Notes on K-theory

Arupkumar Pal

January 30, 2007

Contents

1	Preliminaries from C^* -algebra theory									
	1.1 Constructions with C^* -algebras									
	1.2	Unitization		. 2						
2	K - \mathbf{t}	K-theory								
	2.1	Vector bund	illes	. 4						
	2.2	K_0 group .		. 5						
		2.2.1 Equi	ivalence relations on projections	. 5						
		2.2.2 K_0 g	group for unital C^* -algebras	. 7						
		2.2.3 K_0 g	group for nonunital C^* -algebras $\ldots \ldots \ldots \ldots \ldots$. 10						
		2.2.4 Prop	perties	. 11						
		2.2.5 Com	equivations of K_0	. 15						
	2.3	2.3 K_1 group								
		2.3.1 High	her K -groups	. 15						
		2.3.2 Hom	notopies of unitaries and invertibles	. 17						
		2.3.3 Equi	ivalence of the two pictures	. 20						
3	Con	Computational tools								
	3.1	Six term exa	act sequence	. 21						
		3.1.1 Liftin	ng of homotopies	. 21						
		3.1.2 Fred	holm operators	. 21						
		3.1.3 The	index map	. 22						
		3.1.4 Com	uputation of the index map	. 24						
		3.1.5 Bott	periodicity	. 26						
		3.1.6 Com	putation of K -groups	. 29						
	3.2	K-groups of crossed products								
		3.2.1 Cros	sed products	. 32						

5	Refe	erences	5	33
4	<i>K</i> -g	roups	of some C^* -algebras	33
	3.3	K-gro	ups of tensor products	33
		3.2.3	Crossed products with \mathbb{R}	32
		3.2.2	Crossed products with \mathbb{Z}	32

1 Preliminaries from C^* -algebra theory

1.1 Constructions with C^* -algebras

Direct Sum.

Tensor Product.

- 1. Form the algebraic tensor product $A \otimes_{alg} B$,
- 2. put a C^* -norm on $A \otimes_{alg} B$ that obeys $||a \otimes b|| = ||a|| \cdot ||b||$ for $a \in A$, $b \in B$. One can put several C^* -norms in general; there is a maximal and minimal one.
- 3. complete $A \otimes_{alg} B$ with respect to that norm. several choices of norms on the algebraic tensor product and hence several choices of $A \otimes B$ possible.
- 4. the spatial norm: this is one choice of a C^* -norm on $A \otimes_{alg} B$. By GNS theorem, there exist faithful representations $\pi_A : A \to \mathcal{L}(\mathcal{H}_A)$ and $\pi_B : B \to \mathcal{L}(\mathcal{H}_B)$. Define $\pi : A \otimes_{alg} B \to \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B)$ by $\pi(a \otimes b) = \pi_A(a) \otimes \pi_B(b)$ and define $\|\cdot\|$ by $\|\sum a_i \otimes b_i\| = \|\pi(\sum a_i \otimes b_i)\|$.
- 5. this norm is independent of the choice of the representations π_A and π_B as long as they are faithful, and is called the spatial norm. This turns out to coincide with the minimal norm on $A \otimes_{alg} B$.
- 6. For a large class of C^* -algebras A, one can put only one norm (C^* cross norm) on $A \otimes_{alg} B$ for any C^* -algebra B. Such C^* -algebras are called nuclear C^* -algebras. All abelian C^* -algebras and type I C^* -algebras are nuclear.

1.2 Unitization

Let A be a C^* -algebra, and let

$$A^{\dagger} = \begin{cases} \text{unitization of } A & \text{if } A \text{ is nonunital,} \\ A \oplus \mathbb{C} & \text{if } A \text{ is unital.} \end{cases}$$

Exercise 1.1 Show that if $A \subseteq B$, B is unital but $1_B \notin A$, then $A^{\dagger} \cong A + \mathbb{C}1_B$.

Exercise 1.2 Let A be a C^* -algebra and let $\pi: A^{\dagger} \to \mathbb{C}$ be the map $(a,t) \mapsto t$ and $\lambda: \mathbb{C} \to A^{\dagger}$ be the map

$$\lambda(t) = \begin{cases} (0, t) & \text{if } A \text{ is nonunital,} \\ (t, t) & \text{if } A \text{ is unital.} \end{cases}$$

Show that the following sequence is split exact:

$$0 \longrightarrow A \longrightarrow A^{\dagger} \xrightarrow{\pi} \mathbb{C} \longrightarrow 0$$

The map $s := \lambda \circ \pi : A^{\dagger} \to A^{\dagger}$ is called the **scalar map**. Thus

$$s(a,t) = \begin{cases} (0,t) & \text{if } A \text{ is nonunital,} \\ (t,t) & \text{if } A \text{ is unital.} \end{cases}$$

Exercise 1.3 Let $\phi: A \to B$ be a morphism. Define a map $\phi^{\dagger}: A^{\dagger} \to B^{\dagger}$ as follows:

$$\phi^{\dagger}(a,t) = \begin{cases} (\phi(a),t) & \text{if } A,\, B \text{ both unital or both nonunital,} \\ (\phi(a)+t,t) & \text{if } A \text{ nonunital and } B \text{ unital,} \\ (\phi(a-t),t) & \text{if } A \text{ unital and } B \text{ nonunital.} \end{cases}$$

Show that

- 1. ϕ^{\dagger} is the unique extension of ϕ to a unital morphism ϕ^{\dagger} from A^{\dagger} to B^{\dagger} .
- 2. ϕ^{\dagger} is injective if and only if ϕ is injective,
- 3. ϕ^{\dagger} is surjective if and only if ϕ is injective.

Exercise 1.4 Let $\phi: A \to B$ be a morphism and let s_A and s_B be the scalar maps for A^{\dagger} and B^{\dagger} respectively. Show that for any $a \in A^{\dagger}$, one has $s_B(\phi^{\dagger}(a)) = \phi^{\dagger}(s_A(a))$.

Exercise 1.5 Let

$$0 \longrightarrow J \stackrel{\phi}{\longrightarrow} A \stackrel{\pi}{\longrightarrow} A/J \longrightarrow 0,$$

be a short exact sequence. Then $\phi^{\dagger}: M_n(J^{\dagger}) \to M_n(A^{\dagger})$ is injective.

An element $a \in M_n(A^{\dagger})$ is in $\phi^{\dagger}(M_n(J^{\dagger}))$ if and only if $\pi^{\dagger}(a) = s(\pi^{\dagger}(a))$.

Inductive limits of C^* -algebras. Let (A_i, ϕ_{jk}) be an inductive system of C^* -algebras, i.e. $\phi_{jk}: A_k \to A_j$ are morphisms for $k \leq j$, and $\phi_{ij}\phi_{jk} = \phi_{ik}$, $\phi_{ii} = id$.

Define

$$B_{\infty} = \{(a_i) : a_i \in A_i \text{ for all } i, \text{ there exists } k \text{ such that } a_j = \phi_{kj}(a_k) \text{ for } j \geq k\},$$

$$B = \{(a_i) : \sup ||a_i|| < \infty\},\$$

$$J_{\infty} = \{(a_i) \in B_{\infty} : a_i = 0 \text{ for all but finitely many } i\}$$

 $J = \text{closure of } J_{\infty} \text{ in } B,$

 π : canonical projection $B \to B/J$,

$$A_{\infty} = \pi(B_{\infty}),$$

 $A = \operatorname{closure of} A_{\infty} \text{ in } B/J,$

Note that forming B/J is same as putting the seminorm $\|(a_i)\|_1 := \limsup \|a_i\|$ on B and quotienting by elements of length zero.

Define $\phi_j: A_j \to A$ by

$$\phi_j(a) = (\underbrace{0, \dots, 0}_{j-1}, a, \phi_{j+1,j}(a), \phi_{j+2,j}(a), \dots).$$

Then

1. the following diagram commutes:

$$\begin{array}{c|c}
A_j & \xrightarrow{\phi_j} A \\
\downarrow^{\phi_{kj}} & & \downarrow^{\phi_k} \\
A_k & & & & \\
\end{array}$$

- 2. $A_{\infty} = \bigcup_{i} \phi_{i}(A_{i}),$
- 3. if D is a C*-algebra such that for each i, there is a morphism $\psi_i:A_i\to D$ with

$$\begin{array}{c|c}
A_j & \xrightarrow{\psi_j} D \\
\downarrow^{\phi_{kj}} & \downarrow^{\psi_k}
\end{array}$$

then there is a unique morphism $\psi: A \to D$ such that

$$A_{j} \xrightarrow{\phi_{j}} A$$

$$\downarrow^{\psi}$$

$$D$$

If the ψ_i 's are all one-one, then ψ is one-one.

4. if $a \in A$, then for any $\epsilon > 0$, there is a $k \in \mathbb{N}$ and $a_k \in A_k$ such that

$$||a - \phi_k(a_k)|| < \epsilon.$$

2 K-theory

2.1 Vector bundles

Let X be a compact hausdorff space and E be a complex vector bundle over X of rank n. Let $\Gamma(E)$ be the space of sections of E.

1. $\Gamma(E)$ is a vector space with pointwise addition.

- 2. It is a C(X)-module with pointwise multiplication.
- 3. If $E = X \times \mathbb{C}^n$, then $\Gamma(E) = C(X, \mathbb{C}^n) \cong C(X) \otimes \mathbb{C}^n$ is the direct sum of n copies of C(X).
- 4. $\Gamma(E \oplus F) = \Gamma(E) \oplus \Gamma(F)$.
- 5. Theorem (Swan): If E is a locally trivial complex vector bundle over a compact Hausdorff space X, then there is another locally trivial complex vector bundle F over X such that $E \oplus F$ is trivial.
- 6. Thus $\gamma(E) \oplus \Gamma(F) \cong C(X) \oplus \ldots \oplus C(X)$. Observe that $\mathcal{L}(C(X) \oplus \ldots \oplus C(X)) = M_n(C(X))$. So $\gamma(E)$ can be identified with the projection p_E in $M_n(C(X))$ onto $\gamma(E)$.

 $K_0(A)$: Grothendieck group of the semigroup of projections in $\cup_n M_n(A)$ modulo homotopy.

2.2 K_0 group

2.2.1 Equivalence relations on projections

Murray-von Neumann equivalence. Let $p, q \in Proj(A)$. Define $p \sim_{MvN} q$ if there is a partial isometry $v \in A$ such that $p = vv^*$ and $q = v^*v$.

Exercise 2.1 Show that \sim is an equivalence relation on A.

Exercise 2.2 Show that $p \sim_{MvN} q$ if and only if there are elements $x, y \in A$ such that p = xy and q = yx.

Unitary equivalence. Let $p, q \in Proj(A)$. Define $p \sim_u q$ if there is a unitary $u \in A^{\dagger}$ such that $q = upu^*$.

Exercise 2.3 Show that \sim_u is an equivalence relation on A.

Exercise 2.4 Show that $p \sim_u q$ if and only if there is an element $z \in GL_1(A^{\dagger})$ such that $q = zpz^{-1}$.

Exercise 2.5 Let $p, q \in Proj(A)$. Show that $||p - q|| \le 1$.

Lemma 2.1 If ||p - q|| < 1 then $p \sim_u q$.

Proof: Write x = qp + (1 - q)(1 - p). Then x - 1 = 2qp - q - p = (2q - 1)(p - q), so that ||x - 1|| < 1. Therefore x is invertible. It is easy to see now that $xpx^{-1} = q$. By the previous exercise, the result follows.

Exercise 2.6 Let p(t) be a continuous path of projections in a unital C^* -algebra A. Then there is a continuous path of unitaries u(t) with u(0) = I such that $p(t) = u(t)p(0)u(t)^*$ for all t.

(Use the proofs of the lemma above and exercise 2.4)

Homotopy. Let $p, q \in Proj(A)$. p and q are said to be homotopic if there is a norm continuous path $t \mapsto P(t)$ in A such that $P(t)^* = P(t) = P(t)^2$ for all t and P(0) = p, P(1) = q. One writes $p \sim_h q$ in such a case.

Exercise 2.7 Show that \sim_h is an equivalence relation on A.

Exercise 2.8 Let $p, q \in Proj(A)$. Suppose there is a homotopy of idempotents from p to q. Show that $p \sim_h q$.

Lemma 2.2 Let $p, q \in Proj(A)$ and ||p-q|| < 1. Then show that $p \sim_h q$.

Proof: Write P(t) = tp + (1-t)q for $0 \le t \le 1$. Let $\delta = \frac{1}{2}||p-q||$. Then $||P(t)-p|| = (1-t)||p-q|| \le \delta$ for $\frac{1}{2} \le t \le 1$, and $||P(t)-q|| = t||p-q|| \le \delta$ for $0 \le t \le \frac{1}{2}$. Thus for all $t \in [0,1]$, one has $\sigma(P(t)) \subseteq [-\delta,\delta] \cup [1-\delta,1+\delta]$. Let $f: [-\delta,\delta] \cup [1-\delta,1+\delta] \to \mathbb{R}$ be the function given by

$$f(x) = \begin{cases} 0 & \text{if } |x| \le \delta, \\ 1 & \text{otherwise.} \end{cases}$$

Then f(P(t)) gives a required homotopy.

Proposition 2.3 Let $p, q \in Proj(A)$. Then $p \sim_h q \Rightarrow p \sim_u q \Rightarrow p \sim_{MvN} q$.

Proof: Let $P:[0,1] \to A$ be a homotopy from p to q. Let $0 < t_1 < \ldots < t_k < 1$ be such that $||P(t_i) - P(t_{i+1})|| < 1$ for each i. Now use exercise 2.1 for each pair to conclude that $p \sim_u q$.

Next assume that u is a unitary such that $p=uqu^*$. Write v=uq. Then $vv^*=uqu^*=p$ and $v^*v=qu^*uq=q$. Thus $p\sim_{MvN}q$.

Lemma 2.4 Let $p, q \in Proj(A)$. If $p \sim_{MvN} q$ and $1 - p \sim_{MvN} 1 - q$, then $p \sim_{u} q$.

Proof: Let v and w be partial isometries in A with $v^*v = p$, $vv^* = q$, $w^*w = 1-p$, $ww^* = 1-q$. Then $1-v^*v = w^*w$. Multiplying both sides from the left by w and from the right by w^* , one gets $wv^*vw^* = 0$, so that $vw^* = 0$. A similar argument shows that $v^*w = 0$. It follows then that u = v + w is unitary and $upu^* = q$.

Corollary 2.5 Let $p, q \in Proj(A)$. $p \sim_u q$ if and only if $p \sim_{MvN} q$ and $1 - p \sim_{MvN} 1 - q$.

Example 2.6 Example where $p \sim_{MvN} q$ but $p \not\sim_u q$: Take $P \in L_2(\mathbb{N})$ to be the projection onto $L_2(\mathbb{N}\setminus\{0\})$ and Q to be the identity operator.

Example 2.7 Example where $p \sim_u q$ but $p \not\sim_h q$: exists in $M_2(C(S^3))!$

Proposition 2.8 Let $p, q \in Proj(A)$. If $p \sim_{MvN} q$, then $\begin{pmatrix} p & 0 \\ 0 & 0 \end{pmatrix} \sim_u \begin{pmatrix} q & 0 \\ 0 & 0 \end{pmatrix}$ in $M_2(A)$.

Proof: Let v be a partial isometry with $v^*v = p$ and $vv^* = q$. Then $u := \begin{pmatrix} v & 1 - vv^* \\ v^*v - 1 & v^* \end{pmatrix}$ is a unitary and $u \begin{pmatrix} p & 0 \\ 0 & 0 \end{pmatrix} u^* = \begin{pmatrix} q & 0 \\ 0 & 0 \end{pmatrix}$.

Proposition 2.9 Let $p, q \in Proj(A)$. If $p \sim_{MvN} q$, then $\begin{pmatrix} p & 0 \\ 0 & 0 \end{pmatrix} \sim_h \begin{pmatrix} q & 0 \\ 0 & 0 \end{pmatrix}$ in $M_2(A)$.

Proof: Let v and u be as in the previous proof. The path

$$t \mapsto \begin{pmatrix} \cos(\frac{\pi}{2}t)v & 1 - (1 - \sin(\frac{\pi}{2}t))vv^* \\ (1 - \sin(\frac{\pi}{2}t))v^*v - 1 & \cos(\frac{\pi}{2}t)v^* \end{pmatrix}$$

connects u to $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. The path

$$t \mapsto \begin{pmatrix} \cos(\frac{\pi}{2}t) & \sin(\frac{\pi}{2}t) \\ -\sin(\frac{\pi}{2}t) & \cos(\frac{\pi}{2}t) \end{pmatrix}$$

connects $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ to $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Let u_t be a continuous path of unitaries that connect u to $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Then $t \mapsto u_t \begin{pmatrix} p & 0 \\ 0 & 0 \end{pmatrix} u_t^*$ is a continuous path of projections that connect $\begin{pmatrix} p & 0 \\ 0 & 0 \end{pmatrix}$ with $\begin{pmatrix} q & 0 \\ 0 & 0 \end{pmatrix}$.

Proposition 2.10 Let $p, q \in Proj(A)$. If $p \sim_u q$, then $\begin{pmatrix} p & 0 \\ 0 & 0 \end{pmatrix} \sim_h \begin{pmatrix} q & 0 \\ 0 & 0 \end{pmatrix}$ in $M_2(A)$.

Proof: This is a corollary of the previous proposition.

2.2.2 K_0 group for unital C^* -algebras

Exercise 2.9 Let $p, p' \in Proj(M_n(A)), q, q' \in Proj(M_k(A))$. Assume $p \sim_{MvN} p'$ and $q \sim_{MvN} q'$. Show that

$$\begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix} \sim_{MvN} \begin{pmatrix} p' & 0 \\ 0 & q' \end{pmatrix}$$
 in $M_{n+k}(A)$.

Exercise 2.10 Let $p, q \in Proj(M_n(A))$. Show that

$$\begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix} \sim_u \begin{pmatrix} q & 0 \\ 0 & p \end{pmatrix}.$$

Let $P_{\infty}(A)$ denote $Proj(\bigcup_n M_n(A))$ modulo the equivalence $p \sim_0 \binom{p - 0}{0 - 0}$. On $P_{\infty}(A)$, define an equivalence relation \sim by declaring $[p]_0 \sim [q]_0$ if there is an $n \in \mathbb{N}$, $p' \in [p]_0$, $q' \in [q]_0$ with $p', q' \in M_n(A)$ and $p' \sim_{MvN} q'$ in $M_n(A)$. Let $V(A) := P_{\infty}(A) / \sim$.

Exercise 2.11 Define a relation \sim_1 on $\sqcup_n Proj(M_n(A))$ as follows:

for $p \in M_n(A)$ and $q \in M_k(A)$, $p \sim_1 q$ if there exists a partial isometry $v \in M_{n,k}(A)$ such that $p = vv^*$, $q = v^*v$. Show that this is an equivalence relation and $\sqcup_n Proj(M_n(A)) / \sim_1 = V(A)$.

Define an operation on V(A) by

$$[p] + [q] := \begin{bmatrix} p & 0 \\ 0 & q \end{bmatrix}.$$

This is well-defined and turns it into an abelian semigroup. We will denote this semigroup by V(A).

Exercise 2.12 Recall that if $p, q \in Proj(A)$ obey ||p - q|| < 1, then $p \sim_u q$. Use this to show that if A is separable, then V(A) is countable.

Exercise 2.13 Let
$$p, q \in Proj(A)$$
 with $pq = 0 = qp$. Show that $\begin{pmatrix} p+q & 0 \\ 0 & 0 \end{pmatrix} \sim_h \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix}$.

Exercise 2.14 Let (S, +) be a cancellative abelian semigroup. Define a relation \sim on $S \times S$ by declaring $(a, b) \sim_{MvN} (a', b')$ if a + b' = a' + b. Show that this is an equivalence relation.

Define an operation + on $S \times S$ by (a,b) + (a',b') = (a+a',b+b'). Show that if $(a,b) \sim_{MvN} (a',b')$ and $(c,d) \sim_{MvN} (c',d')$, then $(a,b) + (c,d) \sim_{MvN} (a',b') + (c',d')$. Thus the operation + lifts to a well-defined operation on $S \times S / \sim$.

Show that $(S \times S/\sim, +)$ is an abelian group with identity [(a, a)] and -[(a, b)] = [(b, a)].

If (S, +) is an abelian semigroup possibly without cancellation, the relation defined in the above exercise need not be an equivalence relation. So in general, one needs to define the relation on $S \times S$ slightly differently.

Exercise 2.15 Let (S, +) be an abelian semigroup. Define a relation \sim on $S \times S$ by declaring $(a, b) \sim_{MvN} (a', b')$ if there exists a $c \in S$ such that a + b' + c = a' + b + c. Show that this is an equivalence relation.

Show that the natural addition on $S \times S$ lifts to an operation on $S \times S/\sim$, and $(S \times S/\sim, +)$ is an abelian group. (this is called the **Grothendieck group** of (S, +) and will be denoted by G(S).)

Exercise 2.16 Let (S, +) be a semigroup and let \sim be as above. Show that [(x + y, y)] is independent of y. Choose and fix an $y \in S$. Show that $\iota : x \mapsto [(x + y, y)]$ gives a semigroup homomorphism from S into G(S). ι is injective if and only if S is cancellative.

Exercise 2.17 Let S and S' be two semigroups and let $\phi: S \to S'$ be a homomorphism. Then there is a unique group homomorphism $\psi: G(S) \to G(S')$ such that the following diagram commutes:

$$S \xrightarrow{\phi} S'$$

$$\downarrow^{\iota} \qquad \downarrow^{\iota}$$

$$G(S) \xrightarrow{\psi} G(S')$$

Exercise 2.18 Let S be a semigroup, G be a group and let $\phi: S \to G$ be a homomorphism. Then there is a unique group homomorphism $\psi: G(S) \to G$ such that the following diagram commutes:

$$S \xrightarrow{\phi} G$$

$$\downarrow \downarrow \downarrow \downarrow$$

$$G(S)$$

Exercise 2.19 Let $S = \mathbb{N} \cup \{\infty\}$, with an operation + that gives the usual addition when restricted to \mathbb{N} and for $n \in S$, one has $n + \infty = \infty = \infty + n$.

Show that the Grothendieck group of (S, +) is the trivial group.

Definition 2.11 Let A be a unital C^* -algebra. The K_0 group of A is defined to be the Grothendieck group of V(A).

Exercise 2.20 Let A be a unital C^* -algebra. Let S be the set $Proj(M_{\infty}(A))$ modulo the equivalence relation \sim . Let $\widetilde{K}_0(A)$ be the abelian group with generators $[p] \in S$ and satisfying the relation $[p] + [q] = [p \oplus q]$. Show that $\widetilde{K}_0(A) = K_0(A)$.

Exercise 2.21 Show that two projections p and q in $M_n(\mathbb{C})$ are equivalent if and only if Trace p = Trace q. Use this to prove that $V(\mathbb{C}) = (\mathbb{N}, +)$ and hence conclude that $K_0(\mathbb{C}) = \mathbb{Z}$.

Exercise 2.22 Use exercise 2.21 to show that $K_0(M_n(\mathbb{C})) = \mathbb{Z}$.

Exercise 2.23 Let A and B be two unital C^* -algebras and let $\phi: A \to B$ be a *-homomorphism. Denote by the same symbol the induced homomorphism $M_n(A)$ to $M_n(B)$. Let $p, q \in M_n(A)$. Show that if p and q are homotopic, then $\phi(p)$ and $\phi(q)$ are also homotopic.

Define $K_0(\phi): V(A) \to V(B)$ by $K_0(\phi)[p] = [\phi(p)]$. Show that this induces a homomorphism from $K_0(A)$ to $K_0(B)$.

Show that $K_0(id) = id$.

Exercise 2.24 Let A, B, C be unital C^* -algebras and let $\phi : A \to B$ and $\psi : B \to C$ be *-homomorphisms. Show that $K_0(\psi \circ \phi) = K_0(\psi) \circ K_0(\phi)$.

Let A, B be C^* -algebras. Two homomorphisms $\phi, \psi : A \to B$ are said to be **homotopic** if there exist a family of *-homomorphisms $\phi_t : A \to B$, $t \in [0,1]$ such that $\phi_0 = \phi$, $\phi_1 = \psi$ and for each $a \in A$, the map $t \mapsto \phi_t(a)$ is norm continuous.

Exercise 2.25 Show that if two homomorphisms $\phi, \psi : A \to B$ are homotopic, then $K_0(\phi) = K_0(\psi)$.

Two C^* -algebras A and B are said to be **homotopy equivalent** if there exist homomorphisms $\phi: A \to B$ and $\psi: B \to A$ such that $\phi \circ \psi$ is homotopic to id_B and $\psi \circ \phi$ is homotopic to id_A .

Exercise 2.26 In such a case, one has $K_0(A) = K_0(B)$ and $K_0(\phi)^{-1} = K_0(\psi)$.

Exercise 2.27 Let X be a contractible compact Hausdorff space. Show that $K_0(C(X)) = \mathbb{Z}$.

Exercise 2.28 Find $V(\mathcal{L}(\mathcal{H}))$ where \mathcal{H} is infinite dimensional. Use this to show that $K_0(\mathcal{L}(\mathcal{H})) = 0$.

Exercise 2.29 Let A be a unital C^* -algebra, and let $n \in \mathbb{N}$. Show that the map $a \mapsto \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$ induces an isomorphism between $K_0(M_n(A))$ and $K_0(A)$.

2.2.3 K_0 group for nonunital C^* -algebras

Suppose we have the short exact sequence

$$0 \longrightarrow A \longrightarrow A^{\dagger} \stackrel{\pi}{\longrightarrow} \mathbb{C} \longrightarrow 0.$$

Then we have a group homomorphism $K_0(\pi)$ from $K_0(A^{\dagger})$ to $K_0(\mathbb{C}) = \mathbb{Z}$. Define the K_0 group of A to be the kernel of this homomorphism.

Exercise 2.30 Let A and B be two C^* -algebras and let $\phi: A \to B$ be a *-homomorphism. Then ϕ extends uniquely to a unital *-homomorphism $\phi^{\dagger}: A^{\dagger} \to B^{\dagger}$ such that the following diagram commutes:

Show that

- 1. $K_0(\phi^{\dagger})$ maps $\ker K_0(\pi_A)$ into $\ker K_0(\pi_B)$.
- 2. if A is unital, then $\ker K_0(\pi_B) \cong K_0(A)$.
- 3. if A and B are unital, then the restriction of $K_0(\phi^{\dagger})$ to ker $K_0(\pi_A)$ is same as the map $K_0(\phi)$.

Let ϕ_t be a family of homomorphisms from A to B and let ϕ_t^{\dagger} be its unique extension to a homomorphism from A^{\dagger} to B^{\dagger} . Show that if ϕ_t is a homotopy, then ϕ_t^{\dagger} is also a homotopy.

If A and/or B is nonunital, define $K_0(\phi)$ to be the restriction of $K_0(\phi^{\dagger})$ to ker $K_0(\pi_A)$.

Exercise 2.31 Let A, B, C be C^* -algebras and let $\phi : A \to B$ and $\psi : B \to C$ be *-homomorphisms. Show that $K_0(id_A) = id$ and $K_0(\psi \circ \phi) = K_0(\psi) \circ K_0(\phi)$.

Exercise 2.32 Suppose two C^* -algebras A and B are homotopic, i.e. there are homomorphisms $\phi: A \to B$ and $\psi: B \to C$ such that $\phi \circ \psi$ is homotopic to id_B and $\psi \circ \phi$ is homotopic to id_A . Then $K_0(A) = K_0(B)$ and $K_0(\phi)^{-1} = K_0(\psi)$.

Proposition 2.12 Let A be a nonunital C^* -algebra. Let s be the extension of the map $(a, z) \mapsto (0, z)$ (from A^{\dagger} to A^{\dagger}) to $\bigcup_n M_n(A^{\dagger})$. Then

$$K_0(A) = \{[p] - [s(p)] : p \in Proj(\cup_n M_n(A^{\dagger}))\}.$$

Proof: Let $p \in Proj(M_n(A^{\dagger}))$. Look at the element [p] - [s(p)] in $K_0(A^{\dagger})$. Since

$$K_0(\pi)([p] - [s(p)]) = [\pi(p)] - [\pi(s(p))] = [\pi(p)] - [\pi(p)] = 0,$$

we have $[p] - [s(p)] \in K_0(A)$.

Let us take an element $[p]-[q] \in K_0(A^{\dagger})$ such that $[p]-[q] \in \ker K_0(\pi)$, $p, q \in Proj(\bigcup_n M_n(A^{\dagger}))$. Let $\lambda : \mathbb{C} \to A^{\dagger}$ be the map $z \mapsto (0, z)$. Then $s = \lambda \circ \pi$. Therefore $[p] - [q] \in \ker K_0(s)$. Let us write

$$\tilde{p} = \begin{pmatrix} p & 0 \\ 0 & 1 - q \end{pmatrix}, \quad \tilde{q} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},$$

Then observe that

$$[p] - [q] = \begin{bmatrix} p & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 0 & q \end{bmatrix} = [\tilde{p}] - [\tilde{q}].$$

Therefore $K_0(s)([\tilde{p}] - [\tilde{q}]) = 0$. But clearly $s([\tilde{q}]) = [\tilde{q}]$. Therefore $[s(\tilde{p})] - [\tilde{q}] = 0$. Thus there exist $r, r' \in Proj(\cup_n M_n(A^{\dagger}))$ such that $[p] + [\tilde{q}] + [r] = [\tilde{p}] + [q] + [r]$ and $[s(\tilde{p})] + [r'] = [\tilde{q}] + [r']$. Combining these, we get

$$[p] + [s(\tilde{p})] + [r \oplus r'] = [\tilde{p}] + [q] + [r \oplus r'],$$

which means $[p] - [q] = [\tilde{p}] - [s(\tilde{p})].$

Lemma 2.13 If $p \in Proj(M_k(A^{\dagger}))$ and $\pi(p) \sim_{MvN} 1_n$ in $M_k(\mathbb{C})$ $(n \leq k)$, then there is an element $q \in Proj(M_k(A^{\dagger}))$ such that $p \sim_u q$ and $\pi(q) = 1_n$.

Proof: Since $\pi(p) \sim_{MvN} 1_n$ in $M_k(\mathbb{C})$, which is finite dimensional, we have $1_k - \pi(p) \sim_{MvN} 1_k - 1_n$ and consequently $\pi(p) \sim_u 1_n$, i.e. there is a unitary $u \in M_k(\mathbb{C})$ such that $u\pi(p)u^* = 1_n$. Then $q := upu^*$ gives a required projection.

Exercise 2.33 Elements of $K_0(A)$ can be written in the form $[p] - [1_n]$ where $p \in M_k(A^{\dagger})$, $k \geq n$ and $p - 1_n \in M_k(A)$.

Proof: First show that any element can be written as $[p'] - [1_n]$. Next use the fact that this is in the kernel of $K_0(\pi)$ to conclude that $[\pi(p')] - [1_n] = 0$. Since $V(\mathbb{C}) = \mathbb{N}$ is cancellative, this implies $[\pi(p')] = [1_n]$, i.e. $\pi(p') \sim_{MvN} 1_n$. Now use lemma 2.13 to get a projection p such that $p \sim_u p'$ and $\pi(p) = 1_n$.

Exercise 2.34 Let $p, q \in Proj(M_k(A^{\dagger}))$ and [p] - [q] = 0 in $K_0(A)$. Then there exist $m, n \in \mathbb{N}$, $m \leq n$ such that

$$\begin{pmatrix} p & 0 \\ 0 & 1_m \end{pmatrix} \sim_h \begin{pmatrix} q & 0 \\ 0 & 1_m \end{pmatrix} \quad \text{in } M_{k+n}(A^{\dagger}).$$

Proof: Since [p] - [q] = 0, there exists $r \in Proj(M_m(A^{\dagger}))$ for some $m \in \mathbb{N}$ such that [p] + [r] = [q] + [r]. Therefore

$$\begin{pmatrix} p & 0 \\ 0 & r \end{pmatrix} \sim_h \begin{pmatrix} q & 0 \\ 0 & r \end{pmatrix} \quad \text{in } M_{k+n}(A^{\dagger})$$

for some $n \geq m$. The required homotopy now follows.

2.2.4 Properties

Theorem 2.14 K_0 is half-exact, i.e. if we have a short exact sequence

$$0 \longrightarrow J \stackrel{\phi}{\longrightarrow} A \stackrel{\pi}{\longrightarrow} A/J \longrightarrow 0,$$

then the sequence

$$K_0(J) \xrightarrow{K_0(\phi)} K_0(A) \xrightarrow{K_0(\pi)} K_0(A/J)$$

is exact in the middle.

Proof: Since $\pi \circ \phi = 0$, it follows that the range of $K_0(\phi)$ is contained in ker $K_0(\pi)$. Now take an element x in ker $K_0(\pi)$. By exercise 2.33, $x = [p] - [1_n]$, $p \in M_k(A^{\dagger})$. Since this is in the kernel of $K_0(\pi)$, we have $[\pi(p)] - [1_n] = 0$ in $K_0(A/J)$. Hence it follows from exercise 2.34 that,

$$\begin{pmatrix} \pi(p) & 0 \\ 0 & 1_m \end{pmatrix} \sim_u \begin{pmatrix} 1_n & 0 \\ 0 & 1_m \end{pmatrix} \quad \text{in } M_{k+j}((A/J)^{\dagger}).$$

Let u be a unitary in $M_{k+j}((A/J)^{\dagger})$ such that

$$u\begin{pmatrix} \pi(p) & 0 \\ 0 & 1_m \end{pmatrix} u^* = \begin{pmatrix} 1_n & 0 \\ 0 & 1_m \end{pmatrix}.$$

Let w be a unitary in $M_{2k+2j}(A^{\dagger})$ such that $\pi(w) = \begin{pmatrix} u & 0 \\ 0 & u^* \end{pmatrix}$ and $w \sim_h 1_{2k+2j}$. (Assume that such a w would exist; this is a fact from C^* -algebras that we will prove later) Now let $q = w \begin{pmatrix} p & 0 \\ 0 & 1_m \end{pmatrix} w^*$. Then

$$\pi(q) = \begin{pmatrix} u & 0 \\ 0 & u^* \end{pmatrix} \begin{pmatrix} \pi(p) & 0 \\ 0 & 1_m \end{pmatrix} \begin{pmatrix} u^* & 0 \\ 0 & u \end{pmatrix} = \begin{pmatrix} 1_k & 0 \\ 0 & 1_m \end{pmatrix}.$$

Therefore $q \in M_k(J^{\dagger})$. Since $[q] = [\begin{pmatrix} p & 0 \\ 0 & 1_m \end{pmatrix}]$, we have

$$[p] - [1_n] = \begin{bmatrix} p & 0 \\ 0 & 1_m \end{bmatrix} - \begin{bmatrix} 1_n & 0 \\ 0 & 1_m \end{bmatrix} = [q] - [1_{n+m}].$$

But the right hand side is clearly in the range of $K_0(\phi)$.

Theorem 2.15 K_0 takes split exact sequences to split exact sequences, i.e. if the short exact sequence

$$0 \longrightarrow J \stackrel{\phi}{\longrightarrow} A \stackrel{\pi}{\longrightarrow} A/J \longrightarrow 0,$$

splits with a splitting homomorphism $\lambda: A/J \to A$, then the sequence

$$0 \longrightarrow K_0(J) \stackrel{K_0(\phi)}{\longrightarrow} K_0(A) \stackrel{K_0(\pi)}{\longrightarrow} K_0(A/J) \longrightarrow 0$$

is exact and splits with splitting map $K_0(\lambda)$.

Proof: Since $\pi \circ \lambda = id_{A/J}$, it follows that

$$K_0(\pi) \circ K_0(\lambda) = K_0(id_{A/J}) = id_{K_0(A/J)}.$$

So $K_0(\pi)$ is onto.

Take an element in $K_0(J)$. By exercise 2.33, it is of the form $[p] - [1_n]$ where $p \in Proj(M_k(J^{\dagger}))$ for some $k \in \mathbb{N}$, $k \geq n$ and $p - 1_n \in M_k(J)$. If it is an element of ker $K_0(\phi)$ then

it follows that $[\phi_k^{\dagger}(p)] - [1_n] = 0$. From exercise 2.34, we conclude that there exist $m, j \in \mathbb{N}$, $m \leq j$ such that

$$\begin{pmatrix} \phi_k^{\dagger}(p) & 0 \\ 0 & 1_m \end{pmatrix} \sim_h \begin{pmatrix} 1_n & 0 \\ 0 & 1_m \end{pmatrix} \quad \text{in } M_{k+j}(A^{\dagger}),$$

i.e. there is a unitary $u \in M_{k+j}(A^{\dagger})$ such that

$$u\begin{pmatrix} \phi_k^{\dagger}(p) & 0\\ 0 & 1_m \end{pmatrix} u^* = \begin{pmatrix} 1_n & 0\\ 0 & 1_m \end{pmatrix}.$$

Write

$$p' = \begin{pmatrix} p & 0 \\ 0 & 1_m \end{pmatrix} \in M_{k+j}(J^{\dagger}).$$

Then $[p] - [1_n] = [p'] - [1_{n+m}], u\phi_{k+j}^{\dagger}(p')u^* = 1_{n+m} \text{ and } p' - 1_{n+m} \in M_{k+j}(J).$

Exercise 2.35 Now complete the proof.

Proposition 2.16 Let A be a C^* -algebra, and let $n \in M_n(A)$. Then $K_0(M_n(A)) = K_0(A)$.

Proof: Let $\phi: A \to M_n(A)$ be the map $a \mapsto \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$ and let ψ be the corresponding map from \mathbb{C} to $M_n(\mathbb{C})$. Then the following diagram commutes and have split exact rows:

$$0 \longrightarrow A \longrightarrow A^{\dagger} \longrightarrow \mathbb{C} \longrightarrow 0$$

$$\downarrow^{\phi} \qquad \qquad \downarrow^{\phi^{\dagger}} \qquad \downarrow^{\psi}$$

$$0 \longrightarrow M_n(A) \longrightarrow M_n(A^{\dagger}) \longrightarrow M_n(\mathbb{C}) \longrightarrow 0$$

It follows from the properties of K_0 that the following diagram also commutes and have split exact rows:

$$0 \longrightarrow K_0(A) \longrightarrow K_0(A^{\dagger}) \longrightarrow K_0(\mathbb{C}) = \mathbb{Z} \longrightarrow 0$$

$$\downarrow^{K_0(\phi)} \qquad \downarrow^{K_0(\phi^{\dagger})} \qquad \downarrow^{K_0(\psi)}$$

$$0 \longrightarrow K_0(M_n(A)) \longrightarrow K_0(M_n(A^{\dagger})) = K_0(A^{\dagger}) \longrightarrow K_0(M_n(\mathbb{C})) = \mathbb{Z} \longrightarrow 0$$

Exercise 2.36 Show that if $K_0(\phi^{\dagger})$ and $K_0(\psi)$ are isomorphisms, then $K_0(\phi)$ is also an isomorphism.

Therefore the proof follows from the result for the unital case.

Proposition 2.17 Let A and B be two C^* -algebras. Let ι_A and ι_B be the natural inclusions of A and B into $A \oplus B$. Then $K_0(\iota_A) \oplus K_0(\iota_B) : K_0(A) \oplus K_0(B) \to K_0(A \oplus B)$ is an isomorphism.

Proof: Let π be the projection $A \oplus B \to B$. Then the following sequence is split exact:

$$0 \longrightarrow A \xrightarrow{\iota_A} A \oplus B \xrightarrow{\pi} B \longrightarrow 0$$

By split exactness, we have the split exact sequence of abelian groups

$$0 \longrightarrow K_0(A) \xrightarrow{K_0(\iota_A)} K_0(A \oplus B) \xrightarrow{K_0(\pi)} K_0(B) \longrightarrow 0$$

Therefore the result follows.

Proposition 2.18 Let (A_i, ϕ_{jk}) be an inductive system of C^* -algebras. Then $K_0(\lim(A_i, \phi_{jk})) = \lim(K_0(A_i), K_0(\phi_{jk}))$.

Proof: Since

$$\begin{array}{c|c}
A_j & \xrightarrow{\phi_j} A \\
\downarrow^{\phi_{kj}} & & \downarrow^{\phi_k} \\
A_k & & & \\
\end{array}$$

we have

$$K_0(A_j) \xrightarrow{K_0(\phi_j)} K_0(A)$$

$$K_0(\phi_{kj}) \downarrow \qquad K_0(\phi_k)$$

$$K_0(A_k)$$

By universality of $\lim(K_0(A_i), K_0(\phi_{jk}))$, there is a unique morphism $\psi_* : \lim K_0(A_i) \to K_0(A)$ such that

$$K_0(A_j) \xrightarrow{\xi_j} \lim K_0(A_i)$$

$$\downarrow^{\psi_*}$$

$$K_0(A)$$

where ξ_j 's are the maps corresponding to the inductive system $(K_0(A_i), K_0(\phi_{jk}))$.

We need to show that ψ_* is one-one and onto.

Since $\lim K_0(A_i) = \bigcup_j \xi_j(K_0(A_j))$, for injectivity it is enough to show that ψ_* is injective on $\xi_j(K_0(A_j))$. So take an element $x \in K_0(A_j)$ and assume $\psi_*\xi_j(x) = 0$. We have to show that $\xi_j(x) = 0$. We will use the facts that $\psi_*\xi_j = K_0(\psi_j)$ and $\xi_k K_0(\phi_{kj}) = \xi_j$ for $k \geq j$.

Exercise 2.37 Complete the proof of injectivity of ψ_* .

Next, take [p] - [s(p)], $p \in Proj(M_k(A^{\dagger}))$. In order to show that this is in the range of ψ_* , complete the following steps:

Approximate p with $\phi_n(a_n)$ for some self adjoint element $a_n \in M_k(A_n^{\dagger})$; write $a_m = \phi_{mn}(a_n)$ for $m \geq n$.

Now show:

- 1. $||a_m a_m^2|| < 1/4$ for large m,
- 2. there is a projection $q \in M_k(A_m^{\dagger})$ such that $||a_m q|| < 1/2$,
- 3. $\|\phi_m(q) p\| < 1$,
- 4. $[p] [s(p)] = [\phi_m(q)] [s(\phi_m(q))] = K_0(\phi_m)([q] [s(q)]).$

Exercise 2.38 Show that $K_0(\mathcal{K} \otimes A) = K_0(A)$.

2.2.5 Computations of K_0

A C^* -algebra is called properly infinite if there are projections p, q with pq = 0 and $1 \sim_{MvN} p \sim_{MvN} q$.

Exercise 2.39 If a C^* -algebra is properly infinite, then its quotients are also properly infinite. Show that $\mathcal{L}(\mathcal{H})$ for infinite dimensional \mathcal{H} and the Cuntz algebras \mathscr{O}_n are properly infinite.

Let A be properly infinite, p and q being projections with pq = 0 and $1 \sim_{MvN} p \sim_{MvN} q$. Let $v, w \in A$ such that $v^*v = 1 = w^*w$ and $p = vv^*$, $q = ww^*$. Since pq = 0, it follows that $v^*w = 0$. Let $s_k = v^k w$, $k \in \mathbb{N}$. Then $s_k^*s_j = \delta_{kj}$, i.e. s_k 's are isometries with orthogonal range. Let $v_n = (s_1, \ldots, s_n)$. Then it is easy to see that $b_n p b_n^* \sim p$ in $Proj(\bigcup_n M_n(A))$.

Exercise 2.40 Let $p, q \in Proj(A)$. Write $r = s_1 p s_1^* + s_2 (1 - q) s_2^* + s_3 (1 - s_1 s_1^* - s_2 s_2^*) s_3^*$. Show that

1. $r \in Proj(A)$,

2.
$$r \sim \begin{pmatrix} p & & \\ & 0 & \\ & & 0 \end{pmatrix} + \begin{pmatrix} 0 & & \\ & 1 - q & \\ & & 0 \end{pmatrix} + \begin{pmatrix} 0 & & \\ & 0 & \\ & & 1 \end{pmatrix}$$

3.
$$[r] = \begin{bmatrix} p & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & q \\ 0 & 0 \end{bmatrix} = [p] - [q].$$

2.3 K_1 group

2.3.1 Higher K-groups

Let A be a C^* -algebra. Then the C^* -algebra

$$\{f \in C([0,1],A) : f(0) = f(1)\}$$

is called the **suspension of** A and is denoted by SA.

Exercise 2.41 Show that $SA \cong C_0(\mathbb{R}) \otimes A$.

Exercise 2.42 $(SA)^{\dagger} = \{ f \in C([0,1], A^{\dagger}) : f(0) = f(1) = \lambda \in \mathbb{C}, s(f(t)) = \lambda \in \mathbb{C} \text{ for } t \in [0,1] \}.$

Exercise 2.43 Let $\phi : [0,1] \times [0,1] \to A$ be a continuous map with $\phi(t,1) = \phi(t,0) = 0$ for all $t \in [0,1]$. Then $t \mapsto \phi_t$ where $\phi_t(s) = \phi(t,s)$ gives a homotopy in SA.

Conversely, any homotopy in SA arises in this way.

Exercise 2.44 Let $p_0, p_1 \in Proj(\bigcup_n M_n(A^{\dagger}))$. Then $p_0 \sim_{MvN} p_1$ if and only if there are projections $p_t \in \bigcup_n M_n((SA)^{\dagger})$ such that for each $s \in [0,1]$, $t \mapsto p_t(s)$ is a homotopy between $p_0 = p_0(s)$ and $p_1 = p_1(s)$.

Exercise 2.45 Let $u_0, u_1 \in \mathcal{U}(\bigcup_n \mathcal{U}_n(A^{\dagger}))$. Then $u_0 \sim u_1$ if and only if there are unitaries $u_t \in \bigcup_n M_n((SA)^{\dagger})$ such that for each $s \in [0, 1], t \mapsto u_t(s)$ is a homotopy between $u_0 = u_0(s)$ and $u_1 = u_1(s)$.

Definition 2.19 Let $n \in \mathbb{N}$. Define the **nth** K-**group of** A by $K_n(A) := K_0(S^nA)$. In particular $K_1(A) := K_0(SA)$.

Exercise 2.46 Show that $SM_n(A) \cong M_n(SA)$.

Exercise 2.47 Let A and B be two C^* -algebras and let $\phi: A \to B$ be a *-homomorphism. Define a map $\tilde{\phi}: SA \to SB$ by

$$\tilde{\phi}f(t) = \phi(f(t)), \quad t \in [0, 1].$$

Show that $\tilde{\phi}$ is a *-homomorphism from SA to SB. (we will normally denote this map $\tilde{\phi}$ by $S(\phi)$ or ϕ_s)

Exercise 2.48 Let

$$0 \longrightarrow J \stackrel{\phi}{\longrightarrow} A \stackrel{\pi}{\longrightarrow} A/J \longrightarrow 0$$

be a short exact sequence of C^* -algebras. Then the sequence

$$0 \longrightarrow SJ \xrightarrow{S(\phi)} SA \xrightarrow{S(\pi)} S(A/J) \longrightarrow 0$$

is exact.

If the sequence

$$0 \longrightarrow J \longrightarrow A \xrightarrow[\lambda]{\pi} A/J \longrightarrow 0$$

is split exact, then so is the sequence

$$0 \longrightarrow SJ \longrightarrow SA \xrightarrow{\pi_s} S(A/J) \longrightarrow 0.$$

Exercise 2.49 Let A and B be C^* -algebras. Show that $S(A \oplus B) = SA \oplus SB$.

Exercise 2.50 Let B be a C^* -algebra. Show that $S(K \otimes B) \cong K \otimes SB$.

Proposition 2.20 Let A and B be two C^* -algebras. Then

- 1. $K_1(M_n(A)) = K_1(A)$,
- 2. $K_1(A \oplus B) = K_1(A) \oplus K_1(B)$,
- 3. $K_1(\mathcal{K} \otimes A) = K_1(A)$,
- 4. K₁ is half exact and carries split exact sequences to split exact sequences.

We have the following split exact sequences:

$$0 \longrightarrow A \longrightarrow A^{\dagger} \xrightarrow{\pi} \mathbb{C} \longrightarrow 0$$

$$0 \longrightarrow SA \longrightarrow (SA)^{\dagger} \xrightarrow{\pi_s} \mathbb{C} \longrightarrow 0.$$

Recall that

$$(SA)^{\dagger} = \{ f \in C([0,1], A^{\dagger}) : f(0) = f(1) = \lambda \in \mathbb{C}, \pi(f(t)) = \lambda \text{ for all } t \},$$

$$M_{n}((SA)^{\dagger}) = \{ f \in C([0,1], M_{n}(A^{\dagger})) : f(0) = f(1) = \lambda \in M_{n}(\mathbb{C}), \pi(f(t)) = \lambda \text{ for all } t \},$$

$$Proj(M_{n}((SA)^{\dagger})) = \{ f \in C([0,1], M_{n}(A^{\dagger})) : f(0) = f(1) = \lambda \in M_{n}(\mathbb{C}), \pi(f(t)) = \lambda \text{ for all } t,$$

$$\text{each } f(t) \text{ is a projection} \},$$

$$K_{0}((SA)^{\dagger}) = \{ [p] - [q] : p, q \in \cup_{n} Proj(M_{n}((SA)^{\dagger})) \}$$

$$= \cup_{n} \{ [p] - [q] : p, q \in Proj(M_{n}((SA)^{\dagger})) \}.$$

If $[p] - [q] \in \ker K_0(\pi_s)$, then $[\pi_s(p)] - [\pi_s(q)] = 0$, i.e. [p(0)] - [q(0)] = 0. But this equality takes place in the Grothendieck group of $V(\mathbb{C}) = \mathbb{N}$ where cancellation holds. So $p(0) \sim q(0)$. So there is a unitary $u \in M_{2n}(\mathbb{C})$ such that

$$u\begin{pmatrix} p(0) & 0\\ 0 & 0 \end{pmatrix}u^* = \begin{pmatrix} q(0) & 0\\ 0 & 0 \end{pmatrix}.$$

Define

$$p'(t) = \begin{pmatrix} p(t) & 0 \\ 0 & 0 \end{pmatrix}, \qquad q'(t) = \begin{pmatrix} q(t) & 0 \\ 0 & 0 \end{pmatrix}, \qquad u(t) = u.$$

Then $p', q' \in Proj(M_{2n}((SA)^{\dagger}))$, u is unitary in $M_{2n}((SA)^{\dagger})$. So $p \sim p' \sim up'u^*$ and $q \sim q'$. Therefore $[p] - [q] = [up'u^*] - [q']$ and

$$up'u^*(0) = u \begin{pmatrix} p(0) & 0 \\ 0 & 0 \end{pmatrix} u^* = q'(0).$$

Thus

$$K_0(SA) \subseteq \bigcup_n \{ [p] - [q] : p, q \in Proj(M_n((SA)^{\dagger})), p(0) = q(0) \}.$$

The opposite inclusion is clear. So we have

$$K_0(SA) = \bigcup_n \{ [p] - [q] : p, q \in Proj(M_n((SA)^{\dagger})), p(0) = q(0) \}.$$

2.3.2 Homotopies of unitaries and invertibles

Define

$$GL_n^{\dagger}(A) = \{ a \in GL_n(A^{\dagger}) : \pi(a) = 1_n \}, \qquad U_n^{\dagger}(A) = \{ a \in U_n(A^{\dagger}) : \pi(a) = 1_n \}$$

Exercise 2.51 Show that

- 1. if A is unital, then $GL_n^{\dagger}(A) = \{a \oplus 1_n : a \in GL_n(A)\},\$
- 2. $z \in GL_n(A^{\dagger})$ implies $z\pi(z^{-1}) \in GL_n^{\dagger}(A)$,
- 3. $u \in U_n(A^{\dagger})$ implies $u\pi(u^*) \in U_n^{\dagger}(A)$.

Exercise 2.52 Let A be unital and let $x \in GL_n(A)$, $y \in M_n(A)$ satisfy

$$||x - y|| < \frac{1}{||x^{-1}||}.$$

Then the path $t \mapsto tx + (1-t)y$, $t \in [0,1]$ lies in $GL_n(A)$.

Show that every path component of $GL_n(A)$ is open, so that every connected component coincides with a path component.

Exercise 2.53 Let A be a unital C^* -algebra and u be a unitary in A with $\sigma(u) \neq S^1$. Then there a continuous path of unitaries in A connecting u to the identity. (Hint: Get a self-adjoint element $a \in A$ such that $u = \exp(ia)$)

Exercise 2.54 Show that any unitary in $M_n(\mathbb{C})$ can be connected to the identity through a continuous path of unitaries.

Lemma 2.21 Let $z \in GL_1(A)$. Then $u = z|z|^{-1} \in \mathcal{U}(A)$ and $u \sim_h z$.

Proof: Let $z_t = u \exp(t \log |z|)$. This gives a homotopy between u and z.

Lemma 2.22 Let $u, v \in \mathcal{U}(A)$ with ||u - v|| < 2. Then $u \sim_h v$.

Proof: Since ||u-v|| < 2, we have $||uv^*-1|| < 2$, so that $\sigma(uv^*) \subseteq S^1 - \{-1\}$. Therefore $uv^* \sim_h 1$, which implies that $u \sim_h v$.

Proposition 2.23 Let A be a unital C^* -algebra and let $u \in A$ be a unitary. Then

$$1. \ \begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix} \sim_h \begin{pmatrix} 1 & 0 \\ 0 & u \end{pmatrix},$$

2.
$$\begin{pmatrix} u & 0 \\ 0 & v \end{pmatrix} \sim_h \begin{pmatrix} uv & 0 \\ 0 & 1 \end{pmatrix} \sim_h \begin{pmatrix} vu & 0 \\ 0 & 1 \end{pmatrix}$$
,

$$3. \begin{pmatrix} u & 0 \\ 0 & u^* \end{pmatrix} \sim_h \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Proof: Define

$$V(t) = \begin{pmatrix} \cos(\frac{\pi}{2}t) & \sin(\frac{\pi}{2}t) \\ -\sin(\frac{\pi}{2}t) & \cos(\frac{\pi}{2}t) \end{pmatrix}, \quad t \in [0, 1].$$

Then $u_t: t \mapsto V(t) \begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix} V(t)^*$ gives a homotopy from $\begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix}$ to $\begin{pmatrix} 1 & 0 \\ 0 & u \end{pmatrix}$.

The other two parts are immediate corollaries of part 1.

Remark 2.24 If u and v are in A^{\dagger} with s(u) = 1 = s(v) in the above proposition, then the homotopies u_t etc constructed are such that $u_t \in M_2(A^{\dagger})$ and $s(u_t) = 1$ for all t.

Proposition 2.25 $GL_n^{\dagger}(A)/GL_n^{\dagger}(A)_0 \cong U_n^{\dagger}(A)/U_n^{\dagger}(A)_0$.

Proof: Let π_1 and π_2 be the quotient maps from $GL_n^{\dagger}(A)$ to $GL_n^{\dagger}(A)/GL_n^{\dagger}(A)_0$ and from $U_n^{\dagger}(A)$ to $U_n^{\dagger}(A)/U_n^{\dagger}(A)_0$ respectively. Define $\phi: GL_n^{\dagger}(A) \to U_n^{\dagger}(A)/U_n^{\dagger}(A)_0$ by

$$\phi(z) = \pi_2(z|z|^{-1}).$$

Clearly ϕ is surjective.

Exercise 2.55 If x_t is a homotopy between z and w, then $t \mapsto x_t |x_t|^{-1}$ gives a homotopy between $z|z|^{-1}$ and $w|w|^{-1}$.

Thus ϕ lifts to a map $\tilde{\phi}$ from $GL_n^{\dagger}(A)/GL_n^{\dagger}(A)_0$ to $U_n^{\dagger}(A)/U_n^{\dagger}(A)_0$.

Exercise 2.56 Show that $\tilde{\phi}$ is injective and is a group homomorphism.

This completes the proof!

Proposition 2.26 $GL_n(A^{\dagger})/GL_n(A^{\dagger})_0 \cong GL_n^{\dagger}(A)/GL_n^{\dagger}(A)_0$.

Proof: Use the map $z \mapsto z\pi(z^{-1})$ (π is the projection $GL_n(A^{\dagger}) \to GL_n(\mathbb{C})$.

Proposition 2.27 $U_n(A^{\dagger})/U_n(A^{\dagger})_0 \cong U_n^{\dagger}(A)/U_n^{\dagger}(A)_0$.

Proof: Use the map $u \mapsto u\pi(u^*)$ from $U_n(A^{\dagger})$ to $U_n^{\dagger}(A)$ (π is the projection $U_n(A^{\dagger}) \to U_n(\mathbb{C})$).

Let us now define the group $\tilde{K}_1(A)$. Take the disjoint union $\sqcup_n U_n^{\dagger}(A)$. Suppose $u \in U_n^{\dagger}(A)$ and $v \in U_k^{\dagger}(A)$. Declare them to be equivalent $(u \sim v)$ if there are integers $r, s \in \mathbb{N}$ such that n+r=k+s and

$$\begin{pmatrix} u & 0 \\ 0 & 1_r \end{pmatrix} \sim_h \begin{pmatrix} v & 0 \\ 0 & 1_s \end{pmatrix}$$

in $U_{n+r}^{\dagger}(A)$. On the quotient $\sqcup_n U_n^{\dagger}(A)/\sim$, define

$$[u] + [v] := \begin{bmatrix} \begin{pmatrix} u & 0 \\ 0 & v \end{pmatrix} \end{bmatrix}.$$

This turns it into an abelian group which we denote by $K_1(A)$.

Proposition 2.28 $\tilde{K}_1(A) = \lim U_n^{\dagger}(A)/U_n^{\dagger}(A)_0 = \lim GL_n^{\dagger}(A)/GL_n^{\dagger}(A)_0 = \lim U_n(A^{\dagger})/U_n(A^{\dagger})_0 = \lim GL_n(A^{\dagger})/GL_n(A^{\dagger})_0.$

2.3.3 Equivalence of the two pictures

Theorem 2.29 Let A be a C^* -algebra. Then $\tilde{K}_1(A) \cong K_0(SA)$.

Proof: Let us first define a map $\phi: \tilde{K}_1(A) \to K_0(S(A))$.

Take $v \in \mathcal{U}(M_n(A^{\dagger}))$ with $s(v) = 1_n$. Let u(t) be a path of unitaries such that

$$u(0) = \begin{pmatrix} v & 0 \\ 0 & v^* \end{pmatrix}, \qquad u(1) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad s(u(t)) = 1_{2n}, \ t \in [0, 1].$$

Next let

$$p(t) = u(t) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} u(t)^*, \qquad q(t) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Exercise 2.57 Show that [p] - [q] gives an element of $K_0(SA)$.

 $(s(p(t)) = 1_n, \text{ i.e. } p(t) - 1_n \in M_{2n}(A) \text{ for all } t. \text{ This means } t \mapsto p_{ij}(t) \in (SA)^{\dagger}, \text{ which in turn implies that } p \in M_{2n}((SA)^{\dagger}). \text{ Thus } [p] - [q] \in K_0((SA)^{\dagger}). \text{ Since } p(t) - 1_n \in M_{2n}(A) \text{ for all } t \text{ and } p(0) - 1_n = 0 = p(1) - 1_n, \text{ it follows that } p - q \in SM_{2n}(A) = M_{2n}(SA). \text{ Thus } \pi(p) = \pi(q) \text{ so that } [p] - [q] \in K_0(SA).)$

Exercise 2.58 If v' is a unitary homotopic to v, u' is a homotopy of unitaries connecting $\begin{pmatrix} v' & 0 \\ 0 & v'^* \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $p' = u'(t) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} u'(t)^*$, then show that [p] - [q] = [p'] - [q]. (Let $t \mapsto w_t$ be a homotopy from v to v'. Define

$$z(t) = u(t) \begin{pmatrix} v^* w_t & 0 \\ 0 & v w_t^* \end{pmatrix} u'(t)^*.$$

Now show that $z \in \mathscr{U}_{2n}^{\dagger}(SA)$ and $zp'z^* = p$.

Exercise 2.59 Let $v' = \begin{pmatrix} v & 0 \\ 0 & 1_m \end{pmatrix}$, u' is a homotopy of unitaries connecting $\begin{pmatrix} v' & 0 \\ 0 & v'^* \end{pmatrix}$ and 1_{2m+2n} and $p' = u'(t) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} u'(t)^*$. Show that [p] - [q] = [p'] - [q].

Define $\phi([v]) = [p] - [q]$. We will show that it is an isomorphism.

COMPLETE THE PROOF.

Remark 2.30 The inverse map $\psi: K_0(S(A)) \to \tilde{K}_1(A)$ is given as follows.

Take a $p \in Proj(M_n(S(A)^{\dagger}))$. Then p can be viewed as a projection valued map on [0,1] such that $p(0) = p(1) \in M_n(\mathbb{C})$. Assume that $p(0) = p(1) = \begin{pmatrix} 1_m & 0 \\ 0 & 0 \end{pmatrix}$. Now there is a path of unitaries u(t) with u(1) = 1 such that $p(t) = u(t)p(1)u(t)^*$. Since $p(0) = p(1) = \begin{pmatrix} 1_m & 0 \\ 0 & 0 \end{pmatrix}$, it follows that u(0) is of the form $\begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$. Define $\psi([p]) = [v]$.

Exercise 2.60 Show the following:

1.
$$K_1(\mathbb{C}) = 0$$
, 2. $K_1(\mathcal{L}(L_2(\mathbb{N}))) = 0$, 3. $K_1(Q(L_2(\mathbb{N}))) = \mathbb{Z}$, 4. $K_0(C(S^1)) = \mathbb{Z}$.

Exercise 2.61 Let (A_i, ϕ_{jk}) be an inductive system of C^* -algebras. Show that

$$K_1(\lim(A_i, \phi_{jk})) = \lim(K_1(A_i), K_1(\phi_{jk})).$$

3 Computational tools

3.1 Six term exact sequence

3.1.1 Lifting of homotopies

Proposition 3.1 Suppose we have a short exact sequence

$$0 \longrightarrow J \longrightarrow A \xrightarrow{\pi} A/J \longrightarrow 0$$

If u_t is a path of unitaries in A/J and v_0 is a unitary in A such that $\pi(v_0) = u_0$, then there is a continuous path of unitaries v_t in A such that $\pi(v_t) = u_t$ for $t \in [0, 1]$.

Proof: For each $t \in [0, 1]$, there is an open interval N(t) around t such that $||u_s - u_{s'}|| < 2$ for all $s, s' \in N(t)$. By compactness of [0, 1], there are t_1, \ldots, t_k such that $[0, 1] \subseteq \cup N(t_i)$. It is now enough to prove that a lifting exists on each $N(t_i)$. In other words, without loss in generality we can assume that $||u_t - u_s|| < 2$ for all t, s.

Since $||u_0^*u_t - 1|| < 2$, the spectrum $\sigma(u_0^*u_t)$ does not contain the point -1 for all t. So there is a continuous path of self adjoint elements x_t such that $\exp(ix_t) = u_0^*u_t$.

Exercise 3.1 Show that x_t admits a lift to a continuous path y_t of self adjoint elements in A.

Define $v_t = v_0 \exp(iy_t)$. Then v_t gives a required lifting.

Exercise 3.2 If p_t is a path of projections in A/J and q_0 is a projection in A such that $\pi(q_0) = q_0$, then there is a continuous path of unitaries q_t in A such that $\pi(q_t) = p_t$ for $t \in [0, 1]$.

3.1.2 Fredholm operators

Let π denote the projection map from $\mathcal{L}(\mathcal{H})$ onto $Q(\mathcal{H}) = \mathcal{L}(\mathcal{H})/\mathcal{K}(\mathcal{H})$. An operator $T \in \mathcal{L}(\mathcal{H})$ is called **Fredholm** if ker T and coker T are finite dimensional. If T is a Fredholm operator, then the range of T is closed.

- 1. Theorem (Atkinson): T is Fredholm if and only if $\pi(T)$ is invertible in $Q(\mathcal{H})$.
- 2. Define index $(T) := \dim \ker T \dim \ker T^*$. If S and T are both Fredholm, then ST and T^* are also Fredholm and one has index $(ST) = \operatorname{index}(S) + \operatorname{index}(T)$ and index $(T^*) = -\operatorname{index}(T)$.
- 3. If T is Fredholm and K is compact, then T+K is Fredholm and index (T+K) = index(T).
- 4. If T is Fredholm and index (T) = 0, then there is a finite rank operator F such that T + F is invertible.
- 5. The map $T \mapsto \operatorname{index}(T)$ is continuous.

6. index(T) = index(S) if and only if S and T are homotopic.

Exercise 3.3 Use the fact that $\mathcal{L}(\mathcal{H})$ and $Q(\mathcal{H})$ are properly infinite C^* -algebras to show that $K_1(Q(\mathcal{H})) = \{[T] : T \text{ Fredholm}\}$, where [T] stands for the homotopy class for T.

Use the above facts to show that index : $K_1(Q(\mathcal{H})) \to \mathbb{Z}$ is a group isomorphism.

We will next see that the above map $(T \mapsto \operatorname{index}(T))$ can be looked upon as a map from $K_1(Q(\mathcal{H}))$ to $K_0(\mathcal{K}(\mathcal{H}))$.

Take an operator $T \in \mathcal{L}(\mathcal{H})$, T Fredholm. Then $z := \pi(T)$ is invertible in $Q(\mathcal{H})$. Let T = V|T| and $\pi(T) = u|z|$ be the polar decompositions of T and z respectively. Then $\pi(V) = u$, i.e. V is a lift of u in $\mathcal{L}(\mathcal{H})$. Now

range
$$V = \operatorname{range} T = (\ker T^*)^{\perp}, \quad \ker V = (\operatorname{range} |T|)^{\perp} = \ker |T| = \ker T.$$

Therefore $1 - VV^*$ is the projection onto $\ker T^*$ and $1 - V^*V$ is the projection onto $\ker T$. For $p \in Proj(\mathcal{K}(\mathcal{H}))$, $p \mapsto \dim p$ gives the natural inclusion of $V(\mathcal{K}(\mathcal{H}))$ in $K_0(\mathcal{K}(\mathcal{H})) = \mathbb{Z}$. Thus the number dim $\ker T$ dim $\ker T^*$ corresponds to the element $[1 - V^*V] - [1 - VV^*]$ in $K_0(\mathcal{K}(\mathcal{H}))$.

3.1.3 The index map

Suppose we have a short exact sequence

$$0 \longrightarrow J \stackrel{\phi}{\longrightarrow} A \stackrel{\pi}{\longrightarrow} A/J \longrightarrow 0.$$

We have already seen that in such a case one has the following two exact sequences:

$$K_0(J) \xrightarrow{K_0(\phi)} K_0(A) \xrightarrow{K_0(\pi)} K_0(A/J)$$

$$K_1(A/J) \underset{K_1(\pi)}{\longleftarrow} K_1(A) \underset{K_1(\phi)}{\longleftarrow} K_1(J)$$

We will now define a map $\partial: K_1(A/J) \to K_0(J)$ such that the following sequence is exact:

$$K_{0}(J) \xrightarrow{K_{0}(\phi)} K_{0}(A) \xrightarrow{K_{0}(\pi)} K_{0}(A/J)$$

$$\downarrow 0 \\ K_{1}(A/J) \xrightarrow{K_{1}(\pi)} K_{1}(A) \xrightarrow{K_{1}(\phi)} K_{1}(J)$$

$$(3.1)$$

For a C^* -algebra A, define the **cone over** A to be the C^* -algebra $Cone(A) := \{ f \in C([0,1],A) : f(0) = 0 \}.$

Exercise 3.4 Show that Cone(A) is contractive and hence $K_0(Cone(A)) = 0$.

The mapping cone Cone(A, A/J) of π is the C^* -algebra

$$\{(a, f) : a \in A, f \in C([0, 1], A/J), f(1) = 0, f(0) = \pi(a)\}.$$

Theorem 3.2 Let $\phi: J \to Cone(A, A/J)$ be given by $\phi(a) = (a, 0)$. Then $K_0(\phi)$ gives an isomorphism between $K_0(J)$ and $K_0(Cone(A, A/J))$.

Proof: Let $\phi: J \to Cone(A, A/J)$ be given by $\phi(a) = (a, 0)$. Then we have a short exact sequence

$$0 \longrightarrow J \stackrel{\phi}{\longrightarrow} Cone(A, A/J) \longrightarrow Cone(A/J) \longrightarrow 0.$$

Therefore

$$K_0(J) \xrightarrow{K_0(\phi)} K_0(Cone(A, A/J)) \longrightarrow K_0(Cone(A/J))$$

is exact in the middle. But Cone(A/J) is contractible, so that $K_0(Cone(A/J)) = 0$. So $K_0(\phi)$ is onto.

Next, let
$$B = \{ f \in C([0,1], A) : f(1) \in J \}.$$

Exercise 3.5 Let $\theta_1: J \to B$ be given by $\theta_1(a) =$ the map $t \mapsto a$ and $\theta_2: B \to J$ be given by $\theta_2(f) = f(1)$. Show that these give homotopy equivalence between J and B.

Exercise 3.6 Show that there is a short exact sequence

$$0 \longrightarrow C_0((0,1],J) \longrightarrow B \xrightarrow{\psi} Cone(A,A/J) \longrightarrow 0.$$

Since $K_0(C_0((0,1],J))=0$, by half exactness, $K_0(\psi)$ is injective. Since the diagram

commutes, we have $K_0(\phi) = K_0(\psi) \circ K_0(\theta_1)$. But $K_0(\theta_1)$ is an isomorphism. So $K_0(\phi)$ is injective.

Exercise 3.7 Show that the map $(a, f) \mapsto a$ gives rise to a short exact sequence

$$0 \longrightarrow S(A/J) \longrightarrow Cone(A, A/J) \longrightarrow A \longrightarrow 0.$$

By half-exactness of K_0 , the sequence

$$K_0(S(A/J)) \longrightarrow K_0(Cone(A, A/J)) \longrightarrow K_0(A)$$

is exact in the middle. View the map on the left as a map ∂ from $K_1(A/J)$ to $K_0(J)$. This is called the **index map** for the short exact sequence

$$0 \longrightarrow J \longrightarrow A \stackrel{\pi}{\longrightarrow} A/J \longrightarrow 0.$$

Exercise 3.8 Show that the map $(a, f) \mapsto a$ gives rise to a short exact sequence

$$0 \longrightarrow SA \longrightarrow Cone\left(Cone\left(A,A/J\right),A\right) \longrightarrow Cone\left(A,A/J\right) \longrightarrow 0.$$

Again by half exactness,

$$K_0(SA) \longrightarrow K_0(Cone(A, A/J), A)) \longrightarrow K_0(Cone(A, A/J))$$

is exact in the middle. But $K_0(Cone(A, A/J)) = K_0(J)$ and $K_0(Cone(Cone(A, A/J), A)) = K_0(S(A/J)) = K_1(A/J)$. Thus we have a sequence

$$K_0(SA) \longrightarrow K_1(A/J) \longrightarrow K_0(J)$$

that is exact at $K_1(A/J)$.

Exercise 3.9 Verify that the map on the left is $K_1(\pi)$ and the one on the right is ∂ .

Thus the sequence

$$K_0(J) \xrightarrow{K_0(\phi)} K_0(A) \xrightarrow{K_0(\pi)} K_0(A/J)$$

$$\downarrow 0 \\ K_1(A/J) \xrightarrow{K_1(\pi)} K_1(A) \xrightarrow{K_1(\phi)} K_1(J)$$

is exact and repeating the procedure we get the following long exact sequence

$$\longrightarrow K_{n+1}(J) \longrightarrow K_{n+1}(A) \longrightarrow K_{n+1}(A/J) \xrightarrow{\partial_{n+1}} K_n(J) \longrightarrow K_n(A) \longrightarrow K_n(A/J) \longrightarrow$$

where ∂_{n+1} is the index map for the exact sequence

$$0 \longrightarrow S^n J \xrightarrow{\phi} S^n A \xrightarrow{\pi} S^n A / S^n J \longrightarrow 0.$$

3.1.4 Computation of the index map

Assume that A is unital. We will derive a computable formula for the index map now.

Let $p \in Proj(M_n((S(A/J))^{\dagger}))$. Then $p(0) \in ProjM_n(\mathbb{C})$ so that it admits a lift to a projection P in $ProjM_n(A^{\dagger})$. Since $\pi(P) = p(0) \in M_n(\mathbb{C})$, we have $s \circ \pi(P) = \pi(P)$. Therefore one has $P \in ProjM_n(J^{\dagger}) \subseteq ProjM_n(A^{\dagger})$. By lifting property of homotopy of projections, there is a path P(t) of projections in $M_n(A^{\dagger})$ with P(0) = P.

Lemma 3.3 Suppose P(t) and P'(t) are two such liftings, so that P(0) = P'(0) = P. Then P(1) and P'(1) are unitarily equivalent in $M_n(J^{\dagger})$.

Proof: Exercise!

Exercise 3.10 Show that $[P(1)] - [P(0)] \in K_0(J)$.

Proposition 3.4 Let $p, q \in ProjM_n((S(A/J))^{\dagger})$ with p(0) = q(0), let $P \in ProjM_n(A^{\dagger})$ be a lifting of p(0) and let P(t) and Q(t) be the liftings of p and q respectively with P(0) = Q(0) = P. Then

$$\partial([p] - [q]) = ([P(1)] - [P(0)]) - ([Q(1)] - [Q(0)]). \tag{3.2}$$

Proof:

Exercise 3.11 Assuming A is unital, show that

Cone
$$(A, A/J)^{\dagger} = \{(a, f) : a \in A, f \in C([0, 1], A/J), f(0) = \pi(a), f(1) \in \mathbb{C}\}.$$

Recall that we have an exact sequence

$$0 \longrightarrow S(A/J) \stackrel{\phi}{\longrightarrow} Cone(A, A/J) \longrightarrow A \longrightarrow 0,$$

and the index map ∂ is the map $K_0(\phi)$. Therefore

$$\partial([p] - [q]) = K_0(\phi)([p] - [q]) = [(P(0), p)] - [(Q(0), q)].$$

On the other hand, we have the inclusion $\psi: J \to Cone(A, A/J)$ given by $\psi(a) = (a, 0)$. $K_0(\psi)$ gives an isomorphism from $K_0(J)$ to $K_0(Cone(A, A/J))$ and we have to check that the image under $K_0(\psi)$ of the right hand side coincides with the above.

Exercise 3.12 Show that the unique extension $\psi^{\dagger}: J^{\dagger} \to Cone(A, A/J)^{\dagger}$ of ψ is given by

$$\psi^{\dagger}(a) = (a, s(a)).$$

where s(a) is the constant loop $t \mapsto s(a)$.

Now,

$$K_0(\psi)(([P(1)] - [P(0)]) - ([Q(1)] - [Q(0)])) = [(P(1), p(1))] - [(Q(1), q(1))].$$

Therefore it is enough to show that

$$(P(0),p) \sim_h (P(1),p(1))$$
 in $Cone(A,A/J)^{\dagger}$.

For this, take the homotopy $\widetilde{P}(t) = (P(1-t), p_t)$, where $p_t(s) = p(1-t(1-s))$.

Exercise 3.13 Let u be a unitary element of $M_n((A/J)^{\dagger})$. Show that there is an $a \in M_n(A^{\dagger})$ such that ||a|| = 1 and $\pi(a) = u$.

Exercise 3.14 Show that
$$w := \begin{pmatrix} a & -(1-aa^*)^{\frac{1}{2}} \\ (1-a^*a)^{\frac{1}{2}} & a^* \end{pmatrix}$$
 is unitary and $\pi(w) = \begin{pmatrix} u & 0 \\ 0 & u^* \end{pmatrix}$.

Let a(t) = ta + 1 - t, $t \in [0, 1]$. Then

$$w(t) := \begin{pmatrix} a(t) & -(1 - a(t)a(t)^*)^{\frac{1}{2}} \\ (1 - a(t)^*a(t))^{\frac{1}{2}} & a(t)^* \end{pmatrix}$$

is a path of unitaries that connect w to 1_{2n} . Write $v(t) = \pi(w(t))$. Define $p(t) = v(t)1_n v(t)^*$ and $q(t) = 1_n$. Then $p, q \in M_{2n}((S(A/J))^{\dagger})$ and $p(0) = q(0) = 1_n$. Therefore [p] - [q] gives the element of $K_0(S(A/J))$ corresponding to the element [u] in $K_1(A/J)$.

Since $w(t)1_nw(t)^*$ is a lifting of p with $w(0)1_nw(0)^*=1_n$ and the constant loop $t\mapsto 1_n$ is a lifting of q, by the previous proposition, we have

$$\partial([u]) = \partial([p] - [q]) = [w(1)1_n w(1)^*] - [1_n] = \left[\begin{pmatrix} aa^* & a(1 - a^*a)^{\frac{1}{2}} \\ (1 - a^*a)^{\frac{1}{2}}a^* & 1 - a^*a \end{pmatrix}\right] - [1_n]. \quad (3.3)$$

If a happens to be a partial isometry so that $a(1-a^*a)^{\frac{1}{2}}=0$, then

$$\partial([u]) = \begin{bmatrix} aa^* & 0\\ 0 & 1 - a^*a \end{bmatrix} - [1_n] = [1 - a^*a] - [1 - aa^*]. \tag{3.4}$$

3.1.5 Bott periodicity

Toeplitz algebra. Let S be the unilateral shift $e_n \mapsto e_{n+1}$ in $L_2(\mathbb{N})$. The C*-subalgebra \mathscr{T} of $\mathcal{L}(L_2(\mathbb{N}))$ generated by the operator S is called the Toeplitz algebra.

Exercise 3.15 Show that

- 1. $\mathcal{K} \subseteq \mathscr{T}$,
- 2. if π is the projection of \mathscr{T} onto \mathscr{T}/\mathcal{K} , then the element $\pi(S)$ is a unitary in \mathscr{T}/\mathcal{K} and has spectrum S^1 , so that there is a short exact sequence

$$0 \longrightarrow \mathcal{K} \longrightarrow \mathscr{T} \stackrel{\pi}{\longrightarrow} C(S^1) \longrightarrow 0.$$

3. if $\phi: \mathscr{T} \to \mathbb{C}$ is the morphism given by $\phi = ev_1 \circ \pi$ (ev_1 is evaluation at 1)so that $\phi(S) = 1$, then $\mathscr{T}_0 := \ker \phi$ is the C^* -subalgebra of \mathscr{T} generated by the operator 1 - S, and one has the following split exact sequence

$$0 \longrightarrow \mathscr{T}_0 \longrightarrow \mathscr{T} \xrightarrow{\pi_0} \mathbb{C} \longrightarrow 0,$$

where j is the map $t \mapsto t.1$.

4. there is a short exact sequence

$$0 \longrightarrow \mathcal{K} \longrightarrow \mathscr{T}_0 \stackrel{\pi}{\longrightarrow} C_0(\mathbb{R}) \longrightarrow 0.$$

Theorem 3.5 Let \mathscr{T} be the Toeplitz algebra. Then there exists a canonical surjection π_0 : $\mathscr{T} \to \mathbb{C}$ such that $K_0(\pi_0)$ gives an isomorphism between $K_0(\mathscr{T})$ and $K_0(\mathbb{C}) = \mathbb{Z}$.

Proof: From split exactnes of the sequence

$$0 \longrightarrow \mathscr{T}_0 \longrightarrow \mathscr{T} \xrightarrow{\pi_0} \mathbb{C} \longrightarrow 0.$$

we conclude that the sequence

$$0 \longrightarrow K_0(\mathscr{T}_0) \longrightarrow K_0(\mathscr{T}) \xrightarrow[K_0(j)]{K_0(\eta)} \mathbb{Z} \longrightarrow 0$$

is split exact, so that $K_0(\pi_0) \circ K_0(j) = id$. We will now show that $K_0(j) \circ K_0(\pi_0) = id_{K_0(\mathscr{T})}$.

Exercise 3.16 Let $\sigma: \mathcal{T} \to \mathcal{K} \otimes \mathcal{T}$ be the embedding $a \mapsto (I - SS^*) \otimes a$. Show that $K_0(\sigma)$ is an isomorphism.

since $K_0(\sigma)$ is an isomorphism, it is enough to show that

$$K_0(\sigma) \circ K_0(j) \circ K_0(\pi_0) = K_0(\sigma).$$

Let \mathscr{T}' be the C^* -subalgebra of $\mathscr{T} \otimes \mathscr{T}$ generated by $\mathcal{K} \otimes \mathscr{T}$ and $\mathscr{T} \otimes 1$.

Exercise 3.17 Show that $\mathcal{K} \otimes \mathcal{T}$ is an ideal in \mathcal{T}' and $\mathcal{T}'/(\mathcal{K} \otimes \mathcal{T}) \cong C(S^1)$.

Denote by π' the projection of \mathscr{T}' onto $C(S^1)$. Let $\widetilde{\mathscr{T}}$ be the join of \mathscr{T}' and \mathscr{T} along $C(S^1)$, i.e.

$$\widetilde{\mathscr{T}} = \{a \oplus b \in \mathscr{T}' \oplus \mathscr{T} : \pi'(a) = \pi(b)\}.$$

Define maps $i: \mathcal{K} \otimes \mathscr{T} \to \widetilde{\mathscr{T}}$, $\tilde{\pi}: \widetilde{\mathscr{T}} \to \mathscr{T}$ and $\gamma: \mathscr{T} \to \widetilde{\mathscr{T}}$ by

$$i(a) = a \oplus 0,$$
 $\tilde{\pi}(a \oplus b) = b,$ $\gamma(b) = (b \otimes 1) \oplus b.$

Then one has the split exact sequence

$$0 \longrightarrow \mathcal{K} \otimes \mathscr{T} \xrightarrow{i} \widetilde{\mathscr{T}} \xrightarrow{\widetilde{\pi}} \mathscr{T} \longrightarrow 0.$$

Since K_0 is split exact, it follows that $K_0(i)$ is injective. Therefore it is now enough to show that

$$K_0(i) \circ K_0(\sigma) \circ K_0(j) \circ K_0(\pi_0) = K_0(i) \circ K_0(\sigma).$$

We have $i \circ \sigma(S) = (1 - SS^*) \otimes S \oplus 0$ and $i \circ \sigma \circ j \circ \pi_0(S) = (1 - SS^*) \otimes 1 \oplus 0$.

Exercise 3.18 Write

$$P = 1 - SS^*$$
, $V = S \otimes 1$, $Q = P \otimes 1$, $W = P \otimes S$, $R = P \otimes P$.

Let

$$u_0 = V(1-Q)V^* + WV^* + VW^* + R, \quad u_1 = V(1-Q)V^* + QV^* + VQ.$$

Show that u_0 and u_1 are self-adjoint unitaries.

It follows that there is a homotopy of unitaries u_t connecting u_0 and u_1 . Define $\phi_t : \mathscr{T} \to \mathscr{T}'$ by $\phi_t(S) = u_t(S \otimes 1)$. This gives a homotopy of morphisms. Next, define $\psi_t(S) = \phi_t(S) \oplus S$.

Exercise 3.19 Show that ψ_t is a homotopy of morphisms from \mathscr{T} to $\tilde{\mathscr{T}}$.

Exercise 3.20 Define $\psi(S) = (S^2 S^* \otimes 1) \oplus S$. Show that ψ extends to a morphism from \mathscr{T} to $\widetilde{\mathscr{T}}$. Show that

$$\psi_0 - \psi = i \circ \sigma, \qquad \psi_1 - \psi = i \circ \sigma \circ j \circ \pi_0.$$

Show that $K_0(\psi_0) = K_0(\psi) + K_0(i \circ \sigma)$ and $K_0(\psi_1) = K_0(\psi) + K_0(i \circ \sigma \circ j \circ \pi_0)$.

The required equality follows.

Theorem 3.6 For any C^* -algebra A, one has a natural isomorphism between $K_0(A)$ and $K_0(S^2A)$.

Proof: [Cuntz]

From the short exact sequence

$$0 \longrightarrow \mathcal{K} \longrightarrow \mathscr{T}_0 \longrightarrow C_0(\mathbb{R}) \longrightarrow 0.$$

we get, by tensoring with A,

$$0 \longrightarrow \mathcal{K} \otimes A \longrightarrow \mathscr{T}_0 \otimes A \longrightarrow SA \longrightarrow 0.$$

Therefore we now have the long exact sequence

 $\longrightarrow K_1(\mathcal{K} \otimes A) \longrightarrow K_1(\mathcal{I}_0 \otimes A) \longrightarrow K_1(SA) \longrightarrow K_0(\mathcal{K} \otimes A) \longrightarrow K_0(\mathcal{I}_0 \otimes A) \longrightarrow K_0(SA) \longrightarrow$ Since $K_0(\mathcal{K} \otimes A) = K_0(A)$ and $K_1(SA) = K_0(S^2A)$, if we can now prove that $K_1(\mathcal{I}_0 \otimes A) = 0$ $0 = K_0(\mathcal{I}_0 \otimes A)$, then we are through. Since $K_1(\mathcal{I}_0 \otimes A) = K_0(\mathcal{I}_0 \otimes SA)$, it is enough to show that for any C^* -algebra B, we have $K_0(\mathcal{I}_0 \otimes B) = 0$.

Exercise 3.21 Show that one has the following split exact sequence:

$$0 \longrightarrow \mathscr{T}_0 \otimes B \longrightarrow \mathscr{T} \otimes B \longrightarrow B \longrightarrow 0.$$

Prove that $K_0(\mathscr{T}_0 \otimes B) = 0$.

The proof is thus complete.

The Bott map. Assume A is unital. Denote by z the map $w \mapsto w$ from S^1 to \mathbb{C} . Let $p \in M_n(A)$ be a projection. Then $pz + 1 - p : w \mapsto pw + 1 - p$ is an element in $\mathscr{U}(M_n((SA)^{\dagger}))$.

Exercise 3.22 If $p \in Proj(M_n(A))$ and $q \in Proj(M_k(A))$ are homotopic, then pz + 1 - p and qz + 1 - q can be connected by a homotopy of unitaries.

The map $\beta: [p] \mapsto [pz+1-p]$ from $K_0(A)$ to $K_1(SA) \cong K_0(S^2A)$ is called **the Bott map**.

3.1.6 Computation of K-groups

Stable multiplier algebra.

Lemma 3.7 For any C^* -algebra A, one has $K_0(M(\mathcal{K} \otimes A)) = 0$.

Proof: Let $p \in ProjM(\mathcal{K} \otimes A)$. Choose isometries v_1, v_2, \ldots in $\mathcal{L}(\mathcal{H})$ with $v_i^* v_j = 0$ for $i \neq j$. Define

$$q = \sum (v_i \otimes 1) p(v_i^* \otimes 1), \qquad a = \sum v_{i+1} v_i^* \otimes 1.$$

Exercise 3.23 Show that both the above series converge in the strict topology in $M(\mathcal{K} \otimes A)$.

Now define

$$w = \begin{pmatrix} 0 & 0 \\ v_1 \otimes 1 & \sum v_{i+1} v_i^* \otimes 1 \end{pmatrix} \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ (v_1 \otimes 1)p & (v_{i+1} \otimes 1)p(v_i^* \otimes 1) \end{pmatrix}.$$

Then

$$w^*w = \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix}, \qquad ww^* = \begin{pmatrix} 0 & 0 \\ 0 & q \end{pmatrix}.$$

Thus [p] + [q] = [q]. Since $M(\mathcal{K} \otimes A)$ is properly infinite, so that $K_0(M(\mathcal{K} \otimes A)) = \{[p] : p \in ProjM(\mathcal{K} \otimes A)\}$, it follows that $K_0(M(\mathcal{K} \otimes A)) = 0$.

Exercise 3.24 Show that for any unital C^* -algebra B, $K_0(M(\mathcal{K} \otimes A) \otimes B) = 0$. Use this to prove that $K_1(M(\mathcal{K} \otimes A) = 0$ for any C^* -algebra A.

Proposition 3.8 $K_i(Q(\mathcal{K} \otimes A)) = K_{1-i}(A), i = 0, 1.$

Proof: From the short exact sequence

$$0 \longrightarrow \mathcal{K} \otimes A \longrightarrow M(\mathcal{K} \otimes A) \longrightarrow Q(\mathcal{K} \otimes A) \longrightarrow 0$$
,

we have the following six-term exact sequence:

$$K_0(\mathcal{K} \otimes A) \longrightarrow K_0(M(\mathcal{K} \otimes A)) \longrightarrow K_0(Q(\mathcal{K} \otimes A))$$

$$\downarrow \qquad \qquad \downarrow$$

$$K_1(Q(\mathcal{K} \otimes A)) \longleftarrow K_1(M(\mathcal{K} \otimes A)) \longleftarrow K_1(\mathcal{K} \otimes A)$$

Since $K_i(M(\mathcal{K} \otimes A)) = 0$, the result follows.

Toeplitz algebra.

$$0 \longrightarrow \mathcal{K} \longrightarrow \mathcal{T} \longrightarrow C(S^1) \longrightarrow 0.$$

$$K_0(\mathcal{K}) = \mathbb{Z} \xrightarrow{} K_0(\mathcal{T}) \xrightarrow{K_0(\sigma)} K_0(C(S^1)) = \mathbb{Z}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$K_1(C(S^1)) = \mathbb{Z} \xrightarrow{K_1(\sigma)} K_1(\mathcal{T}) \xrightarrow{} K_1(\mathcal{K}) = 0$$

Quantum SU(2). The C^* -algebra A associated with the quantum SU(2) group is defined to be the universal C^* -algebra generated by two elements α and β satisfying the following relations:

$$\alpha^* \alpha + \beta^* \beta = 1,$$
 $\alpha \alpha^* + q^2 \beta \beta^* = 1,$
 $\alpha \beta - q \beta \alpha = 0,$ $\alpha \beta^* - q \beta^* \alpha = 0,$
 $\beta^* \beta = \beta \beta^*.$

The C^* -algebra A has two families of irreducible representations:

$$\begin{array}{rcl}
\mathcal{H} & = & L_2(\mathbb{N}) \\
\alpha & \mapsto & S^* \sqrt{1 - q^{2N}} \\
\beta & \mapsto & zq^N.
\end{array}
\right\} z \in S^1, \qquad \begin{array}{ccc}
\mathcal{H} & = & \mathbb{C} \\
\alpha & \mapsto & z, \\
\beta & \mapsto & 0.
\end{array} \right\} z \in S^1.$$

The following representation gives a faithful representation of A:

$$\pi: \left\{ \begin{array}{lcl} \mathcal{H} & = & L_2(\mathbb{N}) \otimes L_2(\mathbb{Z}), \\ \alpha & \mapsto & S^* \sqrt{1 - q^{2N}} \otimes 1, \\ \beta & \mapsto & q^{2N} \otimes \ell. \end{array} \right.$$

One can thus identify A with the C^* -subalgebra of $\mathcal{L}(\mathcal{H})$ generated by $\pi(\alpha)$ and $\pi(\beta)$.

Exercise 3.25 Show that the map given by $\alpha \mapsto 1$ and $\beta \mapsto 0$ gives rise to the following short exact sequence:

$$0 \longrightarrow \mathcal{K} \otimes C(S^1) \longrightarrow C(SU_q(2)) \stackrel{\sigma}{\longrightarrow} C(S^1) \longrightarrow 0.$$

Exercise 3.26 Show that

- 1. ∂ is one-one and onto.
- 2. $K_0(\sigma)$ is onto.
- 3. $K_0(C(SU_q(2))) = \mathbb{Z} = K_1(C(SU_q(2))).$

Podles spheres S_{qc}^2 , c > 0. This is the universal C*-algebra, denoted by $C(S_{qc}^2)$, generated by two elements A and B subject to the following relations:

$$A^* = A,$$
 $B^*B = A - A^2 + cI,$ $BA = q^2AB,$ $BB^* = q^2A - q^4 + cI.$

Here the deformation parameters q and c satisfy |q| < 1, c > 0. Let $\mathcal{H}_+ = l^2(\mathbb{N}), \mathcal{H}_- = \mathcal{H}_+$. Define $\pi_{\pm}(A), \pi_{\pm}(B) : \mathcal{H}_{\pm} \to \mathcal{H}_{\pm}$ by

$$\pi_{\pm}(A)(e_n) = \lambda_{\pm} q^{2n} e_n \quad \text{where} \quad \lambda_{\pm} = \frac{1}{2} \pm \left(c + \frac{1}{4}\right)^{1/2},$$

$$\pi_{\pm}(B)(e_n) = c_{\pm}(n)^{1/2} e_{n-1} \quad \text{where} \quad c_{\pm}(n) = \lambda_{\pm} q^{2n} - \left(\lambda_{\pm} q^{2n}\right)^2 + c.$$

Exercise 3.27 π_{\pm} are irreducible and the direct sum $\pi_{+} \oplus \pi_{-}$ is faithful.

Since $\pi = \pi_+ \oplus \pi_-$ is a faithful representation, an immediate corollary follows.

Proposition 3.9 (Sheu) (i) $C(S_{qc}^2) \cong \mathscr{T} \oplus_{\sigma} \mathscr{T} := \{(x,y) : x,y \in \mathscr{T}, \sigma(x) = \sigma(y)\}$ where \mathscr{T} is the Toeplitz algebra and $\sigma : \mathscr{T} \to C(S^1)$ is the symbol homomorphism.

(ii) We have a short exact sequence

$$0 \longrightarrow \mathcal{K} \stackrel{i}{\longrightarrow} C(S_{ac}^2) \stackrel{\alpha}{\longrightarrow} \mathscr{T} \longrightarrow 0$$
 (3.5)

Proof: (i) An explicit isomorphism is given by $x \mapsto (\pi_+(x), \pi_-(x))$.

(ii) Define
$$\alpha((x,y)) = x$$
. Then $\ker \alpha = \mathcal{K}$.

Exercise 3.28 Show that the sequence (3.5) above is split exact. Conclude that $K_0(C(S_{qc}^2)) = \mathbb{Z} \oplus \mathbb{Z}$ and $K_1(C(S_{qc}^2)) = 0$.

Another way to compute the K-groups for the Podle's sphere is to prove that one has the following short exact sequence:

$$0 \longrightarrow \mathcal{K} \oplus \mathcal{K} \longrightarrow C(S_{qc}^2) \stackrel{\sigma}{\longrightarrow} C(S^1) \longrightarrow 0.$$

so that one has the six term sequence:

$$K_0(\mathcal{K} \oplus \mathcal{K}) = \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\longrightarrow} K_0(C(S_{qc}^2)) \xrightarrow{K_0(\sigma)} K_0(C(S^1)) = \mathbb{Z}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$K_1(C(S^1)) = \mathbb{Z} \xrightarrow{K_1(\sigma)} K_1(C(S_{qc}^2)) \xrightarrow{K_0(\sigma)} K_1(\mathcal{K} \oplus \mathcal{K}) = 0$$

Exercise 3.29 Show that

- 1. ∂ is one-one.
- 2. $K_0(\sigma)$ is onto.
- 3. $K_0(C(S_{qc}^2)) = \mathbb{Z} \oplus \mathbb{Z}, K_1(C(S_{qc}^2)) = 0.$

3.2 K-groups of crossed products

3.2.1 Crossed products

3.2.2 Crossed products with \mathbb{Z}

Theorem 3.10 Let A be a C^* -algebra and let τ be an action of \mathbb{Z} on A. Then there is a six-term exact sequence

$$K_{0}(A) \xrightarrow{1-K_{0}(\tau)} K_{0}(A) \xrightarrow{K_{0}(\iota)} K_{0}(A \rtimes_{\tau} \mathbb{Z})$$

$$\downarrow \qquad \qquad \downarrow$$

$$K_{1}(A \rtimes_{\tau} \mathbb{Z}) \underset{K_{1}(\iota)}{\longleftarrow} K_{1}(A) \xrightarrow{1-K_{1}(\tau)} K_{1}(A)$$

The irrational rotation algebra. Let $\theta \in [0,1]$ be an irrational. The irrational rotation algebra A_{θ} is the universal C^* -algebra generated by two unitaries u and v satisfying the relation $uv = \exp(2\pi i\theta)vu$. The C^* -algebra A_{θ} can be written as a crossed product as follows: let α be the automorphism of $C(S^1)$ induces by the map $z \mapsto \exp(2\pi i\theta)z$ on S^1 . Then $A_{\theta} \cong C(S^1) \rtimes_{\alpha} \mathbb{Z}$. Therefore we have the following Pimsner-Voiculescu exact sequence:

$$K_0(C(S^1)) = \mathbb{Z} \longrightarrow K_0(A_\theta) \longrightarrow K_1(C(S^1)) = \mathbb{Z}$$

$$\downarrow_{1-K_0(\alpha)} \qquad \qquad \downarrow_{1-K_1(\alpha)}$$

$$K_0(C(S^1)) = \mathbb{Z} \longleftarrow K_1(A_\theta) \longleftarrow K_1(C(S^1)) = \mathbb{Z}$$

The automorphism α is homotopic to the identity. Therefore both $K_0(\alpha)$ and $K_1(\alpha)$ are identity. Thus we have two short exact sequences

$$0 \longrightarrow \mathbb{Z} \longrightarrow K_0(A_\theta) \longrightarrow \mathbb{Z} \longrightarrow 0$$

$$0 \longrightarrow \mathbb{Z} \longrightarrow K_1(A_{\theta}) \longrightarrow \mathbb{Z} \longrightarrow 0$$

It follows that $K_0(A_\theta) = \mathbb{Z} \oplus \mathbb{Z} = K_1(A_\theta)$.

3.2.3 Crossed products with \mathbb{R}

Theorem 3.11 (Connes) Let A be a C^* -algebra and let τ be an action of \mathbb{R} on A. Then one has

$$K_n(A \rtimes_{\tau} \mathbb{R}) \cong K_{1-n}(A), \quad n = 0, 1.$$

Exercise 3.30 Deduce Bott periodicity from the above theorem.

Pimsner-Voiculescu sequence from Connes' theorem. Let A be a C^* -algebra and let α be an automorphism of A. Define the mapping torus M_{α} by

$$M_{\alpha} = \{ f \in C([0,1], A) : f(1) = \alpha(f(0)) \}.$$

Define $\pi: M_{\alpha} \to A$ by $\pi(f) = f(0)$. It is easy to see that one has the following short exact sequence:

$$0 \longrightarrow SA \longrightarrow M_{\alpha} \longrightarrow A \longrightarrow 0$$

This gives rise to the following six-term exact sequence:

Next one shows that the connecting maps are $1-K_0(\alpha)$ and $1-K_1(\alpha)$ and using Connes-Thom isomorphism one shows that

$$K_0(M_\alpha) \cong K_1(A \rtimes_\alpha \mathbb{Z}), \qquad K_1(M_\alpha) \cong K_0(A \rtimes_\alpha \mathbb{Z}).$$

3.3 *K*-groups of tensor products

4 K-groups of some C^* -algebras

C^* -algebra	K_0	K_1	_	C^* -algebra	K_0	K_1	_	C^* -algebra	K_0	K_1
C[0,1]	\mathbb{Z}	0	-	$\mathbb C$	\mathbb{Z}	0	_	T	\mathbb{Z}	0
$C_0(0,1]$	0	0		$M_n(\mathbb{C})$	\mathbb{Z}	0		$A_{ heta}$	\mathbb{Z}^2	\mathbb{Z}^2
$C(S^{2n+1})$	\mathbb{Z}	\mathbb{Z}		$\mathcal{K}(\mathcal{H})$	\mathbb{Z}	0		$C(S_q^{2\ell+1})$	\mathbb{Z}	\mathbb{Z}
$C(S^{2n})$	\mathbb{Z}^2	0		$\mathcal{B}(\ell_2)$	0	0		$C(S_q^{2\ell})$	\mathbb{Z}^2	0
$C_0(\mathbb{R}^{2n})$	\mathbb{Z}	0		$\mathcal{B}(\ell_2)/\mathcal{K}(\ell_2)$	0	\mathbb{Z}		$C(SU_q(\ell+1))$???	???
$C_0(\mathbb{R}^{2n+1})$	0	\mathbb{Z}	<u>.</u> ,	$M(\mathcal{K}\otimes A)$	0	0	_	\mathscr{O}_n	\mathbb{Z}_{n-1}	0

5 References

References

- [1] Blackadar, B.:
- [2] Higson/Roe
- [3] Matthes/Szymanski
- [4] Wegge-olsen