − Ek+1,k+1) = O. Therefore ad3
Er,s

= O, r 6= s, and we deduce

that k∗ = 2.3

Theorem 6.2 Let {ρ1, ρ2, . . . , ρd∗
}, where d∗ = d− dimh, be the set of roots Φ

of a semisimple non-nilpotent Lie algebra g. Suppose that the Chevalley basis C

is ordered so that the basis of h comes last. Then this basis is AOB if

kρi + ρj = ρm, m < i < j ≤ d∗, 1 ≤ k ≤ k∗ ⇒ ρm + ρn 6∈ Φ ∪ {0} (6.24)

for all n = m+ 1,m+ 2, . . . , i− 1. Moreover, in that case

F̂−1
k = I +

k∗∑

l=1

(−1)l θ
l
k

l!
adl

Ck
Pk, k = 1, 2, . . . , d− 1. (6.25)

Returning to so(N,C), it has been proved in (Owren and Marthinsen 1999a)
that conditions of Theorem 6.2 are satisfied as long as super-diagonal elements are
ordered lexicographically by rows in front of the elements underneath the diagonal,
which are ordered lexicographically by columns: thus, the ordered basis is

{Ek,l : 1 ≤ k < l ≤ N} ∪ {Ek,l : 1 ≤ l < k ≤ N}
∪ {Ek,k − Ek+1,k+1 : 1 ≤ k ≤ N − 1}.

We omit the largely-technical proof. Likewise, it is possible, using Theorem 6.2,

3 There are easier ways to determine k
∗ but they require more Lie-algebra theory.

88 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

to identify AOB of sp(N,C) and so(N,C). This, however, is probably of less im-
portance than in the case of so(N,C), since the increase in dimension due to the
replacement of R with C leads to a significant increase in the volume of computa-
tions. In the present stage of the development of Lie-group methods it is fair to
say, we believe, that the Cayley-transform-based techniques from Section 6.1–2 are
the method of choice for quadratic Lie groups, while CCSK should be used with
the special linear group.

7. Adjoint methods

In the previous sections we have encountered a number of numerical integrators
for Lie groups. Although such methods produce solutions that stay on a given Lie
group G by design, it is of interest to study how well such schemes respect other
qualitative features of the underlying equations: the retention of a symplectic form,
Lie–Poisson structure, conservation of energy, time symmetry, time reversibility et
cetera. Given the novelty of the proposed schemes, many of the above features and
their implications on the ‘quality’ of the solution are still under investigation (Engø
and Faltinsen 1999, Faltinsen n.d.). For this reason, we shall focus here just on
time symmetry for Lie-group methods, which is at present one of few features that
are better understood, deriving adjoint and self-adjoint Lie-group methods.

Before proceeding further, let us recall that the flow Φ of the differential equation
in R

N

y′ = f(t,y), t ≥ t0, y(t0) = y0,

defined as

Φ(t, t0,y0) = y(t)

obeys the following conditions:

i. Φ(t0, t0,y0) = y0,

ii. Φ(t+ τ, t0,y0) = Φ(τ, t,Φ(t, t0,y0)),

provided that the above function f is Lipschitz with respect to y (Hairer et al.
1993). In particular, the second condition implies that

Φ(−τ, t+ τ,Φ(τ, t,y(t))) = y(t),

a condition that in literature is mostly known as time symmetry or self adjointness
of the exact flow Φ.

7.1. Adjoint methods in classical setting

Numerical methods usually approximate the flow Φ by a discrete flow, say Ψ, so
that

yn+1 = Ψ(tn + h, tn,yn), n ∈ Z
+,

Lie-group methods 89

approximates the exact solution y(tn + h) to given order p. Although numerical
integrators for ODEs always obey the condition Ψ(tn, tn,yn) = yn, they usually
fail to satisfy condition ii. However, its weaker variant, time symmetry, is easier to
impose and numerical methods such that

Ψ(−h, tn + h,Ψ(h, tn,yn)) = yn, n ∈ Z
+,

are usually called self-adjoint or time-symmetric methods. If a method is not self
adjoint, its adjoint Ψ∗ is defined as the map

Ψ∗(−h, tn + h,Ψ(h, tn,yn)) = yn.

In shorthand notation, we write Ψh for Ψ(h, tn, ·), so that Ψ∗
h denotes the adjoint

method of Ψh and moreover Ψ∗
h ◦Ψh = Id, the identity map, or equivalently Ψ−h =

Ψ−1
h , if and only if the method is self adjoint.

The theory of adjoint and self-adjoint numerical methods for ODEs in R
N is well

established and we refer the reader to (Hairer et al. 1993) for further reading.
One might question why self adjointness of a numerical integration scheme is

desirable. It turns out that for numerical integration schemes that are self adjoint
it is possible to develop a theory analogous to the KAM theory for Hamiltonian and
time-reversible problems (Moser 1973), which usually implies better approximation
of the solution and slower accumulation of error over long integration intervals
(Estep and Stuart 1995, Reich 1996).

With regards to Lie-group methods and time symmetry, we have already shown in
Section 4 that the Magnus expansion truncated by power is time symmetric when
applied to linear Lie-group differential equations Y ′ = A(t)Y , provided that the
underlying quadrature is based on quadrature nodes in [0, 1] which are symmetric
with respect to 1

2 . A similar result applies also to the RK-MK methods, provided
that the underlying Runge–Kutta scheme is self adjoint.

However, it can be easily verified by means of numerical experiments that the
above-mentioned Lie-group methods are not self adjoint for nonlinear problems.
Hence, using self-adjoint methods to solve a Lie-algebra differential equation is not
sufficient to derive self-adjoint Lie-group methods!

In this section we shall be discussing a more general procedure, derived by Zanna,
Engø and Munthe-Kaas (1999), that allows us to construct self-adjoint Lie-group
methods for linear and nonlinear problems alike and for all type of coordinate
maps φ : g → G that we may use to represent the solution. In lifting the Lie-group
equation from G to g, we make an implicit choice of a coordinate map, which has
to be taken into account in the construction of self-adjoint methods.

7.2. Coordinate maps centred at arbitrary points

Schematically, the first step in the development of Lie-group schemes introduced in
Sections 3–6 is the choice of a smooth map, say φ : g → G, such that φ(O) = I, the

90 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

identity of the Lie group G, and φ′(O) = I (more precisely Tφ(O, B) = B, where
B ∈ g). In other words, φ is a diffeomorphism mapping a neighbourhood of O ∈ g
into a neighbourhood of I in G. Thus,

φ(B) = expm(B), B ∈ g,

is an example of such a map, which in (6.14) we have termed canonical coordinates
of the first kind. Similarly, we might consider canonical coordinates of the second
kind (6.15), namely

φ(B) = ccsk(B) = expm(β1B1) expm(β2B2) · · · expm(βdBd), B ∈ g,

where B =
∑d

i=1 αiBi, αis being real coefficients, the Bis are basis elements of the
algebra g, and the βis real functions of α1, α2, . . . , αd. Yet another example of this
kind of map is the Cayley transform (6.3), which in the current formalism reads

φ(B) = (I − 1
2B)−1(I + 1

2B), B ∈ g,

that maps g into G whenever G is a quadratic group and g is its corresponding
quadratic algebra.

Secondly, the Lie-group differential equation

Y ′ = A(t, Y)Y, t ≥ 0, Y (0) = Y0 ∈ G, (7.1)

is lifted by means of the inverse of the map dφ to an ordinary differential equation
in g. Thus, for coordinates of the first kind, one has dφ−1 = dexp−1, the dexpinv
equation (3.2) that we have already encountered time and again in the course of
the present article. Similarly, we have derived the expressions dcay−1 and dccsk−1

in Section 6.
Finally, the dφ−1 equation is solved in g with either a Runge–Kutta method

or with a Magnus or a Cayley-type expansion. Assuming that an approximation
Yn ∈ G has been already derived, we typically solve

Θ′ = dφ−1
Θ (A(t, φ(Θ)Yn)), Θ(tn) = O, t ∈ [tn, tn+1],

where tn+1 = tn +h. The choice of the initial condition Θ(tn) = O is equivalent to
‘centring’ the coordinate map φ at Yn. Instead, coordinates centred at any point
X ∈ G can be obtained inverting the map B ∈ g 7→ φ(B)X ∈ G. In the general
case we write

X = φ(C)−1Yn,

for some C ∈ g to be specified in the sequel. Note that φ(C)−1 is the inverse (in
G) of the group element φ(C). Before proceeding further, we observe that both
canonical coordinates of the first kind and the Cayley transform obey the relation

φ(B)−1 = φ(−B),

Lie-group methods 91

for all B ∈ g. For canonical coordinates of the second kind one has instead

ccsk(B)−1 = expm(−βdBd) expm(−βd−1Bd−1) · · · expm(−β1B1).

We seek a solution of (7.1) of the form

Y (t) = φ(Θ(t))φ(C)−1Yn (7.2)

for t ∈ [tn, tn+1]. Differentiating in the usual fashion we obtain a differential equa-
tion for Θ(t)

Θ′ = dφ−1
Θ (A(t, Y)), t ∈ [tn, tn+1], (7.3)

where Y is as in (7.2), in tandem with the initial condition

Θ(tn) = C. (7.4)

Thus, changing the centre of coordinate map does not affect the differential equation
obeyed by Θ, just its initial condition.

7.3. The adjoint of Lie-group methods

Assume that the Lie-algebra differential equation (7.3), with the initial condition
(7.4), is computed with a numerical method Ψh, and denote by Ψ∗

h its adjoint in
the classical sense of Section 7.1, namely

(Ψ∗
−h ◦ Ψh)B = B

for all B ∈ g. The corresponding Lie-group method is such that

Yn+1 = Ψ̃hYn = φ(Υh,n+1)φ(Ch,n)−1Yn

Υh,n+1 = Ψ(h, tn, Ch,n),

where Ch,n is the initial condition of Θ in the interval [tn, tn+1], and we allow it
to depend on the interval of integration and on the step size h. In order to obtain
the adjoint of the Lie-group method Ψ̃h, we need not just to use Ψ∗

h in g, but also
to make sure that the coordinate map employed while stepping forward with the
method Ψ̃h is the same as when stepping backward with the adjoint method Ψ̃∗

h.

Define a pair of methods Ψ̃ and Ψ̃∗ on G as

Ψ̃(tn + h, tn, Yn) = φ(Υn,n+1)φ(Ch,n)−1Yn,

Ψ̃∗(tn + h, tn, Yn) = φ(Θ∗
h,n+1)φ(C∗

h,n)−1Yn,

C∗
−h,n+1 = Υh,n+1, (7.5)

where Υh,n+1 = Ψ(h, tn, Ch,n) and Θ∗
h,n+1 = Ψ∗(h, tn, C∗

h,n).

Theorem 7.1. (Zanna et al. (1999)) The method Ψ̃∗ is the Lie-group adjoint
of Ψ̃. Moreover, (Ψ̃∗)∗ = Ψ̃.

92 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

Proof. With the same notation as above, we have

(Ψ̃∗
−h ◦ Ψ̃h)Yn = φ(Θ∗

−h,n+2)φ(C∗
−h,n+1)

−1φ(Υh,n+1)φ(Ch,n)−1Yn.

Because of (7.5), one has φ(Ch,n)−1Yn = φ(C∗
−h,n+1)Yn+1, from which we deduce

that
φ(C∗

−h,n+1)
−1φ(Υh,n+1) = I.

Furthermore Υh,n+1 and Υ∗
−h,n+2 are solution of the same differential equation

(7.3) whereby the initial condition of Θ∗ is the endpoint of Θ and Θ∗ is obtained
by means of Ψ∗

−h, where Ψ∗
h is the adjoint of Ψh in the classical sense. Thus

(Ψ̃∗
−h ◦ Ψ̃h)Yn = Yn and the assertion follows. 2

We have not specified yet what is Ch,n. In general we let it be a function of
the step size of integration h and of the current stage values Fi of a Runge–Kutta
method Ψ,

Ch,n = ϑ(F1, F2, . . . , Fν),

ν being the number of the stages of the scheme (cf. Appendix A for notation).
Thus,

C∗
−h,n+1 = ϑ∗(F ∗

1 , F
∗
2 , . . . , F

∗
ν),

therefore the functions ϑ and ϑ∗ obey the fundamental adjointness condition

ϑ∗(F ∗
1 , F

∗
2 , . . . , F

∗
ν) = ϑ(F1, F2, . . . , Fν) +

ν∑

i=1

biFi,

for the centre of the coordinate map.
The following result, which can be found in (Zanna et al. 1999), characterises

self-adjoint Lie-group methods.

Theorem 7.2 Assume that Ψ is self adjoint. Then Ψ̃ is self adjoint provided that

ϑ(Fν , Fν−1, . . . , F1) = ϑ(F1, F2, . . . , Fν) +

ν∑

i=1

biFi. (7.6)

7.4. Geodesic and flow-symmetric coordinate maps

Basically, there are two distinct ways to generate coordinate maps such that (7.6)
is obeyed. One way to achieve this goal is to choose ϑ so that the value Yn+1/2 =
φ(Ch,n)−1Yn is a ‘midpoint in space’ between Yn and Yn+, which will generate what
we call the geodesic midpoint method. An alternative is to choose ϑ so that Yn+1/2 =
φ(Ch,n)−1Yn is instead a ‘midpoint in time’, thus generating a flow midpoint. The
situation is schematically represented in Figure 7.1.

In the first instance we say that the coordinate map is geodesic symmetric, while
in the second case we say that the coordinate map is flow symmetric.

Lie-group methods 93

rYn

r Yn+1

r Yn+1/2 geodesic midpoint
rYn+1/2flow midpoint

�
�

�
�

�

Fig. 7.1. Representation of the geodesic and flow-symmetric midpoint

Geodesic-symmetric coordinate maps are always defined and correspond to the
choice

Ch,n = ϑ(F1, F2, . . . , Fν) = − 1
2

ν∑

i=1

biFi.

Flow-symmetric coordinates are instead more naturally defined for methods based
on collocation. If ℓi(x), i = 1, . . . ν, denote the familiar cardinal polynomials of
Lagrangian interpolation, already introduced in Section 5.1, we set

wi =

∫ 1
2

0

ℓi(τ) dτ, i = 1, 2, . . . , ν, (7.7)

and the choice

Ch,n = ϑ(F1, F2, . . . , Fν) = −
ν∑

i=1

wiFi.

corresponds to the flow midpoint.
There exist also other choices of functions ϑ that obey (7.6) and it is possible to

show that the set of such functions is convex. See (Zanna et al. 1999) for further
examples of coordinate maps that yield self-adjoint schemes.

To conclude this section, we illustrate with a numerical experiment the benefits of
using the geodesic and flow-symmetric coordinates instead of classical coordinates
centred at Yn. We consider the Euler equations for the rigid body,

y′ = y ×My, t ≥ 0, y(0) = y0, (7.8)

where y ∈ R
3 (we assume that ‖y0‖2 = 1), the symbol ‘×’ denotes the classical

vector product os R
3 and M is a diagonal matrix, M = diag (m1,m2,m3). This

system has the Hamiltonian function H(y) = 1
2 (m1y

2
1 +m2y

2
2 +m3y

2
3) and obeys

‖y‖2 = 1. It can be represented by means of Lie-group action of SO(3) on R
3

by representing the solution y(t) as Ω(t)yn, n = 0, 1, 2, . . ., with Ω ∈ SO(3), t ∈
[tn, tn+1]. Hence, in each interval [tn, tn+1] we solve the differential equation

Ω′(t) = A(y(t))Ω(t), t ≥ tn, Ω(tn) = I, (7.9)

where

A(y(t)) = −




0 −m3y3 m2y2
m3y3 0 −m1y1
−m2y2 m1y1 0


 .

94 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

In this numerical experiment, m1 = 1,m2 = 1
3 and m3 = 1

5 and h = tn+1 − tn =
1
10 , while the initial condition is a random 3-vector with unit norm. We remark
that such action automatically obeys the homogeneous-space condition ‖y‖2 = 1
whenever a Lie-group method is applied to (7.9).

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4
x 10

-10

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

4
x 10

-10

Geosym coords
Flowsym coords

0 10 20 30 40 50 60 70 80 90 100
-6

-4

-2

0

2
x 10

-14

Time

Coords at y
n

Fig. 7.2. Error in the Hamiltonian versus time for an order-four RK-MK method
based on Gaussian nodes. The top plot corresponds to coordinates centred at yn

while the second plot corresponds to geodesic and flow-symmetric coordinates.
Although generally the two latter choices would correspond to different error, in

this case the errors are very similar. The bottom plot corresponds to the
difference between the errors in geodesic and flow-symmetric coordinates.

We compare an RK-MK method of order four based on Gauss–Legendre quadra-
ture, using coordinates centred at yn with geodesic and flow-symmetric coordinates.

Lie-group methods 95

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

2

3
x 10

-9

Coords at y
n

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

2

3
x 10

-9

Geosym coords
Flowsym coords

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1
x 10

-9

Time

Fig. 7.3. Error in the Hamiltonian versus time for an order-four Magnus method
based on Gaussian nodes. The top plot corresponds to coordinates centred at yn

while the second plot corresponds to geodesic and flow-symmetric coordinates.
The bottom plot corresponds to the difference between the errors in geodesic and

flow-symmetric coordinates.

The error in the Hamiltonian function, evaluated as

errH = H(yn) −H(y0),

is displayed in Figure 7.2.
Similar comparison is displayed in Figure 7.3 for a method based on Magnus

expansion of order four.
Precise details of numerical schemes used in the above example can be found in

Appendix A.

96 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

8. Computation of exponentials

8.1. Six dubious ways to compute the exponential of a matrix in a Lie algebra

Most (but by no means all) Lie-group methods require repeated calculation of
exponentials or, in a more realistic setting, an approximation of exponentials. In
principle, this is a well-tried and familiar task in numerical analysis and can be
accomplished in one of several ways: rational approximants (Baker 1975, Iserles
and Nørsett 1991), Krylov-subspace methods (Hochbruck and Lubich 1997), Schur
decomposition (Golub and Van Loan 1996) and so on. Although such methods have
occasionally attracted healthy scepticism (Moler and Van Loan 1978), it is fair to
say that they have a distinguished track record across numerical analysis. However,
as we have already commented in Section 6, our present task is subject to a crucial
restriction: Our approximant must map the Lie algebra g to the Lie group G!

Low-dimensional algebras are easy and often we can evaluate the exponential
explicitly. In particular, the following two cases are of practical importance.

• Firstly, given A =

[
a b
c −a

]
∈ sl(2), we can easily establish that

eA = coshω I +
sinhω

ω
A, where ω =

√
a2 + bc. (8.1)

This will be of use in Section 11, in our discussion of the application of Magnus
expansions to the calculation of Sturm–Liouville spectra.

• Secondly, the exponential of

A =




0 a b
−a 0 c
−b −c 0


 ∈ so(3)

is

I +
sinσ

σ
A+

1 − cosσ

σ2
A2,

where σ =
√
a2 + b2 + c2. Given the number of spatial dimensions in our

universe, it will come as little surprise that many useful equations, e.g. (7.8),
can be formulated in so(3). We will return to the above expression, known
as the Rodrigues formula, in Appendix B.

These, however, are the exceptions.
An exact formula being unavailable, an appealing alternative is to compute the

exponential to machine accuracy. This, however, is neither affordable not always
reliable. The Matlab function expm computes the exponential by scaling-and-
squaring a diagonal Padé approximant: the procedure is very expensive for large
dimensions and the outcome often falls short of machine accuracy and is subject to
fast error accumulation.

Lie-group methods 97

When neither an explicit formula nor computation to machine accuracy are fea-
sible, we must resort to approximation. Any such procedure must conform with
two conditions: The outcome lies in the correct Lie group G and it departs from
the exact exponential only to an extent consistent with the order of the Lie-algebra
method. A standard means of approximation is to replace ez with a function r(z),
analytic in the neighbourhood of the origin. The action of such function can be
extended from C to gl(N), hence to any matrix Lie algebra, by elementary means.
Our two desiderata can be now reformulated by requiring that r(z) = ez +O

(
zp+1

)
,

where p ≥ 1 is the order of the Lie-algebra time-stepping procedure, and r(g) ⊆ G.
As we have already mentioned in Section 6, above conditions might be much

too restrictive. As has been proved by Kang and Zai-jiu (1995), the only analytic
function that maps sl(N) to SL(N) for every N ∈ N and takes zero to identity is
r(z) = eαz for α ∈ R. Requiring consistency means that we must choose the exact
exponential! On the other hand, in a quadratic Lie algebra we are faced with an
abundance of riches: given an arbitrary odd function f , analytic about the origin,
it is true that ef(g) ⊆ G (Celledoni and Iserles 1998). In particular, this is the case
with all diagonal Padé approximants,

r(z) =
pm(z)

pm(−z) , where pm(z) =
m∑

k=0

(
m
k

)
(2m− k)!

(2m)!
zk, m ∈ N.

Yet, all this is of lesser utility since, arguably, the method of choice for quadratic
Lie algebras rests upon the use of the Cayley transform (i.e., the diagonal Padé
approximant with m = 1) as an alternative action, thereby avoiding altogether the
need to approximate the exponential function!

Yet another option is to evaluate the exponential with a Krylov-subspace method.
Assuming for simplicity that we wish to approximate eAv, where A ∈ gl(N)
and v ∈ R

N , such techniques choose the approximant from the space KN,M =
span {v, Av, . . . AM−1v}. Surprisingly small values of M produce remarkably good
and affordable approximants (Hochbruck and Lubich 1997). Yet, there is absolutely
nothing in this approach to guarantee that the outcome resides in the correct Lie
group.

The last (and perhaps the most obvious) candidate for our list of alternatives
to the matrix exponential is projection. For example, to travel from sl(N) to
SL(n), we may employ a diagonal Padé approximant. The outcome, V = r(A),
say, cannot be expected to reside in the special linear group. However, replacing V
with V/(detV)1/N produces an element in SL(n). Unfortunately, experience tells
that this procedure is prone to instability (cf. Section 11.4).

8.2. Splitting methods

Let A ∈ g. In the spirit of (Celledoni and Iserles 1998), we wish to approximate

etA ≈ R(tA) = etB1etB2 · · · etBs , (8.2)

98 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

where the matrices B = {B1, B2 . . . , Bs} are subject to the following requirements.

1 Each Bl resides in g;

2 It is cheap to evaluate expm(tBl) ∈ G exactly for each l;

3 It is cheap to multiply exponentials in (8.2);

4 The error is suitably small, R(tA) = etA + O
(
tp+1

)
.

We choose the splitting B so that it consists of low-rank matrices.
Let K and L be two N × r matrices, where r ≥ 1 is small, and assume that

C = Bl = KLT. Then

etC = I + tKD−1(etD − I)LT,

where D = LTK (Celledoni and Iserles 1998). Note that D is just r × r and the
cost of evaluating etC exactly is modest for small values of r.

As an example, let us consider g = so(N). We let r = 2, s = N − 1, set

B[0] = A = [b
[0]
1 , b

[0]
2 , . . . , b

[0]
N], and choose B1 = b

[0]
1 eT

1 − e1b
[0]
1

T
∈ so(N), where

ek ∈ R
N is the kth unit vector. Letting B[1] = B[0] − B1, we observe that its

first row and column vanish. We continue in a manner similar to LU factorisation,
letting B[i] = B[i−1] −Bi and

Bi = b
[i−1]
i eT

i − eib
[i−1]
i

T
∈ so(N), i = 1, 2, . . . , N − 1.

We refer to (Celledoni and Iserles 1998) for precise estimation of cost, implementa-
tion details and a similar example for sl(N), as well as for an example of a splitting,
again with r = 2, that eliminates two rows and columns of B ∈ so(N) at a time.
Although the number of exponentials in (8.2) is generally quite large for low-rank
splittings, the underlying linear algebra carries a reasonable price tag.

The main disadvantage of low-rank splitting methods is the quality of approxi-
mation: in general, we can expect order p = 1. The second-order condition is

s−1∑

k=1

s∑

l=k+1

[Bk, Bl] = O

and it is easy to verify that it is satisfied when (8.2) is the Strang splitting: s = 2s̃+1
and Bs̃+i = Bs̃−i, i = 1, 2, . . . , s̃. In principle, it is easy to convert any low-rank
matrix so that it becomes a Strang splitting by first approximating 1

2A with a first-
order splitting (8.2), next approximating the same matrix with the same splitting
but with the matrices Bl arranged in reverse order and finally ‘aggregating’ the
middle two terms. The outcome,

S(tA) = etB1/2etB2/2 · · · etBs−1/2etBsetBs−1/2 · · · etB2/2etB1/2 (8.3)

Lie-group methods 99

costs twice as much as (8.2) but it has a crucial advantage: it is not just second-
order but also time symmetric. This renders (8.3) amenable to the application of
the Yoshida device (Sanz Serna and Calvo 1994, Yoshida 1990). Thus, the function

S(αtA)S((1 − 2α)tA)S(αtA), where α =
2

3
+

3
√

2

3
+

3
√

4

6

approximates etA to order four. Similar procedure can we used to increase the order
further in increments of two.

A most welcome feature of low-rank splittings is that they can be implemented
to take advantage of sparsity. Provided that A is banded, say, all the computations
can be confined to the relevant band and sparsity is inherited as we are ‘mopping
up’ rows and columns similarly to the so(N) algorithm above.

8.3. Canonical coordinates of the second kind

Our point of departure is similar to the reasoning behind the CCSK representation
(6.16). Again, C = {C1, C2, . . . , Cd} is a basis of the Lie algebra g and we seek
polynomials θ1, θ2, . . . , θd so that

eθ1(t)C1eθ2(t)C2 · · · eθd(t)Cd = etA + O
(
tp+1

)
. (8.4)

C being a basis, there exist scalars a1, a2, . . . , ad so that A =
∑d

k=1 akCk. Letting
θk(t) = akt, k = 1, 2, . . . , d, gives us a first-order splitting (8.2). With greater
generality, we set θk(0) = 0, θ′k(0) = ak, k = 1, 2, . . . , d, to guarantee p ≥ 1.

To obtain higher-order conditions in (8.4) we proceed like in Section 6.4. Differ-
entiation and further algebra produce, equivalently to (6.17), the equation

A =

d∑

k=1

akCk =

d∑

k=1

θ′k(t)Ad expm[θ1(t)C1] · · ·Ad expm[θ1(t)C1]Ck + O(tp) . (8.5)

We go on differentiating (8.5) and letting t = 0. This yields order conditions,
which need be unscrambled by further algebra, exploiting the structure constants
(cf. Section 6.4 for the definition) of C. The outcome is

p ≥ 2 : θ′′k(0) =

d∑

l=1

l−1∑

j=1

alc
k
l,jaj , k = 1, 2, . . . , d

p ≥ 3 : θ′′′k (0) = 2
d∑

l=1

l−1∑

j=1

ckl,j [θ
′′
l (0)aj + alθ

′′
j (0)] + 2

d∑

l=1

l−1∑

j=1

j−1∑

i=1

d∑

m=1

cml.jc
k
i,malajai

+

d∑

l=1

d∑

j=1

l−1∑

i=1

cjl,ic
k
i,jβlβ

2
i , k = 1, 2, . . . , d

100 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

(Celledoni and Iserles 1999).
The cost of this procedure is, at the first glance, prohibitive. We might just about

get away with computing order-two conditions at the cost of O
(
d3
)

operations, but

a price tag of O
(
d5
)

operations for order three, to say nothing of higher orders, is
out of the question. This naive impression is misleading, since we are absolutely
free to exploit, along the lines of Sections 6.4–5, sparsity in structure constants
in a serendipitously-chosen basis C.4 Again, Chevalley bases present the best
choice, as well as leading to very easy computation of exponentials in (8.4). For
example, choosing the basis {Ek,l − El,k : 1 ≤ k < l ≤ N} of so(N), an order-two
approximation is attained by letting

θk,l(t) = ak,lt+ 1
2

N∑

i=1

ak,iai,lt
2, 1 ≤ k < l ≤ N,

an O
(
N3
)

= O
(
d3/2

)
procedure. In the case of sl(N) the approach advocated in

(Celledoni and Iserles 1999) is to choose the ordered basis C = C1 ∪ C2, where

C1 = {Ek,l : k 6= l}, C2 = {Ek,k − Ek+1,k+1 : k = 1, 2, . . . , N − 1},

where each set is ordered lexicographically. Let

A =

N∑

k,l=1
k 6=l

ak,lEk,l +

N−1∑

k=1

bk(Ek,k − Ek+1,k+1)

and denote the coefficients corresponding to terms in C1 and C2 by θk,l and ηk

respectively. The second-order conditions are

θk,l(t) = ak,lt+ 1
2

[
k−1∑

i=1

ak,iai,l + ak,l(bk−1 − bk + bl − bl−1)

−
N∑

i=k+1

ak,iai,l

]
t2, k 6= l,

ηk(t) = bkt− 1
2

k∑

i=1

N∑

j=k+1

ai,jaj,it
2, k = 1, 2, . . . , N − 1,

again just O
(
N3
)

= O
(
d3/2

)
operations.

An intriguing aspect of approximants based on CCSK is that they might well be
ideally suitable to handle sparsity in the matrix A. Although this issue is by no

4 Sparsity in structure constants has no connection whatsoever with sparsity (or other-
wise) of the matrix A.

Lie-group methods 101

means fully understood, there are enough encouraging pointers to justify a brief
discussion. One mechanism that exploits sparsity is that the latter can be taken
into account in the evaluation of the θks because of the association between terms
in a Chevalley basis and the entries of A. For example, the second-order conditions
for a tridiagonal matrix A ∈ sl(N) reduce to

θk,l(t) =





1
2ak,k−1ak−1,k−2t

2, l = k − 2,

ak,k−1t− 1
2ak,k−1(bk − 2bk−1 + bk−2)t

2, l = k − 1,

ak,k+1t+ 1
2ak,k+1(bk+1 − 2bk + bk−1)t

2, l = k + 1,

− 1
2ak,k+1ak+1,k+2t

2, l = k + 2,

0, |k − l| 6= 1,

ηk(t) = bkt− 1
2ak,k+1ak+1,kt

2.

This entails just O(N) operations and, equally importantly, just O(N) terms sur-
vive in the product (8.4). The cost scales with the number of nonzero elements in
the matrix, rather than with dimension, a hallmark of a good method for sparse
matrices.

Another mechanism is of a more tentative value, yet we believe that it deserves
mentioning. Even if the matrix A is sparse, its exponential is dense. However, it is
possible to prove, at least in the case of banded matrices, that most of the entries are
exceedingly small and that the loci of large elements are predictable (Iserles 1999a).
As an example, we have averaged 1000 exponentials of 100 × 100 matrices with
the cruciform sparsity pattern displayed in Figure 8.1a and with random elements
uniformly distributed in (−1, 1) and normalised so that maxk,l |ak,l| = 1. Let W be
the average of all the exponentials. The matrix is dense, yet most of the elements
of W are tiny! Thus, Figure 8.1b displays the sparsity pattern of W without all
its entries that are smaller than 10−6 in magnitude. Although the cruciform shape
‘swells’, most of the matrix consists of zero entries. This observation is affirmed in
Figure 8.1c, where we have plotted the matrix log10 |W |. The vertical axis tells the
magnitude of the entries in terms of significant (decimal) digits. The decay outside
the original cruciform shape is evident. Using upper bounds from (Iserles 1999a),
it is possible to say how fast entries decay for banded A but computer experiments
(and, indeed, Figure 8.1) indicate that similar behaviour takes place for more exotic
sparsity patterns.

Choosing a Chevalley basis, members of C mostly correspond to elements of A.
Given a tolerance ε > 0 and knowing which elements of eA are bound to be smaller
than ε in magnitude, we are free to remove them altogether from the product (8.4).
The outcome departs entry-by-entry from the exact exponential by at most ε and,
by design, it resides in the Lie group G.

The sparsity pattern of a matrix exponential of a sparse matrix after the exci-
sion of small entries is at present unknown. (Banded matrices are an exception.)
Moreover, full implications of this phenomenon to the subject matter of this sec-

102 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

0
20

40
60

80
100

0

20

40

60

80

100
−100

−80

−60

−40

−20

0

20

Fig. 8.1. How large is the exponential of a sparse matrix?

a. The sparsity pattern in

the matrix A

b. Average sparsity pattern in

the matrix |(eA)k,l| > 10−6

c. The ‘shape’ of the matrix log10 |(eA)k,l|

Lie-group methods 103

tion are far from clear. Having said this, our analysis emphasises a very important
and welcome feature of methods based upon canonical coordinates of the second
kind, applied in conjunction with Chevalley bases: the connection between basis
elements and entries of the matrix is a powerful tool, which we can bring to bear
with pointwise precision upon the exploitation of sparsity.

9. Stability and backward error analysis

How stable are Lie-group methods? A combined wisdom of half-a-century of com-
putational analysis of ODEs is that numerical algorithms for initial-value problems
are to all intents and purposes useless unless they exhibit favourable stability prop-
erties. Indeed, much of the narrative of modern numerical analysis of ODEs is the
tale of stability, linear and nonlinear alike, culminating in a profound understand-
ing of the subject. We refer the reader to the monograph of Stuart and Humphries
(1996) for a comprehensive review of this important subject area.

The word ‘stability’ has been so far conspicuously absent from our exposition.
A partial reason is ignorance: much remains to be done in the realm of stability
investigations in a Lie-group setting. Interesting results abound which cannot yet
be fitted into general theory. Thus, we can learn from computation that merely pro-
jecting a solution into the right manifold often leads to instabilities, while intrinsic
Lie-group methods exhibit much more favourable behaviour. Much of the advance
in stability theory for classical numerical ODEs was concerned with identifying ap-
propriate stability models: broad enough to provide insight about many differential
systems of interest, yet sufficiently focused and narrowly defined to be amenable to
rigorous analysis. Thus, the linear model, the monotone model and the many more
advanced models from (Stuart and Humphries 1996), originating in the theory of
nonlinear dynamical systems. This chapter in the narrative of Lie-group methods
cannot yet be written, except for the observation that some Lie-group solvers, e.g.
RK-MK, Magnus and Fer expansions with exactly-calculated exponentials compute
the solution of linear equations with constant coefficients exactly: in that case there
is no need for stability analysis!

The last few years have seen the emergence of an alternative stability theory,
mainly within the context of symplectic integration of Hamiltonian ODEs and dis-
cretization of dynamical systems. In addition to asking “how near is the numerical
solution to the exact one and how influenced is it by small perturbations?”, the
new breed of stability researchers also poses a different query: “what is it that
our numerical method solves exactly? And how far apart is it from the equation
that we wish to solve?”. This is precisely the question of backward error analysis
that James Hardy Wilkinson made into the centrepiece of modern numerical linear
algebra. Arguably, it is just as relevant in the ODE setting and it has already led
to impressive new insights (Benettin and Giorgilli 1994, Hairer 1994, Hairer and
Lubich 1997, Neishtadt 1984, Reich 1996).

104 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

In this section we report briefly on recent work of Faltinsen (1998), who has
generalised backward error analysis to a Lie-group setting.

Discussion of stability is meaningless without the concept of distance. Thus, given
a Lie group G, we seek d : G×G → R

+ which is consistent with the standard axioms
of a metric in an Euclidean space and, in addition, compatible with the topology
of G. A good way to ensure compatibility is to require that d is left invariant, i.e.
that

d(ZX,ZY) = d(X,Y) X,Y,Z ∈ G. (9.1)

Ideally, we would have liked d to be bi-invariant: satisfying both (9.1) and the
condition d(XZ, Y Z) = d(X,Y) for all X,Y,Z ∈ G. This, however, is not always
possible. On the other hand, according to the Birkhoff–Kakutani theorem, every
Lie group G admits a left-invariant, almost right-invariant metric which, in addition
to (9.1), obeys d(XZ, Y Z) ≤ ρ(Z) d(X,Y), where the function ρ is finite.

Assumption 9.1 The metric d is left-invariant and almost right-invariant.

An example is the geodesic metric in O(N) (which, as a matter of fact, is bi-
invariant): d(X,Y) = ‖η‖2, where the eigenvalues of XTY are σ1, σ2, . . . , σN and
ηk = −iσk, k = 1, 2, . . . , N . (Note that the spectrum of elements in O(N) lives
on the complex unit circle, hence the ηks are real.) Other examples are more
complicated to derive explicitly, but this is of little consequence since we do not
require d in a closed form.

We are concerned with the solution of the Lie-group equation

Y ′ = A(t, Y)Y, t ≥ t0, Y (t0) = Y0 ∈ G, (9.2)

where A : [t0,∞)×G → g, by a Lie-group method. The flow corresponding to (9.2)
is denoted by Ψt,t0,A, therefore Y (t) = Ψt,t0,A(Y0).

Assumption 9.2 The matrix function A is real analytic and there exist constants
α, β, t∗ > 0 such that

‖A(t, Ŷ)Ŷ ‖F ≤ α, t ∈ [0, t∗], Ŷ ∈ Bβ(Y0),

where ‖ · ‖F is the Forbenius norm and Bβ(Y0) = {Ŷ ∈ G : d(Y0, Ŷ) ≤ β}.
We are interested in Lie-group solvers that lift the solution to the corresponding

Lie algebra g, whether once or repeatedely in the course of every time step. All
the methods that we have described in this survey: Crouch–Grossman and Runge–
Kutta–Munthe-Kaas schemes, Magnus, Fer and Cayley expansions and methods
based on canonical coordinates of the second kind fit this framework. An example
of a method that is outside the scope of the theory of this section is projection.
For example, in the case G = O(N) we might time-step from Yn to Yn+1, say with
an arbitrary ODE method which produces a new value Ȳn+1. We subject Ȳn+1 to
a polar decomposition and retain the orthogonal part as our new Yn+1 (Higham

Lie-group methods 105

1997). We hasten to acknowledge that this is a perfectly valid procedure, except
that it is outside the scope of our present discussion.

The map induced by the numerical method will be denoted by Φh,tn,A, hence
Yn+1 = Φh,tn,A(Yn), n ∈ Z

+.

Assumption 9.3 The Lie-group method is accurate to order p ≥ 1, i.e.

d(Ψh,t0,A(Y0),Φh,t0,A(Y0)) = O
(
hp+1

)
.

What is it that Φh,tn,A solves exactly? In linear algebra this is precisely the
question of backward error analysis. Insofar as ODEs are concerned, however, the
situation is slightly more complicated.

Theorem 9.1. (Faltinsen (1998)) Subject to Assumptions 9.1–3, there exists
a matrix function Ah : [t0,∞) × G → g such that

‖Ah(t,X) −A(t,X)‖F = O(hp) (9.3)

and
d(Ψh,t0,Ah

(Y0),Φh,t0,A(Y0)) = O
(
e−γ/h

)
, (9.4)

where γ > 0 is a constant.

Note that Ψh,t0,Ah
evolves on the very same Lie group G and, because of (9.3),

the modified equation Y ′
h = A(t, Yh)Yh ‘approximates’ the ODE (9.2). The above

theorem argues that a single step of the numerical method departs to an exponen-
tially small extent from the exact solution of a nearby equation! It is reminiscent
of similar results in symplectic integration and its method of proof generalises the
work of Reich (1996) to Lie-group setting.

A good approximation across a single step does not tell much. Ideally, we wish to
extend the scope of Theorem 9.1 to [t0,∞) or, at the very least, to a large number
of steps. This, however, requires further conditions. Similarly to backward error
analysis for symplectic integration, the verification of such conditions in a nonlinear
case might be difficult and require bespoke analysis for different methods. Matters
simplify a great deal, though, for linear equations Y ′ = A(t)Y . Suppose that the
exact solution is Y (t) = expm[Θ(t)]Y0, t ≥ t0. Let µ ∈ R be the least real number
such that

‖Ad expmΘB‖F ≤ c eµ(t−t0)‖B‖F, t ≥ t0

for some c > 0 which may depend on Θ. Then (9.4) can be extended to a longer
interval. Specifically, it is true that

d(Ψtm,t0,Ah
(Y0),Φmh,t0,A(Y0)) = O

(
e−γ∗/h

)
,

where γ∗ > 0 and m ≤M(h), where

M(h) =





O(1) , µ > 0,
O(h−p) , µ = 0,
∞, µ < 0.

106 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

a. Forward Euler b. Runge–Kutta–Heun c. Trapezoidal rule

Fig. 9.1. Rigid body equations (7.8), as solved by three different methods with
h = 1

10 , integrating for 100000 steps.

It is possible to prove that g = so(N) implies that the operator Ad expmΘ is itself
skew symmetric and µ = 0. This implies that the scope of backward error analysis
is quite significant at least in this case.

Another interesting phenomenon originally identified in the analysis of Hamilto-
nian problems is linear error growth (Estep and Stuart 1995). Provided that the
exact solution of a Hamiltonian differential system is periodic with period T > 0 and
a pth-order numerical method satisfies convenient requirements (e.g., reversibility
or conservation of Hamiltonian energy), it is possible to prove that

‖ynT/h − y(nT)‖ ≤ cnhp, (9.5)

where c > 0 (for simplicity we assume that T/h is integer). This is a very important
feature of successful long-term integration, since lesser methods typically produce
quadratic error growth and the solution is unlikely to remain periodic for long.

Does (9.5) remain valid in a Lie-group setting? Unfortunately, not always. In a
recent paper, though, Engø and Faltinsen (1999) proved that solving a Lie–Poisson
system with a method that is both a Lie-group action and conserves Hamiltonian
energy results in linear error growth. As an example, let us recall the Euler equa-
tions for a rigid body (7.8). This is a Lie–Poisson system which conserves the
Hamiltonian energy H(y) = 1

2 (m1y
2
1 + m2y

2
2 + m3y

2
3), as well as evolving on the

unit sphere in R
3. Therefore y(t) lives on a circle (an intersection of a sphere and an

ellipsoid), a feature shared by energy-conserving methods based on group actions,
and is periodic there. We have already seen in Figures 7.2 and 7.3 that self-adjoint
methods do well in recovering a periodic solution.

In Figure 9.1 we have integrated the rigid body equations (7.8) with three RK-
MK methods: Forward Euler, Runge–Kutta–Heun and the trapezoidal rule, all
applied in the Lie algebra. Only the latter method conserves energy (Engø and

Lie-group methods 107

Faltinsen 1999). The results have been displayed as point-plots of yn in three
dimensions. First note that all the solution trajectories evolve on the unit sphere:
unsurprising, since we are using Lie-group methods, yet beyond the reach of most
classical algorithms. Secondly, forward Euler is no respecter of periodicity and its
trajectory spirals to a fixed point. Runge–Kutta–Heun is much better, yet more
careful examination demonstrates how the error accumulates and periodicity is
lost. The solution is qualitatively correct for a while, but long integration leads to
false dynamics also in this case. The energy-conserving trapezoidal rule, though,
produces a trajectory which to all intents and purposes is periodic.

10. Implementation, error control and DiffMan

10.1. Implementation and error control of Lie-group solvers

Practical implementation of Lie-group solvers requires much more than merely to
program a numerical method. We must address ourselves to issues like error con-
trol and variable-step implementation. As is perhaps natural in a new subject,
implementation details have received less attention so far than theoretical issues, a
situation that is likely to be remedied in the next few years.

In this section we survey the little that is presently known about implementa-
tional issues, commencing with the welcome observation that variable-step proce-
dure does not interfere with the retention of Lie-group structure. This is important,
since it is known that another important geometric-integration technique, symplec-
tic solution of Hamiltonian systems, loses many of its most favourable features
unless implemented with (essentially) constant step size (Sanz Serna and Calvo
1994).

There are two levels of discretization in Lie-group solvers and each should be
monitored in variable-step implementation and contribute to the estimate of local
error:

1 The error committed in the evaluation of the coordinate map; and
2 The error incurred in the solution of the Lie-algebraic equation.

Insofar as the coordinate map is concerned, the situation is simple. The Cayley
map (6.3) requires an inversion of a matrix. Unless its size is large, this can be
accomplished by direct methods, otherwise it requires iteration. In the first case
the only source of error is roundoff and this issue is well understood by classical
numerical algebra. In the second case the error is determined by the termination
criteria and the issue is, again, transparent. The use of techniques based on coor-
dinates of second kind (6.15) generates roundoff error and nothing else, since each
individual exponential can be evaluated easily in exact arithmetic. Unfortunately,
the situation is different with the most important coordinate map, expm. To date,
there are no efficient means to monitor the error of methods from Section 8. The
last statement refers not just to approximation methods but also to ‘exact’ calcu-
lation of the exponential: it will be seen in Section 11.5 that the Matlab function

108 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

expm is a stumbling block to high-precision long-term integration of some systems.5

It is entirely conceivable that good techniques to monitor the error in expm should
depend on the Lie group in question: intuitively, a compact object like O(N) is
easier to handle than SL(N), say.

Estimation of the error in Lie algebra presents different challenge, more akin to
classical error-control theory for numerical ODEs.

A fair share of quality software for ‘classical’ ODEs is based on multistep methods.
There exist multistep Lie-group solvers (Faltinsen, Marthinsen and Munthe-Kaas
1999), but their implementation requires travelling forwards and backwards between
the group and the algebra in a manner which is, arguably, too cumbersome for the
use of ‘automatic differentiation’ techniques of Gear (1971), the cornerstone of most
multistep ODE software.

In principle, error control of explicit RK-MK can be accomplished in a straight-
forward manner, using embedded Runge–Kutta schemes (Hairer et al. 1993). The
sole difference with the classical framework is that, instead of estimating the error
in the original configuration space, we do so in the algebra. An embedded RK
scheme has the Butcher tableau

c1 a1,1 a1,2 · · · a1,ν

c2 a2,1 a2,2 · · · a2,ν

...
...

...
...

cν aν,1 aν,2 · · · aν,ν

b1 b2 · · · bν
b̄1 b̄2 · · · b̄ν

and the approximants

yn+1 = yn + h

ν∑

l=1

blf l

ȳn+1 = yn + h

ν∑

l=1

b̄lf l

(compare with (3.3)!) are of order p and p̄ ≥ p + 1 respectively. The higher-order
approximant is used for error control, yn+1 − y(tn+1) ≈ yn+1 − ȳn+1. Applying
similar trick in the Lie algebra readily yields an estimate of the local error at
relatively little extra cost for low-order methods. If the order is high, typically the
embedded RK scheme requires increasingly large number of additional stages to
evaluate ȳn+1 and the cost mounts. This is a problem common to high-order RK
methods, also in classical setting.

We have neglected in our discussion of RK-MK one important source of error:

5 In fairness to Matlab, in our experience expm performed better than alternatives.

Lie-group methods 109

in practical applications the dexp−1 operator (2.46) is truncated consistently with
the order of the method, typically replaced with

dexp−1
A (C, p) =

p−1∑

j=0

Bj

j!
adj

AC.

This carries error which we are forbidden to neglect, yet can estimate easily from
the leading term of dexp−1

A C − dexp−1
A (C, p),

|Bq|
q!

‖adq
AC‖, where q =

{
1, p = 1,
2⌊(p+ 1)/2⌋, p ≥ 2.

Much more challenging is error control of Magnus expansions, the subject of
(Iserles, Marthinsen and Nørsett 1999). Again, there are two discretization steps:
truncation by power (4.14) of the Magnus expansion and the replacement of in-
tegrals by quadrature. In the sequel we restrict the discussion to the linear case
Y ′ = A(t)Y .

To estimate the error in the leading truncation term, we commence by assuming
that the leading terms in the expansion of the matrix A are known,

A(t) = C0 + C1t+ C2t
2 + · · · .

The error term in
∫ t

0
Cτ (ξ)dξ can be evaluated from the tree τ in the following

manner. We label each leaf of the tree by few leading terms of the expansion and
prune the tree according to the original composition rules from Section 4.1:

1 If two leaves share a parent, they are excised and the parent is labelled by the
commutator of their labels.

2 If a leaf is the only child of a parent then it is eliminated and its parent is
labelled with the integral of its label.

By the end of this procedure we throw away all the terms except for the leading

110 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

one. An example will clarify this procedure,

r

rQ
Q

�
�

r rQ
Q

�
�

r

rQ
Q

�
�

r

C0

C0+C1t

C0+C1t

C0

⇒ r

rQ
Q

�
�

rQ
Q

�
�

r

rb
b

"
"

C0t

C0t+ 1
2 C1t2 C0+C1t

C0

⇒ r

rQ
Q

�
�

rQ
Q

�
�

r

C0t

1
2 [C0,C1]t

2

C0

⇒ r

rQ
Q

�
�

rQ
Q

�
�C0t

1
6 [C0,C1]t

3 C0

⇒ r

rHHH ���
C0t − 1

6 [C0,[C0,C1]]t
3

⇒ r

− 1
6 [C0,[C0,[C0,C1]]]t

4

⇒ − 1
30 [C0,[C0,[C0,C1]]]t

5.

This procedure has been automated in (Iserles et al. 1999), using a Maple program.

Often it is easy to find derivatives of A explicitly but in general-purpose software
one needs to approximate them by finite differences. The scaled function values
A1, A2, . . . , Aν are a perfectly good starting point for this elementary calculation.
Note that very few derivatives are required, e.g. just C0 and C1 for the power-5
tree in the above example, and the approximants need not be very precise. If we
are using the adjoint basis, we might just as well use (appropriately scaled) h−lBl

in place of Cl−1: the difference between expansions at 0 and 1
2h is subsumed into

higher-order terms.

The computation of quadrature error is more challenging and the results of (Iser-
les et al. 1999) are of a more tentative nature. This is hardly surprising, since
even the estimation of the error of univariate Gauss–Legendre quadrature is diffi-
cult (Davis and Rabinowitz 1984). Indeed, perhaps paradoxically, the univariate
quadrature is the most problematic also in our setting. Of course, we may evalu-
ate each integral by two quadratures, e.g. Gauss–Legendre and Gauss–Lobatto, or
perhaps consecutive Gauss–Legendre rules, but this doubles the cost. The remedy,
proposed in (Iserles et al. 1999), is to use again the derivatives of A: recall that in
many instances they are easy to evaluate explicitly.

Straightforward, yet messy, calculation, expanding everything in sight into Taylor
series in h, demonstrates that the leading error terms in the first four integrals in

Lie-group methods 111

(4.10), using two-point Gauss–Legendre quadrature, are

E1 = − 1
180C4h

5

E2 = −(1
240 [C0, C3] + 1

1080 [C1, C2])h
5,

E3 = 1
1080 ([C0, [C0, C2]] + [C1, [C0, C1]])h

5,

E4 = −(1
270 [C0, [C0, C2]] + 1

720 [C1, [C0, C1]])h
5.

respectively. Note that only E1 depends on the fourth derivative.
A Matlab program incorporating variable time-stepping strategy with above

error estimators for the fourth-order Magnus method has been applied in (Iserles et
al. 1999) to a large number of test problems, in each case behaving predictably and
producing error consistent with the specified tolerance. Yet, much work remains
to be done in this subject area, not just to estimate quadrature error without the
need for higher derivatives, but also to develop the right strategies to the methods
of Blanes et al. (1999) from Section 5.4.

10.2. The DiffMan package

DiffMan (Engø et al. 1999) is an object-oriented Matlab toolbox for solving dif-
ferential equations on manifolds. The package embodies most of the algorithms
discussed in this survey. This software is in the public domain and it can be down-
loaded from the DiffMan home page at

http://www.ii.uib.no/diffman.

Some of the numerical examples of Section 11 are distributed with DiffMan. Since
the package is still in the stage of intensive development, we do not wish to elaborate
excessively upon the details of DiffMan and of its usage. Instead, we refer the
reader to the latest version of the DiffMan user manual, which can be found at the
above-mentioned homepage.

The basic philosophy behind DiffMan is the idea of Coordinate-free numer-
ics (Munthe-Kaas and Haveraaen 1996), a research programme devoted to the
study of the role of abstract formulations, independent of particular representa-
tions, in computational and applied mathematics. We have touched briefly upon
this topic in Section 3, emphasising the importance of using abstractions as a tool
for organising object-oriented software.

The DiffMan package is built upon classes which are modelling continuous math-
ematical structures. There are currently three main types of classes: domains, fields
and flows. Domains consist of Lie algebras, Lie groups and homogeneous manifolds.
Fields are structures built over manifolds. Currently the only fields are vector fields,
but more general tensor fields (and possibly the even more general fibre bundles)
are likely to be included in the future. Numerical algorithms are collected in the
class of flows on manifolds.

112 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

The DiffMan package displays the importance of integrating symbolic and nu-
merical techniques in the same software. For example, a particular Lie algebra
implemented is the free Lie algebra class. It is capable of symbolic computations
which remain valid in any particular finite-dimensional Lie algebra. Hence, numer-
ical algorithms may be developed using this package, and the resulting expressions
may be evaluated later, substituting data from a concrete Lie algebra. Abstract
concepts play a central role, characteristic not just of pure mathematics but also of
modern non-numerical software.

Another important insight that has emerged from this research is the observa-
tion that some numerical algorithms require detailed knowledge of representations
of objects, while others can be completely formulated using general, coordinate-
independent operations. This distinction is most easily seen in the area of solving
linear algebraic equations. For example, Gaussian elimination requires detailed
knowledge of matrices in terms of components (there is a major difference between
sparse and dense Gaussian elimination!), while other algorithms such as conjugate
gradients just require access to matrices via their properties as linear operators.
Algorithms which can be formulated in terms of general, coordinate-independent
operations are much more flexible in their use than algorithms tied to particular
representations. The fact that Runge–Kutta methods can indeed be phrased as
coordinate-free algorithms has many implications that we are only now beginning
to understand.

11. Applications

11.1. The heavy top

Many systems evolving in the physical space can be modelled by motions consisting
of rotations, like the rigid body that we have already encountered in (7.8), or trans-
lations, or combination thereof, in which case we say that the motion is described
by the special Euclidean group SE(3).

The heavy top equations are an important instance in which we make use of SE(3)
action. It differs from the rigid body (7.8) because of the presence of gravity.

The equations of motion can be described in either space or body coordinates. In
this section we briefly discuss both, considering space coordinates first. We denote
by Πs the angular momentum of the heavy top, by Ωs its angular velocity, by Is
the inertia tensor and by λs the unit vector pointing toward the centre of mass of
the heavy top. The equations of motion are

Π′
s = Mglk × λs,

I ′s = [Is,Ωs],

λ′
s = Ωs × λs,

where M is the mass of the top, g = 9.81 is the gravitational constant, l is the
distance from the origin of the space-coordinate system to the centre of mass of

Lie-group methods 113

the heavy top and k is the unit vector along the z-axis. The angular velocity Ωs is
related to the angular momentum Πs by the identity

Ωs = I−1
s Πs.

We refer the reader to (Arnold 1989, Goldstein 1980) for background, theory and
notation.

It is well known that the axis of the top displays a very special motion composed
of a precession about the vertical axis z and nutations, nodding up and down
between two bounding angles θ1 and θ2 as displayed in Figure 11.1 for a top with
initial angular velocity Ωb = [0, 0, 100]T about its figure axis, l =

√
3/2, and mass

M = 20/(gl). The inertia tensor in body coordinates is Ib = diag(1, 1, 1/5) and the
initial position of the axis of the top is rotated at an angle θ = −π/10 with respect
to the z-axis.

Fig. 11.1. Precession and nutations for t ∈ [0, 10] of the axis of a heavy top.

The same motions can be described in body coordinates, in terms of two vectors
Πb and Γb in R

3, the angular momentum and the gravity vector in body coordinates
respectively (Marsden and Ratiu 1994). The equations simplify to

Π′
b = Πb × Ωb +MglΓb × χ,

Γ′
b = Γb × Ωb,

(11.1)

114 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

where χ is the unit vector on the figure axis of the top. Note that in body coordi-
nates the inertia tensor is constant. Also in this case, Ωb = I−1

b Πb. Although the
vector Γb is parallel to the z axis of the space-coordinate system, its motion does
not correspond to the motion of the figure axis λs of the heavy top. To reconstruct
the motion of the axis we integrate the configuration matrix R ∈ SO(3), so that

Ωs = RΩb

and in general the same type of transformation of body coordinates to space co-
ordinates holds for all relevant vectors. The configuration matrix R obeys the
differential equation

R′ = −RΩ̂b. (11.2)

Once the configuration matrix R is known, the position of the axis of the top can
be recovered by means of the transformation

λs = R




0
0
1


 .

In our first experiment, the equations (11.1)-(11.2) have been solved with the Mat-

lab routine ode45 with variable step size and error control. Since in body coordi-
nates the gravity vector Γb rotates very fast, the Matlab routine employs a very
small step size in the integration interval [0, 10], ranging from hmin ≈ 0.5× 10−6 to
hmax ≈ 0.00214. The average value is hmean = 0.0018 and the standard deviation
σ = 1.972 × 10−4. The motion of the axis is quite similar to the one observed
in Figure 11.1. However, when the integration is performed over longer time, the
numerical approximation of λs is not longer on the unit sphere and the amplitude
of precessions shrinks (see Figure 11.2).

The routine ode45 does not preserve much of the geometry of the underlying
problem, and many of the conserved quantities of the problem (Casimirs and first
integrals, see (Marsden and Ratiu 1994)) are not conserved (see Figure 11.3).

To illustrate the advantages of the methods discussed in this article, we solve
numerically the equations of the heavy top (11.1)-(11.2) using the coadjoint action
of SE(3) on the dual of the algebra se(3)∗ (Marsden and Ratiu 1994),

Λ
(
(R,Ωb), (Πb,Γb)

)
= (RΠb + Ωb ×RΓb, RΓb).

Using numerically the coadjoint action implies that all the Casimirs, in this case
the projection of the angular momentum on the gravity axis, Πb ·Γb, and the norm
of the gravity vector ‖Γb‖, are automatically preserved to machine accuracy (Engø
and Faltinsen 1999, Zanna et al. 1999). In Figure 11.4 we plot the processions and
nutations in [0, 100] of the above heavy top, numerically solved with the explicit

Lie-group methods 115

-0.4 -0.2 0 0.2 0.4
-0.4

-0.2

0

0.2

0.4

x

y

Fig. 11.2. Numerical precession and nutations projected on the (x, y)-plane for
t ∈ [0, 100] of the axis of a heavy top. The equations are solved in body

coordinates with the Matlab routine ode45.

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

time

de
pa

rt
ur

e
fr

om
 th

e
un

it
sp

he
re

Fig. 11.3. Departure from unity for ‘unit vector’ along the axis of the top for
t ∈ [0, 100]. The equations are solved in body coordinates with the Matlab

routine ode45.

fourth-order RK-MK method based on the Butcher tableau

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

116 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

(cf. Appendix A), with step size h = 1
100 . We refer to this numerical scheme as

RKMK4.

Fig. 11.4. Numerical precession and nutations projected on the (x, y)-plane for
t ∈ [0, 100] of the axis of a heavy top. The equations are solved in body

coordinates (employing the coadjoint action) with the Lie-group scheme RKMK4.

Comparing Figure 11.4 with Figure 11.2, we observe that the tip of the axis
remains on the unit sphere (with five times as large step size as the average one
used by ode45), as we expected from theory. There is only a very slight variation in
the angles θ1 and θ2, bounding the nutations. This comes as no surprise: Lie-group
type methods perform very well for systems with oscillatory behaviour, as will be
further discussed in Section 11.5. Note that this scheme is neither time-reversible
nor energy preserving. Using self-adjoint schemes, as those discussed in Section 7,
or energy preserving schemes, as those of (Engø and Faltinsen 1999), it is possible
to further improve other geometrical features of the numerical solution.

We remark that for this type of actions, solved by Lie-group schemes based on
canonical coordinates of the first kind, the integrator requires numerous evalua-
tions of exponentials and dexp−1 of 3 × 3 skew-symmetric matrices, which can be
computed exactly and very fast using the formulae described in Appendix B.

11.2. Sturm–Liouville problems

Numerous problems in applied mathematics require the solution of Sturm–Liouville
problems, finding λ so that

Ly = −y′′ + q(t)y = λy, t ∈ (0, α), (11.3)

Lie-group methods 117

with the sufficiently smooth potential q ∈ Cm(0, α) and the boundary conditions

y(0)b0 + y(α)bα = 0, (11.4)

where rank [b0, bα] = 2. Examples range from fluid flow to Schrödinger spectra to
geophysics to NMR imaging and beyond.

It is well known from classical functional analysis that the spectrum σ(L), i.e.
the set of all λ that solve (11.3), is real, countable and accumulates at +∞. Its
computation has attracted significant effort since the very dawn of numerical anal-
ysis and led to an impressive array of methods and software. We refer the reader
to (Pryce 1993) and to references therein.

The problem (11.3) can be always formulated in SL(2),

y′ =

[
0 1

q(t) − λ 0

]
y, t ∈ (0, α), where y =

[
y
y′

]
, (11.5)

and this makes it a ‘natural’ for Lie-group methods. The main idea is to approxi-
mate the fundamental solution of (11.5) by a product of exponentials and impose
the boundary conditions (11.4). This technique has been introduced and thor-
oughly analysed by Moan (1998) and it constitutes a far-fetched generalisation of
Preuss–Fulton methods (Preuss 1973). The outcome is a scalar nonlinear equa-
tion for the spectral parameter λ. For example, suppose that (11.4) simplifies to
y(0) = y(α) = 0 and our approximation to the fundamental solution of (11.5) is

Y (t) = expm

[
a b
c −a

]
. It follows from (8.1) that

Y (t) =

[
coshω + a sinh ω

ω b sinh ω
ω

c sinh ω
ω coshω − a sinh ω

ω

]
, where ω =

√
a2 + bc.

Note that a, b, c, ω are functions of both t and λ. We impose the boundary condi-
tions and the outcome is the equation

b(α, λ)
sinhω(α, λ)

ω(α, λ)
= 0. (11.6)

Suppose for example (and a very trivial example it is!) that Y is the second-order
truncation of the Magnus expansion,

Y (t) = expm

[
0 t∫ t

0
q(ξ)dξ 0

]
.

Therefore (11.6) becomes

α
sin
√
α2λ− α

∫ α

0
q(ξ)dξ

√
α2λ− α

∫ α

0
q(ξ)dξ

= 0

118 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

and the approximate eigenvalues are

λm ≈ m2π2 + α
∫ α

0
q(ξ)dξ

α2
, m ∈ N.

Adding the next term to the Magnus expansion yields a somehow better approxi-
mation,

λm ≈ m2π2 + α
∫ α

0
q(ξ)dξ − 1

4

[∫ α

0
(2ξ − α)q(ξ)dξ

]2

α2
, m ∈ N.

We can continue in this vein, possibly replacing integrals by quadrature, except
that the outcome of this naive approach is very poor. Magnus expansions are an
excellent means to approximate the fundamental solution locally and we can hardly
expect a single exponential to approximate the solution well in the entire interval
(0, α). The situation is further exacerbated when α is large or when (as is the case
in many instances of practical interest) we desire to approximate a large number of
eigenvalues. It is possible to show that ω is a polynomial in λ, of a degree that grows
with the order of the Magnus expansion. Bearing in mind Theorem 4.1, we can
thus hardly expect convergence for large λ. A superior alternative is to partition
the interval into small subintervals, where convergence and adequate precision can
be assured. The details of this procedure are reported in (Moan 1998).

Let us restrict the discussion for the sake of simplicity to a fourth-order method.
Letting

qn,1 = q((n+ 1
2 −

√
3

6)h), qn,2 = q((n+ 1
2 +

√
3

6)h),

where h = α/n∗, we set

Θn(λ) =

[
−

√
3

12 h
2(qn,1 − qn,2) h

1
2h(qn,1 + qn,2) − hλ

√
3

12 h
2(qn,1 − qn,2)

]
, n = 0, 1, . . . , n∗ − 1.

The fourth-order approximant to the solution of (11.5) at α is Y λy(0), where

Y λ = eΘn∗
−1(λ) · · · eΘ1(λ)eΘ0(λ).

To force the boundary conditions y(0) = y(α) = 0, say, we seek λ so that Y λ
1,2 =

0. This nonlinear equation can be solved by Newton–Raphson iteration which,
eigenvalues being simple, converges quadratically near the solution. Moan (1998)
recommends a procedure based on the Newton–Raphson method being applied to
an augmented equation, thereby simplifying the computation of the derivative.

The outcome is a very efficient method for the computation of Sturm–Liouville
problems and it can be easily generalised to more elaborate eigenvalue problems
and boundary conditions. However, if the interval in question is long or a large
number of eigenvalues is desired, efficiency suffers. This is in particular the case if

Lie-group methods 119

high-order Magnus methods are used, since the degree of elements of Θn as poly-
nomials in λ grows. As a matter of fact, the error in a pth-order method grows as
O
(
hp+1λp/2−1

)
. To overcome this phenomenon, which occurs also in other methods

for the computation of Sturm–Liouville problems, Moan (1998) introduced an inter-
esting device which might be relevant to other applications of Lie-group methods.
We observe first that, given matrix values in a self-adjoint basis B0, B1, . . . , Bν−1

(cf. Section 5), it follows at once from (5.7) that only B0 depends upon λ.
Rather than presenting the construction from (Moan 1998), we introduce a con-

ceptually similar idea of Iserles (n.d.). Our point of departure is a decomposition
of the Magnus expansion (4.5) into streamers: partial sums of the form

Hτ [0](t) =
∞∑

k=0

α(τ [k])

∫ t

0

Cτ [k](ξ)dξ,

where

τ [k+1] = r@@ ��
r

r

τ [k]

, k ∈ Z
+. (11.7)

Let τ = τ [0] be in the form (4.8). It is possible to show that

α(τ [k]) =
Bs+k

(s+ k)!
α̂(τ), where α̂(τ) =

s∏

i=1

α(τi)

(cf. (4.9)). Therefore we can write the streamer as

Hτ [0](t) = α̂(τ [0])

∫ t

0

∞∑

k=0

Bs+k

(s+ k)!
adk

R

ξ

0
A(η)dη

Cτ [0](ξ)dξ. (11.8)

We say that a tree is primitive if it cannot be written in the form (11.7). The set
of primitive trees in Fm is denoted by F

p
m, whereby we might replace the truncated

Magnus expansion (4.14) with the Magnus streamer expansion

Ξp(t) =

p−1∑

m=0

∑

τ∈Fp

Hτ (t). (11.9)

Like (4.14), this is a pth-order approximant, except that each tree therein is ac-
companied by an infinitely-long streamer and there is one less level of truncation
in the Magnus expansion (4.5).

Using (11.9) makes sense only if there exists a good method to evaluate the
streamer (11.8) without truncating the expansion. This is the case if the Lie algebra
is of sufficiently small dimension.

Let dim g = d and let C = {C1, C2, . . . , Cd} be a basis of the algebra. Then

120 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

there exists a natural map π : g → R
d defined by

π(B) = θ where B =

d∑

k=1

θkCk.

The action of the ad operator is a linear transformation, thus π(adDB) = CDπ(B),
where CD ∈ gl(d) is a commutator matrix.6 It follows from (11.8) and the definition
of Bernoulli numbers that

π(Hτ (t)) = α̂(τ)

∫ t

0

∞∑

k=s

Bk

k!
C

k−s
D(ξ)π(Cτ (ξ))dξ

= α̂(τ)

∫ t

0

C
−s
D(ξ)

{
CD(ξ)

eCD(ξ) − I
−

s−1∑

k=0

Bk

k!
C

k
D(ξ)

}
π(Cτ (ξ))dξ.

where D(t) =
∫ t

0
A(η)dη. Provided that d is small, typically we can obtain the

commutator matrix and its exponential explicitly. This, together with quadrature,
leads to an explicit formula for the calculation of the streamer that does not require
any truncation of the series.

Similar idea, reported in (Moan 1998), ameliorates the deterioration in accuracy
for large λ. For example, the error of sixth-order Magnus streamer is O

(
h7λ

)
, hence

it behaves like a fourth-order method when h2λ ≈ 1, when the standard sixth-order
Magnus, which carries an error of O

(
h7λ2

)
, reduces to an order-two method.

11.3. Charged particles in a magnetic field

The motion of charged particles moving in a magnetic field was first studied nu-
merically by Carl Størmer (1907) as a part of his work on explaining the origin of
northern light (aurora borealis).

A particle (of unit mass and unit charge) is moving in a magnetic field b according
to the equations

y′(t) = v

v′(t) = b(t,y) × v

where v is the velocity, y is the position and b is the magnetic field. We attempt
to obtain a simpler system by assuming that b = const, neglecting the dependence
of b on space and time. Written in a matrix form, this yields

[
y

v

]′
=

[
0 I

0 b̂

] [
y

v

]
, (11.10)

6 Note that the usual definition of a commutator matrix is as an object in gl(N2) for
g ⊆ gl(N).

Lie-group methods 121

where b̂ is a 3×3 skew symmetric matrix given by the hat map (B.1) in Appendix B.
We compute the bracket of the vector fields in (11.10). Since they are linear, we
find that [[

0 I

0 b̂

]
,

[
0 I

0 d̂

]]
=

[
0 d̂ − b̂

0 b̂×d

]
.

Hence, the vector fields do not form a Lie algebra. The remedy is to enlarge the
family of ‘simple’ equations into

[
y

v

]′
=

[
0 B

0 b̂

] [
y

v

]
=

[
Bv

b×v

]
, (11.11)

where B is a general 3 × 3 matrix. This results in the commutator

[[
0 B

0 b̂

]
,

[
0 C
0 ĉ

]]
=

[
0 Bĉ − Cb̂

0 b̂×c

]

It is worth remarking on the similarity between this bracket and the brackets in
Example 2.8, Example 2.10 and in Section 11.1. These are all special instances
of so-called semidirect product brackets. Semidirect products are one of the most
fundamental ways of constructing Lie algebras and Lie groups from simpler algebras
and groups.

The solution of the simplified equation (11.11) is given in terms of initial condi-
tions y0 and v0 as

[
y(t)
v(t)

]
= expm

[
0 tB

0 tb̂

] [
y0

v0

]
.

Repeated matrix multiplications yield

expm

[
0 B

0 b̂

]
=

[
I Bb̂

−1
(expm(b̂) − I)

0 expm(b̂)

]
,

a formula that can be computed exactly and efficiently using (B.6) and (B.10).
In a numerical experiment we have taken b(t,y) = b(y) as the magnetic dipole

field

b(y) =
3eT

y mey − m

‖y‖3
,

where m = [0, 0, 1]T is the magnetic dipole vector. Figure 11.5 displays the orbit
of a single particle with initial conditions y0 = [0,− 5

2 , 0]T, v0 = 12 · 10−3[0, 0, 1]T.
The time interval is [0, 10000]. The particle is moving back and forth in the van
Allen belt around the Earth. This system is Hamiltonian, the Hamiltonian energy
being H = ‖v‖2. The preservation of H follows also trivially from the observation
that the acceleration is always orthogonal to v.

122 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

Fig. 11.5. Motion of a charged particle in the Earth’s magnetic field.

We wish to compare step sizes in classical integrators and RK-MK-type methods
for this problem. The classical integrator used in the study is the ode45 code of
Matlab, based on DOPRI5(4), an embedded (4,5) pair of Runge–Kutta methods
due to Dormand and Prince. The code uses variable step size control. The RK-MK
method we use is also based on the DOPRI5(4) method and we have employed
the step-size controller of DiffMan. The interval of integration ranged from 0 to
500, corresponding to a motion of the particle from the equator up towards the
north pole, bouncing back once towards the equator. We varied the tolerance of
the step-size controllers and measured the relative error of the answer at the end-
point. For each simulation we have counted the number of steps taken. Table 11.1

Table 11.1. Global error and the number of steps for classical RK and a Lie-group
integrator.

Classical RK RK-MK
Error Number of steps Error Number of steps

7 · 10−3 836 5 · 10−3 104
2 · 10−4 2132 4 · 10−4 142
2 · 10−6 5356 1 · 10−6 353

Lie-group methods 123

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

time

st
ep

si
ze

Fig. 11.6. Time-step selection for RK-MK (upper) and classical RK (lower).

summarises the results. We see that the Lie-group method is much more accurate
than the classical integrator for the same step size. Figure 11.6 displays the time
step selection as a function of time for the two methods for the simulations given
in the first line of Table 11.1. The dip in the middle corresponds to the part of
the trajectory where the particle is bouncing back. Both methods must reduce the
step size in this region, but the classical one does so relatively more than the Lie
group method. Note that, whereas the Lie group integrator preserves ‖v‖ exactly,
the ode45 integrator does so only up to the the order of the method.

We conclude that for this problem, where both commutators and exponentials
can be computed quickly, the total cost of a Lie-group integrator is significantly
less than that of a classical integrator. The time interval of integration is relatively
small in this example: the importance of preserving geometric properties becomes
increasingly more crucial for very long integration intervals.

11.4. Toda-lattice equations

Imagine a regular lattice of N particles, all of unit mass, and assume that each
particle interacts with just its nearest neighbours, subject to an exponential inter-
action potential. The outcome is the Toda lattice, governed by the Hamiltonian
equations of motion

dqk
dt

= pk,

dpk

dt
= eqk−1−qk − eqk−qk+1 ,





k = 1, 2, . . . , N, (11.12)

124 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

where qk and pk are the generalised coordinates and momenta, respectively (Toda
1981), where we have let q0 = −∞, qN+1 = ∞ in the linear case and qN+k =
qk when the particles are arranged in a ring (cf. Figure 11.7). Equation (11.12)
corresponds to the Hamiltonian potential

H(p, q) = 1
2

N∑

k=1

p2
k +

N∑

k=1

(eqk−qk+1 − 1).

It is a special case of a Fermi–Pasta–Ulam (FPU) flow.

s s s s s

a. Linear configuration

s

s s

s

s

�
�

QQ��
L
L

b. Ring configuration

Fig. 11.7. Different Toda-lattice configurations with N = 5.

Letting αk = 1
2e(qk−qk+1)/2, βk = 1

2pk, Flaschka (1974) showed that (11.12) can
be recast in the Lax form

Y ′ = [B(Y), Y], t ≥ 0, Y (0) = Y0, (11.13)

where

Y =




β1 α1 0 · · · αN

α1 β2 α2
. . .

...

0 α2
. . .

. . . 0
...

. . .
. . . βN−1 αN−1

αN · · · 0 αN−1 βN



,

with αN = 0 for linear lattice configuration, and B(Y) = Y+ − Y− ∈ so(N), where
M+ and M− denote the upper-triangular and the lower-triangular portions of the
matrix M , respectively. We immediately identify (11.13) with the isospectral flow
(1.1).

A special case of (11.12) that has elicited much interest is three particles in a
ring. In that case, the linear transformation

p̃ = Tp, q̃ = Tq where T =




√
6

6 −
√

6
3

√
6

6√
2

2 0 −
√

2
2√

3
3

√
3

3

√
3

3


 ,

in tandem with rescaling and elimination of one of the variables by employing the

Lie-group methods 125

linear conservation law p1 +p2 +p3 ≡ const, results in a simplified two-dimensional
Hamiltonian function

H̄(p̄, q̄) = 1
2 (p̄2

1 + p̄2
2) + 1

24 (e2q̄2+2
√

3q̄1 + e2q̄2−2
√

3q̄1 + e−4q̄2) − 1
8 (11.14)

in the new variables p̄, q̄ ∈ R
2 (Zanna 1998).7 The solution now evolves on a

compact submanifold of R
4, more specifically on a 2-torus. Therefore, a Poincaré

section consists of two closed curves and a good numerical scheme should retain
this important property.

The following calculation has been performed in (Zanna 1998) for a variety of
methods which follow a set pattern: First we transform the three-particle lattice
with the initial conditions p = [1, 1, 0]T, q = 0, to the Lax form (11.13). We
then solve the isospectral form with the constant step size h = 1

10 for 104 steps,
transform the variables to (p̄, q̄) and sketch the Poincaré section. The following
methods have been used:

1 The three-stage, third-order explicit Runge–Kutta method with the Butcher
tableau

0
1
2

1
2

1 −1 2

1
6

2
3

1
6

, (11.15)

applied directly to (11.13). Note that this method is not isospectral. The
Poincaré section is displayed in Figure 11.8a and we note at once that, instead
of periodic trajectories, the motion collapses rapidly to a spurious fixed point.

2 The Runge–Kutta method (11.15) applied to the orthogonal flow

Q′ = B(QYnQ
T)Q, t ≥ nh, Q(nh) = I, (11.16)

translating back to (11.13) with Yn+1 = Qn+1YnQ
T
n+1. Note that the numer-

ical approximation Qn+1 ≈ Q((n + 1)h), produced by the method (11.15),
does not evolve on SO(3). Figure 11.8b demonstrates that the solution again
spirals to a fixed point, although less rapidly than in the former case.

3 The former method can be ‘orthogonalised’ by projection, subjecting Qn+1

to polar decomposition and discarding the nonorthogonal part. This can be
further enhanced by subjecting the intermediate stages to polar decomposi-
tions. Relevant Poincaré sections are displayed in Figure 11.9. Evidently, the
behaviour improves, yet the solution goes on spiralling to a spurious fixed
point.

7 One reason why this case is interesting is that truncation of H̄ to cubic terms results
in the famous Hénon–Heiles Hamiltonian, which is known to be nonintegrable (Berry
1987, Toda 1981).

126 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

y

p y

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

y

p y

Fig. 11.8. Three-particle lattice solved by the Runge–Kutta method (11.15),
applied a. directly to the isospectral flow (11.13) (on the left); and b. to the

orthogonal flow (11.16) (on the right).

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

y

p y

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

y

p y

Fig. 11.9. Three-particle lattice solved by the Runge–Kutta method (11.15),
applied to the orthogonal flow (11.16) and with polar decomposition. In the plot

on the left only the final result is projected, while on the right both the final
result and intermediate stages are subjected to this procedure.

4 We solve (11.16) with the RK-MK method, using the Runge–Kutta scheme
(11.15). The Poincaré section for this computation, the first with a ‘proper’
Lie-group method, is displayed in Figure 11.10a. We have not managed to get
rid of the unwelcome spurious convergence to a fixed point, yet the trajectory
spirals significantly slower.

5 Finally, (11.16) is solved with the fourth-order collocated Magnus method
from Section A.3, applied to the orthogonal flow. The outcome is displayed in

Lie-group methods 127

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

y

p y

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

y

p y

Fig. 11.10. Three-particle lattice solved by Lie-group methods: a. The RK-MK
method with the tableau (11.15); and b. fourth-order Magnus collocation from

Section A.3.

Figure 11.10b: the Poincaré section consists of the qualitatively-correct two
closed curves, a section across a 2-torus!

Figures 11.8–10 display consistent gradual improvement. This is not evident at
all from the retention of the Lie-group per se, since the qualitative feature under
examination, invariant tori, is of a different flavour. Yet, it is clear that conservation
of Lie-group structure is advantageous and that purpose-designed Lie-group solvers
hold the edge over projection methods.

Note that invariant tori would have been retained by a symplectic method, ap-
plied directly to the Hamiltonian equations induced by the potential (11.14). This
is hardly a surprise: we have, after all, subjected methods applied in a Lie-group
formalism to a ‘Hamiltonian test’. It is possible to devise a test according to
‘isospectral’ ground rules, e.g. by monitoring global error in Lax-equation coordi-
nates. This has been done in (Calvo, Iserles and Zanna 1999), demonstrating a
marked advantage of isospectral methods (originating in Lie-group solvers) over
symplectic algorithms.

11.5. Highly-oscillatory equations

Highly-oscillatory systems of ODEs feature in many applications and their compu-
tation currently absorbs much of the overall effort devoted to numerical analysis
of ODEs. It is well known that classical solvers performs poorly, and this has
motivated many novel and ingeneous techniques (Petzold, Jay and Jeng 1997).

Past experience indicates that Lie-group methods might be a suitable means to
solve highly-oscillatory systems (Iserles and Nørsett 1999, Iserles et al. 1999). We
commence from an example that has already featured in (Iserles and Nørsett 1999),

128 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

the solution of the Airy equation

y′′ + ty = 0, t ≥ 0, y(0) = 1, y′(0) = 1. (11.17)

The exact solution of (11.17) can be represented as a linear combination of Airy
functions

y(t) = 1
2Γ(2

3)[32/3Ai(−t) + 31/6Bi(−t)], t ≥ 0.

It is easy to prove, e.g. by the WKB technique, that the trajectory is a bounded func-
tion that oscillates like sin t3/2: the frequency increases with time. (Cf. Fig. 11.11.)
This indicates that long-time integration is difficult and this can be confirmed by
endeavouring to solve (11.17) with any popular, general-purpose solver. We have
solved the Airy equation with two Matlab routines, ode113 and ode15s, the first
for nonstiff and the latter for stiff problems. Both routines employ variable-order
methods in tandem with sophisticated error control. Yet, although we have at-
tempted a wide range of possible error tolerances, including the least that the
software would accept (relative tolerance of 2.2 × 10−14), the pointwise error at
t = 100 consistently exceeded 9.42 × 10−6 and 5.43 × 10−4 respectively: very poor
performance, in particular in the case of the stiff solver ode15s.8

We have solved the Airy equation (11.17) with Magnus methods of orders 2,
4 and 6 respectively, taken from (A.9), with the constant step-size sequence h =
1
10 ,

1
20 ,

1
40 ,

1
80 . No attempt has been made to monitor the error or to optimize the

solution. In particular, no advantage has been taken of the fact that (11.17) has
been rendered as an SL(2) equation and, rather than using (8.1), we have computed
the exponential with the Matlab function expm. Figure 11.12 displays the outcome

8 Highly-oscillating ODEs should be never confused with stiff ODEs. Our calculation
merely confirms this.

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

Fig. 11.11. The Airy equation (11.17).

Lie-group methods 129

1 2 3 4

x 10
6

10
−12

10
−10

10
−8

10
−6

10
−4

Magnus 2
Magnus 4
Magnus 6
ode113
ode15s

10
−2

10
−1

10
−12

10
−10

10
−8

10
−6

10
−4

Fig. 11.12. The solution y(t) of the Airy equation (11.17) at t = 100.

of our calculations. The plot on the left compares the absolute error at t = 100
for different values of h on a doubly-logarithmic scale. For comparison purposes
we have included the optimal results for ode113 and ode15s, assigning to them h
equal to the average step size. The plot on the right compares the logarithm of the
absolute error with the number of flops expanded on the solution: a very imprecise
measure, yet a fair reflection of the computational effort.

The main observation is that, unlike the Matlab routines, Magnus methods
perform very well indeed. The deterioration in the accuracy of the sixth-order
method for small step size can be explained by the accumulation of small errors
in the evaluation of the expm function. In principle, we could have replaced it by
the exact formula (8.1), except that, while nominally reducing the number of flops,
this does not enhance the solution because of inexact computation of hyperbolic
functions. In all likelihood, the behaviour in Figure 11.12 is as good as one can
expect with IEEE computer arithmetic.

Another example of a highly-oscillatory ODE is

t2y′′ − ty′ + (1 + t2)y = 0, t ≥ 1, y(1) = J0(1), y′(1) = J0(1) − J1(1), (11.18)

whose solution is y(t) = tJ0(t). Here Jν is a Bessel function of a first kind, whose

130 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

0 0.05 0.1 0.15 0.2 0.25 0.3
10

−10

10
−5

Magnus 2
Magnus 4
Magnus 6
ode113

0 50 100 150 200 250
−15

−10

−5

0

5

10

15

Fig. 11.13. The solution of the Bessel-like equation (11.18).

oscillatory behaviour is well known. Note that we commence integration at t = 1,
to avoid a regular singularity at the origin. The top plot of Figure 11.13 depicts
the exact solution of (11.18). The oscillatory behaviour is evident: as a matter of
fact, it is elementary to prove that the solution behaves like

√
2t/π sin t for t≫ 1.

The bottom plot displays in a logarithtmic scale the maximal error in the interval
[0, 250] in second-order, fourth-order and sixth-order Magnus methods for a range
of different step sizes. For comparison purposes, we have also included the same
data for the Matlab routine ode113 for different tolerances, down to the least
permitted by the software. As in the case of Fig. 11.12, we have assigned to each
such computation an average step size. Note that the step sizes are significantly
larger for Matlab routines, but so is the error! Even though it uses error control,
ode113 appears incapable of driving pointwise accuracy below quite a large treshold.
We note in passing that the constant-step-size Magnus methods were (for the largest
step size, h = 1

10) 244%, 317% and 476% more expensive than ode113, but no

Lie-group methods 131

attempt has been made to optimize the calculations. As in the case of the Airy
equation (11.17), the sixth-order method ‘hits the buffers’ for small step sizes and
it appears that there exists a limit on attainable accuracy, probably caused by
accumulation of roundoff error. Yet, this limit is twice the number of significant
digints attainable by the general-purpose ode113.

The above comparison might appear as unfair to ode113 which, after all, has not
been constructed with highly-oscillatory equations in mind. Such criticism misses
the point altogether. The whole purpose of geometric integration is to take advan-
tage of structure, rather than employing general-purpose methods! Moreover, our
Magnus expansions have been implemented with constant step sizes. There is little
doubt (and much evidence in (Iserles et al. 1999)) that variable-step implementa-
tion of Magnus methods, e.g. with the technique from Section 10.1, would have
improved the odds drastically in their favour. Of course, there are other bespoke
methods for highly-oscillatory systems (Petzold et al. 1997). It is not our claim
that Lie-group methods are superior, since this has never been investigated com-
prehensively. Our aim is more modest, namely to argue that such an investigation
might be very interesting.

What is the explanation for the remarkable performance of Magnus methods (and
other Lie-group methods that we have not implemented in this section) for a highly-
oscillatory problem? Although this issue constitutes an interesting open research
problem, our suspicion is that the conservation of SL(2) structure has absolutely
nothing to do with it. Classical numerical methods invariably employ the ansatz
that locally the solution of an ODE behaves like a polynomial in t. Unfortunately,
polynomials are a very poor means to approximate rapidly-varying and highly-
oscillating functions. We either require minute step size or a very high degree of
a polynomial – and the latter might lead to ill conditioning. All the Lie-group
methods of this paper, however, are based on an entirely different representation
of the solution, as an exponential of a matrix with polynomial entries. Unlike
polynomials, exponentials of matrices with polynomial entries can easily model
exponential change, high oscillation and changes in amplitude and frequency. This
might well be the mechanism explaining the superior performance of Lie-group
methods.

Acknowledgements

The authors wish to thank many of their colleagues and fellow dexperts who have
read portions of this survey as it was taking shape, in particular Krister Åhlander,
Sergio Blanes, Elena Celledoni, Kenth Engø, Stig Faltinsen, Arne Marthinsen, Per
Christian Moan, Ranjiva Munasinghe, Brynjulf Owren and Reinout Quispel. Their
comments and perceptive remarks have contributed to diminish the number of
mistakes, typos and infelicities and to improve the cohesion and the presentation
of this paper.

HMK, SPN and AZ wish to acknowledge the support of Norwegian Research

132 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

Council through the SYNODE II project (127582/410), while AI gratefully ac-
knowledges the support of the Lars Onsager Fund.

REFERENCES

R. Abraham and J. E. Marsden (1978), Foundations of Mechanics, 2nd edn,
Addison-Wesley.

M. Abramowitz and I. A. Stegun (1970), Handbook of Mathematical Functions,
Dover, New York.

V. I. Arnold (1989), Mathematical Methods of Classical Mechanics, Vol. 60 of GTM,
2nd edn, Springer-Verlag.

G. A. Baker (1975), Essentials of Padé Approximants, Academic Press, New York.
G. Benettin and A. Giorgilli (1994), ‘On the Hamiltonian interpolation of near-to-

the-identity symplectic mappings with application to symplectic integration
algorithm’, J. Stat. Phys. 74, 1117–1143.

M. V. Berry (1987), Regular and irregular motion, in Hamiltonian Dynamical Sys-
tems (R. MacKay and J. Meiss, eds), Adam Hilger, Bristol, pp. 27–53.

S. Blanes, F. Casas and J. Ros (1999), Improved high order integrators based
on Magnus expansion, Technical Report NA1999/08, DAMTP, University of
Cambridge.

S. Blanes, F. Casas, J. A. Oteo and J. Ros (1998), ‘Magnus and Fer expansions for
matrix differential equations: The convergence problem’, J. Phys A 31, 259–
268.

N. Bourbaki (1975), Lie Groups and Lie Algebras, Addison-Wesley, Reading, MA.
J. C. Butcher (1963), ‘Coefficients for the study of Runge–Kutta integration pro-

cesses’, J. Austral. Math. Soc. 3, 185–201.
M. P. Calvo, A. Iserles and A. Zanna (1997), ‘Numerical solution of isospectral

flows’, Maths Comput. 66, 1461–1486.
M. P. Calvo, A. Iserles and A. Zanna (1999), ‘Conservative methods for the Toda

lattice equations’, IMA J. Num. Anal. 19, 509–523.
E. Celledoni and A. Iserles (1998), Approximating the exponential from a Lie al-

gebra to a Lie group, Technical Report 1998/NA3, DAMTP, University of
Cambridge. To appear in Maths Comput.

E. Celledoni and A. Iserles (1999), Methods for the approximation of the matrix
exponential in a Lie-algebraic setting, Technical Report 1999/NA3, DAMTP,
University of Cambridge. To appear in IMA J. Num. Anal.

M. T. Chu (1993), On a differential equation dX
dt = [X, k(X)] where k is a Toeplitz

annihilator, Technical report, North Carolina State Univ.
M. T. Chu (1998), ‘Inverse eigenvalue problems’, SIAM Rev. 40, 1–39.
R. Cools (1997), ‘Constructing cubature formulas: the science behind the art’, Acta

Numerica 6, 1–54.
G. Cooper (1987), ‘Stability of Runge–Kutta methods for trajectory problems’,

IMA J. Num. Anal. 7, 1–13.

Lie-group methods 133

P. E. Crouch and R. Grossman (1993), ‘Numerical integration of ordinary differen-
tial equations on manifolds’, J. Nonlinear Sci. 3, 1–33.

P. J. Davis and P. Rabinowitz (1984), Methods of Numerical Integration, 2nd edn,
Academic Press, Orlando, FL.

P. Deift, T. Nanda and C. Tomei (1983), ‘Ordinary differential equations and the
symmetric eigenvalue problem’, SIAM J. Num. Anal. 20, 1–22.

L. Dieci, R. D. Russell and E. S. van Vleck (1994), ‘Unitary integrators and appli-
cations to continuous orthonormalization techniques’, SIAM J. Num. Anal.
31, 261–281.

K. Engø (1998), On the construction of geometric integrators in the RKMK class,
Technical Report No. 158, Dept Comp. Sc., University of Bergen.

K. Engø and S. Faltinsen (1999), Numerical integration of Lie-Poisson systems
while preserving coadjoint orbits and energy, Technical Report No. 179, Dept
Comp. Sc., University of Bergen.

K. Engø, A. Marthinsen and H. Z. Munthe-Kaas (1999), DiffMan — an object
oriented MATLAB toolbox for solving differential equations on manifolds,
Technical Report No. 164, Dept Comp. Sc., University of Bergen.

D. J. Estep and A. M. Stuart (1995), ‘The Rate of Error Growth in Hamiltonian-
Conserving Integrators’, Z. Angew. Math. Phys. 46, 407–418.

S. Faltinsen (1998), Backward error analysis for Lie-group methods, Technical Re-
port 1998/NA12, DAMTP, University of Cambridge.

S. Faltinsen (n.d.), Can Lie-group methods be symplectic?, (to appear).

S. Faltinsen, A. Marthinsen and H. Z. Munthe-Kaas (1999), Multistep methods in-
tegrating ordinary differential equations on manifolds, Technical Report Nu-
merics No. 3/1999, The Norwegian University of Science and Technology,
Trondheim.

F. Fer (1958), ‘Résolution del l‘equation matricielle U̇ = pU par produit infini
d‘exponentielles matricielles’, Bull. Classe des Sci. Acad. Royal Belg. 44, 818–
829.

H. Flaschka (1974), ‘The Toda lattice i’, Phys. Rev. B 9, 1924–1925.

C. W. Gear (1971), Numerical Initial Value Problems in Ordinary Differential
Equations, Prentice-Hall, Englewood Cliffs, N.J.

H. Goldstein (1980), Classical Mechanics, Addison-Wesley, Reading, MA.

G. H. Golub and C. F. Van Loan (1996), Matrix Computations, 3rd edn, Johns
Hopkins University Press, Baltimore.

V. Guillemin and A. Pollack (1974), Differential Topology, Prentice–Hall, Engle-
wood Cliffs.

E. Hairer (1994), Backward analysis of numerical integrators and symplectic
methods, in Scientific Computation and Differential Equations (K. Burrage,
C. Baker, P. van der Houwen, Z. Jackiewicz and P. Sharp, eds), Vol. 1 of An-
nals of Numer. Math., J.C. Baltzer, Amsterdam, pp. 107–132. Proceedings of
the SCADE’93 conference, Auckland, New-Zealand, January 1993.

134 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

E. Hairer and C. Lubich (1997), ‘The life-span of backward error analysis for nu-
merical integrator’, Numer. Math. 76, 441–462.

E. Hairer, S. P. Nørsett and G. Wanner (1993), Solving Ordinary Differential Equa-
tions I: Nonstiff Problems, 2nd revised edn, Springer Verlag, Berlin.

F. Harary (1969), Graph Theory, Addison-Wesley, Reading MA.

F. Hausdorff (1906), ‘Die symbolische Exponentialformel in der Gruppentheorie’,
Berichte der Sächsischen Akademie der Wißenschaften (Math. Phys. Klasse
58, 19–48.

D. J. Higham (1997), ‘Time-stepping and preserving orthonormality’, BIT 37, 24–
36.

M. Hochbruck and C. Lubich (1997), ‘On Krylov subspace approximations to the
matrix exponential operator’, SIAM J. Num. Anal. 34, 1911–1925.

A. Iserles (1984), ‘Solving linear ordinary differential equations by exponentials of
iterated commutators’, Numerische Mathematik 45, 183–199.

A. Iserles (1997), Multistep methods on manifolds, Technical Report 1997/NA13,
DAMTP, University of Cambridge.

A. Iserles (1999a), How large is the exponential of a bounded matrix?, Technical
Report 1999/NA1, DAMTP, University of Cambridge.

A. Iserles (1999b), On Cayley-transform methods for the discretization of Lie-group
equations, Technical Report 1999/NA4, DAMTP, University of Cambridge.

A. Iserles (n.d.), Fast computation of Magnus series, (to appear).

A. Iserles and S. P. Nørsett (1991), Order Stars, Chapman and Hall, London.

A. Iserles and S. P. Nørsett (1999), ‘On the solution of linear differential equations
in Lie groups’, Phil. Trans Royal Society A 357, 983–1020.

A. Iserles and A. Zanna (2000), ‘On the dimension of certain graded Lie algebras
arising in geometric integration of differential equations’, LMS J. Comput. &
Maths 3, 44–75.

A. Iserles, A. Marthinsen and S. P. Nørsett (1999), ‘On the implementation of the
method of Magnus series for linear differential equations’, BIT 39, 281–304.

A. Iserles, S. P. Nørsett and A. F. Rasmussen (1998), Time-symmetry and high-
order Magnus methods, Technical Report 1998/NA06, DAMTP, University of
Cambridge.

G. Julia (1918), ‘Memoire sur l’iteration des fonctions rationalles’, J. Math. 8, 47–
245.

F. Kang and S. Zai-jiu (1995), ‘Volume-preserving algorithmms for source-free dy-
namical systems’, Numerische Mathematik. 71, 451–463.

H. J. Landau (1994), ‘The inverse eigenvalue problem for real symmetric Toeplitz
matrices’, J. Amer. Math. Soc. 7, 749–767.

Y. Liu (1998), Projected Runge–Kutta methods for differential equations on matrix
Lie groups, Technical Report 1998/NA1, DAMTP, University of Cambridge.

W. Magnus (1954), ‘On the exponential solution of differential equations for a linear
operator’, Comm. Pure and Appl. Math VII, 649–673.

Lie-group methods 135

J. E. Marsden and T. S. Ratiu (1994), Introduction to Mechanics and Symmetry,
Springer-Verlag, New York.

R. I. McLachlan, G. R. W. Quispel and N. Robidoux (1998), ‘A unified approach
to Hamiltonian systems, Poisson systems, gradient systems, and systems with
Lyapunov functions and/or first integrals’, Phys. Rev. Letts 81, 2399–2403.

P. C. Moan (1998), Efficient approximation of Sturm–Liouville problems using Lie-
group methods, Technical Report 1998/NA11, DAMTP, University of Cam-
bridge.

P. C. Moan (n.d.), On the convergence of Magnus and Cayley expansions, (to
appear).

C. Moler and C. F. Van Loan (1978), ‘Nineteen dubious ways to compute the
exponential of a matrix’, SIAM Rev. 20, 801–836.

J. Moser (1973), Stable and Random Motion in Dynamical Systems, Princeton
University Press.

H. Munthe-Kaas (1995), ‘Lie-Butcher Theory for Runge-Kutta Methods’, BIT
35, 572–587.

H. Munthe-Kaas (1998), ‘Runge–Kutta methods on Lie groups’, BIT 38, 92–111.
H. Munthe-Kaas (1999), ‘High order Runge–Kutta methods on manifolds’, Applied

Numerical Mathematics 29, 115–127.
H. Munthe-Kaas and M. Haveraaen (1996), ‘Coordinate Free Numerics – Closing

the gap between ‘Pure’ and ‘Applied’ mathematics?’, Proceedings of ICIAM–
95, Zeitschrift fuer Angewandte Mathematik und Mechanik (ZAMM).

H. Munthe-Kaas and E. Lodden (n.d.), Lie group integrators for parabolic PDEs,
(to appear).

H. Munthe-Kaas and B. Owren (1999), ‘Computations in a free Lie algebra’, Phil.
Trans Royal Society A 357, 957–982.

H. Munthe-Kaas and A. Zanna (1997), Numerical integration of differential equa-
tions on homogeneous manifolds, in Foundations of Computational Mathe-
matics (F. Cucker and M. Shub, eds), Springer Verlag, pp. 305–315.

A. I. Neishtadt (1984), ‘The separation of motions in systems with rapidly rotating
phase’, J. Appl. Math. Mech. 48, 133–139.

S. P. Nørsett and G. Wanner (1981), ‘Perturbed collocation and Runge–Kutta
methods’, Numer. Math. 38, 193–208.

P. J. Olver (1995), Equivalence, Invariants, and Symmetry, Cambridge University
Press.

B. Owren and A. Marthinsen (1999a), Integration methods based on canonical
coordinates of the second kind, Technical Report Numerics No. 5/1999, Nor-
wegian University of Science and Technology, Trondheim.

B. Owren and A. Marthinsen (1999b), ‘Runge–Kutta methods adapted to manifolds
and based on rigid frames’, BIT 39, 116–142.

B. Owren and B. Welfert (1996), The Newton iteration on Lie groups, Technical Re-
port Numerics No. 3/1996, Norwegian University of Science and Technology,
Trondheim.

136 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

L. R. Petzold, L. O. Jay and Y. Jeng (1997), ‘Numerical solution of highly oscilla-
tory ordinary differential equations’, Acta Numerica 6, 437–483.

S. Preuss (1973), ‘Solving linear boundary value problems by approximating the
coefficients’, Maths Comp. 27, 551–561.

J. D. Pryce (1993), Numerical Solution of Sturm–Liouville Problems, Oxford Uni-
versity Press, New York.

S. Reich (1996), Backward error analysis for numerical integrators, Technical Re-
port SC 96-21, Konrad-Zuse Zentrum für Informationstechnik Berlin.

J. M. Sanz Serna and M. P. Calvo (1994), Numerical Hamiltonian Problems, Chap-
man & Hall.

C. Størmer (1907), ‘Sur les trajectoires des corpuscules électrisés’, Arch. Sci. Phys.
Nat., Genève 24, 5–18, 113–158, 221–247.

A. M. Stuart and A. R. Humphries (1996), Dynamical Systems and Numerical
Analysis, Cambridge Monographs on Applied and Computational Mathemat-
ics, Cambridge University Press, Cambridge.

M. Toda (1981), Theory of Nonlinear Lattices, Springer Verlag, Berlin.

W. F. Trench (1997), ‘Numerical solution of the inverse eigenvalue problem for real
symmetric Toepliz matrices’, SIAM J. Sci. Comput. 18, 1722–1736.

V. S. Varadarajan (1984), Lie Groups, Lie Algebras, and Their Representations,
GTM 102, Springer-Verlag.

J. Wei and E. Norman (1964), ‘On global representations of the solutions of linear
differential equations as a product of exponentials’, Proc. Amer. Math. Soc.
15, 327–334.

H. Yoshida (1990), ‘Construction of higher order symplectic integrators’, Phys.
Letts A 150, 262–268.

N. J. Zabusky and M. D. Kruskal (1965), ‘Interaction of solitons in a colisionless
plasma and the recurrences of initial states’, Phys. Rev. Letts 15, 240–243.

A. Zanna (1996), The method of iterated commutators for ordinary differential
equations on Lie groups, Technical Report 1996/NA12, DAMTP, University
of Cambridge.

A. Zanna (1998), On the Numerical Solution of Isospectral Flows, PhD thesis,
University of Cambridge, England.

A. Zanna (1999), ‘Collocation and relaxed collocation for the Fer and the Magnus
expansions’, SIAM J. Num. Anal. 36, 1145–1182.

A. Zanna and H. Munthe-Kaas (1997), Iterated commutators, Lie’s reduction
method and ordinary differential equations on matrix Lie groups, in Founda-
tion of Computational Mathematics (F. Cucker and M. Shub, eds), Springer-
Verlag, pp. 434–441.

A. Zanna, K. Engø and H. Z. Munthe-Kaas (1999), Adjoint and selfadjoint Lie-
group methods, Technical Report NA1999/02, DAMTP, University of Cam-
bridge.

Lie-group methods 137

A. List of methods

In this appendix we list few of the methods that have been described in the survey.
No attempt has been expanded to explain the methods, beyond references to the
relevant earlier material.

A.1. RK-MK methods

All classical RK methods can be translated into Lie-group methods. Assume that
the Butcher tableau

c1 a1,1 a1,2 · · · a1,ν

c2 a2,1 a2,2 · · · a2,ν

...
...

...
...

cν aν,1 aν,2 · · · aν,ν

b1 b2 · · · bν

defines a Runge–Kutta method of order p in the classical sense (Hairer et al. 1993)
and that φ is a map from g to G, for instance φ = expm, the exponential mapping,
or φ = cay, the Cayley mapping for quadratic Lie groups. Then the corresponding
order-p RK-MK algorithm for the Lie-group equation Y ′ = A(t, Y)Y is obtained as

Θk =

ν∑

l=1

ak,lFl,

Fk = dφ−1(Θk, Ak, p),

Ak = hA(tn + ckh, φ(Fk)Yn),





k = 1, . . . , ν,

Θ =

ν∑

l=1

blFl,

Yn+1 = φ(Θ)Yn,

(A.1)

for n ∈ N, and it is explicit provided that the underlying RK scheme is explicit.
The function dφ−1(B,C, p) is a truncation of dφ−1

B (C) to order p − 1, which is
usually sufficient for a method of order p, given that the error is subsumed in the
O
(
hp+1

)
term. In some instances, like when g = so(3), the function dφ−1

B (C) can
be evaluated exactly (see Appendix B).

Some popular schemes of the type (A.1) are Lie-group versions of

• forward Euler,

Yn+1 = φ
(
hA(tn, Yn)

)
Yn;

138 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

• the implicit midpoint rule,

F1 = 1
2hA

(
tn + 1

2h, φ(F1)Yn

)
,

Θ = F1,

Yn+1 = φ(Θ)Yn;

• the trapezoidal rule,

F1 = hA
(
tn, Yn

)
,

F2 = hA
(
tn + h, φ(1

2 (F1 + F2))Yn

)
,

Θ = 1
2 (F1 + F2),

Yn+1 = φ(Θ)Yn;

• Heun’s method,

F1 = hA
(
tn, Yn

)
,

F2 = hA
(
tn + 1

2h, φ(1
2F1)Yn

)
,

Θ = F2,

Yn+1 = φ(Θ)Yn.

The scheme (A.1) employs coordinates centred at Yn. Schemes with coordinates
centred at an arbitrary point can be obtained in a similar manner,

Θk = Ch,n +

ν∑

j=1

ak,lFl

Fk = dφ−1(Θk, Ak, p),

Ak = hA(tn + ckh, φ(Fk)φ(Ch,n)−1Yn),





k = 1, . . . , ν,

Ch,n = ϑ(F1, . . . , Fν),

Θ = Ch,n +

ν∑

l=1

blFl,

Yn+1 = φ(Θ)φ(Ch,n)−1Yn

Lie-group methods 139

for n = 0, 1, 2, In particular, for geodesic symmetric coordinates we have

Θk =
ν∑

j=1

(
ai,j − 1

2bl
)
Fl,

Fk = dφ−1(Θk, Ak, p),

Ak = hA(tn + ckh, φ(Fk)φ(Ch,n)−1Yn),





k = 1, . . . , ν,

Ch,n = − 1
2

ν∑

l=1

blFl,

Θ = 1
2

ν∑

l=1

blFl (= −Ch,n),

Yn+1 = φ(Θ)φ(Ch,n)−1Yn,

(A.2)

while flow-symmetric coordinates yield

Θk =

ν∑

j=1

(ai,j − wl)Fl

Fk = dφ−1(Θk, Ak, p),

Ak = hA(tn + ckh, φ(Fk)φ(Ch,n)−1Yn),





k = 1, 2, . . . , ν,

Ch,n = −
ν∑

l=1

wlFl,

Θ =

ν∑

l=1

(bl − wl)Fl,

Yn+1 = φ(Θ)φ(Ch,n)−1Yn,

(A.3)

where the weights wls are obtained integrating the Lagrangian cardinal polynomials,
as in (7.7).

Herewith a number of important examples, originating in familiar classical RK
methods.

• Order-four Gauss–Legendre scheme,

1
2 −

√
3

6
1
4 −

√
3

6
1
4

1
2 +

√
3

6
1
4

1
4 +

√
3

6

bT 1
2

1
2

wT 1
4 +

√
3

8
1
4 −

√
3

8

(A.4)

140 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

• Order-six Gauss–Legendre scheme,

1
2 −

√
15

10
5
36

2
9 −

√
15

15
5
36 −

√
15

30
1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24

1
2 +

√
15

10
5
36 +

√
15

30
2
9 +

√
15

15
5
36

bT 5
18

4
9

5
18

wT 5
36 +

√
15

24
2
9 − 1

24

(A.5)

• Order-four Gauss–Lobatto scheme,

0 0 0 0
1
2

5
24

1
3 − 1

24

1 1
6

2
3

1
6

bT 1
6

2
3

1
6

wT 5
24

1
3 − 1

24

. (A.6)

Note that both in the case of the Gauss–Legendre of order six and Gauss–Lobatto
of order four it is true that Ch,n = −F2, hence Ch,n need not be explicitly evaluated
in (A.3).

Algorithms (A.1–3) are practical for methods of order p ≤ 4, since for higher-
order methods the computation of dφ−1(A,B, p) requires the evaluation of a large
number of commutators. For higher-order schemes it is recommended instead to
use schemes based on graded Lie algebras, along the lines of Section 5.3.

Graded Lie algebras can be also effectively used to optimise existing RK-MK
methods. The scheme

A1 = hA(tn, Yn),

B1 = A1,

A2 = hA
(
tn + c2h, expm(1

2B1)Yn

)
,

B2 = A2 −A1

A3 = hA
(
tn + c3h, expm(1

2B1 + 1
2B2 − 1

8 [B1, B2])Yn

)
,

B3 = A3 −A2,

A4 = hA
(
tn + c4h, expm(B1 +B2 +B3)Yn

)
,

B4 = A4 − 2A2 +A1,

Θ = B1 +B2 + 1
3B3 + 1

6B4 − 1
6 [B1, B2] − 1

12 [B1, B4]

Yn+1 = expm(Θ)Yn,

Lie-group methods 141

based on the Runge–Kutta tableau

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

(A.7)

requires only two commutators instead of six if implemented using (A.1).

A.2. Higher-order methods for linear equations using graded Lie algebras

In this subsection we present methods for linear equations Y ′ = A(t)Y , whereby
the number of commutators is reduced using graded algebras and a further tech-
nique due to Blanes et al. (1999) and described briefly in Section 5.4. We do not
distinguish between RK-MK and Magnus-type methods because, subject to these
reductions, the two methods produce very similar results.

We consider collocation-type schemes. Denote by

VDM(d) = (d j−1
i)ν

i,j=1

the Vandermonde matrix generated by the vector d. In particular,

• set V = VDM(c), cT = (c1, c2, . . . cν) for non-symmetric collocation schemes;
• for symmetric collocation schemes, we take full advantage of symmetry, setting
V = VDM(c − 1

2).

Then,

Ak = hA(tN + ckh),

Bk =

ν∑

l=1

(V −1)k,lAl,





k = 1, 2, . . . , ν,

Θ = dϕ−1(B1, B2, . . . , Bν),

Yn+1 = φ(Θ)Yn,

(A.8)

where dϕ−1 is an order-p truncation to the dφ−1-equation in the graded basis
B1, . . . , Bν . For symmetric collocation schemes, the function dϕ−1 in (A.8) depends
on terms of odd grade only. Specifically, for φ = expm,

• For order-six Gauss–Legendre scheme

dϕ−1(B1, B2, B3) = B1 + 1
12B3 − 1

12 [B1, B2] + 1
240 [B2, B3]

+ 1
360 [B1, [B1, B3]] − 1

240 [B2, [B1, B2]] (A.9)

+ 1
720 [B1, [B1, [B1, B2]]]

142 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

(for order two and order four it suffices to consider the first one and two terms
only, respectively, and the nodes of the corresponding quadrature), which can
be evaluated with just four commutators using the technique of Blanes et al.
(1999),

dϕ−1(B1, B2, B3) ≈ C1 + C2 + C3,

C1 = B1 + 1
12B3

C2 = − 1
12 [B1 + 1

20B3, B2],

C3 = [B1, [B1,
1

360B3 − 1
60C2]] − 1

20 [B2, C2],

producing an order-six time-symmetric truncation of dϕ−1(B1, B2, B3).

• For order-four Gauss–Lobatto scheme (Ehle IIIA),

dϕ−1(B1, B2, B3) = B1 + 1
12B3 − 1

12 [B1, B2].

• For order-six Gauss–Lobatto scheme, with nodes c1 = 0, c2 = 1
2 −

√
5

10 , c3 =
1
2 +

√
5

10 and c4 = 1,

dϕ−1(B1, B2, B3, B4) = B1 + 1
12B3 − 1

12 [B1, B2] − 1
8 [B1, B4] + 1

240 [B2, B3]

+ 1
360 [B1, [B1, B3]] − 1

240 [B2, [B1, B2]]

+ 1
720 [B1, [B1, [B1, B2]]].

which can be evaluated to correct order as

dϕ−1(B1, B2, B3, B4) ≈ C1 + C2 + C3,

C1 = B1 + 1
12B3

C2 = − 1
12 [B1 + 1

20B3, B2 + 3
2B4],

C3 = [B1, [B1,
1

360B3 − 1
60C2]] − 1

20 [B2, C2],

with just four commutators.

It may strike the reader that, after the transformation in the self-adjoint basis {Bi},
the expression of Θ has always the same type of expansion, regardless of the choice
of collocation nodes. This is no surprise, the information about the nodes being
hidden in the basis elements Bi. Changing into the self-adjoint basis implies that
we integrate a Taylor-type expansion, in combination with a truncation of dexp−1,
which is independent of the nodes, depending only on the order of the method.

A.3. Methods using the Magnus expansion

Magnus-type methods are well suited to collocation-type techniques. This results
in implicit schemes for nonlinear Lie-group equations.

Lie-group methods 143

• Order-four Gauss–Legendre:

F1 = 1
4A1 + (1

4 −
√

3
6)A2 + (5

144 −
√

3
48)[A1, A2],

A1 = hA
(
tn + c1h, expm(F1)Yn

)
,

F2 = (1
4 +

√
3

6)A1 + 1
4A2 − (5

144 +
√

3
48)[A1, A2],

A2 = hA
(
tn + c2h, expm(F2)Yn

)

Θ = 1
2 (A1 +A2) −

√
3

12 [A1, A2],

Yn+1 = expm(Θ)Yn,

where ci = 1
2 ±

√
3

6 , i = 1, 2.

• Order-four Gauss–Lobatto:

F1 = O,

A1 = hA(tn, Yn),

F2 = 5
24A1 + 1

3A2 − 1
24A3 − (11

480 [A1, A2] + 5
1152 [A1, A3] + 1

144 [A2, A3]),

A2 = hA
(
tn + 1

2h, expm(F2)Yn

)
,

F3 = 1
6A1 + 2

3A2 + 1
6A3 − (1

15 [A1, A2] + 1
60 [A1, A3] + 1

15 [A2, A3]),

A3 = hA
(
tn + h, expm(F3)Yn

)
,

Θ = 1
6A1 + 2

3A2 + 1
6A3 − (1

15 [A1, A2] + 1
60 [A1, A3] + 1

15 [A2, A3])

Yn+1 = expm(Θ)Yn.

Relaxing the collocation conditions, it is possible to obtain explicit methods.

• An explicit order-three scheme:

A1 = hA(tn, Yn),

A2 = hA
(
tn +

1

2
h, expm(A1)Yn

)
,

A3 = hA
(
tn + h, expm(−A1 + 2A2)Yn

)
,

Θ = 1
6A1 + 2

3A2 + 1
6A3 − [A1 −A3,

1
15A2 + 1

60A3],

Yn+1 = expm(Θ)Yn

A.4. Magnus-type methods with geodesic/flow coordinates

Magnus-type methods introduced in Appendix A.3 employ coordinates at Yn, hence
they cease to be self adjoint for nonlinear problems. Below we describe their self-
adjoint modification.

144 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

• Order-four Gauss–Legendre method based on geodesic coordinates

F1 = 1
4A1 +

(
1
4 −

√
3

6

)
A2 +

(
5

144 −
√

3
24

)
[A1, A2],

A1 = hA
(
tn + c1h, expm(F1 − Ch,n) expm(Ch,n)Yn

)
,

F2 =
(

1
4 +

√
3

6

)
A1 + 1

4A2 −
(

5
144 +

√
3

24

)
[A1, A2],

A2 = hA
(
tn + c2h, expm(F2 − Ch,n) expm(Ch,n)Yn

)
,

Ch,n = 1
4 (A1 +A2) −

√
3

24 [A1, A2],

Θ = 2Ch,n,

Yn+1 = expm(Θ)Yn.

• Order-four Gauss–Legendre methods with flow coordinates

F1 = 1
4A1 +

(
1
4 −

√
3

6

)
A2 +

(
1

288 −
√

3
96

)
[A1, A2],

A1 = hA
(
tn + c1h, expm(F1 − Ch,n) expm(Ch,n)Yn

)
,

F2 =
(

1
4 +

√
3

6

)
A1 + 1

4A2 −
(

1
288 +

√
3

96

)
[A1, A2],

A2 = hA
(
tn + c2h, expm(F2 − Ch,n) expm(Ch,n)Yn

)
,

Ch,n =
(

1
4 +

√
3

8

)
A1 +

(
1
4 −

√
3

8

)
A2 −

√
3

96 [A1, A2],

Θ = 1
2 (A1 +A2) −

√
3

48 [A1, A2],

Yn+1 = expm(Θ − Ch,n) expm(Ch,n)Yn.

Although Magnus-type methods with geodesic/flow coordinates exist for every or-
der p, devising such schemes for nonlinear problems and order greater than four is
hard. For this reason we shall restrict our attention to order-four methods. We let
c1, c2, . . . , cν be the collocation nodes.

• Collocation order-four Magnus method with geodesic coordinates:

Fk =
ν∑

j=1

ai,jAl + 1
2

ν∑

l,j=1

(ak;l,j + 1
2blak,l)[Al, Aj],

Ak = hA(tn + ckh, expm(Fk − Ch,n) expm(Ch,n)Yn),





k = 1, . . . , ν,

Ch,n = 1
2

ν∑

l=1

blAl + 1
4

ν∑

l,j=1

bl,j [Al, Aj],

Θ = 2Ch,n,

Yn+1 = expm(Θ)Yn.

Lie-group methods 145

• Collocation order-four Magnus method with flow coordinates:

Fk =

ν∑

l=1

ak,lAl + 1
2

ν∑

l,j=1

(ak;l,j + wlak,l)[Al, Aj],

Ak = hA(tn + ckh, expm(Fk − Ch,n) expm(Ch,n)Yn),





k = 1, . . . , ν,

Ch,n =
ν∑

l=1

wlAl + 1
2

ν∑

l,j=1

wl,j [Al, Aj],

Θ =

ν∑

l=1

blAl + 1
2

ν∑

l,j=1

(bl,j + wlbj)[Al, Aj],

Yn+1 = expm(Θ − Ch,n) expm(Ch,n)Yn.

In both cases the ak;l,js are evaluated according to (5.15) and the bl,js and
wl,js are evaluated from (5.15) for θ = 1 and θ = 1

2 respectively. The weights
wl are given by (7.7).

To conclude, it should be noted that all Lie-group methods for nonlinear prob-
lems require a number of exponential evaluations in the internal stages. This is
a consequence of the fact that the funtion A(t, Z) may fail to be an element of g
for arguments Z 6∈ G. If A(t, Z) ∈ g for all matrices Z then exponentiations (or,
with greater generality, evaluations of the map φ) in the internal stages may be
disregarded, at the cost of a minor increase of local truncation error. If A(t, Z) ∈ g
only when Z ∈ G, however, disregarding the evaluation of the map φ in the internal
stages would compromise the assurance that the numerical approximation Yn+1 re-
sides in G. However, as observed by Liu (1998), in some cases it is possible to devise
simplified versions of the methods, whereby A(t, Z) is projected on g according to
need. Specifically, setting A = A(t, Z), we note that

P (A) = 1
2 (A−AT)

is a projector onto so(N), the algebra of skew-symmetric matrices,

P (A) = A− δI, δ = 1
N trA,

is a projector onto sl(N), the algebra of matrices with zero trace, and

P (A) = 1
2 (A+ JATJ), J =

[
O I

−I O

]
,

is a projector onto sp(N), the algebra of symplectic matrices. Using these projectors
in the internal stages of Lie-group methods may significantly reduce the number of
evaluations of the map φ.

146 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

B. Fast computation of 3D rotations

Rotations in three dimensions are ubiquitous in computational mechanics, hence it
is important to have fast algorithms for their computation. The Lie algebra so(3)
can be realized either as the set of all skew-symmetric 3×3 matrices with the matrix
commutator as the bracket, or as the Euclidean space R

3 with the vector product as
the bracket. As we will see, some formulae are most easily expressed by representing
so(3) as 3-vectors, while other formulae appear more naturally in terms of skew-
symmetric 3×3 matrices. It is convenient to switch back and forth between these
forms. The Lie algebra isomorphism between these two representations is given by
the hat map,

x̂ =




0 −x3 x2

x3 0 −x1

−x2 x1 0


 (B.1)

mapping x ∈ R
3 into a 3×3 skew-symmetric matrix x̂ such that x̂y = x×y. (Note

that, for clarity sake, we have abandoned our convention of denoting matrices with
upper-case letters.) In particular, the identities

[x̂, ŷ] = x̂ŷ − ŷx̂ = x̂×y, (B.2)

x̂ŷx̂ = −(xTy)x̂, (B.3)

x̂
2
ŷ + ŷx̂

2 = −(xTx)ŷ − (xTy)x̂, (B.4)

x̂
2
ŷ

2 − ŷ
2
x̂

2 = −(xTy)x̂×y (B.5)

are obeyed. For future convenience, we let

θ = ‖x‖ = (xTx)1/2, ϑ =
θ

2
.

Note that since x̂
3 = −θ2x̂, we deduce that for any real analytic function f(z)

we can easily obtain real functions c0(z), c1(z) and c2(z) such that

f(x̂) = c0(θ)I + c1(θ)x̂ + c2(θ)x̂
2.

Interesting examples include

expm(x̂) = I +
sin θ

θ
x̂ +

1

2

sin2 ϑ

ϑ2
x̂

2, (B.6)

(I − x̂)−1 = I +
1

1 + θ2
(x̂ + x̂

2), (B.7)

cay(x̂) =
(
I + 1

2 x̂
) (

I − 1
2 x̂
)−1

(B.8)

= I + cx̂ +
c

2
x̂

2,

where

c ≡ c(θ) =
4

4 + θ2
. (B.9)

Lie-group methods 147

The first of those, (B.6), is well known in literature as the Rodrigues formula for
the exponential mapping (Marsden and Ratiu 1994).

In many instances we need to compute repeatedly expressions in the general form
f(adx)(y) for some function f(x). These expressions in so(3) can be computed fast
in a very similar manner. Since adx(y) = x̂y, it is true that

f(adx)(y) = f(x̂)y,

and we may use the same technique as above to simplify f(x̂).

dexpx =
exp x̂ − I

x̂
= I +

sin2 ϑ

2ϑ2
x̂ +

θ − sin θ

θ3
x̂

2 (B.10)

dexp−1
x =

x̂

exp x̂ − I
= I − 1

2
x̂ − θ cotϑ− 2

2θ2
x̂

2 (B.11)

dcayx =
(
I − 1

2 x̂
)−1 (

I + 1
2 x̂
)−1

= c
(
I + 1

2 x̂
)

(B.12)

dcay−1
x = c

(
I − 1

2 x̂ + 1
4xxT

)
, (B.13)

with c as in (B.9). These formulae are based on the representation of so(3) as
3-vectors, so e.g. (B.12) should read dcayx(y) = c(y + 1

2 x̂y) = c(y + 1
2x×y).

If U = expm(x̂) is an orthogonal matrix, the matrix x̂ can be obtained by means
of the matrix logarithm as

x̂ = logm(U) =
sin−1 ‖y‖

‖y‖ ŷ, ŷ = 1
2 (U − UT). (B.14)

Similarly, we may invert the Cayley map as

x̂ = cay−1(U) = 2

(
1 −

√
1 − ‖y‖2

‖y‖2

)
ŷ, ŷ = 1

2 (U − UT). (B.15)

Also canonical coordinates of the second kind (6.15) can be evaluated explicitly.
Letting

C1 =




0 1 0
−1 0 0

0 0 0


 , C2 =




0 0 1
0 0 0

−1 0 0


 , C3 =




0 0 0
0 0 1
0 −1 0




be a Chevalley basis, we have

expm(x̂) = expm(α1C1) expm(α2C2) expm(α3C3),

where

α1 = − tan−1 x3θ
−1 sin θ + x1x2θ

−2(1 − cos θ)

cos θ + x2
1θ

−2(1 − cos θ)
,

α2 = − sin−1[x2θ
−1 sin θ + x1x3θ

−2(1 − cos θ)],

α3 = − tan−1 x1θ
−1 sin θ + x2x3θ

−2(1 − cos θ)

cos θ + x2
3θ

−2(1 − cos θ)
.

(B.16)

148 A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett & A. Zanna

Different ordering of C1, C2, C3 leads to similar formulae. Note that, to avoid loss
of significant digits for small θ, it is convenient to implement 1 − cos θ, a recurring
factor in (B.16), using an angle-doubling formulae. The outcome,

1 − cos θ = 2 sin2 ϑ,

is more stable when numerical methods are implemented with small step size.

