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1. GENERAL INTRODUCTION AND OVERVIEW
1.1  Whatis K-theory?

1.1.1 Roughly speaking, K-theory is the study of functors
(bridges)
K 0 (Nice categories) — (category of Abelian groups
nZ

C-KC
(See 2.4 (i1) for a formal definition of a functor).
Note: For n <0, we have Negative K-theory

For n <2, we have Classical K-theory
For n =3, Higher K-theory



1.1.2 Some Historical Remarks

K-theory was so christened in 1957 by A. Grotherdieck who first
studied K,(C) (then written K(C)) where for a scheme X, Cis the

category P(X) of locally free sheaves of Oy-modules. Because
K,(C)classifies the isomorphism classes in C and he wanted the

name of the theory to reflect ‘class’, he used the first letter ‘K’ in
‘Klass’ the German word meaning ‘class’.

Next, M.F. Atiyah and F. Hirzebruch, in 1959 studied
K,(C)where C is the category Vect.(X)of finite dimensional

complex vector bundles over a compact space X yielding what
became known as topological K-theory. It is usual to denote

K,(Vects (X)) by KU(X) or Kfop(X).



In 1962, R.G. Swan proved that for a compact space X, the
category Vect.(X)1s equivalent to the category P(C(X)) of
finitely generated projective modules over the ring C(X)of

complex valued functios on X.
1.€.,
Vect. (X) = P(C(X)). So K,(Vect. (X)) = K,(P(C (X))).

Thereafter, H. Bass, R.G. Swan, etc. started replacing C(X)by
arbitrary rings A and studied KO(P(A)) for various rings 4 leading
to the birth of Algebraic K-theory. Here P(A) denotes the

category of finitely generated projective modules over any ring A.
It is usual to denote K,(P(4)) by K,(A)for any ring 4. K,(4)of a

ring A was defined by H. Bass and K,(4) by J. Milnor. (see [3],
[58] and [79]).



In 1970, D. Quillen came up with the definitions of all
K (C)foralln =0 in such a way that KO(P(A)) coincides with

K(4) O n=0.
1.1.3 Some Features of K (C)

(1) K, (C) sometimes reflects the structure of objects of C.

For example,
(1) Let F' be a field, G a finite group, M(FG) the category
of  finitely  generated  FG-modules. Then
K,(M(FG)):=G,(FG)classifies representations of G

in P(F) whose P(F) 1s the category of finite-
dimensional vector spaces (see [42]),

(i1) K,(ZG) contains topological / geometric invariants.

E.g., Swan-Well
Invariants (see 2.7.1)



(1)  K,(ZG)contains Whitehead torsion — a topological

ivariant (see
[3.2.3] or [57]).

(2) Each K (C)yields a theory which could map or coincide

with other theories.
For example,
(1) Galois, etale or Motivic cohomology theories (see

[37]).
(1)  De Rham, cyclic cohomology (see [7] or [9, 10])
(i11)  Representation theory, e.g.,
K,(M (FG)) = G,(FG)concides with Abelian group of

characters of G (see [8, 42] or 2.3 vii).

(3) K, (C)satisfies various exact sequences connecting
K K, _,etc. For example, Localization sequences, Mayer-

victories sequence, etc. These sequences are useful for
computations (see [42] or [62]).



1.1.4 A Basic problem in this field 1s to understand and compute
the Abelian groups K, (C)for various categories ‘C’.

Two 1mportant examples of ‘nice’ categories are ‘Abelian
categories’ and ‘exact categories’. We now formally define these
categories with copious examples and also develop notations for
K (C)for various C.



1.2  Abelian and Exact Categories — Definitions, Examples
and Notations

1.2.1 A category consists of a class C of objects together with a
set Hom(X,Y)of morphisms from X to Y, for each ordered pair

(X,Y) of objects of Csuch that
(1)  For each triple (X Y,Z) of objects of C, we have

composition Hom (Y,Z)xHom.(X,Y) - Hom (X,Z).

(2)  Composition of morphisms 1s associative 1.e., for
composable morphisms f.g.h g(hf) =(gh)f



(3)  There exists identity 1, [JHom(X, X) such that if
gUOHom (X,Y)and h0OHom(Z,X),gl, =g, and 1, h=h.
Examples:
(1) Sp : =category of topological spaces, 0b(Sp) =topological
spaces, Homg, (X,Y) = {continuous maps X - Y }.
(i1)  (:=category of groups. ob(G p) are groups
Homg (G, H) =groups homomorphisms G - G'.

For more examples (see [55]).



1.2.2 Examples of Abelian Categories (for motivation)

(1) A bor -Mod := category of Abelian groups.
ob (Ab) = Abelian groups
. Morphisms are Abelian group homomorphism.

(2) F a field; F-Mod : = category of vector spaces over

ob (F -Mod) : = vector spaces
Morphisms are linear transformation
(3) R a ring with 1dentity.
(R- Mod) : = category of R-modules
Morphisms are R-module homomorphismes.



1.2.3 Definitions of an Abelian Category

A category A is called an Abelian category if

(D)

(2)
3)

it 1s an Addictive category, that is:
(a)  There exists a zero object ‘0’ in A

(b)  Direct sum (= direct product) of any two objects of
A exists in A.

(¢) Hom ,(M,N)is an Abelian group such that
composition distributes over addition.

Every morphism in A has a kernel and a cokernel.

For any morphism f, coker (ker f) = ker (coker f).



1.2.4 Note: A morphism g:K - M1s called a kernel of a

morphism f:M - Nif for any morphism #4:P - M with

f[h =0, there exists a unique arrow kK :P - Ksuchthat h=gok
KIF-MOI N

o
P

Equivalently: given an object P in A , we have an exact sequence
0 - hom ,(P,K) O - hom ,(P,M)OF = hom ,(P,N)

1S exact.
Analogously, a morphism g: N — C1is called a cokernel of

f:M - Nifforany POO0bH A
0 — hom ,(C,P) — hom ,(N,P)O[] - hom ,(M,P)
1s exact.

Note: A sequence A4 [I1 - B[I¥ - Cis said to be exact at B if
ker(g)=Im(f).



1.2.5 Definition of an Exact Category

An exact category is a small additive category C (embeddable in
an Abelian category A) together with a family E of short exact
sequences 0 - C' - C - C" - 0 (I) such that

(i)  E is the class of sequences in C that are exact in A

(i1)  Cis closed under extensions i.e., for any exact sequence
0 -C - C - C" 5 0inA with ', C"in C, we also
have C O C.

Before giving a construction of K, (C) n > 0, we give some
relevant examples of C and develop notations for K, (O).



1.2.6 Examples

1. An Abelian category 1s an exact category when i1t 1s
considered together with a family of short exact sequences.

2. Let A be any ring with identity C = P(A) (resp. M(A4)) the
category of finitely generated projective (resp. finitely generated)
A-modules. Write K,(A) for K,(P(4) and G, (4) for K,, (M(A))
Forn>0,e.g.,

(1)
(i1)

(iii)

(iv)

A=, , ,

A = integral domain, R.

A = F (a field, - could be quotient field of R)

A =D (a division ring)

G any discrete group (could be finite)

A= G,RG, G, G, G (in the notation of (1) or (11).
- These are group-rings.

G a finite group, ZG 1s an example of a Z-order in the
semi-simple algebra OG.



(v)  Definition

Let R be a Dedekind domain with quotient field F (e.g., R=7
(resp. Z,),F =Q(respQ,)
p a rational prime or more generally fep, F, (pa prime ideal of

R). An R-order A 1n semi-simple F-algebra ) is a subring of )
such that R 1s contained in the centre of A, A 1s a finitely
generated R-module and

FUO,N=Z, (Bg,N=2G,Z,G,RG,R,G G a finite group).

(vi) LetAbearing (with1),0:4 — A an automorphism of 4,
AdT) =

Ag (¢, t ") := o-twisted Laurent series ring over 4 (ie.,
Additively 4,[T] = A[T], with multiplication given by ( at ') [(bt )
=g a (b)) t' "/ for a, b O A). Let At] be the subring of A7)
generated by 4 and ¢.



Note: If A = RG, Ny[T] =RV where V =GX|T 1s a virtually

infinite cyclic group and G 1s a finite group, 0 an automorphism
of G and the action of the infinite cyclic group

T=[on G is given by a(g) = tgt™' forall g 0 G.
(3) X a compact topological space, F= or , Vect(X) :=
category of finite dimensional vector bundles on X. (See [2]).
Write K''(X) for K, (Vectr (X).
Theorem (Swan): There exists an equivalence of categories
Vectd(X) = P ( X) where X is the ring of complex-valued
functions on X. Hence

K'(X): = K,(VectdX) = K,( (X)) =K,(C(X)) D

Note: (I) gives the first connection between topological and
Algebraic K-theory. (See [7])



Gelford-Naimark theorem says that any unital commutative C -
algebra 4 has the form 4 = C(X) for some compact space X. If 4 is
a non-commulative C -algebra, then K-theory of 4 leads to “non-
commutative geometry” in the sense that A could be conceived as
ring of functions on a “non-commutative or quantum” space. Note
that any not necessarily unital commutative C-algebra 4 has the
form C,(X)where X 1s a locally compact space and

X*=Xx {p.}, the one point compactification of X. When X is
compact C,(X)=C(X).
Note that C,(X) :[a X" - C ‘a continuous and O’(CO) = O] :



(4) Let X be a scheme (e.g., an affine or projective algebraic
variety). (See [8] or below). Let P(X) be the category of
locally free sheaves of Oy-modules. Write K,(X) for
K,(P(X). Let M(X) be the category of coherent sheaves of

Ox-modules. Write G,(X) for K,(M(X). Note that if X =
Spec (4), A commutative ring we recover K,(4) and G,(A).

Recall (Definition of Affine and Projective Varieties)

(a) Let K be an algebraically closed field (e.g.,  or algebraic
closure of a fiite field. Can regard polynomials 1n

A=4 :K[tl,...,tn] as functions f:K" - K. An algebraic set
in K" :[xDK” satisfying f,(x) =0 1<i<r,f, DA].



If SOA4V(S)={x0K"|f(x)=0 O £0S| define closed

sets for a topology (Zariski topology) on the affine space
K", also denoted A" (K).
Note that

ris,) vis,))=v(s,s,)

Ais)=vl 5], v=¢ rig=k").

itz

Also if E OK",I(E)={f04f(x)=0 O xDE| is an
ideal 1n A4.

Let X 0 K" be an algebraic set. A function ¢: X - Kis
said to be regular if ¢ = /| ,forsome f0A.

The regular functions on 4 form a K-algebra K[X] and
K[X]1UOA/a where a = I(X).

Call (X,K[X]] an affine algebraic variety where
K[X]=0,(X).



(b) Let V' OP(K), P(V) =set of lines (i1.e., 1-dim subspaces) of V.
Write P,(K) for P(K ”) Elements of P, (K) are classes of (n +
D[A Xg,--sAXx, | 1

1)-tangles [xo,xl,...,x where [xo,...,xn

A#0 mn K.
e If SOK]t,,...,t,| is a set of homogeneous polynomials

V(S)={xOP,(K)|f(x)=0 O f0OS}. The V(S) are closed
sets for Zariski topology on P, (K).

n

A projective algebraic variety X i1s a closed subspace of
P, (K) together with its induced structure sheaf O, =0, |, .



(5) Let G be an algebraic group over a field F, (a closed subgroup
of GL (F)) e.g., SL (F),0 (F)and X a G-scheme, 1.e., there

exists an action 6: GXX - X . Let M(G,X) be the category of

G-modules M over X. (i.e., M 1s a coherent Oy-module
together with an isomorphism of O, , -module 8 *(M) = p,

(M), with p, GxXX - X satisfying some co-cycle conditions)
(see [83]). Write G, (G, X) for K (M (G, X)).

e Let P(G,X) be the full subcategory of M(G,X) consisting of
locally free Oy-modules. Write K,,(G,X) for K,,(P(G,X)).
(see [43]).



(6) Let G be a semi-simple, connected, and simply connected
algebraic group over a field F . T G a maximal G-split torus
of G, P OJG a parabolic subgroup of G containing the torus

~

T .

The factor variety G/F is smooth and projective. Call F
=G/P a flag variety.

E.g.,

~ ~ b
G =SL, P:% _%letgdetg =1 allGL, gDGLn_kg
c

Then F =G/ P is the Grassmanian variety of k-dimensional
linear subspaces of an n-dimensional vector space. Write
K,(G,F) for K,(P(G,F)) . (See [43])

6. Let F' be a field and B a separable F-algebra, X a smooth
projective variety equipped with the action of an affine
algebraic group G over F. Let VB (X B) be the category of
vector bundles on X equipped with left B-module structure.
Write K,(X, B) for K,,(VMBg(X,B)). In particular, in the
notation of (5), we write K,(F, B) for K,(VBs(F, B)). (See
[43])



7. Let G be a finite group, S a G-set. Let S be a category
defined by 0ob § = {elements of S); S (s..,t) = {(g,9)| g U G, g
s = t}. Let C be an exact category. [S, C] the category of
functors é:S - C Then [S, C] is also an exact category
where a sequence
05 & -5 & - & - 0issaid to be exact in [S, C] if
0 - &'(s) - &(s) - &"(s) — 0is exact in C. Write
K, (8,C)for K, ([S,C]).
E.g., C=M(4), A a commutative ring,
S=G/H,then [G/H,M(A4))]=M (4AH).
. [G/ H,P (A)] =P,(AH) =category of finitely generated AH-
modules that are projective over 4. (i.e., AH lattices)

K (G/H,M(4)) =G, (4H).
If 4 1s regular, then G,(4,H) 0OG,(4AH). (See [25])



2. K ,(C), CAN EXACT CATEGORY: DEFINITIONS AND

EXAMPLES

2.1  Define the Grathendieck group K,(C)of an exact category
C as the Abelian group generated by isomorphism classes (C) of
C-objects subject to the relations (C')+(C")=(C)wherever
0-C -C-C" - 0isexactin C.

2.2 Remarks

(1) K,(C) OF/R where Fis the free Abelian group on the
isomorphism classes (C) of C -objects and R is the
subgroup generated by all (C')+(C")-(C)for each short
exact sequence 0 - C' - C - C" - 0in C. Denote by [C]
the class of (C) in K,(C).



(i1)

(i1)

The construction in 2.1 satisfies a universal property. If
X C > A1s a map from C to an Abelian group A, given

that x(C)depends only on the isomorphism class of C and
xlc") + x(c') = x(C) for any exact
sequence0 - C' - C - C" - 0, then there exists, a unique
homomorphism x':K,(C) - Asuch that x(C)= x'(C)for
any C-object C.

Let F:C - Dbe an exact functor between two exact
categories C, D (i.e., F' is additive and takes short exact

sequences in C to short exact sequences in D). Then F
induces a group homomorphism K, ,(C) - K,(D).

Note that an Abelian category A 1s also an exact category
and the definition of K (A)1s the same as in definition 2.1.



(1)

If C is an exact category in which every s.e.s
0-C - C - C" 5 Osplits. E.g., P(4),Vecte(X), then
K,(C)is the Abelian group on isomorphism classes of C-
objects with relation (C")+(C")=(C'0C’). In this case,
(C, ) 1is an example of a “symmetric monoidal category”
with one property that the isomorphism classes of objects
of C form an Abelian monoid and K,(C) is then the ‘group

completion’ or ‘Grathendiuk group’ of such a monoid (see
[42], Chapter 1, 1.2, 1.3). In fact, this construction
generalizes standard procedure of constructing integers
from the natural numbers.



2.3
(1)

(i)

Examples

If A 1s a field or division ring or a local ring or a principal
ideal domain, then K ;(4) OZ . This follows from the fact
that every PP (A)is free (i.e., P [0 A" for some s) and

moreover, A4 satisfies the invariant bases property i.e.,
A" 04°0 r=s.

Let A be a (left) Noetherian ring (i.e., every left ideal is
finitely generated). Then the category (M (A)of finitely

generated (left)-A-modules i1s an exact category and we
denote KO(M (/\)) by G,(A). The inclusion functor

P(A) - M(A)induces a map K,(4) - G,(\) called the

Cartan map. For example, A = RG (R a Dedekind domain,
G a finite group) yields a Cartan map K,(RG) - G,(RG).



If Ais left Artinian 1.e., the left ideals of Asatisfy
descending chain condition, then G,(A)is free Abelian on

[S].....[S.| where the [S]are distinct classes of simple A-
modules, while K,(A)is free Abelian on [/,],...,[7 ] and tho
[ are distinct classes of indecomposable projective A-
modules (see [8]). So, the map K,(4) - G,(\) gives
matrix (al. j) where a,;= the number of times S, occurs in a
composition series for /. This matrix 1s known as the
Cartan matrix.

If Ais left regular (i.e., every finitely generated left A-
module has finite resolution by finitely generated
projective left A-modules), then it 1s well known that the
Cartan map 1s an isomorphism.



(iii)

(1)

Recall also that a maximal R-order I in 2Zis an order that is
not contained in any other R-order. Note that I is regular.
So, as 1 (1) above, we have Cartan maps
K,() - G,(Nand when I is a maximal order, we have

K, (M) UG, ().

Let R be a commutative ring with identity. A an R-algebra.
Let P,(A)be the category of left A-modules that are

finitely generated and projective as R-modules (i.e., A-
lattices). Then P,(A)is an exact category and we write

G,(R,N\) for K,(P,(4)). If A=RG, G a finite group, we
write P, (G)for P,(RG)and also write G,(R,G)for
G,(R,RG). If M,NOP,(A), then, so is (M O, N), and
hence the multiplication given in  G,(R,G)by
(M ][N]:(M 1, N) makes G,(R,G)a commutative ring
with 1dentity.



(V)

(1)

If R is a commutative regular ring and Ais an R-algebra
that 1s finitely generated and projective as an R-modules
(e.g., AN=RG, G a finite group or R 1s a Dedekind domain

with quotient field F, and A1is an R-order in a semi-simple
F-algebra), then G,R,N\) UG, (N\)

Let F' be a field, G a finite group. A representation of G in
P(F) 1s a group homomorphism p:G - Aut(V) VUOP(F).
Call V a representation space for p. The dimension of V
over F 1is called the degree of p.

Note:
e pdetermines a G-action on V' 1.¢.,

GxV -V (g,v) - p(g)v=gvand vice versa.
 Two representations (V,p) and (V' o) are said to be
equivalent if there exists an F-isomomorphism

B:v OV'such that p'(2) = Bo(g)



e There exists, I — 1 correspondence between
representations of Pin P(F)and FG-modules.

e (Can write a representation of G in P(F) as a pair
(V.p). VOP(F)and p:G - Aut(V).

o IfCis any category and G a group. A representation
of G in C (or a G-object in C) is a pair
(X,p) XOobC, p:G - Aut(X)a group-
homomorphism.

The G-objects in C forms a category C. where for
(X.p), (X", 0], morc (X,p), (X", 0) is the set of all C-
morphisms a: X - X'such that for each g G, the diagram

Py

> X

X
\La a commutes

X' > X



(vil) Let G be a finite group, S a G-set, S the category associated
to S, C an exact category, [S, C] the category of covariant

functors ¢:S - C. We write ¢, for ¢(s), sOS . Then, [§,C]
1S an exact category where the sequence
0-¢ ->C->¢" -0 1n [§,C] 1s defined to be exact if
0-¢ - ¢ - ¢ - 0isexact in C for all sOS. Denote by
KS(S,C) the K, of [S,C|. Then KC(-,C):G Set — Abis a
functor called ‘Mackey’ functor. We also note the fact that
KY(-,C),n=0is also a ‘Mackey’ functor. (See [42])

If $=G/G, then [G/G,C|OC, analogous constructions to

the one above can be done for G, a profinite group, and
compact Lie groups (see [42], [28], [35]).



Now 1f R 1s a commutative Noetherian ring with 1dentity,
we have [G/G,P(R) OP(R), OP,(RG), and so,
KS(G/G,P(R)) OG,(R,G) OG,(RG). This provides an
initial connection between K-theory of the group ring RG
and Representation theory. As observed in (1v) above
G,(R,G)1s also a ring.

In particular, when R =C ,P(C)=M(C), and

K,(P(C),) UG,(C,G)=G,(G) 1s the Abelian group of
characters, x:G — C (see [30]), as already observed in this
paper.
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(1)

If the exact category C has a pairing CxC - C,which is

naturally associative and commutative, and there exists
EUOCsuch that (E,M)=(M,E)=Mfor all M UOC, then

KJ(-,C)is a Green functor and moreover, for all n>0,
K?(-,C)is amodule over K (-, C). (See [42])

K,of Schemes

More Examples of Abelian Categories:
Functor Categories and Sheaves

Let B be a small category i.c., (ob B is a sct), A an Abelian
category. Then the category of functors B — A s also an
Abelian category denoted by AB,

Note: ob A® = {functors : B - A)

Morphisms are natural transformations of functors.



Recall. Let C, D be two categories. A covariant (resp.
contravarient) functor from Cto D is an assignment to each
object COob(C) an object F(C) in D as well as an

assignment to each morphism f,C - C', a D-morphism
F(f):F(C) - F(C) (resp. F(C) — F(C)) such that
1. F(1,) =1l forany COC;

2. F(gf)=WF(QF(f) (xesp. F(gf)=F(f)F(s).

Example:

1. R acommutative ring, F:R-Mod - -Mod given by
F =Hom,(—,N)

N fixed in R-Mod. F is contravariant ' = Hom (M -)
1S covariant.



In fact Hom, (—,—)1s a bifunctor

R'MdeR-MOd—) -MOd
(M, N) - Hom,(M, N)
covariant in N and contravarient in M.

2. F: (Groups) - -mod
G - G/[G,G]

1s covariant — called Abelianization functor.

e Let F,F'be two functors - from C to D. A natural

transformation from F to F'is an assignment to an object
COC a D-morphisms n.:F(C) - F(C)such that if

a:C - C'is a C-morphism, then the diagram

Fc e F'C

\I/F (a) \LF’(a) commutes

N
FC———> FC'




 Note: A functor (roughly speaking) is a ‘bridge’ for
crossing from one category to another.

 Any partially ordered set (E,<)has the structure of a

category where
ob(E) =elements of E

hom . (x,y) =@unless x < y.

e Let X be atopological space, U the poset of open subsets of
X. A contravariant functor F:U - A (A an Abeclian
category) 1s called a presheaf on X.

Note: The presheaves on X form an Abelian category
denoted by
Presh (X).



(1)
(i1)

A sheaf on X is a presheaf F satisfying:

If {U.} is an open covering of a subset U [ X , then we

have an exact sequence:

0 - F(U) - NFU) ZNFU n Uj)

i<j

(ie., if fOF(U)are such that fand f, agree on
F(U .nU j) , then there exists, a unique fOF(U) that maps
to every funder F(U) - F(U,).

Note: SAi(X) is also an Abelian category. (See [93] or

[18])
A ringed space (X ,OX) 1s a topological space X

together with a sheaf O, of rings on X.

An O,-module i1s a sheat M together with a sheaf
morphism O, xM — M stforeach UOX, M{U)is a
unitary O, (U)-module.



(i1)  Let R be a commutative ring with identity Spec(R) =
{prime ideals of R}
A subset Y [ Spec(R)1s closed off

Y =V (I)={pDOSpec(R)|p O I}, I an ideal of R.

One could view R as the ring of functions on Spec (R) and
V[I] as the set of points y[OSpec(R) at which all the

functions in I vanish. If f[ORis viewed as a function on
Spec (R), its value at y [OSpec(R) 1s 1ts image 1n the residue
class field k(y):=the field of fractions of R/y.

e If X =Spec(R), there exists a sheaf of rings O, on X
where O, (U)=S"Rand S ={f 0RO y0U, f Oy}
O, (X) =R. Call the ringed space Spec(X ,OX) an
affine scheme.



(111)

A scheme is a topological space X together with a sheaf of
rings on X such that X= U, (U openinX) and

(Ul.,OX U.) is an affine scheme.

1

A morphism of schemes f,X - Y1is a continuous map of
the underlying topological space together with (for each
open set uady) a ring homomorphism
£, :0,(U,) - O,(f"'U)compatible with the restriction
maps for each V' OU. In addition, we require hat for
xOf ' (U)gdo,U),if g vanishes on f{x), then
*() DOX(f_lU) vanishes at x.



Note: Say that f [0, (U) vanishes at a point y (U 1if given any
affine neighbourhood W of y, the image of fin O,, (U NW) lies in
the prime 1deal corresponding to y.

Recall: i[X k[tl,
set of points of X.

t |/a,.View fOk[X] as a function on the

(iv) A scheme X over Z is a morphism of schemes X - Z
Let X,,Y, be schemes over Z

X XY — Y
z

l I g (I)pull back
X EI]—> Z

X X Y 1s the fibre product in the category of schemes over Z

given by the diagram (/).



X x7Y is the fibre product in the category of schemes over Z

Z
given by the diagram (/).

e If X =Spec(4), Y =Spec(B) Z =Spec(C)
X? Y =Spec|4 g B

|

e Put 47 =Spec(Z[t1,...,tn
Ay = A, x X

Spec(Z2)

(v) Let X be a scheme. Define an algebraic bundle on X as a
morphism of schemes 7: £ - X together with maps

s:ExXE - FE
X
HU:A4, x E S E

Spec(Z)



(satisfying axioms similar to those of a topological vector
bundles) together with local triviality: 1.e., there exists an open
covering X = U, of X together with isomorphism

g, Om'(U,) DA
Recall that a topological vector bundle E over X consists of
continuous maps 77: £ - Xand C x E - E (scalar multiplicator),
p:E ;E - E (addition) satisfying
(1) for AOC, vOE, mALv) =m(v),
mp(v,w)) = 1(v)
(2)
= T1(w)
3) WHE=rm(kx), u:CxE - FE, o :E XE_ - E makes
E_into a complex vector space.




(vi) It is usual to view a vector bundle 7: £ — X via its sheaf of
sections E(U) ={maps s: X - Es.t moes=id} 1i.e., E is required
to be a locally free sheaf of O, -modules i.e., there exists an open
cover X = U, such that

E y 04y foreachn, [N .

A morphism of bundles is just an O, -linearmap f:E - F 1e.,
for each open set U O X we have an O, (U) -linear map of

modules f|
EWU) - FU)s.tfor ¥ OU, themap p. f|, = f], o -

(1) If X 1s a scheme. Define K, (X):=K,(P(X)).
If E is a vector bundle, E a locally free sheaf with



E]=[E]UK,(X)
E]10F] :IE o, F] (product n K,(X)where
EOF)U) =EW) D, FU)).

So K,(X)1s a commutative ring.

e If f:X - Yisamorphism of schemes, there exists an
exact functor /" :P(Y) - P(X):E - f'E

Note: If U O X, V OY,are affine open sets with f(U) OV, then
f 1 Ky(Y) - Ky(X)
So K,1s a contravarient functor (schemes) [ - (commutative

rings)



(i1) If X 1s a smooth projective curve over a field &, (see [18])
then

K,(X) = Z 0 Pic(X)
[E] - rk(E)O (NP E]

where Pic(X) = group of isomomorphism classes of line bundles
(i.e., variant bundles of rank 1) over X.

iv) K,\P/)oz™

(v) If X 1s a regular scheme (i.e., any coherent sheaf of O, -

modules has a finite global resolution by locally free sheaves)
then K, (X) OG,(X).



2.5 Some Topological K-theory
2.5.1 Let X be a compact space.
Recall: K2 (X):=K,(Vecte (X)) OK,(CX). K2(X) is also
written K, (X)or KU(X).
K2 (X):=K,(Vectg (X)).

Write KO(X) for K,(Vectg (X)) .
Note: K, (X)as a generalized cohomology theory arises as

homotopy groups of spectra. We now introduce the notion of
spectra.



252 An Q-spectrum FE 1s a set of pointed spaces
{EO,El,o--} cach of which has the homotopy type of a CW-complex

such that each map E' - Q(E"”) is a homotopy equivalence i.e.,
we have a ‘sequence of homotopy equivalences

E’°0QE' 0Q* E* OMQ"E".
2.5.3 Theorem (see [2]).

Let £ be an Q -spectrum. For any topological space 4 [0 X, put
Bi(X,A)=|(X, 4), E"| n20.
Then (X, A4) - h,(X,A) is a generalized cohomology theory,

namely, it satisfies all of the Eulenberg-Steenrod axioms except
that its value at a point (J@) may not be that of ordinary

cohomology.



So,
(1)  h.(-) is a functor (Topological pairs) — (Graded Abelian

groups),
(2)  Foreach n=0, and each pair (X, A) of spaces, there exists,

a functorial connecting homomorphism
a:hp(4) - h"(X, A)

(3) The connecting homomorphisms in (2) determine long
exact sequence for every pair (X, A4).

(4)  hg(-) satisfies excision 1i.e., for every pair (X,4) and

every subspace U 0 4 s.t. U O Int (4)
hy(X,4)Oh (X -U, A-U)

Note: Above, &, (X):=hy,(X,9)=h,(X,,0 where X, is the

disjoint union of X and a point *.



2.5.4 KO-

ton
theories associated to the Q-spectrum given by BOxZ and
BUxZ
1.€.,

(-), K. (-)=KU(-) are the generalized cohomology

ton

KX (X)=|X, BUXZ|

ron

KX X)=[X,U];K.

ton

2.5.5 Bott Periology

1. BOXZ ~ Q*(BOXZ)

Moreover, the homotopy groups m,(BOxZ)OKO' are
given by Z2.Z2/2,2/2,0,Z,0,0,0 respectively for
i =0,1,2,3,4,5,6,7 (mod 8)



if i1s even
2. BUXZ ~Q*(BUxZ)and 1, (BUXZ) =[] .
) if iis odd

3. For any topological space X, and any i =0, we have a
natural homomorphism

B:K,,(X) ~ K, = (X)

top top

Note:

| HKf?’P (X) for i even
For iUZ, K, (X)=0 :
K., (X) foriodd

top

Let S°=@D =0



Then

gifniseven
K., O=0
HD if nisodd

L gifnﬂqiseven
Kils')=H
) if nisodd

2.6 K-theory of C*-algebras

2.6.1 A C -algebra is a Banach algebra satisfying |a Od| =|a|" for
all a0 4. Let A be a C -algebra. Define

K™ (A4):=m(BGL(A)) = m_,(GL(4)) IGLA)is a topological group).
Note: K,(A4) =K, (P(A) = K" (4) = 1T,(GL(A)).
K.(A):=GL(A)/GL,(A) where GL,(A4) of the connected
component of the identity in GL(A4) ...



Bott periodicity is also satisfied i.e., K" (4) =K, ,,(4) O n=0
and so, the theory is Z,-graded having only K" (4) = K,(A4) and
Klton (A) .

2.6.2 Example

1. Let G be a discrete groups, ¢*(G) the Hilbert space of
square summable complex-valued functions on G, 1.e., any
element of 7 O¢°(G) can be written as

=S 9,2 0C,S(,) <.
g@ZG g g g; g

The group algebra C G is a subspace of £°(G). There exists a left
regular representation A, of G on the space €°(G) given by



Ag (g)Q;;Ahh Ez ZGAGgh

where ¢0G and
S A hOEG.

This unitary representation extends linearly to C G .

Now define reduced C*-algebra C Gof G by the image of
A, (CG)in the C*-algebra of bounded operators on ¢*(G).

e If G 1s fintte, the C’(G)=C Gand K,(C G) = R(G)the

additive groups of representation ring of G.
(i) K,(€)=Z.,K,(C)=m.GL(C)=0 such that GL(C) is

connected.
(i) HG=Z/2, K,|C(G)) 0K, (€)0K,(€)0ZOZ since

C'GOC G=COC.



2.7 Some Applications of K,(C)

2.7.1 Geometric and Topological Invarients

Let R=2Zm(X), the integral grouping of the fundamental group
of a space of the homotopy type of a CIW-complex.

Theorem (Wall) [87]

1. Let C =(C.,d)be a chain complex of projective R-modules
that is homotopic to a chain complex of finite type of projective
R-modules. Then C =(C.,d)is chain homotopic to a chain

complex of finite type of free R-modules 1iff the Euler
characteristics x(C)=0 in K,(R).



Note: A bounded chain complex C =(C,,d) of R-modules is of
finite type 1f all C, are finitely generated. The Euler character of

C =(C ,d) is given by x(C) = i(—l)”[Ci] 0K, (R).

2. Computation of the group (SSP)

The calculation of G,(RG), G Abelian 1s connected to the

calculation of the group (SSF) which houses obstructions
constructed by Shub and Franks in their study of Morse-Smele
diffeomorphismes.

3. Dynamical Systems

Dynamical systems can be classified by means of K, ,of C*-
algebras.



2.7.2 Some other Miscellaneous Applications

1. Several classical problems in topology were solved via K-
theory e.g., finding the number of independent vector fields on the
n-space.

2. Index of Elliptic Operators

Let M be a closed manifold and D:C”(E) - C”(E)be an elliptic
differential operator between two bundles E, FF on M. Let
M - Mbe a normal covering of M with deck transformation
group G (see [7]). Then, we can lift D to M and obtain an elliptic

~~

G-equivalent differential operators D :C °°(E ) - C °°(17 ) where
E, F are bundles on M . Since the action is free, one can define
an analytic index indG(ﬁ) in KO(Cj G) (see [7]).



3. THE FUNCTORS K ,, K ,- BRIEF REVIEW

We shall follow the historical development of the subject by
briefly discussing k,, K, of rings and their classical formulations.

3.1 K, of a Ring — Definition and Basic Properties
3.1.1 Let R be a ring with identity GL, (R) the group of invertible

| 0
n x nmatrices over R. Note that GL,(R) O GL,,,(R) 4 - % 1 %

Put GL(R)=limGL (R)= GL (R).

n=l

Let E (R)be the subgroup of GL,(R) generated by the elementary
matrices, eij(a)where

eij(a) 1s the nxmmatrix with 1’s along the diagonal, a in the
(i, j)-position  with i# jand  zeros  elsewhere. Put
E(R) =lim E,(R).



3.1.2 Note that the matrices e, (a)satisfy the following.
(1) e (a)e,(b)=¢ ;(a+b) O abUR

Gi) e, (@)e,(®)| =e,(ab) O i#k, a,bOR

(i) e, (@)e,®)|=1 O i#C j%k.

3.1.3 Whitehead Lemma

(1) E(R)=[E(R),E(R)] 1.e., E(R)1s perfect
(i1)  E(R)=[GL(R)], GL(R)].

3.1.4 Definition
K, (R):=GL(R)/ E(R) = GL(R)/[GL(R), GL(R)]
= H,(GL(R))



3.1.5 Note that:

(1) K, 1is functorial in R 1.e., R - R'1s a ring homomorphism,
we have K,(R) - K,(R']

(ii)  K,(R)OK,(M (R)) for any positive integer # and any ring

R

(ii))  K,(R) OK,(P(R)).

3.1.6 If R 1s a commutative ring with identity, the determinant
map det:GL, (R) - R’commutes with GL (R) - GL,,,(R) and

hence defined a map det:GL(R) — R* which is surjective since

: ) . 0
given a JR there exists 4 = % | Esuch that det(4) =a.



. We also have an induced map

det : GL(R)/[GL(R), GL(R)] —» R’
i.e., detK (R) — R that is split by a map

‘ 0
a:R" - K(R):a _,% IE

i.e., deta =1,. So K,(R) OR" 0 SK,(R) where
SK,(R) :=ker(det: K,(R) - R");
. Note that SK,(R) = SL(R)/E(R) where
SL(R) = limSL (R) and SL (R) ={xOGL (R)/detx =1} .

3.1.6 Examples

(i) IfRisafield F,SK,(F)=0 and K,(F)OF"
Qi) IfRisa divisinring K,(R) OR"/|R",R’] .



3.1.7 Stability for K,

Stability results are useful for reducing computations of K, (R) to
computations of matrices of manageable size.

Definition: Let 4 be a ring with identity. An integer n 1s said to
satisfy stable range condition (SR, | for GL(A) if whenever r >n,

and (a,,a,,....,a,) generates the unit ideal 34. =4, then there
exists b,,b,,...,b._, [1 A such that
(@, +a,b,a, +ab,,-,a_ +ab_ ) also

generates the unit ideal 1.e.,
Z Ala, +ab)=4



E.g., a semi-local ring (i.e., a ring with a finite number of
maximal ideals satisfy SR,).

3.1.8 Theorem

If SR, 1s satisfied, then

(a) GL,(A)/E, (A) - GL(A)/E(A) is onto for m =2 n and
injective for all m >n.

(b) E _(AAGL, (A) for m=n,1

(¢) GL, (A)/E (A)is Abelian for m > n.

3.2 K, SK; of Orders and Group-rings

3.2.1 Let R be a Dedekind domain with quoted field F, Aan R-
order in a semi-simple F-algebra.

Put SK,(A) =ker(K,(A) - K,(2)).

Hence understanding K, (A)reduces to understanding SK, (/) and
K, (2).Now 2 =MM, (D,). D, adivision ring.



« So K,(2)0MNK,(D,).
 One way of understanding SK,(A)1s via reduced norm
which generalizes the notion of determinant.

3.2.2 Let R be the ring of integers in a number field or p-adu
field F. then there exists an extension E of F since that £ is a
splitting field of = 1.e., £, Z1s a direct sum of metric algebras

over £ 1.e.,
E0,200M, (E).

Let C be the centre of .
If «0Z,]0aq0E O, Z can be represented as a direct sum of

*

matrices over £ and so we have a map nr:GL(Z) - C .

If
2=0%,=0M,(E),and C =0C,.



We could compute nr(a) component-wise v, GL(Z,) — C,. Since

C" 1s Abelian, we have
nr:K,(2) - C .

o« SK,(N)={x0K,(Nnr(x) =1} .

Hence we have access to SK,(RG) where G 1s any finite group.

3.2.3 Applications
1. Whitehead Torsion

J.H.C. Whitehead observed that if X 1s a topological space, with
fundamental group 7m,(X)=G, then the elementary row and

column transformation of matrices over ZG have some
topological meaning.



To enable him study homotopy between spaces, he introduce the
group Wh(G)=K,(ZG)/w(£G) where w is the map
G - GL(ZG) - GL(ZG) - K,(ZG) such that if f: X - VY 1s a
homotopy equivalence, then there exists an invariant
(/) OWh(G) such that 7(f) =0 iff f 1is induced by elementary

deformations transforming X to Y. The invariant 7(f)is called
Whitehead torsion. (see [57])

e K, (ZG)UE)xG” xSK,(ZG) and SO rank
K,(ZG) =rank Wh(G)and SK,(ZG)is the full torsion
subgroup of Wh(G). So, computations of T01r(Kl (ZG))
reduces to computation of SK,(ZG).

For information on computations of SK,(Z G) (see [8],

[60]).



3.3 K, of Rings and Fields

3.3.1 Let A be a ring with 1dentity. The Stenberg group of order
n (n=1) over A, denoted St (4) 1s the group generated by

x,(a) i#j, 1<i, j<n, al A4, with relations

(1) x; (@) x;;(b) =x,;(a+b)

Gi)  [x,(@.x,®)|=1 j#zk izt

(i) [x,().x, (B)] = x, (ab), i, /. k distant
(V) |x,(@)x, (®)] =x,(-ba), j#k.

Note: Since the generator e, (a)of E,(A)satisfies relations (1) to

(iv) above, we have a wunique surjective homomorphism
B, : Si,(4) — E,(4) givenby ¢,(x,, ()] =¢,(a).



Moreover the relations for St,,,(A4)include those of S¢,(4) and so,

there are maps St (4) — St ,,(A). Then we have a conical map
St(A) - E(A).
3.3.2 Define K, (A):=kerSt(4) - E(A).

3.3.3 Theorem: K, (A)is an Abelian group and is the centre
of St(A). Hence St(A) is a central extension of E(A4).

i.e., we have a exact sequence

1 - KM(A4) - SH(A) - E(A) - 1.

3.3.4 Definition: An exact sequence of groups of the form
1> A E? - G - 1is called a central extension of G by 4 if 4
1s central in £. Write the extension as (E£,¢). A central extension

(E,¢) of G by A 1s said to be universal if for any other central
extension (E',¢') of G, there is a unique morphism

(E.9) - (E'.¢').



3.3.5 St(A4) is the universal central extension of E(A). Hence
there exists a natural isomorphism K. (4) OH,(E(A),Z).

Note: The last statement follows from the fact that G (in this
case, E(A), the kernel of the universal central extension (£,¢) (in

this case (St(A),¢) 1s 1isomorphism to H,(G,Z)(in this case

3.3.6 Examples

(1) K,Z 1s a cyclic group of order 2
(i) K,(Z(@)=1,s0is Kz(zﬁ)
() K, (F q) =1 where F is a finite field with g elements
(1) If Fis a field, K, (F[t]) OK,(F)more generally
K,(R[t]) OK,(R)if R 1s a regular ring.
Note: K (4)OK,(P(4))=K,(4).



3.3.7 Let A be a commutative ring with 1, 04" . Put

x; () xji(—u_l) x; (u).

Define A, (u) =w,;(w)w,,;(-).

For u,v[0 A", one can easily check hat ¢([h12(u), hB(u)]) =1land so,
[hlz(u),hl3(v)] [0K,(A). One can also show that [hlz(u), hB(v)] 1S

independent of [hlz(u),hl3(v)] and call this the Stenberg symbol.

3.3.8 Theorem

Let A be a commutative ring with 1. The Stenberg symbol
{,}:4"xA - K,(A) is skew symmetric and bilinear i.e.,

vy ={u,vy s {usuy v = g, v i, v}



3.3.9 Theorem (Matsumoto)

Let F be a field. Then K} (F) is generated by {u,v),u,vOF" with
relations

(1) uul,v] :[u,v}[ul,v]

(i1) u,v Vl] :[u,v}[u,\/l]

(i)  {u,l-u} =1

ie., KJ)(F) is the quotient of F O, F by the subgroup
generated by the elements x O (1-x), xOF .

3.4 Connections of K, with Brauer Groups of Fields and
Galois
Cohomology

3.4.1 Let F be a field and Br(F)the Brauer group of F'i.e., the

group of stable isomorphism classes of central simple F-algebras
with multiplication given by tensor product of algebras (see [7]).

A central simple F-algebra is said to be split by an extension E of
F of EO A 1s E-isomorphic to Mr(E) for some positive integer r.



It 1s well known that such £ can be taken as some finite Galois
extension of F.
Let Br(F,E)be the group of stable isomorphism classes of E-split

central simple F-algebras. Then Br(F):= Br(F,FS) where F. is the
separable closure of F.

3.43 For any m>0, let pu be a group of m™ rods of 1,
G =Gil(F.)(F). Then we have a Kummer sequence of G-modules

0 »>u, - F - 0from which we obtain an exact sequence of
Galois cohomology groups

F* - F S H'(F.u) - H(F.F) -0

where H 1(F,F;‘) =0 by Hilbert theorem 90 so, we obtain

homomorphism
X, F'/mF" OF OZ/m - H'(F,u,).

Now, the composite

F'O,F = |F 0, F)0Z/m - 0'(F,p) 00 (F.,) — 12(F,



1s given by aUb - x,(a) x,(b)(wWhere 1S a cup product)

which can be shown to be a Stanberg symbol inducing a
homomorphism

2, K,(FYOZ/mZ - Hz(F,,u,Sz) (1)

we then have the following result

Theorem 3.4.4: Let F' be a field, m an integer >0 such that the
characteristic of F'1s prime to m. Then the map

8om ' K, (F)/sz(P) - HZ(FHU;SZ

is an isomorphism where H° (F, ,u,fz) can be identified with m
torsion subgroup of Br(F).



Remark 3.4.5: J. Milnov defined ‘higher Milnov K-groups’
KY(F)(n=1)fields as follows:

Definition
K"(F)y=F OF 0--0F a0

n times

i.e., KY(F) is the quotient of F" O F ---F (n times) by the

+a, =lforsomei# j,a, |

subgroup generated by all ¢, Ua, U---Ua,, a, 0 F such that

a,ta, =1.

Note: 0" K (F) is aring.

n>0

Remarks 3.4.6: By generalizing the process outlined in 3.4.3,
we obtain a map,

g, KM (Y KN (FY — H|F o),



It 1s a conjecture of Bloch-Kato hat g, 1s an isomorphism

for all F, m, n.
Theorem 3.4.4 above due to A. Merkurjev and A. Suslin, 1s
the g, case of Bloch-Kato conjecture when m is prime to

the characteristic of F.

A Merkurjev proved that theorem 3.4.4 holds without any
restriction of F' with respect to m.

It is also a conjecture of Milnor that g, . is an

isomomorphism. In 1996, V. Voevodsky proved that
g 18 an isomorphism for any r, leading to his being

awarded a Fields medal.

It 1s now believed that M. Rost and V. Voeodsky have now
proved the Bloch-Kato conjective.



3.5 Applications
1. K, and Pseudo-isotopy

Let R=2G, G a group. For uOR put
w; () =x;, (u)xj—u_l) x;;(u). Let W, be the subgroup of

St(R) generated by all w,(g), g0G.

Now, let M be a smooth n-dimensional compact connected
manifold without boundary. Two diffeomorphisms 4,4, of M are

said to be isotopic of they lie in the same path component of the
diffeomorphism group. Say that #,,4 are pseudo-isotopic if there

is a diffeormorphism of the cylinder M x[0,1] restricted to %, on
Mx%(0) and to h on M x{l}. Let P(M) be the pseudo-isotopy
space of M, i.e., the group of diffeomorphism L of M x[0,1]

restricting to the identity on M x(0). Computation of ITO(P(M 2))

helps to understand the differences between isotopes to and we
have the following result due to A. Hatcher and J. Wagover.



Theorem: Let M be an n-dimensional (n =3) smooth compact
manifold with boundary. Then there exists a subjective map

1,(P(M) — Why(m (M)))

where 77 (M) 1s the fundamental group of M.

4. HIGHER ALGEBRAIC K-THEORY
4.1 The Plus Construction for K, (4)

4.1.1 The plus construction of K, of a ring 4 with 1dentity makes
use of the following theorem of Quillen.

Theorem 4.1.2: Let X be a connected CW-complex N a perfect
normal subgroup of 77 (X). Then there exists a CW-complex

X" (depending on N) and a map X — X " such that

(1) [ 70(X) - 7'[1(X +) 1s the quotient
map 7(X) - 7 X/N =m(X")



(1) For any 7 (X)/N-module L, there is an isomorphism
i :Ha(X,i*L) - Hl.(X+,L) where i'L is L considered as a
7T (X) -module.

(i1)  The space X 'is universal in the sense that if ¥ is a CW-
complex and f:X -Yis a map such that
fo:m(X) - i (Y)such that f,(N)=0 then there exists a
unique map f,X" - Ysuchthat ffi=7.

Definition 4.1.3

Let 4 be a ring, X = BGL(A)the classifying space of the group
GL(A), (a CW-complex characterized by the property that
1T BGL(A) =GL(A)and T BGL(A) =0 for i £1). Then
T BGL(A) = GL(A) contains E(A) as a perfect normal subgroup.
Hence, by thecorem 4.1.2, there exists a BGL(A)". Define
K, (4) =1, |BL(4)").



Example/Remarks 4.1.4

(1) For n=12,K, (A4)as defined above can be identified
with the classical definition.
(i) T BGL(A)" =GL(A)/E(A)=K,(A).
(iii)  BE(A)" is the universal covering space of BGL(A)" and
S0, we have
7,BGL(A)" Om,|BE(4)"| OH,|BE(4)") OH,(BE(4))
OH,(E(4)) OK,(A).

(iv)  K,(4) OH,(S(4)) (see [42])
(v)  IfA1safinite ring, K, (A)1s finite see [31] or [42]
(vi)  For a finite field F, with g elements

K2n (F ) Oand K2n 1( ) z/(qn 1)



4.2

Classifying Spaces and Simplical Objects

4.2.1 Definition

Let Abe a category defined as follows: ob(A):={n={0<1<---<n}}
HomA(m,g) :{monotone maps f,m - n i.e., f(i< f(j)fori <j}.

4.2.2 For any category A, a simplical object in A is a

contravariant functor.
X:A -5 A.Write X, for X(n)

A cosimplical object in A is a covariant functor X :A - A.

Equivalently, one could define a simplical object in a
category A as a set of objects X (n=0) in 4 and a set of

morphisms 0. : X, - X, (0<i<n) called face maps as
well as a set morphisms s,: X, - X,,, (0<;j<n) called
degeneracies satisfying certain simplical identities (see

[93]).



e The geometric n-simplex 1s the topological space
A ={(x0,x1,...,xn) OR™0<x, g i and 3x, =1}

A functor A: A\ — spaces:n — ' is a co-simplical space..

4.2.4 Definition: Let X, be a simplical scl. The geometric
realization of X, , written |X,| is defined by
X,|=xxA= (X, xAn)/D
A n=0

where the equivalence relations [is  generated by
(x,¢n(y)) D(qb”(x),y) for any xOX, y0OY, and ¢:m — n0Aand

where X xA'is given the product topology and x,  1s considered
as a discrete space.

4.2.5 Definition

Now let A be a small category. The Nerve of A, written NA , is
the simplical set whose n-simplices are diagrams

A, ={4, 000 -4, - 001 - 4}



where the 4.’s are A-objects and the f; are A-morphisms. The
classifying space of 4 is defined as |[NA| and denoted by BA.

Remarks: BA is a CW-complex whose n-cells are in one-one
correspondence with the diagrams A, above.

4.2.6 Definition

Now let C be an exact category. We form a new category QC
such that 0b(QC)=0bC and morphisms from M to P, say is an

isomorphism class of diagrams M &’00 NI - Pwhere i an
admissible monomorphism (or inflation) and j 1s an admissible
epi morphism or deflation) in Ci.e., i and j are part of some exact
sequences O NI - PO -P -0 and
0 - N"I0-> N - M - 0, respectively.

Composition is also well defined (see [62]).



Definition 4.2.7:  For n >0, define
K (C):=m,(BOCO) n=0.

Examples: Recall earlier examples.

(A) (1) C=P(), K (C):=K, (4) n=0
C=M(), K(C)=G,(4) n=0
Note that K, (P(4)) O7,|BGL[4")] forn=1
We shall be interested in various rings 4.
(1) A=ZQ.R.C
(11) A = Integral domain R
(i11) A = F (field possibly quotient field of R)
(iv) A =D adunsion ring
(V) A=ZG,RG,QG,RG,CG (afinite group)
(vi) R = integers in a number field or p-adi1 field, 4 =

RG, G finite group or more generally 4 = r-order
Ain a semi-simple F-algebra ¥



(vi1) A=A, (T)where Ais as m (vi) When

A=RG,A=N_,(T)=RV where V =GxTis virtually
a
cyclic group.

4.3 Some Sample Finiteness Results for K{ C)-
(C=P(a), M(1)
4.3.1 Theorem

Let R be the ring of integers in a number field F, Aany R-
order in a semi-simple F-algebra . Then,

(1) For all »n=1,K (N\),G,(N\)are finitely generated

Abelian group
(Kuku, J. algebra 1984, AMS contemp. Math,
1986).

(1) For all »=1LK,(N),G,(N)are finite Abelian
groups, Kuku (K-theory 2005).

(1)  If F1s totally real, then G,, ., (/A)1s also finite for all odd
mz=1
(Algebras and Rep. Theory - to appear)



) For all n> I,Gzn(/\a(T )) 1s a finitely generated Abelian

group where A_(7')1s the twisted Laurent series ring
over A. (Kuku (2007): Algebras and Rep theory - to

appear)
(11) There exists 1Isomorphism

QO K,(A(T))=Q0G, A1) DQOK,(3,(T))Onz
(Kuku (2007): Algebras and Rep. theory - to appear)
(iii) If A is a finite ring, then K, (A4), G,(A4) are finite for all

n=1 (Kuku AMS Cont. Mp. Math 1986).

Note: Above results (1), (ii), (ii1) apply to A = RG (G a finite
group) while (1v) and (V) apply to
N,(T)=(RG),(T)=RV where V =GxT1is a virtually infinite

cyclic group. (1) generalizes classical results known for n = 0,1
to higher dimensions.



4.3.2 K, SK, of Orders and Group rings

Let R be a Dederkind domain (i.e., an integral domain in which
every 1deal 1s projective or equivalently R 1s Noetherian integrally
closed and every prime ideal is maximal or equivalently every

non-zero ideal agin R is invertible i.e., aa' = R where

a ' ={x0F]|xaOR}.Let Abe any R-order in a semi-simple F-
algebra ¥ . For n=0, let SK (N\):= ker(Kn (/\)) - K (¥)and
SG,(\) =ker(G, (M) - G, (%) DK, (%)

Note that for any regular ring R (e.g., Z), K, (R) JG,(R).

As observed earlier, when A =RG (R integers in a number field,
G a finite group), SK,(RG) SK,(RG)contain topological

invariants — respectively, e.g., Swan in variants and Whitehead
torsion). We have the following:



4.3.3 Theorem: (see Kuku Math. Zeit (1979) or Ku-Bk
(2007).

Let p be arational prime. F' a p-adii field with ring of integers R,
[ a maximal R-order in a semi-simple F-algebra %, Then for all
nx1.

(@)  SK,, (=0
(b) SK,, (M =0 iff X1s unified over its centre 1.e., iff Zis a
direct product of matrix algebras over fields.

Note: Above result applies to I' = RG where ( |G, p) =1.

4.3.4 Theorem: See Ku-Bk (2007) or Kuku (1984) J-

algebra; Kuku (1986)
AMS Cont. Math; Kuku (2006) K-theory

Let R be the ring of integers in a number field F, Aany R-order in
a semi-simple F-algebra 3. Then

(a) SK,(N), SG, (M) are finite groups and SG,,(/A\) =0 for all

n=1



(b) SK, (/\ p), SG, (/\ p) are finite groups and
(c) If A=2ZG where G 1s a finite p-group, then SK, _(ZG),
and SK,, Z,G

are finite p-groups.

4.4  Higher Dimensional Class Groups of Orders and
Group rings

Let R be the ring of integers in a number field F, A any R-order in
a semi-simple F-algebra Z. The higher class groups CI/ (A) of

A are defined for all n=0by ClIn(A):= ker(SKn (/\)) -~ OSK, (/\1).
Note that C/ (A) coincides with the usual class group CI(A\)of

A which in turn generalizes the notion of class groups of integers
in a number field. (see Ku-Bk (2007). For results on class groups

of A(see Curtis/Reiner (1987) [8]).
Note also that computations of C/, (/A\)which we already observed

reduces to computation of Whitehead torsion (see Oliver (1988)

[60]).



We now state known results for C/ (A)n=1.

4.4.2 Theorem

Let R be the ring of integers in a number field F, A any R-order in
a semi-simple F-algebra . Then

(1)
(i1)

(iii)

For all n>1, C/ (N\) i1s a finite group (see Ku-Bk

(2007) or Kuku (1986) AMS Cont. Math.)
For all n=1, p-torsion in CI,,_ (/\)can occur only for

primes p lying above prime ideals p at which A , 18 not

maximal. Hence for any finite group G, for all »>1, the
only p-torsion possible in CI, _ (RG) 1s for those primes

p dividing the order of G. (see Kolster/Laubenbacher
(1988) Math. Zeit).

Let F be a number field with ring of integers R, Aa
hereditary R-order in a semi-simple F-algebra or and
Eichler order in a quatermon algebra. Then the only p-
torsion possible is for those primes p lying below the
prime ideals p at which A is not maximal. (see Ku-Bk

(2007) or Guo/Kuku (2005) Comm. in Alg.).



(1) Let S be a symmetric group of degree n. Then
Cl, (ZS,) is a finite z-torsion group (see Kolster
/Lauben bacher (1998) Math. Zeit).

4.5 Higher K-theory of Schemes

4.5.1 Recall: If X1s a scheme, we write K (X)for K (P(X)) and
when X is a Neotherian scheme, we write G, (X) for K, (M (X)).

If G 1s an algebraic group over a field F, and X 1s a G-scheme, we
write K (G, X)for K (P(G,X))are G, (G, X)for K (M (G, X)).

Note:
(a) If Gistrival group G, (G,X)=G,(X) and
K (G,X)=K (X).



(a) G,(G,~) is contravariant with respect to G-maps.

(b) G, (G,-) is covariant with respect to projective G-maps.
(c) K, (G,-) is contravariant with respect to any G-map.
(d) G, (-, X) is contravariant w.r.t. any group

homomorphism.
(e) K, (-, X) 1scovariant w.r.t group homomorphisms. (see

Thomason (1987) K-theory Proc. Princeton.

4.5.2 Recall: Let B be a finite dimensional separate F-algebra. X
a smooth projective variety equipped with the action of an affine
algebraic group G over F, yX the twisted form of X with respect

/F - G(Fsep). Let TBG(r,B) be the
category of vector bundle on yX equipped with left B-module
structure. We write K (yX,B) for K (VB,(yX,B)). (See Panin
(1994) K-theory; Merurjer (preprint).

to a cocycle y:GalF,

€p

We now have the following results.



4.5.3 Theorem: Kuku (2007) MPIM - Bonn, preprint

Let G be a semi-simple simply, connected and connected F-split
algebraic group over a field F, P a parabolic subgroup of G,
F =G/P the flag variety and yF the twisted form of F, B a finite-
dimensional separable F-algebra.

(a)  Let F'be a number field, then for all n>1
(1) K 2n+l( yF, B) 1s a finitely generated Abelian group;

(ii) K, (yF,B) is a torsion group and has no non-trivial
dunsible subgroups.

(b) Let F be a p-adii field, fa rational prime such that €# p.
Then for all »>1 and any separate F-algebra B, Kn( yF,B)f is a
finite group.



4.5.4 Theorem: (Kuku (2007) MPIM-Bonn (preprint))

Let V' be a Brauer-Severi variety over a field F.

(a) If F'1s a number field, then K, , (V) 1s a finitely

generated Abelian group for all n>1.
(b) If Fis a p-adii field, then for all n>1, K (V), is a

finite group if ¢ i1s a prime # p.

4.6 Mod-m Higher K-theory of exact Categories, Schemes
and Orders

4.6.1 Let X be an H-space, m a positive integer
M an n-dimensional mMbd-m Moore space is the space obtained

from S§" by attaching an n-cell via a map of degree m, (See Ku-
Bk (2007) or Niesendorfer 1980/ AMS Memoir).



* ). Write
m(X,Z/m)for[M;,X] n=2

(X, Z/m)form(X)OZ /m.
The cofibration sequence

ST M oS MM IT -S5O S”
yields an exact sequence
7T,(X) O — (X)) OF — 71,(X, Z /m) O — 71, (X) (O - 77, (X)
and hence the following exact sequence
0 - 1,(X)/m — m(X,Z/m) - 71 (X)[m] -0
where

7T, (X)[m]={x07m_,(X)| mx=0}.
Example 4.6.2

(1) If C is an exact category, write K (C,Z/m) for
. (BOC,Z /m);n=1 and write
K,(C, Z /m)for K,(C)OZ /m.

(1) If C=P(4), a ring with 1, write K, 6 (4,Z/m)for

K,(P(4).Z /m);



(iii)

(iv)

(V)

(Vi)
(vii)

If X is a scheme, and C=P(X), write K (X,Z/m) for
Kn(P(X ),Z /m). Note that if X =Spec(4), 4 commutative,
we recover K (A,Z/m).

Let A be a Noetherian ring. If C=M(4), we write
G A,Z/m)forK (M(A),Z/m).

Let X be Noetherian scheme, C=M(X). We write
G (X,Z/m)forK (M(X),Z/m). If X =Spec(d), we
recover G, (A4,Z /m) .

Let G be an Abelian group over a field F, X a G-scheme,
C=M(G,X). G,((G,X),Z/mfor K (M(G,X),Z/m)).
Let G be an algebraic group over a field ,.X a G-scheme;

C=P(G,X). We write K ((G,X),Z /mforK (P(G,X),Z/m)).
(vii1) Let G be an algebraic group over a field F, X a G-scheme,

B a finite dimensional separable F-algebra, X the twisted
form of X via a l-cocycle », C=VB,(, X,B). We write
K .X,B),Z/mforK (.X,B),Z/m).



4.6.2 Theorem: Kuku (2007) MPIM-Bonn Preprint

Let C,C'be exact categories and f:C - C'an exact factor which
induces Abelian group homomorphism f,:K (C) - K,(C'] for
each n=>0. Let ¢ be a rational prime

(a)  Suppose that £, 1s injective (resp. surjective, resp.
bijective), thensois f,:K (C,Z/m) - K, (C,Z /m);

(b) If f, 1s split surjective (resp. split injective), then so 1s
f:K(C,Z/m) - K,(C,Z/m).

4.7  Profinite Higher K-theory of Exact Categories,
Schemes and Orders

4.7.1 Let C be an exact category,  a rational prime, s a positive
integer, put M " =limM " . We define the profinite K-theory of C by

K" C,i,f) = [M””, BQC]. We also write K, (C,ff) for li_m(C,Z /fs) :

Note: For all n =2, we have an exact sequence

laS

0 - lim'K, C,z}) - K, (C,zf) - 0.

czie) - kr

n+l



For more information on this construction, see Ku-Bk (2007),
chapter 8 or [42].
Example 4.7.2
(1) Let C=P(4), A aring with 1. We write
K" A,z}) for K, (P(A), z}) and K, (P(A),if) for K, (P (A), z}).

(11) If X1sascheme and C=P(X), we write
K" X,ff)for K" P(X), ZAf)and K, ((X),if)for KH(P(X),if).

(11) Let C=M(4), write
G (A,z}) for G" (M (A), z}) and G, ((A),ff) for K, (M (A), z}).

(iv) If C=M(X), Xascheme, write
G X,ZAf)forK,f” M (X),ZAf)and Gn(X,zf)forKn(M (X),ff). It
X =Spec(A4) recover G A,ZAf)and G, (A,Z}).




(V) Let G be an algebraic group over a field F, X a G-scheme,

N

C =M (G, X). We write G/ ((G,X),Zf) for Gf’”(M (G,X),z}).

(vi) Let G be an algebraic group over a field F, X a G-scheme,
C=P(G,X), we write K" ((G,X),z}) for K" (P(G,X),z}).

(vi1) Let G be an algebraic group over a field F, X a G-scheme,
yX the twisted form of X and B a finite-dimensional separable

algebraic over F. If C=VB_|(, X,B), 2f) , We write
K,fr((rX,B),zf)for K" VBG,(FX,B),ZAf)

Theorem 4.7.3: Kuku (2007) MPIM —Bonn preprint

Let C,C' be exact categories and f:C — C' an exact factor

which induces an  Abelian group homomorphism
f.. K, (C) —>Kn(C') for n=0. Let ¢ be a rational prime, s a

positive integer. Suppose that f, 1is injective (resp. surjective;

resp. bjective), then so is
fa :K,fr(C, 2f) — K,fr(C', 2f).



Theorem 4.7.4: Kuku (2007) MPIM-Bonn Preprint

Let F be a number field, Ga semi-simple connected, simply
connected split algebraic group over F, P a parabolic subgroup of
G,F=G/P, y a l-cocycle : Gal(Fsep/F) —>5(F ), yF the y-

sep
twisted form of F, B a finite-dimensional separable F-algebra.
Then for all n>1,
@ K3|(yF.B)

) 1s an t-complete Abelian group;
Gy divk/(F.8.2,) =0

Theorem 4.7.5: Kuku (2007 — MPIM-Bonn Preprint

Let p be a rational prime, F a p-adii field, G a semi-simple
connected and simply connected split algebraic group over F, P a
parabolic subgroup of G, F =G/ P the flag variety, y a 1-cocycle
Gal( F, /F) - G( Sep) yF the y-twisted form of F, B a finite-

dimensional separable F-algebra, ¢ a rational prime such that
t# p.Thenforall n=2.



(1) K" ( yF, B) Z f) 1s an t-complete profinite Abelian group.
Gy K7vF.B)2)=K,[vF. ) 2]

(iii) The map ¢:K (yF,B) - K,fr((yF,B),ff) induces
isomomorphiss

- K,(yF.B).[610K|(yF.B).Z
- K[yF.8)/e DKL ((yF.B)

Je
2)je

(iv)  Kernel and cokernel of X, (,F,B) - K (rF,B),ff) are

uniquely ¢-divisible.

v div 7| F.B.,Z,]=0forn=2.



S. Equivariant Higher K-theory Together with
Relative Generalizations

In this section, we exploit representation theoretic techniques
(especially induction theory) to define and study equivarient
higher K-theory and their relative generalizatins. Induction theory
has always aimed at computing various invariants of a group G in
terms of corresponding invariants of subgroups of G. For lack of
time and space, we discuss here finite group actions and note that

analogous results exist for pro-finite group and compact lie group
actions (see Ku-Bk (2007) chapter 9 —13).

5.1 Equivariant Higher K-theory for Exact Categories
for Finite Group Actions

5.1.1 Definition

Let B be a category with finite sums final object and finite

pullbacks (and hence finite products) e.g., category G-set of
(finite) G-Sets, where G is a finite groups, D an Abelian category
(e.g., R-Mod)



A pair of functors (M .M |:B 5 D is called a Marchey functor if

(1) M, :B - D iscovariant, M  :B - D contravariant and
M,(X)=M"(X)=M(X) O XUOobB.
(i1)  For any pull-back diagram

4 —£ 5 4 M(4) Ty M4y
\l/pl \Lpz in B, the diagram ’]\ p /I‘ p, commutes
4 f%’ A M (Al)% M(A4)

(iii)) M “ transforms finite coproducts in B into finite products in

Di.e., the embeddings X, — X X,induces an isomomorphism
i=1

M(X X XX X,)OM(X,)x--xM(X,).



5.1.2 Note that (i1) above 1s an axiomatization of the Mackey
subgroup theorem in classical representation theory (Put B = G-

Set, 4, =G/H; A,=G/H' G/HxG/H' can be identified with the
set D(H,H'| :{HgH'\gDG] of double cosets of H/ and H' i G.
(see [8] for a statement of Mackey subgroup theorem).

5.1.3 We shall concentrate on exact categories 1n this section but
observe that analogous theories exist for symmetric monoidal and
Wildhanser category (see Ku-Bk (2007) chapters 9, 10, 13).

So, let C be an exact category, S a G-set, G a finite group, S the
translation category of S. Recall that the category [S,C] of
covariant functors from Sto C is also an exact category where a
sequence 0 - S' -8 - 8" -0 1 [§,C] 1s said to be exact if
0 - S(S) > S(S) - S"(S) - 0 isexactin C.



5.1.3 Definition

Let K9(S,C) be the n™ algebraic K-group associated with the
exact category [S, C] with respect to fibre-wise exact sequences.

Theorem 5.1.4

K%(-,C):GSet - Z -Mod is a Mackey functor.

(For proof see Ku-Bk (2007) or Dress/Kuku Comm. in Alg.
(1981).

5.1.5 Note: We want to turn K’ (—,C) into a ‘Green’ functor and
see that for suitable category C, K¢(-,C) is a module over
K¢(-,C). We first define these notions of ‘Green’ functor and

modules over ‘Green’ functors.



5.1.6 Definition

A Green functor G:B -~ R-Modis a Mackey functor together
with a pairing GxG - G such that for any B-object X, the R-
bilinear map G(X) - G(X) makes G(X) into an R-algebra with a
unit 10G(X) such that for any morphism f:X - Y, we have

f*(lG(Y)) = 1G(X) :
A left (resp. right) G-module 1s a Mackey functor
M :B - R-Mod together with a pairing

GxM - M (resp. M xG -~ M) such that for any B-object X,

M(X) becomes a left (resp. right) unitary G(X)-module we shall
refer to left G-modules just as G-modules.



5.1.7 Definition

Let C,C,,C, be exact categories. An exact pairing ( , ).
C xC, - C, given by (X, X,) - (X, X,) is a covariant functor
such that

Hom[(Xl,Xz), (XIQX;)]
= Hom(.X,, X|) x Hom(X,, X.] - Hom(X, o X,), (X o X}

1s bi-additive and bi-exact (see Ku-Bk (2007) or [87]).

5.1.8 Theorem
(for Proof see Ku-Bk (200) or Dress/Kuku. Comm. in Alg.

(1981)

Let C,C,,C,be exact categories and C xC, - C, an exact
pairing of exact categories, S a G-Set. Then the pairing induces a
pairing  [S,C|x[S,C,| - [S,C,] and hence a pairing
KS(S,C)%KI(S,C,) — KO(S,C,).



Suppose that C 1s an exact category such that the pairing
CxC - C 1s naturually associative and commutative and there

exists EOCsuch that |[EoN|=[NoE|=[N] O NOC. Then
KY(-,C)is a Green functor and K!(-,C) is a unitary K. (-,C)-
module.

5.1.9 Definition/Remarks

If M : GSet - Z -Mod is any Mackey functor, X a G-set, define a
Mackey functor M, :GSet -~ Z -Mod by M ,(Y)=M (X xY). The
projection map pr:XXxY - Y defines a natural transformation
8,:M, -~ Mwhere 6,(Y)=pr, M(XXY - M(Y)). M is said to
be X-projective if 8, 1s split surjective 1.e., there exists a national
transformation ¢ : M — M , such that O,¢ =id,, .

Now define a defect base D,, of M by D,, = [H <G X" # qo} where

X 1s a G-set (called defect set of M) such that M 1s Y-projective iff
there isa G-map f, X - Y (See Ku-Bk (2007) Prop. 9.1.1).



If M is a module over a Green functor G then M is X-projective iff
G 1s X-projective 1iff the induction map G(X) - G(G/G) 1s
surjective (see Ku-Bk. Theorem 9.3.1).

e In general, proving induction results reduce to determining
G-sets X for where G(X) —» G(G/G) 1s surjective and this

in turn reduces to computing D, (see Ku-Bk 9.6.1).
Hence one could apply induction techniques to obtain results on
higher K-groups K ¢(-,C) which are modules over Green functors

K, (=0).



5.2  Relative Equivalent Higher Algebraic k-theory

Definition 5.2.1 Let S, T be G-Sets. Then the projection
SxT[I¥ - S gives rise to a functor Sx7T [I? ~ S. Suppose that C
is an exact category. If ¢0[S,C|, we write ¢ for
Gogp:SXT[I? - SOF-C. Then a sequence ¢ - ¢, - ¢3 of
functors in [S,C| is said to be T-exact if the sequence

¢l - ¢, — ¢, of restricted functors Sx7 [OI¥ - SOf - C is split

exact. If ¢:S, - S, 1s a G-map, and ¢, - ¢, - ¢3 1s a T-exact
sequence in [§,C] , and we put ¢, =¢o¢,, then {, - ¢, - ¢, 1s T-
exact 1n [§1,C]. Let K¢ (S,C,T) be the nth algebraic K-group
associated to the exact category [§,C] with respect to 7-exact
sequence.

Remarks: The use of the restriction functors ¢', ¢ 1n 5.2.1
constitute a special case of the following general situation. Let ¢
be an exact category and B, B' any small categories. We define
exactress in [B,C] relative to some covariant functor 6:B' - B.



Thus a sequence ¢, — ¢, — ¢, of functors in [B,C] 1s said to be
exact relative to 0:B" - B if it 1s exact fibrewise and if the
sequence ¢ -G - G of restricted functors
¢l=¢ 0 :B'I¥-BMf- C is split exact. Let K9(S,C,T) be
the nth algebraic K-group associated to the exact category [S,C]
w.r.t exact sequences.

5.2.3 Definition

Let S, T be G-Sets. A functor ¢[S,C] is said to be T-projective
if any 7-exact sequence ¢, —» ¢, —» ¢ 1s exact. Let [S,C], be the
additive category of T-projective functors in [S,C] considered as
an exact category with respect to split exact sequences. Note that
the restriction functor associated to S, O0f - S, -carries T-
projective  functors cD[§ 2,C] into T-projective functors
Coy D[§2,C]. Define P¢(S,C,T) as the nth algebraic K-group
associated to the exact category [S, C],, with respect to split exact
sequences.



5.2.3 Theorem

K%(-,C,T) and P°(-,C,T) are Mackey functors from GSet to Ab

for all n=0. If the pairing CxC - C is naturally associative and
commutative and  contains a natural unit, then

K’(-,C,T): GSet — Ab is a Green functor, and K¢(-,C,T) and
P°(-,C,T) are K. (-, C,T)-modules.

Also, the induction functor ¢, :|S,,C| - [S,,C| associated to
WS, - S,preserves T-exact sequences and 7-projective functors
and hence induces homomorphism

KCp,c,T).:K°(s,,C,T) - K°(S,,C,T) and

Pely,c,T).: P°(S,,C,T) - P°(S,,C,T), thus making K°(-,C,T)
and P°(S,,C,T) covariant functors. Other properties of Mackey
functors can be easily verified.



Observe that for any GSer T', the pairing [§I,C] ><[§2,C] - [&,C]
takes T-exact sequences into 7-exact sequences, and so, if
[§ l.,C], i =1,2 are considered as exact categories with respect to 7-

exact sequences, then we have a pairing

KS(S,C,,T)xKC(S,C,,T) - K°(S,C,,T). Also if ¢, is T-
projective, So 1S <c1,c2>. Hence, 1f [§,C1] 1s considered as an exact
category with respect to 7-exact sequences, we have an induced
pairing K¢(S,C,,T)x P°(S,C,,T) - P°(S,C,,T). Now, if we put
C, =C, =C, =C such that the pairing CxC - C 1s naturally
associative and commutative and C has a natural unit, then, as in
theorem 5.1.8 K/ (-,C,T) is a Green functor and it is clear from

the above that K¢(-,C,T) and P°(-,C,T) are K, (-,C,T)-
modules.



5.2.4 Remarks

(1)

(i1)

5.3

In the notation of theorem 5.2.3, we have the following
natural transformation of functors:

P°(-,C,T) - K°(-,C,T) - K?(-,C), where T is any
G-set, G a finite group, and C an exact category. Note
that the first map is the ‘Cartan’ map.

If there exists a G-map T, — T, we also have the
following natural transformations

PS(-,C.T,) - PY(~,C,T;) and

K¢(-,C,T,) - K/ (-,C,T,) since, in this case, any T, -
exact sequence is 7, -exact.

Interpretation in Terms of Group-rings

In this subsection, we discuss how to interpret the theories in
previous sections in terms of group-rings.



5.3.1 Recall that any G-set S can be written as a finite as a finite
disjoint union of transitive G-sets, each of which 1s isomorphic to
a quotient set G/H for some subgroup H of G. Since Mackey
functors, by definition, take finite disjoint unions into finite direct
sums, it will be enough to consider exact categories |G/H,C]

where Cis an exact category.

For any ring A, let M (A4) be the category of finitely generated A-
modules and P(A4) the category of finitely generated projective A-

modules. Recall from ... that if G is a finite group, H a subgroup
of G, A a commutative ring, then there exists and equivalence of
exact categories [G/ H,M (A)] — M (4H). Under this experience,

[G/ H, P(A)] is 1dentified with the category of finitely generated
A-projective left AH-modules, i.e., [G/ H,P (A)] 0P, (AH).



We now observe that a sequence of functors
Cl—>cz—>c3D[G/H,M(A)] or [G/H,P(A)] 1s exact 1if the

corresponding sequence ¢, (H) - ¢,(H) - ¢,(H) of AH-modules
is exact.

Remarks 5.3.2

(1) It follows that for every n=0,K’|G/H ,P(A)] can be
identified with the nth algebraic K-group of the
category of finitely generated 4-projective 4 H-modules
while K°|G/H,P(4)|=G, (4H) if A is Noetherian. It is
well known that K°|G/H,P(4)| =K°|G/H,M(4)| is an
1Isomorphism when 4 is regular.




(1)

(i1)

Let ¢:G/H, - G/H, be a G-map for H <H,<G. We
may restrict ourselves to the case H, =G, and so, we
have ¢*\%,M(A)\ - \G/_H,M(A)\ corresponding to
the restriction functor M (AG) - M(4H), while
. \G/_H ,M (A)‘ - \%M (A)\ corresponds to the
induction functor M (4AH) - M(AG) given by
N - AGUO , N. Similar situations hold for functor

categories involving P(A4). So, we have corresponding

restriction and induction homomorphisms for the
respective K-groups.

If C=P(4) and A i1s commutative, then the tensor
product defines a naturally associative and commutative
pairing P(A4)xP(A4) - P(A4) with a natural unit, and so,
K¢~ P(4)) are K¢(-,P(4))-modules.



5.3.3 We now interpret the relative situation. So let 7 be a G-set.
Note that a sequence ¢, - ¢, — ¢, of functors in [G/H M (A)] or

[G/H P(A)] 1s said to be T-exact if ¢, (H) - ¢,(H) - ¢,(H) 1s

AH'-split exac for all H'<Hsuch that 77 20 where
T" - { gt=t OgOH ’} . In particular, the sequence of G/H-

exact (resp. G/G-exact) 1f an only 1f the corresponding sequence
of AH-modules (resp. 4/G-modules) 1s split exact. If £ 1s the
trivial subgroup of G, it 1s G/g-exact if 1t 1s split exact as a
sequence of A-modules.

So, KY(G/H,P(A),T) (resp. KC¢(G/H,M(A),T) is the nth
algebraic K-group of the category of finitely generated A-

projective AH-modules (resp. category of finitely generated AH-
modules) with respect to exact sequences that split when restricted

to the various subgroups H'of H such that 7" #O with respect
to exact sequences. In particular, K°(G/H,P(A4),G/e)=K (AH).
If 4 is commutative, then K°(—,P(4),T) is a Green functor, and
KC(=,P(A),T) and P°(-,P(A4),T) are K¢(-,P(4),T)-modules.



Now, let us interpret the map, associated to G-maps S, - S,. We
may specialize to maps ¢:G/H, - G/H, for H, <H, <G, and for
convenience we may restrict ourselves to the case H, =G, which
we write H, =H. In this case, ¢*:[G/G,M (A)] HZ[G/H,M (A)]
corresponds to the restriction of AG-modules to AH-modules, and
9. :[G/H ,M (A)] corresponds to the induction of AH-modules to

AG-modules.

Since any G-set S can be written as a disjoint union of transitive
(G-sets 1somorphic to some coset-set G/H, and since all the above
K-functors satisfy the additiveity condition, the above
identification extend to K-groups, defined on an arbitrary G-set S.



5.4  Some Applications

5.4.1 We are now in position to draw various conclusions just by
quoting well-established induction theorems concerning

K¢(-,P(4) and KS(-,P(4),T), and more generally
RO, KS(-P(4)) and RO, KS(-,P(4),T) for R, a subring of O,
or just any commutative ring (see ...) Since any exact sequence in
P(4) 1s split exact, we have a canonical 1dentification
KS(-P(4),T)=KS(-,P(4),G/€) (e the trivial subgroup of G) and
thus may direct our attention to the relative case only.

So, let T be a G-set. For p a prime and ¢g a prime or 0, let
D(p,T,q) denote the set of subgroups H <G such that the

smallest normal subgroup H, of H with a g-factor group has a
normal Sylow-subgroup H,with 7™ #0 and a cyclic factor
group H,/H,.Let H denote the set of subgroups H <G, which

are g-hyperelementary, 1.e., have a cyclic normal subgroup with a
g-factor group (or are cyclic for ¢ =0).



For 4 and R being commutative rings, let D(A4,7,R) denote the
union of all D(p,T,q) with p4# A and gR # R, and let H, denote
the set of all H, with gR# R. Then , it has been proved (see [11],
[44]) RO, KOG(—,P(A),T) is S-projective for some G-set S if
S"#0 OHODA4,T,R) H,. Moreover, if A is a field of
characteristic p#0, then KS(—,P(A4),T) is S-projective already if
S"#0 OHODA,T,R). (Also see Ku-Bk).



5.4.2 Among the many possible applications of these results, we
discuss just one special case. Let 4 =kbe a field of characteristic
pz0, let R :Z(i), and let S=0,,,,,G/H. Then,

RO, K’ (—,P(k),T) are S-projective. Moreover, the Cartan map
K~ P(k),T) = K°(-,P(k),T) is an isomorphism for any G-set S
for which the Sylow-p-subgroups A of the stabilizers of the
elements in X have a non-empty fixed point set 7" OT, since in
this case 7-exact sequences over X are split exact and thus all
functors ¢:X — P(k)are T-projective, i.e., |[X,P(k)|, [X,P(k)|
is an isomomorphism if [ X, P(4)| is taken to be exact with respect

to T-exact and thus split exact sequences. This implies in
particular that for G-sets X, the Cartan map

Pe(X xS,P(k),T) - K°(XxS,P(k),T)



1s an isomorphism since any stabilizer group of an element in
X xS1s a subgroup of a stabilizer group of an element 1n S, and
thus, by the very definition of S and D(k,T,Z (i)) , has a Sylow-p-

subgroup H with T" #0. This finally implies that
PHG(—,P(k),T)s - Kf(—,P(k),T)s 1S an 1somorphism. So, by the
general theory of Mackey funcors,

z%— | PC(=,P()T) z%; | KE(=,P(k)T)

is an isomorphism. The special case (I'=G/€) P’ (- P(k),G/¢€),
just the K-theory of finitely generated projective kAG-modules and
K¢(-,P(k),G/€) the K-theory of finitely generated AG-modules

with respect to exact sequences. Thus we have proved the
following.



Theorem 5.4.3

Let & be a filed of characteristics p, G a finite group. Then, for all
n=0, the Cartan map K, (kG) - G, (kG) induces isomorphisms

z%; K (kG) - z%i; G (kG).

Here are some applications of theorem 5.4.3. These applications
are due to A.O. Kuku (see [42]).

Theorem 5.4.4

Let p be a rational prime, £ a field of characteristic p, G a finite
group. Then for all n>1.

(1) K, (kG) 1s a finite p-group.
(11)  The Cartan homomorphism ¢, : K, (kG) - G,,_(kG) 1s
surjective, and ker¢, _, 1s the Sylow-p-subgroup of K, _ (kG).



Corollary 5.4.5

Let k be a field of characteristic p, C a finite E1 category. Then,
for all n>0, the Cartan homomorphism K, (kC) - G, (kC)

induces isomorphism

z%})] K (kC) DZ%_I G (kC).

Corollary 5.4.6

Let R be the ring of integers in a number field F, m a prime ideal
of R lying over a rational prime p. then for all, n>1,

(a)  the Cartan map K ((R/m)C) = G, ([R/m)C) is
surjective;
(b) KZn((R/m)C) 1s a finite p-group



Finally, with the identification of Mackey functors:
GSet - Abwith Green’s G-functors 0G — Ab as in [42] and

above 1nterpretations of our equivariant theory in terms of
grouprings, we now have, from the forgoing, the following result,
which says that higher algebraic K-groups are hyperelementary
computable. First, we define this concept.

Definition 5.4.7

Let G be a finite group, U a collection of subgroups of G closed

under subgroups and i1somorphic 1mages, 4 a commutative ring
with identity. Then a Mackey functor M :0G - A-Mod i1s said to

be U-compatible if the restriction maps M (G) - HHDUM(H)
oM (H) where lim,, 18 the
subgroup of all (x)O HHDUM (H) such that for any #,H'0U and
g0G with gH's" OH, ¢:H' - Hgiven by h — ghg™, then
M(@)xy)=x,.

induces an 1somorphism M (G) Olim



Now, 1f 4 1s a commutative ring with identity, M :0G - Z -Mod
a Mackey functor, then 40 M (H). Now, let P be a set of rational

primes, Z, :Z[é ‘ qDP], C(G) the collection of all cyclic

subgroups of G,4,C(G) the collection of all P-hyperelementary
subgroups of G, 1.e.,

hPC(G):{HSG‘ OH'<H,H'0(G),H/H'" a p-group for some p F

Then we have the following theorem,

Theorem 5.4.7

Let R be a Dedekind ring, G a finite group, M any of the Green
modules K (k-1),G, (k-1)SK (k—-1), SG,(R-1), CI (R-1) over
G,(R-1) then Z, OM is h,(C(G))-computable.
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