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1. Introduction

Tools from many areas of mathematics are standard in certain branches of combinatorics

and are described in detail in some of the chapters of this handbook. Examples are the use of

linear and multilinear algebra in the theory of designs and in extremal set theory, the use of finite

groups in coding theory, application of representation theory of the symmetric group for deriving

combinatorial identities, and application of probability theory for obtaining asymptotic existence

proofs of combinatorial structures; the use of convexity and linear programming in combinatorial

optimization, and the use ot topological methods in the study of posets, convex polytopes and

various extremal problems.

The objective of this chapter is to survey some sporadic results from several areas of mathemat-

ics which were used successfully in solving certain combinatorial problems. It is believed that these

results will soon be integrated into the mathematical machinery commonly used in combinatorics.

We fully realize the arbitrariness of any such selection and do not claim that these are the most

important examples that could be listed. We have, however, no doubt that they merit mention in

this chapter.

The combinatorial applications described here apply various tools from several areas of math-

ematics. It is natural to wonder whether the use of all these powerful tools is necessary. After

all, it is reasonable to believe that combinatorial statements can be proved using combinatorial

arguments. Pure combinatorial proofs are desirable, since they might shed more light on the corre-

sponding problems. No such combinatorial proofs are known for any of the main results discussed

in this chapter. It would be nice to try and obtain such proofs.

One of the major consumers of powerful mathematical tools in combinatorics is the area of

explicit constructions. The existence of many combinatorial structures with certain properties

can be established using the probabilistic method. It is natural to ask for an explicit description

of such a structure. Such a construction is particularly valuable when the required structure

is needed for solving a certain algorithmic problem. In sections 2,3 and 4 we describe several

mathematical tools used for explicit constructions. These include the use of group theory for

constructing graphs without short cycles, the use the the theory of representations of Lie groups

for constructing expanders, and the application of certain results from analytic number theory

for constructing pseudo random tournaments. We note that an exact definition of the notion

“explicit” (or “uniform”) construction can be given, but we prefer its intuitive meaning here. In
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sections 5,6,7,8 and 9 we survey some combinatorial applications of results from other mathematical

areas, including real and complex algebraic geometry, algebraic and analytic number theory and

hyperbolic geometry.

2. Group Theory and Graphs with Large Girth

The girth of a graph G is the length of the shortest cycle in G. If G = (V,E) is a d-regular

graph with n nodes and girth g > 2k, then

d ·
(
1 + (d− 1) + . . .+ (d− 1)k−1

)
≤ n ,

since the left-hand side of the last inequality is precisely the number of nodes within distance k

from a given node v of G. Therefore,

g ≤ 2 + 2 log n/ log(d− 1) .

Thus, for any fixed d ≥ 3, the girth of a family of d-regular graphs can grow at most at the rate of

the logarithm of the number of nodes. Erdös, Sachs, Sauer and Walther (cf. Bollobás (1978), pp.

103-110) proved the existence of d-regular graphs with girth g and n nodes, where

(2.1) g ≥ log n/ log(d− 1) .

Although their proof does supply a polynomial time algorithm for constructing such graphs, their

graphs are not really explicit in the sense that it is not clear how to decide efficiently if two vertices

of such a graph are adjacent, given their names.

It seems more difficult to construct explicitly for some fixed d ≥ 3, a family of d-regular graphs

whose girth grows at the rate of the logarithm of the number of nodes. Such a construction was

first given by Margulis (1982), who used Cayley graphs of factor groups of free subgroups of the

modular group. His construction, together with some related results, is outlined below.

Cayley graphs.

Let H be a finite group with a generating set δ satisfying δ = δ−1, 1 /∈ δ. The Cayley graph

G = G(H, δ) is a graph whose nodes are the elements of H in which u and v are adjacent iff u = sv

for some s ∈ δ. Clearly G is |δ| regular and a cycle in G corresponds to a reduced word in the

generators which represents the identity of H. Cayley graphs are fairly obvious candidates for

regular graphs with large girth, since it is not too difficult to see that for every d and g there exists
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a d-regular Cayley graph with girth at least g. This is equivalent to the group theoretical property

of residual finiteness and is proved as follows (see, e.g., Biggs (1985)).

Let T be a finite d-regular tree of radius r with center w, whose edges are properly d-colored.

Define d permutations π1, . . . , πd on the nodes of T by putting πi(u) = v if {u, v} is an edge of T

colored i, and πi(u) = u if u is a leaf of T and the color i is not represented at u. Clearly π1, . . . , πd

are involutions and they generate a group of permutations H. Put δ = {π1, . . . , πd} and consider

the Cayley graph G = G(H, δ). Consider the effect of a reduced word in the πi-s on the central

node w. Initially, each element of the first r elements of the word moves w one step towards the

boundary. To return the image of w to itself another r+ 1 elements are required. Hence, the girth

of G is at least 2r + 1. We note that a more careful analysis will show that the girth of G is, in

fact, at least 4r + 2.

The last construction is explicit but gives a much weaker lower bound for g than the one given

in (2.1). More efficient solutions can be obtained using familiar groups.

The construction of Margulis.

For a commutative ring K with identity, let S`(2,K) denote the group of all two-by-two

matrices over K with determinant 1. Consider the integral matrices A =
[

1 2
0 1

]
and B =

[
1 0
2 1

]
and put δ = {A,B,A−1, B−1}. For a prime p, let fp be a natural homomorphism of S`(2, Z) onto

S`(2, Zp) given by fp(aij) =
(
aij(mod p)

)
. Put Ap = fp(A), Bp = fp(B) and let Gp be the Cayley

graph G
(
S`(2, Zp), fp(δ)

)
.

Theorem 3.1 (Margulis (1982)). Gp has np = p(p2 − 1) nodes and is 4-regular. Its girth gp is at

least 2 logα(p/2)− 1, where α = 1 +
√

2. Hence gp > 0.83 logp / log 3− 3.

Proof: The first statement is trivial. To bound g = gp, we estimate k, defined as the largest

integer such that any two distinct paths in Gp of lengths < k starting at I =
[

1 0
0 1

]
end at different

vertices. Clearly g ≥ 2k − 1. Given two such paths P = (p0, p1, . . . , pr) and Q = (q0, q1, . . . , qt),

starting at p0 = q0 = I and ending at pr = qt, let V = (v1, . . . , vr) and W = (w1, . . . , wt) be

the corresponding reduced words over δp. Clearly v1 · . . . · vr = w1 · . . . · wt. Define vi to be A if

vi = Ap, B if vi = Bp, A−1 if vi = A−1
p and B−1 if vi = B−1

p and define wi analogously. The

crucial fact (cf. e.g., Magnus, Karrass and Solitar (1966)) is that {A,B} generate a free subgroup

of S`(2, Z). Thus v1 · . . . · vr 6= w1 · . . . ·wt and since fp(v1 · . . . · vr) = fp(w1 · . . . ·wt) we conclude

that all elements of the non-zero matrix v1 · . . . · vr − w1 · . . . · wt are divisible by p and hence its

norm is at least p, where here the norm ‖L‖ of a matrix L is sup
x6=0
‖Lx‖/‖x‖. This implies that
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max(‖v1 · . . . · vr‖, ‖w1 · . . . ·wt‖) ≥ p/2, and since the norms of A,B,A−1, B−1 are all α = 1 +
√

2,

as is easily checked, we conclude that αk ≥ αmax(r,s) ≥ p/2 and k ≥ 2 logα(p/2), as needed.

Other constructions.

Modifying the methods of Margulis, Imrich (1984) constructed, for every integer d ≥ 3 infinitely

many d-regular Cayley graphs G whose girth g(G) and number of nodes n(G) satisfy

g(G) > 0.48 logn(G)/ log(d− 1)− 2 .

For d = 3 he obtained

g(G) > 0.9602 logn(G)/ log 2− 5

which is very marginally worse than the bound given in (2.1), produced by non-explicit methods.

The best estimate, for infinitely many degrees, was finally obtained by explicit construc-

tions. Using certain algebraic computations in an appropriate algebra of quaternions, Weiss (1984),

showed that the members of a certain family of bipartite cubic graphs, explicitly constructed by

Biggs and Hoare (1983), have very large girth. The order n and the girth g of each of these graphs

satisfy

g ≥ 4
3

log n/ log 2− 4 .

More generally, Margulis (1984) and, independently, Lubotzky, Phillips and Sarnak (1986,1988),

constructed, for any prime p ≡ 1(mod 4), a family of d = p+ 1 regular raphs G with

g(G) ≥ 4
3

log n(G)/ log(d− 1)− log 4/ log(d− 1) .

Their graphs are Cayley graphs of factor groups of the modular groups, and they have several

other interesting properties. These properties are summarized in Theorem 3.5 in the next section.

Both constructions better the bound given in (2.1) and supply one of the rare examples in which

an explicit construction improves a non-explicit one.

3. Expanders and Superconcentrators

One of the best examples of the use of powerful mathematical tools for explicit constructions

is the construction of expanders. For our purposes here, we call a graph G = (V,E) an (n, d, c)-

expander if it has n nodes, the maximum degree of a node is d, and for every set of nodes W ⊆ V

of cardinality |W | ≤ n/2, the inequality |N(W )| ≥ c · |W | holds, where N(W ) denotes the set of all
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nodes in V \W adjacent to some node in W . We note that the common definition of an expander is

slightly different (see, e.g., Gabber and Galil (1981)), but the difference is not essential. A family

of linear expanders of density d and expansion c is a set {Gi}∞i=1 where Gi is an (ni, d, c)-expander,

ni →∞ and ni+1/ni → 1 as i→∞.

Such a family is the main component of the parallel sorting network of Ajtai, Komlos and

Szemerédi (1983), and in the construction of certain fault tolerant linear arrays. It also forms the

basic building block used in the construction of graphs with special connectivity properties and

small number of edges (see, e.g., Chung (1978)).

An example of a graph of this type is an n-superconcentrator , which is a directed acyclic graph

with n inputs and n outputs such that for every 1 ≤ r ≤ n and every two sets A of r inputs and B

of r outputs there are r vertex disjoint paths from the vertices of A to the vertices of B. A family

of linear superconcentrators of density d is a set {Gn}∞n=1, where Gn is an n-superconcentrator

with ≤
(
d+ o(1)

)
n edges. Superconcentrators, which are the subject of an extensive literature, are

relevant to computer science in several ways. They have been used in the construction of graphs

that are hard to pebble (see, e.g., Paul, Tarjan and Celoni (1977)), in the study of lower bounds

(Valiant (1976)), and in the establishment of time space tradeoffs for computing various functions

(see, e.g., Tompa (1980)).

It is not too difficult to prove the existence of a family of linear expanders (and hence a family

of linear superconcentrators) using probabilistic arguments. This was first done by Pinsker (1973),

(see also Pippenger (1977) and Chung (1978)). However, for applications, an explicit construction

is desirable. Such a construction is much more difficult and was first given in the elegant paper

of Margulis (1973), who used, surprisingly, some results of Kazhdan on group representations, to

construct explicitly a family of linear expanders of density 5 and expansion c, for some c > 0. An

outline of his method is given below. However, Margulis was not able to bound c strictly away from

0. Gabber and Galil (1981) modified Margulis’ construction and were able to give, using Fourier

analysis, an effective estimate for c. Better expanders were found later, by several authors, using

various methods that are discussed briefly at the end of this section.

Eigenvalues and expanders.

There is a close correspondence between the expansion properties of a graph and the eigenvalues

of a certain matrix associated with it. Specifically, let G = (V,E) be a graph and let AG =

(auv)u,v∈V be its adjacency matrix given by auv = 1 if uv ∈ E and auv = 0 otherwise. Put

QG = diag
(

deg(v)
)
v∈V − AG, where deg(v) is the degree of the node v ∈ V , and let λ(G) be the
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second smallest eigenvalue ofQG. The following simple result is proved in Alon-Milman (1984,1985).

The proof uses elementary linear algebra (Rayleigh’s principle). Similar results appear in Tanner

(1984), Jimbo-Maruoka (1985) and Buck (1986).

Theorem 3.1. If G is a graph with n nodes, maximum degree d and λ = λ(G), then G is an

(n, d, c)-expander, where c = 2λ/(d+ 2λ).

Therefore, if λ(G) is large G is a good expander. The converse is also true, though less obvious,

and is given in the following result, which is in some sense the discrete analogue of a theorem of

Cheeger on Riemannian manifolds.

Theorem 3.2 (Alon (1986a)). If G is an (n, d, c)-expander then λ(G) ≥ c2/(4 + 2c2).

These two theorems supply an efficient algorithm to approximate the expanding properties

of a graph and show that it is enough to estimate λ(G) in order to get bounds on the expansion

coefficient of G.

Constructing expanders using Kazhdan’s property (T ).

Definition 3.3. A discrete group H has property (T ) if for every set S of generators of H

there exists an ε > 0 such that for every unitary representation π of H in V = Vπ, that does not

contain the trivial representation, and for every unit vector y ∈ V , there exists an s ∈ S such that∣∣(π(s)y, y
)∣∣ < 1− ε.

Kazhdan (1967) defined Property (T ) for the more general class of locally compact groups.

For our purposes here the definition for discrete groups suffices.

Margulis, in a beautiful paper, used some of Kazhdan’s results on property (T ) to construct

a family of linear expanders. A somewhat simpler proof for the expansion properties of graphs

constructed by a slightly more general construction is given in Alon and Milman (1985). We outline

this construction below. Recall the definition, given in section 2, of a Cayley graph G = G(H, δ),

where H is a finite group and δ is a set of generators of H, δ = δ−1, 1 /∈ δ.

For n ≥ 3, let S`(n,Z) denote the group of all n by n matrices over the integers Z with

determinant 1. There is a well known explicit set Bn of two generators of S`(n,Z) (see, e.g.,

Newman (1972)). Put Sn = Bn ∪ B−1
n , (|Sn| = 4). Let SL(n,Zi) be the group of all n by

n matrices over the ring of integers modulo i with determinant 1, and let φ(n)
i : SL(n,Z) →

SL(n,Zi) be the group homomorphism defined by φ(n)
i

(
(ars)

)
=
(
ars(mod i)

)
. Also define G(n)

i =

G
(
S`(n,Zi), φ

(n)
i (Sn)

)
.
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Theorem 3.4 (Kazhdan(1967)). For each n ≥ 3, S`(n,Z) has property (T ).

It is not too difficult to check that the adjacency matrix A(n)
i of G(n)

i is
∑
s∈Sn

π ◦φ(n)
i (s), where

π is the left regular representation of S`(n,Zi). By Rayleigh’s principle λ(G(n)
i ) is precisely the

minimum of |Sn| − (A(n)
i y, y), where y ranges over all unit vectors in W , which is the space of

all vectors whose coordinates sum is zero. Combining these two facts with Theorem 3.4 and the

fact that π ◦ φ(n)
i is a unitary representation of S`(n,Z) in W , that does not contain the trivial

representation, we conclude that for every fixed n ≥ 3 there is an ε > 0 such that λ(G(n)
i ) ≥ ε for

every i. Hence {G(n)
i }∞i=2 is a family of linear expanders of density 4.

Improved constructions.

Various authors have modified and improved Margulis’ first construction. Angluin (1979)

showed how to construct a family of linear expanders of density 3. Gabber and Galil were the

first to obtain a family of linear expanders with an effective estimate on their expansion coefficient.

This enabled them to construct superconcentrator of density 271.8. Other constructions appeared

in Schmidt (1980), Alon and Milman (1984, 1985), Jimbo and Maruoka (1985) and Buck (1986).

The Jimbo-Maruoka method uses only elementary but rather complicated tools from linear algebra.

The other authors apply either results from group representations or from harmonic analysis. Some

of these constructions supplied better superconcentrators, of densities 261.5 (Chung (1978)), 218

(Jimbo and Maruoka (1985), and 122.7 (Alon, Galil and Milman (1987)).

More recently, Lubotzky, Phillips and Sarnak (1986, 1988) and independently Margulis (1988),

applied some results of Eichler and Igusa on the Ramanujan conjecture and constructed, for every

prime p ≡ 1(mod 4), an infinite family of d = p+1-regular graphs Gn with λ(Gi) ≥ d−2
√
d− 1. It

is not difficult to show (see Alon (1986a) or Lubotsky et al. (1988)), that this is best possible. Let

us describe some of these strong expanders, called Ramanujan Graphs, summarize their properties

and discuss, very briefly, their connection to the Ramanujan conjecture.

Let p and q be unequal primes, both congruent to 1 modulo 4. As usual, denote by PGL(2, Zq)

the factor group of the group of all two by two invertible matrices over GF (q) modulo its normal

subgroup consisting of all scalar matrices. Similarly, denote by PSL(2, Zq) the factor group of

the group of all two by two matrices over GF (q) with determinant 1 modulo its normal subgroup

consisting of the two scalar matrices
(

1 0
0 1

)
and

(
−1 0
0 −1

)
. The graphs we describe are (p+1)-

regular Cayley graphs of PSL(2, Zq) in case p is a quadratic residue modulo q and of PGL(2, Zq)

in case p is a quadratic-nonresidue. A well known theorem of Jacobi asserts that the number of
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ways of representing a positive integer n as a sum of 4 squares is

r1(n) = 8
∑
d|n
4/|d

d .

This easily implies that there are precisely p + 1 vectors a = (a0, a1, a2, a3), where a0 is an odd

positive integer, a1, a2, a3 are even integers and a2
0 + a2

1 + a2
2 + a2

3 = p. Associate each such vector

with the matrix γa in PGL(2, Zq) where γa =
[
a0 + ia1 a2 + ia3

−a2 + ia3 a0 − ia1

]
, and i is an integer satisfying

i2 ≡ −1(mod q). If p is a quadratic residue modulo q, all these matrices lie in the index two

subgroup PSL(2, Zq) of PGL(2, Zq). In this case, let Gp,q denote the Cayley graph of PSL(2, Zq)

with respect to these p+ 1 matrices. If p is a quadratic non-residue modulo q, let Gp,q denote the

Cayley graph of PGL(2, Zq) with respect to the above matrices. The properties of the graphs Gp,q

are summarized in the following theorem, whose detailed proof appears in Lubotzky et al. (1988).

Theorem 3.5.

(i) If p is a quadratic non-residue then Gp,q is a bipartite d = (p + 1)-regular graph with n =

q(q2 − 1) nodes. Its girth is at least 4 logp q − logp 4 and its diameter is at most 2 logp n +

2 logp 2 + 1. The eigenvalues of the adjacency matrix of Gp,q, besides (p+ 1) and −(p+ 1), are

all in absolute value at most 2
√
p. In particular

λ(Gp,q) ≥ p+ 1− 2
√
p = d− 2

√
d− 1 .

(ii) If p is a quadratic residue modulo q then Gp,q is a d = (p+1)-regular graph on n = q(q2−1)/2

nodes. Its girth is at least 2 logp q and its diameter is at most 2 logp n + 2 logp 2 + 1. The

maximum independent set of nodes of Gp,q is of size at most
2
√
p

p+1+2
√
pn and its chromatic

number is at least 1 + p+1
2
√
p . Each eigenvalue of the adjacency matrix of Gp,q, besides p+ 1, is,

in absolute value, at most 2
√
p. Hence λ(Gp,q) ≥ p+ 1− 2

√
p = d− 2

√
d− 1.

Most of the properties of the graphs Gp,q stated above are consequences of their spectral

properties, i.e., the bound on the absolute values of their eigenvalues. These bounds are obtained

by applying results of Eichler and Igusa concerning the Ramanujan conjecture (see Ramanujan

(1916)). Eichler’s proof makes use of Weil’s “Riemann Hypothesis for curves” mentioned in the

next section. These results supply good approximation for the number of ways a positive integer

can be represented as a sum of four squares of a certain type. Specifically, let rq(n) denote the

number of integral solutions of the quadratic equation x2
1 + 4q2x2

2 + 4q2x2
3 + 4q2x2

4 = n. Jacobi’s
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Theorem mentioned above, determines r1(n) precisely. For general q and for n = pk, k ≥ 0, there

is no precise formula but the Ramanujan conjecture (which is known in this case by Eichler and

Igusa’s results) states that for every ε > 0 as k tends to infinity

(3.1) rq(pk) = C(pk) +Oε(p(
1
2 +ε)k) ,

where C(pk), which is the main term, has an explicit known formula. In order to establish the

spectral properties of the graph Gp,q, one obtains an expression for rq(pk) in terms of the eigenvalues

of Gp,q. Comparing this expression with (3.1) the desired bounds for the eigenvalues follow. The

details appear in Lubotzky, Phillips and Sarnak (1988).

The Ramanujan expanders are useful in constructing efficient sorting and fault-tolerant net-

works. In particular, they supply superconcentrators of density 58. Although this is much better

than all the previous constructions it is still worse than the best non-constructive bound, due to

Bassalygo (1981), who showed, using probabilistic arguments, that there are superconcentrators of

density 36.

4. Character Sums and Pseudo-random Graphs

Weil Theorem and Character Sums.

Let f(x, y) be a polynomial of total degree d over the finite field GF (q), with N zeros (x, y)

in GF (q) × GF (q). Suppose f(x, y) is absolutely irreducible, i.e., irreducible over every algebraic

extension of GF (q). The famous theorem of Weil (1948), known as the Riemann hypothesis for

curves over finite fields, states that

|N − q| ≤ 2g
√
q + c1(d) ,

where g ≤
(
d−1

2

)
is the “genus” of the curve f(x, y) = 0, and c1(d) depends only on d.

This highly nontrivial theorem, which was already mentioned in the previous section while

briefly discussing the Ramanujan conjecture, is one of the fundamental results in modern Number

Theory. Weil’s original proof relied heavily on several ideas from Algebraic Geometry. Twenty years

later, Stepanov found a more elementary proof, related to methods in diophantine approximation,

for several special cases. His method was extended by Bombieri and Schmidt who finally obtained

an elementary (but complicated) proof for the general result. A detailed presentation of several

results related to Weil’s Theorem, using the Stepanov method, appear in Schmidt (1976). Weil’s

Theorem implies several sharp estimates for character sums. For our purposes here we state one,

whose proof by the Stepanov method can be found in Schmidt (1976) (see Theorem 2.C’, p. 43).

9



Theorem 4.1. Let χ be a multiplicative character of order m > 1 of GF (q), and suppose f(x)

has d distinct zeros in the algebraic closure of GF (q) and is not an m-th power. Then∣∣∣∣ ∑
x∈GF (q)

χ
(
f(x)

)∣∣∣∣ ≤ (d− 1)q1/2 .

Graham and Spencer (1971) applied this theorem to establish a pseudo-random property of a

properly defined tournament. This is described below.

Schütte’s problem.

A tournament Tn on n nodes is an orientation of the complete graph on n nodes. For two

nodes x, y of Tn, we say that x dominates y if the edge between x and y is directed from x to y.

K. Schutte asked, in 1962, whether for every k > 0 there is a tournament T = Tn(k) such that

for every set S of k nodes of T there is a node y which dominates all elements of S. Erdös (1963)

showed, by probabilistic arguments, that for each k such a Tn(k), with O(k2 · 2k) nodes, exists.

Graham and Spencer (1971) gave an explicit construction of such a tournament, with O(k222k)

nodes. In fact, their construction was not new; these tournaments, known as the quadratic residue

or Paley tournaments, were studied before. The novelty was the application of Theorem 4.1 that

showed that these tournaments have the desired properties.

The construction.

Let q be an odd prime power congruent to 3 modulo 4. Let Tq be a tournament whose nodes

are the elements of the finite field GF (q), and an edge is directed from x to y if and only if x− y

is a square in GF (q). Since −1 is not a square Tq is a well defined tournament.

Theorem 4.2. If q > k2 · 22k−2 then for every set S of k nodes of Tq there is a node y which

dominates all elements of S.

Proof: Let A = {a1, a2, . . . , ak} be a set of k distinct elements of GF (q). Let χ be the quadratic

character on GF (q), i.e., for y ∈ GF (q), χ(y) = 1 if y is a nonzero square in GF (q), χ(y) = −1 if

y is nonsquare, and χ(0) = 0. We must show that there is a y ∈ GF (q)\A such that χ(y − ai) = 1

for 1 ≤ i ≤ k. Define

g(A) =
∑

y∈GF (q)−A

k∏
j=1

(
1 + χ(y − aj)

)
.

Clearly, it is enough to show that g(A) > 0, since in this case there is a y = y0 /∈ A such that
k∏
j=1

(
1 + χ(y − aj)

)
> 0. To show that g(A) > 0, define h(A) by

h(A) =
∑

y∈GF (q)

k∏
j=1

(
1 + χ(y − aj)

)
10



and notice that

(4.1) g(A) = h(A)−
k∑
i=1

k∏
j=1

(
1 + χ(ai − aj)

)
.

Expanding the expression for h(A) we obtain

h(A) =
∑

y∈GF (q)

1 +
∑

y∈GF (q)

k∑
j=1

χ(y − aj) + . . .

+
∑

y∈GF (q)

∑
1≤j1<...jk≤k

χ(y − aj1) · . . . · χ(y − ajk) .

The first two terms here are q and 0, respectively. By Theorem 4.1∣∣∣∣ ∑
y∈GF (q)

∑
j1<...<js

χ(y − aj1) · . . . · χ(y − ajs)
∣∣∣∣ ≤ (ks

)
· (s− 1) · q1/2

and hence

|h(A)− q| ≤ q1/2
k∑
s=2

(
k

s

)
· (s− 1) = q1/2

(
(k − 2)2k−1 + 1

)
.

Thus

h(A) ≥ q −
(
(k − 2)2k−1 + 1

)
q1/2 .

Using (4.1) one can easily check that h(A)− g(A) ≤ 2k−1 and thus, if q > k222k−2, g(A) > 0. This

completes the proof.

The pseudo random properties of Tq.

An easy variation of the last proof shows that the tournament Tq constructed above has the

following property: For every two disjoint sets of nodes A,B of Tq, with |A|+ |B| = k, the number

of nodes y of Tq that dominate all members of A and are dominated by all members of B is

q

2k
+O(k · q1/2 + k · 2k) .

Thus, for say, k < 1
4 log q, this number is very close to (q − k)/2k which is the expected number

of such nodes in a random tournament on q nodes. This easily implies that the number of labeled

subtournaments of Tq isomorphic to any given labeled tournament on k nodes is very close to

n/2(k2). Thus Tq resembles a random tournament on q nodes.

As observed by Bollobás and Thomason (1981), a similar construction supplies undirected

pseudo-random graphs. These are called Paley Graphs. Suppose q is an odd prime power, congruent
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to 1 modulo 4, and let Gq be the graph whose nodes are the elements of GF (q), where x and y are

adjacent if x− y is a square in GF (q). As before, one can show, using Theorem 4.1, that for every

two disjoint sets A,B of nodes, with |A| + |B| = k, k < 1
4 log q, the number of nodes y adjacent

to all elements of A and nonadjacent to every element of B is very close to q/2k. This implies, of

course, that Gq contains all graphs on k vertices as induced subgraphs.

It seems more difficult to construct explicitly large graphs that do not contain some specified

small induced subgraphs. In fact, the best known open problem concerning explicit constructions

is a problem of this type. This is the problem of obtaining constructive lower bounds for the usual

diagonal Ramsey numbers. Specifically, we want to describe explicitly, for every k, a graph with ck

nodes that contains neither a clique of size k, nor a stable set of size k, where c > 1 is a constant,

independent of k. The best known result in this direction is that of Frankl and Wilson (1981), who

constructed such a graph with exp
(
Ω(log2 k/ log log k)

)
nodes. It may be true that for primes q,

the Paley graphs Gq are better examples, but, at present, a proof of this, which would have several

new number-theoretic consequences, seems hopeless.

5. Real Varieties and Sign Patterns of Polynomials

The number of connected components.

In this chapter we describe several combinatorial applications of the known estimates for the

number of connected components of real varieties or semivarieties. Such estimates were obtained

by several authors, and can be found, among other places, in Olěinik and Petrovski (1949), Milnor

(1964), Thom (1965) and Warren (1968). For our purposes all these existing bounds suffice. To be

specific, we state two of them.

Theorem 5.1 (Milnor (1964)). Let V be a real variety in IR`, defined by the solution set of the

real polynomial equations

fi(x1, . . . , x`) = 0 (i = 1, . . . ,m) ,

and suppose the degree of each polynomial fi is at most k. Then the number c(V ) of connected

components of V is at most k · (2k − 1)`−1.

Theorem 5.2 (Warren (1968)). Let P1, . . . , Pm be real polynomials in ` variables, each of degree

k or less. Let V be the set {x ∈ R` : Pi(x) 6= 0 for all 1 ≤ i ≤ m}. Then the number c(V ) of
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connected components of V does not exceed 2(2k)`
∑̀
i=0

2i
(
m
i

)
. In particular, if m ≥ ` ≥ 2 then

c(V ) ≤ (4ekm/`)` .

We note that Theorem 5.1 can be applied to deduce upper bounds for the number of connected

component of the solution set of a system of algebraic inequalities, by expressing such a set as a

projection of a variety in a higher dimension.

Lower bounds for algebraic decision trees.

In an elegant paper, Steel and Yao (1982), applied Milnor’s result stated above to obtain lower

bounds for the height of algebraic decision trees. Their method was modified and extended by Ben-

Or (1983). We outline this method below. Related interesting results appear in Björner, Lovász

and Yao (1992).

For W ⊆ R`, the membership problem for W is the following:

Given x = (x1, . . . , x`) ∈ R`, determine if x ∈W . Thus, for example, the `-element distinctness

problem, which is the problem of deciding whether ` given real numbers are all distinct, is just the

membership problem for

W =

(x1, . . . , x`) ∈ R` :
∏

1≤i<j≤`

(xi − xj) 6= 0

 .

We are interested in algorithms for solving the membership problem forW that allow arithmetic

operations and tests. More formally, an algebraic decision tree is a binary tree T with a rule that

assigns:

(a) To any node v with one son, an operational instruction of the form:

fv = fv1 ◦ fv2 or fv = c ◦ fv1

where vi is an ancestor of v in T , or fvi ∈ {x1, . . . , x`}, ◦ ∈ {+,−,×, /} and c ∈ IR.

(b) To any vertex v with two sons, a test instruction of the form fv1 > 0 or fv1 ≥ 0 or fv1 = 0,

where v1 is an ancestor of v or fv1 ∈ {x1, . . . , x`}.

(c) To any leaf an output Yes or No.

For any input x ∈ IR`, the algorithm traverses a path P (x) in T from the root, where at each

node, the corresponding arithmetic operation is performed or a branching is made according to the

test. When a leaf is reached, the anwser Yes or No to the problem is returned. We note that one

can allow more algebraic operations (like square roots, etc.), but the treatment is similar.
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Theorem 5.3 (Ben Or (1983)). Suppose W ⊆ R`, and let T be an algebraic decision tree that

solves the membership problem for W (i.e., for each x ∈ IR`, P (x) ends in a “Yes” leaf iff x ∈W ).

If h is the height of T then

2h · 3`+h ≥ N ,

where N is the number of connected components of W .

The main tool in the proof of this theorem is Theorem 5.1 stated above. One first observes

that every “Yes” leaf corresponds to a subset of IR` that is a projection of a variety defined by a

system of at most h quadratic equations and inequalities in `+h variables. Using Theorem 5.1 one

can show that such a subset can have at most 3`+h connected components. Each such component

must be contained in some connected component of W , and since the number of leaves of T is at

most 2h, and all components of W must be covered by the “Yes” leaves we have 2h · 3`+h ≥ N .

As an example for applying Theorem 5.3, notice that

W =

(x1, . . . , x`) ∈ IR` :
∏

1≤i<j≤`

(xi − xj) 6= 0


has precisely `! connected components, corresponding to the `! possible order-types of x1, . . . , x`.

Thus, any algebraic decision tree that solves the `-elements distinctness problem has height

Ω(` log `). This is clearly best possible, as the `-element distinctness problem can be solved by

sorting the ` elements and then comparing all pairs of adjacent elements in the sorted order.

Sign patterns of real polynomials.

For further applications of Theorems 5.1 and 5.2, it will be convenient to derive a more com-

binatorial corollary, dealing with sign patterns of real polynomials.

Let Pj = Pj(x1, . . . , x`), (j = 1, . . . ,m) be m real polynomials. For a point c ∈ IR`, the

sign-pattern of the Pj ’s at c is the m-tuple (ε1, . . . , εm) ∈ (−1, 0, 1)m, where εj = sign Pj(c).

Let s(P1, P2, . . . , Pm) denote the total number of sign-patterns of the polynomials P1, P2, . . . , Pm,

as c ranges over all points of R`. Similarly, let s(P1, P2, . . . , Pm) denote the total number of

sign-patterns consisting of vectors with {±1} coordinates. Clearly, s(P1, P2, . . . , Pm) ≤ 3m and

s(P1, P2, . . . , Pm) ≤ 2m. However, one can apply Theorem 5.1 or Theorem 5.2 to bound these

numbers by a function of ` and the degrees of the polynomials P1, P2, . . . , Pm. Indeed, suppose the

degree of each Pi does not exceed k. Put V = {x ∈ R` : Pi(x) 6= 0 for all 1 ≤ i ≤ m}. Clearly

s(P1, . . . , Pm) is bounded above by the number c(V ) of connected components of V . This, together

with Theorem 5.2, gives the following result (for ` ≥ 2. For ` = 1 it is trivial).

14



Proposition 5.4 (Warren (1968)). Let P1, . . . , Pm be m real polynomials in ` real variables,

and suppose the degree of each Pi does not exceed k. If m ≥ ` then s(P1, P2, . . . , Pm) ≤ (4ekm/`)`

It is not too difficult to obtain a similar bound for the total number s(P1, P2, . . . , Pm) of

sign-patterns. Indeed, let C ⊆ R` be a set of cardinality |C| = s(P1, P2, . . . , Pm) representing all

sign-patterns of the polynomials P1, P2, . . . , Pm. Define ε > 0 by

ε =
1
2

min{|Pj(c)| : c ∈ C, 1 ≤ j ≤ m and Pj(c) 6= 0} .

Now put V = {x ∈ R` : Pi(x)− ε 6= 0 and Pi(x) + ε 6= 0 for all 1 ≤ i ≤ m}. Clearly C ⊆ V

and one can easily check that each two distinct points c, c′ ∈ C lie in distinct connected components

of V . Hence s(P1, . . . , Pm) = |C| does not exceed the number of connected components of V . In

view of Theorem 5.2, we conclude.

Proposition 5.5. Let P1, . . . , Pm be m real polynomials in ` real variables, and suppose the degree

of each Pj does not exceed k. If 2m ≥ ` then s(P1, . . . , Pm) ≤ (8ekm/`)`.

A similar estimate can be obtained from Theorem 5.1.

The number of polytopes and configurations.

If (P0, P1, . . . , Pd) is a sequence of d + 1 points in Rd, with Pi = (xi1, . . . , xid) for each i, we

say they have positive orientation, written P0 . . . Pd > 0, if det(xij)0≤i,j≤d > 0 where xi0 = 1

for each i. The conditions P0 . . . Pd < 0 and P0 . . . Pd = 0 are defined similarly. The order type

of a configuration C of n labeled points P1, P2, . . . , Pn in Rd is a function w from the set of all

(d + 1)-subsets of {1, 2, . . . , n} to {0,±1}, where for S = {i0, i1, . . . , id} with 1 ≤ i0 < i1 <

. . . < id ≤ n,w(S) = +1 if Pi0 . . . Pid > 0, w(S) = −1 if Pi0 . . . Pid < 0, and w(S) = 0 if

Pi0 . . . Pid = 0. The configuration is simple if w(S) 6= 0 for every such S. Notice that w(S) is

just sign det(xikj), 0 ≤ k, j ≤ d, where Pik = (xik1, . . . , xikd) and xik0 = 1 for 0 ≤ k ≤ d. The

order type of a configuration C of points is sometimes known as the oriented matroid structure

determined by C. Let t(n, d) denote the number of distinct order types of configurations of n

labeled points in Rd, and let ts(n, d) denote the number of order types of simple configurations

of n labeled points in Rd. Goodman and Pollack (1986) applied Milnor’s Theorem (Theorem

5.1) to show that ts(n, d) ≤ nd(d+1)n. As it is not too difficult to show that for every fixed

d ≥ 2, ts(n, d) ≥ n(1+o(1))d2n, as n tends to infinity, this upper bound is not far from the truth. In

Alon (1986b) it is shown that n(1+o(1))d2n is the correct order of magnitude of both ts(n, d) and

t(n, d). This is, in fact, an immediate consequence of Proposition 5.5, given in the previous section.
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Proposition 5.6. For every fixed d ≥ 2, as n tends to infinity

ts(n, d) ≤ t(n, d) ≤ n(1+o(1))d2n .

Proof.

Obviously t(n, d) is just the number of sign patterns of
(
n
d+1

)
polynomials of degree d in the

dn real variables (xi1, . . . , xid), which are the coordinates of the i-th point, (1 ≤ i ≤ n). The

polynomials are just all the determinants det(xikj), 0 ≤ k, j ≤ d, where xik0 = 1 for all k and

1 ≤ i0 < i1 . . . < id ≤ n. The result now follows from Proposition 5.5.

The same computation shows that for every n and d

ts(n, d) ≤ t(n, d) ≤ 2n
3+O(n2) .

Next we consider the number of combinatorial types of convex polytopes.

Let c(n, d) denote the number of (combinatorial types of) d-polytopes on n labeled vertices

and let cs(n, d) denote the number of simplicial d-polytopes on n labeled vertices. The problem of

determining or estimating these two functions (especially for 3-polytopes) was the subject of much

effort and frustration of nineteenth-century geometers. Although it follows from Tarski’s Theorem

on the decidability of first order sentences in the real field that the problem of computing c(n, d)

is solvable, it seems extremely difficult actually to determine this number even for relatively small

n and d. Both Cayley and Kirkman failed to determine c(n, 3) or cs(n, 3) despite a lot of effort.

Detailed historical surveys of these attempts were given by Brückner and Steinitz (cf. [Grünbaum

(1967), pp. 288-290]), and the asymptotic behaviour of c(n, d) and cs(n, d) is known only for d ≤ 3

or n ≤ d + 3. It is thus pleasing to note, following Goodman and Pollack (1986) and, later, Alon

(1986b) that Proposition 5.5 supplies immediately upper bounds for cs(n, d) and for c(n, d). This

follows from the fact that the order type of a configuration that spans Rd determines which sets of

its points lie on supporting hyperplanes of its convex hull. Hence, the order type of a configuration

on a set of n points in Rd which is the set of vertices of a convex polytope P determines its facets

and its complete combinatorial type. Thus Proposition 5.6 and the paragraph following it imply

the following result.

Proposition 5.7. For every fixed d,

cs(n, d) ≤ c(n, d) ≤ n(1+o(1))d2n .
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Furthermore, the total number of polytopes of any dimension on n points is at most 2n
3+O(n2).

Although this Proposition is an immediate corollary of the known bounds for sign-patterns of

polynomials, it improves considerably the previously best known bound which was nO(nd/2). We

note also that one can show that for every n ≥ 2d

cs(n, d) ≥
(
n− d
d

)nd/4
.

Ranks of sign matrices.

The sign-pattern of an m by n matrix A with nonzero entries (aij)1≤i≤m,1≤j≤n is an m by

n matrix Z(A) = (xij) of 1,−1 entries where zij = sign aij . For an m by n matrix Z of 1,−1

entries, let r(Z) be the minimum possible rank of a matrix A such that Z(A) = Z. Define

r(n,m) = Max{r(z) : Z is an m by n matrix over {1,−1}}. The problem of determining or

estimating r(n,m), and in particular r(n, n), was raised by Paturi and Simon (1984). They observed

that r(n, n) ≥ blog2 nc and raised the question if one can prove a superlogarithmic lower bound

for r(n, n). As shown in their paper, this would supply lower bounds for the maximal possible

unbounded-error probabilistic communication complexity of a Boolean function of 2p bits. This

question is answered in Alon, Frankl and Rödl (1985) where it is shown, in particular, that

n

16
≤ r(n, n) ≤ n

2
+ 3
√
n

and that if m/n2 →∞ and (log2m)/n→ 0 then

r(n,m) =
(

1
2 + o(1)

)
n .

(The bounds here are slightly better than those that actually appear in the above paper.)

The upper bounds are proved by combining some simple geometric, combinatorial and prob-

abilistic arguments. The lower bounds can be deduced, by a simple counting argument, from

Propositions 5.4 and 5.6.

As shown in Alon, Frankl and Rödl (1985), these results imply that the (bounded or unbounded)-

error probabilistic communication complexity of almost every Boolean function on 2p variables is

between p− 4 and p.

Degrees of freedom versus dimension of containment orders.

The dimension of a partially ordered set P is the minimum number of linear extensions whose

intersection is P . Alternatively, it is the smallest k so that the elements of P can be mapped to
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points in IRk so that x ≤ y iff each coordinate of x’s point is less than or equal to the corresponding

coordinate of y’s point.

Let S be a family of sets. We say that a partially ordered set P has an S-containment

representation provided there is a map f : P → S such that x < y iff f(x) ⊂ f(y). In this case we

say that P is an S-order.

For example, circle orders are the containment orders of disks in the plane. Similarly, angle

orders are the containment orders of angles in the plane, where an angle includes its interior.

Note that circles admit three ‘degrees of freedom’: two center coordinates and a radius. An

angle admits four degrees of freedom: the two coordinates of its vertex and the slopes of its rays.

Further, it is known that not all 4-dimensional posets are circle orders not are all 5-dimensional

posets angle orders. These are confirming instances of the following intuitive notion.

If the sets in S admit k degrees of freedom, then not all (k+1)-dimensional posets are S-orders.

Let us briefly show, following Alon and Scheinerman (1988), how the estimates for the number

of sign patterns of real polynomials, supply a precise version of this intuitive principle. We say that

the sets in S have k degrees of freedom provided:

1. Each set in S can be uniquely identified by a k-tuple of real numbers, i.e., there is an injection

f : S → IRk, and

2. There exists a finite list of polynomials p1, p2, . . . , pt in 2k variables with the following property:

If S, T ∈ S map to (x1, . . . , xk), (y1, . . . , yk) ∈ IRk respectively, then the containment S ⊂ T

can be determined based on the signs of the values pj(x1, . . . , xk, y1, . . . , yk) for 1 ≤ j ≤ t.

For example, let us consider disks in the plane. Suppose we have two disks C1 and C2 with

centers and radii given by xi, yi, ri(i = 1, 2). One checks that we have C1 ⊂ C2 iff both the following

hold:
(x1 − x2)2 + (y1 − y2)2 − (r1 − r2)2 ≤ 0

r1 − r2 ≤ 0

Thus the family of circles in the plane admits three degrees of freedom. Similarly, the containment

of one angle in another can be expressed in terms of a finite list of polynomial inequalities.

Theorem 5.8. Let S be a family of sets admitting k degrees of freedom. Then the number of

S-orders on n labeled points is at most

2(1+o(1))kn logn ,

as n tends to infinity.
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Proof:

Let Sn denote the family of S-orders on {1, . . . , n}. For each n-tuple of sets in S, (S1, . . . , Sn)

we have a (potentially) different poset depending on the sign pattern of r = 2
(
n
2

)
t polynomials

in ` = nk variables which have some maximum degree d (which is independent of n). Hence by

Proposition 5.5

|Sn| ≤
[

16ed(n2)t
nk

]nk
= [O(1)n]nk = 2(1+o(1))kn logn .

Denote by P (n, k) the number of posets of dimension at most k on n labeled points {1, 2, . . . , n}.

By a simple construction, one can show that for every fixed k

lim
n→∞

logP (n, k)/(kn log n) = 1 .

This and the previous proposition imply:

Corollary 5.9. Let S be a family of sets admitting k degrees of freedom. Then there exists a

(k + 1)-dimensional poset which is not an S-containment order.

6. The Chevalley-Warning Theorem, Abelian Groups and Regular Graphs

The classical theorem of Chevalley and Warning, that deals with the number of solutions of a

system of polynomials with many variables over a finite field, is the following.

Theorem 6.1 (see e.g., Borevich-Shafarevich (1966) or Schmidt (1976)). For j = 1, 2, . . . , n let

Pj(x1, . . . , xm) be a polynomial of degree rj over a finite field F of characteristic p. If
n∑
j=1

rj < m

then the number N of common zeros of P1, . . . , Pn (in Fn) satisfies

N ≡ 0(mod p) .

In particular, if there is one common zero, then there is another one.

The proof is extremely simple; clearly, if F has q elements then

(6.1) N ≡
∑

x1,...,xm∈F

n∏
j=1

(
1− Pj(x1, . . . , xm)q−1

)
(mod p) .

By expanding the right hand side we get a linear combination of monomials of the form
m∏
i=1

xkii

with
m∑
i=1

ki ≤ (q− 1)
n∑
j=1

rj < (q− 1)m. Hence, in each such monomial there is an i with ki < q− 1.

But then in F = GF (q),
∑
xi∈F

xkii = 0, implying that the contribution of each monomial to the sum

(6.1) is 0(mod p), completing the proof.

In this section we discuss some applications of this theorem to combinatorial problems in

Abelian groups, extremal graph theory and the theory of finite affine spaces.
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Combinatorial problems in Abelian groups.

For a finite abelian group G, define s = s(G) to be the smallest positive integer such that, for

any sequence g1, g2, . . . , gs of (not necessarily distinct) elements of G, there is an φ 6= I ⊂ {1, . . . , s}

such that
∑
{gi : i ∈ I} = 0. The problem of determining s(G) was proposed by H. Davenport in

1966, and is related to the study of the maximal number of prime ideals in the decomposition of an

irreducible integer in an algebraic number field whose class group is G. Olson (1969a) determined,

s(G) for every p-group G = Zpe1 ⊕ . . .⊕ Zper. Clearly

s(G) ≥ 1 +
r∑
i=1

(pei − 1) ,

for let x1, . . . , xr be a basis for G, where xi has order pei , and consider the sequence of length
r∑
i=1

(pei − 1) in which each xi occurs pei − 1 times. No subsequence here has sum 0. Olson gave a

charming proof of the following.

Theorem 6.2. s(Zpe1 ⊕ . . .⊕ Zper) = 1 +
r∑
i=1

(pei − 1).

For the case e1 = . . . = er = 1 this can be easily deduced from the Chevalley-Warning Theorem

as follows. Let g1, g2, . . . , gs be a sequence of elements of G = (Zp)r, where s > r(p − 1) and put

gi = (gi1, gi2, . . . , gir). Consider the following system of r polynomials in s variables over GF (p);

s∑
i=1

gijx
p−1
i = 0 (j = 1, . . . , r) .

Since s > r · (p − 1) and x1 = . . . = xs = 0 is a trivial solution, there is a nontrivial solution

(z1, . . . , zs). Put I = {i : zi 6= 0} and observe that
∑
{gi : i ∈ I} = 0 to complete the proof (for the

case e1 = . . . = er = 1).

The general case can be proved by generalizing the proof of the Chevalley-Warning Theorem.

Olson’s original proof is different and is based on the fact that the ideal of nilpotent elements

in the group-ring of a p-group over Zp is nilpotent. Since this proof is short and elegant, we present

it in full.

Proof of Theorem 6.2.

Let G be the finite abelian p-group with invariants pe1 , pe2 , . . . , per , and let us use multiplicative

notation for G. Let R be the group ring of G over Zp. Suppose k ≥ 1 +
r∑
i=1

(pei − 1) and let

g1, g2, . . . , gk be a sequence of k members of G. We claim that in R

(6.2) (1− g1) · (1− g2) · . . . · (1− gk) = 0 .
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Indeed, let x1, x2, . . . , xr be the standard basis for G, where the order of xi is pei . Since each gj

can be written as a product of the elements xi, a repeated application of the identity 1 − uv =

(1−u)+u(1−v) enables us to express each expression of the form 1−gj as a linear combination (with

coefficients in R) of the elements 1 − xi. Substituting into (6.2) and applying commutativity we

conclude that the left hand side is a linear combination of elements of the form
r∏
i=1

(1−xi)ki , where

r∑
i=1

ki = k >
r∑
i=1

(pei−1). Hence, there is an i with ki ≥ pei and since in R, (1−xi)p
ei = 1−xp

ei

i = 0

this implies that (6.2) holds as claimed.

By interpreting (6.2) combinatorially we conclude that there is some nontrivial subsequence

of g1, . . . , gk that has product 1, since otherwise, the coefficient of 1 in the above product will be

nonzero. Hence s(G) = 1 +
r∑
i=1

(pei − 1), as needed.

We note that if G = C1 ⊕ . . . ⊕ Cr is the direct sum of cyclic groups Ci of orders |Ci| = ci,

where ci|ci+1, then s(G) ≥ 1 +
r∑
i=1

(ci − 1), and this inequality can be strict. Several interesting

generalizations of Olson’s results (including an upper estimate for s
(
(Zn)m)

)
, appear in Baker and

Schmidt (1980) and in van Emde Boas and Kruyswijk (1969). It is, however, not known if the

equality s
(
Zn)m

)
= m(n− 1) + 1 holds for all m and n.

Erdös, Ginzburg and Ziv (1961), showed that for any sequence g1, g2, . . . , g2n−1 of elements

of a finite abelian group of order n, there exists a set I ⊂ {1, . . . , 2n − 1} of n indices such that∑
{gi : i ∈ I} = 0. The first (and main) step of their proof is to prove the above when G = Zp is the

cyclic group of order p, where p is a prime. Although the proof in this case is an easy consequence

of a special case of the Cauchy-Davenport Lemma (see Chapter 20) it is interesting to note that this

fact can also be derived from the Chevalley-Warning Theorem as follows. Consider the following

system of two polynomials in 2p− 1 variables over GF (p):

2p−1∑
i=1

gix
p−1
i = 0

2p−1∑
i=1

xp−1
i = 0 .

Since 2(p − 1) < 2p − 1 and x1 = x2 = . . . = x2p−1 = 0 is a solution, Theorem 6.1 implies

the existence of a nontrivial solution (z1, . . . , z2p−1). Since in GF (p), yp−1 = 1 if y 6= 0 and

0p−1 = 0, I = {i : zi 6= 0} satisfies
∑
{gi : i ∈ I} = 0 and |I| = p, completing the proof.

Notice, also, that the above result also follows from Theorem 6.2 by considering the 2p−1 elements

(g1, 1), (g2, 1), . . . , (g2p−1, 1) in Zp ⊕ Zp.

The following generalization of the Erdös-Ginzburg-Ziv Theorem was proved by Olson (1969b).
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Theorem 6.3. Let H = G⊕K be the direct sum of the abelian groups G and K of orders |G| = n

and |K| = k, where k|n. If h1, h2, . . . , hn+k−1 is a sequence of n+ k − 1 elements of H, then there

is a set φ 6= I ⊂ {1, 2, . . . , n+ k − 1} of indices such that
∑
{hi : i ∈ I} = 0.

This theorem can also be deduced from Theorem 6.1, together with some of the ideas of Olson

(1969b). It implies the previous statement by taking K to be the cyclic group of order n and by

defining hi = gi ⊕ 1 ∈ G⊕K for 1 ≤ i ≤ 2n− 1.

Regular subgraphs of graphs.

As shown by Alon, Friedland and Kalai (1984), one can apply the Chevalley-Warning Theorem

or Olson’s theorem (Theorem 6.2) to prove that certain graphs contain regular subgraphs. A

graph H is q-divisible if q divides the degree of every node of H. Let f(n, q) be the maximum

number of edges of a loopless graph G on n nodes, that contains no nonempty q-divisible subgraph.

Suppose q is a prime power, and let G = (V,E) be a loopless graph with |V | = n nodes and

|E| = m > n · (q − 1) edges. Let a(i)
j be the (j, i)-th entry of the (node, edge)-incidence matrix

of G. The vectors a(i) = (a(i)
1 , . . . , a

(i)
n ), 1 ≤ i ≤ m are elements of (Zq)n, so by Olson’s theorem

(Theorem 6.2) there exists an φ 6= I ⊂ {1, . . . ,m} such that
∑
{a(i)
j : i ∈ I} ≡ 0(mod q) for

1 ≤ j ≤ n. The subgraph H consisting of all edges whose indices lie in I is clearly q divisible.

Hence f(n, q) ≤ n · (q− 1). This estimate can be slightly improved for powers of 2, and a matching

lower bound can be given for all n ≥ 3. Therefore, the following holds.

Theorem 6.4. For every odd prime power q and every n ≥ 3, f(n, q) = (q− 1)n. For every power

of two q and every n ≥ 3, f(n, q) = (q − 1) · n− (q/2).

Similarly, using the results of van Emde Boas and Kruyswijk (1969), one can show that

f(n, k) ≤ c(k) · n for all k and n. The truth, however, might be that f(n, k) ≤ (k − 1) · n for

every n ≥ 3 and every k.

By Theorem 6.4, if q is a prime power and G = (V,E) is a graph with maximum degree at

most 2q− 1 and average degree greater than 2q− 2, then G contains a q-regular subgraph. Indeed,

|E| > (q − 1) · |V | and hence G contains a q-divisible subgraph, which must be q-regular since its

maximum degree is smaller than 2q.

In particular, every loopless 4-regular graph plus an edge contains a 3-regular subgraph. This

is closely related to the well known Berge-Sauer Conjecture, which asserts that every 4-regular

simple graph (i.e., a graph with no loops and no parallel edges) contains a 3-regular subgraph.

This conjecture has been proved by Taškinov (1982). It is, however, false for graphs with parallel

edges, and hence the assumption “plus an edge” in the previous statement cannot be omitted.
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Another consequence of Theorem 6.4, together with several known results in Graph Theory

is that for every k and r that satisfy k ≥ 4r, every loopless k-regular graph contains an r-regular

subgraph. For several sharper results see Alon, Friedland and Kalai (1984).

Erdös and Sauer (see, e.g., Bollobás (1978), p. 399) asked for an estimation of the maximal

number of edges of a simple graph on n nodes that contains no 3-regular subgraph. They conjectured

that this number is o(n1+ε) for any ε > 0. This conjecture has been proved by Pyber (1985), by

applying Theorem 6.4. Pyber showed that any simple graph with n nodes and at least 200n log n

edges contains a subgraph with maximal degree 5 and average degree greater than 4. This subgraph

contains, by the paragraph following Theorem 6.4, a 3-regular subgraph. A similar reasoning shows

that there exists a constant c > 0 such that for every r ≥ 3, every simple graph G with n nodes

and at least c · r2 · n log n edges contains an r-regular subgraph. On the other hand, Pyber, Rödl

and Szemerédi showed, using probabilistic arguments, that there are simple graphs with n-nodes

and Ω(n log log n) edges, that contain no 3-regular subgraphs. Thus the above result is not far from

being best possible.

The blocking number of an affine space.

For a prime power q and k > 0, let AG(k, q) denote the k-dimensional affine space over GF (q).

It is not too difficult to observe that there is always a subset of cardinality k · (q − 1) + 1 that

intersects all hyperplanes. Indeed, the union of any k independent lines through a point intersects

all hyperplanes and has this cardinality.

Theorem 6.5. The minimum cardinality of a subset of AG(k, q) that intersects all hyperplanes is

k · (q − 1) + 1.

This theorem was proved, independently, by Jamison (1977), who gave a rather lengthy proof

for a more general result, and by Brouwer and Schrijver (1978), who obtained an elegant and

short proof. If q = p is a prime, their proof can be shortened even further using the Chevalley-

Warning theorem as follows. Suppose A ⊂ AG(k, p) intersects all hyperplanes. We may assume

that 0 = (0, . . . , 0) ∈ A, and define B = A\{0}. Then B intersects all hyperplanes not through

0, i.e., for every 0 6= (w1, w2, . . . , wk) ∈
(
GF (p)

)k there exists a b = (b1, . . . , bk) ∈ B such that

wibi+ . . .+wkbk = 1. Define F (x1, . . . , xk) =
∏
b∈B

(1−b1x1− . . .−bkxk). Clearly F (w1, . . . , wk) = 0

for all (w1, . . . , wk) 6= 0 and F (0, . . . , 0) = 1. Consider the following polynomial equation in the

k · (p− 1) variables x(i)
1 , . . . , x

(i)
k , 1 ≤ i ≤ p− 1:

p−1∑
i=1

F (x(i)
1 , . . . , x

(i)
k ) = p− 1 .
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Obviously, the only zero of this equation is the trivial solution x(i)
j = 0 for 1 ≤ j ≤ k, 1 ≤ i ≤ p−1.

By the Chevalley-Warning theorem, this implies that the degree of the above polynomial, which is

|B|, is at least as big as the number of variables, which is k · (p − 1). Hence |A| ≥ k · (p − 1) + 1,

as needed.

It is worth noting that neither the proof of Jamison nor the one of Brouwer and Schrijver imply

any estimate for the analogous problem for non-Desarguesian planes.

7. More Polynomials

In the last two sections real polynomials and polynomials over a finite field were used to derive

some combinatorial results. In this section, we describe some further combinatorial problems, were

polynomials and ideals of polynomials are applied for deriving certain characterization results with

combinatorial consequences.

Generators of ideals, graph polynomials and vectors balancing.

For a graph G = (V,E) on the n nodes {1, 2, . . . , n}, define the associated graph polynomial

fG = fG(x1, . . . , xn) by

fG = Π
{

(xi − xj) : ij ∈ E} .

The independence number c(G) (= the maximum size of a stable set of G) is at most k, if and only

if the polynomial fG vanishes whenever k + 1 variables are equal. For 0 ≤ k < n, let I(k + 1, n)

denote the ideal of the ring Z[x1, . . . , xn] consisting of all polynomials which vanish whenever k+ 1

variables are equal. Hence, fG ∈ I(k + 1, n) if and only if c(G) ≤ k. Li and Li (1981), proved

the following “Nullstellensatz”-type result, which supplies a set of generators of I(k + 1, n). In

view of the preceding remark, this theorem supplies a characterization (though, maybe, not a very

convenient one) for all graphs G whose independence number is at most k.

Theorem 7.1. Put V = {1, 2, . . . , n} and let C denote the set of all graphs H on V , that consist

of k node-disjoint complete graphs whose cardinalities are as equal as possible. Then {fH : H ∈ C}

is a set of generators of I(k+ 1, n). In particular, a graph G has an independence number at most

k, if and only if there are polynomials {gH : H ∈ C) such that fG =
∑
{gH · fH : H ∈ C}.

Kleitman and Lovász proved a similar result for graphs whose chromatic number is at least k.

They showed that a graph G has a chromatic number at least k if and only if fG belongs to the

ideal generated by the polynomials of complete graphs of k nodes from V . Another result of this
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type appears in Alon and Tarsi (1992); the chromatic number of G is at least k if and only if fG

lies in the ideal generated by the polynomials xk−1
i − 1.

It is worth noting that, as is well known, the decision problem “Given a graph G and an integer

k, is the independence number of G at most k?” as well as the corresponding problem of coloring,

are both coNP-complete, and hence it is not reasonable to expect to find a completely satisfactory

characterization of the corresponding sets of graphs.

Li and Li (1981) show how to apply Theorem 7.1 to deduce Turan’s theorem, which states

that the minimum possible number of edges of a graph G on n nodes, whose independence number

is at most k, is the number of edges of a node disjoint union of k complete graphs of total order

n, whose cardinalities are as equal as possible. Indeed, since fG belongs to the ideal I(k + 1, n)

which is generated by the graph polynomials {fH : H ∈ C}, the degree of fG, which is precisely

the number of its edges, is at least the minimum degree of a generator fH . Here all generators have

the same degree and Turan’s theorem follows.

Another combinatorial result whose proof is related to Hilbert‘s Nullstellensatz deals with the

problem of balancing sets of vectors. For an even integer n, let K(n) denote the minimum k for

which there exist ±1 vectors v1, v2, . . . , vk of dimension n such that for any ±1 vector w of dimension

n, there is an i, 1 ≤ i ≤ k, such that vi ·w = 0, i.e., vi is orthogonal to w. Motivated by a problem

in data communication, Knuth showed that K(n) ≤ n by the following simple construction. For

0 ≤ i ≤ n, let vi be a vector of i −1 entries followed by n − i 1 entries. We claim that for any

±1 vector w of dimension n, w · vi = 0 for some 1 ≤ i ≤ n. To see this, note that w · v0 = −w · vn
while w · vi = w · vi+1 ± 2 for each i < n. Since w · vj ≡ 0(mod 2) for all i, an obvious “discrete

intermediate value” theorem implies that w · vi = 0 for some i, 1 ≤ i ≤ n, as claimed.

As shown by Alon, Bergmann, Coppersmith and Odlyzko (1988), this construction is optimal,

i.e., K(n) = n for all even n. Let us sketch the proof of the lower bound. For simplicity, we consider

only the case n ≡ 0(mod 4). Let U be the set of all ±1 vectors of dimension n. A vector u ∈ U

is even if it has an even number of −1 entries, otherwise it is odd. Let V ⊂ U be a set of vectors

such that for every u ∈ U there is a v ∈ V with v · u = 0. We must show that |V | ≥ n. Let V0 be

the set of all even vectors of V and let V1 be the set of all odd vectors of V . Consider the following

polynomial in y = (y1, . . . , yn):

P (y) =
∏
v∈V0

(v · y) .

Since n ≡ 0(mod 4), v1 · v2 ≡ 0(mod 2) for all v1, v2 ∈ U . Also, one can easily check that for every

v1, v2 ∈ U , v1 · v2 = 0(mod 4) if and only if both v1 and v2 are even or both are odd. Otherwise
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v1 · v2 ≡ 2(mod 4). Therefore, for every even y ∈ U , P (y) = 0, whereas for every odd y ∈ U ,

P (y) 6= 0. Hence P (y) vanishes on the zero set of the ideal generated by y2
1 − 1, y2

2 − 1, . . . , y2
n −

1, y1y2 · . . . · yn − 1. By Hilbert’s Nullstellensatz a power of P belongs to this ideal. It is not

too difficult (but a little tedious) to show that this implies that if the degree of P is less than

n/2 then it vanishes identically, contradicting the fact that P (y) 6= 0 for every odd y ∈ U . Thus

degP = |V0| ≥ n/2. Similarly |V1| ≥ n/2 and hence |V | ≥ n, completing the proof that k(n) = n.

A more elementary proof of a somewhat more general result appears in the above mentioned paper.

Rédei’s theorems on lacunary polynomials over finite fields.

Let f(x) =
n∑
i=0

aix
i be a polynomial over a finite field GF (q). It is called lacunary if it is 0 or

a monomial, or if there are j, k satisfying aj 6= 0, ak 6= 0, j + 2 ≤ k and aj+1 = . . . = ak−1 = 0. It

is called fully reducible if it is a product of linear factors over GF (q).

Rédei (1973) developed a theory which enabled him to give a complete characterization of

certain fully reducible lacunary polynomials over finite fields. The main part of this characterization

is a determination of all fully reducible polynomials f(x) =
q∑
i=0

aix
i over GF (q), that satisfy

f ′(x) 6= 0, aq 6= 0 and ai = 0 for q+1
2 < i < q. Although the full statement of Rédei’s theorem is

somewhat complicated we give it here, as it seems to be important and yet little known.

Theorem 7.2. Let f(x) =
q∑
i=0

aix
i be a fully reducible polynomial over GF (q), where q = pn for

a prime p > 7, and suppose that aq = 1, ai = 0 for q+1
2 < i < q and f ′(x) 6= 0. Suppose, further,

that f(x) 6= xq − x. Then a q+1
2
6= 0 and f(x) can be obtained as follows. Let σ be +1 or −1 and

let p = p0 < p1 < . . . < pk = q be integers satisfying p0|p1| . . . |pk and (p0− 1)|(p1− 1)| . . . |(pk− 1).

Let a0, a1, . . . , ak−1 be elements of GF (p) satisfying χ(ai) ∈ {0, σ} for 1 ≤ i < k, where χ is the

quadratic character, and suppose the elements ρi ∈ GF (pi) are defined, for 0 ≤ i < k, by:

ρ0 = a0 , ρ1 = (a1 − ρ0)
p0−1
p1−1 , ρ2 =

(
(a2 − ρ0)

po−1
p1−1 − ρ1

) p1−1
p2−1 , . . .

ρi =
((
. . .
(
(ai − ρ0)

p0−1
p1−1 − ρ1

) p1−1
p2−1 − . . .− ρi−2

) pi−2−1
pi−1−1 − ρi−1

) pi−1−1
pi−1

and ρk ∈ GF (pk) is arbitrary. Define

c(x) =
(
. . .
((
x+ ρk)

pk−1
pk−1−1 + ρk−1

)
. . .
) p1−1
p0−1 + ρ0

and choose τ ∈ {0, 1}.

Then

f(x) =
xq − x

c(x)
p−1

2 + σ

(
c(x)

p−1
2 − στ

)
.
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Although this theorem may look too complicated to apply Rédei gave many highly nontrivial,

fascinating applications of it to several problems in number theory, group theory and combinatorics.

Lovász and Schrijver (1981) gave a short proof to some of these applications. Amazingly, the basic

idea in this proof is just the simple fact that every function over a finite field is a polynomial. This

enables one to derive combinatorial results by manipulating with these polynomials. Using this

idea, Lovász and Schrijver give a short proof of the following result of Rédei.

Theorem 7.3. For a prime p, any set X of p points, not all on a line, in the affine plane AG(2, p),

determines at least (p+3)/2 directions. (X determines a direction if there is a line in this direction

containing at least two points of X).

Blokhuis and Seidel (1985) showed that Wielandt’s visibility theorem is an almost direct con-

sequence of this result. It also has some applications in group factoring. Let G be a finite abelian

group, written additively, and suppose A1, A2, . . . , Am are subsets of G, each containing 0. We

say that G has an (A1, . . . , Am) factoring and write G = (A1, A2, . . . , Am) if every element of G is

uniquely expressible as a sum a1 + a2 + . . .+ am, where ai ∈ A1. Using Theorem 7.3, one can show

that if G ' Zp ⊕ Zp where p is a prime and G = (A,B) then either A or B is a subgroup. Indeed,

G is naturally isomorphic to AG(2, p). If |A|, |B| > 1 then |A| = |B| = p. It is not too difficult to

check (see Lovász-Schrijver (1981)) that no direction is determined by both A and B. Hence either

A or B determines at most half of the directions, i.e., less than (p+ 3)/2 directions. By Theorem

7.3 this set is a line, and since it contains 0, it is a subgroup.

Rédei obtained a far reaching generalization of this result. Using group characters, an ap-

propriate factorization of polynomials and the group ring of G over the integers, he proved the

following.

Theorem 7.4 (Rédei (1965)). If G is a finite abelian group that has an (A1, . . . , Am) factoring,

where each Ai has a prime order, then at least one Ai is a subgroup.

This theorem generalizes Hajós theorem, (cf. Fuchs (1967)) which is probably the most dra-

matic work in factoring groups, and which solved a tiling problem raised by Minkowski in 1907.

Theorem 7.3 is a special case of a more general result of Rédei (1973; pp. 225-226), which

asserts that the number of directions m determined by a set of q points, not all on a line, in the

affine plane AG(2, q), where q = pn is a prime power, is at least

(7.1) m ≥ q − 1

pb
n
2 c + 1

+ 1 .
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Blokhuis and Brouwer (1986) found a nice way to combine this result with the Jamison-

Brouwer-Schrijver Theorem (see Theorem 6.5), and derive a bound for the size of non-trivial block-

ing sets in desarguesian projective planes. Let PG(2, q) denote the projective plane over GF (q).

A blocking set in PG(2, q) is a set that intersects every line. It is nontrivial if it contains no line.

Bruen showed that any non-trivial blocking set S in PG(2, q) contains at least q +
√
q + 1 points,

and equality holds iff q is a square and S is the set of points of a Baer subplane. He also noticed,

together with Thas, that there is a connection between Rédei’s results and blocking sets. This

connection was later applied by Blokhuis and Brouwer to prove that if q = pn > 7 is a non-square,

odd prime power, q 6= 27, then any non-trivial blocking set in PG(2, q) contains more than q+
√

2q

points. The proof is very short; let S be a minimal, nontrivial blocking set, |S| = q + k. If there

exists a line continuing k of these points, then make it the line at infinity. The remaining q points

now block all the lines of the affine plane except in k directions, and hence they determine at most

these k directions. By Rédei’s result stated in (7.1), k ≥ q−1

pbn2 c+1

+ 1 >
√

2q, as needed. Thus, we

may assume that no line contains more then (k − 1) points of S. Let v be an arbitrary point of

S. By the minimality of S, there exists a tangent through v (i.e., a line containing only this point

from S). Make this line the line at infinity and observe that the remaining points cover all lines of

the affine plane except the other tangents at this point. By Theorem 6.5, there must be at least

q−k such other tangents. Thus, there are at least q−k+ 1 tangents through any point of S. Since

there are no k points of S on a line, there are at most q − 1 tangents through any point not in S.

Hence, by counting the incident pairs of the form (tangent, point not in S) we conclude that

(q + k)(q − k + 1)q ≤ (q2 − k + 1)(q − 1)

which gives k >
√

2q, completing the proof.

For the (odd) prime case q = p, the above estimate has recently been improved considerably

by Blokhuis to 3(p+ 1)/2.

Hilbert’s basis theorem and Ehrenfeucht conjecture in language theory.

For a (finite) alphabet A, let A∗ denote, as usual, the set of all finite words over A. For two

alphabets A,B, a function f : A∗ → B∗ is a morphism if for every x, y ∈ A∗, f(xy) = f(x)f(y),

where xy and f(x)f(y) denote here the concatination of x, y and that of f(x), f(y) respectively.

Let A be a finite alphabet and let L ⊂ A∗ be an arbitrary language over A. Ehrenfeucht

conjectured that there is always a finite set F ⊂ L such that for any alphabet B and for any two

morphisms g, h : A∗ → B∗, g(x) = h(x) for all x ∈ L if and only if g(x) = h(x) for all x ∈ F . We

call such an F a test set for S.
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This conjecture has been solved, independently, by Albert and Lawrence, by McNaughton and

by V.S. Guba (cf. Salomaa (1985)). All proofs reduce the conjecture to Hilbert’s basis theorem,

which is the following.

Theorem 7.5. Every ideal in the polynomial ring Z[x1, . . . , xn] is finitely generated. Hence any

infinite system S of polynomial equations over Z is equivalent to some finite subsystem S′ of it,

(i.e., S and S′ have the same solutions in the complex field).

Hilbert’s basis theorem can be proved by a rather simple induction on n (see, e.g., Van der

Waerden (1931)). A special case of it plays an important role in integer programming; see Chapter

30.

Ehrenfeucht’s conjecture is reduced to Hilbert’s theorem in two steps, as outlined below.

Step 1: A system of equations W (i) = W
(i)

(i ∈ I) where W (i) and W
(i)

are words in C∗, has a

solution f if there exists an alphabet D and a morphism f : C∗ → D∗ such that f(W (i)) = f(W
(i)

)

for all i ∈ I. Two systems of word equations are equivalent if they have the same solutions. It is not

too difficult to reduce Ehrenfeucht’s conjecture to the following statement about word equations.

Statement 7.6. Every system of word equations is equivalent to a finite subsystem of it.

Step 2: Statement 7.6 is reduced to Theorem 7.5 by constructing, for any system E of word

equations over an alphabet C, a system S of polynomials, such that every solution of E corresponds

to a solution of a certain type of S. (The system S might have some other solutions, as well.)

Since Step 2 is the crucial part of the proof let us briefly describe it. The basic idea is the

following. If the alphabet D has n letters, then any word in D∗ corresponds, naturally, to the

number it represents in base n. If f : C∗ → D∗ is a morphism, then for every word W ∈ C∗, f(W ),

considered as the number it describes, can be expressed as a polynomial in the numbers f(c) for

c ∈ C and the numbers nlength(f(c)), where length (f(c)) is the number of letters in the word f(c).

Therefore, by introducing variables for the 2|c| numbers f(c) and nlength(f(c)) for c ∈ C, we can

replace each word equation by two polynomial equations. Being more precise now, let us introduce,

for each letter c ∈ C, two variables c1 and c2. (We will later substitute f(c) for c1 and nlength(f(c))

for c2.) For any word W = c1c2 . . . ck ∈ C∗ define

P1(W ) = c11c
2
2c

3
2 · . . . · ck2 + c21 · c32 · c42 · . . . · ck2 + . . .+ ck−1

1 ck2 + ck1

and

P2(W ) = c12c
2
2 · . . . · ck2 .

Also, for the empty word λ, P1(λ) = 0 and P2(λ) = 1. Given the system E of word equations
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W (i) = W
(i)

(i ∈ I), let S be the system of polynomial equations P1(W (i)) = P1(W
(i)

) and

P2(W (i)) = P2(W
(i)

) (i ∈ I). By construction, for every alphabet D of n letters and every

morphism f : C∗ → D∗, f is a solution of E if and only if c1 = f(c) and c2 = nlength(f(c)) (c ∈ C)

is a solution of S. Therefore, the existence of a finite subsystem of S equivalent to it, which

follows from Theorem 7.5, supplies the existence of a finite subsystem of E equivalent to E. For

more details, including the (simple) proof of the equivalence between Ehrenfeucht’s conjecture and

Statement 7.6, see Salomaa (1985).

We note that the decision problem: “Given a (recursively enumerable) language L ⊂ A∗ and

two morphisms g, h : A∗ → B∗, is g(x) = h(x) for all x ∈ L?” is undecidable, and thus there is no

“constructive” proof of Ehrenfeucht’s conjecture (i.e., a proof that actually produces a finite test

set for L from its description).

8. Hyperbolic Geometry and Triangulations of Polytopes and Polygons

Let P be a three dimensional simplicial polytope. Let T (P ) denote the minimum number of

tetrahedra, each being the convex hull of four vertices of P , whose union cover P . For n ≥ 4, let

T (n) be maxT (P ), where the maximum is taken over all simplicial polytopes P with n vertices.

It is easy to check that for every n > 12, T (n) ≤ 2n − 10. Indeed, a simplicial 3-polytope P

on n vertices has 2n − 4 faces and 3n − 6 edges. If n > 12, there is a vertex v of P incident with

at least 6 faces. For each other face f of P , let Sf be a tetrahedron whose vertices are v and the

three vertices of f . These tetrahedra cover P , and their number is at most 2n− 10.

Sleator, Tarjan and Thurston (1986) proved that T (n) ≥ 2n− 10 (and hence equals 2n− 10)

for infinitely many values of n. Their interesting proof uses hyperbolic geometry. Here is an outline

of the idea. If one can construct a polytope P and show, somehow, that the volume of each

tetrahedron on 4 of its vertices is at most a fraction 1/` of the volume of P , then the inequality

T (P ) ≥ ` follows. Unfortunately, the largest ` for which the previous statement holds is a constant,

independent of the number of vertices of P . Thus, instead of using the usual Euclidean space R3, we

embed P in the three dimensional hyperbolic, space (and observe that any cover of P by tetrahedra

in R3 corresponds to a cover of the same size of P here.) In this new space, the volume of each

tetrahedron is bounded by a constant C0, and thus we need only construct a polytope P whose

volume is at least ` ·C0. For ` = 2n−O(
√
n) a construction of such a polytope on n vertices is not

too difficult. The reader is referred to Coxeter (1956) for the fundamentals of hyperbolic geometry.
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The three dimensional hyperbolic space can be viewed as an upper half space whose boundary is

the complex plane, plus a point denoted ∞. A geodesic here is a semicircle perpendicular to the

complex plane, or a line perpendicular to this plane, that goes to ∞. Any tetrahedron whose base

forms an equilateral triangle on the complex plane and whose fourth vertex is ∞ is a tetrahedron

of maximum volume. Consider a tessellation of the complex plane by equilateral triangles, and

let S be a set of 6k2 such triangles whose union is hexagonal, with k edges on each side. This

hexagon has 3k2 + 3k+ 1 vertices. Let P be the polytope whose vertices are ∞ and these vertices.

Since P is the union of 6k2 tetrahedra of maximal volume, its volume is 6k2 ·C0. This shows that

T (3k2 + 3k + 2) ≥ 6k2, and hence that T (n) ≥ 2n−O(
√
n).

The problem of covering a polytope by tetrahedra is related to another interesting combina-

torial problem. Let G be a labeled convex polygon with n vertices in the plane, and consider a

planar triangulation of G with no interior vertices. We call the n sides of G edges and the chords

that divide it into triangles are called diagonals.

A diagonal flip is an operation that transforms one triangulation of G into another by removing

a diagonal, thus creating a face with four sides, and inserting the opposite diagonal of this resulting

quadrilateral. The distance d(τ1, τ2) between two triangulations τ1 and τ2 of G is the minimum

number of diagonal flips needed to transform one into the other. Motivated by a data-structure

problem on dynamic trees, Sleator, Tarjan and Thurston (1986) considered the problem of deter-

mining or estimating d(n) = max d(τ1, τ2), where τ1 and τ2 range over all triangulations of a labeled

n-gon. It is easy to see that d(n) ≤ 2n− 10 for all n > 12. Somewhat surprisingly, a lower bound

for d(n), showing that d(n) = 2n − 10 for infinitely many values of n, can be extracted from the

corresponding result for T (n) – the maximum value of the minimum number of tetrahedra needed

to cover a convex n-polytope. Here is an outline of the idea.

Let P be a convex simplicial n-polytope whose graph is Hamiltonian, such that T (P ) is as large

as possible. (By the Sleator-Tarjan-Thurston result, for infinitely many values of n there is such

P with T (P ) = 2n− 10.) Cut P along the edges of the Hamilton cycle to obtain two triangulated

parts. Denote these two triangulations by τ1 and τ2. We claim that d(τ1, τ2) ≥ T (P ) = 2n − 10

(and hence d(τ1, τ2) = 2n− 10). To see this we show that P can be covered by d(τ1, τ2) tetrahedra.

Consider a sequence of d(τ1, τ2) diagonal flips that transform τ1 into τ2. Imagine a planar base

with triangulation τ1 drawn on it. Suppose the first diagonal flip replaces the diagonal (a, c) with

the diagonal (b, d). Create a flat quadrilateral with the same shape as (a, b, c, d). On its back draw

the diagonal (a, c) and on its front draw the diagonal (b, d). Now place this quadrilateral onto the

base in the appropriate place, with the diagonal (a, c) down and (b, d) up. Looking from the top
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we see a picture of the triangulation obtained from τ1 by making the first diagonal flip. For each

successive move we create an additional quadrilateral and place it onto the base. After placing

d(τ1, τ2) such quadrilaterals we will see τ2 when we view the base from the top. We can now inflate

each quadrilateral slightly, to make it into a tetrahedron. The resulting stack of quadrilaterals

forms a covering of P by d(τ1, τ2) tetrahedra, as needed. For more details and several other related

results the reader is referred to Sleator, Tarjan and Thurson (1986).

9. The Erdös-Moser Conjecture and the Hard Lefschetz Theorem

For a finite subset S of IR, and for k ∈ R, let f(S, k) denote the number of subsets of S whose

elements sum to k. Erdös and Moser conjectured, in 1965, that for every set S of 2n + 1 distinct

real numbers, and any k,

(9.1) f(S, k) ≤ f
(
{−n,−n+ 1, . . . , n}, 0

)
.

Similarly, it was conjectured that for every set T of n distinct positive numbers and any k

(9.2) f(T, k) ≤ f
(
{1, 2, , . . . , n},

[
n(n+ 1)/4

])
.

Both (9.1) and (9.2) follow from the results of Stanley (1980) (see also Stanley (1983)). Surprisingly,

Stanley’s results depend on some deep results from algebraic geometry and in particular on the

hard Lefschetz theorem, stated in Chapter 34. A somewhat more elementary, similar proof was

given later, by Proctor (1982), whose proof involved representations of the Lie algebra s`(2, |C).

However, there is no known purely combinatorial proof.

To prove (9.2) it is useful to define the following partially ordered set M(n). The elements

of M(n) are all ordered sets of integers (a1, a2, . . . , ak) where n ≥ a1 > a2 > . . . > ak ≥ 1, and

(a1, . . . , ak) ≥ (b1, . . . , bj) if k ≥ j and a1 ≥ b1, . . . , aj ≥ bj . Put M(n)r =
{

(a1, . . . , ak) ∈ M(n) :
k∑
i=1

ai = r
}

and notice that |M(n)r| = f
(
{1, 2, . . . , n}, r

)
. Define, also N =

(
n+1

2

)
. An easy lemma,

first observed by Lindström, states that if M(n)[N/2] is the biggest antichain of M(n), then (9.2)

holds. Stanley proved that M(n)[N/2] is the biggest antichain of M(n), by showing that for every

0 ≤ i ≤ [N/2) there exist M(n)i pairwise disjoint chains xi < xi+1 < . . . < xN−i in M(n), where

xj ∈M(n)j . The proof uses the linear algebra method, whose many applications in Combinatorics

are described in Chapter 31. However, the construction of the necessary linear mappings is highly

nontrivial. We construct linear transformations ϕi : Vi → Vi+1 for 0 ≤ i < N , where Vi is the
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complex vector space with basis M(n)i, such that for 0 ≤ i ≤ [N/2], ϕN−i−1 ◦ ϕN−i−2 ◦ . . . ◦ ϕi :

Vi → VN−i is invertible and for x ∈ M(n)i and ϕi(x) =
∑{

cy · y : y ∈ M(n)i+1

}
, cy 6= 0 implies

y > x. This, in turn, supplies the existence of the desired pairwise disjoint chains in M(n).

The existence of these mappings is established using the hard Lefschetz theorem, stated in

Chapter 34. For more details and more general results see Stanley (1980). Several other fascinating

combinatorial applications of the hard Lefschetz theorem appear in Stanley (1983) and some of its

references.
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[1983] Sorting in c log n parallel steps, Combinatorica 3, 1-19.

Alon, N.

[1986a] Eigenvalues and expanders, Combinatorica 6, 83-96.

Alon, N.

[1986b] The number of polytopes, configurations and real matroids, Mathematika 33, 62-71.

Alon, N., E.E. Bergmann, D. Coppersmith and A.M. Odlyzko

[1988] Balancing sets of vectors, IEEE Transactions on Information Theory 34, 128-130.

Alon, N., P. Frankl and V. Rödl
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Rédei, L.

[1973] Lacunary Polynomials Over Finite Fields, North Holland, Amsterdam-American Else-

vier, New York.

Salomaa, A.

[1985] The Ehrenfeucht conjecture: a proof for language theorists, Bull. Europ. Assoc. Theo-

retical Comp. Sci. 27, 71-82.

Schmidt, K.

[1980] Asymptotically invariant sequences and an action of SL(2, Z) on the 2-sphere, Israel J.

Math. 37, 193-208.

Schmidt, W.M.

[1976] Equations over finite fields, an elementary approach, Springer Verlag Lecture Notes in

Math., 536.

Sleator D.D., R.E. Tarjan and W.P. Thurston

[1986] Rotation distance, triangulations and hyperbolic geometry, Proc. 18th Annual ACM

Symp. on Theory of Computing, 122-135.

Stanley, R.

[1980] Weyl groups, the hard Lefschetz theorem, and the Sperner property, Siam J. Alg. Disc.

Meth. 1, 168-184.

Stanley, R.

[1983] Combinatorial applications of the hard Lefschetz theorem, Proc. Internat. Congress of

Math., Warsaw, 447-453.

Steele, J.M. and A.C. Yao

[1982] Lower bounds for algebraic decision trees, J. Algorithms 3, 1-8.

Tanner R.M.

[1984] Explicit construction of concentrators from generalized N -gons, SIAM J. Alg. Disc.

Meth. 5, 287-293.
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