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Abstract 

 

The course "Engineering Mechanics" is held for students of the Master Programme 
"Materials Science and Engineering" at the Faculty of Engineering of the Christian Albrechts 
University in Kiel. It addresses continuum mechanics of solids as the theoretical background 
for establishing mathematical models of engineering problems. In the beginning, the concept 
of continua compared to real materials is explained. After a review of the terms motion, 
displacement, and deformation, measures for strains and the concepts of forces and stresses 
are introduced. The description allows for finite deformations. After this, the basic governing 
equations are presented, particularly the balance equations for mass, linear and angular 
momentum and energy. After a cursory introduction into the principles of material theory, the 
constitutive equations of linear elasticity are presented for small deformations. Finally, some 
practical problems in engineering like stresses and deformation of cylindrical bars under 
tension, bending or torsion and of pressurised tubes are presented.  

A good knowledge in vector and tensor analysis is essential for a full uptake of continuum 
mechanics. This is not a subject of the course. Hence, the nomenclature used and some rules 
of tensor algebra and analysis as well as theorems on tensor properties are included in the 
Appendix of the present lecture notes. Generally, these notes provide significantly more 
background information than can be presented and discussed during the course, giving the 
chance of home study.  
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1. Introduction 

In the early stages of scientific development, “physics” mainly consisted of mechanics and 
astronomy. In ancient times CLAUDIUS PTOLEMAEUS of Alexandria (*87) explained the 
motions of the sun, the moon, and the five planets known at his time. He stated that the 
planets and the sun orbit the Earth in the order Mercury, Venus, Sun, Mars, Jupiter, Saturn. 
This purely phenomenological model could predict the positions of the planets accurately 
enough for naked-eye observations. Researchers like NIKOLAUS KOPERNIKUS (1473-1543), 
TYCHO BRAHE (1546-1601) and JOHANNES KEPLER (1571-1630) described the movement of 
celestial bodies by mathematical expressions, which were based on observations and a 
universal hypothesis (model). GALILEO GALILEI (1564-1642) formulated the laws of free fall 
of bodies and other laws of motion. His “discorsi" on the heliocentric conception of the world 
encountered fierce opposition at those times.  

After the renaissance a fast development started, linked among others with the names 
CHRISTIAAN HUYGENS (1629-1695), ISAAC NEWTON (1643-1727), ROBERT HOOKE (1635-
1703) and LEONHARD EULER (1707-1783). Not only the motion of material points was 
investigated, but the observations were extended to bodies having a spatial dimension. With 
HOOKE’s work on elastic steel springs, the first material law was formulated. A general theory 
of the strength of materials and structures was developed by mathematicians like JAKOB 

BERNOULLI (1654-1705) and engineers like CHARLES AUGUSTIN COULOMB (1736-1806) and 
CLAUDE LOUIS MARIE HENRI NAVIER (1785-1836), who introduced new intellectual concepts 
like stress and strain. 

The achievements in continuum mechanics coincided with the fast development in 
mathematics: differential calculus has one of its major applications in mechanics, variational 

principles are used in analytical mechanics.  

These days mechanics is mostly used in engineering practice. The problems to be solved are 
manifold:  

• Is the car’s suspension strong enough?  

• Which material can we use for the aircraft’s fuselage?  

• Will the bridge carry more the 10 trucks at the same time?  

• Why did the pipeline burst and who has to pay for it?  

• How can we redesign the bobsleigh to win a gold medal next time?  

• Shall we immediately shut down the nuclear power plant?  

For the scientist or engineer, the important questions he must find answers to are:  

• How shall I formulate a problem in mechanics?  

• How shall I state the governing field equations and boundary conditions?  

• What kind of experiments would justify, deny or improve my hypothesis?  

• How exhaustive should the investigation be?  

• Where might errors appear?  

• How much time is required to obtain a reasonable solution?  

• How much does it cost?  

One of the most important aspects is the load–deformation behaviour of a structure. This 
question is strongly connected to the choice of the appropriate mathematical model, which is 
used for the investigation and the chosen material. We first have to learn something about 
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different models as well as the terms motion, deformation, strain, stress and load and their 
mathematical representations, which are vectors and tensors. 

 

Figure 1-1: Structural integrity is commonly not tested like this.  

The objective of the present course is to emphasise the formulation of problems in 
engineering mechanics by reducing a complex "reality" to appropriate mechanical and 
mathematical models. In the beginning, the concept of continua is expounded in comparison 
to real materials.. After a review of the terms motion, displacement, and deformation, 
measures for strains and the concepts of forces and stresses are introduced. Next, the basic 
governing equations of continuum mechanics are presented, particularly the balance 

equations for mass, linear and angular momentum and energy. After a cursory introduction 
into the principles of material theory, the constitutive equations of linear elasticity are 
presented for small deformations. Finally, some practical problems in engineering, like 
stresses and deformation of cylindrical bars under tension, bending or torsion and of 
pressurised tubes are presented.  

A good knowledge in vector and tensor analysis is essential for a full uptake of continuum 
mechanics. A respective presentation will not be provided during the course, but the 
nomenclature used and some rules of tensor algebra and analysis as well as theorems on 
properties of tensors are included in the Appendix.  
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2.  Models in the Mechanics of Materials 

2.1 Disambiguation 

Models are generally used in science and engineering to reduce a complex reality for detailed 
investigations. The prediction of a future state of a system is the main goal, which has to be 
achieved. Due to the hypothetical nature of this approach, it is irrelevant whether the assumed 
state will be achieved or not: Safety requirements often demand for assumptions that are 
equivalent to a catastrophic situation, which during the lifetime of a structure probably never 
takes place. More important is the question, what scenario is going to be investigated. 
Depending on the needs, the physical situation can be modelled in different ways.  

Modelling has become an important and fashionable issue, likewise. Every serious research 
project will claim modelling activities to increase the chances of being awarded grants. 
Modern technology and product development have detected the saving effects of modelling: 
"The development and manufacture of advanced products, such as cars, trucks and aircraft 

require very heavy investments. Experience has shown that a large portion of the total life 

cycle cost – as much as 70-80 percent – is already committed in the early stages of the design. 

It is important to realize that the best chance to influence life cycle costs occurs during the 

early, conceptual phase of the design process. Improvements in efficiency and quality during 

this phase should enable us to obtain the right solutions and make the right decisions from the 

beginning. This requires good design, analysis and synthesis methods and tools, as well as 

good simulation techniques including computational prototyping and digital mock-ups".1  

Modelling, however, is an ambiguous term and needs further explanation and a more precise 
definition. The common understanding of a model is manifold. Collins Compact English 
Dictionary (1998) explains it as follows:  

1. a three-dimensional representation, usually on a smaller scale, of a device or 

structure: an architect’s model of the proposed new housing estate  

2. an example or pattern that people might want to follow: her success makes her an 

excellent role model for other young Black women  

3. an outstanding example of its kind: the report is a model of clarity  

4. a person who poses for a sculptor, painter, or photographer  

5. a person who wears clothes to display them to prospective buyers; a mannequin  

6. a design or style of a particular product: the cheapest model of this car has a 1300cc 

engine  

7. a theoretical description of the way a system or process works: a computer model of 

the British economy  

8. adj excellent or perfect: a model husband  

9. being a small scale representation of: a model aeroplane  

10. vb -elling, -elled or US -eling, -eled to make a model of: he modeled a plane out of 

balsa wood  

11. to plan or create according to a model or models: it had a constitution modeled on 

that of the United States  

12. to display (clothing or accessories) as a mannequin  

13. to pose for a sculptor, painter, or photographer  

                                                
1  B. FREDERIKSSON and L. SJÖSTRÖM: "The role of mechanics an modelling in advanced product 

development" European Journal of Mechanics A/Solids, Vol 16 (1997), 83-86. 
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For natural and engineering sciences we shall generally adopt items 1  and 7  as definitions. 
In a broad sense, every scientific activity might be looked at as "modelling" since dealing 
with a complex reality always requires reduction and idealization of problems. Thus, 
modelling may be understood as novel only in the sense of "computational simulation of 

reality", which is the underlying comprehension in the quotation "simulation techniques 

including computational prototyping" given above. At least in engineering sciences, 
modelling has to combine and integrate computational and experimental efforts in order to 
proceed to an understanding of the physical phenomena which allows for realistic predictions 
of the performance, availability and safety of technical products and systems.  

2.2 Characterisation of Materials 

Materials testing has a long tradition and is based on the desire of scientists to measure the 
mechanical properties of materials and the need of design engineers to improve the 
performance and safety of buildings, bridges and machines. Mechanical sciences started with 
GALILEO GALILEI (1564-1642). He did not only promote COPERNICUS' concept of a 
heliocentric planetary system, but studied the laws of falling bodies and strength of materials 
both theoretically and experimentally 2. An actual engineering problem was the dependence 
of the strength or a bending bar on its cross sectional dimensions for which GALILEI designed 
an experiment shown in Fig. 2.1.  

The test configuration reduces the complex problem of structural bars, e.g. in housing, to a 
cantilever beam under a single load at its end. He found the "bending resistance" was 
proportional to the width, b, and the square of the height, h, of the bar's cross-section.  
Expressing this result in modern mathematical terms, we can derive today that the section 

modulus is   W = bh2 6 . Neglecting the dead weight of the bar, the bending moment is 
  M = G , where G is the applied weight E at the end of the bar of length  , and finally, the 
maximum tensile strength occurring in point A becomes  

 
   

max
=

6G

bh2
 , (2-1) 

if a linear distribution of stresses over the cross section is assumed. But these mathematical 
formulas and a general theory of bending did not exist at GALILEI's times. They were 
developed about one and a half century later by mathematicians like JAKOB BERNOULLI 
(1655-1705) and engineers like CH. COULOMB (1736-1806) and L.M.H. NAVIER (1785-1836), 
who introduced new concepts and abstract ideas like bending moment, stress and strain,  see 
section 8.4, which allow for relating bending strength with tensile strength. GALILEI did not 
consider the deformation of the bar, either, as the law of elasticity, later found by R. HOOKE 
(1635-1703), was unknown. As the section modulus, W, is a purely geometrical quantity, 
which is determined by the shape and dimensions of the cross section, GALILEI's structural 
experiment actually did not reveal material properties. 

The obvious question that arises from any experiment is:  

• What can we learn from it? -  

or more precisely:  

• How does this test configuration compare to the "real" situation?  

 

                                                
2  G. GALILEI: "Discorsi e dimostrazioni matematiche, intorno à due nueve scienza attenti alla mechanica & i 

movimenti locali" Elsevir, 1638. 
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Figure 2-1: Test set-up by GALILEI (1638) for the investigation of the load carrying behaviour 
of a cantilever beam 

For instance, can we take the fracture load obtained in the above test to design the supporting 
beams in a building? Finally, we reach the fundamental and still present-day problem of 
materials testing: are the test data measured on a specimen transferable to an actual large-
scale structure? Specimens used in materials testing are models in the sense of a "three-

dimensional representation, usually on a smaller scale, of a structure", see above. In addition, 
they are of a simpler geometry and under simpler loading conditions. Whether the 
information from a (simplified) model may or may not be transferred to (complex) reality, is 
still controversial in many cases and cannot be answered by experiments alone. It needs a 
model in the sense of a theoretical description. 

A deeper understanding of GALILEI's bending problem would have required a theory, which 
did not exist in the 17th century. Nevertheless, engineers wanted to design structures and get 
information on the mechanical behaviour of different materials. Hence, they had to develop 
special test set-ups for various loading conditions such as tension, compression, bending, 
buckling, etc.. With expanding technology, other material properties became relevant, not 
only under static loading but also under impact or oscillating stresses. Engineers had found, 
that the ductility of a metallic material was an important property, which influences the safety 
margins of a structure or plant. In order to measure this ductility, the French metallurgist G. 
CHARPY designed his pendulum impact testing machine in 1901 to measure the mechanical 
work necessary to fracture a notched bar. 

All these tests on comparatively simple specimens are performed in order to obtain 
information on the materials strength and toughness and to conclude to the mechanical 
behaviour and performance of complicated structural geometries und different kinds of 
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loading and loading histories. The fundamental problem of materials testing, i.e. how much 
these tests tell us about inherent material properties, however, has still remained controversial. 
Separating material properties from structural properties is an intellectual process of 
abstracting, which is typical for modelling. It requires a theory, namely continuum mechanics, 
which has been developed in the late 19th and early 20th century and been permanently 
improved ever since. 
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3. Continuum Hypothesis 

3.1 Introduction 

Continuum mechanics is concerned with motion and deformation of material objects, called 
bodies, under the action of forces. If these objects are solid bodies, the respective subject area 
is termed solid mechanics, if they are fluids, it is fluid mechanics or fluid dynamics. The 
mathematical equations describing the fundamental physical laws for both solids and fluids 
are alike, so the different characteristics of solids and fluids have to be expressed by 
constitutive equations. Obviously, the number of different constitutive equations is huge 
considering the large number of materials. All of this can be written using a unified 
mathematical framework and common tools. In the following we concentrate on solids.  

Continuum mechanics is a phenomenological field theory based on a fundamental hypothesis 
called continuum hypothesis. The governing equations comprise material independent 

principles, namely 

• Kinematics, being a purely geometrical description of motion and deformation of 
material bodies; 

• Kinetics, addressing forces as external actions and stresses as internal reactions; 

• Balance equations for conservation of mass, momentum and energy;  

and material dependent laws, the  

• Constitutive equations.  

Altogether, these equations form an initial boundary value problem.  

3.2 Notion and Configuration of a Continuum 

It is commonly known, that matter consists of elementary particles, atoms and molecules, 
which are small but finite and not homogeneously distributed. The mechanical behaviour of 
materials is determined by the interaction of these elementary constituents. However, an 
engineering modelling cannot be done at this level and length scale. Even on a next higher 
length scale, the microstructure of materials appears as inhomogeneous and consisting of 
different constituents. Again, if one is interested in the macroscopic behaviour of an 
engineering structure, modelling on a microscopic length scale is in general not feasible.  
While studying the external actions on objects, it will, except for specific questions 
concerning the relations between micro- and macroscopic properties, not be necessary to 
account for the non-homogeneous microstructure. The discretely structured matter will hence 
be represented by a phenomenological model, the continuum, by averaging its properties in 
space and neglecting any discontinuities and gaps. By a continuum, we mean the hypothetical 
object in which the matter is continuously distributed over the entire object. It does not 
contain any intrinsic length scale.  

The concept of a continuum is deduced from mathematics, namely the system of real 
numbers: between any two distinct real numbers there is always another distinct real number, 
and therefore, there are infinitely many real numbers between any two distinct numbers. The 
three-dimensional (EUKLIDean) space is a continuum of points, which can be represented by 
three real numbers, the coordinates, xi (i = 1, 2, 3). The same holds for the physical time, t, 
which can also be represented by a real number, and thus time and space together form a four-
dimensional continuum.  
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Following is a description Albert EINSTEIN gave on p. 83 of his Relativity; The Special and 
the General Theory: The surface of a marble table is spread out in front of me. I can get from 

any one point on this table to any other point by passing continuously from one point to a 

“neighboring" one, and repeating this process a (large) number of times, or, in other words, 

by going from point to point without executing “jumps". I am sure the reader will appreciate 

with sufficient clearness what I mean here by “neighboring" and by “jumps" (if he is not too 

pedantic). We express this property of the surface by describing the latter as a continuum.  

Consider now a material body, B, defined as a three-dimensional differentiable manifold, the 
elements of which are called particles (or material points), X  B. The body is endowed with 
a non-negative scalar measure, m, which is called the mass of the body (see section 3.3). It 
occupies a region, B  E

3, in the three-dimensional EUKLIDean space, E3
 , at a given time, t.  

• Every particle, X  B, has a position X  B, in the region B occupied by B; 

• Every point X  B is the position of a particle X  B.  

So, there exists a one-to-one correspondence between the particles of a continuum and the 
geometrical points of a region occupied by the continuum at any given time. The geometrical 
region that a body occupies at a given time is called its configuration. In mathematical terms, 
a configuration of a body, B, is a smooth homeomorphism of B onto a region B  E

3 of the 
three-dimensional EUKLIDean space, E3. At no instant of time, a particle can have more than 
one distinct position or can two distinct particles have the same position.  

This one-to-one correspondence allows us to speak of points, lines, surfaces and volumes in a 
continuum. For simplicity, material points, material surfaces and material bodies are often 
referred to as points, surfaces and volumes.  

The above definition is commonly supplemented by three characteristics, which are 
introduced axiomatically.  

(1) A material continuum remains a continuum under the action of forces. Hence, two 
particles that are neighbours at one time remain neighbours at all times. We do allow 
bodies to be fractured, but the surfaces of fracture must be identified as newly 
created external surfaces.  

(2) Stresses and strains can be defined everywhere in the body, i.e. they are field 
quantities.  

(3) The theory of "simple materials" postulates, that the stress at any point in the body 
depends only on the deformation history of that very point but not on the 
deformation history of other points of the body. This relation may be affected by 
other physical quantities, such as temperature, but these effects can be studied 
separately. This is of course a greatly simplifying assumption, which facilitates the 
establishing of constitutive relations on the one hand but restricts their generality. 

A scalar field describes a one-to-one correspondence between a single scalar number and the 
value of a physical quantity. A triple of numbers can be assigned to a geometric point, 
representing its coordinates, but also to any other physical quantity characterised by a 
magnitude and an orientation, i.e. a vector. A 3 3 matrix of numbers can be assigned to a 
tensor of rank two, if these numbers obey certain transformation rules. Within this concept, 
scalar fields may be referred to as tensor fields of rank or order zero, whereas vector fields are 
called tensor fields of rank or order one. Generally, tensors have certain invariant properties, 
i.e. properties, which are independent of the coordinate system used to describe them. 
Because of this attribute, we can use tensors for representing various fundamental laws of 
physics, which are supposed to be independent of the coordinate systems considered.  
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Finally, every function of space and time considered in the following is supposed to be 
differentiable up to any desired order in the region of interest. 

3.3 Density and Mass 

It has already been stated above, that a body is endowed with a non-negative scalar measure, 
m, called the mass. Like time and space, mass is a primitive quantity. Let us now consider a 
vicinity, B, of a particle X  B, occupying a subregion, B  B, and having the volume V. 
Because of the hypothesis of continuity, this region B is not empty, however small it may 
be. Let m be the mass of V, then as m > 0 and V > 0, the ratio  m V  is a positive real 
number. The limit as V tends to zero defines the mass density ,  

 
  
= lim

V 0

m

V
 (3-1) 

In general, the value of  depends on the point X  B and the time. While defining density 
using eq. (3-1), the assumption was made that the mass is a differentiable function of volume. 
This means that the mass is assumed to be distributed continuously over a region. No part of a 
material body is assumed to possess concentrated mass. Thus, we assume that  is 
continuously differentiable over B. It follows that eq. (3-1) is equivalent to  

 

   

m(B) = dV
V (B )

. (3-2) 
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4. Kinematics: Motion and Deformation 

The following chapter provides an introduction into the description of finite (large) 
deformations and hence abandons the common assumption made engineering mechanics of 
"small" deformations. Though elastic deformations of metals are commonly small3, a general 
description of deformation without this restriction makes sense for several reasons: 

1. The general formalism of describing deformations without any restrictions is pointed 
out, thus allowing for a later quantification of what is small; 

2. Materials other than metals, e.g. elastomers, may show large elastic deformations; 

3. The representation allows also for the description of large inelastic deformations as it 
is essential in fracture mechanics or metal forming;  

4. Commercial finite element codes like ABAQUS, ADINA, ANSYS, MARC provide  
options for large deformations, so that some insight into the underlying theory helps 
avoiding to use these programmes as "black boxes", only.   

4.1 Motion 

A material body, B, has been defined as the manifold of all material points, X  B, which is 
accessed to (geometrical) observation by a placement in the three-dimensional EUKLIDean 
space, E3. This placement is done by a mapping, , called configuration, which assigns every 
particle X to a geometrical point X  B, and thus represents the body B as a subregion 
B  E3,  

 
  
: (X ,t) X = (X ,t) , X B  . (4-1) 

Let us now choose some (arbitrary) point, O, called the origin, as reference point, then a 
position vector,  

   x = OX = X O , (4-2) 

can be assigned to every point X. This identifies every particle, X  B, by its position vector, 
x  E3, with E3 being the three-dimensional vector space. The body can now be gauged, since 
a norm is defined in E3 by the inner product  

 x = x x . (4-3) 

The spatial distance, 
  
d = X1X2 = X2 X1 , of two particles, X1, X2, results as  

 d = x2 x1 = x2 x1( ) x2 x1( ) . (4-4) 

A coordinate system is now introduced, consisting of a triad of base vectors 
 
e1,e2 ,e3{ } E

3  
and an origin O  E3. These base vectors are commonly assumed as unit and orthogonal 
vectors, i.e. ei e j = ij . In particular, Cartesian, i.e. straight lined coordinates will be 
assumed 4. The position vector is represented as5  

                                                
3  For comprehending the meaning of "small" and "large" see section 4.4. 
4  Other than Cartesian coordinate systems, e.g. cylindrical or spherical coordinates, are not addressed here (but 

see Appendix A1.4 for cylindrical coordinates) It can be convenient to introduce them for certain 
geometries, however. It is also possible to introduce different curvilinear coordinate systems in different 
configurations, see below in section 4.5. 
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 x = xi ei  (4-5) 

with the (Cartesian) coordinates 

 xi = x ei , i = 1,2,3 . (4-6) 

The body changes its position in E
3 under external actions, i.e. it takes up a new 

configuration. The sequence of configurations with time is called motion, t , of the body B. 
The actual configuration at time t, given by 

 
  
t
X = O +

tx = t (X ,t) , t
X

t
B  (4-7) 

is called current configuration. It is compared with a reference configuration in order to 
describe the change of the position. Commonly, the initial configuration at some fixed time t0 
(for convenience t0 = 0) is taken as reference,  

 
  
0
X = O +

0x = (X ,t0 ) =
0 (X ) , 0

X
0
B  , (4-8) 

in which no forces are acting on the body 6. The spatial points,
 

0
X , or the position vectors, 

0x  at t0, respectively, will be used for identifying the material points, X, of the body B, in 
other words, the position vector 0x  acts as a label of X, and, for simplicity, will be used 
synonymously for characterising the particle, in the following.  

 

Figure 4-1: Body B  in the initial and current configurations 

As the body B moves from 0B to tB, each particle moves from 
 

0
X  to 

 

t
X . According to eqs. 

(4-7) and (4-8), the spatial points are identified by the position vectors, 0x , tx ,  respectively. 
Thus, the motion of B is described by  

 
 

tx = t
X( ) = t 0 1( 0x),t( ) = t ˆ 0x,t( ) . (4-9) 

The mapping, t ˆ , called deformation, links initial and current configuration. Since no two 
distinct particles of B can have the same position in any configuration and no two distinct 
points in a configuration can be positions of the same particle, eq. (4-9) does not only assign a 

                                                                                                                                                   
5  The summation convention of EINSTEIN, aibi = aibi

i=1

3

, is assumed here and in the following, see Appendix. 

6  The initial configuration is sometimes addressed as stress-free or undeformed configuration. However even if 
no external forces are acting on the body in this configuration, it may nevertheless be subject to residual 
stresses and deformations due to preceding processing of the material. 
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unique tx  to a given 0x  and t, but also a unique 0x  to a given tx  and t, i.e. the mapping must 
be invertible,  

 
 

0x = 0
X( ) = 0 t 1( tx,t)( ) = 0 ˆ 1 tx,t( ) . (4-10) 

with 0 ˆ 1  being the inverse of t ˆ . For any point tx  and any instant of time t > t0, eq (4-10) 
specifies the particle of which tx  is the position at that instant.  

4.2 Material and Spatial Description 

If we focus attention on a specific point t
x, eq. (4-10) determines all those particles, which 

pass through this point at different instants of time, t > t0. On the other hand, at a specific 
instant of time, eq. (4-10) specifies all particles that are positioned at different points of the 
current configuration tB, and the totality of all these particles constitutes the body B. Thus, for 
a given t, eq. (4-10) defines a mapping from t

B onto 0
B. Since the functions t ˆ  in eq. (4-9) 

and 0 ˆ 1  in eq. (4-10) are inverse, it follows that both equations can be recovered as a unique 
solution of each other. Thus, the motion described by eq. (4-9) is described by equation eq. 
(4-10) also. But the ways the two equations describe the motion are not identical; they are 
only equivalent. While eq. (4-9) contains the particle 0

x and time t as independent variables 
and specifies the position t

x of 0
x for a given t, eq. (4-10) contains the point t

x and time t as 
independent variables and specifies the particle 0

x that occupies t
x for a given t. Thus, in the 

description of motion given by eq. (4-9), attention is focused on a particle and we observe 
what is happening to the particle as it moves. This description is called the material 

description, and the independent variables (0
x, t) are referred to as material variables. On the 

other hand, in the description of motion given by eq. (4-10), attention is given to a point in 
space, and we study what is happening at that point as time passes. This description is called 
the spatial description, and the independent variables (t

x, t) present in eq. (4-10) are referred 
to as spatial variables. Traditionally, material description is referred to as LAGRANGEan7, and 
the spatial description as EULERean8. 

Note, however, when using the term "spatial", that continuum mechanics of solid bodies is 
always based on a material approach in the sense, that particles of a body, X  B, are 
considered and the spatial points, X  B, are traced, which they occupy in the course of time. 
The volume V of B, i.e. the domain t

B occupied by B, will change with time, whereas the 
mass of B, eq. (3-2), is constant (see conservation law in section 6.2). No particle is ever 
allowed to leave or enter the domain t

B. In contrast, fluid mechanics applies an original 
spatial approach, considering state variables like pressure, density, velocity at fixed spatial 
points, where different particles are located at different times. Particles may (and will) leave 
or enter the defined spatial "control zone" which has constant volume but generally varying 
mass.  

Material (LAGRANGEan) and spatial (EULERean) formulations affect the calculation of time 
derivatives (see section 4.5).  

                                                
7  JOSEPH LOUIS LAGRANGE (1736-1813) 
8  LEONHARD EULER (1707-1783) 
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4.3 Deformation 

The change of position of a particle, 0x, is described by the displacement vector,  

 0
t u = tx 0x = u 0x,t( )  9. (4-11) 

The respective spatial description with respect to the current configuration is obtained from 
eq. (4-10),  

 0
t u = u 0 ˆ 1 tx,t( ),t( ) = û tx,t( ) . (4-12) 

For the analysis of "geometrical changes" during a motion of a body we focus on only two of 
its configurations: 0

B as the initial ("undeformed") configuration and in t
B the current 

("deformed") configuration, see figure 4.1. Applying TAYLOR's expansion to t , 

 tx + d tx = t ˆ t ˆ ( 0x + d 0x,t) +
t ˆ
0x

d 0x , (4-13) 

an infinitesimal line element, d 
t
x, in the current configuration can be expressed in terms of 

the material line element, d 
0
x, 

 d tx = 0
t F d 0x , (4-14) 

by a non-symmetric rank 2 tensor, the deformation gradient  

 0
t F =

t ˆ ( 0x,t)
0x

=

t xi
0x j

0ei
0e j =

0 tx( )
T
=
0gra d tx . (4-15) 

The inverse transformation is 

 d 0x = t
0F 1 d tx  (4-16) 

with 

 t
0F 1

=

0 ˆ 1(t x,t)
tx

=

0x
tx

=
t 0x( )

T
=

tgrad 0x  (4-17) 

and 

 0
t F t

0F 1
= 1  (4-18) 

In the trivial case of 0
t F = 1  the line element experiences no change of length or orientation, 

d tx = d 0x . If 0
t F  is orthogonal, i.e. 0

t F 0
t FT = 1 , the length of the line element remains 

unaltered, d tx = d 0x , but the orientation changes, which represents a rigid-body rotation. If 
two deformations differ by a translation only, they have the same deformation gradient. 

Corresponding to the deformation gradient, the (material) displacement gradient is defined by 

 0
tH =

0grad 0
t u = 0

0
t u( )

T
= 0

t F 1 = t
0
t u( )

T

0
t F . (4-19) 

                                                
9  Here and in the following, the left subscript characterises the reference state, and the left superscript the 

acting state. In a LANGRANGEan description, the reference state is "0" and the acting state is "t", whereas in 

an EULERean description "t" is the reference and "0" the acting state. 
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As the deformation of line elements, also the deformations of area and volume elements can 
be expressed by the deformation gradient 10, 

 
d ta = d tx1 d tx2 = 0

t F d 0x1( ) 0
t F d 0x2( ) = det 0

t F t
0F T d 0a

d tV = d ta d tx3 = det 0
t F 0

t F T d 0a 0
t F d 0x3 = det 0

t F d 0V
. (4-20) 

The invertibility of the mapping t ˆ  requires det 0
tF   0 and as the volume has to be positive, 

the condition det 0
tF  > 0 results. For an incompressible material det 0

tF  = 1. Conservation of 

mass, eq. (6-7), calls for  

 tm =
t d tV =

0m =
0 d 0V  (4-21) 

and hence  

 
0

t
= det 0

t F = J . (4-22) 

J is called JACOBIan11.  

An alternative representation of the tensors describing deformation, which provides a 
descriptive interpretation, is based upon material or convective coordinates. A network of 
generally curvilinear and non-orthogonal coordinates, i , i = 1, 2, 3, is engraved on the body 
in its initial configuration and deforms together with the body. Each material point, X  B, is 
identified by a single triple of numbers 1, 2 , 3{ }  during the whole deformation process, and 
the position vectors in the initial and current configuration are 

 0x = 0xi
k( ) 0ei , tx = t xi

k( ) 0ei  (4-23) 

respectively12. The base vectors of convective coordinates are defined as the local tangent 
vectors to the i -curves, the so-called covariant base vectors  

 0gi =
0x
i
, tgi =

tx
i . (4-24) 

As these base vectors are not orthogonal, in general, the dual covariant base vectors are 
introduced as  

 0gi 0g j = j
i , tgi tg j = j

i  , (4-25) 

by means of which the metric tensors
13,  

 1 = gig j = gig
j
= gi g j( )gig j = gij gig j = gij gig j = j

i gig
j , (4-26) 

can be written in initial and current configuration, 0
B and t

B, respectively, and also the 
gradients of arbitrary field quantities as 

 0grad =
i
0gi , tgrad =

i
tgi . (4-27) 

                                                
10  Note that A v( ) A w( ) = A* v w( )  with A* being the adjunct to A, i.e. A* AT

= AT A*
= det A( ) I . 

11  K. G. JACOBI (1804-1851)  
12  As stated above, different coordinates can be applied in initial and current configurations. However, modified 

rules hold in tensor analysis for other than Cartesian coordinates, as the unit vectors are neither normalised 
nor orthogonal nor are the coordinates straight lined. 

13  Note that ei e j = ij as for a Cartesian base holds only in a mixed co-contravariant base, here. 
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In particular, the displacement gradient takes the form 

 0
tH =

0
t u
i

0gi . (4-28) 

In this representation, the deformation gradient 0
tF  connects the material base vectors of 

initial and current configurations, 

 0
t F =

tgi
0gi , t

0F 1
=

0gi
tgi , 0

t FT = 0gi tgi  , (4-29) 

which motivates its characterisation as a "two-field" tensor.  

4.4 Strain tensors 

As the deformation gradient may include (rigid) rotations, it cannot be used to describe the 
deformation of a material body. With the theorem of polar decomposition one can define 
appropriate measures for deformation. By this, 0

t F  can be decomposed uniquely into two 
parts,  

 0
t F = 0

tR 0
tU = 0

tV 0
tR  (4-30) 

with the orthogonal rotation tensor 

 0
tR 0

tRT
= 1 , det 0

tR( ) = 1  , (4-31) 

and the symmetric and positive definite right and left stretch tensors, 0
tU  and 0

tV , 

 
0
tU = 0

t FT 0
t F( )

1
2
= 0

tUT

0
tV = 0

t F 0
t FT( )

1
2
= 0

tVT
, (4-32) 

respectively14, the squares of which are addressed as right and left CAUCHY-GREEN
15 tensors, 

0
tC  and 0

tB .  

Symmetric tensors have real eigenvalues, i, i = I, II, III, with associated eigenvectors 
(principal axes), ni, which are solutions of the eigenvalue problem 

 0
tU 0ni = (i )

0n(i )  ,
16 (4-33) 

see Appendix A.2. Applying a rotation, 0
tR , and introducing eq. (4-30), 

 (i ) 0
tR 0n(i ) = 0

tR 0
tU 0ni = 0

tV 0
tR 0ni = 0

tV tni = (i )
tn(i )  , (4-34) 

we can conclude that the right and left stretch tensor are similar, i.e. they have the same 
eigenvalues but rotated axes  

 tni = 0
tR 0ni , i = I, II, III . (4-35) 

 

                                                
14  The square root of a tensor is defined via its spectral form as T = (i)

i=I

III

n (i)n (i) , see Appendix A2.5. 

15  AUGUSTIN LOUIS CAUCHY (1789-1857), GEORGE GREEN (1793-1842) 
16  No summation over (i) ! 



EngMech-Script.doc, 29.11.2005 - 22 - 

 

Figure 4.2: Polar decomposition of the deformation gradient 

In the base of the eigenvectors, tensors can be represented in the spectral form,  

 0
tU = I

0nI
0nI + II

0nII
0nII + III

0nIII
0nIII

0
tV = I

tnI
tnI + II

tnII
tnII + III

tnIII
tnIII

 (4-36) 

The polar decomposition, eq. (4-30), thus states that a material line element d 0x = d 0x(i )
0n(i )  

(i = I, II, III, no summation!) in one of the principal orientations of 0
tU , which is subject to a 

deformation according to eq. (4-14), d tx = 0
t F d 0x = 0

tR 0
tU d 0x( ) = 0

tV 0
tR d 0x( ) , 

undergoes  

• either a stretching, 0
tU , by i followed by a rotation, 0

tR , into the current principal 
orientation, t ni ,  

• or, vice versa, a rotation, 0
tR , into the current principal orientation, tnI , followed by a 

stretching, 0
tV , by  i, 

 d 0x = d 0x(i)
0n(i) d tx = (i) d

0x(i)
tn(i) , i = I, II, III (no summation) , (4-37) 

see Fig. 4-2. The principal stretches, i, are related to the relative elongations or linear 

principal strains by  

 0
t

i =
d t xi d 0xi

d 0xi
= i 1 . (4-38) 

By means of these principal stretches, strain tensors of the form  

 0
tE(*) = f ( I )

0nI
0nI + f ( II )

0nII
0nII + f ( III )

0nIII
0nIII  (4-39) 

can be defined, where f( ) is a continuously differentiable function with f(1) = 0 and f '(1) = 1. 
The most common strain tensors are 
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• BIOT'S
17 (linear) strain tensor, 

 
f ( i ) = i 1 = 0

t
i

0
tE(B) = 0

tU I = 1
2

0
0
t u + 0

0
t u( )

T  , (4-40) 

• GREEN-LAGRANGEan (quadratic) strain tensor, 

 
f ( i ) =

1
2 i

2 1( ) = 0
t

i
(G)

= 0
t

i +
1
2 0
t

i
2

0
tE(G) = 1

2 0
tU2 I( ) = 1

2
0

0
t u + 0

0
t u( )

T
+
0

0
t u 0

0
t u( )

T , (4-41) 

• HENCKY's
18 (logarithmic) strain tensor, 

 
f ( i ) = ln i = 0

t
i
(H)

= ln 1+ 0
t

i( )

0
tE(H) = ln 0

tU( )
. (4-42) 

The advantage of HENCKY strains, 0
t

i
(H) , is that they are additive for two subsequent 

deformations steps, i.e. 0
t2

i
(H)

= 0
t1

i
(H)

+ t1

t2
i
(H) . 

GREEN's strain tensor. 0
tE (G)  describes the change of the square of a line element in the 

current configuration compared to the initial one, 

 d tx d tx d 0x d 0x =d 0x 0
t FT 0

t F I( ) d 0x = 2d 0x 0
tE(G) d 0x . (4-43) 

A correspondent representation with respect to the current configuration (spatial description),  

 d 0x d 0x d tx d tx = d tx I t
0F 1

t
0F T( ) d tx = 2d tx t

0E(A) d tx , (4-44) 

leads to 

• ALMANSI's
19 strain tensor, 

 t
0E(A) = 1

2 I t
0F 1

t
0F T( ) = 1

2 I t
0V 2( ) = t

0F T
t
0E(G) t

0F 1 . (4-45) 

Again, a representation in convective (material) coordinates allows for a simple and 
descriptive geometric interpretation,  

 
0
tE(G) = 1

2
t gij

0gij( ) 0gi 0g j

t
0E(A) = 1

2
t gij

0gij( ) tgi tg j
 . (4-46) 

The components of GREEN's and ALMANSI's strain tensors, 0
tE (G) und t

0E(A) , in a material 
coordinate system are equal, namely the difference of the metrics in current and initial 
configurations. Just the system of base vectors is rotated. 

All strain tensors, 0
tE(*) , are symmetric, 0

tE(*) = 0
tE(*)( )

T
. They can be written with respect to 

a normalised and orthogonal vector base, 0
tE(*) = ij

(*)ei e j , where their components form a 3 3 

matrix, 

                                                
17  MAURICE ANTHONY BIOT (1905-1985) 
18  HEINRICH HENCKY (1885-1951) 
19  EMILIO ALMANSI (1869-1948) 
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 ij
(*)( ) =

11
(*)

12
(*)

13
(*)

21
(*)

22
(*)

23
(*)

31
(*)

32
(*)

33
(*)

= ji
(*)( ) . (4-47) 

The strain components are denoted as normal strains for i = j and shear strains for i  j. 

For small principal strains, 
 0
t

i 1 , quadratic and logarithmic strain measures, eqs. (4-41) 
and (4-42), merge with the linear one, eq. (4-38), as the quadratic term in eq. (4-41) and in the 
series expansion of eq. (4-42) can be neglected compared to the linear term. Small 
deformations are characterised by small strains and small rotations. Define 

 
 

0grad 0
t u = 0

t H 1 , (4-48) 

than  

 
 0
tE(G) = E +O ( 2 )  (4-49) 

with the linear strain tensor (CAUCHY
20 1827),  

 E = ij ei e j =
1
2 H +HT( ) = 1

2 u + u( )
T

= 1
2 ui, j + uj ,i( ) ei e j , (4-50) 

being the symmetric part of the displacement gradient 21, as used in the theory of small 
deformations. The JACOBIan for small deformations is 

 J = det F( ) = det 1 +H( ) 1+ kk , (4-51) 

i.e. according to eq. (4-20), kk  represents the volume dilatation of a material element under 

small deformations, 

 kk = trE
d tV d 0V

d 0V
, (4-52) 

Eq. (4-50) allows for calculating a tensor field, E, from a given displacement field, u, 
uniquely. If a tensor field E is given, it does not automatically follow, that such a field indeed 
represents a strain field, that is, that there exists a displacement field, u, such that eq. (4-50) 
holds. If it does, then the strain field is called compatible. The necessary and sufficient 
condition on E, that ensures the existence of u as a solution of eq. (4-50) reads  

 
  
curl curlE = E( )

T
= 0  . (4-53) 

4.5 Material and Local Time Derivatives 

Studying the motion of a continuum, we deal with time rates of changes of quantities that 
vary from one particle to the other. Material time derivatives in a LAPLACEan (material) 
description are straightforward. Consider a real-valued function, ( 0x,t) , that represents a 
scalar or a component of a vector or a tensor. The position vector 0x uniquely determines a 
continuum particle, X, namely the one located at 0

X at t = 0, referred to as particle 0x . The 
partial derivative of  with respect to t, with 0x  held fixed, is the time rate of change of  at 
the particle 0x . This derivative is called the material time derivative of , 

                                                
20  AUGUSTIN LOUIS CAUCHY (1789-1857) 
21  For small deformations no difference has to be made between differentiation with respect to the initial or the 

current coordinates  
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=
d

dt
=

( 0x,t)
t 0x

. (4-54) 

Since tx = t ˆ 0x,t( )  in the material description of motion, the material time derivative of tx  
represents the time rate of change of the position of the particle 0x  at time t, i.e. the velocity 
of the particle 0x  at time t, 

 

 

tv = tx =
d tx
dt

=

t ˆ ( 0x,t)
t 0x

. (4-55) 

As 0
t u = tx - 0x = u( 0x,t) , we get 

 

tv = 0
t u . 

Consider now a real-valued function, ( tx,t) , that represents a scalar or a component of a 
vector or a tensor. Since tx  is a point in the current configuration, ( tx,t) is the value of  
experienced by the particle 0x  currently located at tx . The partial derivative of  with respect 
to t, with tx  held fixed, is the time rate of change of  at the particle currently located at tx . 
This derivative is called the local time derivative of , 

 
t
=

( tx,t)
t tx

. (4-56) 

When calculating the material time derivative in a EULERean (spatial) description, one has to 
bear in mind, that the actual particle 0x  located in a spatial point tx  varies with time. 
Consider again ( tx,t)  with tx = t ˆ 0x,t( ) , than by the chain rule of partial differentiation, 

 

 

=
d

dt
=

( tx,t)
t 0x

=
t tx

+
tx

t

tx
t 0x

=
t
+
tv t , (4-57) 

we obtain the material derivative operator, 

 
d

dt
=

t
+ v t  , (4-58) 

for calculating the rate of change with time of an arbitrary field quantity in the spatial 
description. 

 
( )i = d dt  is the material or substantial derivative, t  is called local and 

v t  convective derivative, respectively. 

4.6 Strain Rates 

While the deformation gradient, 0
tF , describes the change of length and orientation of a 

material line element and consequently the change of size and shape of a material volume 
element during deformation, the actual velocity gradient  

 tL =
tgrad tv =

tvi
t x j

0ei
0e j =

tv

j

tg j = t tv( )
T
. (4-59) 

measures the rate of change with time of a line element in the current configuration tB, 

 d tx( )
•

=
tL d tx , i.e. 0

t F( )
•

=
tL 0

t F . (4-60) 

It can be calculated from 0
tF   

 
 

tL =
tF 0

t F 1
= 0

t F tF 1
=

tD +
tW  (4-61) 
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and additively decomposed into a symmetric part, the deformation (stretching) rate (EULER 
1770), tD , and a skew part, the vorticity tensor (CAUCHY 1841), tW ,  

 tD = 1
2

tL +
tLT( ) = tDT , tW = 1

2
tL tLT( ) = tWT . (4-62) 

The coordinates of tD  are the rates of change with time of lengths and angles of material 
volumes, and the coordinates of tW  are the angular velocities of line elements. Since tW  is 
skew, tW d tx = t d tx , representing the velocity due to a rigid rotation about an axis 
through the point tx  with angular velocity t

= 1
2 curl

tv = 1
2

t tv( )
T

. Thus 
 
d tv = d tx( )

i

 is 
considered a superposition of the velocity caused by the stretching and determined by tD  and 
the velocity due to rigid rotation determined by tW . Consider a line element, d tx = d tx tn , 
in one of the principal orientations of tD , then the rate of change of its length is solely 
described by tD , and the rate of change of its orientation by tW , 

 

 

d tv = d tx( )
•

= d tx
• tn + d tx tn = tn tD tn( )d tx + tW d tx

=
tn tD tn( )d tx + t d tx

 (4-63) 

tD  = 0 characterises a local rigid-body rotation. 

The rates of change with time of material area and volume elements in tB are 

 
d ta( )

•

= div tv I tLT( ) d ta

d tV( )
•

= div tv d tV
 (4-64) 

with 

 div tv = t tv = tr tL = tr tD . (4-65) 

The current deformation rate tensor, tD , is related to the material time derivative of GREEN's 
strain tensor, t ˙ E (G ) , by  

 
 

tD = t
0F T tE(G) t

0F 1 , (4-66) 

A representation in convective coordinates points up this relation more clearly,  

 
 

tD =
1
2
t gij

tgi tg j , tE(G) = 1
2
t gij

0gi 0g j . (4-67) 

The components of tD  and t ˙ E (G )  are equal, namely half the material time derivatives of the 
covariant time metric coefficients in t

B, but the base vectors differ, i.e. the convective base 
vectors in t

B for tD  and the convective base vectors in 0
B for t ˙ E (G ) . tD  cannot be written 

and interpreted as material time derivative of a strain tensor. By means of the relation to the 
material time derivative of ALMANSI's strain tensor,   

t
D  is introduced as OLDROYD's time 

derivative  of    t

0
E

(A) , 

 
 

tD =
tE
o
(A)
=

tE(A) + tE(A) tL +
tLT tE(A) . (4-68) 

The problem which has become manifest here, raises the general question of appropriate time 
derivatives of material quantities. It is of particular and fundamental interest for describing 
the material behaviour by constitutive equations, which are often established as rate 
equations. Constitutive equations have to be objective, that is independent of the specific 
observer and his frame of reference. This condition has to be met for the involved field 
quantities as well as for their time derivatives. The respective conditions are addressed in the 
following section. 
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4.7 Change of Reference Frame 

If two observers describe their spaces by position vectors with respect to their individual 
points of reference, then  

• the first observer sees the position vector of a spatial point  X E
3
 at time t with respect 

to his point of reference ("origin"),  O E
3 , as 

 
  
x(X,t) = OX = X O , (4-69) 

• and the second observer with respect to his point of reference,   O E
3 , as 

 
  
x(X,t) = O X = O O + OX . (4-70) 

As the distance 
  
OX  and 

  
OX  is the same for both observers, 

 
   
OX = Q(t) x(X ,t)  with Q QT

= 1 , (4-71) 

and taking 
  
c(t) = O O , we obtain a EUCLIDean transformation of the position vectors under 

change of the observer or "change of the reference frame", 

 
  
x(X,t) = Q(t) x(X,t) + c(t) . (4-72) 

The second observer reports his space as being shifted by c(t) and rotated by Q(t) with respect 
to the space of the first observer. The transformation preserves the spatial distance between 
simultaneous events, 

 
  
x(X1) x(X2 ) = Q x(X1) x(X2 )( ) = x(X1) x(X2 ) . (4-73) 

A vector, w, or a (2nd order) tensor, T, are called objective under the change of frame of 
reference, if they are just rotated by Q under a EUCLIDean transformation, 

 
 
w = Q w , T = Q T QT , (4-74) 

and invariant, if 

 
 
w = w , T = T , (4-75) 

For scalars, objectivity and invariance coincide. 

  = . (4-76) 

We can now apply the EUCLIDean transformation to the kinematic quantities describing 
motion and deformation of a body. The motion of a body, 

 

tx = t
X ,t( ) , is described by 

identifying its materials points, X, by their placement in a reference configuration, 

 

0x = 0
X( ) , as in eq. (4-10). If the reference configuration is observer independent22, then a 

EUCLIDean transformation of the motion is 

 
 

tx = t ˆ 0x,t( ) tx = t 0x,t( ) = tQ t ˆ 0x,t( ) + tc . (4-77) 

Eq. (4-77) describes one motion recorded by two observers (in two different reference 
frames). It is in form identical to the description of a rigid body displacement, which 
describes two motions recorded by one observer.  

                                                
22  This is an assumption, which is part of the definition of the reference configuration. One is of course free to 

introduce it observer dependent, as well. 
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The deformation gradient transforms as 

 
 

0
t F = Grad tx = 0 tx( )

T
=

t

0x
=

t

tx

tx
0x

=
tQ 0

t F , (4-78) 

and is obviously not objective. From this, the transformations of the other kinematical 
quantities follow,  

 
 0
tR =

tQ 0
tR  rotation tensor 

 
 0
tU = 0

tU  right stretch tensor, 

 
 0
tE(B) = 0

tE(B)  BIOT's strain tensor, 

 
 0
tE(G) = 0

tE(G)  GREEN-LAGRANGE strain tensor, (4-79) 

 
 0
tV =

tQ 0
tV tQT  left stretch tensor, 

 
 0
tE(A) = tQ 0

tE(A) tQT  ALMANSI strain tensor. 

The tensors 0
tV  and 0

tE(A)  are objective, 0
tU  and 0

tE(G)  are invariant. All observers measure 
the same volume, and hence 

 
 
J = det 0

t F( ) = det tQ 0
t F( ) = det tQ( )det 0

t F( ) = det 0
t F( ) = J , (4-80) 

and the density is 
 

t
=
t . 

Objective time dependent quantities , w, and T in the EULERean description give objective 
spatial derivatives grad , gradw , divw , gradT , and divT .  

Let us now consider material time derivatives of objective quantities. Obviously   is 
objective, but  w  and  T  are not. If w and T are an objective vector and an objective (2nd 
order) tensor, respectively, and  w  and  T  their time-derivatives for one observer, then the 
time-derivatives for the other observer are 

 

 

w = Q w( )
i

= Q w +Q w

T = Q T QT( )
i

= Q T QT
+Q QT T T Q QT

, (4-81) 

The velocity, v, of a material point is the time derivative of its current position, 

 

 

tv = tx =
d t

dt
=

t ( 0x,t)
t 0x

. (4-82) 

To the second observer, it appears as  

 

 

tv = tx = tQ tx + tQ tx + tc = tQ tQT t x tc( ) + tQ tv + tc

=
t t x tc( ) + tQ tv + tc

  (4-83) 

Beside the rotated part, tQ tv , the relative translational velocity, 
 

tc , and the relative angular 
velocity, t , which is the dual axial vector to the skew tensor 

 

tQ tQT , emerge. By a second 
differentiation with respect to time, we obtain the acceleration 

 

 

t a = tv = tx =
2 t ( 0x,t)

t 2 0x

, (4-84) 
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and under the change of reference frame 

 

 

ta = tx = t t x tc( ) + t t x tc( ) + tQ tv + tQ tv + tc

=
t t x tc( ) + t t x tc( ) t

+ 2 t t v tc( ) + tQ ta + tc
 , (4-85) 

with 

 tQ ta  relative acceleration, 

 
 

tc  translational acceleration, 

 
 

t t x tc( )  angular acceleration, 

 
 
2 t t v tc( )  CORIOLIS

23 acceleration, 

 
 

t t x tc( ) t  centripetal acceleration. 

The velocity and the acceleration are neither objective nor invariant vectors, and the same 
holds for the rates of linear and angular momentum. The laws of motion are only valid for an 
inertial reference frame, and consequently only for those observers for which the acceleration 
transforms as an objective vector, ta = tQ ta . Such special transformations are called 
GALILEI transformation, characterised by 

 

tc = o  and 
 

tQ = 0 , i.e. t
= o . 

The velocity gradient transforms like 

 

 

tL =
tgrad tv = t tv( )

T
= 0

t F 0
t F 1

=
tQ tL tQT

+
tQ tQT

. (4-86) 

If it is decomposed into its symmetric and skew part, we obtain 

 
 

tD =
tQ tD tQT

tW =
tQ tW tQT

+
tQ tQT

, (4-87) 

that means the stretching rate, tD , is objective against a GALILEI transformation but the 
vorticity is not. 

 

                                                
23  GASPARD GUSTAVE DE CORIOLIS (1792-1843) 
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5. Kinetics: Forces and Stresses 

In the previous chapter, the geometrical description of deformation and motion of a 
continuum have been addressed. Both are generally caused by external forces acting on the 
body and giving rise to interactions between neighbouring parts of a continuum. Such 
interactions are studied through the concept of stress, which is discussed in the following 
chapter.  

5.1  Body Forces and Contact Forces 

Two distinct types of forces are considered in continuum mechanics, forces acting on the 
volume, body forces, and forces acting on the surface, contact (surface) forces, both resulting 
from densities. The total force acting on a material body B occupying a configuration t

B of 
volume tV at time t is 

 
    

t
f (B) = t

f
b
(B) + t

f
c
(B)  . (5-1) 

All vector fields are assumed to be objective,  

 
   

t
f = Q

t
f  . (5-2) 

Body forces are forces that act on every element dB  B and hence on the entire volume of 
the body B or any part, P  B, of it. We postulate that the total body (or volume) force can be 
expressed in the form, 

 

    

t
f

b
(P) = t t

b dV
tV (P )

, P B  , (5-3) 

where    
t

= ( t
x,t)  is the mass density at a point X  P  B and at time t and    

t
b = b( t

x,t)  is 
a vector with the physical dimension force per unit mass, which is referred to as body force 

density. Gravitational force, 
  
b = ge

z
, with g  9.81 ms-2 being the gravitational constant, is 

an example of a body force. 

Contact forces act on the surface of a material body. This surface may be either a part or the 
whole of the boundary surface, B, or any (imaginary) surface, P, of a part, P  B. We 
postulate that the total surface force can be expressed in the form  

 

    

t
f

c
(P) = t

t
n

dA
t A( P )

, P B  , (5-4) 

where    
t
t

n
= t( t

x, t
n,t)  is a vector with the physical dimension force per unit area, which is 

referred to as surface force density or stress vector or traction. It depends on the locus and the 
orientation of the surface element, which we describe by the position vector, t

x, and the 
exterior normal to the surface, tn, respectively. This is known as CAUCHY's stress principle.  

If the surface is a part or the whole of the boundary surface, B, surface forces are external 

forces that act on the boundary surface of the body. Wind forces and forces exerted by a 
liquid on a solid immersed in it are examples of such surface forces. If the surface is any 
(imaginary internal) surface, P, of a part, P  B, contact forces are internal forces that arise 
from the action of one part, P1, of the body upon an adjacent part, P2, across the respective 
interface, see Fig. 5.1. For example, if we consider a heavy rod suspended vertically and 
visualise a horizontal cross section separating the rod into upper and lower parts, the weight 
of the lower part of the rod acts as a surface force on the upper part across the cross section. 
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Looking at the two parts, P1 and P2, generated by the imaginary cutting, the respective 
exterior normals of every surface element at the interface are opposite to each other, 

  n1
+ n

2
= 0 . According to NEWTON’s third law of motion, see chapter 6, it is postulated that 

the corresponding surface tractions are of equal magnitude but opposite orientation,  

    
t
t

1
= t( t

x,
t
n,t) = t

t
2
= t( t

x,
t
n,t)  . (5-5) 

This relation is known as CAUCHY’s reciprocal relation. The internal forces across surfaces in 
the interior of the volume balance each other out so that their resultant is zero.  

 

 
Figure 5.1: Section principle: Contact forces acting on corresponding sectional surfaces of a 

body, virtually cut into two parts, P1  P2 = B . 

5.2  CAUCHY's Stress Tensor 

In order to specify the dependence of the stress vector, tn, on the normal, n, we consider an 
infinitesimal tetrahedron with surfaces, dA1, dA2, dA3, dAn, and their respective exterior 
normals, 

  
n

i
= e

i
 (i = 1, 2, 3), n, see Fig. 5.2. As the tetrahedron has a closed surface, 

 
   
n dA

n
+ n

i
dA

i
i=1

3

= n dA
n

e
i
dA

i
i=1

3

= o  . (5-6) 

 
Figure 5.2: Stresses acting on the faces of an infinitesimal tetrahedron 
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We now apply the balance of linear momentum (or NEWTON’s second law of motion, see 
chapter 6) in the limit of dV  0, then the volume integrals, i.e. body forces and mass 
accelerations, are small of higher order compared to the surface integrals, that is 

 
   

t
i
dA

i
i=1

3

+ t(n) dA
n
= t( e

i
) dA

i
i=1

3

+ t(n) dA
n
= o  . (5-7) 

As by eq. (5-6), the fourth normal, n, can be expressed by the first three, 
  
n

i
= e

i
, we obtain 

 

   

t(n) dA
n
= t e

i

dA
i

dA
ni=1

3

= t( e
i
)

dA
i

dA
ni=1

3

 . (5-8) 

Thus, tn is linearly dependent on n. 

Theorem of CAUCHY (1823): 

The stress vector    
t
t

n
= t( t

x,n,t)  in a point  
t
x  of a body depends linearly on the normal   

t
n  of 

the surface element, i.e., there exists a tensor field,    
t
S = S( t

x,t) , such that 

    
t
t

n
=

t
n

t
S  . (5-9) 

The tensor
  

t
S =

t

ij
e

i
e

j
 is called CAUCHY 's stress tensor. As a particular case, we obtain the 

reaction principle (NEWTON’s24 third law of motion), eq. (5-5). The stress tensor has the 
components, 

 
  

t

ij
= e

i

t
S e

j
=

t
t

i
e

j
=

tt
ij

 , (5-10) 

which represent the j th component of the stress vector    t i
= t(e

i
)  acting on a surface element 

having 
  
n = e

i
 as a unit normal, see Fig. 5.3. 

 
Figure 5.3: Stress state in a material point 

The physical dimension of the components of the stress tensor is force per area. By definition 
the area is taken in the actual configuration. As a consequence,   

t
S  is also called true stress 

                                                
24  ISAAC NEWTON (1643-1727) 
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tensor. It follows from the balance of angular momentum (see section 6.3), that   
t
S  is 

symmetric for non-polar media 25, 

 
   

t
S =

t
S

T , t

ij
=

t

ji
 , (5-11) 

and hence  

    
t
t

n
=

t
n

t
S =

t
S

t
n  . (5-12) 

In a convective or material coordinate system, eq. (4-25), the CAUCHY stress tensor writes as 

 tS = t ij tgi
tg j  . (5-13) 

Any stress vector on a given surface element in the current configuration, t
B, can be resolved 

along the normal,    en
=

t
n , and perpendicular to it. Let 

  
e

t
 be the unit vector perpendicular to 

  en
, i.e. 

  
e

t
e

n
= 0 , then  

 

   

=
nn
=

t
t

n
e

n
= e

n
t
S e

n

=
nt
=

t
t

n
e

t
= e

n
t
S e

t

 (5-14) 

are called normal and shear stresses, respectively. Adopting this definition, all stress 
components having unequal subscripts in Fig. 5.2 are referred to as shear stresses. The 
stresses 11 22 33, ,  in the diagonal of the stress tensor are called normal stresses. Normal 
stresses are called tensile stresses, if  > 0, and compressive stresses, if  > 0.  

Since there is an infinite number of different tangent vectors, 
  
e

t
, on one surface, the shear 

stress can be regarded as a vector and can be computed from the vector difference of stress 
vector, tn, and its normal component, 

  
t

n
= e

n
S e

n( )en
. The shear stress  is then given as 

the absolute value of the stress component in the tangential direction,  

 
   

e
t
= e

n
t
S e

n
t
S e

n( )en
 (5-15) 

We shall now investigate whether there exists an orientation of the surface element at a given 
point, along which the stress vector is collinear with the normal of the element, i.e. the stress 
vector has a normal component only and no shear stresses appear 26, 

   tn
= n  . (5-16) 

Using CAUCHY’s theorem (5-9) together with eq. (5-12), the above condition can be rewritten 
as  

 
 
S 1( ) n = o  , (5-17) 

which means that eq. (5-15) holds if and only if n and  are eigenvectors and eigenvalues of 
S, respectively. Since every symmetric tensor of rank two has exactly three, not necessarily 
distinct, principal values,  I

,
II

,
III

, there exist three orthogonal principal orientations, 

  nI
,n

II
,n

III
, of stresses, and if the stress tensor is written with respect to the base system of 

principal axes, it is purely diagonal (spectral form), 

 
   
S =

( i)
n

( i)
n

( i)
i= I

III

 , (5-18) 

                                                
25  Materials having no surface or volume distributed torques  
26  The left superscript indicating the current configuration is omitted in the following. 
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The principal stresses are the roots of the characteristic equation  

 
   
det S 1( ) = 3

+ I
S

2 II
S

+ III
S
= 0  (5-19) 

with the fundamental invariants of S 

 

   

I
S
=

kk
= tr S

II
S
= 1

2 ii jj ij ji( ) = 1
2

tr2
S tr S

2( )
III

S
= detS

 (5-20) 

Any tensor can be decomposed into a spherical part and a deviatoric part,   Ŝ ,  

 
   
S = 1

3
tr S( )1 + Ŝ = p1 + Ŝ  , (5-21) 

where 

 
  
p =

1
3 kk

=
hyd

 , (5-22) 

is the mean pressure or (negative) hydrostatic stress. Deviatoric stresses play an important 
role for plastic behaviour of metals. 

As body forces and contact forces have been assumed to be objective with respect to a 
EUCLIDean transformation, eq. (5-2), and as 

   
t
n = Q

t
n , the CAUCHY stress tensor is objective, 

 
    

t
S = Q

t
S Q

T  . (5-23) 

As CAUCHY’s law (5-9) is valid at every point in a continuum, X  tB, it holds also at points, 
X  t

B, on the boundary surface of a material body. Problems in mechanics commonly 
appear as boundary value problems, i.e. something is known about the forces and 
displacements at the boundary of a body, and one has to calculate what is happening inside 
the body. The formulation of boundary conditions is hence an essential part of establishing 
the mathematical problem. The interaction between two bodies is given by NEWTON's third 
law of motion (see chapter 6) or eq. (5-5). If the unit normal vector at the boundary is denoted 
by     

t
n(X) , the imposed traction,     

t
t

n
(X) , at a point on the boundary is  

     
t
n(X) t

S(X) = t
t

n
(X) for X

t
B , (5-24) 

and if the boundary is traction free,    
t
n(X) t

S(X) =o .  

5.3  PIOLA-KIRCHHOFF Stresses 

Beside CAUCHY stresses, many other stress tensors are in use. In the previous section, stress is 
understood as force, 

   
d t

f
c
, per area, d

t A . of the current configuration, t
B. As the current 

configuration arising under the acting forces is unknown, the idea of a (current) surface force 
on an element,   d

0 A , in the reference configuration may appear convenient. If a (material) 
surface element is considered, which has the area 

   
d 0

a = d 0 A( ) 0
n  in the reference 

configuration and 
  
d t

a = d t A( ) t
n  in the actual configuration, respectively, the force, 

   
d t

f
c
, 

can be expressed by means of eq. (4-20) as  

 
   
d t

f
c
=

t
t

n
d t A( ) = t

S
T d t

a = det
0
t
F( ) t

S
T

t

0
F

T d 0
a  (5-25) 

and by defining  

 
   0

t
T = det

0
t
F( ) t

0
F

1 t
S  (5-26) 
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 one gets the analogous expression to eq. (5-9), 

 
   
d t

f
c
=

0
t
T

T d 0
a = d 0

a
0
t
T  . (5-27) 

The unsymmetric tensor    0
t
T  is called first PIOLA-KIRCHHOFF

27
 tensor 28. It is also referred to 

as nominal or engineering stress tensor, since actual forces are related to the initial 
(undeformed) configuration as in standard tensile testing.  

If we also pull the stress vector back into the reference configuration  

 
   t

0
F

1 d t
f

c
=

t

0
F

1
0
t
T

T d 0
a =

0
T

T d 0
a = d 0

a
0
T  , (5-28) 

we obtain the symmetric second PIOLA-KIRCHHOFF tensor,  

    
0
T = J

t

0
F

1 t
S

t

0
F

T
=

0
T

T  . (5-29) 

Inversely, CAUCHY stresses result from 

 
   

t
S =

1

J 0
t
F

0
T

0
t
F

T . (5-30) 

First and second PIOLA-KIRCHHOFF tensors write as 

 0
tT =

0 ij 0gi
tg j , 0T =

0 ij 0gi
0g j   (5-31) 

in a material coordinate system, eq. (4-25). The components of the 1st PIOLA-KIRCHHOFF 
tensor in the mixed base 0gi

tg j( )  equal the components of the 2nd in the base of the 
reference configuration, 0gi

0g j( ) , and according to eq. (4-22), they are related to the 
components of the CAUCHY tensor by 

 0 ij
=
1

J
t ij

=

t

0
t ij  . (5-32) 

There are many other stress tensors. All of them have different properties, and it depends on 
the specific application which one is preferable. If the deformation gradient is known, all of 
them can be uniquely determined from CAUCHY stresses. In the theory of small deformations, 
all stress tensors coincide, as no difference between the actual and the reference configuration 
has to be made. The stress tensor will be simply denoted by S in this case. 

With respect to constitutive equations (chapter 7), the appropriate combination of stress and 
strain measures is a key issue. A stress tensor,   T

(*) , is called work conjugate to some strain 
tensor,   E(*) , if the stress power density in the reference configuration is 

 
    

0win
= T

(*)
E

(*)
= J t

S
t
D , (5-33) 

see eq. (6-19). According to this definition,   
0
T  is work conjugate to    0

t
E

(G) . For CAUCHY's 
stress tensor there is no work conjugate strain measure, see eq. (4-68), where   

t
D  was 

introduced as OLDROYD's time derivative of ALMANSI's strain tensor,    t

0
E

(A) .  

The EUCLIDean transformation of motion, eq. (4-71), can be applied to all stress tensors, and 
by the objectivity of CAUCHY stresses, eq. (5-23), it follows, 

                                                
27  GUSTAV ROBERT KIRCHHOFF (1824-1877) 
28  Sometimes, 

   0
t
T

T  is termed as 1st PIOLA-KIRCHHOFF stress tensor. Due to the agreement of eq. (5-10), that 

the first subscript of the stress components denotes the orientation of the surface element, the present 
definition is preferred. 
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0
t
T = Q

0
t
T

0
T =

0
T

 , (5-34) 

i.e. the 1st PIOLA-KIRCHHOFF tensor is neither objective nor invariant, the 2nd PIOLA-
KIRCHHOFF tensor is invariant. 

The observer dependence of all kinematical and dynamical quantities is now completely 
determined. 

5.4 Plane Stress State 

For some applications, in particular if analytical solutions are looked for, it may be regarded 
unnecessary to account for all three components of the stress vector. In sheet materials or 
under in-plane loading conditions, all stress vectors can be assumed to lie in one plane, and 
the stress tensor in a Cartesian coordinate system, 

   
e

x
, e

y
, e

z{ } , becomes 29, 

 

   

S =

xx xy
0

xy yy
0

0 0 0

e
i
e

j
 (5-35) 

 

Figure 5.4: Plane stress state at a triangular volume element 

From Fig. 5.4 or by applying the transformation rules for tensor components given in the 
Appendix, one gets the normal stress, , and shear stress, , as a function of the angle , 

 

  

=
nn
=

1
2
(

xx
+

yy
) + 1

2
(

xx yy
)cos2 +

xy
sin2

=
nt
=

xy
cos2 1

2
(

xx yy
)sin2

 (5-36) 

Squaring both equations and adding them leads to  

                                                
29  Again, the left superscript indicating the current configuration is omitted in the following. 
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2
1
2 xx

+
yy( ) +

2
=

2
1
2 xx yy( ) +

xy

2  , (5-37) 

which is the equation of a circle in a 
 

,( )  coordinate system, having its centre located in 

  
1
2 xx

+
yy( ),0{ }  and a radius of 

  

2
1
2 xx yy( ) +

xy

2 , see Fig 5.5.  

 

Figure 5.5: MOHR's circle in plane stress state 

This circle, which is referred to as MOHR’s circle 30, is the locus of the components of all 
possible stress vectors in a material point X, acting on area elements under varying 
orientation. The stress components in the actual coordinate system, 

  xx
,

yy
,

xy( ) , define 
centre and radius of the circle. The components 

  nn
,

tt
,

nt( )  in any rotated system are 
obtained by a clockwise rotation of the (x, y) axes by the angle .  

Though at the present time of computers, the transformation can be made much more easily 
numerically instead of graphically, MOHR’s circle still provides some demonstrative 
understanding of (plane) stress states. It shows three particular loci of interest.  

 Shear stresses vanish when normal stresses take extrema,  

 
  I,II

=
1
2
(

xx
+

yy
) ± 1

2
(

xx yy
)

2

+
xy

2  , (5-38) 

under an angle of 

 

  

tan2
0
=

2
xy

xx yy

 . (5-39) 

                                                
30  OTTO MOHR (1835-1918) 
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 Shear stress becomes maximum when the two corresponding normal stresses become 
equal,  

 

   

max
= 1

2 xx yy( )
2

+
xy

2
= 1

2 I II( ),

nn
=

tt
= 1

2 xx
+

yy( ) = 1
2 I

+
II( ) = 1

2
tr S ,

 (5-40) 

under an angle of 

 
  

1
=

4 0
 . (5-41) 

Fig. 5.6 shows the stress components in various orientations of the volume element. 

 

Figure 5.6: Plane stress state in different coordinate systems: (a) original (x,y),  
(b) principal axes,  I

,  II
, eqs. (5-38), (5-39),  

(c) direction of maximum shear stress, 
 nt

=
tn
=

max
= 1

2 I II( ) , 
 nn

=
tt
= 1

2 I
+

II( ) , 
eqs. (5-40), (5-41)  

The extrema of normal stresses,  I
,  II

, are the principal stresses as resulting from eq. 
(5-19) or from either of the conditions 

 
 

( )
= 0 or ( ) = 0  . (5-42) 

Principal stresses, maximum shear stress as well as    tr S =
xx
+

xx
=

I
+

II
 are invariants 

of the stress tensor.  

5.5 Stress Rates 

For constitutive relations which are based in incremental formulations, stress rates are 
required. The 2nd PIOLA-KIRCHHOFF tensor,    0

t
T , is a material stress tensor and hence 

invariant under a EUKLIDean transformation, eq. (5-29), and so is its material time derivative, 

    0
t
T , which is simply the derivative with respect to time, see eq. (4-53). The same holds for 

every material stress tensor, e.g.   

    0
t
S =

t

0
F

1 t
S

t

0
F

T
= J 1

0
t
T . (5-43) 

Its time rate is 
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0
t
S =

t

0
F

1 t
S

t

0
F

T( )
i

=
t

0
F

1 t
S

t

0
F

T
+

t

0
F

1 t
S

t

0
F

T
+

t

0
F

1 t
S

t

0
F

T

=
t

0
F

1 t
S

t
L

t
S

t
S

t
L

T( ) t

0
F

T
. (5-44) 

The term in parenthesis is OLDROYD's rate of CAUCHY's stress tensor, 

 
    

t
S
o

=
t
S

t
L

t
S

t
S

t
L

T . (5-45) 

It is an objective derivative, i.e. it transforms as an objective tensor under a change of 
observer, just as the JAUMANN rate, 

 
   

t
S =

t
S +

t
S

t
W

t
W

t
S , (5-46) 

which is frequently used for rate dependent formulations in finite element programmes. 
Because of the skew term,   

t
W , which stands for angular velocities, it is also called 

corotational rate. 
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 6.  Fundamental Laws of Continuum Mechanics 

Continuum mechanics is essentially based on fundamental principles having the character of 
axioms, that are laws, which cannot be proven but are commonly assumed to be true. In his 
"Philosophiae Naturalis Principia Mathematica" of 1687, ISAAC NEWTON established laws of 

motion und thus was the first relating kinematical and dynamic quantities. Without applying 
mathematical equations at that time, they read as follows:  

Lex I 

[Constat] corpus omne perseverare in statu suo quiscendi vel movendi uniformiter in 
directum, nisi quatenus a viribus impressis cogitur statum illum mutare.  

Lex II 

[Constat] mutationem motus proportionalem esse vi motrici impressae, et fieri secundum 
lineam rectam qua vis illa imprimitur.  

Lex III 

[Constat] actioni contrariam semper et aequalem esse reactionem: sive corporum duorum 
actiones in se mutuo semper esse aequales et in partes contrarias dirigi.  

Translated: 

Law I 

[It is established that] Each body remains in its state of rest or motion uniform in direction 
until it is made to change this state by imposed forces.  

Law II 

[It is established that] The change of motion is proportional to the imposed driving force and 
occurs along a straight line in which the force acts.  

Law III 

[It is established that] To every action there is always an equal reaction: or the mutual 
interactions of two bodies are always equal but directed contrary.  

Brought into a more modern and mathematical form, they still constitute the fundament of 
NEWTONian mechanics. In particular, the first one states that the laws of motion are only valid 
for an inertial reference frame (see section 4.6). The second law is the balance of (linear) 
momentum and the third is the reaction principle of eq. (5.5). 

6.1  General Balance Equation 

The axioms of continuum mechanics are formulated as balance laws or conservation laws for 
mechanical quantities like mass, momentum, energy etc. and established as equations of 
integrals over a material body (global form), or as field equations (local form). They are 
material independent and applicable to all continua, regardless of their internal physical 
structure. These fundamental equations will be formulated in their spatial (EULERean) form, 
which means that all field quantities are expressed as functions of the coordinates of a 
material point in the actual configuration. As time derivatives of the integrals will be required, 
they are transformed to the reference configuration ((LAGRANGEan form), differentiated under 
the integral and transformed back to the EULERean description, again. time derivatives of 
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integrals over material volumes or surfaces in the actual configuration. By this procedure of 
exchanging the integration and differentiation process, the local field equation is obtained 
from a global balance law. 

Let    (P,t) be a global physical quantity (scalar, tensor- or vector-valued) defined for a 
material body B or any part P  B,, having a density (per unit volume),    

t ( t
x,t) , as a field of 

same order in the current configuration, and   
0 ( 0

x)  in the reference configuration, then by 
means of eq. (4-20). 

 

   

(P,t) = t d tV
tV (P )

=
t J d 0V

0V (P )

=
0 d 0V

0V (P )

, P B . (6-1) 

Conservation of mass, see section 6.2 and eq. (4-22), finally results in,  

 
   

0
= J t

=

0

t 0
t ( 0

x,t)  . (6-2) 

i.e. the densities,   
t , 0 , transform like the mass densities. The time derivative is 

 

    

(P,t) =
d

dt

0 d 0V
0V (P )

= t J +
t J( )d 0V

0V (P )

=
d

dt

t d tV
tV (P )

= t d tV +
t d tV( )

i

tV (P )

 , (6-3) 

and with eqs. (4-63) and (4-57) 

 

     

d

dt

t d tV
tV (P )

=
t
+

t t t
v( )d tV

tV (P )

=

t

t
+

t t t
v( ) d tV

tV (P )

 , (6-4) 

By means of the divergence theorem of GAUSS
31, REYNOLDS

32 transport equation is obtained, 

 

    

d

dt

t d tV
tV (P )

=

t

t
d tV

tV (P )

+
t t

v n d t A
t A( P )

 . (6-5) 

Note, that the domain of the integral is fixed to the body. If it is an arbitrarily moving control 
volume as in fluid mechanics, a similarly looking equation is obtained with   

t
v  being the 

velocity of the control volume in space. 

6.2  Conservation of Mass 

The mass m of a continuum remains unchanged during the motion of a material body B as 
well as for any part, P  B, of it 

 

    

m(P) = 0 (0
x) d 0V

0V (P )

=
t ( t

x) d tV
tV (P )

= const for P B  , (6-6) 

with 0  and t  denoting the mass density in the reference configuration and actual 
configuration, respectively. The material time derivative of m has to vanish and by applying 
the eq. (6-4),  

                                                
31  KARL FRIEDRICH GAUSS (1777-1855) 
32  OSBORNE REYNOLDS (1842-1912) 
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m(P) =
d

dt

t ( t
x) d tV

tV (P )

=
d t

dt
+

t t t
v d tV

tV (P )

= 0 , (6-7) 

we derive the local field equation as eq. (6-7) has to hold for an arbitrary volume V(P),  

 
   

d t

dt
+

t t t
v =

t

t
+

t t t
v( ) = 0  .  (6-8) 

In fluid mechanics, the respective equation is known as continuity equation. 

6.3 Balance of Linear and Angular Momentum  

The linear momentum of a material body B or any part P  B is introduced as 

 

     

t
p(P) = t

v
t d tV

tV (P )

=
t
x

t d tV
tV (P )

= m(P) t
x

M
, P B , (6-9) 

where 

 

    

t
x

M
=

1

m(P)
t
x

t d tV
tV (P )

 (6-10) 

is the centre of mass of P  B. According to NEWTON's second law of motion, it is now 
postulated that the material time rate of the linear momentum ("mutationem motus") is equal 
to the total force     

t
f (P)  acting on the body, see eq. (5-1):  

 
     

t
p(P) = m(P) t

x
M
=

t
f (P) = t

f
c
(P) + t

f
b
(P) , (6-10) 

assuming the proportionality constant without loss of generality as 1, by which the physical 
dimension of forces is defined as [mass length/time2] with the unit 1 N = 1 kg m s-2, in honour 
of NEWTON. Introducing the density functions of body forces and contact forces, eqs. (5-3) 
and (5-4), it follows 

 

    

d

dt

t
v

t d tV
tV (P )

=
t
b

t d tV
tV (P )

+
t
t

n
d t A

t A( P )

 . (6-11) 

Introducing CAUCHY’s law (5-9), conservation of mass (6-7) and the divergence theorem as 
above in eq. (6-5), we obtain 

 

    

t d t
v

dt

t t
b

t t
S d tV

tV (P )

= 0  , (6-12) 

which finally leads to CAUCHY’s equation of motion as the local form of the balance of linear 
momentum 

 
    

t t
S +

t t
b =

t t
x or t

ij ,i
+

t tb
j
=

t t x
j
 (6-13) 

in tensor or index notation, respectively. In static equilibrium, the acceleration term on the 
right hand side vanishes, so that the equilibrium equations write as   

t t
S +

t t
b = o . 
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The angular momentum is defined as the moment of momentum with respect to the origin O,  

 

     

t
d

(O) (P) = t
x

t
v

t d tV
tV (P )

, P B , (6-14) 

and the balance law requires, that the time rate of angular momentum equals the moment of 
external forces 33 acting on P with respect to the origin O, 

 

      

t
d

(O) (P) = m
(O)

=
t
x

t
b

t d tV
tV (P )

+
t
x

t
t

n
d t A

t A( P )

, (6-15) 

Conservation of mass yields 

 

      

t
d

(O) (P) = t
x

t
x

t d tV
tV (P )

 , (6-16) 

and CAUCHY's law (5-9) with divergence theorem, 

 

    

t
x

t
t

n
d t A

t A( P )

=
t
x

t
n

t
S( )d t A

t A( P )

=
t
x

t
S

T( ) t
n d t A

t A( P )

=
t t

x
t
S( )d tV

tV ( P )

= 2 t
q +

t
x

t t
S( ) d tV

tV ( P )

, (6-17) 

where tq is the axial vector to skw(t
S). Thus, 

 

     

t
x

t t
S +

t
b

t t
x

t( ) + 2 t
q d tV

tV (P )

= o , (6-18) 

and because of CAUCHY's equation of motion (6-13) and as eq. (6-18) has to hold for arbitrary 
volumes, we have   

t
q = o  and hence 

   
skw t

S( ) = 0  or 

 
   

t
S =

t
S

T or t

ij
=

t

ji
 , (6-19) 

the symmetry of CAUCHY's stress tensor.  

Eqs. (6-8), (6-13), (6-19) are the field equations representing the laws of conservation of mass 
and balance of linear and angular momentum in the local form. They provide seven partial 
differential equations, which hold at every point of a continuum and for all time. As the initial 
density,  

0 , and the body force, t
b, are known, 13 unknown field functions are contained in 

the field equations, namely the density 
t , the three velocity components, 

  
tv

i
=

tu
i
, and the 

nine stress components 
 

t

ij
. By means of the conservation of mass, eq. (6-8) or (4-22), and 

the symmetry of the stress tensor, eq. (6-19), the number of unknowns can be immediately 
reduced to nine, six stresses and three velocity (or displacement) components, but at the same 
time, the number of equations reduces to three, namely CAUCHY's equation of motion (6-13). 
Hence, the number of equations given so far is inadequate to determine all the unknown field 
functions, and we need six more basic equations. Recall that the general field equations have 
been developed for any continuum without focusing on a particular material. Different 
materials have individual characteristic properties. We should therefore have additional basic 
equations that reflect these properties. Equations that represent the characteristic properties of 
a material (or a class of materials) and distinguish one material from the other are called 
constitutive equations. They will be treated in chapter 7. But before, two other universal 
principles used in continuum mechanics will be addressed, which can be derived from the 

                                                
33  Assuming non-polar media, i.e. absence of mass and surface distributed torques, mb, mc,  
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above ones and hence used alternatively, but do not change the balance between the number 
of unknowns and number of equations. 

6.4  Balance of Energy 

The rate of work performed by forces acting on a body is defined by  

 
     

tW ex
=

t
t

n
t
v d t A

B

+
t t

b
t
v d tV

B

 (6-20) 

With the use of the kinetic and internal energies 

 
    

t E = 1
2

t t
v

t
v d tV

B

,
tU =

t tu d tV
B

 (6-21) 

the postulate of the balance of mechanical energy can be formulated as follows: the material 
time rate of the total energy of a body is equal to the sum of rate of work done by external 
forces acting on the volume and the boundary,  

 
    

d

dt

t E +
tU( ) = t

t
n

t
v d t A

B

+
t t

b
t
v d tV

B

 (6-22) 

With the definitions given above this postulate reads  

 
    

d

dt

t 1
2

t
v

t
v( ) + tu d tV

B

=
t
S

T
n( ) t

v d t A
B

+
t t

b
t
v d tV

B

 (6-23) 

which can be transferred in a local formulation using CAUCHY´s eq. (6-13) and the symmetry 
of tS:  

 
  

t d tu

dt
=

t
S

t t
v .  (6-24) 

Eq. (6-24) represents the balance of energy and is usually referred to as energy equation. It 
includes the specific internal energy, t

u , as a new unknown quantity and hence does not 
provide any additional information with respect to the governing equations of the boundary 
value problem. The term  

 
    

t win
=

t
S

t t
v =

t
S

t
D =

t

0 0
t
T

0
t
F =

t

0

0
T

0
t
E

(G)  (6-25) 

is called stress power density
34. As stated above, the stress power determines the appropriate 

choice of corresponding stress and strain measures, requiring that they have to be work 

conjugate, see eq. (5-33).  

6.5  Principle of Virtual Work 

Alternative to the balance equations of linear and angular momentums formulated above, 
which lead to a boundary value problem, variational principles have been established for 
describing the motion of a body, leading to integral equations. They are particularly used in 
numerical methods of continuum mechanics, as there are the finite element or the boundary 
element method. They are extremum principles for energy type quantities, like work, kinetic 

                                                
34  Subscript "in" denotes "internal forces" 
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energy, potential energy, etc.. Reversely, the differential equations of motion can be 
established by methods of variational calculus. 

In order to understand terms like virtual or variation used later, some introductory remarks 
appear helpful. The fundamental mathematical problem of variational calculus is to find a set 
of functions   xi

(t), i = 1,...,n , for which the integral 

 

   

I = F t,x
1
,...,x

n
,x

1
,...,x

n( )dt
t0

t1

 (6-26) 

becomes an extremum under given "boundary" conditions, i.e. at beginning and end of the 
time interval, 

   xi
(t

0
) = x

i

(0) ; x
i
(t

1
) = x

i

(1)  . (6-27) 

The problem is solved by defining varied functions 

   xi
(t) = x

i
(t) +

i
(t) with

i
(t

0
) =

i
(t

1
) = 0 , (6-28) 

where   i
(t)  are arbitrary, differentiable functions (also addressed as test functions) meeting 

eq. (6-27), and  is a real number.   x
i
=

i
(t)  and 

   x
i
=

i
(t)  are called variations of 

 
x

i
 and 

  
x

i
, respectively. The integral of eq. (6.26) can now be written as a function of , 

 

   

I( ) = F t,x
1
+

1
,...,x

1
+

1
,...( )dt

t0

t1

, (6-29) 

and the condition for I becoming an extremum is 

 
  

I =
I

=0

= 0  . (6-30) 

Eq. (6-29) is the variational problem with I being the (first) variation of I. The variational 
problem leads to 

 

   

I =
I

=0

=
F

x
i

i
+

F

x
i

i

t0

t1

dt = 0 . (6-31) 

Partial integration of the second integrand yields 

 

   
i

F

x
it0

t1

dt =
i

F

x
i t0

t1

i

d

dt

F

x
it0

t1

dt  , (6-32) 

where the first bracket vanishes due to eq. (6-27), so that the variational problem finally 
writes as 

 

   

I =
i

F

x
i

d

dt

F

x
it0

t1

dt = 0  . (6-33) 

As   i
(t)  are arbitrary (test functions), the term written in brackets has to vanish in order to 

satisfy eq. (6-33) and EULER's differential equation of the variational problem is obtained, 
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F

x
i

d

dt

F

x
i

= 0  . (6-34) 

Back to continuum mechanics, we consider a velocity field    u =
0
t
u =

t
x

0
x  and an arbitrary 

virtual displacement 

 
  

u=
(u + w)

=0

= w   (6-35) 

being independent of t for t > 0, but    
0
w = w(t

0
) = o  in the reference configuration35. Let Z(u) 

be some energy functional, then by eqs. (6-29) and (6-30), its first variation is defined via the 
GÂTEAUX derivative of Z(u) at time t in w direction, 

 
   

Z = lim
0

Z(u + w) Z(u)
=

Z(u + w)

=0

 . (6-36) 

The variation 
   

Z u, w( )  is linear in  w = u , i.e. 

 
   

Z(u, w) = Z(u, w)

Z(u, w
1
+ w

2
) = Z(u, w

1
) + Z(u, w

2
)
 . (6-37) 

We now derive the principle of virtual work from CAUCHY's field equations of motion36, eq. 
(6-13), 

 
  

ij

x
i

+ b
j
= u

j
 , (6-38) 

multiplying them by the virtual displacement uj and integrating them over the (current) 
volume V, 

 
  

ij

x
i

u
j
dV

V

+ b
j

u
j
dV

V

= u
j

u
j
dV

V

. (6-39) 

We now consider the first terms of eq, (6-39). It can be converted as 

 
 

ij

x
i

u
j
dV

V

=
x

i

ij
u

j( )dV
V

ij

u
j( )

x
i

dV
V

, (6-40) 

and GAUß' theorem can be applied to 

 
 

x
i

ij
u

j( )dV
V

= n
i ij

u
j
dA

V

= t
j

u
j
dA

V

, (6-41) 

while the differentiability of the displacement field and the symmetry of CAUCHY's stress 
tensor yield 

                                                
35  With 

  
u = v dt , the principle can be formulated with a virtual velocity field as a principle of virtual 

power.  
36  All quantities refer to the current configuration at time t; the superscript t is omitted for convenience. An 

analogical derivation can be performed in the reference configuration based on the second PIOLA-
KIRCHHOFF stress tensor. 
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ij

u
j( )

x
i

dV =
ij

u
j

x
i

dV
VV

=
ij ij

dV
V

. (6-42) 

Defining the virtual work of external forces by 

 
  

W ex
= t

j
u

j
dA

V

+ b
j

u
j
dV

V

, (6-43) 

the virtual work of stresses (virtual strain energy, virtual work of internal forces) by 

 
  

W in
=

ij ij
dV

V

, (6-44) 

and the virtual work of mass acceleration by 

 
  

B = u
j

u
j
dV

V

 (6-45) 

we obtain the principle of virtual work 

   W ex W in
= B . (6-46) 

It can also be written as 

 
  

W ex W in B( ) = 0  (6-47) 

stating that the variation of the energy functional 
  
W ex W in B( )  vanishes or that the energy 

functional becomes an extremum (more precisely: a minimum) among all admissible states 
defined by the virtual displacements. Taking the mass accelerations as negative fictitious 
external forces, we obtain D'ALEMBERT's37 principle, 

  
W ex B( ) = W in , that external and 

internal forces are balanced. 

Special cases of the principle of virtual work are obtained for 

• Rigid bodies,  W in
= 0 ,  

• Elastic bodies (see section 7.2), 
  

W in
= C

ijkl kl ij
dV

V

, with 
  
W in

=
1
2

C
ijkl ij kl

dV
V

 

being the elastic strain energy,  

• Static problems,   B = 0 , resulting in the equilibrium condition,   W ex
= W in .  

The virtual work of mass acceleration, eq. (6-45), can be decomposed into the virtual power 

of linear momentum, P, and the virtual kinetic energy, E, 

 
   

B = u
j

u
j
dV

V

=
d

dt
u

j
u

j
dV

V

1
2

u
j
u

j
dV

V

= P E , (6-48) 

from which HAMILTON's principle is derived. And following the procedure above leading to 
EULER's differential equations (6-34) of the variational problem, LAGRANGE's equations of 
motion are obtained. 

                                                
37  JEAN LEROND D'ALEMBERT (1717-1783) 
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7.  Constitutive Equations 

All foregoing axioms, laws, equations are supposed to be valid for all material bodies and are 
thus labelled universal. In contrast, material theory aims at describing the individual 
behaviour of different materials. This is done by so-called material laws, constitutive 

equations or material models. Before going into details of the differences in material 
behaviour however, we want to find common features, something like the general form of 
material laws. For this, we first assume certain basic principles of material theory, which are 
partly based on our experience and partly on plausibility. Further on, we want to develop 
criteria to classify the universe of material behaviour to obtain more concrete models for 
certain classes of materials. Finally we will not be able to continue without experiments. But 
even for the design of appropriate experiments, theory is expected to give guidance. Any 
material characterisation is meaningful only in the context of a constitutive model. 

7.1  The Principles of Material Theory 

It is generally assumed that there is a deterministic relation between stresses in a body and the 
motion of the body, In order to put this into a functional form, we have to decide which 
quantities to use as independent variables and which as dependent variables. It has become 
more or less common practice to consider the stresses as dependent variables, and motions as 
independent ones. The whole history of motion may affect the present stresses, but of course, 
we do not allow the future motion of a body to have any effect on them.  

Principle of Determinism: 

The stresses t
S in a material point, X, at a certain instant of time, t, are determined by the 

whole history of motion (- , t] of all particles Y of the body B, 

 
     

t
S(X ) = f

=

t

(Y , ),X{ } X ,Y B  , (7-1) 

where f is a tensor valued functional. 

The fundamental concepts like motions and stresses depend on observers. As was shown in 
section 4.6, the change of the observer (or frame of reference) is described by a EUCLIDean 
transformation, eq. (4-76). Some of the kinematical quantities have been classified as 
objective or as invariant, eq. (4-78). Assuming the objectivity of forces, CAUCHY's stress 
tensor has been shown to be objective. eq. (5-22). It is also necessary to establish a rule for 
the observer dependence of the constitutive equations. 

Principle of Material Objectivity: 

The stress power is objective (and thus also invariant) under EUKLIDean transformations,  

 
    

t win
=

t
S

t
L =

t win
=

t
S

t
L  (7-2) 

The necessary and sufficient condition for this invariance to hold for all materials is that 
CAUCHY's stress tensor is objective, 

    
t
S = Q

t
S Q

T , eq. (5-22).  
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Together with the 

Principle of Form Invariance: 

The material functionals are invariant under change of observer, 

 
    
f ,X{ } = f ,X{ }  (7-3) 

we obtain the 

Principle of Frame Invariance: 

If a constitutive equation holds for a process described by the motion     
t
x = (X ,t) = t ˆ ( 0

x,t)  
and a stress tensor     

t
S(X ) , it must also hold for a motion 

     
t
x = (X ,t) = t

c +
t
Q (X ,t)  and a 

transformed stress tensor 
    

t
S(X ) = t

Q
t
S(X ) t

Q
T , where    

t
Q

t
Q

T
= 1 , i.e. 

 
     

t
Q f ,X{ } t

Q
T
= f t

c +
t
Q( ),X{ }  (7-4) 

This principle is a strong restriction on the material behaviour. We can generate accelerations 
of arbitrary magnitude with respect to the inertial observer by c(t) and Q(t). They do not 
directly effect the stresses, however, but only through CAUCHY's law of motion, eq. (6-13). 
Eq. (7-4) implies that eq. (7-1) takes the form 

 
     

t
S(X ) = f

=

t

(Y , ) (X , ){ } X ,Y B . (7-5) 

It is known from experience that the stresses in a material point do not depend on the motion 
of other points, provided that those are sufficiently remote. We therefore assume, that there is 
a finite neighbourhood of the point, whose motion alone affects the stresses, while the rest of 
the body has no direct effect. 

Principle of Local Action: 

The stresses in a material point depend on the motion of only a finite neighbourhood 

   
: y x x = (X ), y = (Y){ } . 

By a TAYLOR's expansion of   (Y , ) (X , )  in eq. (7-5) we obtain 

 
     

t
S(X ) = f

=

t

F(X ), F(X )( ),...{ } . (7-4) 

If we take the neighbourhood as arbitrarily small,   0, we obtain the material functional of 
so-called simple materials  

 
     

t
S(X ) = f

=

t

F(X ){ } . (7-5) 

Additional principles and assumptions allow for further simplifications. The same way, as the 
spatial neighbourhood affecting the stress state in a material point is confined by the principle 
of local action, the relevant time domain can be restricted, leading to the 
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Principle of Fading Memory: 

The memory of a material fades with time, i.e. stresses are determined by the motion history 
within a finite past [t- 0, t] only, 

 

     

t
S(X ) = f

= t 0

t

0
F(X ){ } . (7-6) 

In the limit of 0  0, stresses depend only on the present deformation,  

 
    

t
S(X ) =

0
t
F(X ){ } . (7-7) 

where  is an isotropic tensor function. From the polar decomposition of the deformation 
gradient, eq. (4-30), and the principle of invariance under a rigid body rotation taking 
particularly    

t
Q =

0
t
R

T , other forms of constitutive equations for simple materials based on the 
right stretch tensor,    0

t
U , the right CAUCHY-GREEN tensor,    0

t
C =

0
t
U

2 , or GREEN's strain tensor, 

   0
t
E

(G)
= 1

2 0
t
C I( ) , can be derived. In the following, we shall consider the simplest case of a 

linear relation between CAUCHY's stress tensor,   
t
S , and the linear strain tensor, E, known as 

HOOKE's law of elasticity for small deformations.  

7.2 Linear Elasticity 

An elastic solid is a deformable continuum that recovers its original configuration when 
forces causing deformation are removed. For linear elastic behaviour and small deformations, 
a linear relation between stresses, S, and strains, E, is postulated, which writes  

 
   
S = C E or

ij
= C

ijkl kl
. (7-8) 

In the theory of small deformations no distinction between actual and reference configuration 
is necessary, CAUCHY and PIOLA-KIRCHHOFF stresses tensors coincide, 

  
S =

ij
e

i
e

j
, and 

strains can be described by the infinitesimal strain tensor of eq. (4-50). 
  
C = C

ijkl
e

i
e

j
e

k
e

l
 is a 

material tensor of rank four. It consists of 81 scalar coefficients that depend on the physical 
properties of the solid but not on the strains, called the elastic moduli. Because S and E are 
symmetric, 

 
C

ijkl
= C

jikl
= C

ijlk
= C

jikl
, no more than 36 components of 

 
C  can be independent. 

From the condition, that the strain energy has to be a quadratic form of E, 

 
  
w = S E = E S = E C E , (7-9) 

it follows furthermore, that 
 
C

ijkl
= C

klij
 so that only 27 elastic constants may be independent in 

the most general case of an anisotropic material. 

In the case that the material is isotropic, i.e. its deformation does not depend on the 
orientation with respect to the loading, the components of 

 
C  can be written in the form  

 
 
C

ijkl
=

ij kl
+

ik jl
+

il jk
 , (7-10) 

which allows for writing equation (7-8) as  

 
   ij

=
ij kk

+ 2µ
ij

or S = tr E( )1 + 2µE , (7-11) 
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with just two independent elastic constants,  and µ, which were introduced by LAMÉ and 
hence are called LAMÉ`s38 coefficients of elasticity.  

In engineering practise, the HOOKE's law of elasticity is commonly written as 

 
   
S =

E

1+
E +

1 2
(tr E) 1  (7-12) 

with E as YOUNG’s39 modulus and  as POISSON’s40 ratio. The physical dimension of E is 
force per area, that is N/mm2 = MPa, and  is dimensionless. The inverse relation to eq. (7-
12) reads  

 
   
E =

1+

E
S

E
(tr S) 1  (7-13) 

For a uniaxial stress state,   S =
11

e
1
e

1
, the strains are   11

=
11

E ,
22
=

33
=

11
. In this 

way, YOUNG’s modulus and POISSON’s ratio of an elastic material can be determined from a 
uniaxial tensile test (see section 8.3). Other elastic constants used are 

• the shear modulus G, relating shear stresses and strains by 
  ij

= 2G
ij

(i j)  and 

• the bulk modulus K, relating hydrostatic stress, eq. (5-22), and volume dilatation, eq. 
(4-52), by 

  hyd
= 1

3 kk
= K

kk
, 

resulting from a decomposition of eq. (7-13) into a spherical and a deviatoric part, see eq. 
(5-21) 

 
   
E = Ê +

1
3
(tr E)1 =

1+

E
Ŝ +

1 2

3E
(tr S)1 = 2G Ŝ + K(tr S)1  (7-14) 

As only two elastic constants are independent, any pair of two constants can be expressed by 
any other, see the following table . 

 

  = µ = E =  = K = G = 

, µ  µ 

 

µ 3 + 2µ( )
+ µ

 
 
2 + µ( )

  
+ 2

3
µ  µ 

G, K 
  
K 2

3
G  G 

  

9K G

3K + G
 

  

3K 2G

6K + 2G
 K G 

E,  

  

E

(1+ )(1 2 )
 

  

E

2(1+ )
 E  

  

E

3(1 2 )
 

  

E

2(1+ )
 

Table: Elastic constants for isotropic materials and their relations 

If the change of volume (volume dilatation) during a deformation is zero, i.e.    kk
= tr E = 0 , 

the medium is called incompressible. This can be fulfilled for arbitrary hydrostatic stresses 

   hyd
= 1

3 kk
= 1

3 tr S  if and only if K = 0 or  = 0.5. In this case, hydrostatic stresses can not 
be determined from the strains, see eq. (7-12). The range of physically possible values of 
POISSON's ratio is hence  0 0.5 . 

                                                
38  GABRIEL LAMÉ (1795-1870) 
39  THOMAS YOUNG (1773-1829) 
40  S.D. Poisson (1781-1840) 
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8. Elementary Problems of Engineering Mechanics 

8.1 Equations of Continuum Mechanics for Linear Elasticity 

We now have the complete system of equations governing the deformation of an elastic solid. 
They are given in tensor notation, Cartesian coordinates 

   
e

i{ } = e
x
,e

y
,e

z{ }  and cylindrical 
coordinates 

   
e

r
,e ,e

z{ } 41 in the following. 

 The relations between strains and displacements for small deformations are 

 
  
E = 1

2
u + u( )

T
 . (8-1a) 

 

  
ij
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1

2

u
i

x
j

+

u
j

x
i

 . (8-1b) 
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=
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+
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rz
=
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+

u
z

r

z
=
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2

u
z

r
+

u

z

 . (8-1c) 

 For static equilibrium, CAUCHY's equations take the form, 

  S + b = o . (8-2a) 

 
  

ij

x
i

+ b
j
= 0  (8-2b) 

 

  

rr

r
+

r

r
+ zr

z
+

1

r rr( ) + b
r
= 0

r

r
+

r
+

z

z
+

1

r r
+ b = 0

rz

r
+

z

r
+ zz

z
+

1

r rz
+ b

z
= 0

 (8-2c) 

                                                
41  See Appendix A 1.4 
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 And finally, the constitutive behaviour is described by HOOKE's law, 

 

   

S =
E

1+
E +

1 2
(tr E) 1

E =
1+

E
S

E
(tr S) 1

 . (8-3a) 

 

  

ij
=

E

1+ ij
+

1 2 kk ij

ij
=

1+

E ij E kk ij

 42. (8-3b,c) 

These equations hold for all material points of an arbitrary body. They have to be completed 
by boundary conditions, specifying the particular geometry and loading. Together, they form 
the boundary value problem for the specific component.  

General analytical solutions for arbitrarily shaped and loaded bodies do not exist. They 
require the application of numerical methods like the finite element method, which is based 
on the principle of virtual work (see section 6.5). In the following, the boundary value 
problems of simple configurations are established and solved.  

8.2 Bars, Beams, Rods 

Components like bars, beams and rods are frequently applied in mechanical and civil 
engineering. Their characteristic feature is that one dimension, the length L, is much greater 
than the two others, width b and height h. They allow for approximate analytical solutions of 
the boundary value problem by introducing certain assumptions and simplifications, which 
will be introduced and discussed in the following.  

 

 

Figure 8.1: Sectioned bar with stress vector    t1
(x)=

1i
(x)e

i
 acting on a surface element dA of 

the cross section. 

We assume that the length coordinate is e1. The centres, C, of all cross sections constitute the 
axis of the bar or beam. The bar (or beam) is notionally sectioned perpendicularly to the axis, 

                                                
42  

  
i, j( ) = 1,2,3( )  or 

   
i, j( ) x, y, z( ) or 

   
i, j( ) r , , z( )  
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n = e1, at an arbitrary point 
   
x

C
= x

1
e

1
 of the axis, see Fig. 8.1. The dynamic interactions 

between the two parts have to be replaced by contact forces  

    df
1
(x) = t

1
(x) dA =

1i
(x)e

i
dA  (8-4) 

acting on each surface element of the cross section.  

Adapted to the specific geometry, sectional loads, i.e. sectional forces and moments43, are 
introduced by integrating the stress vectors,   t1

(x) , over the cross section, 

 

   

f
1
(x

C
) = df

1
(x) = t

1
A

(x) dA = N (x
1
)e

1
+ Q

2
(x

1
)e

2
+ Q

3
(x

1
)e

3

m
1
(C) (x

C
) = df

1
(x) = t

1
(x) dA

A

= M
T
(x

1
)e

1
+ M

2
(x

1
)e

2
+ M

3
(x

1
)e

3

 , (8-5) 

where 
   
= x x

C
= x

2
e

2
+ x

3
e

3
. N is called normal force,  Q2 , Q3 shear forces, MT torque, 

M2, M3 bending moments, see Fig 8.2. Obviously, there have to be six components of 
sectional loads in the general case corresponding to three translational and three rotational 
degrees of freedom of the cross section.  

 

Figure 8.2: Sectioned bar with sectional forces and moments44,  

According to CAUCHY's reciprocal relation (or NEWTON's reaction principle), eq. (5-5), the 
corresponding forces and moments acting on the opposite cross section, n = -e1, of the 
sectioned beam are 

                                                
43  Also called internal forces and moments, as they result from stresses and become observable only by 

sectioning. 
44  Moments are indicated by double arrows showing in the direction of the respective rotational axis. 
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C
) = N (x

1
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1
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)e
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3
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1
)e
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(C) (x
C
) = M
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1
)e

1
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2
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)e

2
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3
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1
)e

3

 . (8-6) 

Introducing   t1
= e

1
S =

11
e

1
+

12
e

2
+

13
e

3
, we obtain the following relations of equivalence 

between stresses and sectional loads 

 

  

N (x
1
) =

11
A

dA

Q
2
(x

1
) =

12
dA

A

Q
3
(x

1
) =

13
A

dA

, 

  

M
T
(x

1
) = x

2 13
x

3 12( )dA
A

M
2
(x

1
) = x

3 11
dA

A

M
3
(x

1
) = x

2 11
dA

A

. (8-7) 

Assuming external forces45 per unit length,    q(x
1
) = q

i
(x

1
)e

i
 with 

   
f = q(x

1
) dx

1
0

L

, acting on the 

bar, the equilibrium results in the following relations, 

 

  

dN

dx
1

= q
1
(x

1
) ;

dQ
2

dx
1

= q
2
(x

1
) ;

dQ
3

dx
1

= q
3
(x

1
)

dM
2

dx
1

= Q
3
(x

1
) ;

dM
3

dx
1

= Q
2
(x

1
)

 (8-8) 

Some elementary loading situations, namely uniaxial tension and compression, bending and 
torsion will be analysed in the following.  

8.3 Uniaxial Tension and Compression 

We consider a bar of length L0 and rectangular cross section46,  A0
= b

0
h

0
, in the undeformed 

configuration, which is loaded by a tensile force47 at both ends, x1 = 0 and x1 = L0., see Fig. 
8.3. Equilibrium of forces, eq. (8-8), in e1 direction states that   dN dx

1
= 0 , and hence 

 

  

N (x
1
) = F =

11
dA

A0

=
11

dx
2
dx

3
x3 = h0 2

+h0 2

x2 = b0 2

+b0 2

 . (8-9) 

 

                                                
45  Either contact forces (line loads acting on the surface) or body forces (self-weight) 
46  A rectangular cross section is assumed for simplicity but without restricting generality, as the derivation 

and the equations hold for arbitrary cross sections 
47  For F < 0, the bar is under compression 
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Figure 8-3: Bar under tensile force 

The surfaces   n = e
2
 and   n = e

3
 of the bar are stress free, 

 

  

22 x2 =±b0 2
= 0 x

1
,x

3

33 x3 =±h0 2
= 0 x

1
,x

2

21 x2 =±b0 2
=

23 x2 =±b0 2
=

31 x3 =±h0 2
=

32 x3 =±h0 2
= 0 x

1

 (8-10) 

Eqs. (8-9) and (8-10) represent the boundary conditions for external surface forces. For 
solving the boundary value problem, an additional assumption is made for the kinematics of 
deformation, namely that all plane surfaces remain plane: 

 
  

u
1

x
2

=
u

1

x
3

= 0 ,
u

2

x
1

=
u

2

x
3

= 0 ,
u

3

x
1

=
u

3

x
2

= 0  . (8-11) 

Regarding (8-1b), this results in 

  

  

12
=

13
=

23
= 0

11

x
2

=
11

x
3

= 0
 , (8-12) 

and from HOOKE's law, eq. (8-3b), we have  

  12
=

13
=

23
= 0  , (8-13) 

which satisfies the boundary conditions for shear stresses, eq. (8-10)3, as well as   Q2
= Q

3
= 0  

at x1 = 0, L0. The equilibrium conditions (8-2b), neglecting body forces, require that 

 
  

11

x
1

= 0 , 22

x
2

= 0 , 33

x
3

= 0 , (8-14) 

and from the boundary conditions for 22 and 33, eq. (8-10)1,2, we conclude that the stress 
state is uniaxial, 

   22
=

33
= 0 x

1
,x

2
,x

3  , (8-15) 

i.e.   S =
11

e
1
e

1
. Applying HOOKE's law, eq. (8-3b), 
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=

E 11
=

11

, (8-16) 

integration of the normal strains regarding eq. (8-11) finally yields 
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 . (8-17) 

We assume the following boundary conditions for displacements and obtain the integration 
constants as 
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 . (8-18) 

The normal stresses, 11, are generated by the normal force, according to eq. (8-9), 

 

  

F = N (x
1
) =

11
dA

A0

=
11

A
0 11

=
F

A
0

. (8-19) 

The elongation of the bar is 

 
  

L = L L
0
= u

1
(L

0
) =

11
L

0
=

L
0

EA
0

F  ,  (8-20) 

and the reduction of area 

 
  

A = A A
0
= b

0
h

0
b

0
+ b( ) h

0
+ h( ) , (8-21) 

with 

 

  

b = u
2
+

b0

2( ) u
2

b0

2( ) = 22
b

0
=

11
b

0

h = u
3
+

h0

2( ) u
3

h0

2( ) = 33
h

0
=

11
h

0

 ,  (8-22) 

and hence 

 
  

A == A
0

2
11
+

2
11
2( ) 2

11
A

0
=

2

E
F  ,  (8-23) 

assuming small deformations, i.e. 
  11

2
11

. Note that these results are independent of the 
shape of the cross section. 

By differentiating eq. (8-19), we obtain the equilibrium condition (8-8) for the normal force, 

 
  

dN

dx
1

=
d

11

dx
1

A
0
+

dA
0

dx
1

11
= 0  ,  (8-24) 

and because of the equilibrium equation for the normal stress, (8-14)1, this results in the 
condition, 

 
  

dA
0

dx
1

= 0  , (8-25) 

that the cross section of the bar has to be constant. In engineering practice, nevertheless, the 
above-mentioned formulae are also applied to bars with varying cross section, if   dA

0
dx

1
 is 

sufficiently small. 
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8.4 Bending of a Beam 

We consider a beam of rectangular cross section48,   A0
= b

0
h

0
, which is subject to a bending 

moment, M2, around the e2-axis, 

 

  

M
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3 11
dA

A0

= x
3 11

dx
2
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3

x3 =
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2
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2

 , (8-26) 

see Fig. 8.4. Normal forces vanish,  
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dx
2
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3
x3 = h0 2

+h0 2

x2 = b0 2

+b0 2

= 0  , (8-27) 

as well as shear forces,  Q3
= M

2
x

1
= 0 ,   Q2

= M
3

x
1
= 0 . The surfaces   n = e

2
 and 

  n = e
3
 of the bar are stress free as for the tensile bar above, see eq. (8-10). Since no normal 

force, N, and no bending moment, M3, are acting, this loading case is denoted pure uniaxial 

bending. Due to the linearity of the problems, the case of biaxial bending with normal force is 
obtained by superposition of the elementary cases. 

 

Figure 8-4: Beam subject to a bending moment 

For solving the boundary value problem, assumptions for the kinematics of deformation have 
to be made again. The first one is, that we consider a plane problem, where the deformation 
occurs only in the (e1, e3)-plane, i.e. normal to e2, 
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For this, the e3-axis has to be a principal axis of the cross section, which is realised if the cross 
section is symmetric with respect to the e3-axis. It is an approximation, however, as HOOKE's 
law yields a non-zero strain   22

(x
3
) =

11
(x

3
)  and hence  22

x
3
=

2u
2

x
3

x
2

0 . In 
addition to eq. (8-27), BERNOULLI

49 introduced the hypothesis, that all cross sections remain 

plane and perpendicular to the beam axis during deformation, 
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48  The following considerations hold for all cross sections which are symmetric with respect to the e3-axis. 
49  JACOB BERNOULLI (1654.1705) 
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From eq. (8-27), we can conclude as above, that all shear stresses have to vanish, and hence 
the boundary conditions eq. (8-10)3 and   Q2

= Q
3
= 0  at x1 = 0, L0. are fulfilled. Likewise, the 

equilibrium conditions (8-1), neglecting body forces, and the boundary conditions for 22 and 

33, eq. (8-10)1,2, yield   22
=

33
= 0 x, y, z , i.e. a uniaxial stress state,   S =

11
e

1
e

1
. The 

equilibrium condition for 11 and HOOKE's law result in   11
x

1
= 0 , again, but unlike as in 

tension, integration permits that   11
= f (x

3
) , as   u

1
x

3
0  according to BERNOULLI's 

hypothesis. Instead, we can differentiate eq. (8-28) twice and obtain  
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 (8-30) 

Applying HOOKE's law,  33
=

11
, this results 30 
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Integration shows that strains and hence stresses are linearly distributed along x3,  
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The latter is also known as NAVIER´s50 hypothesis, which is equivalent to BERNOULLI's 
hypothesis for linear elastic materials. For nonlinear material behaviour, as in the theory of 
plasticity, BERNOULLI's hypothesis is still kept, whereas NAVIER´s hypothesis does not hold 
any more. The integration constants can be determined from eqs. (8-25) and (8-26), 
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 , (8-33) 

as 
  
c

0
= 0 , c
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 . 

The stress distribution in the cross section of a beam subject to uniaxial pure bending is hence 
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 ,  (8-34) 

and the maximum stress develops at the outer fibres of the cross section, 

 
  

11
max

=
11 x3 =±h0 2

=
M

2

I
2

h
0

2
=

6M
2

b
0
h

0
2
=

M
2

W
2

 . (8-35) 

This is actually the mathematical formulation of GALILEI's experimental result, that the 
"bending resistance" is proportional to the width, b, and the square of the height, h, of the 
cross section, see section 2.2 and Fig. 2-1. Eqs. (8-34), (8-35) hold for any arbitrary simply 
symmetric cross section (with x3 as axis of symmetry) as the sectional moment of inertia, 

                                                
50  CLAUDE LOUIS MARIE HENRI NAVIER (1785-1836) 
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I
22
= x

3
2 dA

A0

 , (8-36) 

and the section modulus, 

 
  
W

2
=

I
22

x
3
max

 , (8-37) 

are introduced and calculated for the respective cross section. From the assumption on the 
deformation kinetics, namely BERNOULLI's hypothesis, we can calculate the deformation of 
the beam. We differentiate eq. (8-29) once, 

 
  

2u
3

x
1
2
=

2u
1

x
1

x
3

=
11

x
3

= c
1
 , (8-38) 

introduce  

 
  
u

3
(x

1
) = u

3 x3 =0
 (8-39) 

as displacement of the beam axis, x3 = 0, and thus obtain with the help of eq. (8-33) 

 
  

d2u
3

dx
1
2
=

M
2

EI
22

 , (8-40) 

which is the differential equation of the deflexion line (elastic line) of a beam subject to 
bending. The deflection is calculated by integrating (8-39) twice and introducing boundary 
conditions for the displacement   u3

(x
1
)  or its derivative   du

3
dx

1
. 

Superposition of a normal force N and a second bending moment M3 yields the stress 
distribution in a beam with double symmetric cross section under both, general bending and 
tension, 

 
  

11
=

M
2

I
22

x
3

M
3

I
33

x
2
+

N

A
0

 . (8-41) 

with 

 

  

I
33
= x

2
2 dA

A0

  (8-42) 

As for the bar under tensile load, neither the cross section, A, nor the bending moments, M2, 
M3, may depend on x1, as otherwise the stress state will not be uniaxial any more. It follows 
from eq. (8-8), that no shear forces are allowed. In engineering practice however, the 
formulae are also applied for beams with shear forces, provided that the cross section 
dimensions are small compared to the length dimension, 

   L0
2 A

0
. 
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8.5 Simple Torsion 

We consider a rod with circular cross section51,   A0
= R

0
2 , which is subject to a torque, MT, 

around the e1-axis.  

 
  
M

T
= x

2 13
x

3 12( )dA
A

 , (8-43) 

see Fig. 8.5. Shear forces vanish throughout the rod, 

 
  
Q

2
=

12
dA

A

= Q
3
=

13
A

dA = 0  , (8-44) 

and as the direction of e2, e3, is obviously arbitrary, the stress and strain state has to be 
axisymmetric, i.e.   r = 0 . 

 

Figure 8-5: Rod subject to torque 

The cylindrical surface, 
  
n = e

r
, of the bar is stress free, which can be expressed in a 

cylindrical coordinate system, 
   

e
1
,e

r
,e{ } , most conveniently 

 
  

rr r=R0

=
r1 r=R0

=
r r=R0

= 0 x
1
,  (8-45) 

As   1r
=

r1
= 0 x

1
, , the stress vector can be written as 

  
  
t

1
=

11
e

1
+

12
e

2
+

13
e

3
=

11
e

1
+

1
e  , (8-46) 

with 

 
 12

=
1

sin ,
12
=

1
cos , (8-47) 

which satisfies eq. (8-43). Employing   x2
= r cos ,   x3

= r sin , eq. (8-42) can be written as 

 

  

M
T
= r

1
dA

A0

= r
1

r dr d
=0

2

r=0

R0

= 2 r 2
1

dr
r=0

R0

, (8-48) 

regarding that the stress state is axisymmetric. 

Again, an assumption for the deformation kinematics is made, namely that the rod is neither 
elongated nor its cross section constricted, all cross sections remain plane and the cross-
section radii and the generatrices of the cylinder remain straight, which is expressed by the 
following ansatz for the displacements 

                                                
51  A circular cross section is postulated to ensure a warp free torsion. 
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u
1
(x

1
,r, ) = 0

u
r
(x

1
,r, ) = 0

u (x
1
,r, ) = c

1
x

1
r

. (8-49) 

We can immediately conclude from eq. (8-1c) that 
  11

=
rr
= = 0  and hence according to 

HOOKE's law 
  11

=
rr
= = 0 , which satisfies N = 0 and the boundary conditions (8-44) 

for rr. Furthermore, as 

 

  

1r
= 2G

1r
= G

u
1

r
+

u
r

x
1

= 0

1
= 2G

1
= G

u
1

r
+

u

x
1

= c
1
r

r
= 2G

r
= G

u
r

r
+

u

r

u

r
= 0

 , (8-50) 

we obtain the stress tensor 
  
S =

1
e

1
e +

1
e e

1
 with 

 1
=

1
 which satisfies the boundary 

conditions (8-44). From eq. (8-47) the constant c1 can be determined, 

 
  
M

T
= 2 c

1
r3 dr

r=0

R0

=
2

c
1
R

0
4 . (8-51) 

The distribution of shear stresses due to torsion of a circular rod is  

 

  
1
=

1
=

2 M
T

R
0
4

r =
M

T

I
p

r , (8-52) 

and the shear angle 

 

  
1
= 2

1
=

u

x
1

=
1

G
=

M
T

GI
p

r . (8-53) 

Ip is the polar moment of inertia, 

 

  

I
p
= r 2dA

A0

. (8-54) 

 

Figure 8-6: Deformation of cylindrical rod under torsion 
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The deformation of a rod under torsion is described by the twisting angle,   (x
1
) , Fig. 8-6, 

which depends on 
 1

 by 
  1

dx
1
= r d , and is hence calculated from the differential 

equation 

 

  

d

dx
1

=
M

T

GI
p

. (8-55) 

Despite the assumption made for deriving the above equations, they are also applied for 
varying MT(x1) and A0(x1) in engineering practice. 

8.6 Cylinder Under Internal Pressure 

Consider the cylindrical part of a pressure vessel with wall thickness, t, length, L, and (mean) 
radius, R, which is subject to internal excess pressure p, Fig 8-7. The geometry and loading 
are axisymmetric and thus the stress and strain fields are,   r = 0 . If L is sufficiently large, 
at least   L > 2R , all shear stresses may be neglected and 

   
e

1
,e

r
,e{ }  are principal axes of the 

stress tensor, 
   
S =

11
e

1
e

1
+

rr
e

r
e

r
+ e e .  

Thin-walled vessel:  

We first assume, that the wall is thin,   t R , and hence, the normal stresses in radial 
direction, 

 rr
, are much smaller than the circumferential (tangential) stresses, 

  rr
, and 

can hence be neglected. With these assumptions, the boundary value problem has become 
statically determinate and can hence be solved by applying the equations of static equilibrium, 

 

  

11

x
1

= 0
1
= c

1

rr

r
+

1

r rr( )
p

t

1

R
= 0

. (8-56) 

 
Figure 8.7: Thin-walled cylinder under internal pressure 

Regarding the boundary conditions for the radial and axial stresses in the cylinder barrel,  

 

  

rr R t 2
= p ,

rr R+ t 2
= 0

N =
11

rd dr
=0

2

r=R t 2

R+ t 2

= 2 Rt c
1
= p R2

,  (8-57) 

we obtain 

 
  

11
=

1

2

R

t
p , =

R

t
p = 2

1
 . (8-58) 
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The circumferential stresses are twice the axial stresses, and 
   rr

t R 1, as assumed. 
Failure of a pressure vessel will thus always occur by axial ripping of the cylinder barrel.  

Thick-walled vessel:  

The assumption that radial stresses can be neglected, 
  rr

, is not valid any more, and 
equilibrium results in a differential equation  

 
  

d
rr

dr
+

1

r rr( ) = 0 . (8-59) 

A second differential equation is obtained from the strain relations (8-1c) 

 
  

rr
=

du
r

dr
, =

u
r

r
 , (8-60) 

resulting in the compatibility condition 

 
  

d

dr
=

1

r rr( )  . (8-61) 

Introducing HOOKE's law, this equation takes the form 

 

  

r
d

rr

dr

d

dr
+ 1( ) rr( ) = 0 . (8-62) 

Eqs. (8-59) and (8-62) represent two first order differential equations for the two unknowns 

  rr
(r)  and 

  
(r) . Alternatively, HOOKE's law and eq. (8.60) can be introduced in eq. (8-59), 

resulting in a second order EULERian differential equation for ur(r).  

 
  

d 2u
r

dr 2
+

1

r

du
r

dr

u
r

r 2
= 0  . (8-63) 

The two integration constants can be determined from the boundary conditions (8-57)1. 
Finally, LAMÉ's solution is obtained 

 

  

rr
=

R
i
2

R
o
2 R

i
2

1
R

o

r

2

p

=
R

i
2

R
o
2 R

i
2

1+
R

o

r

2

p

 , (8-64) 

with   Ri
= R t 2 , 

  
R

o
= R + t 2 . Axial stresses have to obey eq. (8-56)1 and (8-57)2. As c1 

may now depend on r, the integration of (8-57)2 requires an assumption on   1
(r) . 

Commonly,   1
r = 0  is assumed as above, which results in  

 
  

11
=

R
i
2

R
o
2 R

i
2

p =
1

2 rr
+( )  . (8-65) 

For both cases, the stresses in the domed ends are less simple to determine and depend on the 
shape of the vessel heads. They are hence not considered here. 
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8.7 Plane Stress State in a Disc 

We consider a plane circular disc of constant thickness h, which is subject to in-plane loading 
only. No normal stresses,  11

, are supposed to occur in x1-direction, so the stress tensor is 

  
S =

rr
e

r
e

r
+ e e +

r
e

r
e

r
+

r
e e

r
. Two examples are given in the following. 

Shrink fit assembly 

Shrink fit assemblies are frictional shaft to collar connexions transmitting torques. The outer 
radius of the shaft, 

  
R

o
(s) , is greater than the inner radius of the collar,   Ri

(c) , with 
R = Ro

(s) Ri
(c)
> 0  being the misfit. During the joining process, the collar is either heated or 

the shaft cooled down. In the assembled state at room temperature, the radial displacements of 
shaft and collar have to meet the condition 

   ur

(c) (R
0
) u

r

(s) (R
0
) = R ,  (8-66) 

where 
  
R

i
(c) R

o
(s)
= R

0
 has been assumed for simplicity, since R is small. Depending on R, 

the stresses in the joint cause elastic or elasto-plastic deformations. It is assumed, that the 
deformations are elastic. The stress state is axisymmetric,   r = 0 , so that the static 
problem results in the two first order differential equations (8-59) and (8-62) for   rr

(r)  and 

  
(r)  or the second order differential equation (8-63) for ur(r) again, which have to be 

complemented by boundary conditions. Additionally to eq. (8-66), we have the conditions for 
the radial displacement in the shaft and the radial stresses in the collar, 

 
  
u

r

(s) (0) = 0 ,
rr

(c) R
o
(c)( ) = 0 ,  (8-67) 

and the transition condition for radial stresses, 

   rr

(s) (R
0
) =

rr

(c) (R
0
) . (8-68) 

The solution of eq. (8-63) is 

 
  
u

r

(s,c) (r) =
C

1
(s,c)

r
+ C

2
(s,c)r ,  (8-69) 

yielding the stresses 

 

  

rr

(s,c) (r) = E (s,c) C
1
(s,c)

1+ (s,c)( )r 2
+

C
2
(s,c)

1 (s,c)

(s,c) (r) = E (s,c) C
1
(s,c)

1+ (s,c)( )r 2
+

C
2
(s,c)

1 (s,c)

.  (8-70) 

From   ur

(s) (0) = 0 , we obtain C1
(s)

= 0 , which ensures that the stresses in the shaft are finite for 
r  0. The remaining three constants can be determined from eqs. (8-66) to (8-68) 

 

  

C
2
(s) = 1 (s)( )

2 1( )
K

C
1
(c) = 1+ (c)( )

µ 2 R
0
2

K
, C

2
(c) = 1 (c)( )

µ

K

, (8-71) 

with the abbreviations 
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=
R

R
0

, =
R

o
(c)

R
i
(c)

=
R

o
(c)

R
0

, µ =
E (s)

E (c)

K = 1+ (c)( ) 2 + 1 (c)( ) µ + 1 (s)( ) 2 1( )
, (8-72) 

As C1
(s)

= 0 , we obtain from eq, (8-69) 

 
  rr

(s) (r) = (s) (r) = p = E (s) 2 1( ) K , 0 r R
0
, (8-73) 

for the stresses in the shaft, where p is the interference pressure. The stress distribution is 
plotted in Fig. 8.8 for = 10 3 , = 2 , µ = 1 , and (c)

=
(s)

= 0.3 . Circumferential stresses 
are highest at the inner diameter. 

The assumption of a plane stress state is applicable particularly for the collar. The stress state 
in the shaft varies with x1 outside the range of contact to the collar and is hence non-
homogeneous and three-dimensional. The analytical solution presented here is an estimate. A 
full 3D solution will require a numerical calculation by finite elements, for instance. 

Spinning disk 

Another loading case of practical importance is the spinning disk. Instead of the equilibrium 
equations, CAUCHY's field equations (6-13) have to be applied,  

 

   

d
rr

dr
+

1

r rr( ) = u
r
= r 2

d
r

dr
+

1

r r
= u = r

 . (8-74) 

The two differential equations (8-74) for normal and shear stresses are independent. Shear 
stresses, 

 r
=

r
, vanish, if and only if 

   
u = r = 0 , i.e. the angular velocity 

 
=  is 

constant. Radial and circumferential stresses are 

 

  

rr
(r) =

2

8
(3+ )r 2

+ (1+ )C
1

(1 )
C

2

r 2

(r) =
2

8
(3+ )r 2

+ (1+ )C
1
+ (1 )

C
2

r 2

.  (8-75) 

We assume the boundary conditions for a cylindrical ring with inner and outer radius, Ri, Ro, 
respectively as  

 
  rr

(R
i
) =

rr
(R

o
) = 0 ,  (8-76) 

and obtain the constants as 

 

  

C
1
=

3+

1+

R
o
4 R

i
4

R
o
2 R

i
2

C
2
=

3+

1
R

i
2 R

o
2

. (8-77) 

The normalised stresses for Ri Ro = 0.5 are plotted in Fig. 8.9. Circumferential stresses are 
highest at the inner diameter again. 
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Figure 8.8:  

Stress distribution in a shrink fit assembly, 
= 10 3 , = 2 , µ = 1 , (c)

=
(s)

= 0.3  

Figure 8.9:  

Stress distribution in a spinning disc, 
Ri Ro = 0.5  
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Appendix 

A1. Notation and Operations 

A1.1 Scalars, Vectors, Tensors - General Notation 

Scalar 

 Latin or Greek, lowercase or capital, italics b , H,  , 

Vector  

 Latin or Greek, lowercase, bold (or underscored) x ,  (x , ) 

 components Latin or Greek, lowercase, italics xi ,  i  

  with respect to orthogonal unit base vectors ei (i = 1, 2, 3) 

 suffix (index) notation x = xi ei 

2nd Order Tensor  

 Latin or Greek, capital, bold (or underscored) T,  (T , ) 

 components Latin or Greek, capital or lowercase, italics Tij , ij , ij 

 suffix (index) notation T = Tij eie j  

  transposed tensor TT
= Tji eie j  

  inverse tensor T-1  

  unit tensor 1 = ij eie j  

  deviatoric tensor T̂ = T 1
3 trT( )1  

4th Order Tensor 

 Latin or Greek, capital, double underscored  C  

 components Latin or Greek, capital, italics Cijkl 

 suffix (index) notation C = Cijkl eie jekel  

 

Summation Convention of EINSTEIN 

 AijBjk = AijBjk
j=1

3

 , Ckk = Ckk
k=1

3

 , 
  
A

ij
B

ji
= A

ij
B

ji
j=1

3

i=1

3
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A1.2 Vector- und Tensor Algebra 

Scalar Product (Dot Product) 

 two vectors:  = u v = v u = uivi    52 

  
 
u v = u v sin u,v( )  

  u u = uiui = u
2
= u 2

 

  ei e j = ij =
1 i = j

0 i j
  KRONECKER symbol 

 vector and tensor: a = v A = viAij e j = aj e j  , b = A v = vjAij ei = bi ei  

  v A = A v  if and only if A is symmetric, A = AT , Aij = Aji  

 two (2nd order) tensors: A = B C = BijC jk eiek = Aik eiek  

  B C = C B  if and only if B and C are symmetric  

  B C( )
T
= CT BT = BjiCkj eiek  

  A A = A2
= AijAjk eiek  

  A A-1
= 1 = ij eie j  

Vector Product (Cross Product) 

 two vectors:  w = u v = uivj ei e j = ijkuivj ek = v u  

  LEVI-CIVITA symbol (permutation symbol): 

  ijk =

1 if i, j,k take values in cyclic order

1 if i, j,k take values in acyclic order

0 if two of i, j,k take the same value

 

  ei e j = ijkek  

  
 
u v = u v cos u,v( ) , u v( ) u,v( )  

Double Scalar Product 

 two (2nd order) tensors: = B C = BijC ji = BijCij  

 4th and 2nd order tensor: A = C B = CijklBkl eie j  

  = A C B = CijklAijBkl  

                                                
52  mind summation convention 
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Tensor Product  

 two vectors:  A = ab = aibj eie j  

 two 2nd order tensors C = AB = AijBkl eie jekel  

  ab( )
T
= ba  

  AB( )
T
= BTAT  

  eie j ek = jk ei  

  ab c = ab( ) c = a b c( ) = aibjcj ei  

Vector Triple Product 

 u v w( ) = v u w( ) w u v( ) = ujwjviei u jvjwiei  

Scalar Triple Product 

 = u v( ) w = u v w( ) = uvw( ) = vwu( ) = wuv( ) = vuw( ) = .... = ijkuivjwk  

   is the volume of the parallelepiped determined by the three vectors  u, v, w  

  

uvw( ) = det uvw( ) = ijkuivjwk =

u1 u2 u3
v1 v2 v3
w1 w2 w3

= u1
v2 v3
w2 w3

u2
v1 v3
w1 w3

+ u3
v1 v2
w1 w2

= u1 v2w3 v3w2( ) u2 v1w3 v3w1( ) + u3 v1w2 v2w1( )

 

  ei e j ek( ) = ei e j( ) ek = ijk   
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A1.3 Transformation of Vector und Tensor Components 

An orthogonal and normalised system of base vectors 
  
e

i
 is rotated by a transformation 

 
    
e

i
e

j
: e

j
= a

ij
e

i
 . 

Note that the 3 3=9 transformation coefficients, 
 
a

ij
, do not represent the components of a 

tensor, though the operation looks similar to the rotation of a vector v or tensor T by an 
orthogonal tensor, Q, and the matrix 

 
a

ij( )  is also orthogonal. However, the coefficients aij do 
not refer to any tensor base, 

  
e

i
e

j
, but switch between two base-vector systems, and we look 

how the coordinates of one and the same vector or tensor change, if the respective system of 
base vectors is changed.  

The inverse transformation is 

 
    
e

j
e

i
: e

j
= a

ij
e

i
= a

ij
a

ki
e

k
 . 

and hence 

 
   
a

ij
a

ki
= a

ji
a

ik
=

jk
a

ij
= a

ij( )
1

= a
ji
 . 

The transformation coefficients 
 
a

ij
 or 

  
a

ij
 are the direction cosines of the rotations 

   
e

i
e

j
 or 

   
e

j
e

i
, respectively. 

 

    

a
ij
= e

i
e

j
= cos e

i
,e

j( )
a

ij
= e

i
e

j
= cos e

i
,e

j( )
 .  

For a rotation in the 
  
e

1
,e

2( ) -plane by an angle , the transformation matrix becomes 

 

  

a
ij( ) =

cos sin 0

sin cos 0

0 0 1

 , 

resulting in  

 

   

e
1
= cos e

1
+ sin e

2

e
2
= sin e

1
+ cos e

2

e
3
= e

3

 .  

The components of a vector and a tensor 

 
    
v = v

i
e

i
= v

i
e

i
, T = T

ij
e

i
e

j
= T

ij
e

i
e

j
 . 

transform like 

 

   

v
i
= a

ij
v

j
or v

i
= a

ij
v

j
= a

ji
v

j

T
ij
= a

ik
a

jl
T

kl
or T

ij
= a

ik
a

jl
T

kl
= a

ki
a

lj
T

kl

 . 
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A1.4 Vector und Tensor Analysis 

Derivatives in Cartesian (rectilinear) coordinates 

 x = xi ei = x ex + yey + zez  , dx = dxi ei = dx ex + dyey + dzez  

 NABLA operator =
x
= ei xi

= ex x
+ ey y

+ ez z
 

Gradient v = = grad =
x
=

xi
ei = ,i ei  

  T = gradv = v( )
T
=
v
x
=

viei( )
x j

e j = vi, j eie j  

Divergence = divv = v =
vi
xi
= vi,i   

  w = divT = TT
=

Tkj
xi
ei e j ek =

Tkj
xi

ij ek =
Tki
xi
ek = Tki,i ek  

Curl  w = curlv = v( )
T
=

vi
x j
ei e j =

vi
x j

ijk ek = vi, j ijk ek  

 LAPLACEan =
2
=

2

xi xi
=

2

x2
+

2

y2
+

2

z2
 

 

Derivatives in cylindrical (curvilinear) coordinates 

 x = r er + zez  , dx = dr er + r der + dzez = dr er + r d e + dzez  

    
er

= e ,
e

= er ,
ei
r
=
ei
z
= 0 (i = r, , z)  

 NABLA operator =
x
= er r

+ e
r

+ ez z
 

Divergence = divv = v = er r
+ e

r
+ ez z

vrer + v e + vzez( )   

  =
vr
r
+ e

vr
r

er
+
1

r

v
+

vz
z
=

vr
r

vr
r
+
1

r

v
+

vz
z

  

and correspondingly for other operations. 
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Theorem of GAUSS: 

Let B be a regular domain in the EUCLIDean space E3 with surface B, n the outer normal on 
B,  a vector or (rank 2) tensor field being continuous on B and continuously differentiable 

in the interior of B, then 

 
    

n dA
B

= div dA
B
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A2. 2nd Order Tensors and their Properties 

A2.1 Inverse and Orthogonal Tensors 

A tensor T is said to be invertible if there exists a tensor T-1, called the inverse of T, such that 

 T T 1
= T 1 T = 1  . 

A tensor T is said to be orthogonal, if T is invertible and T 1
= TT . Thus T is orthogonal, if 

and only if 

 T TT
= TT T = 1  . 

The inverse of the transposed tensor TT is denoted by T-T. 

 

A2.2 Symmetric and Skew Tensors 

Every tensor T can be decomposed into a symmetric and a skew part 

 T = 1
2 T + TT( ) + 1

2 T TT( ) = symT + skwT  

 symT = 1
2 T + TT( ) = symT( )

T
=

T11
1
2 T12 + T21( ) 1

2 T13 + T31( )
1
2 T21 + T12( ) T22

1
2 T23 + T32( )

1
2 T31 + T13( ) 1

2 T32 + T23( ) T33

 

 skwT = 1
2 T TT( ) = skwT( )

T
=

0 1
2 T12 T21( ) 1

2 T13 T31( )
1
2 T21 T12( ) 0 1

2 T23 T32( )
1
2 T31 T13( ) 1

2 T32 T23( ) 0

 

 

Theorem 

Given a skew tensor, T = TT , there exists a unique vector w such that 

 T u = w u  (A-1) 

for every vector u. Conversely, given a vector w, there exists a unique skew tensor T such 
that (A-1) holds for every vector u. 

The vector w is called the dual vector of the tensor T. 

 T =

0 w3 w2
w3 0 w1
w2 w1 0

eie j( )  
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A2.3 Fundamental Invariants of a Tensor 

Every (2nd order) tensor, T, has three (scalar valued) invariants, which do not change their 
value during transformation of the coordinate (base vector) system. The fundamental 
(principal) invariants are defined as  

 

IT = trT = Tii

IIT =
1
2 trT( )

2
trT2 = 1

2 TiiTkk TikTki[ ]

IIIT = detT = ijkTi1Tj2Tk3 = ijkT1iT2 jT3k

 . 

Every linear combination of the three principal invariants is again invariant against a 
coordinate transformation. T and TT have the same invariants. 

A2.4 Eigenvalues and Eigenvectors 

Given a (2nd order) tensor, T, then vectors, v, are searched, for which  

 T v = v  or T 1( ) v = 0 . (A-2) 

This is called the "eigenvalue problem". As the algebraic set of equations for determining the 
components of v is homogeneous, the solution condition is 

 det T 1( ) = 0 . 

It leads to the "characteristic equation" 

 3 IT
2
+ IIT IIIT = 0 . 

If T is a symmetric tensor, T = TT , then all three roots of the characteristic equation are real, 
that means that T has exactly three (not necessarily distinct) real eigenvalues (or: principal 
values), i (i = 1, 2, 3). The eigenvalues are, of course, invariants of the tensor. Eigenvectors 
(or: principal vectors) corresponding to two distinct eigenvalues of a symmetric tensor are 
orthogonal, v i v j = 0 for i j , or: the principal directions corresponding to distinct 
principal values of T are orthogonal. As the algebraic set of equations (A-2) for determining 
the components of v is homogeneous, the eigenvectors are determined except for a scalar 
factor, i.e. their length remains undetermined. They can hence be normalised 

 v i v j = ij =
1 for i = j

0 for i j
 

Eigenvectors form an orthogonal and normalised system of base vectors with respect to which 
the matrix of T is diagonal, 

 T =

1 0 0

0 2 0

0 0 3

v iv j( ) = 1 v1v1 + 2 v2v2 + 3 v3v3 . (A-3) 

Or: Given a symmetric tensor T, then with respect to its principal axes, vi, the matrix of T is 
diagonal. (A-3) is called the spectral form of T. 
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A2.5 Isotropic Tensor Functions 

Real Valued Isotropic Tensor Function (T)  

 (T) = (Q T QT)  with Q QT
= 1  

Theorem: Representation of real isotropic tensor functions 

A real isotropic tensor function (T) can be represented 

• either as a function of the principal invariants of the tensor T 

 (T) = (IT , IIT , IIIT )  

• or as a symmetric function of the eigenvalues of T 

 
 
(T) = ( i ) (i = 1,2,3)  

Tensor Valued Isotropic Tensor Function (T)  

 (T) = (Q T QT) = Q (T) QT    with Q QT
= 1  

Theorem: Representation of tensorial isotropic tensor functions 

A tensorial isotropic tensor function (T) can be represented 

• either as a 2nd order polynomial of T 

 (T) = 01 + 1T+ 2T
2 with i = i (IT , IIT , IIIT )  

• or by the spectral form 

 (T) = ( 1, 2 , 3)v1v1 + ( 2 , 3, 1)v2v2 + ( 3, 1, 2 )v3v3  

 with one real function (µi ) of three arguments, µ i, being symmetric in the second and 

the third, (µ1,µ2 ,µ3) = (µ1,µ3,µ2 ) , if T has the eigenvalues i and the unit 

eigenvectors vi. 

The eigenvectors of T are also the eigenvectors of (T), that is: 

 eigenvalue problem: T v i = (i ) v(i )  
53, spectral form: T = i v iv i

i=1

3

, 

 eigenvalue problem: (T) v i = (i ) v(i )  , spectral form: (T) = i v iv i
i=1

3

. 

From the condition of isotropy, it follows that  

 1 = 2 = 3 = ( i , i+1, i+2 ) = ( i , i+2 , i+1)  ,  i = 1, 2, 3 modulo 3. 

 

                                                
53  no summation 



EngMech-Script.doc, 29.11.2005 - 77 - 

A3 Physical Quantities and Units 

A3.1 Definitions 

Physical quantities are used for the qualitative and quantitative description of physical 
phenomena. They represent measurable properties of physical items, e.g. length, time, mass, 
density, force, energy, temperature, etc.  

Every specific value of a quantity can be written as the product of a number and a unit. This 
product is invariant against a change of the unit.  

Examples: 1 m3 = 1000 cm3, 1 m/s = 3,6 km/h 

Physical quantities are denoted by symbols. 

Examples:  Length l, Area A, velocity v,  force F 

  l = 1 km, A = 100 m2, v = 5 m/s F = 10 kN 

Base quantities are quantities, which are defined independently from each other in a way that 
all other quantities can be derived by multiplication or division. 

Examples: Length, l, time, t, and mass, m, can be chosen as base quantities in dynamics. 

The unit of a physical quantity is the value of a chosen and defined quantity out of all 
quantities of equal dimension.  

Example: 1 meter is the unit of all quantities having the dimension of a length (height, 
width, diameter, ...)  

The numerical value of a quantity G is denoted as {G}, its unit as [G]. 

The invariance relation is hence G = {G} [G] 

Base units are the units of base quantities The number of base units is hence always equal the 
number of base units.  

Example: Meter, second and kilogramm can be chosen as base units in dynamics 

 [l] = m, [t] = s,  [m] = kg 

For discriminating symbols (for quantities) from units, the former are printed in italics, the 
latter plain. 
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A3.2 SI Units 

SI = Système International d'Unités - ISO 1000 (1973) 

SI units are the seven base units of the seven base quantities of physics, namely 

 

Base Quantity SI Base Unit 

 Name  Character 

Length meter m 

Mass kilogramm kg 

Time second s 

Thermodynamic. Temperature Kelvin K 

Electrical Curent Ampere A 

Amount of Substance mol mol 

Luminous Intensity candela cd 

 

Derived units are composed by products or ratios of base units. The same holds for the unit 
characters. Some derived SI units have a special name and a special unit character 

 

Quantity SI Unit Relation 

 Name  Char.  

angle radiant rad 1 rad = 1 m / m 

frequency Hertz Hz 1 Hz = 1 s-1 

force Newton N 1 N = 1 kg m s-2 

pressure, stress Pascal Pa 1 Pa = 1 N / m2 

energy, work, heat Joule J 1 J = 1 N m 

power, heat flux Watt W 1 W = 1 J / s 

electric charge  Coulomb C 1 C = 1 A s 

electric potential, voltage  Volt V 1 V = 1 J / C 

electric capacity Farad F 1 F = 1 C / V 

electric resistance Ohm  1  = 1 V / A 

electric conductivity Siemens S 1 S = 1 -1 

magnetic flux Weber Wb 1 Wb = 1 V s 

magnetic. flux density Tesla T 1 T = 1 Wb / m2 

inductivity Henry H 1 H = 1 Wb / A 
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A3.3 Decimal Fractions and Multiples of SI Units  

Fractions and multiples of SI units obtained by multiplication with factors 10±3n (n = 1, 2, ...) 
have specific names and characters, which are generated by putting special prefixes before the 
names and the characters of the SI units.  

 

Factor Prefix Character 

10-15 femto f 

10-12 pico p 

10-9 nano n 

10-6 micro µ 

10-3 milli m 

103 kilo k 

106 Mega M 

109 Giga G 

1012 Tera T 

 

A3.4 Conversion between US and SI Units  

Length: 1 m = 39.37 in 1 in = 0.0254 m 

 1 m = 3.28 ft  1 ft = 0.3048 m 

Force: 1 N = 0.2248 lb 1 lb = 4.448 N 

 1 kN = 0.2248 kip 1 kip = 4.448 kN 

Stress: 1 kPa = 0.145 lb/in2 1 lb/in2 = 6.895 kPa 

 1 MPa = 0.145 ksi 1 ksi = 6.895 MPa 
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A4.  MURPHY's Laws 

1. Nothing is as easy as it looks.  

2. Everything takes longer than you think.  

3. Anything that can go wrong will go wrong.  

4. If there is a possibility of several things going wrong, the one that will cause the most 
damage will be the one to go wrong. Corollary: If there is a worse time for something 
to go wrong, it will happen then.  

5. If anything simply cannot go wrong, it will anyway.  

6. If you perceive that there are four possible ways in which a procedure can go wrong, 
and circumvent these, then a fifth way, unprepared for, will promptly develop.  

7. Left to themselves, things tend to go from bad to worse.  

8. If everything seems to be going well, you have obviously overlooked something.  

9. Nature always sides with the hidden flaw.  

10. Mother nature is a bitch.  

11. It is impossible to make anything foolproof because fools are so ingenious.  

12. Whenever you set out to do something, something else must be done first.  

13. Every solution breeds new problems.  

MURPHY’s Law of Research 

Enough research will tend to support your theory.  

MURPHY’s Law of Copiers 

The legibility of a copy is inversely proportional to its importance.  

MURPHY’s Law of the Open Road 

When there is a very long road upon which there is a one-way bridge placed at random, 
and there are only two cars on that road, it follows that: (1) the two cars are going in 
opposite directions, and (2) they will always meet at the bridge.  

MURPHY’s Law of Thermodynamics 

Things get worse under pressure.  

The MURPHY Philosophy 

Smile ... tomorrow will be worse.  

Quantisation Revision of MURPHY’s Laws 

Everything goes wrong all at once.  

MURPHY’s Constant 

Matter will be damaged in direct proportion to its value  

 

 


