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Introduction and background Bibliography

Back in 1995 a graduate summer school on K-Theory was organised at the
University of Lancaster (UK) by the London Mathematical Society (LMS).
This summer school covered the three basic branches of K-Theory, namely
Topological K-Theory, Analytic K-Theory (K-Homology) and Higher Alge-
braic K-Theory. The main lecturers were Professors J.D.S. Jones (Warwick),
J. Roe (Oxford then, now at Penn. State) and D.G. Quillen (Oxford) respec-
tively.

The author, a graduate student at the Mathematical Institute of the Uni-
versity of Oxford at that time, had the chance to be one of the attendants of
that summer school and his personal notes form the backbone of this book.
Those notes were expanded and polished during the years since the author
had the chance to teach a graduate course on K-Theory twice in the past
at the Universities of Cardiff (UK) and Athens (Greece). This experience
gave the motivation to present the book as a group of 18 hourly lectures, 6
for each branch of K-Theory. Subsequently one further chapter was added,
containing an introduction to Waldhausen K-Theory (this last chapter was
never taught in class though) along with 2 setions, one on twisted K-theory
and applications in string/M-Theory and one on the so called gap labeling
problem in solid state physics. For convenience we include an appendix which
contains some results from other areas of mathematics (especially from al-
gebraic topology). A few Propositions have no proofs, this is happens when
proofs are either fairly straightforward (and in this case they are left as ex-
cercises for the reader) or too extensive and complicated and we only exhibit
the main ideas and provide references.

The mathematical bibliography on K-Theory cannot be considered to be
extensive. We give an almost complete list of relevant books available (we
have made some use of these books in our notes):

For topological K-Theory one has the clasic 1967 Harvard notes by M.F.
Atiyah (see M.F. Atiyah: ”K-Theory”, Benjamin 1967) and a recent book by
Efton Park: ”Complex Topological K-Theory”, Cambridge University Press
2008. There are also some online notes by A. Hatcher from Cornell University
(see http://www.math.cornell.edu/ hatcher/) and some online notes by Max
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Karoubi in Paris (see http://people.math.jussieu.fr/ karoubi/KBook.html)
along with his book ”K-Theory - An Introduction”, Springer (1978).

For analytic K-Theory there is the book by N.E. Wegge-Olsen: ”K-
Theory and C∗ Algebras”, Oxford University Press 1993, the more advanced
book by B.Blackadar: ”K-Theory for Operator Algebras”, Cambridge Uni-
versity Press 1998, the book by Nigel Higson and John Roe: Analytic K-
Homology, Oxford University Press 2000 and the book by F. Larsen, M.
Rrdam and M. Rordam: ”An Introduction to K-Theory for C∗-algebras, Cam-
bridge University Press 2000. There are also some nice brief online notes by
T. Gowers (from Cambridge University): ”K-Theory of Banach Algebras”
(see http://www.dpmms.cam.ac.uk/ wtg10/).

For the Higher Algebraic K-Theory there are the books by Jonathan
Rosenberg: ”Algebraic K-Theory and its Applications”, Springer Graduate
Texts in Mathematics (1994), the book by V. Srinivas: ”Algebraic K-Theory”,
Birkhauser, Boston (1996) and the book by Hvedri Inassaridze: ”Algebraic
K-Theory”, Kluwer 1995. There are also some on line notes by C. Weibel:
”The K-book: An introduction to Algebraic K-Theory”.

Thus there is not a concise introduction on K-Theory available in the
bibliography covering all basic three branches.

The ”fathers” of K-Theory are M.F. Atiyah and A. Grothendieck, ar-
guably the greatest mathematicians of the second half of the 20th century.
The name was given by Grothendieck, the letter ”K” stands for the German
word ”(die) Klasse” which means class in English. K-Theory is one of the
so-called generalised (or exotic) homology theories and satisfies 4 out of the 5
Eilenberg-Steenroad homology axioms: it satisfies homotopy, excision, addi-
tivity and exactness but it does not satisfy the dimension axiom, namely the
K-Theory of a point is Z and not zero. During the 50 years since its birth,
K-Theory has been proven a very useful tool in many areas of mathematics
including topology, global analysis, index theory, number theory, algebra,
(noncommutative) geometry etc. Moreover K-Theory has found many ap-
plications in theoretical physics as well, for example one can mention the
anomaly cancellation in quantum field theories, the so called gap labelling
problem in solid state physics, the topological charges of membranes in M-
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Theory (where topological charges of membranes are considered to be classes
of twisted K-Theory) etc.

Mathematical evolutions of K-Theory are the equivariant K-Theory of
M.F. Atiyah and G.Segal, the L-Theory used in surgery of manifolds, the
KK-Theory (Kasparov K-Theory or bivariant K-Theory), the E-Theory of
A. Connes, the Waldhausen K-Theory or ”A-Theory” (which is a topological
version of Quillen’s Higher Algebraic K-Theory) etc. We should also men-
tion the close relation between Higher Algebraic K-Theory and the theory of
Motives (motivic cohomology) by V. Voevodsky.

This book is suitable for graduate students, hence we assume that the
reader has a good knowledge of algebra (in particular groups, modules and
homological algebra), geometry (manifold theory) and algebraic topology
(singular and chain (co)homology for CW-complexes and basic homotopy
theory). The end of a proof is denoted by a white box. In the notation used,
for example, Proposition 2.3.9 refers to proposition 9 in section (lecture) 3 in
chapter 2. A list of suitable recommended books with background material
follows:

Algebra
• S. MacLane, G. Birckoff: ”Algebra”, Chelsea, 1988
• S. Lang: ”Algebra”, Addison Wesley 1993
• P. J. Hilton, U. Stammbach: ”A Course in Homological Algebra”, Springer
1997.
• N. Bourbaki, ”Algebra”, Vol I,II
• W.A. Adkins, S.H. Weintraub, ”Algebra”, Springer, 1992
• P.M. Cohn ”Algebra”, John Wiley, 1989
• T.H. Hungerford, ”Algebra”, Springer, 1980

Geometry
• N. Hitcin online notes on manifolds, see
http://people.maths.ox.ac.uk/ hitchin/hitchinnotes/hitchinnotes.html
• P. Griffiths and J. Harris: ”Principles of Algebraic Geometry”, Wiley, 1994
• S. Kobayashi, K. Nomizu: ”Foundations of Differential Geometry”, Vol
I,II, Wiley, 1996
• J.M. Lee, ”Introduction to Smooth Manifolds”, Springer, 2002
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Topology
• A. Hatcher, on line notes on algebraic topology,
see http://www.math.cornell.edu/ hatcher/AT/AT.pdf
• J. P. May: ”A concise Course in Algebraic Topology”
see http://www.math.uchicago.edu/ may/CONCISE/ConciseRevised.pdf
• E.H. Spanier: ”Algebraic Topology”, Springer 1991
• A.Dold: ”Lectures on Algebraic Topology”, Springer 1991
• C.R.F. Maunder: ”Algebraic Topology”, Dover 1996
• W.S. Massey: ”A Basic Course in Algebraic Topology”, Springer 1991
• J. Munkres: ”Elements of Algebraic Topology”, Westview 1995
• R. Bott, L. Tu: ”Differential forms in algebraic topology”, Springer 1982
• N. Steenrod: ”The topology of fibre bundles”, Princeton (1951)
• S. Eilenberg and N. Steenrod: ”Foundations of Algebraic Topology”, Prince-
ton (1952)

IPZ, Athens, August 2010
http://sites.google.com/site/ipzoisscience/home

7



1 Topological K-Theory

Topological K-Theory is historically the first branch of K-Theory which was
developed by Atiyah and Hirzebruch in 1960’s. Perhaps the two most famous
applications of topological K-Theory is the result of Adams on the maximum
number of continuous linearly independent tangent vector fields on spheres
and the fact that there are no finite dimensional division algebras over R
in dimensions other than 1, 2, 4 and 8, corresponding to the reals, complex
numbers, the quaternions and the octonions. The basic reference for this
chapter are the clasic Harvard notes by M.F. Atiyah from the 1960’s. Some
other books and notes which have appeared subsequently in the literature
are based on Atiyah’s notes. The key notion is the notion of a vector bundle.

2 Lecture 1 (Topological Preliminaries on Vec-

tor Bundles)

Everyone is familiar with the annulus and the Mobious band. These spaces
can be constructed from the circle and the line, the first is their actual Carte-
sian product whereas the second is their ”twisted” product. We start with
the fundamental definition of a vector bundle which generalises these two
constructions where instead of the circle we take any topological space and
instead of the line we use some vector space of finite dimension. We use the
symbol F to denote either the field of real R or the complex numbers C.

Definition 1. A vector bundle ξ = (E, π,B) consists of the following
data:
1. A topological space E (also denoted E(ξ), often assumed to be a mani-
fold) which is called the total space.
2. A topological space B (often assumed to be a manifold) which is called
the base space or simply base.
3. A continuous surjective map π : E → B which is called the projection
satisfying the following properties:

i. For all b ∈ B, the space Eb(ξ) = Fb(ξ) = π−1(b) ⊂ E which is called
the fibre over b has the structure of a vector space of finite dimension say
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n. In this case we say that the vector bundle has dimension (or rank) n (a
word of caution here, this dimension may be different from the topological
dimension of E).
ii. For every b ∈ B, the local triviality condition is satisfied, namely if
Ub ⊂ B is a neighbourhood of b, then there is a map

hb : Ub × Fn → π−1(Ub) ⊂ E

which is a homeomorphism. These maps like hb above are called local trivi-
alisations and they have the property that when restricted to each fibre they
give linear isomorphisms of vector spaces , namely the maps

Fn → Fb(ξ)

with
v 7→ hb(b, v),

are linear isomorphisms of vector spaces.

Choosing the reals or the complex numbers we get real or complex vector
bundles respectively.

Throughout this chapter, for simplicity vector bundles will be denoted
either by small greek letters or by writing only the projection map or even
by simply writing the total space (denoted using capital latin letters) when
there are no ambiguities.

Vector bundle maps can be defined in the obvious way: If π1 : E1 → B
and π2 : E2 → B are two vector bundles over the same base B, then a vector
bundle map f : E1 → E2 is a homeomorphism such that π2f = π1 and when
restricted to each fibre it gives an F-homomorphism of vector spaces. It is
clear that F vector bundles over B and their maps form an additive category.
We are more interested in a special kind of vector bundle maps called isomor-
phisms and the corresponding vector bundles then will be called isomorphic:

Definition 2. Two vector bundles ξ, η over the same base B will be called
isomorphic and it will be denoted ξ ≃ η, if there exists an isomorphism be-
tween them, namely a homeomorphism say φ : E(ξ) → E(η) between their
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total spaces which when restricted to each fibre φb : Fb(ξ) → Fb(η) yields a
linear isomorphism between vector spaces where Fb(ξ) is an alternative no-
tation for the fibre over the point b of the bundle ξ. Obviously isomorphic
vector bundles must have the same dimension (yet the converse is not true).

Remark 1. Given any vector bundle π : E → B, there is an alternative
way to reconstruct it using the gluing functions : We take an open cover
{Ua} of B with local trivialisations ha : π−1(Ua) → Ua × Fn and then we
reconstruct E as the quotient space of the disjoint union

⋃

a

(Ua × Fn)

obtained by identifying (x, v) ∈ Ua×Fn with hbh
−1
a (x, v) ∈ Ub×Fn whenever

x ∈ Ua ∩ Ub. The functions hbh
−1
a can be viewed as maps gab : Ua ∩ Ub →

GLn(F) which satisfy the cocycle condition

gcbgba = gca

on Ua ∩ Ub ∩ Uc. Any collection of gluing functions satisfying the cocycle
condition can be used to construct a vector bundle π : E → B.

Remark 2. One can generalise the above definition of vector bundles
by assuming that the model fibres over the points of the base space are in
general homeomorphic to some fixed topological space F instead of an n-dim
vector space thus obtaining the definition of an arbitrary fibre bundle with
fibre F . In this way, fibre bundles provide a generalisation of the Cartesian
product.

Remark 3. Some authors relax the condition that all fibres in a vector
bundle should have the same dimension; however by continuity of the local
trivialisations, the dimension of the fibres must be locally constant. If the
base space is connected (which will be always the case here), then the di-
mension of the fibres will be constant (and thus we can define the dimension
or the rank of a vector bundle).

Examples:
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1. Given any topological space B, the trivial vector bundle over B of
dimension n is the vector bundle with total space B × Fn, base space B and
the projection π is the projection to the first factor

π : B × Fn → B.

For the trivial vector bundle over B of dimension n we may use the alter-
native notation Fn

B. (Sometimes we may omit the base space alltogether to
simplify our notation if no confusion arises).

From this example one can see that an arbitrary vector bundle need not
be globally trivial but the triviality condition states that all vector bundles
”look like” the product bundle locally. In other words one can say that a
vector bundle is a continuous family of vector spaces over some (base) space.

2. Let I = [0, 1] denote the unit interval and let E be the quotient
space of I ×R under the identifications (0, t) ∼ (1,−t). Then the projection
I × R→ I induces a map π : E → S1 which is a 1-dim vector bundle (these
are called in particular line bundles). Since E is homeomorphic to the Mo-
bius band with its boundary circle deleted, this is called the Mobius bundle.

3. Let M be a real differentiable manifold of dimension say n. Then its
tangent bundle TM = {(x, v) ∈M×Rn : v ∈ TxM}, where TxM denotes the
tangent space at the point x, is a real vector bundle of dimension n with base
space M and fibre isomorphic to Rn. The construction applies to complex
manifolds as well.

4. The real projective n-space RP n is by definition the space of lines in
Rn+1 passing through the origin. Then RP n can be regarded as the quotient
space of Sn (the n-sphere) with the antipodal pairs of points identified. The
tautological (or ”canonical”) line bundle over RP n has as total space the
subset E of RP n × Rn+1 defined by

E = {(x, v) ∈ RP n × Rn+1 : v ∈ x}.

Then one has an obvious projection map

π : E → RP n
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with π(x, v) = x (projection to the first factor), namely each fibre of π is the
line x inside the Euclidean (n + 1)-space Rn+1 (thus the dimension of this
tautological vector bundle is 1 and hence it is a line bundle).

The tautological line bundle over RP n has also an orthogonal complement
vector bundle with total space E⊥ where

E⊥ = {(x, v) ∈ RP n × Rn+1 : v ⊥ x}.
One has the obvious projection to the first factor. This vector bundle has
dimension n.
Both these constructions can be applied to the complex case as well.

5. A natural generalisation of the real projective space is the real Grass-
mannian Gk(Rn) which is defined as the space of k-dim planes through the
origin of Rn (obviously k < n). In a similar fashion one can define the canon-
ical k-dim vector bundle over Gk(Rn) consisting of pairs (x, v) where x is a
”point” in the Grassmannian (a k-dim subspace) and v is a vector in x. This
has an orthogonal complement too which is an (n − k)-dim vector bundle
over the Grassmannian Gk(Rn). There is also the complex version of them.

Definition 3. Given some vector bundle π : E → B, we take a subspace
A ⊂ B. Then π : π−1(A)→ A is clearly a vector bundle called the restriction
of E over A and it will be denoted E|A.

Definition 4. A vector subbundle of some vector bundle π : E → B is
a subspace E0 ⊂ E which intersects every fibre in a vector subspace so that
π : E0 → B is again a vector bundle.

Definition 5. Given two vector bundles π1 : E1 → B1 and π2 : E2 → B2,
the product vector bundle is π1×π2 : E1×E2 → B1×B2 where the fibres are
the Cartesian products of the form π−1

1 (b1)×π−1
2 (b2) and ha×hb are the local

trivialisations where ha : Ua × Fn → π−1
1 (Ua) and hb : Ub × Fm → π−1

2 (Ub)
are local trivialisations for E1 and E2 respectively.

Definition 6. Given any vector bundle (E, π,B), a section on E is a
continuous map s : B → E such that for all b ∈ B one has π(s(b)) = b.
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Every vector bundle has a canonical section, the zero section whose value
on each fibre is zero. One often identifies the zero section with its image,
a subspace of E which projects homeomorphically onto B by π. One can
sometimes distinguish non-isomorphic vector bundles by looking at the com-
plement of the zero section since any vector bundle isomorphism h : E1 → E2

must take the zero section of E1 to the zero section of E2, hence their comple-
ments must be homeomorphic. At the other extreme from the zero section,
one has a nowhere vanishing section. Isomorphisms also take nowhere van-
ishing sections to nowhere vanishing sections. Clearly the trivial bundle has
such a section yet not all vector bundles have one. For instance we know
that the tangent bundle of the sphere Sn has a nowhere vanishing section if
and only if n is odd. From this it follows that the tangent bundle of Sn for
n even is not trivial (for the proof see for example [9]).

In fact an n-dim vector bundle π : E → B is isomorphic to the triv-
ial bundle if and only if it has n sections s1, ..., sn such that the vectors
s1(b), ..., sn(b) are linearly independent in each fibre π−1(b). One direc-
tion is evident since the trivial bundle certainly has sections and isomor-
phisms take linearly independent sections to linearly independent ones. Con-
versely, if one has n linearly independent sections si, the map B × Fn → E
given by h(b, t1, t2, ..., tn) =

∑

i tisi(b) is a linear isomorphism in each fibre;
moreover it is continuous since its composition with a local trivialisation
π−1(U) → U × Fn is continuous. Hence h is an isomorphism since it maps
fibres isomorphically to fibres.

It follows immediately from the definition of a vector bundle that for any
b ∈ B there exists a neighborhood U of b and sections s1, ..., sn of E over U
such that s1(x), ..., sn(x) form a basis for the fibre Fx = π−1(x) over x ∈ U
for all x ∈ U . We say that s1, ..., sn form a local basis at b and any section
of E can be written as s(x) =

∑

i ai(x)si(x) where ai(x) ∈ F. Clearly s is
continuous of all the ai functions are.

Let us consider some fixed topological space X as base space; we would
like to study the set V B(X) of all (real or complex) vector bundles over X
of finite dimension. In this set we can define the following operations:

1. Direct sum: If ξ, η are two vector bundles over X , we can define their
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direct sum ξ ⊕ η which is a new vector bundle over X with total space

E(ξ ⊕ η) ⊂ E(ξ)×E(η)

where
E(ξ ⊕ η) = {(v, w) : πξ(v) = πη(w)}.

The dimension of this new vector bundle is equal to the sum of the dimensions
of ξ, η and every fibre is the direct sum of the corresponding fibres (recall
that the fibres are vector spaces and hence one can form their direct sum)

Fx(ξ ⊕ η) = Fx(ξ)⊕ Fx(η).

2. Pull-back : If f : X → Y is a continuous map and ξ → Y a vector
bundle over Y , then we can define the vector bundle f ∗(ξ) → X which is
called the pull-back of ξ over X by f which is a new vector bundle over X
with total space

E(f ∗(ξ)) ⊂ X × E(ξ)
with

E(f ∗(ξ)) = {(x, e) : πξ(e) = f(x)}.
Its fibre is defined as follows:

Fx(f
∗(ξ)) = Ff(x)(ξ).

3. Tensor product : Let π1 : E1 → X and π2 : E2 → X be two vec-
tor bundles over the same base X . Then we can form their tensor prod-
uct E1 ⊗ E2 which is a vector bundle over X . As a set, the total space
E1 ⊗ E2 is the disjoint union of the tensor product of the vector spaces (fi-
bres) π−1

1 (x)⊗π−1
2 (x). The structure of a vector bundle over X can be given

using the gluing functions: Let {Ua} be an open cover of X so that both
Ei, where i = 1, 2 are trivial over each Ua and thus one can obtain gluing
functions giba : Ua ∩ Ub → GLni

(F) for each Ei. Then the gluing functions
for the tensor bundle E1 ⊗E2 are obtained via the tensor product functions
g1ba ⊗ g2ba which assign to each x ∈ Ua ∩ Ub the tensor product of the two
matrices g1ba(x) and g

2
ba(x).

4. Quotient bundles : Given a vector bundle π : E → X and a vector
subbundle E0 ⊂ E of E (which is another vector bundle over X), we can
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form the quotient bundle E/E0 → X where the total space has the quotient
topology and each fibre over an arbitrary point x ∈ X is the quotient of the
corresponding fibres Fx(E)/Fx(E0); clearly the dimension of the quotient
bundle E/E0 equals the difference of the dimensions of E and E0, namely

dim(E/E0) = dimE − dimE0.

Exercise 1. Define the exterior products of vector bundles.

Exercise 2. Prove that the pull-back respects both the direct sum and
the tensor product, namely f ∗(E1⊕E2) = f ∗(E1)⊕f ∗(E2) and f

∗(E1⊗E2) =
f ∗(E1)⊗ f ∗(E2).

It is obvious that the direct sum of trivial vector bundles will be another
trivial vector bundle; a nontrivial vector bundle which becomes trivial after
taking the direct sum with a trivial vector bundle will be called stably trivial ;
what is not obvious is that the direct sum of nontrivial vector bundles can
be trivial; under certain assumptions, the later is always the case:

Proposition 1. For any vector bundle π : E → B where B is compact
and Hausdorff, there exists another vector bundle E ′ → B such that E ⊕E ′

is trivial.

For the proof of this proposition we need a definition and a Lemma:

Definition 7. An inner product on a vector bundle π : E → B is a map
<,>: E ⊕ E → R which restricts on each fibre to an inner product (i.e. a
positive definite symmetric bilinear form).

[Note: We treat the real case for brevity here; it is straightforward to get
the compelx case as well].

Inner products always exist when the base space is compact and Haus-
dorff (or more generally paracompact, namely a topological space which is
Hausdorff and every open cover has a subordinate partition of unity which
is constructed using Urysohn’s Lemma). Inner products can be obtained as
pull-backs of the standard Euclidean inner product in Rn by the local trivi-
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alisations and then extend it to the whole of B using a partition of unity.

Lemma 1. If π : E → B is a vector bundle over a paracompact space B
and E0 ⊂ E is a vector subbundle, then there is another vector subbundle
E⊥

0 ⊂ E such that E0 ⊕E⊥
0 ≃ E.

Proof of Lemma 1: Suppose E has dim n and E0 has dim m < n.
We choose an inner product on E and we define E⊥

0 to be the subspace of
E whose fibres consist of vectors orthogonal to the vectors of E0. We claim
that the natural projection E⊥

0 → B defines a vector bundle over B (thus
making E⊥

0 a subbundle and not just a subspace of E). If this is so, then we
have our result, namely E ≃ E0⊕E⊥

0 the isomorphism being (v, w) 7→ v+w
(since isomorhisms of vector bundles restrict to linear isomorphisms of vector
spaces on each fibre).

We have to check the local triviality condition on E⊥
0 . Since E0 has di-

mension m, it has m linearly independent local sections b 7→ (b, si(b)) near
each point b0 ∈ B. We extend this set of m linearly independent local sec-
tions of E0 to a set of n linearly independent local sections of E by choosing
sm+1, ..., sn first in the fibre π−1(b0), then taking the same vectors for all
nearby fibres since if s1, ..., sm, ..., sn are linearly independent at b0, they will
remain independent for nearby b’s by the continuity of the determinant. Ap-
ply the Gram-Schmidt orthogonalisation process to s1, ..., sm, ..., sn using the
inner product in each fibre to obtain new sections s′i. The explicit formulae
for the orthogonalisation process show that the new local sections are con-
tinuous and the first m of them give a basis of E0 on each fibre. The new
sections s′i allow us to define a local trivialisation h : π−1(U)→ U ×Rn with
h(b, s′i(b)) equal to the ith standard basis vector of Rn. This h carries E0 to
U×Rm and E⊥

0 to U×Rn−m and hence h|E⊥

0

is a local trivialisation for E⊥
0 . �

Proof of Proposition 1: In order to give the motivation of the con-
struction, let us assume that the result holds and hence E is a subbundle
of the trivial bundle B × RN for some large enough N , thus one has an
inclusion E →֒ B × RN ; composing this inclusion with the projection onto
the second factor one obtains a map E → RN which is a linear injection on
each fibre; the idea of the proof is to reverse the logic, namely first we con-
struct a map E → RN which is a linear injection on each fibre and next we
shall show that this gives an embedding of E in B×RN as a direct summand.
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Each point x ∈ B has a neighborhood Ux over which E is trivial. By
Urysohn’s Lemma there is a map φx : B → [0, 1] that is 0 outside Ux and
nonzero at x. By letting x vary, the sets φ−1

x (0, 1] form an open cover of
B and since B is compact, this cover has a finite subcover. We relabel the
corresponding U ′

xs and φ′
xs Uj and φj respectively. We define gj : E → Rn

via gj(v) = φj(π(v))[pjhj(v)] where pjhj is the composition of a local trivi-
alisation hj : π

−1(Uj)→ Uj × Rn with the projection pj to Rn. Then gj is a
linear injection on each fibre over φ−1

j (0, 1]; hence if we take the gj’s as the
coordinates of a map g : E → RN with RN a product of copies of Rn, then
g is a linear injection on each fibre.

The map g is the second coordinate of a map f : E → B ×RN with first
coordinate π. The image of f is a subbundle of the product B × RN since
projection of RN onto the ith Rn factor gives the second coordinate of a local
trivialisation over φ−1

j (0, 1]. Thus E is isomorphic to a subbundle of B×RN

so by the Lemma 1 there exists a complementary subbundle E ′ with E ⊕E ′

isomorphic to B × RN . �

In the sequel, we shall assume that the topological space X is compact
and Hausdorff and our vector bundles are complex.

Let V ectk(X) denote the set of isomorphism classes of vector bundles
over X of dimension k, let V ect(X) denote the set of isomorphism classes of
vector bundles over X of finite dimension and let V B(X) denote the set of
all vector bundles over X of finite dimension. Then the direct sum ⊕ defined
above defines an addition on V ect(X):

[ξ] + [η] = [ξ ⊕ η].

This operation is associative, commutative, there exists a neutral element (a
zero) but one cannot define symmetric elements (the ”opposite” isomorphism
class of bundles), thus (V ect(X),+) is a(n additive abelian) semi-group.

There is a trick which can concoct a group out of a semi-group which goes
back to Grothendieck: This is a certain symmetrisation process in the same
way that we define Z from the (additive) semi-group N. More concretely, to
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an arbitrary semi-groupM we associate a new group denoted Gr(M) defined
as the quotient of M ×M by the equivalence relation

(a, b) ∼ (c, d)⇔ ∃e ∈M : a + d+ e = b+ c+ e.

There is an alternative technique which does the same job: If M is an
arbitrary semi-group, then we consider the diagonal homomorphism of semi-
groups

∆ :M →M ×M.

Then Gr(M) (the Grothendieck or universal group of the semi-group M) is
the set of cosets of ∆(M) inM×M which is the quotient semi-group; yet the
interchange of factors in the Cartesian product M ×M induces symmetric
elements in Gr(M) and thus it is promoted to a group.

Back to our K-Theory, we have thus the following key definition due to
Alexander Grothendieck:

Definition 8. We define the Abelian group KX as the universal group
(or the ”Grothendieck group” denotedGr) of the semi-group V ect(X), namely

KX = Gr[V ect(X)].

(This is in fact the 0th K-group of the topological K-Theory as we shall see
later). [Its customarily to denote KX and KOX and the complex and the
real case respectively].

Definition 9. Two vector bundles E1 and E2 over the same base space
X are called stably isomorphic and it will be denoted E1 ≃S E2 if there exists
some n ∈ N so that E1 ⊕ Cn

X ≃ E2 ⊕ Cn
X .

Definition 10. Two vector bundles E1 and E2 over the same base space
X are called similar and it will be denoted E1 ∼ E2 if there exist some
n,m ∈ N so that E1 ⊕ Cn

X ≃ E2 ⊕ Cm
X .

It is really straightforward to prove that both ≃S and ∼ are equivalence
relations in V B(X). On equivalnce classes of both kinds the direct sum is
well defined and moreover it is associative and commutative. A neutral (zero)

18



lement exists which is the class of C0
X .

Definition 8’. An equivalent definition for the Abelian group KX then
is that KX is the quotient space of V B(X) by the equivalence relation of
stable isomorphism, namely

KX = V B(X)/ ≃S .

Thus ”stability” encodes the Grothendieck trick to get an Abelian group
from a semi-group.

Proposition 2. If the base space X is connected, compact and Haus-
dorff, the set of equivalence classes under similarity V B(X)/ ∼ forms another

Abelian group under direct sum ⊕ denoted ˜K(X).

Definition 11. The group ˜K(X) is called the reduced K-Theory of X
(the reduced 0th K-group of X).

Proof of Proposition 2: It will saffice to prove the existence of inverses;
this is done by showing that for each vector bundle π : E → X there exists
a vector bundle E ′ → X such that E ⊕ E ′ ≃ Cn

X for some n. Yet this is
precisely Proposition 1 above. (We assume that X is connected and thus all
fibres have the same dimension, it is not hard to prove that the Proposition
2 still holds even if we relax the connectedness assumption). �

If we consider as an extra operation the tensor product between vector
bundles, then V ect(X) becomes a semi-ring and then KX is a ring.

For the direct sum operation on stably isomorphic K-classes, only the zero
element, [C0

X ] can have an inverse since E⊕E ′ ≃S C0
X implies E⊕E ′⊕Cn

X ≃S

Cn
X for some n which can only happen if both E and E ′ are zero dimensional.

However, even though inverses do not exist, we do have the cancellation prop-
erty that E1⊕E2 ≃S E1⊕E3 ⇒ E2 ≃S E3 over a compact space X , since we
can add to both sides of E1⊕E2 ≃S E1⊕E3 a bundle E

′
1 so that E1⊕E ′

1 ≃ Cn
X

for some n.

Thus for compact X , K-classes can be represented as ”formal differences”
of vector bundles of the form E −E ′ where E and E ′ are honest real vector
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bundles over X with the equivalence relation

E1 − E ′
1 = E2 − E ′

2

if and only if
E1 ⊕ E ′

2 ≃S E2 ⊕ E ′
1.

For this condition to be well-defined we need the cancellation property and
thus X has to be compact. With the obvious addition rule

(E1 − E ′
1) + (E2 − E ′

2) = (E1 ⊕ E2)− (E ′
1 ⊕ E ′

2)

then KX is a group. The zero element is the equivalence class of E −E ′ for
any E and the inverse of E−E ′ is E ′−E. Note moreover that every element
of KX can be represented also as a difference

E − Cn
X

since if we start with E−E ′ we can add to both E and E ′ a bundle E ′′ such
that E ′ ⊕E ′′ ≃ Cn

X for some n.

There is a natural homomorphism KX → K̃X which sends E−Cn
X to the

corresponding ∼-class of E which is well defined since if E −Cn
X = E ′ −Cm

X

in KX , then E ⊕ Cm
X ≃S E ′ ⊕ Cn

X , hence E ∼ E ′. This map is obviously
surjective and its kernel consists of elements E − Cn

X with E ∼ C0
X , hence

E ≃S Cm
X for some m, so the kernel consists of elements of the form Cm

X−Cn
X .

This subgroup ofKX is isomorphic to Z. In fact, restriction of vector bundles
to a base point x0 ∈ X defines a homomorphism KX → K(x0) ≃ Z which
restricts to an isomorphism on the subgroup {Cm

X − Cn
X}. One thus has a

splitting
KX ≃ K̃X ⊕ Z

depending on the choice of x0.

Let f : X → Y be a continuous map and let E → Y be a vector bun-
dle over Y . Then as we saw earlier, one can construct the pull-back bundle
f ∗(E) of E by f over X . Thus any such map f : X → Y induces a map
f ∗ : V ect(Y )→ V ect(X) where ξ 7→ f ∗ξ, which preserves direct sums, i.e. it
is a homomorphism of semi-groups and thus it gives a group homomorphism
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f ∗ : K(Y )→ K(X) between abelian groups. This is often referred to as the
wrong way functoriality in K-Theory.

Theorem 1. Suppose f0, f1 : X → Y are homotopic maps and ξ =
(E, π, Y ) is a vector bundle over Y . Then f ∗

0 ξ is isomorphic to f ∗
1 ξ.

Recall that f0, f1 : X → Y homotopic means that there exists a con-
tinuous F : X × I → Y , where I = [0, 1], so that f0(x) = F (x, 0) and
f1(x) = F (x, 1).

Proof of Theorem 1: Let F : X × I → Y be a homotopy from f0 to
f1. The restrictions of F ∗(E) over X × {0} and X × {1} are f ∗

0 ξ and f ∗
1 ξ

respectively. Hence, it will saffice to prove the following:

Lemma 2. The restrictions of a vector bundle E → X × I over X ×{0}
and X × {1} are isomorphic if X is compact and Hausdorff (more generally
if X is paracompact).

Proof of Lemma 2: We shall use two preliminary facts:
i. A vector bundle π : E → X × [a, b] is trivial if its restrictions over
X × [a, c] and X × [c, b] are both trivial for some c ∈ (a, b). To see this,
let these restrictions be E1 = π−1(X × [a, c]) and E2 = π−1(X × [c, b]) and
let h1 : E1 → X × [a, c] × Cn and h2 : E2 → X × [c, b] × Cn be isomor-
phisms. These isomorphisms may not agree on π−1(X × {c}) but they can
be made to agree by replacing h2 by its composition with the isomorphism
X × [c, b]×Cn → X × [c, b]×Cn which on each slice X × {x} ×Cn is given
by h1h

−1
2 : X ×{c}×Cn → X ×{c}×Cn. Once h1 and h2 agree on E1 ∩E2

they define a trivialisation of E.

ii. For a vector bundle π : E → X × I there exists an open cover {Ua}
of X so that each restriction π−1(Ua × I) → Ua × I is trivial. This is so
because for each x ∈ X one can find open neighborhoods Ux,1, ..., Ux,k in X
and a partition 0 = t0 < t1 < ... < tk = 1 of [0, 1] such that the bundle is
trivial over Ux,i × [ti−1, ti] using compactness of [0, 1]. Then by the fact (i)
the bundle is trivial over Ua × I where Ua = Ux,1 ∩ ... ∩ Ux,k.

We now come to the proof of the Lemma 2: By fact (ii) we can choose
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an open cover {Ua} of X so that E is trivial over each Ua × I. We deal first
with the simpler case where X is compact Hausdorff: In this case a finite
number of Ua’s cover X . We relabel these as Ui, for i = 1, 2, ..., m. As shown
in Proposition 1 there is a corresponding partition of unity by functions φi

whose support is contained in Ui. For i ≥ 1, let ψi = φ1 + ... + φi, so in
particular ψ0 = 0 and ψm = 1. Let Xi be the graph of ψi, i.e. the subspace
of X × I consisting of points of the form (x, ψi(x)) and let πi : Ei → Xi be
the restriction of the bundle E over Xi. Since E is trivial over Ui × I, the
natural projection homeomorphism Xi → Xi−1 lifts to a homeomorphism
hi : Ei → Ei−1 which is the identity outside π−1

i (Ui) and which takes each
fibre of Ei isomorphically onto the corresponding fibre of Ei−1. Thus the
composition h = h1h2...hm is an isomorphism from the restriction of E over
X × {1} to the restriction over X × {0}.

In the general case where X is only paracompact, there is a countable
cover {Vi}i≥1 of X and a partition of unity {φi} with φi supported in Vi such
that each Vi is a disjoint union of open sets each contained in some Ua. This
means that E is trivial over each Vi × I. As before we let ψi = φ1 + ... + φi

and let πi : Ei → Xi be the restriction of E over the grapf of ψi and we
construct hi : Ei → Ei−1 using the fact that E is trivial over Vi × I. The
infinite composition h = h1h2... is then a well-defined isomorphism from the
restriction of E over X ×{1} to the restriction over X ×{0} since near each
point x ∈ X only finitely many φi’s are nonzero, hence there is a neighbor-
hood of x in which all but finitely many hi’s are the identity. �

Corollary 1. If X is contractible (namely homotopic to a point) then
V ect(X) = N and KX = Z.

Proof: X contractible means that it is homotopic to a point, hence a
vector bundle over a point means just a vector space; isomorphism classes
of vector spaces are characterised by their dimension, thus V ect(∗) = N and
then the universal (or Grothendieck) group Gr(N) = Z. �

Corollary 2. Vector bundles over contractible spaces are trivial.

Proof: Straightforward. �
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[Theorem 1 holds for real vector bundles as well. It also holds for arbi-
trary fibre bundles].

We defined vector bundles over topological spaces and we defined various
equivalence relations among them (isomorphism, stable isomorphism, sim-
ilarity). An important question is the classification of vector bundles over
some fixed topological space say X : Classification up to similarity can be
achieved via the reduced K-Theory, classification up to stable isomorphism
can be done via K-Theory but the problem of classification up to isomor-
phism is still largely an open question. One very useful tool in tackling this
problem are some cohomological objects called ”characteristic classes” which
we shall meet later. They give a partial answer to the question of classifica-
tion of vector bundles up to isomorphism, in fact they work very well in low
dimensions. For the moment we shall rephrase the problem of classification
in terms of a standard concept of algebraic topology, the idea of homotopy
classes of maps along with the notions of the classifying space and the uni-
versal bundle. Thus we shall construct a k-dim vector bundle (called the
universal bundle) Ek → Gk with the property that all k-dim vector bundles
over a compact Hausdorff space can be obtained as pull-backs of this single
bundle (in particular this can be generalised for paracompact spaces and the
case k = 1 gives the line bundle over the infinite projective space in the real
case).

Recall that Gk(Cn) denotes the Grassmannian of k-dim vector subspaces
of Cn for nonnegative integers k ≤ n (the set of k-dim planes passing through
the origin). One can gine a topology to the Grassmannian using the Stiefel
manifold Vk(Cn), the space of orthonormal k-frames in Cn, in other words
the k-tuples of of orthonormal vectors in Cn. This is a subspace of the prod-
uct of k copies of the unit sphere Sn−1, namely the subspace of orthonormal
k-tuples. It is a closed subspace since orthogonality of two vectors can be
expressed by an algebraic equation. Hence the Stiefel manifold is compact
(since the products of spheres are compact). There is a natural surjection
Vk(Cn) → Gk(Cn) sending a k-frame to the subspace it spans and thus
Gk(C

n) can be topologised by giving it the quotient topology with respect
to this surjection and hence the Grassmannian is also compact.

The inclusions Cn ⊂ Cn+1 ⊂ ... give inclusions Gk(Cn) ⊂ Gk(Cn+1) ⊂ ...
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and we let
Gk(C

∞) =
⋃

n

Gk(C
n).

We give Gk(C∞) the weak (or direct limit topology), so a set is open if and
ony if it intersects each Gk(Cn) in an open set.

There are canonical n-dim vector bundles over Gk(Cn): We define

Ek(C
n) = {(l, v) ∈ Gk(C

n)× Cn : v ∈ l}.

The inclusions Cn ⊂ Cn+1 ⊂ ... give inclusions Ek(Cn) ⊂ Ek(Cn+1) ⊂ ... and
we set

Ek(C
∞) =

⋃

n

Ek(C
n)

again with the direct limit topology.

Lemma 3. The projection p : Ek(C
n)→ Gk(C

n) with p(l, v) = l defines
a vector bundle both for finite and infinite n.

Proof: Suppose first that n is finite. For l ∈ Gk(Cn), let πl : Cn → l
be an orthogonal projection and let Ul = {l′ ∈ Gk(Cn) : πl(l

′) has dim k}.
In particular l ∈ Ul. We shall show that Ul is open in Gk(Cn) and that the
map h : p−1(Ul)→ Ul × l ≃ Ul × Ck defined by h(l′, v) = (l′, πl(v)) is a local
trivialisation of Ek(Cn).
For Ul to be open is equivalent to its preimage in Vk(C

n) being open. This
preimage consists of orthonormal frames v1, ..., vk such that πl(v1), ..., πl(vk)
are independent. Let A be the matrix of πl with respect to the standard
basis in the domain Cn and any fixed basis in the range l. The condtition on
v1, ..., vk is then that the k×k matrix with columns Av1, ..., Avk have nonzero
determinant. Since the value of this determinant is obviously a continuous
function of v1, ..., vk, it follows that the frames v1, ..., vk yielding a nonzero
determinant form an open set in Vk(Cn).
It is clear that h is a bijection which is a linear isomorphism on each fibre.
We need to check that h and h−1 are continuous. For l′ ∈ Ul there is a unique
invertible linear map Ll′ : Cn → Cn restricting to πl on l

′ and the identity
on l⊥ = ker(πl). We claim that Ll′ regarded as a n × n matrix depends
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continuously on l′ namely we can write

Ll′ = AB−1

where B sends the standard basis to v1, ..., vk, vk+1, ..., vn with v1, ..., vk an
orthonormal basis for l′ and vk+1, ..., vn a fixed basis for l⊥ and A sends the
standard basis to πl(v1), ..., πl(vk), vk+1, ..., vn.
Both A and B depend continuously on v1, ..., vk. Since matrix multiplication
and matrix inversion are continuous operations, it follows that the product
Ll′ = AB−1 depends continuously on v1, ..., vk. Yet since Ll′ depends only
on l′ and not on the basis v1, ..., vk for l′, it follows that Ll′ depends contin-
uously on l′ since Gk(Cn) has the quotient topology from Vk(Cn). Since we
have h(l′, v) = (l′, πl(v)) = (l′, Ll′(v)), we see that h is continuous. Similarly
h−1(l′, w) = (l′, L−1

l′ (w)) and L−1
l′ depends continuously on l′, matrix inver-

sion being continuous, so h−1 is continuous. This completes the proof for
finite n.

For the infinite case one takes Ul to be the union of the Ul’s for increasing
n. The local trivialisations h constructed above for the finite case then fit
together to give a local trivialisation over this Ul whereas continuity is man-
ifest since we use the weak topology. �

We shall be interested in the case n =∞ now and to simplify our notation
we shall write Gk for Gk(C∞) and similarly we shall write Ek for Ek(C∞).
As we have already done previously, we denote by [X, Y ] the set of homotopy
classes of maps f : X → Y .

Theorem 2. For compact Hausdorff X (more generally if X is paracom-
pact), the map [X,Gk]→ V ectk(X) with [f ] 7→ f ∗(Ek) is a bijection.

Proof: The key observation is the following: For a k-dim vector bundle
π : E → X , an isomorphism E ≃ f ∗(Ek) is equivalent to a map g : E → C∞

that is a linear injection on each fibre. To see this, suppose first that we have
a map f : X → Gk along with an isomorphism E ≃ f ∗(Ek). Then we have
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a commutative diagram

E
≃−−−→ f ∗(Ek)

f̃−−−→ Ek
π−−−→ C∞

p





y





y





y

X −−−→
id

X −−−→
f

Gk

where π(l, v) = v. The composition across the top row is a map g : E → C∞

which is a linear injection on each fibre since both f̃ and π have this prop-
erty. Conversely, given a map g : E → C∞ which is a linear injection on each
fibre, we define f : X → Gk by letting f(x) be the k-plane g(p−1(x)) and
this clearly yields a commutative diagram as above.
To show the surjectivity of the map [X,Gk]→ V ectk(X), suppose p : E → X
is a k-dim vector bundle and let {Ui} be an open cover of X such that E
is trivial over each Ui. Then by paracompactness of X there is a countable
open cover {Ua} of X such that E is again trivial over each Ua and there is
a partition of unity {φa} with φa supported in Ua. Let ga : p

−1(Ua)→ Ck be
the composition of a trivialisation p−1(Ua) → Ua × Ck with the projection
onto Ck. The map (φap)ga with v 7→ φa(p(v))ga(v) extends to a map E → Ck

which is zero outside p−1(Ua). Near each point of X only finitely many φa’s
are nonzero and at least one φa is nonzero, so these extended (φap)ga’s con-
stitute the coordinates of a map g : E → (Ck)∞ = C∞ which is a linear
injection on each fibre.
For injectivity, if one has isomorphisms E ≃ f ∗

0 (Ek) and E ≃ f ∗
1 (Ek) for two

maps f0, f1 : X → Gk, then these give maps g0, g1 : E → C∞ which are linear
injections on fibres, as in the first part of the proof. Then the claim is that
g0 and g1 are homotopic through maps gt which are again linear injections on
fibres. If this is so, then f0 and f1 will be homotopic via ft(x) = gt(p

−1(x)).
To prove the claim, the first step is to construct a homotopy gt by tak-
ing the composition of g0 with the homotopy Lt : C∞ → C∞ defined by
Lt(x1, x2, ...) = (1 − t)(x1, x2, ...) + t(x1, 0, x2, ...). For each t this is a linear
map whose kernel is easily computed to be 0, so Lt is injective. Composing Lt

with g0 moves the image of g0 into the odd-numbered coordinates. Similarly
we can homotope g1 into the even-numbered coordinates. We keep denoting
the new g’s by g0 and g1 and we let gt = (1 − t)g0 + tg1. This is linear and
injective on fibres ∀t since g0 and g1 are. �
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This theorem indicates that k-dim vector bundles over some fixed topolog-
ical space are classified by homotopy classes of maps into Gk and because of
this Gk is called the classifying space for k-dim vector bundles and Ek → Gk

is called the universal vector bundle. The truth however is that this theo-
rem is of limited usefulness in enumerating all the different vector bundles
(of fixed dim) over a given space since explicit calculations of [X,Gk] are
usually beyond technical reach. Its importance is due more to its theoretical
implications since among other things it can reduce the proof of a general
statement to the special case of the universal bundle.

The above construction can be applied to the real case as well; there is
also a version for oriented real vector bundles (see [9]).

We would like to close this section by describing a construction of com-
plex vector bundles over spheres using the so called clutching functions. This
is a technical point which we shall use in the next chapter.

We want to construct a (real or complex, we shall take the complex case
here) vector bundle E → Sk over the k-sphere Sk. We write the sphere as
the union of its upper Dk

+ and lower hemispheres Dk
− with Dk

+ ∩Dk
− = Sk−1.

Given a map f : Sk−1 → GLn(C), let Ef be the quotient of the disjoint
union Dk

+ × Cn ∪Dk
− × Cn obtained by identifying (x, v) ∈ ∂Dk

− × Cn with
(x, f(x)(v)) ∈ ∂Dk

+ × Cn. There is then a natural projection Ef → Sk and
this is an n-dim vector bundle. The map f used above is called the clutching
function (since it does essentially what the clatch does in vehicles). In fact
one can prove that the map Φ : f 7→ Ef gives a bijection

Φ : [Sk−1, GLn(C)]→ V ectn(S
k)

(One can find the proof of this statement in [9]; in fact this is an interesting
special case of Theorem 1 above). This bijection does not quite work for the
real case since GLn(R) is not path connected. However it works for oriented
real vector bundles (we refer to [9] for more details).
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3 Lecture 2 (Homotopy, Bott Periodicity and

Cohomological Properties)

We assume complex vector bundles with compact base. If the base is the
disjoint union

X =
∐

Xa,

then
KX =

∏

KXa.

Moreover we saw that if Gk =
⋃

nGk(Cn), then

V ectk(X) = [X,Gk]

(to be precise we mean equality of the cardinalities of the above sets).

We shall study the homotopic interpretation of the group KX .

Suppose that the base X has a base point x0. Then we denote by K̃ the
reduced K-Theory (see Definition 2 below)

K̃X = Ker(KX → K(x0)).

Yet K(∗) = Z whereas the dimension of the vector bundle defines a map
X → Z where [ξ]− [η] 7→ dim(ξ)− dim(η).

Definition 1. Two vector bundles ξ and η over X are called stably
isomorphic if there exist integers N,M ∈ Z such that

ξ ⊕ CM
X = η ⊕ CN

X .

Definition 2. The reduced K-group K̃X of X is defined as the set of
stably isomorphism classes of vector bundles over X .

We know that for the Grassmannians one has the following inclusions:

Gk(C
n) →֒ Gk(C

n+1)
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and taking the inductive limit we get

Gk = lim
n→∞

Gk(C
n) =

⋃

n

Gk(C
n).

Moreover
Gk(C

n) →֒ Gk+1(C
n+1)

thus
Gk+1 = lim

n→∞
Gk+1(C

n+1) =
⋃

n

Gk+1(C
n+1).

Hence
Gk →֒ Gk+1,

which enables us to define the inductive limit

G∞ = lim
k→∞

Gk =
⋃

k

Gk.

Intuitively, G∞ is the double inductive limit of Gk(Cn) when both variables
k and n tend to infinity.

Then one has the following:

Theorem 1.
K̃X = [X,G∞].

Next we shall study vector bundles over the suspension SX of a space X .

Let X be a topological space; we denote by CX the cone of X which is
defined as

CX =
X × [0, 1]

X × 0
.

Then the suspension SX of X is defined by

SX = C+X ∪X C−X.

Suppose f : X → GLk(C) is a map. We define the set

V (f) =
C+X × Ck ∪ C−X × Ck

(x, v) ≡ (x, f(x)v)
.
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Then V (f)→ SX is a vector bundle.

Lemma 1. Let f0, f1 : X → GLk(C) be homotopic maps. Then

V (f0) ≃ V (f1).

Moreover one has the following important result:

Theorem 2.
V ectk(SX) = [X,GLk(C)].

If we consider the inclusion

GLk(C) →֒ GLk+1(C)

given by

A 7→
(

A 0
0 1

)

and set
GLC = lim

k→∞
GLk(C) =

⋃

k

GLk(C),

then one has an extension of Theorem 2:

Theorem 3.
K̃(SX) = [X,GLC].

For the proofs of Theorems 2 and 3 one can see Atiyah’s notes.

Remark:
We mentioned that

K̃X = [X,G∞]

whereas
K̃SX = [X,GLC].

Yet
K̃SX = [SX,G∞] = [X,ΩG∞],

where ΩG∞ the loop space of G∞, namely

ΩG∞ =Maps∗(S
1, G∞).
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Thus
ΩG∞ ≃ GLC,

which means that the infinite Grassmannian G∞ is a classifying space of the
infinite group GLC:

G∞ = BGLC.

The basic result in K-Theory is Bott periodicity which we shall study
next. In its simplest form it states that there is an isomorphism between
KX ⊗K(S2) and K(X × S2).

We denote by S2X the second suspension of X , in other words S2X =
S(SX). Inductively one can define the nth suspension SnX of a space X .
Recall from topology that for the suspensions of spheres one has the following
results:

S2n(S1) = S2n+1

and
S2n−2(S2) = S2n.

As our first version of Bott periodicity we mention the following:

K̃(S2X) ≃ K̃X

whereas
[S1, Gk(C

n)] = π1(Gk(C
n)) = 0

because Grassmannians are contractible.

Furthermore
[S2, Gk(C

n)] = π2(Gk(C
n)) = Z,

K̃S1 = 0,

K̃S2 = Z,

K̃S2n+1 = 0

and
K̃S2n = Z.

Now we come to the cohomological properties of K-Theory.
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Let X be compact and A ⊂ X is a compact subspace. We choose some
n ∈ N and we have:

Definition 3. The negative powers of K-Theory are defined as follows:

K̃−nX = K̃(SnX).

For the relative K-Theory one has the following definition:

Definition 4. The relative K-groups are defined as follows:

K̃−n(X,A) = K̃−n(X/A) = K̃(Sn(X/A)).

Moreover one has that
K−nX = K̃−n(X, ∅),

where we define
(X, ∅) = X+

and X+ denotes X with a disjoint base point adjoined, i.e.

K̃(X+) = KX.

Using Bott periodicity we can extend the above definition and get

Kn(X,A) = Kn−2(X,A), ∀n ∈ Z.

To summarise:

1. The groups Kn(X,A) can be defined for any n whereas Kn(X,A) ≃
Kn+2(X,A).

2. Essentially, due to Bott periodicity, there are only two K-groups,
K0(X,A) and K1(X,A) where K0(X,A) = [X/A,G∞] and K1(X,A) =
[X/A,GLC].

Given a map f : (X,A) → (Y,B), there exists an induced map which is
a homomorphism

Kn(X,A)
f∗

←− Kn(Y,B)
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(this is the wrong way funcoriality in K-Theory) where at the same time
given

X/A← X ← A

we can get an exact K-Theory sequence of a pair

K0(X,A) −−−→ K0X −−−→ K0A
x









y
δ

K1A ←−−− K1X ←−−− K1(X,A)
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4 Lecture 3 (Products and Bott Periodicity

Revised)

Let X be compact and connected. From the set of isomorphism classes of
vector bundles V ect(X) over X we defined K0X = [X,Z×G∞] whereas the
reduced 0th K-group is defined by

K̃0X = Ker(K0X → K0(∗)) = [X,G∞].

Furthermore we saw that

K̃1X = K̃0(SX) = [X,GLC]

whereas for a compact subspace A ⊂ X and some n ∈ N one has

K̃−nX = K̃0(SnX),

K̃−n(X,A) = K̃−n(X/A),

K−nX = K−n(X, ∅),
where X+ = X/∅ and

Kn(X,A) = Kn−2(X,A)

using Bott periodicity.

We list the properties of the groups Kn(X,A) (which follow from the
Eilenberg-Steenroad axioms):

1. The correspondence (X,A) 7→ Kn(X,A) is a functor from the cate-
gory of topological spaces to the category of abelian groups.

2. Homotopic maps induce the same homomorphisms between abelian
groups.

3. There is an exact sequence for the K-Theory of pairs (see the end of
the previous lecture).
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4. The exact sequence is natural.

5. Excision is satisfied:

Kn(X,A) ≃ Kn(X/A, ∗).

6. The dimension axiom fails

Kn(∗) = 0, n ∈ N, odd

whereas
Kn(∗) = Z, n ∈ N, even.

Thus we have a generalised (or exotic) cohomology theory.

Given
A→ X → X/A,

the exact sequence for pairs was

K0(X,A) −−−→ K0X −−−→ K0A
x









y
δ

K1A ←−−− K1X ←−−− K1(X,A)

.

If A ⊂ X , then

SA ≃ X ∪ CA
X

while

SA ≃ X ∪ CA
X

← X ∪ CA→ X/A.

Furthermore

K−n−1A = K−n(SA) ≃ K−n(X ∪ CA,X)→ K−n(X ∪ CA) ≃ K−n(X/A)

along with the maps
K−1A→ K0(X/A)

and
K0A→ K1(X/A).
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The proof of exactness is tedious.

Next we shall try to give a geometric interpretation of the conecting maps
δ which appear in the K-Theory exact sequence.

For K0(X,A), we start with a pair (ξ, φ) where ξ is a vector bundle over
X and φ is a trivialisation of ξ/A. There are two equivalence relations be-
tween these pairs, isomorphism and homotopy, thus one can define the class
[ξ, φ] ∈ K0(X,A).

Consider the map
δ : K1A→ K0(X,A)

with some
f : A→ GLk(C).

Define
X × Ck

∐

CA× Ck

glueviaf

and obtain that
X ∪ CA ≃ X/A.

Now let us study the products.

Let
V ect(X)× V ect(Y )→ V ect(X × Y )

where
(ξ, η) 7→ ξ ⊗ η

is the external tensor product. For fibres one has

Fx,y(ξ ⊗ η) = Fx(ξ)⊗ Fy(η),

since ξ ⊗ η → X × Y is a new vector bundle.

Then one has an induced map

Kn(X,A)⊗Km(Y,B)→ Kn+m(X × Y,A× Y ∪X × B).
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1. Extend the above to a map

K0X ⊗K0Y → K0(X × Y )

with

([ξ1]− [η1])⊗ ([ξ2]− [η2]) := [ξ1 ⊗ ξ2] + [η1 ⊗ η2]− [η1 ⊗ ξ2]− [ξ1 ⊗ η2].

Recall that the smash product in algebraic topology X ∧ Y where X has a
base point x0 and Y has a base point y0 is defined by

X ∧ Y =
X × Y

x0 × Y ∪X × y0
.

For example, the suspension of a space X is the smash product with the
circle:

S1 ∧X ≃ SX

and
Sn ∧X ≃ SnX.

2. Let us focus on the reduced K-Theory: We extend our map now to

K̃0X ⊗ K̃0Y → K̃0(X ∧ Y ).

We define the smash product as

K̃0(X ∧ Y ) = Ker(K0(X × Y )→ K0X ⊕K0Y ).

We use the obvious maps

K0(X × Y )→ K0X

from
X = X × y0 → X × Y

along with
K0(X × Y )→ K0Y

from
Y = Y × x0 → X × Y.
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Hence we obtain:

K̃0(Sn(X/A))⊗K̃0(Sm(Y/B))→ K̃0(Sn(X/A)∧Sm(Y/B)) = K̃0(Sn+m∧(X/A)∧(Y/B)),

where
X × Y

A× Y ∪X × B =
X

A
∧ Y
B
.

As an example consider the special case X = Y A = B = ∅. We get:

KnX ⊗KmX → Kn+m(X ×X)
∆∗

−→ Kn+mX

where the last map

∆∗ : Kn+m(X ×X)→ Kn+mX

is induced by the map
∆ : X → X ×X

with
∆(x) = (x, x).

Hence we have the following maps

K0X ⊗K0X → K0X,

K0X ⊗K1X → K1X,

along with
K1X ⊗K1X → K0X,

and this is esentially Bott periodicity.

We can also define
K∗X = K0X ⊕K1X

which is a graded commutative ring.

We are now in a position to see a second revised version of Bott period-
icity:

The map
K̃0(S2)⊗ K̃0X → K̃0(S2X)
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is an isomorphism (recall that K̃0S2 = Z).

Bott periodicity is perhaps the most useful tool in computations. Let us
mention some examples:

K̃1(S2n+1) = Z = K̃0(S2n)

while
K̃1(S2n) = 0 = K̃0(S2n−1).

Moreover

[S2n+1, GLC] = π2n+1(GLC) = π2n+1(GLN(C)), N > 2n + 2),

whereas
[S2n, GLC] = 0.

If we denote by UN the group of unitary N × N complex matrices, this
is onviously a subgroup of GLN (C)), then one has (for N > 2n+ 1):

π2n+1(UN) = Z,

whereas
π2n(UN ) = 0.

For the special orhtogonal group SON we have (for N > i+ 1):

πi(SON) = Z/2, i ≡ 1(8),

πi(SON) = 0, i ≡ 2(8),

πi(SON) = Z, i ≡ 3(8),

πi(SON) = 0, i ≡ 4(8),

πi(SON) = 0, i ≡ 5(8),

πi(SON) = 0, i ≡ 6(8),

πi(SON) = Z, i ≡ 7(8)

and
πi(SON) = Z/2, i ≡ 1(8).
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5 Lecture 4 (Chern Character and Chern Classes)

We saw that Kn(X,A) is a multiplicative generalised cohomology theory.
Moreover we identified the maps

Kn(X,A)×Km(Y,B)→ Kn+m(X × Y,X ×B ∪ A× Y ).

It is true that
K∗(X,A)⊗Q

is an ordinary cohomology theory.

We assume that X is a ”nice” topological space (for example a finite sim-
plicial complex or finite CW-complex).

Then we define:
Hev(X ;Q) =

⊕

n≥0

H2n(X ;Q)

and
Hodd(X ;Q) =

⊕

n≥0

H2n+1(X ;Q).

One then has the following fundamental result:

Theorem 1. There exist natural isomorphisms

ch : K0X ⊗Q→ Hev(X ;Q)

and
ch : K1X ⊗Q→ Hdd(X ;Q)

which preserve products. These isomorphisms are called Chern characters.

Proof: There is a scetch of the proof at the end of this lecture �.

To continue we shall need the characteristic classes of complex line bun-
dles. Let L→ X be a complex line bundle (we shall denote it simply by LX

below) and let
V ect1X = [X,G1],
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where
fL : X → G1 =

⋃

n

G1(C
n) =

⋃

n

CP n−1 := CP∞.

Then
H∗(CP∞;Z) = Z[u],

where
u ∈ H2(CP∞;Z).

Definition 1. The first Chern class of L is

c1L = f ∗
L(u) ∈ H2(X ;Z).

Lemma 1. The map

c1 : V ect1(X)→ H2(X ;Z)

is a group isomorphism.

Given two line bundles L1 and L2, we can form their tensor product
L1 ⊗ L2 where CX is the unit for the tensor product ⊗. We denote by
L∗
X := Hom(LX ,C) the duall complex line bundle. Then

L∗ ⊗ L ≃ CX .

Furthermore
c1(L1 ⊗ L2) = c1L1 + c2L2.

Given a vector bundle ξ → X of dimension n, we consider the bundle π :
P(ξ)→ X with fibre π−1(x) = P(Fx(ξ)) ≃ CP n−1. The induced map

π∗ : H∗(X)→ H∗(P(ξ))

is a ring homomorphism which makesH∗(P(ξ)) a module over the ringH∗(X)
(with integer coefficients).

Next consider the map

H∗(X)⊗H∗(P(ξ))→ H∗(P(ξ)),
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with
x⊗ y 7→ π∗(x)y.

There exists a line bundle Lξ over P(ξ) with 1 ∈ H0(P(ξ)), c1(Lξ) = u ∈
H2(P(ξ)) and we form u2, u3 etc. Then one has the following:

Theorem 2. H∗(P(ξ)) is a free module overH∗(X) with basis 1, u, u2, ...un−1.

Proof: We describe the basic idea.

Case 1: ξ = X×C1, then P(ξ) = X×CP n−1 whereas H∗(X×CP n−1) =
H∗(X) ⊗ H∗(CP n−1) can be computed using the Kunneth formula in alge-
braic topology. To conclude the proof we use a Mayer-Vietories inductive
argument. �.

Definition 2. (Chern classes). Let ξ → X be a vector bundle, we form
P(ξ) and take the class u ∈ H2(P(ξ);Z). Then

−un = c1(ξ)u
n−1 + c2(ξ)u

n−2 + ...+ ck(ξ)u
n−k + ... + cn(ξ).

The above equation defines Chern classes ci(ξ) ∈ H2i(X ;Z).

Problem: Check the following properties of Chern classes:
1. (pull-backs) ci(f

∗(ξ)) = f ∗(ci(ξ)).
2. (Whitney sum formulae)
c(ξ) = 1 + c1(ξ) + c2(ξ) + ... + cn(ξ),
c(ξ ⊕ η) = c(ξ)c(η) and
ck(ξ ⊕ η) =

∑

i+j=k ci(ξ)cj(η).

Lemma 2. (Splitting Principle) Let ξ → X be a complex vector bundle.
Then there exists a space F (ξ) along with a map f : F (ξ)→ X such that:
i. f ∗ : H∗(X)→ H∗(F (ξ)) is injective and
ii. f ∗(ξ) ≃ L1 ⊕ L2 ⊕ ...⊕ Ln, where n is the dimension of ξ.
(Note that the same holds for K-Theory, namely f ∗ : K∗(X)→ K∗(F (ξ)) is
also injective).

Proof: f1 : P(ξ) → X is injective by Lemma 1 above. Moreover
Lξ ⊂ f ∗(ξ) ⇒ f ∗(ξ) = Lξ ⊕ ξ̃ and to complete the proof we use induc-
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tion. �.

Next we would like to construct the Chen character ch : K0(X) →
Hev(X ;Q) which satisfies the desired properties (see the Problem above;
we ommit the square brackets [ξ] to simplify our notation):
• ch(ξ ⊕ η) = ch(ξ) + ch(η)
• ch(ξ ⊗ η) = ch(ξ)ch(η).

What should ch(L) be for a line bundle L?

Suppose c1(L) = x and c1(L̃) = y. Then c1(L ⊗ L̃) = x + y. This is
reminiscent of powerseries F (x) (think of ch(L) = F (x)) where F (x + y) =
F (x)F (y), hence

F (x) = ex.

We thus end up with the following:

Definition 3. For a complex line bundle L we define

ch(L) = ec1(L) = 1 + c1(L) +
c21(L)

2
+ ...

For an arbitrary complex vector bundle E we have:

E = L1 ⊕ L2 ⊕ ...⊕ Ln

with c1(L1) = x1, c1(L2) = x2,...,c1(Ln) = xn. Then

ch(E) = ex1 + ex2 + ...+ exn

and hence

ch(E) = c(L1)c(L2)...c(Ln) = (1+x1)(1+x2)...(1+xn) = 1+c1(E)+c2(E)+...+cn(E)

since c(Li) = 1 + xi.

Thus
ci(E) = σi(x1, x2, ...xn)

where σi is the i− th elementary symmetric function.

43



For example c1(E) = x1 + x2 + ...+ xn while c2(E) =
∏

i<j xixj , hence

ex1 + ex2 + ...+ exn = n+ S1(σ1, σ2, ..., σn) + S2(σ1, σ2, ..., σn) + ...

Definition 4.

ch(ξ) = dim ξ + S1(c1(ξ), c2(ξ), ..., cn(ξ)) + S2(c1(ξ), c2(ξ), ..., cn(ξ)) + ...

As an example let us work out the case of S2:

x21 + x22 + ...+ x2n = (x1 + x2 + ...+ xn)
2 − 2

∏

i<j

(xixj) = σ2
1 − 2σ2.

Then

ch(ξ) = dim ξ + c1(ξ) +
1

2
[c21(ξ)− 2c2(ξ)] + ...

Recall that the two desired properties ch(ξ ⊕ η) = ch(ξ) + ch(η) and ch(ξ ⊗
η) = ch(ξ)ch(η) follow from the splitting principle.

We defined
ch : K0(X)→ Hev(X ;Q).

Definition 5.
ch([ξ]− [η]) = ch(ξ)− ch(η).

Then

K1X −−−→ Hodd(X ;Q)
∥

∥

∥

∥

∥

∥

K̃0(SX) −−−→
ch

H̃ev(SX ;Q)

We finally come to the promised proof of Theorem 1 at the beginning of
this lecture:

Proof of Theorem 1:
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Step 1. If X = S2, then K̃0(S2) = Z and K0(S2) = Z⊕ Z. Furthermore
ch(1) = 1 and ch(ξ) = 1 + u because Hev(S2;Q) = Q⊕Q (1 corresponds to
the first factor Q and u to the second).

Step 2. We have an isomorphism when X = S2n because Chern character
comutes with products.

Step 3. We have an isomorphism when X = S2n+1 (by direct computa-
tion).

Step 4. Suppose X is a simplicial complex with N simplices and A ⊂ X
is obtained by removing one top dimensional simplex. But then X/A = Sn

and we use exact sequence and the 5-Lemma. �.
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6 Lecture 5 (Operations in K-Theory, Sym-

metric Products and Adams Operations)

In the previous section we defined the Chern characters:

ch : K0(X)→ Hev(X ;Q)

and
ch : K1(X)→ Hodd(X ;Q)

and we stated the basic result that the map

ch : K∗(X)⊗Q→ H∗(X ;Q)

is an isomorphism.

Now we shall study operations in K-Theory.

Let V be a complex vector space of finite dimension say n. From linear
algebra we know the exterior powers

∧kV = (V ⊗V ⊗ ...⊗V )/(x1⊗x2⊗ ...⊗xk−sign(σ)x⊗σ(1) x⊗σ(2) ...⊗σ(k) x).

where we have taken k factors in the tensor product. Clearly ∧0V = C,
∧1V = V, ...,∧kV, ...,∧nV , where dim∧nV = 1 and more generally dim∧kV =
(n!)/[k!(n− k)!].

We can extend the above to vector bundles ξ over some space X in a
straightforward way: We form the exterior powers ∧kξ which are also vector
bundles over X with fibre

Fx(∧kξ) = ∧k(Fx(ξ)).

We want to construct a map

∧k : V ect(ξ)→ K0X.

If V,W are two vector spaces, then

∧k(V ⊕W ) =
∑

i+j=k

∧iV ⊗ ∧jW
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and the corresponding relation for vector bundles will be

∧k(ξ ⊕ η) =
∑

i+j=k

∧i(ξ)⊗ ∧j(η).

Observe the analogy with Chern classes:

ck : V ect(X)→ Hev(X ;Q)

where
ck(ξ ⊕ η) =

∑

i+j=k

ci(ξ)cj(η).

Given a vector bundle ξ, we can construct ∧t(ξ) ∈ K0(X)[[t]] which is a
formal power series in t and coefficients from the group K0(X), in other
words

∧tξ =
∞
∑

k=0

tk ∧k ξ.

Hence
∧k(ξ ⊕ η) =

∑

i+j=k

∧i(ξ)⊗ ∧j(η)

becomes
∧t(ξ ⊕ η) = ∧t(ξ) ∧t (η)

which means that we have a map

∧t : V ect(X)→ K0(X)[[t]].

Our convention is that ∧0(ξ) = 1 ∈ K0(X) thus ∧t(ξ) is a formal power
series beginning with 1. Whence ∧t(ξ) is a unit in K0(X)[[t]].

We denote by G(K0(X)[[t]]) the group of units in the ring K0(X)[[t]],
namely the group of invertible elements. Thus one gets the following diagram

V ect(X)
∧t−−−→ G(K0(X)[[t]])





y

x





K0(X) K0(X)
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Given x ∈ K0(X), we define ∧i(x) to be the coefficient of ti in ∧it(x). If
x = [ξ]− [η], then ∧t(x) = ∧t(ξ) ∧t (η)−1.

For example, if L is a line bundle, then ∧t(L) = 1 + tL and

∧−t(−L) =
1

1− tL = 1 + tL+ t2L2 + ...

Let us mention here that it is difficult to make sense of the value for t =something
(that’s why we are talking about formal power series), the coefficients how-
ever make perfect sense (hopefully).

Next we recall the symmetric powers from linear algebra

Sk(V ) = (V ⊗ V ⊗ ...⊗ V )Σk

where we assume k-factors in the tensor product. Similarly one can form the
symmetric powers of vector bundles Sk(ξ) and then we define

St(ξ) =

∞
∑

k=0

tkSk(ξ)

where our convention is that S0(ξ) = 1. Moreover from linear algebra one
has that

Sk(V ⊕W ) =
∑

i+j=k

SiV ⊗ SjW.

By the same method we can get the following commutative diagram

V ect(X)
St−−−→ G(K0(X)[[t]])





y

x





K0(X) K0(X)
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For example, if L is a line bundle, then

St(L) = 1 + tL+ t2L2 + ...

because
SkL = L⊗k.

Hence
St(L) = ∧−t(−L),

and thus

∧−t(L)St(L) = 1⇔ ∧t(L)S−t(L) = 1⇒ ∧t(ξ)S−t(ξ) = 1

where the arbitrary vector bundle ξ can be written as a sum of line bundles.

From the K-Theory splitting principle we deduce that for any vector
bundle ξ we have that

∧t(ξ)S−t(ξ) = 1

hence
∧t([ξ]− [η]) = (∧tξ)(S−tη)

and
∧k([ξ]− [η]) =

∑

i+j=k

(−1)j ∧i (ξ)Sj(η).

We make an important remark: If f : X → Y is a map, then for some
x ∈ K0(Y ) we have

f ∗(∧i(x)) = ∧i(f ∗x)

where ∧i : K0(X)→ K0(X).

Now we shall study the Adams operations in K-Theory.

Suppose x ∈ K0(X) and Ψt(x) ∈ K0(X)[[t]].

We define

Ψt(x) := dim(x)− t

∧−t(x)

d

dt
∧−t (x) = dim(x)− t d

dt
log(∧t(x)).
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All coefficients are integral multiplets of elements in K0(X).

Moreover we define the quantities Ψk(x) via the equation

∑

tkΨk(x) = Ψt(x).

Definition 1. The maps

Ψk : K0(X)→ K0(X)

are called Adams operations in K-Theory.

Example:

Ψ1 − ∧1 = 0

Ψ2 −Ψ1 ∧1 +2∧2 = 0

Ψ3 −Ψ2 ∧1 +Ψ1 ∧2 −3∧2 = 0

In general
Ψk −Ψk−1 ∧1 ±...± k∧2 = 0.

Adams operations relate power sums Φk(x1, x2, ..., xn) = xk1 + xk2 + ... + xkn
and elementary symmetric functions σi(x1, x2, ..., xn), namely Ψk ↔ Φk and
∧i ↔ σi.

We summarise the basic properties of Adams operations:

Proposition 1. The Adams operations have the following properties:

1.
Ψk(x+ y) = Ψk(x) + Ψk(y).

2. For a line bundle L,
Ψk(L) = Lk

3.
Ψk(xy) = Ψk(x)Ψk(y)
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4.
Ψk(Ψl(x)) = Ψkl(x).

5. If p is prime, then

Ψp(x) = xp + py = xpmodp

6. If u ∈ K̃0(S2n), then
Ψk(u) = knu.

Proof: Let us prove some of them. For the first we have

Ψt(x+y) = dim(x+y)− t

∧−t(x+ y)

d

dt
∧−t(x+y) = dim(x+y)− t

∧−t(x) ∧−t (y)
×

× d

dt
(∧t(x) ∧−t (y))

and then we use the Leibniz rule to get the desired result Ψt(x) + Ψt(y).

For the second we have:

∧−t(L) = 1− tL

thus
d

dt
∧−t (L) = −L,

and consequently

Ψt(L) = 1 +
tL

1− tL = 1 + tL+ t2L2 ⇒ Ψk(L) = Lk.

For the fourth we briefly have: By the first property (additivity), if the
propety holds for line bundles, then by the splitting principle it will also hold
for any vector bundle.

For the fifth, suppose x = L1+L2+...+Ln where the L′
is are line bundles,

then
Ψp(x) = Lp

1 + Lp
2 + ... + Lp

n = (L1 + L2 + ... + Ln)
pmodp.
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For the last one, let h be a generator of K0(S2) and let J denote the Hopf
line bundle over S2 = CP 1. Then

h = [J ]− 1 ∈ K̃0(S2).

Calculate
Ψk(h) = Ψk[J ]−Ψk(1) = [Jk]− 1

hence
[Jk] = k[J ]− (k − 1) ∈ K0(S2).

Using the Chern character

ch : K0(S2) = Z⊕ Z→ Hev(X ;Q)

along with the above relation

[Jk] = k[J ]− (k − 1) ∈ K0(S2)

we obtain
[Jk]− 1 = k[J ]− k.

Then the map
K̃0(S2)⊗ K̃0(S2)→ K̃0(S4)

where
S4 = S2 ∧ S2.

The generator of K̃0(S2n) is h⊗ ...⊗ h and then

Ψk(h⊗ ...⊗ h) = kn(h⊗ ...⊗ h).

�
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7 Lecture 6 (Applications of Adams opera-

tions: Non-Existence of Hopf Invariant 1

Maps)

As an application of the Adams operations we shall prove the non-existence
of Hopf invariant 1 maps.

Let
S4n−1 f−→ S2n → S2n ∪f C4n = X.

We calculate that
K̃0(X) = Z⊕ Z

using the exact sequence for the pair (X,S2n) and X/S2n = S4n.

Pick some generators p : X → X/S2n = S4n and p∗ : K̃0(S4n) → K̃0(X)
where u4n is a generator of K̃0(S4n) = Z and y = p∗(u4n) ∈ K̃0(X).

Next we choose an element x ∈ K̃0(X) such that

i∗(x) = u2n

where
i∗ : K̃0(X)→ K̃0(S2n)

and u2n ∈ K̃0(S2n) and we consider

x2 : i∗(x2) = 0.

Definition. The Hopf invariant of the map f is the integer λf defined
by the equation

x2 = λfy.

One can prove that λf is independent of the choice of x.

One then has the following result:

Theorem 1. If λf is odd, then n = 1, 2, 4.
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Proof: Recall that
K̃0(X) = Z⊕ Z

with generators, say x and y (one for each copy of Z). Then:

Ψ2(x) = 2nx+ ay

and
Ψ3(x) = 3nx+ by

while

Ψk(y) = Ψk(p∗(u4n)) = p∗(Ψk(u4n)) = p∗(k2nu4n) = k2ny,

where
Ψ2(x) 7→ Ψ2(u2n) = 2nu2n

and
Ψ3(x) 7→ Ψ3(u2n) = 3nu2n.

Moreover we compute:

Ψ6(x) = Ψ3(Ψ2(x)) = 6nx+ (2nb+ 32na)y

Ψ6(x) = Ψ2(Ψ3(x)) = 6nx+ (22nb+ 3na)y,

thus
2nb+ 32na = 22nb+ 3na⇔ 2n(2n − 1)b = 3n(3n − 1)a.

But

Ψ2(x) = x2 mod 2 = λfy mod 2 = y mod 2⇒ a odd.

Whence from
2n(2n − 1)b = 3n(3n − 1)a

we deduce that 2n divides 3n − 1. By direct calculation we obtain taht
n = 1, 2, 4. �.

There are three classical Hopf maps:
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S3 → S2, S(C2) = S3 → S2 = CP 1, (z1, z2) 7→ [z1, z2]

S7 → S4, S(H2) = S7 → S4 = HP 1, (q1, q2) 7→ [q1, q2]

S15 → S8, S(O2) = S15 → S8 = OP 1, (k1, k2) 7→ [k1, k2]

where H denotes the quaternions while O denotes the Caley numbers (the
octonions).

It follows from Theorem 1 above that there no other such maps.

An analogous question is this: In the sequence of numbers

reals → complex → quaternions → Caley numbers

are there any other numbers?

The answer is also negative.

We end this lecture with the following remark: The circle S1 is (topolog-
ically) the group (U(1).

The sphere S3 is (topologically) the group of unit quaternions.

The sphere S7 is topologically the group of unit Caley numbers.

The space 1× S7 ⊂ S7 × S7 → S7 is also a ”group”, i.e. it is an h-space
whereas S7×1 ⊂ S7×S7 → S7, in other words we want to see if the spheres
Si are parallelisable spaces, namely if their tangent bundles are trivial.
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8 Analytic K-Theory (K-Homology)

One motivation for analytic K-Theory could be the question ”what is infin-
ity minus infinity”? Moreover the index of a Fredholm operator is one of
the most useful definitions in mathematics since it gave rise to various index
theorems, arguably the most central result in mathematics during the second
half of the 20th century. At the same time, the K-Theory of C∗-algebras is
an important ingredient in A. Connes’ noncommutative geometry.

9 Lecture 1 (Some preliminaries from Func-

tional Analysis, the Index of Fredholm Op-

erators)

From topological K-Theory we know that K0(∗) = Z, namely K-Theory does
not satisfy the dimension axiom, hence it is a generalised (or exotic) homol-
ogy theory.

Let V0, V1 be two finite dimensional vector spaces (over some field F, usu-
ally the complex numbers). It is straightforward to compute the difference
of their dimensions which we shall denote [V0]− [V1]. (For simplicity we shall
often write [V ] instead of dimV ).

Let T : V0 → V1 a linear operator. We expand:

0→ KerT → V0
T−→ V1 → cokerT → 0,

where
cokerT = V1/ImT = V1/T (V0) = (ImT )⊥.

Theorem 1 (Linear Algebra).

[KerT ]− [V0] + [V1]− [cokerT ] = 0.

(The theorem holds for any short exact sequence of finite dimensional vector
spaces).
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We can rewrite the relation of the theorem in a more convenient form:

[V0]− [V1] = [KerT ]− [cokerT ].

If we try to generalise the above relation to infinite dimensional vector
spaces (for example Hilbert spaces), we see that the LHS has no meaning
since it gives ∞ −∞, but the RHS may, in some favourable cases, give a
meaningful result (provided that the operator is a ”nice” operator). Hence
the difference ∞−∞ may give, in some cases, a finite result.

In this chapter, unless otherwise stated explicitly, all operators are as-
sumed to be linear.

Let us briefly recall the definition of a Hilbert space:

Definition 1. A Hilbert space H is an infinite dimensional complete
(complex) vector space with an inner product. Complete means that every
sequence (xn) ∈ H with

∑ ||xn|| <∞, converges in H .

Definition 2. A linear map (linear opearator) T : H0 → H1 is called
bounded if there exists some positive real number c such that

||Tx|| ≤ c||x||, ∀x ∈ H.

The ”best” such positive real number is called the norm of T and it is denoted
||T ||. In particular, one can define

||T || = sup < Tx, y >

where ||x|| = ||y|| = 1.

The set of all bounded linear operators T : H → H will be denoted B(H).

Given a Hilbert space, we can define the notion of a Hilbert basis and
with respect to some Hilbert bases in the Hilbert spaces H0, H1 above, every
(bounded) linear operator can be represented by an ∞ × ∞ matrix (ba-
sically using the same recipe as for representing linear maps between finite
dimensional vector spaces by matrices). Conversely, given an∞×∞ matrix,
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it is a lot more difficult to tell whether it defines a bounded linear operator.

We know however that an ∞×∞ matrix is indeed the representation of
some bounded linear operator if (but not only if) it has a finite number of
non-zero elements. In this case it is called a finite rank operator. In other
words, finite rank operators are bounded (but the converse does not neces-
sarily hold).

Definition 3. A linear operator T is called compact if ∀ǫ > 0, there
exists a finite rank operator F such that

||T − F || < ǫ.

The set of all compact operators T : H → H will be denoted K(H).

B(H) has a natural C∗-algebra structure and K(H) is an ideal in B(H)
(closed, 2-sided ∗-ideal), thus one can form the quotient

Q(H) = B(H)/K(H)

which is another C∗-algebra, called the Calkin algebra (see also Lecture 5
later).

For example, the identity operator I : H → H is not compact.

Proposition 1. Let B(H) denote the set of all bounded linear operators
from H to itself. The subset of all invertible operators in B(H) is open.

Proof: It saffices to prove that the identity operator I is an internal point
of the set of invertibles, because if ||A|| < 1, then (I−A)−1 = I+A+A2+ ....
�.

Definition 4. A bounded linear operator T : H0 → H1 between two
Hilbert spaces is called Fredholm if its kernel KerT is of finite dimension, its
image ImT is a closed subspace of H1 and the quotient H1/ImT has also
finite dimension.
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One has the following fundamental result:

Theorem 1. (Atkinson) The following are equivalent:

a. T is Fredholm.

b. T is invertible modulo compacts, namely there exists an operator
S : H1 → H0 such that ST − I and TS − I are compact on H0 and H1

respectively. Alternatively, the term invertible modulo compacts means that
the image π(T ) of T under the canonical projection π : B(H) → Q(H) is
invertible.

Proof:
a. ⇒ b.
H0 is the disjoint union of the subspaces (KerT )⊥ and KerT whereas H1 is
the disjoint union of ImT and (ImT )⊥ ≃ H1/ImT , hence there is a linear
map (KerT )⊥ → ImT . Appeal to the closed graph theorem (see Appendix)
of functional analysis and deduce that the above continuous bijection has a
continuous inverse S : (ImT )→ (ImT )⊥. Then ST −I and TS−I are finite
rank operators.

b. ⇒ a.
Suppose that we have an operator S such that both ST − I and TS − I are
compact. We restrict the first to KerT and then

(ST − I)|KerT = −I|KerT ,

so I|KerT is compact, thus KerT is finite dimensional.

Similarly the other operator TS − I will give that cokerT is also finite
dimensional provided that we know that ImT is closed. Then

||ST − I − F || < 1/2,

where F is of finite rank. Then if x ∈ KerF ,

||STx− x|| ≤ (1/2)||x||,
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so
||STx|| ≥ (1/2)||x||,

hence

||Tx|| ≥ 1

2||S||x,

namely T is bounded below on KerF , thus T (KerF ) is closed. But

ImT = T (KerF ) + T ((KerF )⊥)

is closed. �.

We denote Fred(H) the set of all Fredholm operators from H to itself.

Definition 5. If ∈ Fred(H), then we define the Index of T , denoted
IndexT (or IndT for short), as the difference

IndT := dim(KerT )− dim(cokerT ) = [KerT ]− [cokerT ] ∈ Z.

Clearly the index of a Fredholm operator is an integer.

Intuitively one can say that the index measures how far an operator is
from being invertible since for invertible operators the index vanishes.

A basic property of the index is that if T0, T1 ∈ Fred(H), then T0T1 ∈
Fred(H) and

Ind(T0T1) = IndT0 + IndT1.

The proof of the above property can be deduced by the snake (or serpent)
Lemma in Homological Algebra. The following sequence is exact:

0→ KerT1 → KerT0T1 → KerT0 → cokerT1 → cokerT0T1 → cokerT0 → 0.

Example: Let H have a basis e0, e1, e2, ... and suppose U : H → H is
defined by:

Ue0 = e1

Ue1 = e2
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etc

Then KerU = {0} and dim(cokerU) = 1. Hence IndU = −1.

From the above example we deduce that the index depends much on the
spaces H0, H1 and little on the operator between them.

Proposition 2. If T0, T1 ∈ Fred(H) can be linked by a continuous path
Tt, t ∈ [0, 1] of Fredholm operators, then

IndT0 = IndT1.

Proof: We need only prove that the map t 7→ IndTt is locally constant. We
look near t = t0.
a. Perhaps Tt0 is bijective (hence invertible). Then nearby Tt’s are invertible
as well, so the index is constant (zero in fact) near t = t0.
b. Perhaps Tt0 is surjective, suppose dim(KerTt0) = n. Consider

St : H → H ⊕ Cn,

x 7→ (Ttx, PKerTt0
x).

These operators are Fredholm and

IndSt = IndTt − n.

But St0 is bijective, so the index of St is constant near t0.
c. Perhaps neither of the above holds. Then we choose an orthonormal basis
ei and let Qn be the projection onto Hn, the subspace of H generated by the
en+1, en+2, ... We claim that

QnTt0 : H → Hn

is surjective for large enough n. Hence

Ind(QnTt0) = IndTt0 +m

and apply case (b.) above. �.
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Proposition 2 in other words states that the set of Fredholm operators is
an open subset in B(H) and the index is locally constant in Fred(H).

Corollary 1. If T is Fredholm and K compact, then T +K is Fredholm
and moreover

Ind(T +K) = IndT.

Proof: Consider Tt = T + tK and apply Proposition 2. �.
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10 Lecture 2 (Index of Toeplitz Operators,

Winding Number and K-Homology)

We know that
Fred(H) ≃ Z×G∞.

If M is a compact, oriented, Riemannian manifold, then we can form

L2(M) = {f :M → C|
∫

M

|f |2dµ <∞}.

This is a Hilbert space with inner product

< f, g >=

∫

M

f ḡdµ.

For example, let L2(S1) be the set of square integrable complex functions
on the circle S1. We think of the circle as [0, 2π]/(0 = 2π), namely the closed
interval [0, 2π] with the end points identified. Then think of the Fourier
series: A complete orthonormal basis of L2(S1) is given by the functions

en(x) =
1√
2π
einx, n ∈ Z,

i.e. if f ∈ L2(S1), then

f(x) =
∑

cne
inx,

where

cn =
1

2π

∫ 2π

0

f(x)e−inxdx.

We can also regard the circle as a subset of the complex numbers, S1 ⊂ C.
Then the basis become

en =
1√
2π
zn.

Complex analysis suggests considering the subspaceH2(S1) = {f ∈ L2(S1)|f =
∑∞

n=0 cnz
n}, the Hardy space, namely the functions with only positive Fourier

coefficients. The orthogonal projection

P : L2(S1)→ H2(S1)
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is called the Hardy projection.

Notice that L2(S1) is a module over C(S1), (the space of continuous
complex valued functions on the circle), namely given an f ∈ C(S1), we can
define a multiplication operator Mf : L2(S1)→ L2(S1) via the relation:

(Mfg)(x) = f(x)g(x).

This is a bounded operator with

||Mf || = sup|f |.

The non-locality of operators can be measured by the commutator of it with
multiplications.

Lemma 1. If f ∈ C(S1), then the commutator

[P,Mf ] = PMf −MfP

is a compact operator (hence the Hardy projection is non-local but not very
far from being local).

Proof: Suppose first that f is a polynomial in z, z−1, say

f = a−mz
−m + ...+ amz

m.

Then, relative to the basis {en} mentioned above, f can be represented by
a matrix. By commuting with Mf , we get the Lemma (we get a finite rank
operator, and hence compact). So if f is polynomial, then the commutator
[P,Mf ] is a finite rank operator and hence by the Stone-Weierstrass theorem
(see Appendix) we deduce that polynomials are dense in C(S1). By approx-
imation we get the result in full generality. �.

Definition 1. Let f ∈ C(S1). Then the Toeplitz operator Tf : H2(S1)→
H2(S1) is the operator Tf = PMf . Then f is called the symbol of Tf .

Proposition 1. TfTg − Tfg is compact.
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Proof: PMfPMg − P 2MfMg = P [Mf , P ]Mg which is compact. �.

Corollary 1. If f ∈ C(S1) is invertible, then Tf is Fredholm.

Proof: Tf−1 is an inverse modulo compacts. �.

Key Question: What is the index of Tf?

Let f : S1 → Cx = C − {0} be a map such that the curve (graph of f)
never hits the origin. Recall that the winding number, denoted wn(f), of f
is the only topological invariant of such maps.

Theorem 1.
IndTf = −wn(f).

Proof: By deformation invariance of the index, the correspondence

f 7→ IndTf

defines a map
[S1,Cx] = Z→ Z.

Each homotopy class contains a representative zm and we just check what
the answer is on this representative.

For example, consider f(x) = z. Then H2(S1) is spanned by e0, e1, e2, ...
whereas Mz(ei) = ei+1. Then Tz = Tf is just Tz(ei) = ei+1, i = 0, 1, 2, ....
Thus Tz is the unilateral shift with index −1. �.

Next, we consider instead operators Tf where f : S1 →Mn(C), then such
operators are Fredholm provided that f is invertible, namely if f : S1 →
GLn(C). Just as before, we get maps [S1, GLn(C] → Z with f 7→ IndTf .
But

GLn(C)
i−→ GLn+1(C),

where the inclusion i given explicitly by

f 7→
(

f 0
0 1

)

= f̃ .
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Then

Tf̃ =

(

Tf 0
0 1

)

.

Hence the following diagram commutes:

[S1, GLn(C]
ind−−−→ Z

i





y

∥

∥

∥

[S1, GLn+1(C]
ind−−−→ Z

In the limit n→∞ we get an index map (in fact a group homomorphism)

K−1(S1)→ Z.

The above can be generalised for any compact space X (instead of the
circle S1) equipped with the following data:

a. A Hilbert space H which is a module over C(X) (namely equipped
with an algebra homomorphism C(X)→ B(H) with f 7→Mf).

b. A self-adjoint projection P on H .

c. PMf −MfP compact ∀f ∈ C(X).

The above data define an odd K-cycle for the space X , namely an element
of K−1(X).

Associated to such K-cycles there is a group homomorphism

K−1(X)→ Z.

This suggests that K-cycles should generate a ”dual” to K-Theory, namely
K-Homology.

Note: By considering an arbitrary (possibly noncommutative) algebra
A instead of the commutative algebra C(X) of some space X , one gets the
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definition of K-cycle a la Connes in Noncommutative Geometry.
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11 Lecture 3 (The slant product and the pair-

ing between K-Theory and K-Homology)

Definition 1. Let X be a compact topological space. An odd K-cycle of X
(odd because we deal with K1(X) as we shall see shortly) is defined by the
following data:

a. A Hilbert space H on which C(X) acts.

b. A projection P on H (projection means that P = P 2 = P ∗).

c. ∀f ∈ C(X), [P, f ] is compact.

Odd K-cycles thus give a homomorphism

K−1(X)→ Z

(which is given by the index of the corresponding Toeplitz operator).

Definition 2. A -cycle is degenerate if [P, f ] = 0, ∀f which induces the
zero map K−1(X)→ Z.

K-cycles have the following properties:

• K-cycles can be added by direct sum.

• There is a notion of equivalence for K-cycles: Unitary equivalence,
namely a unitary operator U : H → H ′ and homotopy equivalence, namely
the existence of a homotopy family (H,Pt), t ∈ [0, 1] of K-cycles with t 7→ Pt.

For a given X , the set of equivalence classes of K-cycles forms a semi-
group under direct sum and we can take the Grothendieck group of this
semi-group denoted K1(X) (which is an Abelian group).

Thus we get a pairing

K1(X)⊗K−1(X)→ Z.
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Lemma 1. Degenerat K-cycles are zero in K1(X).

Proof: Let (H,P ) be degenerate. Form (⊕∞H,⊕∞P ) which is a K-cycle.

Let X = [(H,P )] in K1(X) and Y = [(H∞, P∞]. Then X + Y = Y ⇒
X = 0. �.

We should have the analogue of the slant product

K1(X)⊗K−1(X × Y )→ K0(Y ).

Elements of K1(X) are odd K-cycles of the form (P,H) where C(X) acts
on . Elements of K−1(X × Y ) are maps X × Y → GLn(C) = Y →
Maps(X → GLn(C)) namely y 7→ gy 7→ Tgy ∈ Fred(P,H), hence we get
a map Y → Fred(H), where Fred(H) is the set of Fredholm operators on
H .

The key point in the construction of slant product is to show how a Fred-
holm family over Y , namely a continuous map Y → Fred(H) gives rise to a
K-theory class in K0(Y ). The requirement is that when Y = ∗ a point, this
should be the index.

The idea is to consider the maps {KerTy : y ∈ Y } → Y and {cokerTy :
y ∈ Y } → Y . We want the index IndTy to be the formal difference of vector
bundles [KerTy]− [cokerTy]. Unfortunately these might not be vector bun-
dles since the dimensions may jump.

Recall however from previous work on deformation invariance of the in-
dex that we can find a finite codimesnion projection Qm such that QmTy is
onto the range of Qm for any y ∈ Y .

Now the kernels Ker(QmTy) do form a vector bundle. Near y0, the oper-
ator QmTy0 is onto the range of Qm. Consider the map

Sy : H → (RangeQm)⊕ (Ker(QmTy0)).

The map Sy0 is invertible, hence Sy is invertible ∀y ∈ U , where U is a
neighborhood of y0. Consider next

S−1
y (O ⊕Ker(QmTy0)) = KerSy.
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Hence Sy restricted to U , gives a bijection between the family of vector spaces
KerSy → U and the constant family O ⊕Ker(QmTy0) → U . Hence KerSy

forms a vector bundle.

To summarise then, we have ”defined” a map

[Y, Fred(H)]→ K0(Y ) = [Y,Z×G∞].

Theorem 1. The map

Fred(H)→ Z×G∞

is a weak homotopy equivalence.

Proof: The result follows from the above construction �.

Consider the space

FredS(H) = {
(

T 0
0 1

)

|T ∈ Fred(H)}.

Theorem 2. The map

[X,FredS(H)]→ K0(Y )

is an isomorphism. This map is nothing other than the index.

Proof: We have to prove that the map is surjective and injective.

For surjectivity: Given V,W two vector bundles over Y , we embed them
in a big enough trivial bundle (because the Hilbert space is infinite dimen-
sional):

V →֒ CN →֒ H

and
W →֒ CN →֒ H.

The Hilbert space H can be written as the direct sum of subspaces Vy ⊕ V ⊥
y

and Wy ⊕W⊥
y where Ty is the linear map between them.
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For injectivity: Let (Ty) be a family of index zero. Then using a ”cutoff”
as the Qm before, we can deform it to a family with constant cokernel of di-
mension m. Since the index is zero, (KerTy) is a stably trivial vector bundle
of dimension m. By taking m large enough, we may assume that (KerTy) is
a trivial vector bundle. The Hilbert space can be written as the direct sum
(KerTy)⊕ (KerTy)

⊥ and Cm ⊕ S, where S some fixed subspace. The linear
map between them is Uy + Ty which is invertible. Hence Ty can be deformed
to a family of invertibles.

Next recall the following fact: The group GLH is contractible (this is
difficult to prove). For our stable version we need only know that the space

{
(

U 0
0 1

)

|U ∈ GLH}

is contratible. To complete the proof we recall that from the Whitehead
Lemma

(

U 0
0 U−1

)

∼
(

1 0
0 1

)

,

(where ∼ means homotopic), hence the following classes can be homotoped

Uy ⊕ 1⊕ 1⊕ ...

Uy ⊕ U−1
y ⊕ Uy ⊕ ...

�.
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12 Lecture 4 (Bott Periodicity)

Recall that in the previous section we defined the slant product:

K1X ⊗K−1(X × Y )→ K0Y,

where
x⊗ y 7→ x\y.

Claim:
K1X ⊗K−1(X × Y )⊗K0Z → K0(Y × Z),

with
x⊗ y ⊗ z 7→ (x\y)⊗ z = x\(y ⊗ z).

This is obvious for:
What is the pairing K−1W ⊗K0Z → K−1(W × Z)?
The answer comes from the fact that an automorphism of any bundle V over
W defines an element V ⊕ V ′ of the group K1(W ).

We introduce the idea of K-Theory for locally compact spaces (locally
compact means that each point has a compact neighbourhood).

Let X be a locally compact topological space and let X+ denote its 1-
point compactification, namely X+ = X ∪ {∞}.

Definition 1.

KiX = K̃iX+ := Ker(KiX+ → K(∗)).

This definition makes sense because by functoriality, a map X → Y induces
a map X+ → Y +.

Thus Bott periodicity becomes a theorem relating K∗X with K∗(R×X).

Recall the elementary fact:

K0(R×X) = K−1X.

Moreover
(R×X)+ = SX/A
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where SX is the suspension of X and A denotes the two vertices of the sus-
pension SX .

Theorem 1.
K−1(R×X) ≃ K0X.

Proof: Let’s denote the above isomorphism by β and let’s try to describe
it: Let b ∈ K−1R be the generator corresponding to the function z 7→ 1/z
on S1. Then

β : K0X → K−1(R×X),

with
x 7→ b⊗ x.

Note that
K0(∗) β−→ K−1R→ K0(R2) = K̃0(S2)

where β(1) is the tautological line bundle.

In the case where S2 = CP 1, we choose homogeneous coordinates (z0, z1),
the North Hemisphere consists of points with homogeneous coordinates (1, z1)
whereas the South Hemisphere consists of points with homogeneous coordi-
nates (z0, 1) and the boundary circle (the equator) consists of points with
coordinates (z0/z1) and thus we obtain the Hopf line bundle.
Next

β : K0X → K−1(R×X) = K0(R2 ×X),

with
x 7→ b⊗ x.

We define the map
α : K−1(R×X)→ K0X.

We also have maps

K−1(R×X)→ K−1(S1 ×X)

and
a\ : K−1(S1 ×X)→ K0X,

where a ∈ K1(S
1), hence α(y) = a\y. To continue, we shall need the follow-

ing
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Lemma 1.
α(β(x)) = x, ∀x ∈ K0X.

Proof of Lemma: a\(b⊗ x) = (a\b)⊗ x = 1⊗ x = x. �.

To complete the proof of the theorem that β is an isomorphism, it will
be enough to prove that it is surjective, namely we would like to know that
every y ∈ K0(R2 ×X) is of the form b⊗ (−).

Consider the map

K0(R2 ×X)→ K0(R2 ×X × R2),

with
y 7→ y ⊗ b.

Notice that y = (y ⊗ b)\a by Lemma 1. Yet y ⊗ b = b ⊗ ỹ, where ỹ is the
image of y under the map

R2 ×X → X × R2,

with
(v, p) 7→ (p,−v).

The matrix
(

0 −I
I 0

)

which acts on R2 ⊕ R2 is homotopic to the identity, thus we get

y = (y ⊗ b)\a = (b⊗ ỹ)\a = b⊗ (ỹ\a).

�.

The above is known as Atiyah’s trick.

We can generalise: X ×R2k is the total space of a trivial complex vector
bundle over X . Let V be any complex vector bundle over X . Can we gener-
alise Bott periodicity to compute KV in terms of KX?
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The answer is affirmative.

There is a map
β : KX → KV

which is an isomorphism, β is a product with a Thom class for V , namely a
class of KV which restricts to each fibre to the usual Bott generator.

Suppose V = L is a complex line bundle. The Thom class is the tautolog-
ical line bundle over P(L ⊕ 1). The proof of the Thom isomorphism is very
similar to Atiyah’s trick. See the following reference: M.F. Atiyah: ”Bott
Periodicity and the Index of Elliptic Operators”, Q.J. of Maths, Oxford, May
1968.
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13 Lecture 5 (K-Theory of Banach and C∗-
algebras)

Recall that a Banach Algebra is a complete normed algebra.

A C∗-algebra is an involutive Banach algebra such that

||xx∗|| = ||x||2.

Examples:

a. The set B(H) of bounded operators on a Hilbert space H .

b. The set K(H) of compact operators on a Hilbert space H (this is an
ideal of B(H)).

c. The Calkin algebra

Q(H) = B(H)/K(H).

d. If X is a compact Hausdorff space, then C(X) (the set of continuous
complex functions on X) equipped with the supreme norm

||f || = sup|f |

and involution
g∗ = ḡ

where ḡ denotes complex conjugate, is a C∗-algebra.

Aside Note 1: If X is only locally compact and Hausdorff, then consider
C0(X) (the set of complex continuous functions vanishing at infinity). This
is also a C∗-algebra without unit. Moreover

C0(X) = Ker(C(X+)→ C),

with
f 7→ f(∞),
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where X+ is the 1-point compactification of X .

Every non-unital C∗-algebra can be ”1-compactified” in this way:

J → J+ → C,

where
J+ = {j + λ1 : λ ∈ C}.

Aside Note 2: Because from Gelfand’s theorem we know that the topology
of a compact Hausdorff space X is captured by C(X) which is a commutative
C∗-algebra, every commutative C∗-algebra corresponds to a compact Haus-
dorff space (its spectrum). Hence the topological K-Theory is the K-Theory
of commutative C∗-algebras and thus the study of arbitrary C∗-algebras
corresponds to noncommutative topology. This is the starting point of A.
Connes’ famous noncommutative geometry.

Now let A be a unital Banach algebra and let Pn(A) denote the set of
projections (P 2 = P ) in Mn(A), the set of n× n matrices with entries from
A. We denote by P (A) the limit

P (A) = lim
n→∞

Pn(A).

Definition 1.
K0A = Gr[π0(P (A))],

where Gr is the Grothendieck group of the semi-group π0(P (A)).

Definition 2.
K1A = π0(GLA).

Two alternative definitions are the following:

Definition 1’. We define K0(A) to be the abelian group defined by gen-
erators and relations as follows:
• A generator [p] for each projection p ∈Mn(A) (∀n ∈ N).
• Relations as follows:
i. [0] = 0
ii. If p, q are homotopic through projections, then [p] = [q].
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iii. [p⊕ q] = [p] + [q].

Definition 2’. We define K1(A) to be the abelian group defined by gen-
erators and relations as follows:
• A generator [u] for each unitary u ∈Mn(A) (∀n ∈ N where unitary means
u∗u = uu∗ = 1).
• Relations as follows:
i. [1] = 0
ii. If u, v are homotopic through unitaries, then [u] = [v].
iii. [u⊕ v] = [u] + [v].

Lemma 1.
K0A = Kalg

0 A,

namely the definition we gave above for the 0th K-group is the same as the
algebraic 0th K-group definition. Moreover in P (A), homotopy and conju-
gacy generate the same equivalence relation.

BUT

K1A 6= Kalg
1 A,

since clearly
π0(GLA) 6= π1(BGLA

+).

If J is a non-unital C∗-algebra, we denote by J+ the algebra J with a unit
attached to it; then we define the K-groups of J as follows:

KiJ = Ker(Ki(J
+)→ KiC), i = 0, 1.

We hope the reader can distinguish between the ” + ” of the 1-point com-
pactification and the ” + ” of Quillen’s plus construction.

Basic relations:

1.
Ki(C(X)) = K−iX.

2. If K(H) denotes the set of compact operators on a Hilbert space H ,
then

K0(K(H)) = Z
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whereas
K1(K(H)) = 0.

Recall that
K(H) = lim

n→∞
MnC,

hence
K∗(K(H)) = lim

n→∞
K∗(MnC) = lim

n→∞
K∗C = K∗C.

3. If B(H) denotes the set of bounded operators on a Hilbert space H ,
then

Ki(B(H)) = 0, i = 0, 1.

Moreover one has that
K0(C) = Z

whereas
K1(C) = 0.

Next we ask the question: What should be the C∗-algebra K-Theory ver-
sion of the exact sequence of a pair (X,A)?

Let U = X/A. Then there is an exact sequence

0→ C0(U)→ C(X)→ C(A)→ 0.

One has the following

Theorem 1. To any C∗-algebra short exact sequence

0→ J → A→ A/J → 0,

is associated an exact sequence of K-Theory groups

K1J −−−→ K1A −−−→ K1(A/J)
x









y
∂

K0(A/J) ←−−− K0A ←−−− K0J
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where the vertical arrows

K0(A/J)→ K1J

and
∂ : K1(A/J)→ K0J

make the above diagram commute.

Proof: Omitted, see the bibliography. �.

Let u ∈ Mn(A/J) be invertible. Then ∂[u] should obstruct lifting to an
invertible in MnA.

We know we can always lift
(

u 0
0 u−1

)

,

(more precisely its class), to an invertible matrix R ∈M2nA. Let P ∈M2nA,

P =

[

1 0
0 0

]

∈M2n(J
+)

and let Q = R−1PR ∈M2n(J
+). Then

[P ]− [Q] ∈ K0J.

An interesting special case is this: Take J = K(H), A = B(H) hence
A/J = Q(H). Then the boundary map ∂ is a generalised index.

We shall return to K-Homology (of C∗-algebras) next.

Definition 3. Let A = C(X), where X is a compact and metrisable
topological space. A Hilbert space is an X-module if there is a representa-
tion ρ : A→ B(H).

Definition 4. An essential equivalence between two X-modules H,H ′ is
a unitary operator u : H → H ′ such that

uρ(a)u∗ − ρ′(a) ∈ K
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is a compact operator.

Definition 5. An X-module is big if the map

ρ : A→ B(H)→ Q(H)

is injective.

Then one has the following important

Theorem 2. (Voiculescu) Big modules are absorbing, namely if H,H ′

are two X-modules and H is big, then H⊕H ′ is essentially equivalent to H .

Proof: See the bibliography. �

Corollary 1. All big modules are essentially equivalent.

Let X be some topological space (compact and metrisable). Choose a big
X-module HX .

Definition 6. The Paschke dual D(X) of X is the C∗-algebra

D(X) = {T ∈ B(HX) : [T, ρ(a)]compact}, ∀a ∈ A = C(X).

Next we define:

Definition 7.
K̃iX = (K̃iA =)K1−i(D(X)).

There is an exact sequence of a pair (X, Y ) of C∗-algebras in K-Homology:

Definition 8.

D(X, Y ) = {T ∈ D(X) : Tρ(a) ∈ K(H), ∀a ∈ C0(X/Y )}.

Because D(X, Y )�D(X), one gets a short exact sequence of C∗-algebras:

0→ D(X, Y )→ D(X)→ D(X)/D(X, Y )→ 0.
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14 Lecture 6 (C∗-algebra extensions and K-

Homology)

Let H be a Hilbert space and N ∈ B(H) a bounded operator.

Definition 1. N is called normal if

NN∗ = N∗N.

If N is normal, then N generates a commutative C∗-subalgebra of B(H),
in fact one can show that it is isomorphic to C(σ(N)), where

σ(N) = {λ ∈ C : ∄(N − λI)−1}

is the spectrum of N .

Task: Try to classify normal operators up to unitary equivalence modulo
compacts.

Berg proved that these are classified entirely by their essential spectrum
σe(N), namely

σ(π(N)), π : B(H)→ Q(H) = B(H)/K(H),

as a consequence of Voiculescu’s theorem.

Definition 2. An operator N ∈ B(H) is called essentially normal if
NN∗ −N∗N ∈ K(H) is compact.

Next, Brown, Douglas, Fillmore asked themselves the following question:
Is the essential spectrum the only invariant of essential equivalence for es-
sentially normal operators?

The answer is negative.

As a counterexample consider the unilateral shift U : We know that
σe(U) = S1 and IndU = −1 but IndN = 0, ∀N normal.
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For any λ which is not in the essential spectrum of N , the index Ind(N−
λI) ∈ Z is an invariant of essential equivalence. So we may ask: If
1. σe(N1) = σe(N2) = X ,
2. Ind(N1 − λiI) = Ind(N2 − λiI), for λi ∈ C−X ,
are the operators N1 and N2 essentially equivalent?

The answer to this question is affirmative.

Definition 3. We define the set BDF (X) as the set which consists of
the essential equivalence classes of essentially normal operators with essential
spectrum X .

Then, BDF (X) equals the set of C∗-algebra extensions

0 −−−→ K(H) −−−→ A −−−→ C(X) −−−→ 0
∥

∥

∥





y
i





y
i

0 −−−→ K(H) −−−→ B(H) −−−→ Q(H) −−−→ 0

where A is the algebra generated by N and K(H) and i denotes the in-

clusions A
i−→ B(H), C(X)

i−→ Q(H).

The set BDF (X) is also equal to the set of monomorphisms C(X) →
Q(H).

Moreover we know the following facts:

• BDF (X) is a semi-group under direct sum.

• From Voiculescu’s theorem, any normal operator defines an identity
element.

Examples:
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1. BDF (I) = 0, I = [0, 1] ⊂ C.

2. BDF (S1) = Z.

Theorem 1. (Averson) Given any homomorphism α : C(X) → Q(H),
one can find another homomorphism φ : C(X)→ B(H ⊕H) such that if

φ =

(

φ11 φ12

φ21 φ22

)

,

then
π ◦ φ11 = α.

Observe that φ12, φ21 must be compact (namely compact operator valued)
and φ22 must be another ∗-homomorphism, say β, thus α ⊕ β is liftable to
B(H).

Proof: The basic idea is this:

φ(xx∗) = φ(x)φ(x∗),

(

φ11(xx
∗) φ12(xx

∗)
φ21(xx

∗) φ22(xx
∗)

)

=

(

φ11(x) φ12(x)
φ21(x) φ22(x)

)(

φ11(x
∗) φ12(x

∗)
φ21(x

∗) φ22(x
∗)

)

,

hence
φ11(xx

∗) = φ11(x)φ11(x
∗) + φ12(x)φ12(x

∗).

�.

Observe that
BDF (X)→ Hom(K−1X,Z)

and
0→ K(H)→ A→ C(X)→ 0.

The corresponding long exact sequence contains a map

K1(C(X)) −−−→ K0(K(H))
∥

∥

∥

∥

∥

∥

K−1X −−−→ Z
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Then the basic result of Brown, Douglas, Fillmore is the following

Theorem 2.
BDF (X) = K1X.

Proof: We give a sketch of the proof:

α : C(X)→ Q(H)

φ : C(X)→ B(H ⊕H),

where

φ =

(

φ11 φ12

φ21 φ22

)

.

Let
p : H ⊕H → H

be the projection to the first factor. Then

[φ, p] =

(

0 −φ12

φ21 0

)

∈ K(H)

is exactly a K-cycle.

In general, X is some polyhedron in R3 and BDF (X)→ Hom(K−1X ;Z).

Next we continue with some diagram chasing:

K1A −−−→ K1X −−−→ K1(X,A) −−−→ K0A −−−→




y





y





y





y

Hom(K−1A;Z) −−−→ Hom(K−1X ;Z) −−−→ ...

�.
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Finally we get:

0→ Ext(K0X ;Z)→ K1X → Hom(K−1X ;Z)→ 0

and

K−1X → Z(= K0(K(H)))→ K0A→ K0X → 0(= K1(K(H))).

We have also used the relations

K1(C(X)) = K−1X

and
K1X = BDF (X) = Ext(C(X)) = Hom(K−1X ;Z).
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15 Higher Algebraic K-Theory

Algebraic K-Theory defines and applies a sequence of functors denoted Kn

from rings to abelian groups for all integers n. The rings can be either com-
mutative or noncommutative, usually unital but this later assumption can
be relaxed at the expense of increased complexity.

For historic reasons, the lower algebraic K-groups K0 and K1 are thought
of in some different terms from the higher algebraic K-groups Kn for n ≥ 2.
Indeed, the lower groups are more accessible, and have more applications
(to this day), than the higher groups. The theory of the higher K-groups
is noticeably deeper, and certainly much harder to compute (even when the
ring is the ring of integers).

The group K0 generalises the construction of the ideal class group of a
ring, (originated by the failure of the unique factorization property of inte-
gers) using projective modules. Its development in the 1960’s and 1970’s was
linked to attempts to solve a conjecture of Serre on projective modules that
now is the Quillen-Suslin theorem; numerous other connections with classical
algebraic problems were found in this era. Similarly, K1 is a modification of
the group of units in a ring, using elementary matrix theory. Intuitively one
could say that K1 encodes information about the homotopy classes of∞×∞
matrices with entries from a ring.

The first K-group K1(R) is important in topology, especially when R is
a group ring, because its quotient the Whitehead group contains the White-
head torsion used to study problems in simple homotopy theory and surgery
theory; the group K0(R) also contains other invariants such as the finiteness
invariant. Since the 1980’s, algebraic K-theory has increasingly had appli-
cations to algebraic geometry. For example, motivic cohomology is closely
related to algebraic K-theory.

The 0th K-Group was defined by Alexander Grothendieck in about 1957
in his studies on Algebraic Geometry, the 1st K-Group was defined by the
famous topologist John Whitehead shortly afterwards whereas the 2nd K-
Group was defined by Robert Steinberg. Progress stopped until 1970’s when
D.G. Quillen appeared; with his trully ingeneous plus construction he gave
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the general definition of the nth K-Group which includes all previous defini-
tions of Grothendieck, Whitehead and Steinberg for n = 0, 1, 2. Some years
later Quillen discovered his famousQ-construction which is more general with
improved functorial properties and can be applied to any exact category (in-
stead of just rings). Quillen’s results excited Grothendieck who posted a 600
pages handwritten letter concerning the future of Algebraic Geometry and
K-Theory. During 1980’s, a topological version of Quillen’s Higher Algebraic
K-Theory was developed by Waldhausen known as Waldhausen K-Theory.
Unfortunately, as it is usually the case with modern mathematics, compu-
tations are hard and thus even today there are only a few known examples:
complete computations exist only for finite fields (Quillen) and even for the
ring of integers, the computations are only known ”mudulo torsion” (Borel).
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16 Lecture 1 (Algebraic Preliminaries and the

the Grothendieck Group)

The key notion in this chapter will be the notion of an A-module where A
is a ring (either commutative or not, usually but not necessarily unital). In
the case where A is actually a field, then an A-module is just an A-vector
space. Motivated by the usual notation in the study of vector spaces, we
shall consider left A-modules.

Classical results in linear algebra (finite dimensional vector spaces) state
that every vector space has a basis and the number of vectors in all bases of
some fixed vector space is constant; this enables one to define the notion of
the dimension of a vector space. Similar (but not identical) things hold for
modules: A basis for an A-mod P is a subset {ei}i∈I (not necessarily of finite
cardinality, if this happens then P is called finitely generated, abreviated to
f.g., see below), of P such that every element of P can be written uniquely
as a finite sum

∑

i aiei where ai ∈ A. If P has a fixed basis we call it a based
free module and we define the dimension (or rank) of P to be the cardinality
of its given basis. A module is called free if there is a basis which makes it
into a based free module. The typical example of a free module is An which
consists of n-tuples of elements of the ring A. There are rings however for
which An ≃ An+m where m 6= 0. To avoid this pathology, we shall assume
that all our rings have the so-called invariant basis property which means
precisely that An and Am are not isomorphic unless n = m. In this case
the dimension of a free A-mod P is invariant, independent of the choice of
a basis in P . (An example of a module which does not have the invariant
basis property is the infinite matrix ring EndF (F

∞) of endomorphisms of an
infinite dim vector space F∞ over some field F ). After these brief algebraic
preliminaries, we proceed to the basic material of this section.

Definition 1. Let A be a unital ring. An A − mod (A-module) P is
called projctive if there is a module Q such that the direct summand

F = P ⊕Q

is a free module F .
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It follows from the above definition that P is the image of a projection p
on F ; the module endomorphism in F which is the identity on P and 0 on
Q, namely

Q = ker(p),

is idempotent and projects F to P . In other words P is projective if P is a
direct summand of a free module.

Using category language, one can define projective modules relying on
the lifting property: An A-mod P is projective if and only if for every surjec-
tive module homomorphism f : N ։ M and every module homomorphism
g : P → M , there exists a homomorphism h : P → N such that fh = g
(we do not require the lifting homomorphism h to be unique, this is not a
universal property). The following diagram describes the situation:

P
h−−−→ N

∥

∥

∥





y

f

P
g−−−→ M

The notion of a finitely generated module generalises the notion of a fi-
nite dimensional vector space (in the case where the ring A is actually a field):

Definition 2. A (left) A−mod P is called finitely generated if and only
if there exists a finite number of elements x1, x2, ..., xn ∈ P such that ∀x ∈ P
there exist elements a1, a2, ..., an ∈ A so that

x = a1x1 + a2x2 + ... + anxn.

The set {x1, x2, ..., xn} is called a set of generators for P .

Theorem 1. The following are equivalent:
1. P is a finitely generated projective (f.g.p. for short) A−mod.
2. There exists n ∈ N∗ along with another A−mod Q such that

P ⊕Q = An.
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3. There exists some n ∈ N∗ along with some element e ∈MnA such that

e = e2

and
P = Ane

(where MnA denotes the set of n× n matrices with entries from A).

For the proof of this theorem we refer to the books on Algebra listed in
the introduction (background references).

We denote by PA the category of f.g.p. A − mod′s and by Iso(PA) we
denote the set of isomorphism classes of f.g.p. A−mod′s. The second set is
in fact an abelian monoid with addition given by

[P ] + [Q] = [P +Q].

Definition 3. We define the 0th K-group of the ring A, denoted K0A,
the abelian group completion (or the Grothendieck group Gr we used in
chapter 1) of Iso(PA) ), namely

K0A := abelian group completion of Iso(PA).

The 0th K-group is often called the Grothendieck group of the ring A
to honour the great French mathematician (of German origin) Alexander
Grothendieck who defined it in 1957.

In general, if I is any abelian monoid, then there exists an Abelian group
I∗ along with an homomorphism φ : I → I∗, which is a universal homomor-
phism from I to some abelian group. The pair (I∗, φ) is only defined up to
a canonical isomorphism.

There are three ways to construct I∗:

1. I∗ is the free abelian group with generators [a], a ∈ I and relations
[a+ b] = [a] + [b].
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2. I∗ = I × I/ ∼, where the equivalence relation ∼ is defined as follows:
(a, b) ∼ (a′, b′) ⇔ ∃γ : a + b′ + γ = a′ + b + γ (clearly this is indeed an
equivalence relation). Next we define (a, b)+ (a′, b′) = (a+a′, b+ b′) whereas
0 = (0, 0) and −(a, b) = (b, a). Thus (a, b) = [a] − [b]. (This is the con-
struction we used in section 1.1 to define KX , the Grothendieck group of
V ect(X)).

3. Assume there exists an a0 ∈ I such that ∀a′ ∈ I, ∃n ∈ N and b ∈ I so
that a + b = nd0. Then

I∗ = I × N/ ∼
where (a, n) ∼ (a′, n′)⇔ ∃n ∈ N such that a + n′a0 = a′ + na0.

All the above abelian groups have the desired universal property.

Hence, to summarise, the 0th K-group K0A of a unital ring A is the free
abelian group with generators [p]∀p ∈ PA and relations [p ⊕ q] = [p] + [q],
which is equal to the group of formal differences [p] − [q] and which is also
equal to the group of formal differences [p]− [An].

Examples:

1. Let F be a skew-field, namely a ring with 0 6= 1 where division is
possible, in other words each element has a multiplication inverse (or equiv-
alently a field where multiplication is not necessarily commutative). Then
the category PF of f.g.p. F-mod’s consists of finite dimensional vector spaces
over the field F. Then the abelian monoid Iso(PF) is equal to N, and hence

K0F = Z.

2. If A = Z, then the category P n
Z is the finitely generated free abelian

group Zn for all n ∈ N whereas

Iso(PZ) = N,

hence
K0Z = Z.
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The same holds for principal ideal domains.

3. Dedekind domains, eg take F some number field [F,Q] < ∞ and A
the integral quotient of Z in F. Let Pic(A) denote the ideal class group of
A-fractional ideals divided by the principal ones. Then one has the following:

Theorem 2: If P ∈ PA, then P ≃ a1 ⊕ a2 ⊕ ... ⊕ an, where the ai’s are
fractional. Hence K0A = Z⊕ Pic(A).

The proof of this theorem is left as an excercise to the reader (see for
example [39]).

4. Serre-Swan Theorem. Let X be a compact Hausdorff topological
space and let A = C(X) denote the set of continuous, complex valued func-
tions on X (which is a unital ring). Then the category PA is equivalent to
the category of complex vector bundles over X .

[Aside Note: This theorem was one of the motivations for the devel-
opment of Noncommutative Geometry by the French mathematician Alain
Connes which, in some sense, is an attempt to unify differential and algebraic
geometry].

Proof of Serre-Swan Theorem: This is an important theorem, thus
we shall give a full proof of it. We have to prove the existence of a bijection
between Iso(PA) (which is the set of isomorphism classes of f.g.p. A-mod’s)
and V ect(X) (which is the set of isomorphism classes of complex vector bun-
dles over X) where A = C(X).

Recall the definitions of vector bundles and local sections of vector bun-
dles in section 1 of chapter 1. Given any vector bundle E → X we denote
by Γ(E,X) (or simply Γ(E)) the set of all local sections of the vector bundle
E → X . It is clear that Γ(E) becomes a C(X)-module if we define:
• (s1 + s2)(x) = s1(x) + s2(x)∀s1, s2 ∈ Γ(E)
• (as)(x) = a(x)s(x)∀a ∈ C(X) and s ∈ Γ(E)
It is clear that for the trivial vector bundle Cn

X , the set Γ(Cn
X) is a free

C(X)-module on n generators. Moreover Γ(−) is an additive functor from
the category of complex vector bundles over X to the category PA. Thus to
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prove the theorem, we have to prove three claims:

Claim 1. The functor Γ(−) ”respects” isomorphisms, namely that if
E ≃ E ′ as vector bundles over X , then Γ(E) ≃ Γ(E ′) as C(X)-modules.

Claim 2. Γ(E) is a f.g.p. C(X)-mod for any vector bundle E over X .

Claim 3. All f.g.p. C(X)-mod’s can be ”realised” as a Γ(E) for some
vector bundle E over X .

The proof of Claim 1 requires a number of propositions (we prove it for
the more general case where X is a normal topological space and to be more
precise we shall prove that if X is normal then Γ(−) gives an isomorphism
Hom(E,E ′) ≃ HomC(X)(Γ(E),Γ(E

′))):

Lemma 1. If X is normal, suppose U is a neighborhood of x ∈ X and
let s be a section of a vector bundle E over U . Then there is a section s′ of
E over X so that s and s′ agree in some neighborhood of x.

Proof: We shall construct an s′: Let V,W be neighborhoods of x so that
V̄ ⊂ U and W̄ ⊂ V . Let a be a real valued function on X such that a|W̄ = 1
and a|(X−V ) = 0. We let s′(y) = a(y)s(y) if y ∈ U and s′(y) = 0 if y /∈ U . �

Corollary 1. If X is normal, then for any x ∈ X there are elements
s1, s2, ..., sn ∈ Γ(E) which form a local base at x.

Proof: (Obvious). �

Corollary 2. If X is normal, f, g : E → E ′ are two vector bundle maps
and Γ(f) = Γ(g) : Γ(E)→ Γ(E ′), then f = g.

Proof: Given e ∈ E with π(e) = x (where π : E → X is the vector
bundle projection), there is a section s over a neighborhood U of x with
s(x) = e. By Lemma 1 there is a section s′ ∈ Γ(E) with s′(x) = e. Now
f(e) = fs′(x) = (Γ(f)s′)(x) = (Γ(g)s′)(x) = g(e). �

Lemma 2. If X is normal and if s ∈ Γ(E) with s(x) = 0, then there
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exist elements s1, ..., sk ∈ Γ(E) and a1, ..., ak ∈ C(X) such that ai(x) = 0 for
i = 1, ..., k and s =

∑

i aisi.

Proof: From Corollary 1 suppose s1, ..., sn ∈ Γ(E) be a local base at x
and let s(y) =

∑

i bi(y)si(y) near x where bi(y) ∈ C. Let ai ∈ C(X) be such
that ai and bi agree in a neighborhood of x (these exist by Lemma 1 applied
to X × C). Then s′ = s−∑

i aisi vanishes in an neighborhood U of x. Let
V be a neighborhood of x so that V̄ ⊂ U . Let a ∈ C(X) be zero at x and 1
on X − V . Then s = as′ +

∑

i aisi. But a(x) = 0 and ai(x) = bi(x) = 0. �

Corollary 3. Let Ix be the two-sided ideal of C(X) consisting of all
a ∈ C(X) with a(x) = 0. Then Γ(E)/[IxΓ(E)] ≃ π−1(x) (where π : E → X
is the vector bundle projection), the isomorphism being given by s 7→ s(x).

Proof: This follows from Lemma 2 and (the proof of) Corollary 2. �

Proposition 1. If X is normal, then given any C(X)-map F : Γ(E) →
Γ(E ′), there exists a unique (complex) vector bundle map f : E → E ′ so
that F = Γ(f).

Proof: Uniqueness follows from Corollary 2. Now F induces a map
fx : Γ(E)/[IxΓ(E)] → Γ(E ′)/[IxΓ(E

′)]. The totality of these yield a map
f : E → E ′ which is linear on fibres. If s ∈ Γ(E), then (fs)(x) = fxs(x) =
(F (s))(x) by construction and thus F = Γ(f). The final step is to check
continuity: Let s1, ..., sm ∈ Γ(E) be a local base at x. If e ∈ E and π(e) is
near x, one has e =

∑

i ai(e)si(π(e)) where the ai’s are continuous complex
valued functions. Now f(e) =

∑

i ai(e)fsi(π(e)). Since fsi = F (si), this
implies that fsi is a continuous section of E ′; yet all terms in the sum are
continuous in e, hence f is continuous. �

Corollary 4. Let X be normal and let E and E ′ be to complex vector
bundles over X . Then E ≃ E ′ ⇔ Γ(E) ≃ Γ(E ′) as C(X)-modules.

Proof: Obvious from Proposition 1. �

To prove Claim 2 we need two Lemmas:
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Lemma 3. If X is compact and Hausdorff, let E be any complex vector
bundle over X . Then there is a trivial complex vector bundle Cn

X (for some
n ∈ N) along with a surjection f : Cn

X → E.

Proof: Recall that Propositon 1.1.1 states that if the base space X is
compact and Hausdorff, then for every complex vector bundle E over X there
exists another complex vector bundle E ′ over X so that their direct sum is
the trivial bundle, namely

E ⊕ E ′ ≃ Cn
X

for some n ∈ N. (We proved the theorem for the real case but this can be
carried over to the complex case in a straightforward way). Then Lemma 3
is a direct consequence of this proposition where the surjection f is just the
natural projection

f : Cn
X ≃ E ⊕ E ′ → E.

�

Lemma 4. For any complex vector bundle E → X over X , where X is
compact and Hausdorff, Γ(E) is a f.g.p. C(X)-module.

Proof: It is clear that for the trivial vector bundle Cn
X , the set Γ(Cn

X) is
a free C(X)-module on n generators. Since E⊕E ′ ≃ Cn

X , one then has that
(from Corollary 4) Γ(E)⊕ Γ(E ′) ≃ Γ(Cn

X) as C(X)-modules, and therefore
Γ(E) is a f.g.p. C(X)-module. �

Finally, for the proof of Claim 3 we need the following Lemma and Propo-
sition:

Lemma 5. Let t1, ..., tk be sections of a vector bundle E over a neigh-
borhood U of x so that t1(x), ..., tk(x) are linearly independent. Then there
exists a neighborhood V of x so that t1(y), ..., tk(y) are linearly independent
∀y ∈ V .

Proof: Let s1, ..., sn be a local base at x and let ti(y) =
∑

j aij(y)sj(y)
where y 7→ aij(y) is a continuous map U → GLn(C). Then by hypothesis a
k × k submatrix of aij(y) must be nonsingular and this should hold for all y
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sufficiently close to x. From this fact the result follows. �

Proposition 2. Let f : E → E ′ be a vector bundle map. Then T.F.A.E.:
(1) Imf is a subbundle of E ′.
(2) Kerf is a subbundle of E.
(3) The dimensions of the fibres of Imf are locally constant.
(4) The dimensions of the fibres of Kerf are locally constant.

Proof: Let us start by making a comment: We know from linear algebra
that for any linear map between finite dimensional vector spaces f : V → V ′,
Kerf is a vector subspace of V and Imf is a vector subspace of V ′. This
cannot be carried over to vector bundles, namely if f : E → E ′ is a vector
bundle map, then Kerf and Imf are not necessarily vector subbundles of
E and E ′ respectively. For example, let X = I = [0, 1] the unit interval,
E = I × C and π(x, y) = x. Let f : E → E be given by f(x, y) = (x, xy).
Then the image of f has a fibre of dim 1 everywhere except at x = 0 where
the fibre is zero, thus Imf cannot be a vector bundle. Neither is Kerf . This,
however is the only thing which can go wrong.
Back to our proof, it is clear that (3) and (4) are equivalent and they are
implied by either (1) or (2). To see that (3) implies (1), let x ∈ X , choose
a local base s1, ..., sm for E at x and a local base t1, ..., tn for E ′ at x. Let
k be the dimension of the fibre of Imf at x. After a possible renumbering,
we can assume that fs1(x), ..., fsk(x) span the fibre of Imf at x and so thy
are linearly independent. By another possible renumbering, we can assume
that fs1(x), ..., fsk(x), tk+1(x), ..., tn(x) are linearly independent and hence
by local constancy of the dimension of the fibre of E ′ and Lemma 5 one has
that fs1, ..., fsk, tk+1, ..., tn form a local base for E ′ at x. By the hypothesis
of Lemma 5 fs1, ..., fsk form a local base for Imf at x which means that
Imf is a subbundle of E ′.
To see that (3)⇒(2), let s1, ..., sm be as above. For all y near x we can write
fsi(y) =

∑k
j=1 aij(y)fsj(y) for i > k. Let s′i(y) = si(y) −

∑k
j=1 aij(y)sj(y).

Then s′k+1, ..., s
′
m are local sections of Kerf and they are linearly indepen-

dent near x. Since there are exactly the correct number of them, they form
a local base for Kerf and hence Kerf is a subbundle of E.
Remark: Without any hypothesis, this proof shows that if dimFx(Imf) = n,
then dimFy(Imf) ≥ n for all y in some neighborhood of x. �
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Proof of Claim 3: Suppose that P is f.g.p. Then P is a direct sum-
mand of a f.g. free C(X)-module F . Therefore there exists an idempotent
endomorphism g : F → F with P ≃ Img. Now F = Γ(Cn

X) for some n. By
Proposition 1 above, g = Γ(f) where f : Cn

X → Cn
X . Since g2 = g, Proposi-

tion 1 implies that f 2 = f as well. If one knew that E = Imf was a subbundle
of Cn

X) (for some n, namely the trivial bundle) one would have by Lemma
1.1.1 that Cn

X) ≃ E ⊕ E ′ where E ′ ≃ Ker(f) and so P ≃ ImΓ(f) = Γ(E)
since Γ(−) is an additive functor. By Proposition 2 above it saffices to
show that dimFx(E) is locally constant (where recall that Fx(E) denotes
the fibre of E over x). Since f 2 = f , then E = Kerf = Im(1 − f) and
Fx(Cn

X) = Fx(E) ⊕ Fx(E
′). Suppose dimFx(E) = h and dimFx(E

′) = k.
Apply Remark 1 at the end of the proof of Proposition 2 to f and 1 − f
respectively and get that dimFy(E) ≥ h and dimFy(E

′) ≥ k for all y in
some neighborhood of x. Yet

dimFy(E) + dimFy(E
′) = h+ k

is a constant, thus the dimension of the trivial bundle is locally constant. �

There is thus a complete analogy between vector bundles and f.g.p. mod-
ules; that enables one to carry over many of the notions we met in chapter
1 (topological K-Theory) to this algebraic setting (e.g. define stably isomor-
phic modules etc).
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17 Lecture 2 (The Whitehead and the Stein-

berg Groups)

We denote by GLnA the set (multiplicative group in fact) of n×n invertible
matrices with entries from the ring A. Clearly

GLnA ⊂ GLn+1A ⊂ ... ⊂ GLA = ∪nGLnA,

where the inclusion is given by

a →֒
(

a 0
0 1

)

.

We denote by eij the matrix with entry 1 in the position (i, j) and zero
everywhere else (i 6= j). Clearly

eijekl = δjkeil.

Let a ∈ A. Then we set
eaij = 1 + aeij

whereas
eaije

b
ij = ea+b

ij .

Recall that in a multiplicative group the commutator of two elements is
defined by

[x, y] = xyx−1y−1

and the inverse commutator is defined as

[x, y]−1 = [y, x].

Using the above definitions, we compute the commutator

[eaij , e
b
kl] =







1, if j 6= k, i 6= l
eabil , if j = k, i 6= l
e−ba
kj , if j 6= k, i = l

Moreover we compute the following quantities:

eaije
b
jk = (1 + aeij)(1 + bejk) = 1 + aeij + bejk + abeik,
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eaije
b
jke

−a
ij = (1+ aeij + bejk + abeik)(1− aeij) = 1+ aeij + bejk + abeik − aeij ,

[eaij , e
b
jk] = (1 + aeij + bejk + abeik)(1− bejk) = 1 + bejk + abeik − bejk = eabik

[eaij , e
b
ki]

−1 = [ebki, e
a
ij] = ebakj ⇒ [eaij, e

b
ki] = e−ba

kj .

Definition 1. We denote by EnA the subgroup of GLnA which is gen-
erated by the elements eaij for 1 ≤ i, j ≤ n, i 6= j and some a ∈ A. Moreover
we denote EA the union of all EnA:

EA = ∪nEnA.

Definition 2. A group G is called perfect if it is equal to its commutator
subgroup

G = [G,G],

where [G,G] is the subgroup ofG generated by elements of the form [g, g′]∀g, g′ ∈
G.

Definition 3. We define the maximal abelian quotient group G(ab) of G
as follows:

G(ab) = G/[G,G].

(ab stands for ”abelian” and they are not indices).

Proposition 1. The group EnA is perfect for n ≥ 3.

Proof: Since
eaik = [eaij , e

1
jk] ∈ [EnA,EnA],

given i, k, we choose j 6= i and j 6= k and we see that all generators are
commutators. �.

Lemma 1. (Whitehead Lemma).

EA = [GLA,GLA] = [EA,EA].

Proof: Let a ∈ GLnA, thus
(

1 a
0 1

)

= Πe
aij
ij ∈ GL2nA
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where 1 ≤ i ≤ n and n+ 1 ≤ j ≤ 2n. Then

(

1 a
0 1

)(

1 0
−a−1 1

)(

1 a
0 1

)

=

(

0 a
−a−1 0

)

∈ GL2nA.

Moreover
(

a 0
0 a−1

)

=

(

0 a
−a−1 0

)(

0 −1
1 0

)

∈ E2nA.

Next, let a, b ∈ GLnA. Then, for the above diagonal (in block form) matrices
we have:

diag([a, b], 1, 1) = diag(a, a−1, 1)diag(b, 1, b−1)[diag(a−1, a−1, 1)]−1[diag(b, 1, b−1)]−1

(they all belong to the group E3nA).

Hence [GLnA,GLnA] in GL3nA is contained in E3nA. Taking the union
for all n we find that [GLnA,GLnA] ⊂ EA. Therefore

EA = [EA,EA] ⊂ [GLA,GLA] ⊂ EA.

�.

Definition 4. The first K-Group K1A of the ring A is defined as the
maximal abelian quotient group of GLA, namely

K1A = GLA(ab) = GLA/EA.

The first K-Group is called the Whitehead group to honour the great
british topologist John Whitehead who defined it.

Examples:
1. Let A = F a field. Left multiplication by the matrices eaij adds j-row to
the i-row. It is known that

En(F) = ker {GLn(F)
det−→ Fx}
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where Fx denotes the non-zero elements under the action of x and the
above map is given by the matrix determinant. Next we consider the quotient

GLn(F)/En(F) = Fx = K1(F).

Definition 5. The Steinberg Group StnA (StA is the case where n→∞)
is the group with generators xaij , i 6= j and a ∈ A under the relations

xaijx
b
ij = xa+b

ij .

The commutators are given by the following relations:

[xaij , x
b
kl] =







1, if j 6= k, i 6= l
xabik , if j = k, i 6= l
x−ba
kj , if j 6= k, i = l

There is a canonical surjection

φ : StA→ EA

such that
φ(xaij) = eaij .

Proposition 2. The Kernel of φ above is the centre of the group StA.

Definition 6. The second K-group K2A is defined as the kernel of the
above canonical surjection φ:

K2A = Ker{φ : StA→ EA}.

Proof of Proposition 2. Let Cn be the subgroup of StA generated by
xain for i 6= n and a ∈ A. Let φ(Cn) be the subgroup of EA defiend by eain for
i 6= n and a ∈ A.
Claim: φ : Cn → φ(Cn) is an isomorphism, namely the restriction of φ to
Cn is injective.

Proof of the Claim:
Since the xain’s commute, in the map

⊕i 6=nA→ Cn
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defined by
(ai)i 6=n 7→ Πi 6=nx

ai
in,

the product does not depend on the order and moreover it is a homomorphism
because:

(ai + a′i) 7→ Πi 6=nx
ai+a′i
in = Πi 6=nx

ai
inx

a′i
in = Πi 6=nx

ai
inΠi 6=nx

a′i
in.

Next we define the group Rn (which is a subgroup of the group StA) as
the group generated by xani for i 6= n and a ∈ A. A similar argument proves
that the restriction of φ in Rn is injective.

To complete the proof of Proposition 2, that the kernel of φ is the centre
of StA, we consider an arbitrary element α ∈ Kerφ and we write it as a
finite product of factors xaij . Choose some n different from i, j occuring in
the specific representation of α. Then α normalises Cn, namely

αCnα
−1 ⊂ Cn

whereas

xaijx
b
knx

−a
ij =

{

xbkn, k 6= i, j,
xabinx

−b
jn , k = j

and
xaijx

b
jnx

−a
ij x

−b
jn = xabin.

Let γ ∈ Cn, then αγα
−1 ∈ Cn and moreover

φ(αγα−1) = φ(γ)

since α ∈ Kerφ. But the restriction of φ in Cn is injective and hence
αγα−1 = γ, thus α centralises Cn. Similarly α centrilises Rn. But the
union Cn ∪Rn generates StA and the centre is 1. �.
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18 Lecture 3 (Central Extensions of Groups)

We saw that
K1A = GLA/EA.

For topological spaces X one has

K−1X = [X,GLC],

where the RHS (as we know from Homotopy theory) denotes the set of ho-
motopy classes of continuous maps from X to GLC, and

Hom(spaces)(X,GLnC) = GLn(C(X)),

where C(X) denotes the set (unital ring) of continuous maps from X to C.

Let
(

1 ta
∗ 1

)

be a homotopy from
(

1 0
0 1

)

to
(

1 a
∗ 1

)

.

Let X be a topological space and SX its suspension. We know that

K−2X = K−1SX = [SX,GLC] = [S1, [X,GLC]]

where
[X,GLC] = Hom(X,GLC) = GL(C(X)).

The group StA has generators xaij with 1 ≤ i, j < ∞ and a ∈ A along
with relations

xaijx
b
ij = xa+b

ij

and commutators

[xaij , x
b
kl] =







1, if j 6= k, i 6= l
xabik , if j = k, i 6= l
x−ba
kj , if j 6= k, i = l
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One has the following central extension

1→ K2A→ StA→ EA→ 1,

namely K2A is contained in the centre of StA, with

xaij 7→ eaij .

Theorem 1. Given a central extension

1→ C → Y
φ−→ StA→ 1,

it splits, namely there exists a homomorphism s : StA → Y such that
φ ◦ s = identity

Corollary 1. If Y = [Y, Y ], then Y is isomorphic to StA.

Proof of Theorem 1. The basic idea is the following: Suppose y1, y2 ∈
Y are such that φ(y1) = φ(y2), namely y1 = cy2 with c ∈ C. Then

[y1, y
′] = [cy2, y

′] = cy2y
′(cy2)

′y′−1 = cy2y
′y−1

2 c−1y′−1 = [y2, y
′],

namely for x ∈ StA, then [φ−1(x), y′] is a well-defined element of Y and
similarly [φ−1(x), φ−1(x′)] is a well-defined element of Y . Then

xaij = [xain, x
1
nj ]

for n 6= i, j, so we shall try to define s by

s(xaij) = [φ−1xain, φ
−1x1nj].

The hard point is to prove independence of n which we shall do using 2 Lem-
mas below:

Lemma 1.
[φ−1xaij , φ

−1xbkl] = 1

if j 6= k and i 6= l.
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Proof: Choose n different from k, l, i, j. Then

[φ−1xbkn, φ
−1x1nl] ⊂ φ−1[xbkn, x

1
nl] = φ−1xbkl.

Pick v ∈ φ−1xbkn and w ∈ φ−1x1nl. Next choose u ∈ φ−1xaij and it saffices to
prove that [u, [v, w]] = 1. One has:

u[v, w]u−1 = [uvu−1, uwu−1] = [v, w]

if uvu−1 and v along with uwu−1 and w are congruent. But φ(u), φ(v) com-
mute and also φ(u), φ(w) commute. �.

Recall the following identities which apply to any group:

[x, [y, z]] = [xy, z][z, x][z, y]

and
[xy, z] = [x, [y, z]][y, z][x, z].

Using them we come to the second Lemma:

Lemma 2. Let h, i, j, k be distinct and a, b, c ∈ A. Then

[φ−1xahi, [φ
−1xbij , φ

−1xcjk]] = [[φ−1xahi, φ
−1xbij ], φ

−1xcjk].

Proof: Pick some u ∈ φ−1xahi, v ∈ φ−1xbij and w ∈ φ−1xcjk. From Lemma
1 we have

[u, w] = 1

whereas
[u, v] ⊂ φ−1[xahi, x

b
ij] = φ−1xabhj

which commutes with u, v whereas [v, w] commutes with v, w. Moreover

[u, [v, w]] ⊂ [φ−1xahi, φ
−1xbcik] ⊂ φ−1xabcik

which commutes with u, v, w. Similarly [[u, v], w] commutes with u, v, w.

One also has:
[x, [y, z]] = [xy, z][z, x][z, y]
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and

[u, [v, w]] = [uv, w][w, u][w, v] = [[u, v]vu, w][w, v] = [vu[u, v], w][w, v]

whereas
[xy, z] = [x, [y, z]][y, z][x, z].

Then

[u, [v, w]] = [uv, w][w, u][w, v] = [[u, v]vu, w][w, v] = [vu[u, v], w][w, v]

is equal to

[u, [v, w]] = [uv, w][w, u][w, v] = [[u, v]vu, w][w, v] = [vu[u, v], w][w, v] =

= [vu, [[u, v], w]][[u, v], w][vu, w][w, v] = [[u, v], w]

while
saij := s(xaij) = [φ−1xain, φ

−1x1nj ].

One can rewrite Lemma 2 as:

[φ−1xahi, φ
−1xbcik] = [φ−1xabhj , φ

−1xcjk]

and
[φ−1xahi, φ

−1xbik] = [φ−1xahj, φ
−1x1jk],

namely it is independent of n �.

Theorem 2. Every perfect group has a ”universal” central extension:

1 −−−→ H2(G) −−−→ G̃ −−−→ G −−−→ 1




y





y

∥

∥

∥

1 −−−→ C −−−→ Y −−−→ G −−−→ 1

where ”universal” means that there exists a unique map H2(G)→ C.
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The preceeding result shows that the group StA is the universal central
extension of the group EA. In particular

H2(EA) = Ker(StA→ EA) := K2A

whereas
K1A = GLA/[GLA,GLA] = H1(GLA,Z),

K2A = H2(EA,Z)

and
K3A = H3(StA,Z).
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19 Lecture 4 (Classifying Spaces and Group

(Co)Homology)

Let G be a group and M a G-module. We know that for cohomology one
has

H i(G,M) = H i(C .(G,M))

and similar things hold for homology. If C is an abelian group with trivial
G-action we have

H0(G,C) = C,

H1(G,C) = Hom(G,C) = Hom(G(ab), C)

(where G(ab) = G/[G,G]) and
H2(G,C) = {set of isomorphism classes of central extensions of G by C},
namely

1 −−−→ C −−−→ E −−−→ G −−−→ 1
∥

∥

∥





y

∥

∥

∥

1 −−−→ C −−−→ E ′ −−−→ G −−−→ 1

where C is a subset of the centre of E.

The topological interpretation of group (co)homology is the following: G
has a classifying space BG which is a pointed nice space such that:
1. π1(BG) = G.
2. The universal covering space of BG is contractible.

For example if G = Z, then BG = S1.

BG is unique up to homotopy equivalence.

Fact: H i(G,C) = H i(BG,C). This is also true for homology.

From the universal coefficients’ theorem (see appendix), it follows that

0→ Ext1Z(Hi−1(BG,Z), C)→ H i(BG,C)→ Hom(Hi(BG,Z), C)→ 0,
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where Hi−1(BG,Z) = Hi−1(G,Z) = Hi−1G.

Moreover
H1(G,C) ≃ Hom(H1G,C)

from which we deduce that

H1G = G(ab).

Moreover

0→ Ext1Z(H1G,C)→ H2(G,C)→ Hom(H2G,C)→ 0.

In particular, if G is a perfect group, namely G(ab) = 0, then

H2(G,C) = Hom(H2G,C).

The central extension which corresponds to the identity homomorphism
id ∈ Hom(H2G,H1G) is the following

1 −−−→ H2G
i−−−→ G̃ −−−→ G −−−→ 1

u





y





y

∥

∥

∥

1 −−−→ C −−−→ u∗G̃ −−−→ G −−−→ 1

where u : H2G→ C.

Given any homomorphism u, one has a push-out which gives a central
extension of G by C, where

u∗G̃ =
C × G̃

{(−u(x), i(x))|x ∈ H2G}

and i : H2G →֒ G̃.

Thus any central extension of G by C is induced by a unique homomor-
phism u : H2G→ C.
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Proposition 1. The group G̃ is perfect.

Proof: One has the following diagram

1 −−−→ H2G −−−→ G̃ −−−→ G −−−→ 1

u





y





y

∥

∥

∥

1 −−−→ B
i−−−→ [G̃, G̃] −−−→ G −−−→ 1

i





y
i





y

∥

∥

∥

1 −−−→ H2G
i−−−→ G̃ −−−→ G −−−→ 1

where B = H2G ∩ [G̃, G̃] and i denotes the inclusion. Then since u :
H2G → B, we shall obtain i ◦ u = 1H2G since i∗ ◦ u∗(G) = i∗[G̃, G̃] = G̃.
Hence B = H2G⇒ [G̃, G̃] = G̃. �

Proposition 2. One has that

H2G̃ = 0,

namely G̃ has no non-trivial central extension, in other words every central
extension splits.

Proof: Given the sequence

E
q−→ G̃

p−→ G

where E is a perfect central extension of G̃ and both p and q are surjective,
we claim that E is a central extension G.

Then
1→ Kerq → Ker(pq)→ Kerp→ 1.

E acts on the above exact sequence of abelian groups, it has trivial action
on Kerq and Kerp, hence we get a homomorphism E → Hom(Kerp,Kerq).
Thus the action of E on Ker(pq) is also trivial.
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So if E = ˜̃G, then it is a perfect central extension of G̃. One has

1 −−−→ H2G̃ −−−→ ˜̃G −−−→ G̃ −−−→ 1
x









y

G̃ G

and the universal property of G̃ implies that G̃ lifts into ˜̃G. Hence
˜̃G = G̃×H2G̃⇒ H2G̃ = 0. �

Examples:
1. Let G = A5, the simple non-Abelian group of order 60 (which gives the
rotational symmetries of the 20-hedron). What is G̃ and H2A5?

We start by considering the exact sequence

1→ {±1} → SU2 → SO3 → 1.

Recall that topologically SU2 = S3 and this is a subgroup of the group of
automorphisms of C2 whereas the group SO3 is a subgroup of the group
of automorphisms of CP 1 and topologically CP 1 = S2. Moreover A5 is a
subgroup of SO3. We have then the following diagrams:

1 −−−→ Z2 −−−→ S3 −−−→ SO3 −−−→ 1
∥

∥

∥

∥

∥

∥

1 −−−→ Z2 −−−→ E −−−→ G −−−→ 1

We know that E ⊂ S3 and G ⊂ SO3. We define

M := S3/E = SO3/G

and M is an orientable Poincare Homology 3-sphere.
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Because
πiS

3 = 0

for i = 0, 1, 2, then M is ”close to” being BE. For i = 1, 2, we have that

πi(M) = πiS
3 = 0

from which we deduce that

HiM = HiE.

M is an orientable 3-manifold, hence by Poincre duality we have thatH2M =
0 since H1M = H1E = 0. Thus H2E = 0. Finally

H1E = H2E = 0⇒ E = A5

and
H1E = H2E = 0⇒ H2A5 = Z2.

�

2. We shall mention some analogies between K-Theory and homotopy
groups of Lie groups. We know that

S3 ։ SO3 ⊂ O3

where π0(O3) = SO3 the connected component of the identity of O3 and
S3 is the universal covering of SO3.

If we replace the word ”connected” by ”perfect” we have the following
analogy:

StA→ EA ⊂ GLA

where EA is the largest perfect subgroup of GLA whereas StA = ẼA the
universal covering.

The infinite orthogonal group O∞ = O is even closer to K-Theory:

Spin։ SO ⊂ O

and π0(O) = K−1O(pt) is the kernel of the inclusion SO →֒ O whereas
π1(O) = K−2O(pt) is the kernel of the surjection Spin։ SO.
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20 Lecture 5 (The Plus Construction and the

general K-group definition)

By the word ”space” we mean a CW -complex with a base point and we
denote by [X, Y ] the set of homotopy classes of base point preserving maps
X → Y .

LetX be a space such that its fundamental group π1(X) is perfect, namely
π1(X)ab = 0 = H1(X ;Z).

Problem: We would like to construct a space X+ such that π1(X
+) = 0

along with a map i : X → X+ so that the induced map i∗ : H∗(X)→ H∗(X
+)

is an isomorphism in homology.

Step 1. We choose elements γi ∈ π1(X), i ∈ I, such that the normal
subgroup they generate is the whole group π1(X).

Let’s assume the following special case: one γ is realised by a loop S1 u−→ X
and let

Y = X ∪D2

where D2 is a 2-disc (a 2− cell) whose boundary is the loop γ.

From Van Kampen’s theorem (see Appendix) one has that

π1(Y ) = π1(X) ∗ π1(D2) = π1(X)/Γ = 0

since π1(D
2) = 0 and where Γ denotes the normal subgroup generated by γ.

Then:

H2(X)→ H2(Y )→ H2(X, Y )→ H1(X)→ H1(Y )→ 0.

But H2(X, Y ) = Z whereas H1(X) = 0. Thus

Hn(X) ≃ Hn(Y ), n ≥ 3.

One has the sequence

0→ H2(X)→ H2(Y )
p−→ Z→ 0.
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We apply Hurewicz theorem (see Appendix) and get: π1(Y ) = 0⇒ π2(Y ) =
H2(Y ). There is a map

v : S2 → Y

such that
H2(S

2)→ H2(Y )
p−→ Z.

Put
X+ := Y ∪v C3

where C3 is a 3− cell. Hence we get the following sequence:

H3(X
+)→ H3(X

+, Y )
δ−→ H2(Y )→ H2(X

+)→ H2(X
+, Y )

where
δ : H3(X

+, Y )→ H2(Y )

and the image of δ is the class of v. Hence

H2(X)→ H2(X
+)

and
Hn(X) = Hn(Y ) = Hn(X

+), n ≥ 3.

Proposition 1. Assuming that π1(X) is perfect, let i : X → X+ be
such that π1(X

+) = 0 and the induced map i∗ : H∗(X) → H∗(X
+) is an

isomorphism. Then for any Y with π1(Y ) = 0 we have that

i∗ : [X+, Y ]→ [X, Y ]

is also an isomorphism.

Corollary 1. (X+, i) are defined only up to homotopy equivalence.

Proof of Proposition 1: To prove surjectivity, consider the following
diagram:

X
i−−−→ X+

u





y





yu′

Y −−−→
i′

Y ∪X X+ = Z
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If i is a homology isomorphism, then so is i′.

FromVan Kampen’s Theorem we have that π1(Z) = 0.
By the Whitehead Theorem (the 1-connected version, see Appendix) we get
that i′ : Y → Z is a homotopy equivalence. Now let τ : Z → Y be a
homotopy inverse for i′. Then

(τu′)i = τ(i′u) = (τi′)u ∼ (id)u = u.

That proves that i∗ : [X+, Y ]→ [X, Y ] is onto.

To prove injectivity, consider the following diagram:

X
i−−−→ X+

u





y





yu′

Y −−−→
i′

Z

Next consider two maps

g0, g1 : X
+ → Y

such that g0i and g1i are both homotopic to u. Then we apply the homotopy
extension theorem and we deform g0 and g1 so that g0i = g1i = u. Then we
define

τ0 : Z
(idY ,g0)−−−−→ Y

and

τ1 : Z
(idY ,g1)−−−−→ Y

so that
τ0i

′ = τ1i
′ = idY .

But i′ is a homotopy equivalence, hence τ0 ∼ τ1. Since τ0u
′ = g0 and τ1u

′ =
g1, we deduce that g0 ∼ g1.
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�.

Suppose that G is perfect and let

1→ H2G→ G̃→ G→ 1

be its universal central extension. Recall that H1G = H2G̃ = 0. Then we
have the following:

Lemma 1. (Put C = H2G). One has a map of fibrations:

BC −−−→ BG̃ −−−→ BG
∥

∥

∥





y





y

BC −−−→ BG̃+ −−−→ BG+

Proof: (Reacall that π1(BG) = G). The proof is by diagram chasing:

H2(G,C) = H2(BG,C) = [BG,KEM(C, 2)]

(where KEM is the Eilenberg-McLane space). Moreover

BC BC KEM(C, 1)




y





y





y

BG̃
β−−−→ P −−−→ E(C, 2)





y





y





y

BG −−−→ BG+ −−−→
α

KEM(C, 2)

where α : BG+ → KEM(C, 2) exists by the previous proposition 1 and
β : BG̃→ P . We also have:

π2(BG
+) = H2(BG

+) = H2(BG) = C.
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But α induces an isomorphism on the π2’s:

π2(BG
+)→ π1(BC)→ π1(P )→ π1(BG

+)

where π1(BC) = C and π1(BG
+) = 0. Hence π1(P ) = 0.

Now β is a homology isomorphism, π1(P ) = 0 ⇒ BG̃+ ∼ P are homo-
topy equivalent.

From the maps
BC → BG̃+ → BG+,

using Hurewicz theorem, we find that

π3(BG
+) = π3(BG̃

+) = H3(BG̃
+)

since H1G̃ = H2G̃ = 0.

Next assume that G = EA is perfect. We have that G̃ = StA and
H2G = K2A.

Claim:
π2(BEA

+) = K2A = H2(EA)

π3(BEA
+) = H3(StA).

The proof of the claim follows from what we mentioned above:

π2(BEA
+) = H2(BEA

+) = H2(BEA) = H2(EA) = K2A.

π3(BEA
+) = π3(BStA

+) = H3(BStA) = H3(StA).

�.

Theorem 1. Let N ⊂ π1(X) be a perfect normal subgroup. Then there
exists a space X+ (depending on N) along with a map i : X → X+ such that:

• The groups π1(X)/N ≃ π1(X
+) are isomorphic.
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• For any π1(X+)−mod L, one has that the induced map in homology

i∗ : H∗(X, i
∗L)→ H∗(X,L)

is an isomorphism.

The pair (X+, i) is only defined up to homotopy equivalence.

Proof: Essentially we shall construct the space X+ with the desired
properties, this is Quillen’s famous plus construction.

Let X̃ be the covering space corresponding to the subgroup N ⊂ π1(X),
namely π1(X̃) = N . Then we have:

X̃ −−−→ X̃+





y





y

X −−−→ X+

Then π1(X
+) = π1(X)/N .

For K-Theory, we make the following choices: X = BGLA, π1(X) =
GLA, EA = N and obviously EA ⊂ GLA. We thus get BGLA+ with
π1(BGLA

+) = GLA/EA = K1A.

We also have
H∗(BGLA,L) ≃ H∗(BGLA

+, L)

for all modules L over K1A along with the following diagram

BEA −−−→ ˜BGLA
+





y





y

BGLA −−−→ BGLA+
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where ˜BGLA+ is the universal covering and the vertical arrows BEA→
BGLA and ˜BGLA+ → BGLA+ are pull backs. Hence BEA+ is the universal
covering of BGLA+, thus

πn(BGLA
+) = πn(BEA

+), n ≥ 2.

For n = 2 one has π2(BGLA
+) = K2A.

For n = 3 one has π3(BGLA
+) = H3(StA).

Hence we have the general K-Group definition given by Quillen:

Definition 1:
KnA := πn(BGLA

+), n ≥ 1.
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21 Lecture 6 (Some Theorems and Examples)

We give the following proposition without proof which we shall use below to
get a basic definition:

Proposition 1. For a map f : X → Y (where X, Y are CW -complexes
with base points), the following are equivalent:

(a.) The homotopy fibre F of f is acyclic, namely H̃∗F = 0, where ho-
motopy fibre means replace f by a fibration and take the actual fibre.

(b.) π1(f) : π1(X)→ π1(Y ) is surjective and for any π1(Y )−mod L we
have that the induced map in homology

f∗ : H∗(X, f
∗L)→ H∗(Y, L)

is an isomorphism.

(c.) The lift f ′ : X ×Y Ỹ → Ỹ of f : X → Y is a homology isomorphism
(where Ỹ is the universal cover of Y ):

X ×Y Ỹ
f ′

−−−→ Ỹ




y





y

X −−−→
f

Y

Definition 1. We call f acyclic when the above conditions hold.

Corollary 1. Acyclic maps are closed under composition, homotopy
pull-backs and homotopy push-outs.

Theorem 1. Given a perfect normal subgroup N ⊂ π1(X), there is a
unique (up to homotopy equivalence) acyclic map f : X → Y such that
N = ker[π1(f)] (where π1(Y ) = π1(X)/N).
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Moreover, for any space T , the induced map

f ∗ : [Y, T ]→ {a ∈ [X, T ]|π1(a) : π1(X)→ π1(T )killsN}

is an isomorphism where

X
f−−−→ Y





y

∥

∥

∥

T ←−−− Y

Proof: The key point is the construction of Y . Let X̃ be a covering
space of X with π1(X̃) = N . Since f : X → Y is acyclic, we use the acyclic
push out X̃ → X̃+, namely

X̃ −−−→ X̃+





y





y

X −−−→ Y

�.

If we apply the above to EA which is a perfect normal subgroup of GLA =
π1(BGLA), we get:

BEA
f̃−−−→ ˜BGLA

+





y





y

BGLA −−−→
f

BGLA+

where f : BGLA→ BGLA+ is the unique acyclic map with ker[π1(f)] =
EA, ˜BGLA+ is the universal cover and π1(BGLA

+) = GLA/EA = K1A. If
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f is acyclic, then f̃ : BEA→ ˜BGLA+ is also acyclic.

From all the above we conclude that:

• BGLA+ has universal cover BEA+.

• π1(BGLA+) = K1A.

• π2(BGLA+) = π2(BEA
+) = H2(BEA

+) = H2(EA) = K2A.

• π3(BGLA+) = H3(StA).

• In general, πn(BGLA
+) = KnA, n ≥ 1.

Next we shalll see the relation with topological K-Theory (see Chapter 3).

Let
G∞ = limk→∞Grk(C

∞) = BGLC

where Gr denotes the Grassmannians and Grk(C∞) = BGLkC. We assume
that the group GLC has its natural topology.

To the direct sum of vector bundles ξ⊕η corresponds an h−space struc-
ture on G∞. Note that although BGLA is not an h− space, BGLA+ is one.
There exists a continuous map µ : G∞×G∞ → G∞ (with x0 the base point)
such that µ(x0, x) = x and µ(x, x0) = x0.

Recall the following fact: Let a ∈ GLnC. The maps

a 7→
(

a 0
0 1

)

and

a 7→
(

1 0
0 a

)

map the group GLnC to GL2nC and they are homotopic in the natural

123



topology but the maps

a 7→





a 0 0
0 1 0
0 0 1





and

a 7→





1 0 0
0 a 0
0 0 1





are conjugate via an element of EA. Conjugation by elements of EA on
BGLA is not trivial (provided base point preserving maps are considered)
but since

π1(BGLA) = GLA,

conjugation by elements of EA on BGLA+ is trivial up to homotopy.

We know that homotopic spaces have isomorphic vector bundles in Topo-
logical K-Theory but it fails in Algebraic K-Theory.

In general, Higher Algebraic K-Theory computations are hard. It’s been
over 30 years since these groups were defined by Quillen and only few ex-
amples are known. We shall present some: Let F [x1, x2, ..., xn] ∼ F be the
ring of polynomials with coefficients from some field F . Grothendieck proved
that

K0(F [x1, x2, ..., xn]) = K0F,

whereas Quillen proved that every vector bundle over a polynomial ring is
trivial.

Let Fq be a finite field of q elements. The following groups have been
computed for this case (by Quillen):

Kn(Fq) = Z, n = 0.

Kn(Fq) = F+
q ≃ Zq−1, n = 1.

Kn(Fq) = 0, n = 2.

Kn(Fq) = Zq2−1, n = 3.

Kn(Fq) = 0, n = 4.

124



Kn(Fq) = Zq3−1, n = 5.

etc

In a more concise form one has:

K0(Fq) = Z,

K2n(Fq) = 0, n ∈ N∗

and
K2n−1(Fq) = Zqn−1, n ∈ N∗,

where Zr denotes the cyclic group with r elements.

We have the following maps:

BGLFq → BU → BU,

where the first map is the Brauer lift, BU = G∞ in topology and the sec-
ond map is Ψq(L) = Lq. There is a map from BGLF+

q to the h − fibre of

BU
Ψq−1

−−−→ BU .

We have used the following theorem:

Theorem 2. The map BGLF+
q → h − fibre(BU Ψq−1

−−−→ BU) is a homo-
topy equivalence.

Because BGLA+ is an h-space, one knows that H∗(BGLA
+;Q) is a Hopf

algebra. Moreover one also knows that

π∗(BGLA
+)⊗Q = Prim[H∗(GLA;Q)]

which is the Milnor-Moore Theorem.

For the case A = Z, Borel proved that:

dimQ[KnZ⊗Q] = Z, n = 0, 5, 9.

dimQ[KnZ⊗Q] = 0, n = 1, 2, 3, 4, 6, 7, 8.
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More concretely:

Theorem 3 (D.G. Quillen) If A is the ring of algebraic integers in an
algebraic number field F (a finite extension of the rationals), then the groups
Kn(A) are finitely generated.

Borel used this to compute both Kn(A) and Kn(F) modulo torsion. For
example, for the integers Borel proved that (modulo torsion)

Kn(Z) = 0

for positive n unless n = 4k + 1 with k again positive and (modulo torsion)

K4k+1(Z) = Z

for positive k. The torsion subgroups of K2n+1(Z) and the orders of the fi-
nite groups K4k+2(Z) have recently been determined but whether the later
groups are cyclic and whether the groups K4k(Z) vanish depend on the so-
called Vandiver’s conjecture about the class groups of cyclotomic integers.
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22 Appendix

In this Appendix we briefly recall some definitions and results from other
branches of mathematics to help the reader in his study (for more details
one can see the list of books with background meterial in the introduction).

We start with the Seifert-van Kampen theorem, which expresses the fun-
damental group of some topological space say X in terms of the fundamental
groups of two open and path connected topological subspaces X1, X2 ⊂ X
which cover X (hence it can be used to compute the fundamental groups of
spaces which are constructed out of simpler ones):

Van Kampen’s Theorem. Let X be a topological space which is the
union of the interiors of two path connected subspaces X1, X2 ⊂ X . Suppose
that X0 = X1 ∩X2 is non empty and path connected. Let also ∗ be a base
point of X0 and suppose that ik : π1(X0, ∗)→ π1(Xk, ∗) and jk : π1(Xk, ∗)→
π1(X, ∗) are the induced maps from the corresponding inclusions for k = 1, 2.
Then X is path connected and the natural map

π1(X1, ∗) ⋆π1(X0,∗) π1(X2, ∗)→ π1(X, ∗)
is an isomorphism, namely the fundamental group of X is the free product of
the fundamental groups of the subspaces X1 and X2 with the amalgamation
of the fundamental group of X0.

The key idea of the proof is that paths in X can be analysed in parts
of paths inside the intersection X0, inside X1 but outside X2 and inside X2

but outside of X1. Usually the induced maps of inclusions are not injec-
tive and hence more precise versions of the theorem use the push-outs of
groups. There is a generalisation for non-connected spaces in the category
of groupoids (as is the case in noncommutative geometry) along with gener-
alisations in ”higher dimensions” (for example using 2-groups etc, for more
details one can see J.P. May’s notes on algebraic topology).

Next we recall the so called 5-Lemma in homological algebra. In fact this
is true in any abelian category (like the category of abelian groups or the
category of vector spaces over a given field):
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5-Lemma. Suppose that in an abelian category the following commuta-
tive diagram (lader) is given:

A
f−−−→ B

g−−−→ C
h−−−→ D

j−−−→ E

l





y

m





y

n





y

p





y





y

q

A′ −−−→
r

B′ −−−→
s

C ′ −−−→
t

D′ −−−→
u

E ′

.

Then if the rows are exact sequences, m and p are isomorphisms, l is an
epimorphism and q is a monomorphism, then n is also an isomorphism.

The proof is by ”diagram chasing”.

The 5-Lemma is the combination of the two 4-Lemmas where one is
the dual of the other. An interesting special case is the so-called short 5-
Lemma where the rows are short exact sequences; in this case one has that
A = A′ = E = E ′ = 0, hence one has only three vertical maps m,n, p and
the short 5-Lemma states that if m, p are isomorphisms, then so is n.

A closely related statement in homological algebra is the serpent (snake)
lemma:

Serpent Lemma. In an abelian category (e.g. the category of vector
spaces over some given field), consider the following commutative diagram:

0 −−−→ A
f−−−→ B

g−−−→ C −−−→ 0

a





y
b





y





y

c

0 −−−→ A′ −−−→
f ′

B′ −−−→
g′

C ′ −−−→ 0

where the rows are exact and 0 is the zero object. Then there is an ex-
act sequence relating the kernels and cokernels of the maps a, b and c:

0→ Kera→ Kerb→ Kerc
d−→ cokera→ cokerb→ cokerc→ 0.
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Furthermore if f is a monomorphism, then so is the map Kera→ Kerb
and if g′ is an epimorphism, then so is the map cokerb→ cokerc.

Next we recall the universal coefficient theorem which gives a relation be-
tween the integral homology Hi(X ;Z) of some topological space X and the
corresponding homology Hi(X ;A) with coefficients from an arbitrary abelian
group A:

Universal Coefficient Theorem. With the above notation, consider
the tensor product Hi(X ;Z) ⊗ A. Then there is a group homomorphism
i : Hi(X ;Z) ⊗ A → Hi(X ;A) which is injective and whose cokernel is
Tor(Hi−1(X ;A), A).

In other words, there is a natural short exact sequence

0→ Hi(X ;Z)⊗A→ Hi(X ;A)→ Tor(Hi−1(X ;A), A)→ 0.

This sequence splits (but not in a natural way) and the torsion group can be
considered as the obstruction to i being an isomorphism. There is a corre-
sponding (dual) theorem for cohomology.

The Hurewicz Theorem is a central result in algebraic topology which
generalises the theorem by Poincare which relates homotopy and homology.
One version is this:

Hurewicz Theorem. For any topological space X and natural number
k there exists a group homomorphism

h∗ : πk(X)→ Hk(X ;Z)

which is called the Hurewicz homomorphism. There is a relative version
along with a triadic version.

For k = 1 the Hurewicz homomorphism is the canonical abelianisation
map

h∗ : π1(X)→ π1(X)/[π1(X), π1(X)].

In particular the first (integral) homology group is isomorphic to the abelian-
isation of the fundamental group. Moreover if X is (n− 1)-connected, then
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the Hurewicz homomorphism is an isomorphism ∀k ≤ n (which means that
the first homology group vanishes if the space is path-connected and the fun-
damental group is perfect).

The Whitehead theorem justifies the use of CW − complexes in alge-
braic topology since it states that if a continuous map between two topolog-
ical spaces induces isomorphisms between all the corresponding homotopy
groups (in other words it is a weak homotopy equivalence), then the map
is in fact a homotopy equivalence if and only if the spaces are connected
CW − complexes:

Whitehead Theorem. Let X, Y be two CW − complexes with base
points x, y respectively and suppose f : X → Y is a continuous map such
that f(x) = y. For any positive integer n 6= 0 we consider the induced
homomorphisms

f∗ : πn(X, x)→ πn(Y, y).

We say that f is a weak homotopy equivalence if f∗ is an isomorphism for
all n. Then if f is a weak homotopy equivalence, then it is also a homotopy
equivalence.

Generalisations of Whitehead’s theorem for spaces which are not CW −
complexes are studied by another branch of topology called shape theory.
Moreover Quillen proved that in any model category, a weak homotopy
equivalence between fibrant and cofibrant objects is in fact a homotopy equiv-
alence.

Eilenberg-MacLane spaces are the building blocks of homotopy theory:

Definition of Eilenberg-MacLane spaces. Let G be a group and
n a non-zero natural number. A connected topological space X is called
an Eilenberg-MacLane space of type K(G, n) if the n − th homotopy group
πn(X) is isomorphic to G and all other homotopy groups of X vanish.

For n > 1, Gmust be abelian and hence as a CW−complex the Eilenberg-
MacLane space exists and it is unique up to weak homotopy.
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Examples:

• K(Z, 1) = S1.

• K(Z, 2) = CP∞.

• K(Z2, 1) = RP∞.

• K(G, 1) = ∧ki=1S
1, where G is a free group with k generators.

Every space K(G, n) can be constructed as a CW − complex starting
from the smash product of factors Sn, one factor for every generator of G
and next by adding cells (possibly infinite in number) of higher dimension to
kill of the remaining homotopy.

The basic property of the Eilenberg-MacLane spaces is that they give
representations of homology with G coefficients: For any abelian group G
and CW − complex X , the set [X,K(G, n)] of homotopy classes of maps
f : X → K(G, n) is in a natural 1-1 correspondence with the set Hn(X ;G)
(the n-th singular cohomology group of X with coefficients from G).

Milnor-Moore Theorem. Let X be a 1-connected space with loop
space ΩX . Then the Hurewicz homomorphism induces a Hopf algebra iso-
morphism

U(π∗(ΩX)⊗Q)→ H∗(ΩX ;Q)

where U denotes the universal enveloping algebra and the Lie commutator
of π∗(ΩX)⊗Q is given by the Samelson product.

Group Completion Theorem (D. McDuff, G. Segal). Let M be a
topological monoid and BM its classifying space. Let M → ΩBM be the
canonical map. Then the map

H∗(M)→ H∗(ΩBM)

induces an isomorphism

H∗(M)[π0(M)−1]→ H∗(ΩBM).
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The closed graph theorem is an important result in functional analysis:

Closed Graph Theorem. Let T : X → Y be a linear operator between
two Banach spaces which is defined in the whole of X . The graph of T is
defined as

{(x, y) ∈ X × Y : Tx = y}.
Then T is continuous if and only if it is closed, namely if and only if its
graph is a closed subset of the Cartesian product X × Y (equipped with the
product topology).

Recall that the Weierstrass theorem (1885) in analysis (real and complex)
states that every continuous function which is defined in a closed interval can
be uniformly approximated by a polynomial function.

In 1937 M.H.Stone generalised the above result in two directions: In-
stead of a closed interval he assumed an arbitrary compact Hausdorff space
X (this can be further generalised for non-compact Tychonoff spaces) and
instead of polynomial functions he considered general subalgebras of C(X)
(the algebra of continuous complex functions on X). More specifically we
have:

Stone-Weierstrass Theorem. Let X be a compact Hausdorff space
and let S ⊂ C(X) be a subset which seperates points (namely for any pair of
points x, y ∈ X there exists a function f ∈ S such that f(x) 6= f(y)). Then
the complex unital ∗-algebra defined by S is dense in C(X).

Note that there is also a real version of this theorem along with a number
of other generalisations (involving locally compact Hausdorff spaces etc).

We close this section with Gelfand’s theorem which is an important mo-
tivation for the development of noncommutative geometry :

Gelfand Theorem. The following two categories are equivalent :
1. The category with objects the unital commutative C∗-algebras and arrows
the ∗-preserving homomorphisms.
2. The category with objects the compact Hausdorff spaces and arrows the
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homeomorphisms among them.
The first functor is denoted C(−) and to each compact Hausdorff space X
it assigns the unital commutative C∗-algebra C(X) of continuous complex
functions on X ; the second functor is denoted Spec(−) and to each commu-
tative unital C∗-algebra A it assigns the compact Hausdorff space Spec(A)
which is the spectrum of A.

The above equivalence can be extended between locally compact Haus-
dorff spaces and non-unital commutative C∗-algebras.

One of the starting points in the development of noncommutative ge-
ometry by the great French mathematician Alain Connes is precisely the
”topological extension” of this equivalence when one considers noncommuta-
tive algebras.
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