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Compressible flow

In a nutshell, the term compressible flow refers to the fluids of

which there can be found significant variation of density in the flow

under consideration.

Compressibility is strongly related to the speed of the flow itself and

the thermodynamics of the fluid. A good grasp of thermodynamics

is imperative for the study of compressible flow.

For low-speed flow, the kinetic energy is often much smaller than

the heat content of the fluid, such that temperature remains more or

less constant.

On the other hand, the magnitude of the kinetic energy in a

high-speed flow can be very large, able to cause a large variation in

the temperature.

Some important phenomena strongly associated with compressibility

are the flow discontinuity and choking of the flow.
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Compressible flow

To illustrate, consider a car at sea-level, 1 atm and 15 ◦C, going at a

speed of 90 km/h. The density is 1.225 kg/m3. At a stagnation

point, the density there is found to be 1.228 kg/m3, a mere 0.27 %
difference. The temperature rises by 0.311 ◦C and the pressure

changes by 0.38 %. Here, the incompressible assumption can be

applied.

Now, consider a typical air flow around a cruising jetliner at 10 km
altitude. The speed is now 810 km/h, while the ambient conditions

are 0.413 kg/m3, 0.261 atm and −50 ◦C. At the stagnation point the

temperature rises by over 25 ◦C, while density and pressure changes

by more than 30 % and 45 %, respectively. It is clear that

compressibility must now be taken into account.
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Compressible flow

Figure 1: Breaking the sound

barrier. . . ?

An extreme example of

compressible flow in action is the

re-entry flow. Another is shown

here on the left as a jet fighter

seemingly punches through the

“sound barrier”. However, more

daily mundane applications can

also be found in flows through jet

engines, or around a transport

aircraft.
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Zeroth law of thermodynamics

The concept of equilibrium is fundamental to the study of

thermodynamics, yet it was not wholly appreciated until later. Thus,

it is deemed necessary to define the zeroth law of thermodynamics,

as a way to say that it precedes even the first law, as follows:

When two objects are separately in thermodynamic

equilibrium with a third object, they are in equilibrium

with each other.

A system is said to be in equilibrium if it is free of currents. The

term “currents” here refers to the flux of quantities such as mass,

momentum, or energy, which is caused by gradients in the system.
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First law of thermodynamics

The first law is a statement of energy conservation. It states that the

increase in the internal energy level of a system E is equal to the

amount of heat Q flowing in from the surroundings and work W

done on the system by the surroundings. Mathematically, it can be

written as:

∆E = Q + W (1)

Note that E is a variable of state, while Q and W depend on the

process involved in the state change. And, for a small change of

state the law can be written in a differential form as:

dE = δQ + δW (2)
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First law of thermodynamics

Consider this simple

idolized system of

cylinder-piston

arrangement,

assuming rigid walls.

Note that the only

avenue for work done

is through the

displacement of the

piston. Figure 2: Simple cylinder-piston arrangement

Gasdynamics — Lecture Slides

First law of thermodynamics

Thus, for the system considered here, the work term can be written

in terms of force vector ~F and displacement ~r as:

W =

∫

~F · d~r = −
∫

PA dr = −
∫

P dV (3)

However, it can also be expressed in terms of pressure P and the

volume V , since the force is acting parallel to the displacement and

is equal to the pressure P multiplied by the piston surface area A.

Note that the negative sign indicates that the work is done by the

system if the system volume increases.

Gasdynamics — Lecture Slides



First law of thermodynamics

One can also distinguish between extensive and intensive variables

of state. An variable is extensive if its value depends on the mass of

the system. Such are the system’s mass m, E and V .

On the other hand, an intensive variable is independent on the mass

of the system, temperature ϑ and P being typical examples.

Also, for every extensive quantity, such as E , one can introduce its

intensive counterpart e, the energy per unit mass, or specific energy.

Similarly, specific volume v = V /m can be defined.
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First law of thermodynamics

Using specific variables, the first law can now be written in its

differential form as:

de = 1
m
δQ − P dv = δq − P dv (4)

Besides the energy E , one can also introduce the concept of

enthalpy H , which is defined as:

H = E + PV (5)

Thus, the first law can be expressed using enthalpy as:

dh = de + P dv + v dP = δq + v dP = δq +
dP

ρ
(6)

where ρ = 1/v is the mass density of the system.

Gasdynamics — Lecture Slides



Equation of state — ideal gas

Measurements of thermal properties of gases have shown that for

low densities, the relationship among the variables approaches the

same form for all gases, which is referred to as the ideal gas

equation:

Pv = R (ϑ+ ϑ◦) (7)

The characteristic temperature ϑ◦ turns out to be the same for all

gases, ϑ◦ = 273.15 ◦C. Thus, it is much more convenient to adopt

Kelvin scale in favour of the Celcius scale, such that T = ϑ+ ϑ◦.
Furthermore, the gas constant per unit mass R is a characteristic for

different gases. For air, this value is approximately 287.053 J/kg · K.
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Specific heats

Heat capacity of a substance C , an extensive property, is defined as

the heat amount required to change its temperature, and can be

expressed as:

C =
Q

∆T
(8)

For gases, the heat transfer Q can occur by different processes.

Hence, the value of C is also dependent on the process path.

It is also more convenient to work with the notion of specific heat,

which is simply the heat capacity per unit mass.
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Specific heats

In thermodynamics, it is empirically shown that, for a simple

system, any state variable can be expressed as a function of two

other variables. Hence, one only needs two values of specific heats

to adequately describe the values for all processes, typically the

values chosen are those for constant volume (isochoric) cv and

constant pressure (isobaric) cp processes:

cv =
δq

dT

∣

∣

∣

∣

v

and cp =
δq

dT

∣

∣

∣

∣

P

(9)
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Specific heats

Assume that specific energy e is a funtion of v and T . Then:

de =
∂e

∂v
dv +

∂e

∂T
dT = δq − P dv (10)

or:

δq =
∂e

∂T
dT +

(

∂e

∂v
+ P

)

dv (11)

Hence, the specific heats can be expressed as:

cv =
δq

dT

∣

∣

∣

∣

v

=
∂e

∂T
(12)

cp =
δq

dT

∣

∣

∣

∣

P

=
∂e

∂T
+

(

∂e

∂v
+ P

)

∂v

∂T

∣

∣

∣

∣

P

(13)
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Specific heats

Likewise, using specific enthalpy h as a funtion of P and T :

dh =
∂h

∂P
dP +

∂h

∂T
dT = δq + v dP (14)

or:

δq =
∂h

∂T
dT +

(

∂h

∂P
− v

)

dP (15)

And now, the specific heats can be expressed as:

cv =
δq

dT

∣

∣

∣

∣

v

=
∂h

∂T
+

(

∂h

∂P
− v

)

∂P

∂T

∣

∣

∣

∣

v

(16)

cp =
δq

dT

∣

∣

∣

∣

P

=
∂h

∂T
(17)
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The “perfect” gas

No gas is truly “perfect”. However, it is the simplest working

model. Further, experiences show that for a large range of

applications, the gases are under “nearly perfect” conditions to

justify the use of the model.

A thermally perfect gas is characterised by the fact that energy e is

solely a function of temperature:

e = e (T ) (18)

From the definition of enthalpy:

h = e + Pv = e (T ) + RT = h (T ) (19)
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The “perfect” gas

Furthermore, it follows then that the specific heats are also functions

of only temperature:

cv =
de

dT
(20)

cp =
de

dT
+ P

∂v

∂T

∣

∣

∣

∣

P

= cv + R (21)

Similarly:

cv =
dh

dT
− v

∂P

∂T

∣

∣

∣

∣

v

= cp −R (22)

cp =
dh

dT
(23)
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The “perfect” gas

The followings then apply for perfect gases:

R = cp − cv (24)

e (T ) =

∫

cv dT (25)

h (T ) =

∫

cp dT (26)

γ =
cp

cv

(27)

where γ is the ratio of specific heats. For diatomic gases, e.g.,

nitrogen and oxygen, which constitute the bulk of the Earth’s

atmosphere at standard conditions, this value is found to be roughly

1.4.
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The “perfect” gas

An important special case is the calorically perfect gas, where the

specific heats are constants, independent of temperature T . For this

special class, integrations can be carried out, resulting in:

e (T ) =

∫

cv dT = cvT + constant (28)

h (T ) =

∫

cp dT = cpT + constant (29)
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Second law of thermodynamics

The first law of thermodynamics dictates that energy must be

conserved in a change of state for a system. It doesn’t say in which

direction such change of state is allowed. Consider the following.

Figure 3: Joule’s

paddle-wheel experiment

In this experiment, the weight is allowed to

drop, turning the paddles, which in turn

raises the temperature of the gas in the

adiabatic container. It is clear that one

cannot induce the wheel by itself to extract

the energy from the gas and lift the

weight, thus reversing the process.
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Second law of thermodynamics

For a reversible change of state of an adiabatically enclosed system,

the following can be shown:

P =
∂E

∂V
(30)

Now assume that similar relation can be found for T , using a

variable S , the entropy. Express E as function of S and V , such

that:

dE =
∂E

∂S
dS +

∂E

∂v
dV = T dS − P dV (31)

Hence, using the first law of thermodynamics, the following is found

for a reversible process:

δQ = T dS (32)
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Second law of thermodynamics

The concept of entropy can be generalized for any arbitrary process

between two states 1 and 2:

S2 − S1 ≥
∫

δQ

T
(33)

For thermally perfect gas, S , or the specific entropy s , can be given

explicitly, relative to some reference state:

s =

∫

de + P dv

T
=

∫

cv

T
dT +

∫ R
v

dv (34)

=

∫

dh − v dP

T
=

∫

cp

T
dT −

∫ R
P

dP (35)

And, for calorically perfect gas:

s − so = cv ln
T

To

+ R ln
v

vo

= cp ln
T

To

−R ln
P

Po

(36)
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Adiabatic, reversible process

The term adiabatic refers to the idea that no heat passes through the

boundary of the system, δQ = 0.

The term reversible indicates that the system can be restored to its

initial state with no changes in both the system itself and its

surroundings, such that no energy is being dissipated. This is

signified as dS = δQ/T .

In general, dS ≥ δQ/T for natural processes. This means that

entropy increase can be attributed to either heat transfer, or to

irreversibilities.

A process that is both adiabatic and reversible is marked by the fact

that the entropy is kept constant, dS = 0.

Though it may sound very restrictive, plenty of important

applications in fluid flow can qualify. Consequently, isentropic

analysis is used rather extensively.
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Adiabatic, reversible process

From the first law, the following can be written for isentropic

processes:

∂e

∂v
dv +

∂e

∂T
dT = −P dv (37)

∂h

∂P
dP +

∂h

∂T
dT = v dP (38)

Which result in:

dT

dv
= − 1

cv

(

∂e

∂v
+ P

)

(39)

dT

dP
= − 1

cp

(

∂h

∂P
− v

)

(40)
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Adiabatic, reversible process

For perfect gases, where R = cp − cv and γ = cp/cv , these simplify

to:

v

T

dT

dv
= −R

cv

= − (γ − 1) (41)

P

T

dT

dP
=

R
cp

=
γ − 1

γ
(42)

where γ generally depends on temperature T , except when

calorically perfect gas is assumed. In any case, these relationships

can be easily integrated.
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Adiabatic, reversible process

For constant γ:

ln
v

vo

= −
∫

dT

(γ − 1) T
= − 1

γ − 1
ln

T

To

(43)

ln
P

Po

=

∫

γ dT

(γ − 1) T
=

γ

γ − 1
ln

T

To

(44)

And since ρ = 1/v :

ln
ρ

ρo

=
1

γ − 1
ln

T

To

(45)
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The free energy and free enthalpy

In addition to energy E and enthalpy H , one can also define the

following two state variables: Helmholtz function (free energy) F

and Gibbs function (free enthalpy) G . These are related to E and H

as follows:

F = E − TS (46)

G = H − TS (47)

In differential forms, one then ends up with the followings:

dE = T dS − P dV (48)

dF = −S dT − P dV (49)

dG = −S dT + V dP (50)

dH = T dS + V dP (51)
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Entropy and real gas flows

In reality, irreversible state changes increase the entropy. It can be

argued that during such process entropy are produced and left in the

system. In the case of simple one-dimensional flow the following

can be obtained. Let σ be defined as the rate of entropy change per

unit time and volume:

σT =
κ

T 2

(

dT

dx

)2

(52)

σu =
µ̃

T

(

du

dx

)2

(53)

where κ is the coefficient of heat conduction, while µ̃ denotes a

coefficient of viscosity.
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Entropy and real gas flows

Experiments have shown that for large regions of the flow, these

gradients are small. Consequently, entropy production is very small

and may be neglected in these regions. This, however, do not apply

to regions where large gradients exist, such as across shock waves,

and flows inside the boundary layers, vortex cores and wakes. In

this regions, non-isentropic analysis must be employed.
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One-dimensional gas dynamics

To begin the study of the motion of compressible fluids, it is

advisable to consider the case of one-dimensional flow, shown here

as a streamtube in the figure.

Figure 4: A streamtube
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One-dimensional gas dynamics

Note that this definition still holds in the case of slowly varying

cross-sectional area along the axis x , provided that the variation is a

function of the axis A = A (x) only, unchanging in time; and that

flow properties, e.g., P and ρ, are uniform across the cross-section,

including the velocity u = u (x), which is normal to the

cross-sectional area. These flow quantities can also be allowed to

vary with time t in case of non-stationary or unsteady flows.

In a one-dimensional incompressible flow, practically all information

is contained in the kinematic relation uA = constant, while pressure

is obtained independently using the Bernoulli equation.

On the other hand, compressible flows impose inter-dependency

between the conservation of mass and momentum, and the

“area-velocity” rule is no longer straightforward.
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Conservation of mass — continuity equation

Refer to the figure below.

Figure 5: Flow through a tube segment

Note that the mass flow rate across any cross-section is ṁ = ρuA.

Also, the mass enclosed within the segment for small enough ∆x

can be set equal to ρA∆x .
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Conservation of mass — continuity equation

The amount of fluid mass enclosed within the segment increases at

the rate of ∂t (ρA∆x). Since mass is conserved, any sources or

sinks can be excluded, and any increases must be balanced by the

inflow through 1, minus the outflow through 2, such as:

∂
∂t

(ρA∆x) = − ∂
∂x

(ρuA) ∆x (54)

Since ∆x does not depend on time t, and may be divided through,

this results in the continuity equation:

∂
∂t

(ρA) + ∂
∂x

(ρuA) = 0 (55)

And in the case of steady flow situations, the time dependency can

be dropped, and one is left with:

d
dx

(ρuA) = 0 ⇒ ṁ = ρuA = constant (56)
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Conservation of energy — energy equation

Refer to the figure below.

Figure 6: System for energy calculation

Assume steady state

condition

Include the kinetic

energy contribution
1
2u2

Assume small enough

displacements, such

that the pressure

variations at the pistons

are negligible
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Conservation of energy — energy equation

During some time increment ∆t, the pistons moved from 1–2
positions to 1′–2′ positions. Also, some heat ∆q is added to the

system. Furthermore, the work done by the pistons is:

∆w = P1v1 − P2v2 (57)

According to the first law, the energy balance, which now includes

the kinetic energy contributions, is expressible as:

(

e2 + 1
2u2

2

)

−
(

e1 + 1
2u2

1

)

= ∆q +∆w = ∆q +(P1v1 − P2v2) (58)

In terms of the enthalpy h = e + Pv = e + P/ρ, this balance

equation becomes:

(

h2 + 1
2u2

2

)

−
(

h1 + 1
2u2

1

)

= ∆q (59)
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Conservation of energy — energy equation

Note that ∆q as shown in the figure refers to heat from outside the

walls. Heat generated internally is included in h. Also, the energy

equation derived here relate the equilibrium states at sections 1 and

2 in the figure. It is valid even if there are regions on

non-equilibrium in-between, as long as the flow is at equilibrium at

the sections themselves.

In adiabatic flows, there is no heat transfer allowed, ∆q = 0, and

the equation is refered as the adiabatic energy equation:

h2 + 1
2u2

2 = h1 + 1
2u2

1 (60)

If in addition, equilibrium exists all along the flow, then the

equilibrium equation is valid continously, and one ends up with:

h + 1
2u2 = constant (61)
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Conservation of energy — energy equation

In the case of equilibrium flows, one may obtain the differential

form:

dh + u du = 0 (62)

For a thermally perfect gas, this can be rewritten as:

cp dT + u du = 0 (63)

And, if the gas is calorically perfect, this can be integrated as:

cpT + 1
2u2 = constant (64)
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Reservoir conditions

It is helpful to define the stagnation or reservoir conditions for

fluids in equilibrium, where the velocity is negligible and can be set

to zero. This allows one to obtain the stagnation / reservoir enthalpy

ho :

h + 1
2u2 = ho (65)

Figure 7: Flow between two reservoirs
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Reservoir conditions

In the case of adiabatic flow, the reservoir enthalpy in the second

reservoir is also equal to that of the first reservoir, as well as along

the connecting channel:

h′o = ho = h + 1
2u2 (66)

By assuming (calorically) perfect gas, h = cpT , one is left with:

cpT
′

o = cpTo ⇒ T ′

o = To (67)

Be aware that this is only for the perfect gas, otherwise only the

constancy of the stagnation enthalpy holds in the adiabatic flows.

Also note that often these stagnation or reservoir conditions are

referred to as the total conditions.
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On isentropic flows

Refering again to the figure of the flow between two reservoirs, note

that the first law doesn’t forbid the flow to be reversed, i.e., from

right to left. This illustrates the application of the second law:

s ′o − so ≥ 0 (68)

For the calorically perfect gas, one has:

s ′o − so = cp ln
T ′

o

To

−R ln
P ′

o

Po

= −R ln
P ′

o

Po

≥ 0 (69)

This simply implies what one intuitively would have conclude,

which is that the downstream reservoir pressure cannot be greater

than upstream one, P ′

o ≤ Po , in order for a spontaneous flow to take

place.
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On isentropic flows

Looking back at the definition of entropy change:

ds =
1

T
(de + P dv) =

1

T

(

dh − 1

ρ
dP

)

(70)

The following can be obtained:

∂s

∂P

∣

∣

∣

∣

h

= − 1

ρT
< 0 (71)

This shows that an increase in entropy, at constant stagnation

enthalpy, must result in a decrease in stagnation pressure.

The irreversible increase in entropy, with the decrease in total

pressure, is due to the entropy production between the reservoirs.
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On isentropic flows

This entropy production will only be absent if there are no

dissipative processes, i.e., the flow is in equilibrium throughout.

Only for such “isentropic flow” do s ′o = so and P ′

o = Po .

And now, the term total condition can now be broadened to include

conditions at any point of the flow, not just at the reservoirs as

follows:

The local total conditions at any point in the flow are the

conditions that would be attained if the flow there were

brought to rest isentropically.

In the light of this definition, the local stagnation, or total entropy is

equal to the local static entropy, s ′o = s ′.

Gasdynamics — Lecture Slides



On isentropic flows

For adiabatic flows of perfect gases, this allows for measurement of

flow entropy from the measurement of the local total pressure,

which under suitable conditions can be made using a simple pitot

probe, since the total temperature To is constant throughout:

s ′ − s = −R ln
P ′

o

Po

(72)

Be fully aware that for stagnation conditions to properly exist, it is

not sufficient that the velocity is zero. It is also necessary that

equilibrium conditions exist, and there are non-negligible gradients

to cause currents.
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Euler’s equation

Newton’s second law states that the rate of change of momentum for

a body is proportional to the force acting on it:

~F =
D

Dt
(m~u) = m

D~u

Dt
= m~a (73)

where ~a is the acceleration suffered by the body.

It is customary to adopt Eulerian viewpoint when it comes to taking

derivatives of some field quantity φ associated with the fluid

particle, which is assumed to be a function of both time and its

position. That is to say that φ = φ (t,~x). Thus, in one-dimensional

flows, the following definition then applies:

dφ =
∂φ

∂t
dt +

∂φ

∂x
dx (74)
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Euler’s equation

On the other hand, a particle’s position is also a time-dependent

variable. Hence, the rate of change of φ is expressible as:

Dφ

Dt
=
∂φ

∂t
+

(

dx

dt

)

∂φ

∂x
=
∂φ

∂t
+ u

∂φ

∂x
(75)

Be aware of the two parts involved: the local time derivative and the

convective derivative associated with the spatial changes to the

quantity φ as the particle travels with the fluid velocity u. Together,

they are called the total or material derivative.

Accordingly, the acceleration suffered by the fluid particle in a

one-dimensional flow can be written as:

Du

Dt
=
∂u

∂t
+

dx

dt

∂u

∂x
=
∂u

∂t
+ u

∂u

∂x
(76)

Note that the velocity term occurs twice in the expression.
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Euler’s equation

Figure 8: Pressure on a fluid particle

in diverging stream tube

At present, it is assumed

that the only forces acting

on the fluid are inviscid in

nature, no viscous

elements are included.

Furthermore, gravitational

effects are also neglected.

Thus, one ends up with

only pressure forces.
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Euler’s equation

From the preceding figure, the pressure forces in the x-direction can

be summed up as:

∑

Fx = PA + Pm

∂A

∂x
∆x −

(

P +
∂P

∂x
∆x

)(

A +
∂A

∂x
∆x

)

(77)

where Pm = P + 1
2∂xP∆x is, for lack of better words, the mean

pressure between the two stations.

By expanding and neglecting the second order terms, one then ends

up with:
∑

Fx = −∂P

∂x
A∆x (78)
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Euler’s equation

Recall that the mass inside the volume is m = ρA∆x . Putting terms

into Newton’s second law, one ends up with:

ρA∆x

(

∂u

∂t
+ u

∂u

∂x

)

= −∂P

∂x
A∆x (79)

And by dividing out the term A∆x :

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂P

∂x
(80)

one ends up with the conservation of momentum for inviscid fluids,

often also called as the Euler’s equation.
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Euler’s equation

For steady flows, ∂tu = 0, ∂tu = 0, and the Euler equation

becomes:

u du +
dP

ρ
= 0 (81)

When P is a known function of ρ, one can integrate and obtain the

celebrated Bernoulli equation:

1
2u2 +

∫

dP

ρ
= constant (82)

For example, incompressible assumption ρ = ρo gives:

1
2ρou2 + P = constant (83)

An isentropic process for perfect gas gives P/Po = (ρ/ρo)γ
,

resulting in:
1
2u2 + γ

γ−1 (P/ρ) = constant (84)
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Momentum equation

The continuity equation and the Euler’s equation can be combined

to yield an integral form of momentum balance equation.

By multiplying the continuity equation by u and the Euler’s

equation by ρA, one obtains:

u
∂

∂t
(ρA) + u

∂

∂x
(ρuA) = 0 (85)

ρA
∂

∂t
(u) + ρuA

∂

∂x
(u) = −A

∂

∂x
(P) (86)

One can then take the sum of the results and apply integration by

parts, which results in the following:

∂

∂t
(ρuA) +

∂

∂x

(

ρu2A
)

= − ∂

∂x
(PA) + P

dA

dx
(87)
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Momentum equation

Figure 9: Control volume for the momentum equation

Refering to the figure above, the previous equation can be integrated

with respect to x from 1 to 2.
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Momentum equation

Noting that the time differentiation can be taken out from inside the

integral sign, one now has:

∂

∂t

∫ 2

1
(ρuA) dx +

(

ρ2u
2
2A2 − ρ1u

2
1A1

)

= − (P2A2 − P1A1) +

∫ 2

1
P dA

(88)

The first integral is the momentum of the fluid contained in the

control volume, while the last integral can be evaluated by defining

a mean pressure Pm, which can then be taken out of the integral

sign, and may include even contributions from viscous effects:

∫ 2

1
P dA = Pm (A2 − A1) (89)
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Momentum equation

Thus, the left-hand-side is the rate of change of the fluid’s

momentum, consisting of the local contribution inside the control

volume, and the contribution due to the transport (flux) of the

momentum through the end sections.

The right-hand-side is the force in the direction of the flow, which

here is the x-direction, both from the end sections and also from the

walls.

This equation turns out to be more general than what the eye

catches. It is still valid even if there are regions of dissipation

(viscous effects) within the control volume, provided that they are

absent at the reference points 1 and 2.
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Momentum equation

As shown here, the forces and fluxes on adjacent internal faces

cancel each other. Thus, any inequlibrium regions inside this

volume do not affect the end result.

Figure 10: Summing the forces and fluxes in the control volume

Finally, for steady flow in a duct of constant area:

ρ2u
2
2 + P2 = ρ1u

2
1 + P1 (90)
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A review of equations of conservation

So far, the followings have been derived for a one-dimensional flow:

the conservation of mass, of linear momentum, and of total energy

(eo = e + 1
2u2):

∂

∂t
(ρA) +

∂

∂x
(ρuA) = 0

∂

∂t
(ρuA) +

∂

∂x

(

ρu2A
)

= − ∂

∂x
(PA) + P

dA

dx
∂

∂t
(ρeoA) +

∂

∂x
(ρueoA) = − ∂

∂x
(PuA)

(91)

Implicit in the expressions are the assumptions of negligible

transport coefficients, e.g., viscosity and heat conduction; adiabatic

condition at the walls; and that only pressure forces are present.
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Isentropic condition

It is stated before that a flow which is both adiabatic and in

equilibrium is isentropic. This can be verified from the energy and

momentum equations recently derived.

For adiabatic and non-viscous flows, the followings are applicable:

dh + u du = 0 and u du +
dP

ρ
= 0 (92)

Eliminating u du between the two:

dh − dP

ρ
= 0 (93)

From the mathematical definition of entropy T ds = dh − dP/ρ,

this is simply saying that entropy is constant.
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Isentropic condition

It is obvious that equilibrium cannot be strictly attained in real fluid,

since the fluid particle must continuously adjust itself upon

encountering new conditions. The rate of adjustments depends on

the existing gradients, and is a measure of the degree of

non-equilibrium in the flow. It has been mentioned before that

entropy production terms in one-dimensional flow are:

µ̃

T

(

∂u

∂x

)2

and
κ

T 2

(

∂T

∂x

)2

(94)
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Isentropic condition

Thus, entropy is always produced, since gradients are always

present, and coefficients of viscosity µ̃ and conductivity κ are finite.

However, a large and useful part of fluid mechanics, can be studied

using idealized flows, in which the fluid is assumed to be inviscid

and non-conducting (µ̃ = 0 and κ = 0).

Yet, be fully aware that even if the actual fluid possesses extremely

low values of µ̃ and κ, serious care must be taken in regions where

large gradients are present. Such exist as boundary layers, wakes,

vortex cores, and in supersonic flows, as shock waves.
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Speed of sound — Mach number

In principle, sound can be said to be waves of density and pressure

variations in space and in time.

Note that this is another hallmark of compressible flows, in that

small pressure changes can affect appreciable density changes, and

vice versa.

Furthermore, sound propagates at some finite speed through the

medium, while in incompressible flows, it is generally assumed to

be infinite.

And one can define the Mach number Ma as the ratio of flow

velocity u to that of the speed of sound a associated with the flow.
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Speed of sound — Mach number

To learn more about the speed of sound in the fluid, it is instructive

to assume several things:

The disturbance is weak enough that only small changes are

produced, and the flow properties can be considered

more-or-less continuous

The disturbance is fast enough that the process is adiabatic, no

heat transfer is allowed to take place

The disturbance is slow enough that no significant deviation

from equilibrium is taking place during the process, a

quasi-static condition

Since the process is considered to be both adiabatic and in

equilibrium, it is then also isentropic.
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Speed of sound — Mach number

Consider this thought experiment of a sound pulse caused by a

piston moving slowly into a still air in a duct of constant area.

(a) Laboratory frame (b) Moving frame

By considering the situation on the right figure as opposed to the

left, the problem becomes that of a steady state flow, since now the

wave front does not move in the frame of reference.
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Speed of sound — Mach number

The continuity equation gives:

(ρ+ dρ) (a − du) = ρa ⇒ a dρ− ρ du = 0 (95)

And the momentum equation gives:

[(ρ+ dρ) (a − du)] (a − du) + (P + dP) = ρa2 + P

⇒ dP/a − ρ du = 0
(96)

By eliminating ρ du from the two expressions, the following

expression for a is obtained:

a2 = dP/dρ (97)

But that still leaves out the question of how to relate the pressure

changes to the density changes.
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Speed of sound — Mach number

At this point, it is illustrative to show how choosing correct

assumptions matter.

Isaac Newton had based his works on Boyle’s law, which stated that

for an isothermal process pressure is linearly dependent on density.

When combined with the ideal gas equation, it gives:

dP

dρ
=
∂P

∂ρ

∣

∣

∣

∣

T

= RT (98)

Applying this to calculate the speed of sound:

a =
√
RT (99)

Imagine his sheer disappointment when experiments showed that he

was short by more than 15%.
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Speed of sound — Mach number

It shows that the “fast” adiabatic process of sound wave propagation

does not rule out temperature changes within the localized pressure

“pulse”. It is not a “slow” isothermal process, where the

temperature has had the chance to spread out evenly.

Now assume that pressure is a function of two state variables:

density and entropy. Earlier, it is stipulated that the sound motion is

an isentropic process. Hence, the following:

dP =
∂P

∂ρ

∣

∣

∣

∣

s

dρ+
∂P

∂S

∣

∣

∣

∣

ρ

ds ⇒ a2 =
∂P

∂ρ

∣

∣

∣

∣

s

(100)

For isentropic processes, the following relationships apply:

cp ln

(

T

To

)

−R ln

(

P

Po

)

= cv ln

(

T

To

)

−R ln

(

ρ

ρo

)

= 0 (101)
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Speed of sound — Mach number

Eliminating temperature from the equations gives the following

pressure-density relationship for isentropic process:

P

Po

=

(

ρ

ρo

)γ

⇒ dP

P
=
γ dρ

ρ
(102)

When combined with the ideal gas equation, the following correct

expression is obtained for the speed of sound in a calorically perfect

ideal gas:

a =

√

γP

ρ
=
√

γRT (103)
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Speed of sound — Mach number

As mentioned earlier, one can now define Mach number as the ratio

of the flow velocity and the speed of sound Ma = u/a. It is clear

that its value depends on the local flow velocity and the flow

conditions. Generally, Ma is assumed to be a positive value.

Based on the value of Mach number, fluid flows can often be

divided into several (sometimes overlapping) regimes:

sub / super-sonic Mach number is less / greater than 1

transonic Roughly set around 0.8 ≤ Ma ≤ 1.25

hypersonic Usually said to be Ma > 5, but mostly defined by the

high degree of real gas effects, such as dissociation of

gas molecules
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Results from the energy equation

Rewrite cp in terms of R and γ:

cp =
cp

cp − cv

(cp − cv ) =
cp/cv (cp − cv )

cp/cv − 1
=

γR
γ − 1

(104)

Use this result to rewrite the adiabatic energy equation for

calorically perfect gas:

1
2u2 + cpT = cpTo ⇔ 1

2u2 + γ
γ−1 RT = γ

γ−1 RTo (105)

By further employing the definition of speed of sound (a2 = γRT ),

and Mach number (Ma = u/a), one ends up with:

To/T = (ao/a)
2 = 1 + γ−1

2 Ma2 (106)
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Results from the energy equation

And the isentropic relations can also be recast in terms of the Mach

number:

ρo/ρ =
(

1 + γ−1
2 Ma2

)1/(γ−1)
(107)

Po/P =
(

1 + γ−1
2 Ma2

)γ/(γ−1)
(108)

Be fully aware that in the case of density ρ and pressure P , these

relationships are only for local reservoir values. They are not

necessarily the same throughout the flow field, unlike that of the

reservoir temperature To , and accordingly, the speed of sound ao ,

which are constant throughout.
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Results from the energy equation

These equations can have serious implications. For example, getting

a Mach 2 air flow in a blow-down wind tunnel with sea-level

conditions at the test section would require a reservoir condition of

7.8 atm and 540 K.

These requirements on the reservoir conditions only grow stronger

at higher Mach numbers. For air at Mach 7, To/T = 10.8 and

Po/P ≈ 4140. Getting sea-level conditions at the test section

requires the tank temperature to be hot enough to almost boil iron,

and the pressure to be almost 4× the pressure at the bottom of the

Mariana Trench.

One can also allow the test section to be very cold, without

liquefying the working fluid, and to operate at near-vacuum.

Furthermore, specialized gases may be used, such that γ → 1, e.g.,

CF4 (γ = 1.156) and C2F6 (γ = 1.085).
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Results from the energy equation

It is also convenient to define yet another reference condition, not

necessarily at the reservoir, which gives the stagnation condition.

The sonic condition provides an excellent choice, here marked by an

asterisk. And since Ma = 1, it follows that u∗ = a∗. The point is

that the flow is to be brought to sonic point isentropically.

From the energy equation:

u2 + 2
γ−1 a2 = u2

∗
+ 2

γ−1 a2
∗

= γ+1
γ−1 a2

∗
(109)

And since T∗/To = 2/ (γ + 1), the followings are computed for a

γ = 1.4 gas, which is an excellent approximation for air:

T∗

To

= 0.83333 ;
a∗

ao

= 0.91287

ρ∗
ρo

= 0.63394 ;
P∗

Po

= 0.52828

(110)
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Results from the energy equation

Another useful measure can be also introduced, the ratio of the

actual flow speed to its would-be value if it were brought to sonic

point isentropically:

M∗ = u/u∗ = u/a∗ (111)

Its relationship to the actual Mach number Ma is:

M2
∗

=
u2

a2

a2

a2
o

a2
o

a2
∗

=
γ+1

2 Ma2

1 + γ−1
2 Ma2

=
(γ + 1)

2/Ma2 + (γ − 1)
(112)

And the inverse:

Ma2 =
M2

∗

γ+1
2 − γ−1

2 M2
∗

=
2

(γ + 1) /M2
∗
− (γ − 1)

(113)

Note that M∗ behaves like Ma, in the sense that M∗ S 1 when

Ma S 1. And that M∗ is bounded, limMa→∞M∗ = γ+1
γ−1 .
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The area-velocity relationship

Compressibility introduces new twist to the familiar area-velocity

rule, familiar in incompressible flows.

Begin by rearranging the steady one-dimensional continuity

equation ρuA = constant:

dρ

ρ
+

du

u
+

dA

A
= 0 (114)

Also assuming an adiabatic inviscid flow, Euler’s equation gives:

u du = −dP

ρ
= −

(

dP

dρ

)

dρ

ρ
= −a2 dρ

ρ
(115)

⇔ dρ

ρ
= −Ma2 du

u
(116)

What this says is that at sub / super-sonic speed, the decrease in

density is slower / faster than the increase in velocity.
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The area-velocity relationship

Substituting the result for dρ/ρ into the continuity equation gives

the following area-velocity relationship:

(

1 − Ma2
)−1 dA

A
= −du

u
=

dP

ρu2
(117)

Ma ≪ 1 This is the incompressible limit: uA = constant

0 < Ma < 1 In the subsonic regime, the flow behaves similarly as

incompressible, in which the flow accelerates when

cross-sectional area decreases, and vice versa

Ma > 1 In the supersonic regime, the opposite behaviour takes

place, the flow decelerates with the decrease in

cross-sectional area, and accelerates when A increases
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The area-velocity relationship

At Ma = 1, the flow reaches the sonic point. The preceding

equation demands, that in order for du to have a finite value, the

condition dA = 0 must be fulfilled.

At the sonic point, the flow can

cross over, from being subsonic

(supersonic) to being supersonic

(subsonic).

Figure 11: Throat area of a

duct

From previous discussion, the sonic point must occurs at the throat

area. This follows from the fact that the area must decreases to

accelerate a subsonic flow, and increases to accelerate it further in

the supersonic regime, and vice versa.
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The area-velocity relationship

However, it does not mean that at the throat area the flow is sonic.

It only says that if sonic condition is reached, it is necessarily be at

the throat area.

If sonic condition is not attained, the throat area will simply be the

location for the maximum velocity for a subsonic flow, or the

minimum velocity for a supersonic flow, since du = 0 for Ma 6= 1.

Also, be aware that in the vicinity of the sonic point, Ma → 1, the

flow is very sensitive to minute area changes, since the denominator

(1 − Ma2) becomes very small. This is a major concern in

designing supersonic nozzles and wind tunnels.
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On the equations of state

For a given cross-sectional area A = A (x), and defining

eo = e + 1
2u2, the followings quasi 1-D flow equations are valid:

∂

∂t
(ρA) +

∂

∂x
(ρuA) = 0

∂

∂t
(ρuA) +

∂

∂x

(

ρu2A
)

= − ∂

∂x
(PA) + P

dA

dx
∂

∂t
(ρeoA) +

∂

∂x
(ρueoA) = − ∂

∂x
(PuA)

(118)

An immediate problem can be seen in that there are 4 unknowns

(ρ, u,P, e) and only 3 equations. To close the system, one needs a

state equation.
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On the equations of state

In practice, there are actually TWO equations of state used:

Thermal equation of state which expresses P = P (T , v)

Caloric equation of state which expresses e = e (T , v)

The first of these is perhaps the more familiar one. Examples are

the ideal gas law and the van der Waals gas equation:

P = ρRT and P =
ρRT

1 − bρ
− aρ2 (119)

From the first law:

de = T ds − P dv

∂e

∂v

∣

∣

∣

∣

T

= T
∂S

∂v

∣

∣

∣

∣

T

− P = T
∂P

∂T

∣

∣

∣

∣

v

− P
(120)
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On the equations of state

However, one also has the following:

de =
∂e

∂T

∣

∣

∣

∣

v

dT +
∂e

∂v

∣

∣

∣

∣

T

dv (121)

Thus, one can rewrite it and then integrate to obtain the caloric

equation of state e = e (T , v):

de = cv dT +

(

T
∂P

∂T

∣

∣

∣

∣

v

− P

)

dv

∫

de =

∫

cv dT +

∫ (

T
∂P

∂T

∣

∣

∣

∣

v

− P

)

dv

(122)

For example, when applying ideal gas law P = ρRT , the second

term on the right-hand-side vanishes, leaving e = eo +
∫ T

To
cv dT ′.

Gasdynamics — Lecture Slides



Bernoulli equation — dynamic pressure

In compressible flow, the dynamic pressure Q = ρu2/2 is no longer

simply the difference between the stagnation and static pressures. It

also depends on the Mach number. For a perfect gas:

1
2ρu

2 = 1
2ρa

2Ma2 = γ
2PMa2 (123)

For adiabatic flows, applying the ideal gas law to the energy

equation gives the compressible Bernoulli equation:

1
2u2 + γ

γ−1 (P/ρ) = γ
γ−1 (Po/ρo) (124)

In fact, as shown before, this applies also for isentropic flows, which

would further allow ρ to be eliminated:

1
2u2 = γ

γ−1 (Po/ρo)
[

1 − (P/Po)(γ−1)/γ
]

(125)

Gasdynamics — Lecture Slides

Bernoulli equation — dynamic pressure

Compressibility also introduces complexities in calculating the

pressure coefficient Cp with respect to some reference section 1:

Cp =
P − P∞

1
2ρ∞u2

∞

=
2

γMa2
∞

(

P

P∞

− 1

)

(126)

For isentropic flows, this can be further recast as:

Cp =
2

γMa2
∞





(

1 + γ−1
2 Ma2

∞

1 + γ−1
2 Ma2

)

γ
γ−1

− 1



 (127)

Note well that for compressible flows, a value of Cp > 1 is possible.

Surprisingly, there is a minimum value for Cp as well, found by

letting Ma → ∞, which simply results in:

Cpmin
= − 2

γMa2
∞

(128)
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Bernoulli equation — dynamic pressure

There are two Cp values that are of special interest: the stagnation

value, and the critical value, defined at the location where the local

flow turns sonic.

The critical Cp is obtainable by setting Ma = 1 as:

Cpcrit
=

P∗ − P∞

1
2ρ∞u2

∞

=
2

γMa2
∞





(

2

γ + 1
+
γ − 1

γ + 1
Ma2

∞

)

γ
γ−1

− 1





(129)

Similarly, setting Ma = 0 gives the stagnation Cp:

Cpstag
=

Po − P∞

1
2ρ∞u2

∞

=
2

γMa2
∞





(

1 +
γ − 1

2
Ma2

∞

)

γ
γ−1

− 1



 (130)
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Bernoulli equation — dynamic pressure

Recall that Cp = 1 − (u/u∞)2 for incompressible flows. It remains

to be seen how to incorporate this into the compressible Cp.

The energy equation dictates that:

1
2u2 + 1

γ−1a2 = 1
2u2

∞
+ 1

γ−1a2
∞

(131)

By rearranging terms, one can easily obtain the following

relationship:

a2

a2
∞

= 1 +
γ − 1

2
Ma2

∞

(

1 − u2

u2
∞

)

=
1 + γ−1

2 Ma2
∞

1 + γ−1
2 Ma2

(132)

Substituting that into the Cp expression, one finally ends up with:

Cp =
2

γMa2
∞





[

1 +
γ − 1

2
Ma2

∞

(

1 − u2

u2
∞

)]

γ
γ−1

− 1



 (133)

Gasdynamics — Lecture Slides



Constant area flows

Consider the control volumes of these steady flows, all enclosing

regions of non-equilibrium, in the following three figures.

(a) Finite region (b) Sharp “jump” (c) Localized volume

Note that in the third figure, the control volume has been shrank to

just enclose the portion of the shock wave normal to the flow, the

streamline a–b, where the one-dimensional flow assumption is

locally valid.
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Constant area flows

The figures show that a region of non-equilibrium can be idealized

to be a sharp “jump” discontinuity within the flow, a shock “wave”.

Be aware that now the gradients inside the vanishingly small control

volume are greatly increased, thus there will be an increase in the

entropy of the flow as it goes through.

Since the reference sections are outside the region of

non-equilibrium, the balance equations (mass, momentum and

energy) can be expressed as:

ρ1u1 = ρ2u2 (134)

ρ1u
2
1 + P1 = ρ2u

2
2 + P2 (135)

h1 + 1
2u2

1 = h2 + 1
2u2

2 (136)

These will form the basis for the derivation of the shock relations

for perfect gas in the following section.
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Shock relations for perfect gas — Part I

The following figure depicts similar situation encountered in

deriving the speed of sound wave. However, the assumption of a

weak disturbance has been discarded.

(a) Moving frame (b) Laboratory frame

The figure on the right describe the case of moving shock. It is

related to the stationary shock through the Galilean transformation.

Notably, ushock = −u1 and upiston = u2 − u1.
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Shock relations for perfect gas — Part I

From the continuity (ρ1u1 = ρ2u2) and momentum equations:

P2 − P1 =
ρ2
1u

2
1

ρ1
− ρ2

2u
2
2

ρ2
= ρ2

1u
2
1

(

1

ρ1
− 1

ρ2

)

(137)

This is the Rayleigh line equation in the P − v diagram for a given

pre-shock condition.

Further solving for ρ1u1 gives:

ρ2
1u

2
1 = (P2 − P1)

(

1

ρ1
− 1

ρ2

)

−1

=
ρ1ρ2

ρ2 − ρ1
(P2 − P1) (138)

Eliminate u2 term from the energy equation:

h2 − h1 =
1

2
u2
1 − 1

2

(

ρ1u1

ρ2

)2

=
1

2
ρ2
1u

2
1

(

1

ρ2
1

− 1

ρ2
2

)

(139)
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Shock relations for perfect gas — Part I

Substituting for ρ2
1u

2
1 and rearranging terms yields the Hugoniot

equation:

h2 − h1 = 1
2 (P2 − P1) (1/ρ2 + 1/ρ1) (140)

At this point, it is worth mentioning that both the Rayleigh line and

the Hugoniot curve have been derived without any mention of any

equation of state. Thus, it can be applied to the general case. The

role of the equation of state is then to define the relationship of the

enthalpy to the pressure and density.

For example, take the special case of a calorically perfect ideal gas:

P = ρRT and h = cpT

⇒ h =
cpP

ρR =
γ

γ − 1

(

P

ρ

)

(141)
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Shock relations for perfect gas — Part I

Using it in the Hugoniot curve results in the following equation:

γ

γ − 1

(

P2

ρ2
− P1

ρ1

)

=
1

2
(P2 − P1)

(

1

ρ2
+

1

ρ1

)

⇔ P2

γ − 1

(

γ + 1

ρ2
− γ − 1

ρ1

)

=
P1

γ − 1

(

γ + 1

ρ1
− γ − 1

ρ2

) (142)

This is can be put into the Rayleigh line to yield:

2γP1

(

1

ρ1
− 1

ρ2

)

= ρ2
1u

2
1

(

1

ρ1
− 1

ρ2

)(

γ + 1

ρ2
− γ − 1

ρ1

)

(143)

By discarding the trivial solution ρ2 = ρ1, one finally obtains the

following density and velocity ratios across a shock wave:

ρ2

ρ1
=

(

u2

u1

)

−1

=
γ + 1

γ − 1

[

1 +
2

γ − 1

(

γP1

ρ1u
2
1

)]

−1

(144)

Gasdynamics — Lecture Slides



Shock relations for perfect gas — Part I

The shock strength is obtained from the momentum equation:

P2

P1
− 1 =

ρ1u
2
1

P1

(

1 − u2

u1

)

=
2γ

γ + 1

(

ρ1u
2
1

γP1
− 1

)

(145)

Finally, temperature ratio can be obtained from ideal gas equation:

T2

T1
=

P2

P1

(

ρ2

ρ1

)

−1

=
P2

P1

[

γ+1
γ−1 + (P2/P1)

1 + γ+1
γ−1 (P2/P1)

]

(146)

Recall that the stagnation enthalpy is constant across the shock

wave. For perfect gas, that implies that the stagnation temperature is

also constant:

To2 = To1 = To (147)
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Shock relations for perfect gas — Part I

The second law then states that the entropy change across the shock

wave can be found from the ratio of the stagnation pressures:

s2 − s1

R =
γ

γ − 1
ln

(

T2

T1

)

− ln

(

P2

P1

)

= − ln

(

Po2

Po1

)

⇒ Po2

Po1

=
P2

P1

(

T2

T1

)

−
γ

γ−1

=

(

P2

P1

)

−
1

γ−1
[

1 + γ+1
γ−1 (P2/P1)

γ+1
γ−1 + (P2/P1)

]

γ
γ−1

(148)

Note that for adiabatic flows, the stagnation pressure also allows one

to measure the available energy in the flow.
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Shock relations for perfect gas — Part II

The shock relationships derived previously can also be expressed in

terms of the upstream Mach number Ma1. By dividing the

momentum equation by the continuity, and applying the ideal gas

equation, one ends up with:

u2 − u1 =
P1

ρ1u1
− P2

ρ2u2
=

a2
1

γu1
− a2

2

γu2
(149)

Invoking the sonic condition, energy equation yields:

u2
2 +

2

γ − 1
a2
2 = u2

1 +
2

γ − 1
a2
1 =

γ + 1

γ − 1
a2
∗

(150)

Combining these equations gives:

u2 − u1 =
γ + 1

2γ
a2
∗

(

1

u1
− 1

u2

)

− γ − 1

2γ
(u1 − u2) (151)
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Shock relations for perfect gas — Part II

Algebraic simplification results in the Prandtl or Meyer relation:

u1u2 = a2
∗

⇔ M∗2 = 1/M∗1 (152)

This can be used to express the downstream Mach number Ma2 as a

function of the upstream Mach number Ma1, and vice versa:

γ+1
2 Ma2

2

1 + γ−1
2 Ma2

2

=
1 + γ−1

2 Ma2
1

γ+1
2 Ma2

1

⇒ Ma2
2 =

2
γ−1 + Ma2

1

2γ
γ−1Ma2

1 − 1

(153)

It is clear that there is a lower limit imposed on Ma2, such that:

lim
Ma1→∞

Ma2 =
γ − 1

2γ
(154)
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Shock relations for perfect gas — Part II

Now, for the other relationships:

ρ2

ρ1
=

(

u2

u1

)

−1

=
γ+1

2 Ma2
1

1 + γ−1
2 Ma2

1

P2

P1
= 1 + 2γ

γ+1

(

Ma2
1 − 1

)

= 2γ
γ+1

(

Ma2
1 − γ−1

2γ

)

T2

T1
=
[

2
γ+1

(

γMa2
1

)

− γ−1
γ+1

] [

2
γ+1

(

1/Ma2
1

)

+ γ−1
γ+1

]

(155)

Note that these are valid only for calorically perfect gases.

These shock relations, however, have not restricted the direction of

the shock wave process. They are applicable when Ma1 is either

subsonic (an expansion process), or supersonic (a compression

process). One then must refer to the second law for the answer.
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Shock relations for perfect gas — Part II

This figure shows the entropy change ∆s/R across the shock as a

function of the upstream Mach number Ma1.

This figure clearly states that only compression shock wave is

physically allowed, such that Ma1 ≥ 1 and Ma2 ≤ 1.
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Shock relations for perfect gas — Part II

Thus, as it was previously mentioned, downstream stagnation

pressure must be less than the upstream value, Po2 ≤ Po1 .

Additionally, static pressure P and temperature T , as well as density

ρ, all increase across the shock wave, shown in this figure.

Furthermore, based on

these shock relationships,

an upper bound exists for

the density ratio:

lim
Ma1→∞

ρ2

ρ1
=
γ + 1

γ − 1
(156)
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Shock relations for perfect gas — Part II

Rewrite the pressure ratio equation using ǫ = Ma2
1 − 1:

P2/P1 = 1 + 2γ
γ+1

(

Ma2
1 − 1

)

= 1 + 2γ
γ+1ǫ (157)

Put this in the equation of entropy change across the shock wave:

s2 − s1

R = − ln







(

P2

P1

)

−
1

γ−1
[

1 + γ+1
γ−1 (P2/P1)

γ+1
γ−1 + (P2/P1)

]

γ
γ−1







= ln

[

(

1 + 2γ
γ+1ǫ

)

1
γ
(

1 + γ−1
γ+1ǫ

)

(1 + ǫ)−1

]

γ
γ−1

(158)

For small ǫ≪ 1, the Taylor’s expansion gives:

ln (1 + ǫ) = ǫ− 1
2ǫ

2 + 1
3ǫ

3 − 1
4ǫ

4 + · · · (159)

Gasdynamics — Lecture Slides



Shock relations for perfect gas — Part II

Applying the expansion:

s2 − s1

R = γ
γ−1

[

1
γ

(

2γ
γ+1

)

+
(

γ−1
γ+1

)

− 1
]

ǫ

− γ/2
γ−1

[

1
γ

(

2γ
γ+1

)2
+
(

γ−1
γ+1

)2
− 1

]

ǫ2

+ γ/3
γ−1

[

1
γ

(

2γ
γ+1

)3
+
(

γ−1
γ+1

)3
− 1

]

ǫ3

− γ/4
γ−1

[

1
γ

(

2γ
γ+1

)4
+
(

γ−1
γ+1

)4
− 1

]

ǫ4 + · · ·

= 2γ

3(γ+1)2
ǫ3 − 2γ2

(γ+1)3
ǫ4 + · · ·

≈ 2γ

3(γ+1)2

(

Ma2
1 − 1

)3
= γ+1

12γ2 (P2/P1 − 1)3

(160)

Again, it shows that upstream flow must be supersonic. However, a

weak shock produces a nearly isentropic change of state.
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Shock relations for perfect gas — Part III

The previous relationships across a shock wave shown here have

been derived under the assumption of stationary shock wave.

These can also be applied to the case of moving shock waves

through Galilean transformation. The static property ratios stays the

same, but not stagnation property ratios.

(a) Moving frame (b) Laboratory frame

For example, note that the gas at rest, the left half of the right

figure, has its stagnation properties equal to its static properties, as

opposed to its counterpart on the left figure.
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The area-velocity relationship — revisited

For a steady one-dimensional flow, the mass flow rate ṁ = ρuA is

constant. Suppose that this flow may be adjusted isentropically to

reach sonic condition (Ma = 1, A = A∗), one can then write:

ρuA = ρ∗u∗A∗

⇒
(

A∗

A

)2

=

(

ρ/ρo

ρ∗/ρo

)2

M2
∗

= Ma2

(

γ+1
2

1 + γ−1
2 Ma2

)

γ+1
γ−1

(161)

For flows that are entirely subsonic, the term A∗ refers to the

fictitious area where the flow would reach Ma = 1, it does not

necessarily exist. However, if sonic or supersonic conditions are

attained, then it would correspond to the actual throat area.

Be aware that this relationship is valid only for isentropic flows due

to the use of ρ/ρo relation.
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The area-velocity relationship — revisited

In this figure, the area ratio A∗/A is plotted as function of the Mach

number Ma.

It is clear that for a

given area ratio,

there are two

corresponding

values of Ma:

subsonic, and

supersonic.

For example, a value of A∗/A = 0.6 would allow a flow with either

a Mach number of Ma = 0.3778, or Ma = 1.985.
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The area-velocity relationship — revisited

Additionally, this area relation A∗/A can be expressed in terms of

the ratio of local static pressure and stagnation pressure P/Po :

(

A∗

A

)2

=
2

γ − 1

(

γ + 1

2

)

γ+1
γ−1

(

P

Po

)

2
γ



1 −
(

P

Po

)

γ−1
γ



 (162)

This relationship would

prove to become quite

useful for the discussion

on the nozzle flows in

the next sections.
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Nozzle flow — converging nozzle

As discussed previously, a subsonic flow cannot be accelerated

beyond sonic velocity in a converging nozzle. This is true

irrespective of pressure difference across the nozzle.

When the ambient pressure at the exit is equal to the reservoir

value, no flow will exist, ṁ = 0.

As this back pressure at the exit is lowered, ṁ steadily increases.

However, when the flow at the exit reaches Mae = 1, any further

decrease in the back pressure cannot be communicated to the

reservoir, since the signal can only travels at the local speed of

sound relative to the moving fluid particle. Thus, ṁ stays constant,

and the flow is said to be “choked”.

The pressure ratio, beyond which no changes in ṁ is obtained

without changing reservoir condition, or the nozzle geometry, is

called the critical pressure ratio.
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Nozzle flow — converging nozzle

For subsonic flows of a calorically perfect gas in a converging

nozzle, the mass flow rate ṁ = ρuA can be expressed at the exit in

terms of pressure and temperature as:

ṁ =
PeAeMae

√
γ√

RTe

=
PoAe√
RTo

√

√

√

√

γMa2
e

(

1 +
γ − 1

2
Ma2

e

)

1+γ
1−γ

(163)

This value increases as Mae increases, and it reaches its maximum

when Mae = 1:

ṁmax =
PoAe√
RTo

√

√

√

√

γ

(

γ + 1

2

)

1+γ
1−γ

(164)
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Nozzle flow — converging-diverging nozzle

Now consider the following converging-diverging nozzle connected

to a reservoir. Define the back pressure Pb as the ambient (static)

pressure just outside the exit.
The diverging part will

allow the flow to either

decelerate back to

subsonic value, or if sonic

condition is reached at the

throat, to accelerate to

supersonic flow regime.
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Nozzle flow — converging-diverging nozzle

The figures show three different

nozzle flows for three different

exit pressures, deliberately

chosen to correspond to throat

Mach numbers of 0.25, 0.5 and

1. All three flows are entirely

subsonic in the diverging part.

The ratios of the mass flow rate

to its maximum value (ṁ/ṁmax)

then are 0.4162, 0.7464 and

1.000, respectively.

Note that isentropic conditions

hold throughout the nozzle.
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Nozzle flow — converging-diverging nozzle

When the flow at the throat reaches sonic speed, the mass flow can

no longer be increased, and the flow is choked.

As the back pressure is lowered even further, a region of supersonic

flow begins to appear, starting from the throat down the diverging

part of the nozzle. This will terminate in a normal shock within the

nozzle, which is located farther downstream as the back pressure

further decreases, until it reaches the exit plane of the nozzle. Ergo,

no isentropic solution is possible for this range of back pressures.

This is due to the fact that the back pressure Pb is set higher than

what the exit pressure Pe would be if the entire nozzle beyond the

throat goes supersonic. Thus, a discontinous pressure increase, a

shock wave, is required to match the exit condition.
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Nozzle flow — converging-diverging nozzle

The figures show what can

happen if the exit pressure is low

enough to allow a supersonic

flow region past the nozzle’s

throat. Here, two of them

terminate at shock waves inside

the nozzle.

The dashed lines, on the other

hand, indicate the flow which is

supersonic throughout the nozzle.

Several different scenarios,

however, may happen at the exit,

depending on the back pressure

Pb.
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Nozzle flow — converging-diverging nozzle

A normal shock may exist just outside the exit plane.

At lower Pb, the flow may go through oblique shock waves at

the exit, which results in smaller pressure increase overall, as

opposed of having a single normal shock. The flow is said to

be “over-expanded”. Note however, that the flow may then go

through alternating series of expansion waves and more oblique

shock waves. This can be seen as a diamond pattern in a

rocket’s exhaust.

When Pb = Pe , isentropic condition prevails. This is the

design condition of the nozzle.

Finally, when Pb < Pe , the flow is said to be

“under-expanded”. Expansion waves will form at the exit.

Similar to the over-expanded case, alternating series of

expansion waves and oblique shock waves can then ensue.
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Normal shock recovery — diffuser

When the supersonic flow from the nozzle discharges directly into

the receiver, such that a normal shock wave stands at the exit, the

subsequent subsonic flow can be decelerated isentropically by the

use of a diffuser. Essentially, it’s a diverging extension of the nozzle.

The aim is to recover as much stagnation pressure as possible in the

receiving chamber, instead of simply obtaining the Pb at the exit.

Another configuration utilizes a long duct ahead of the exit. The

recompression then relies on the interaction of shocks and boundary

layers. For supersonic flows, this surprisingly results in a fairly

efficient and practical method.
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Normal shock recovery — diffuser

A second throat at the exit can also be utilized. Ideally, it would

decelerate the supersonic flow to sonic condition before subsequent

deceleration to subsonic regime. Since there is no losses, no

pressure difference is required, hence no power is needed. Of

course, real world would never allow this to happen.

However, a pressure difference still is required to start the flow. In

principle, this may also require the ability to rapidly adjust the area

of the second throat.

As the flow turns supersonic in the test section, the shock would

then travel downstream, until it is “swallowed” by the second throat,

to settle at the diverging part. The throat can then be adjusted to

bring the shock closer to the throat, where it would then be of

vanishing strength. Then the flow would be close to the ideal

condition.
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Flow with wall roughness — Fanno flow

Fanno flow refers to the flow through a constant area duct, where

the effect of wall friction τw is considered.

However, it is further assumed that the wall friction does no work,

and does not change the total enthalpy level. Thus no heat transfer

from the friction effects.

This model is applicable to flow processes which are very fast

compared to heat transfer mechanisms. Thus, heat transfer effects

are negligible. This assumption can be used to model flows in

relatively short or insulated tubes.

Wall friction will cause both supersonic and subsonic Mach

numbers to approach Mach 1.

It can be shown that for calorically perfect flows the maximum

entropy occurs at Ma = 1.
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Flow with wall roughness — Fanno flow

Refer to the figure.

Assume:

perfect gas

steady flow

constant area

no heat transfer

Continuity equation reads:

ρ1u1 = ρ2u2 =
ṁ

A
(165)

Momentum equation reads:

∑

Fx = A
(

ρ2u
2
2 − ρ1u

2
1

)

= −A (P2 − P1) − Awτw
(166)

Energy balance dictates:

h2 + 1
2u2

2 = h1 + 1
2u2

1 = ho (167)
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Flow with wall roughness — Fanno flow

Define the following hydraulic diameter:

Dh =
4A

perimeter
(168)

Additionally, define the (Darcy) friction factor f, that is dependent

on the flow Reynolds number Re and wall roughness:

f =
4τw
1
2ρu

2
(169)

By letting the state 2 be a differential change from state 1, the

momentum equation can be written as:

u (ρ du + u dρ) + ρu du = −dP −
1
2ρu

2f

Dh

dx (170)

Be aware that some places may use Fanning friction factor, which is
1
4 the value of Darcy friction factor used here.
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Flow with wall roughness — Fanno flow

Some manipulations of the flow equations give:

ρu =
ṁ

A
⇒ dρ

ρ
+

du

u
= 0 (171)

P = ρRT ⇒ dP

P
=

dρ

ρ
+

dT

T
(172)

Ma2 =
u2

γRT
⇒ d

(

Ma2
)

Ma2
=

2 du

u
− dT

T
(173)

Applying these to the momentum equation:

ρu du = −dP −
1
2ρu

2f

Dh

dx

⇒ f dx

Dh

=
1 − γMa2

γMa2

[

d
(

Ma2
)

Ma2
+

dT

T

]

− 2

γMa2

dT

T

(174)
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Flow with wall roughness — Fanno flow

Due to adiabatic assumptions, the total temperature

To = T
(

1 + γ−1
2 Ma2

)

is constant. This results in the following:

dT

T
+

[

γ−1
2 Ma2

1 + γ−1
2 Ma2

]

d
(

Ma2
)

Ma2
= 0 (175)

Plugging this in, and simplifying gives:

f dx

Dh

=
1

γMa2

(

1 − Ma2

1 + γ−1
2 Ma2

)

d
(

Ma2
)

Ma2
(176)

As will be shown later, the wall friction causes the flow to either

speed up or slow down toward Mach 1. Thus, sonic condition is

chosen as the reference point, corresponding to the maximum length

of the conduit.
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Flow with wall roughness — Fanno flow

Define a mean friction factor f̄, assumed to be constant:

f̄ =
1

Lmax

∫ Lmax

0
f dx (177)

Setting ψ = Ma2 and integrating the previous equation:

f̄Lmax

Dh

=

∫ 1

Ma2

1

γψ2

(

1 − ψ

1 + γ−1
2 ψ

)

dψ

=

∫ 1

Ma2

1

γ

(

1

ψ2
+

γ2
−1
4

1 + γ−1
2 ψ

−
γ+1

2

ψ

)

dψ

=
1 − Ma2

γMa2
+
γ + 1

2γ
ln

(

γ+1
2 Ma2

1 + γ−1
2 Ma2

)

(178)
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Flow with wall roughness — Fanno flow

Surprisingly, for the supersonic flows Ma > 1, there is an

asymptotic upper limit. Letting Ma goes to infinity gives:

lim
Ma→∞

f̄Lmax

Dh

=
γ + 1

2γ
ln

(

γ + 1

γ − 1

)

− 1

γ
(179)
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Flow with wall roughness — Fanno flow

Starting from the equation of the first law for perfect gas:

ds = cv

dT

T
−R dρ

ρ
= cp

dT

T
−R dP

P
(180)

Assuming sonic condition as a reference point, and applying the

continuity and energy equations:

s − s∗

R =
1

γ − 1
ln

T

T∗

+ ln
u

u∗

=
1

γ − 1
ln

T

T∗

+ ln

√
To − T√
To − T∗

=
1

γ − 1
ln

T

T∗

+
1

2
ln

(

γ + 1

2
− T

T∗

)

− 1

2
ln
γ − 1

2

(181)

This is the Fanno line curve in the T − s diagram.
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Flow with wall roughness — Fanno flow

The following figure shows an example of a Fanno line curve. Note

that the second law dictates that the flow is driven toward Mach 1.
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Flow with wall roughness — Fanno flow

Other relationships can be derived for the Fanno flow as well. From

the momentum equation:

dP

P
= −

(

1
2 + γ−1

2 Ma2

1 + γ−1
2 Ma2

)

d
(

Ma2
)

Ma2

= −1

2

(

1

Ma2
+

γ−1
2

1 + γ−1
2 Ma2

)

d
(

Ma2
)

(182)

Again, assuming sonic condition as a reference point:

ln
P

P∗

= −1

2
ln Ma2 − 1

2
ln

1 + γ−1
2 Ma2

γ+1
2

⇒ P

P∗

=
1

Ma

√

√

√

√

γ+1
2

1 + γ−1
2 Ma2

(183)
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Flow with heat addition — Rayleigh flow

Rayleigh flow refers to diabatic flow through a constant area duct,

where the effect of heat addition or rejection is considered.

The heat addition causes a decrease in stagnation pressure, which is

known as the Rayleigh effect and is critical in the design of

combustion systems.

Heat addition will cause both supersonic and subsonic Mach

numbers to approach Mach 1.

Conversely, heat rejection decreases a subsonic Mach number and

increases a supersonic Mach number along the duct.

It can be shown that for calorically perfect flows the maximum

entropy occurs at Ma = 1.
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Flow with heat addition — Rayleigh flow

Refer to the figure.

Assume:

perfect gas

steady flow

constant area

no wall friction

Continuity equation reads:

ρ1u1 = ρ2u2 =
ṁ

A
(184)

Momentum equation reads:

ρ1u
2
1 + P1 = ρ2u

2
2 + P2

⇔ P2 − P1 = −ṁ

A
(u2 − u1)

(185)

Energy balance dictates:

h2 + 1
2u2

2 = h1 + 1
2u2

1 + ∆q

⇔ ∆q = ho2 − ho1

= cp (To2 − To1)

(186)
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Flow with heat addition — Rayleigh flow

To simplify expressions, it is customary to use sonic condition for

reference state 2, and letting the state 1 varies.

For perfect gas, the momentum equation can be rewritten as:

P
(

1 + γMa2
)

= P∗ (1 + γ) ⇒ P

P∗

=
1 + γ

1 + γMa2
(187)

Plugging in the continuity equation in the perfect gas law gives:

T =
P

ρR =
PMa

√
γT

(ṁ/A)
√
R

=
γP2Ma2

R (ṁ/A)2
(188)

Combining:

T

T∗

=
P2Ma2

P2
∗

=
(1 + γ)2 Ma2

(

1 + γMa2
)2

(189)
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Flow with heat addition — Rayleigh flow

In addition:
u

u∗
=
ρ∗
ρ

=
P∗/T∗

P/T
=

(1 + γ) Ma2

1 + γMa2
(190)

To

To∗

=

[

(1 + γ)2 Ma2

(

1 + γMa2
)2

][

1 + γ−1
2 Ma2

γ+1
2

]

(191)

Po

Po∗

=

[

1 + γ

1 + γMa2

]

[

1 + γ−1
2 Ma2

γ+1
2

]

γ
γ−1

(192)

It would be instructive to plot the flow on the T − s diagram. To do

so, one would need to express P/P∗ in terms of T/T∗, since:

s − s∗

R =
γ

γ − 1
ln

(

T

T∗

)

− ln

(

P

P∗

)

(193)

Gasdynamics — Lecture Slides



Flow with heat addition — Rayleigh flow

From the temperature and pressure ratios, one obtains:

T

T∗

=

(

P

P∗

)2
[

1 + γ

γ

(

P

P∗

)

−1

− 1

γ

]

⇔ P

P∗

=
γ + 1

2

[

1 ±
√

1 − 4γ

(γ + 1)2

(

T

T∗

)

] (194)

Note that there are two entropy values for each possible temperature

values, which can be shown to correspond to the subsonic and

supersonic branches.

As mentioned before during discussion on shock relations, this

Rayleigh curve is a line on the P − v diagram:

v

v∗
=
γ + 1

γ
− 1

γ

(

P

P∗

)

(195)
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Flow with heat addition — Rayleigh flow

The following figure shows a Rayleigh line curve. Note that the

second law dictates that the flow is driven toward Mach 1.
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Flow with heat addition — Rayleigh flow

The maximum temperature point can be found from:

T

T∗

=
(1 + γ)2 Ma2

(

1 + γMa2
)2

⇒ d (T/T∗)

d
(

Ma2
) =

(1 + γ)2
(

1 − γMa2
)

(

1 + γMa2
)3

= 0

(196)

Thus, the point is located at Ma2 = 1/γ, which gives a maximum

temperature ratio of Tmax/T∗ = (1 + γ)2 / (4γ). For example, a

γ = 1.4 gas results in Tmax/T∗ ≈ 1.0286 at Ma ≈ 0.845.
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Normal shock, Fanno flow and Rayleigh flow

Capping the discussions on flows in constant area conduits, recall

the following jump relations from the stationary normal shock:

mass: (ρ2u2) − (ρ1u1) = 0

momentum:
(

ρ2u
2
2 + P2

)

−
(

ρ1u
2
1 + P1

)

= 0

total enthalpy:
(

h2 + 1
2u2

2

)

−
(

h1 + 1
2u2

1

)

= 0

(197)

Finally, to complete the system, the ideal gas law P = ρRT has

been used to provide the link between pressure and temperature, as

well as the assumptions of calorically perfect gas, e.g.,

h = cpT = γ
γ−1RT , and Ma = u/

√
γRT .
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Normal shock, Fanno flow and Rayleigh flow

Other than the momentum balance equation, Fanno flow uses

exactly the same equation set.

Similarly, Rayleigh flow employs the same set, except for the total

enthalpy balance equation.

What this entails is that for a given mass flow, the points,

corresponding to the states before and after the stationary normal

shock wave, must necessarily belong to the Fanno line curve AND

the Rayleigh line curve. In fact, the two points must be located at

the intersections of the two curves.

This will be shown on the next T–s diagram, starting by putting the

continuity equation in the entropy change, resulting in:

s2 − s1

R =
1

γ − 1
ln

T2

T1
− ln

ρ2

ρ1
=

1

γ − 1
ln

T2

T1
+ ln

u2

u1
(198)
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Normal shock, Fanno flow and Rayleigh flow

For Fanno line, the total enthalpy equation gives:

u2/u1 =
√

2cp (To − T2)/
√

2cp (To − T1)

=
(

γ−1
2 Ma2

1

)

−
1
2

√

(

1 + γ−1
2 Ma2

1

)

− (T2/T1)

(199)

For Rayleigh line, the momentum equation, along with ideal gas

law, gives:

0 =
(

ρ2u
2
2 + ρ2RT2

)

−
(

ρ1u
2
1 + ρ1RT1

)

0 = (u2/u1)
2 − 1+γMa2

1

γMa2
1

(u2/u1) + 1
γMa2

1
(T2/T1)

u2/u1 =
1+γMa2

1

2γMa2
1

[

1 ±
√

1 − 4γMa2
1

(1+γMa2
1)

2 (T2/T1)

]

(200)
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Normal shock, Fanno flow and Rayleigh flow

Here is a T–s diagram for a flow at Ma1 = 2. Note that “State 1”

refers to supersonic pre-shock condition, while “State 2” refers to

subsonic post-shock condition.
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Waves in supersonic flow

The following set of figures is commonly used to illustrate some

interesting aspects of wave propagation in supersonic flows:

(a) Ma < 1 (b) Ma ≈ 1 (c) Ma > 1
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Waves in supersonic flow

Ma < 1 The upstream air is smoothly adjusted for the passing

of the object, since the acoustic signals (pressure

waves) from it travels faster than the object itself.

Ma ≈ 1 The signals from the object is travelling at about the

same speed with the object itself, so the upstream air

receives no information about the event. There exists

a “zone of silence” just ahead of the object. The tight

clustering of the pressure waves also gives rise to a

thin layer of compression region, which is often visible

as a shock. In the past, this sudden pressure increase

has given birth to the idea of “sound barrier”.
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Waves in supersonic flow

Ma > 1 Even larger region in the flow is unaware of the

object, and some parts of it may even located

physically behind it, as the information carried by the

pressure front (the Mach wave) does not have enough

time to propagate. The angle of this Mach wave is

related to the speed as the object as:

β = arcsin

(

1

Ma

)

(201)

And in the case of the object being a sphere, this

pressure front forms what is often called “Mach

cone”.
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Multi-dimensional equations of the flow

For the following topics, the following simplifying assumptions

about the flow is made:

Steady flow, ∂/∂t = 0.

Two-dimensional flow, uz = 0 and ∂/∂z = 0. Often, a 3-D

flow can be expressed as 2-D by using an appropriate

coordinate system.

No viscous stresses or heat conduction, the flow is isentropic

except across shocks.

Calorically perfect ideal gas, P = ρRT and h = γ
γ−1RT .
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Multi-dimensional equations of the flow

Setting ho = h + 1
2

(

u2
x + u2

y

)

, the governing equations for the

steady inviscid 2-D flows considered here are:

∂

∂x
(ρux) +

∂

∂y
(ρuy ) = 0

∂

∂x

(

ρu2
x + P

)

+
∂

∂y
(ρuyux) = 0

∂

∂x
(ρuxuy ) +

∂

∂y

(

ρu2
y + P

)

= 0

∂

∂x
(ρuxho) +

∂

∂y
(ρuyho) = 0

(202)
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Oblique shocks

Consider a wedge in a supersonic flow, making an angle θ with the

flow. As a result, the flow is deflected by that much. Since this is a

supersonic flow, the deflection is accomplished through the means

of a shock wave.

For a small enough deflection, the shock wave is a straight line,

making an angle β with respect to the incoming flow. The task now

is to relate the two angles for a given upstream Mach number.
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Oblique shocks

Refer to the following schematic figure of a flow across a 2-D

oblique shock. Note how a coordinate system can be set up such

that the flow velocity can be resolved into its components, one that

is normal to the shock, and another that is tangential to it. The

equations governing the flow will be applied to this rotated system.

From geometry:

u1n = u1 sinβ

= u1t tanβ

u2n = u2 sin (β − θ)

= u2t tan (β − θ)

(203)
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Oblique shocks

In the following analysis, another assumption is made, that is

∂/∂t = 0. This is to say that the shock will NOT influence the

tangential components of the flow, further reducing it to a 1-D

system:
d

dx
(ρun) = 0

d

dx

(

ρu2
n + P

)

= 0

d

dx
(ρunut) = 0

d

dx
(ρunho) = 0

(204)
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Oblique shocks

Upon integration, and application of boundary conditions, those

equations result in the following:

ρ1u1n = ρ2u2n

ρ1u
2
1n

+ P1 = ρ2u
2
2n

+ P2

u1t = u2t

1
2u2

1n
+ γ

γ−1 (P1/ρ1) = 1
2u2

2n
+ γ

γ−1 (P2/ρ2)

(205)

However, these are similar to the relations across a normal shock.

Thus, all the properties can be obtained in a similar fashion.
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Oblique shocks

The tangential velocity stays constant across the oblique shock:

u1t = u1t = ut (206)

Jumps in the other flow properties are now dependent on the

normal component of the upstream Mach number:

Ma1n = u1n/a1 = u1n/
√

γP1/ρ1 = Ma1 sinβ (207)

From geometry, the wave angle β is found to be:

tanβ = u1n/ut (208)

Similarly, the wedge angle θ can be calculated as:

tan (β − θ) = u2n/ut (209)
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Oblique shocks

Thus, one has the following relationships for the oblique shocks:

ρ2

ρ1
=

(

u2n

u1n

)

−1

=
γ+1

2 Ma2
1n

1 + γ−1
2 Ma2

1n

= 1 +
Ma2

1n
− 1

1 + γ−1
2 Ma2

1n

P2

P1
= 2γ

γ+1

(

Ma2
1n

− γ−1
2γ

)

= 1 + 2γ
γ+1

(

Ma2
1n

− 1
)

T2

T1
=
[

2
γ+1

(

γMa2
1n

)

− γ−1
γ+1

] [

2
γ+1

(

1/Ma2
1n

)

+ γ−1
γ+1

]

Mat2

Mat1

=
ut/a2

ut/a1
=

(

a2

a1

)

−1

=

(

T2

T1

)

−
1
2

(210)

Gasdynamics — Lecture Slides



Oblique shocks

Since it is required that Ma1n ≥ 1, there is a minimum value

imposed for the wave angle β, such that βmin = arcsin (1/Ma1n).
Recall that this expression is encountered earlier in the discussion

on Mach wave.

Naturally, the maximum value for β corresponds to the case of

normal shock, βmax = π/2.

In addition, the following relationships can also be established:

Ma2
2n

= Ma2
2 sin2 (β − θ) =

2
γ−1 + Ma2

1 sin2 β
2γ

γ−1Ma2
1 sin2 β − 1

s2 − s1

R = 1
γ−1 ln (P2/P1) − γ

γ−1 ln (ρ2/ρ1) = − ln (Po2/Po1)

(211)
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Relationship between wedge angle and wave angle

From the shock relationship and geometry, one obtains the

following:

u2n

u1n

=
u2n/ut

u1n/ut

=
tan (β − θ)

tanβ
=

2 + (γ − 1) Ma2
1 sin2 β

(γ + 1) Ma2
1 sin2 β

= χ (212)

Expanding:

χ =
tan (β − θ)

tanβ
=

tanβ − tan θ

tanβ (1 + tanβ tan θ)

tan θ =
(1 − χ) sinβ cosβ

cos2 β + χ sin2 β
=

2 cosβ
(

Ma2
1 sin2 β − 1

)

sinβ
[

Ma2
1 (γ + cos 2β) + 2

]

(213)

This equation can also be inverted to give a cubic equation for

sin2 β, allowing an explicit solution for β, for a given Ma1 and θ.
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Relationship between wedge angle and wave angle

The following is the chart showing the relationship. Note that there

are a maximum wedge angle θmax allowed for attached oblique

shock. A greater value would result in detached shock. This

maximum wedge angle divides the solution for β into two branches.
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Relationship between wedge angle and wave angle

There is a maximum deflection angle θmax associated with each

Mach number, found by setting dθ/dβ = 0.

Smaller wave angles correspond to the “weak shock”.

limθ→0 β = arcsin (1/Ma1), a Mach wave.

Applicable to most external flows, which must matches to

acoustic wave in far-field, but may exist in some internal flows.

Except for some small region close to θmax, the downstream

Mach number is supersonic, Ma2 ≥ 1.

Larger wave angles correspond to the “strong shock”.

limθ→0 β = π/2, a normal shock wave.

Applicable mostly to internal flows, depending on the level of

the back pressure.

The downstream Mach number is subsonic, Ma2 ≤ 1.

An important point is that if oblique shock waves are attached

to the leading edge of an object, the upper and lower surfaces

are independent of each other.
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Small angle approximation

Rearranging the previous equation for χ = u2n/u1n :

(

Ma2
1 sin2 β

)−1
= γ+1

2 cotβ tan (β − θ) − γ−1
2

⇔ Ma2
1 sin2 β − 1 = γ+1

2 Ma2
1 sinβ sec (β − θ) sin θ

(214)

For small deflection angle θ, such that β − θ ≈ β, this may be

approximated as:

Ma2
1 sin2 β − 1 ≈

(

γ+1
2 Ma2

1 tanβ
)

θ (215)

Furthermore, for large upstream Mach number, this can be further

simplified into a “hypersonic approximation”, noting that β ≪ 1
while Ma1β ≫ 1:

β ≈ γ+1
2 θ (216)
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Mach lines

From the earlier discussions, it has been mentioned that for the

weak oblique shock, the wave angle corresponding to an

ever-smaller deflection angle approaches a non-zero limit µ, such

that limθ→0 β = µ = arcsin (1/Ma1).
At this point, the flow essentially experiences no changes

whatsoever. There is nothing unique about the point, it could be

anywhere in the flow. In fact, the angle µ is simply a characteristic

angle associated with the Mach number Ma1. Thus, the name Mach

angle, which is the angle of the characteristic line emanating from

some point in the flow, relative to the direction of the flow.
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Mach lines

In 2-D supersonic flows, there exist 2 families of characteristic lines,

the left-running, given the negative sign, and the positive

right-running. These are named relative to the streamline. And if

the flow is non-uniform, these lines are curved, since µ would vary

accordingly.

The name “characteristics” come from the mathematical theory of

partial differential equation. Supersonic flows are considered

hyperbolic, thus they have real characteristics. Subsonic flows are

considered elliptic, and the characteristics are imaginary.

This attribute manifests itself in the fact that Mach lines have a

sense of direction, which is toward “increasing time”. Hence, the

fact that there are no information going “upstream”.
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Mach lines

This concept of Mach lines is depicted in the following figures.

(a) (b)

(c)
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Weak oblique shocks

For small deflection angles, the following relationship has been

derived:

Ma2
1 sin2 β − 1 =

(

γ+1
2 Ma2

1 tanβ
)

θ (217)

And since θ → 0, the right-hand-side can be approximated in terms

of Mach angle µ as:

Ma2
1 sin2 β − 1 ≈

(

γ + 1

2
Ma2

1 tanµ

)

θ =





(γ + 1) Ma2
1

2
√

Ma2
1 − 1



 θ (218)

This equation shall be used as the starting point for the relationship

for weak oblique shock waves.
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Weak oblique shocks

From the oblique shock relations, the shock strength is found to be

in the order of O (θ):

∆P

P1
=

2γ

γ + 1

(

Ma2
1 sin2 β − 1

)

≈





γMa2
1

√

Ma2
1 − 1



 θ (219)

In addition, the change in entropy can be shown to be proportional

to the third order of the shock strength for weak oblique shock,

∆s = O
(

θ3
)

:

s2 − s1

R ≈ γ + 1

12γ2
(∆P/P1)

3 ≈ γ + 1

12γ2





γMa2
1

√

Ma2
1 − 1





3

θ3 (220)
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Weak oblique shocks

The other properties can also be shown to be proportional to the

deflection angle θ as well. For example:

T2

T1
= [1 + (∆P/P1)]

[

1 + γ−1
2γ (∆P/P1)

]

[

1 + γ+1
2γ (∆P/P1)

]

≈
[

1 +

(

γMa2
1√

Ma2
1−1

)

θ

]

[

1 + γ−1
2γ

(

γMa2
1√

Ma2
1−1

)

θ

]

[

1 + γ+1
2γ

(

γMa2
1√

Ma2
1−1

)

θ

]

(221)
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Weak oblique shocks

For a closer look, one can define the wave angle β as a slight

increase from the Mach angle µ, such that β = µ+ ǫ for ǫ≪ 1.

With this approximation, one can obtain the following expressions:

sinβ ≈ sinµ+ ǫ cosµ =
1 + ǫ

√

Ma2
1 − 1

Ma1

Ma2
1 sin2 β ≈ 1 + 2ǫ

√

Ma2
1 − 1

ǫ =

[

(γ + 1) Ma2
1

4
(

Ma2
1 − 1

)

]

θ

(222)

Hence, for a small finite deflection angle θ, the direction of the shock

wave β differs from the Mach wave µ by an amount ǫ = O (θ).
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Weak oblique shocks

The expression relating the change of flow speed ∆u across the

wave can also be developed as follows:

u2

u1
=

√

(u2n/ut)
2 + 1

√

(u1n/ut)
2 + 1

=

√

tan2 (β − θ) + 1
√

tan2 β + 1
=

cosβ

cos (β − θ)
(223)

Expanding the cosine terms, assuming small angles for ǫ and θ:

cos (β − θ) = cos (µ+ ǫ− θ) = cosµ− (ǫ− θ) sinµ

=

√
Ma2

1−1−(ǫ−θ)

Ma1
=

√
Ma2

1−1

Ma1

(

1 − ǫ−θ√
Ma2

1−1

)

(224)
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Weak oblique shocks

Thus, the expression for the speed ratio becomes:

u2

u1
=

1 − ǫ√
Ma2

1−1

1 − ǫ−θ√
Ma2

1−1

=

[

1 − ǫ√
Ma2

1−1

] [

1 + ǫ−θ√
Ma2

1−1
+ · · ·

]

= 1 − ǫ√
Ma2

1−1
+ ǫ−θ√

Ma2
1−1

+ · · ·

≈ 1 − θ√
Ma2

1−1

(225)

In terms of speed change, this becomes:

∆u

u1
≈ − θ

√

Ma2
1 − 1

(226)
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Supersonic compression by turning

Supersonic flow may be compressed by turning it by an angle θ, and

forcing it to go through an oblique shock. However, this process of

turning may be done by a succession of small turns, each with a

magnitude of ∆θ.
The series of these oblique shocks will eventually intersect one

another and coalesce into a single wave. However, near the wall,

each can be treated as independent from of the following one, and

the flow may be constructed step-by-step. This is as long as the

deflection does not become too great that the flow becomes

subsonic.

And as these turns become ever smaller, ∆θ → 0, one then obtains

a smooth turn. Along with this, the compression approaches

isentropic limit.
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Supersonic compression by turning

The situation can be depicted as follows.
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Supersonic compression by turning

For each wave associated with each ∆θ, one has the followings:

∆P = O (∆θ) and ∆s = O
(

∆θ3
)

.

For the complete turn, θ = n∆θ, the overall pressure and entropy

changes are:

Pk − P1 ∼ n∆θ ∼ θ

sk − s1 ∼ n∆θ3 ∼ 1

n2
θ3

(227)

Hence, as the deflections become a smooth turn, the entropy rise

decreases by a factor of 1/n2, to finally become vanishingly small,

approaching the limit of isentropic compression.
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Supersonic compression by turning

When the compression becomes isentropic, the change of speed

across a weak oblique shock becomes a differential expression:

du

u
= − dθ

√

Ma2 − 1
(228)

This equation applies continously through the isentropic turn, and

when integrated, will give a relation between Ma and θ.
Moving further away from the wall, the Mach lines will ultimately

converge to form a shock wave. This is due to the fact that an

intersection of two Mach lines would imply an infinitely high

gradient, since the Mach number is double-valued at this point.

Physically, however, as the lines approach each other, the gradients

would become large enough to invalidate isentropic assumption.
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Supersonic compression by turning

This notion of smoothness ultimately relies also on the scale of the

geometry. From far enough away, any smooth bend would still

appear as a sharp corner.

In the case of a channel flow, however, if the upper wall is located

close enough, then the gradients encountered during the turning may

still be small enough to warrant the use of isentropic compression.

And since the flow is isentropic, it may be reversed without

violating the second law of thermodynamics. In this case, the

reversing flow is an expansion flow.
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Supersonic compression by turning

The converging of the Mach waves can be seen in these figures.
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Supersonic expansion by turning

Since a supersonic flow can be compressed by turning it, then it

also can be expanded by turning it the other way.

Unlike compression turning, there is no such thing as an expansion

oblique shock wave, since it requires a decrease in entropy. Instead,

the Mach lines are being directed away from each other, resulting in

a divergent pattern. This, in effect, would decrease the existing

gradients. Hence, an expansion flow is isentropic throughout.

For a sharp corner, this series would be centered at the corner, while

for a smooth turn, the waves would be spread out throughout the

turn.
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Supersonic expansion by turning

The following figures illustrate this concept of supersonic expansion.

Gasdynamics — Lecture Slides



The Prandtl-Meyer function

The relationship between θ and Ma can be integrated as:

−
∫

dθ =

∫

1
2

√

Ma2 − 1
d
(

u2
)

u2
(229)

Here, θ > 0 indicates compression turn, and θ < 0 indicates

expansion turn. One can also define the Prandtl-Meyer function

ν (Ma) = θo − θ, such that ν = 0 correspond to Ma = 1.

The term d
(

u2
)

/u2 can be rewritten as a function of Ma using the

following relations:

a2 =
a2
o

1 + γ−1
2 Ma2

⇒ da

a
= −

γ−1
2 Ma2

1 + γ−1
2 Ma2

dMa

Ma

u = aMa ⇒ du

u
=
(

1 + γ−1
2 Ma2

)

−1 dMa

Ma

(230)
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The Prandtl-Meyer function

Now integrate the relationship to obtain explicit form of ν (Ma):

ν (Ma) =

∫ Ma

1

[ √

Ma′2 − 1

1 + γ−1
2 Ma′2

]

dMa′

Ma′
(231)

Substituting φ2 = Ma2 − 1:

ν (Ma) =

∫

√
Ma2

−1

0

[

2
γ+1φ

2

1 + γ−1
γ+1φ

2

]

dφ

1 + φ2

=

∫

√
Ma2

−1

0

[

1

1 + γ−1
γ+1φ

2
− 1

1 + φ2

]

dφ

=
√

γ+1
γ−1 arctan

√

γ−1
γ+1

(

Ma2 − 1
)

− arctan
√

Ma2 − 1

(232)
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The Prandtl-Meyer function

As the Mach number varies from 1 to ∞, ν increases

monotonically, until it reaches a maximum value:

νmax = 1
2π

(

√

γ+1
γ−1 − 1

)

(233)

This figure illustrate the relation between ν and θ in simple

isentropic turns.
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Detached shocks

Given a wedge at zero angle of attack, with a half-angle δ < δmax,

the following phenomena can be described as the free stream flow

changes from subsonic to supersonic.

Gasdynamics — Lecture Slides



Detached shocks

Alternatively, one can increase the half-angle of the wedge to detach

the shock from it as follows.

The common theme between these two series of figures is that the

deflection angle θ for the detached shock is greater than the value

allowed in the β-θ-Ma equation.
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Detached shocks

This angle θmax can be found by setting dθ/dβ = 0 for a given

Mach number. Allowing φ = cos 2β, the β-θ-Ma equation becomes:

tan θ =

√

1 + φ

1 − φ

[

(

1 − 2/Ma2
)

− φ
(

γ + 2/Ma2
)

+ φ

]

= f (φ)

dθ

dφ
=

f ′

1 + f 2
=

[

f

1 + f 2

]

g (φ)

g (φ) =
1

1 − φ2
− γ + 1
(

1 − 2/Ma2 − φ
) (

γ + 2/Ma2 + φ
)

(234)

Setting g (φ) = 0 will yield a quadratic equation in φ. The correct

solution is chosen by noting that |φ| ≤ 1. Plugging it back into the

β-θ-Ma equation will yield the value for θmax.
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Detached shocks

In practice, there is no analytical treatment for the case of detached

shocks. Studies are conducted empirically, mainly through

experimental and numerical methods.

A detached shock exhibits the whole spectrum of oblique shock

behaviour, from normal shock, to strong and weak oblique shock, all

the way to Mach angle in the far-field. The shape and its

detachment / stand-off distance depend on the Mach number and the

geometry of the body.

During the early years of hypersonic flight research, it was found

that blunt nose is preferable to sharp nose, for survivability of a

re-entry vehicle, a finding deemed important enough to stay

classified for quite a long time. Thus, one sees that the Space

Shuttles have blunt leading edges, while supersonic fighters have

razor-sharp leading edges for lower drag.
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Detached shocks

The complexities associated with detached shocks are mainly caused

by the presence of subsonic flow regimes. Hence, the shock now

also depends on the interaction with the downstream condition.

The following figures show sketches of what is usually observed.
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Detached shocks

Some experimental results can be seen in this figure.
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Detached shocks

As illustrated earlier, detached shocks are often encountered in

transonic flow regime, shown in the following series of figures.
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Shock-expansion theory

The oblique shock wave and the simple isentropic wave provide the

basic tools for analysing many cases in supersonic flows, by patching

together the solutions, of which some are shown in this figure.

For example, the drag for the diamond airfoil is found as

D = (P2 − P3) t, where t is the thickness at the shoulder.
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Shock-expansion theory

Recall the d’Alembert paradox, which states that a symmetrical body

immersed in an inviscid fluid experiences no drag. Yet, here the

airfoil clearly suffers from drag forces, while being put in an

inviscid fluid.

This is an example of supersonic wave drag. In supersonic flows,

drag force can exist, even in the idealized inviscid flows. It is

fundamentally different from the frictional drag and separation drag,

commonly associated with boundary layers in viscous flows.

It is worth mentioning that in real fluids, the shock wave and the

boundary layers do interact. In fact, the wave drag is ultimately

“dissipated” by viscosity within the shock wave, but it does not

depend on the value of the viscosity coefficient. Thus, the entropy

change across the shock wave is largely independent from the

detailed non-equilibrium process inside the shock wave itself.
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Shock-expansion theory

Another example is the curved airfoil, which has continuous

expansion along its upper and lower surfaces. For the shock waves

to be attached, the leading edge and the trailing edge should be

wedge-shaped, with half-angle less than θmax.

For a flat plate at an angle of attack of αo , the pressure on the upper

surface is independent from the lower surface. In fact, the entropy

rise experienced by flows along the two surfaces are not equal.

Hence, a slipstream emanates from the trailing edge, inclined at

some small angle relative to the free stream, across which the static

pressure is equal.

For this flat plate having a chord length of c , the lift and the drag

forces can be found as:

L =
(

P ′

2 − P2

)

c cosαo ≈
(

P ′

2 − P2

)

c

D =
(

P ′

2 − P2

)

c sinαo ≈
(

P ′

2 − P2

)

cαo

(235)
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Shock-expansion theory

The shock waves and the expansion waves also interact with each

other. Here in the figure, it is shown that expansion waves intersect

the shock wave, curving and weakening it, and ultimately reducing

it to mere Mach wave in the far-field.

For most part, the reflected waves are very weak, and thus do not

affect the shock-expansion result for the pressure distribution.
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Reflection and intersection of oblique shocks

An oblique shock wave can also be reflected by a wall. And since

the wall can alternatively be represented by a streamline, the

reflection can also be seen as an intersection of identical oblique

shocks of the opposing family. These are shown in the following

figures.
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Reflection and intersection of oblique shocks

If the intersecting shocks are of

unequal strength, a slipstream is seen

to divide the flow into two portions,

across which the pressure and the

flow direction are identical.

However, the velocity magnitude can

be different across, thus it is also a

shear layer.

Additionally, density and temperature

may also differ, making the slipstream

also a contact surface.

This is due to different

entropy rise experienced by

the two portions of the

flow.
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Reflection and intersection of oblique shocks

When the two intersecting shocks are from the same family, it

results in the merging of the two, shown in this figure. Note that a

wave of the opposing family is needed to equalize the pressure

across the slipstream.

The other figure shows what occurs when the expansion waves

intersect an oblique shock wave. Along with the shock weakening,

there are also weak reflected waves.
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Reflection and intersection of oblique shocks

A more complex phenomenon in the shock reflection occurs when

the incident shock is strong enough such that the Mach number is

lower than the detachment value for the given deflection angle.

A nearly normal shock wave then appears near the wall, giving rise

a subsonic region. This is called the Mach reflection, and the

normal leg is often referred to as the Mach stem.

Note that since the flow now also depends on the downstream

conditions, no simple solutions can be obtained.

A slipstream dividing the

subsonic and the

supersonic regions

emanates from the triple

point of intersection,

shown in this figure.
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Cones in supersonic flow

The flow field for a cone in supersonic flow at zero angle of attack is

not as simple as the one for wedge, where a uniform flow region is

found between the shock and the wedge. In this 3-D case, uniform

flow behind the shock would violate the continuity equation.

However, the flow possesses a property that can be exploited for the

analysis of the flow field, that is the cone can be considered to be

semi-infinite.

With this assumption, it

can be argued that the flow

conditions are constant

along each ray emanating

from the vertex of the cone.
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Cones in supersonic flow

An example of the this type of flow is shown in this figure. Note

that the flow possesses also azimuthal symmetry, thus one only need

to consider the flow along a meridian plane.
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Cones in supersonic flow

The solution has been given, first by Busemann, and later by Taylor

and MacColl. The procedure consists of fitting an isentropic conical

flow to the conical shock. The 3-D flow equations are rewritten in

terms of a single conical variable ω, which is then solved

numerically.

At the shock, the simple oblique shock “jump” relation can be used,

since locally it always applies to any shock surface. And the flow

behind the shock must be matched with the isentropic conical flow,

which then determines the solution.

Note that behind the shock, the streamlines are curved. And

compared to the flow over a wedge, the compression is lower due to

the 3-D relieving effect. Also, the detachment occurs at a much

lower Mach number.
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Cones in supersonic flow

The following figure shows the variation of shock wave angle β as a

function of Mach number Ma and the cone angle θ.
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Cones in supersonic flow

Additionally, this figure shows the variation of pressure coefficient

Cp as a function of Mach number Ma and the cone angle θ.
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Derivation of perturbation equation

In many problems in aerodynamics, the interest lies in knowing the

effect of small perturbation applied to a known fluid motion. This

may result in great simplification of the problems at hand.

The most common and obvious example is how a body placed in a

unform flow would change the flow field, as shown in this figure.

(a) Uniform flow (b) Perturbed flow
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Derivation of perturbation equation

In this example, the coordinate system can be chosen to align with

the free stream flow velocity U∞. Furthermore, it is assumed for the

undisturbed flow, the properties are constant, e.g., ρ∞, p∞ and T∞.

This results in Ma∞ = U∞/a∞. Correspondingly, the velocity field

can be expressed as ~u = 〈U∞, 0, 0〉.
Now, assume that the flow field is perturbed by some small amount,

caused by the presence of a solid body in the flow, such that the

pertubed velocity field becomes:

~u = 〈U∞ + ux , uy , uz〉 (236)

Note that these are small compared to free stream velocity:

ux

U∞

,
uy

U∞

,
uz

U∞

≪ 1 (237)
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Irrotational flow

Refer to the following figure,

showing the rotations of two

elements PR and PS on the

xy -plane, about the z-axis:

During a small time increment dt,

point P would have moved ux dt in

the x-direction and uy dt in the

y -direction.

Point R would have moved

(∂ux/∂x) dx dt in the x-direction

and (∂uy/∂x) dx dt in the

y -direction, relative to P.

Similarly, point S would have moved

(∂ux/∂y) dy dt in the x-direction

and (∂uy/∂y) dy dt in the

y -direction, relative to P.

The angles θR and θS can then be

described in terms of the velocity

increments, assuming right-hand-rule.
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Irrotational flow

Define the angular velocity vector ~ω as the average of the rotational

deformation rate of two mutually perpendicular elements, e.g., in

z-direction:

ωz = 1
2 dt

(θR − θS) = 1
2

(

∂uy

∂x
− ∂ux

∂y

)

(238)

Similar expressions can also be obtained for x-direction and

y -direction, which yields the following, recognizing that εijk is the

permutation symbol:

~ω = 1
2∇× ~u ⇔ ωk = 1

2εijk (∂uj/∂xi ) (239)

The vorticity vector is defined as twice the angular velocity ~ζ = 2~ω.

For an irrotational flow, the vorticity is zero, which yields:

∂ui/∂xj = ∂uj/∂xi (240)
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Irrotational flow

The 3-D momentum equation for steady, inviscid flow is:

(~u · ∇)~u + 1
ρ ∇P = 0 (241)

Furthermore, the following can be obtained from a vector identity:

1
2∇ (~u · ~u) = (~u · ∇)~u+~u×(∇× ~u) = (~u · ∇)~u+2 (~u × ~ω) (242)

The second law of thermodynamics for an adiabatic flow, where ho

is constant, can be expressed as:

T ∇s = ∇h − 1
ρ ∇P = −1

2∇ (~u · ~u) − 1
ρ ∇P

= − [(~u · ∇)~u + 2 (~u × ~ω)] − [− (~u · ∇)~u] = ~ζ × ~u
(243)

Hence, an irrotational, adiabatic flow implies isentropicity.
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Governing equations for small perturbation flows — Part I

Starting with the continuity equation and the momentum equation

for 3-D flows, here written in Cartesian tensor notation:

∂ρ

∂t
+

∂

∂xi

(ρui ) = 0

∂uj

∂t
+ ui

∂uj

∂xi

+
1

ρ

∂P

∂xj

= 0
(244)

For this topic, only steady, adiabatic, irrotational (∇× ~u = 0) flows

are considered. Hence, according to Crocco’s theorem, the flows are

isentropic:
∂P

∂xj

=

(

∂P

∂ρ

∣

∣

∣

∣

s

)

∂ρ

∂xj

= a2 ∂ρ

∂xj

(245)
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Governing equations for small perturbation flows — Part I

Plugging this back in the momentum equation, and taking scalar

product with the velocity vector, gives:

uiuj

∂uj

∂xi

+
a2

ρ
uj

∂ρ

∂xj

= 0 (246)

Combining this with the continuity equation results in the following

equation for steady inviscid flow:

uiuj

∂uj

∂xi

= a2∂uj

∂xj

(247)

And the speed of sound a can be obtained from the energy equation

for perfect gas as follows:

1
2U2

∞
+ 1

γ−1a2
∞

= 1
2

[

(U∞ + ux)
2 + u2

y + u2
z

]

+ 1
γ−1a2

⇒ a2 = a2
∞

− γ−1
2

(

2U∞ux + u2
x + u2

y + u2
z

)

(248)
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Governing equations for small perturbation flows — Part I

Expanding the equation for steady inviscid flow, and dividing by a2
∞

:

(

1 − Ma2
∞

)

∂ux

∂x
+

∂uy

∂y
+ ∂uz

∂z

= Ma2
∞

[

u2
x

U2
∞

+ γ−1
2

(

2ux

U∞

+ u2
x

U2
∞

+
u2

y

U2
∞

+ u2
z

U2
∞

)]

∂ux

∂x

+ Ma2
∞

[

u2
y

U2
∞

+ γ−1
2

(

2ux

U∞

+ u2
x

U2
∞

+
u2

y

U2
∞

+ u2
z

U2
∞

)]

∂uy

∂y

+ Ma2
∞

[

u2
z

U2
∞

+ γ−1
2

(

2ux

U∞

+ u2
x

U2
∞

+
u2

y

U2
∞

+ u2
z

U2
∞

)]

∂uz

∂z

+ Ma2
∞

[

ux

U∞

(

∂ux

∂x
+ ∂ux

∂x

)

]

+ Ma2
∞

[

uyuz

U2
∞

(

∂uy

∂z
+ ∂uz

∂y

)]

+ Ma2
∞

[

uy

U∞

(

∂ux

∂y
+

∂uy

∂x

)]

+ Ma2
∞

[

uzux

U2
∞

(

∂uz

∂x
+ ∂ux

∂z

)

]

+ Ma2
∞

[

uz

U∞

(

∂ux

∂z
+ ∂uz

∂x

)

]

+ Ma2
∞

[

uxuy

U2
∞

(

∂ux

∂y
+

∂uy

∂x

)]

(249)
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Governing equations for small perturbation flows — Part I

This is the full, exact equation in terms of the perturbation

velocities.

Linear terms are collected in the left-hand-side, while the non-linear

terms are all on the right-hand-side.

For small perturbations, many terms can be neglected, e.g., the

second-order terms in perturbation velocities ux , uy and uz can be

dropped out, in comparison with the first order terms.

Depending on the flow regime of interest, whether it be subsonic,

transonic, supersonic or hypersonic, even further simplification is

possible.

For example, the completely linear equation, valid for subsonic and

supersonic flows, but not for transonic flows, can be obtained by

dropping the entire right-hand-side:

(

1 − Ma2
∞

)

∂ux

∂x
+

∂uy

∂y
+ ∂uz

∂z
= 0 (250)
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Governing equations for small perturbation flows — Part II

Earlier, the full, exact equation has been obtained:

(

1 − Ma2
∞

)

∂ux

∂x
+

∂uy

∂y
+ ∂uz

∂z

= Ma2
∞

[

u2
x

U2
∞

+ γ−1
2

(

2ux

U∞

+ u2
x

U2
∞

+
u2

y

U2
∞

+ u2
z

U2
∞

)]

∂ux

∂x

+ Ma2
∞

[

u2
y

U2
∞

+ γ−1
2

(

2ux

U∞

+ u2
x

U2
∞

+
u2

y

U2
∞

+ u2
z

U2
∞

)]

∂uy

∂y

+ Ma2
∞

[

u2
z

U2
∞

+ γ−1
2

(

2ux

U∞

+ u2
x

U2
∞

+
u2

y

U2
∞

+ u2
z

U2
∞

)]

∂uz

∂z

+ Ma2
∞

[

ux

U∞

(

∂ux

∂x
+ ∂ux

∂x

)

]

+ Ma2
∞

[

uyuz

U2
∞

(

∂uy

∂z
+ ∂uz

∂y

)]

+ Ma2
∞

[

uy

U∞

(

∂ux

∂y
+

∂uy

∂x

)]

+ Ma2
∞

[

uzux

U2
∞

(

∂uz

∂x
+ ∂ux

∂z

)

]

+ Ma2
∞

[

uz

U∞

(

∂ux

∂z
+ ∂uz

∂x

)

]

+ Ma2
∞

[

uxuy

U2
∞

(

∂ux

∂y
+

∂uy

∂x

)]

(251)
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Governing equations for small perturbation flows — Part II

The first simplification that can be done involves neglecting

second-order perturbation terms, to obtain:

(

1 − Ma2
∞

)

∂ux

∂x
+

∂uy

∂y
+ ∂uz

∂z

= Ma2
∞

[

(γ−1)ux

U∞

(

∂ux

∂x

)

+ ux

U∞

(

∂ux

∂x
+ ∂ux

∂x

)

]

+ Ma2
∞

[

(γ−1)ux

U∞

(

∂uy

∂y

)

+
uy

U∞

(

∂ux

∂y
+

∂uy

∂x

)]

+ Ma2
∞

[

(γ−1)ux

U∞

(

∂uz

∂z

)

+ uz

U∞

(

∂ux

∂z
+ ∂uz

∂x

)

]

(252)

Furthermore, the products of the the perturbation velocities and their

derivatives can also be dropped. However, one needs to first look at

the situation as Ma∞ → 1.
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Governing equations for small perturbation flows — Part II

As Ma∞ → 1, the ∂ux/∂x term on the left-hand-side becomes ever

smaller, such that it may not be justifiable to neglect the ∂ux/∂x

term on the right-hand-side.

On the other hand, this does not affect the terms involving the

∂uy/∂y and ∂uz/∂z , as well as the cross-differentiation terms, and

these can be dropped from the right-hand-side of the equation to

give this non-linear equation:

(

1 − Ma2
∞

)

∂ux

∂x
+

∂uy

∂y
+ ∂uz

∂z
= Ma2

∞

(γ+1)ux

U∞

∂ux

∂x
(253)

Note that this equation is valid for both subsonic and supersonic, as

well as transonic flow regimes, but not the hypersonic flow regime,

which requires different approximation to be used due to the large

value of Ma∞.

And if the transonic regime is excluded, a fully-linear equation then

can be used, obtained by neglecting the entire right-hand-side.
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Governing equations for small perturbation flows — Part II

It has been assumed that the flow is inviscid. An additional

condition, that the flow is irrotational, can be assumed. This

imposes the following condition on the velocity field:

∇× ~u = 0 (254)

This condition allows the existence of a perturbation velocity

potential φ, such that:

ux =
∂φ

∂x
, uy =

∂φ

∂y
, uz =

∂φ

∂z
(255)

Hence, the small-perturbation equation, which includes the transonic

flow regime, can be rewritten as:

(

1 − Ma2
∞

) ∂2φ
∂x2 + ∂2φ

∂y2 + ∂2φ
∂z2 = Ma2

∞

γ+1
U∞

∂φ
∂x

∂2φ
∂x2 (256)
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Pressure coefficient

The definition of the pressure coefficient is:

Cp =
p − p∞
1
2ρ∞U2

∞

=
2

γMa2
∞

(

p − p∞

p∞

)

(257)

In terms of local velocity ~u = 〈U∞ + ux , uy , uz〉:

Cp = 2
γMa2

∞

[

[

1 + γ−1
2 Ma2

∞

(

1 − ~u·~u
U2
∞

)]γ/(γ−1)
− 1

]

= 2
γMa2

∞

[

[

1 − γ−1
2 Ma2

∞

(

2ux

U∞

+
u2

x+u2
y+u2

z

U2
∞

)]γ/(γ−1)

− 1

]

(258)

Using binomial theorem, the following is obtained:

Cp = −
[

(

2ux

U∞

+
u2

x+u2
y+u2

z

U2
∞

)

− Ma2
∞

4

(

2ux

U∞

+
u2

x+u2
y+u2

z

U2
∞

)2

+ · · ·
]

(259)
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Pressure coefficient

Neglecting the cubic and higher-order terms, the previous binomial

expansion can be simplified to:

Cp = −
[

2ux

U∞

+
(

1 − Ma2
∞

) u2
x

U2
∞

+
u2

y

U2
∞

+ u2
z

U2
∞

]

(260)

For 2-D and planar flows, consistency with the first-order (linear)

perturbation equation can be maintained by retaining only the first

term:

Cp = − 2ux

U∞

(261)

On the other hand, for axi-symmetric flows, or flows over elongated

bodies, it is necessary to include also the transverse velocity terms

uy and uz :

Cp = −
[

2ux

U∞

+
u2

y

U2
∞

+ u2
z

U2
∞

]

(262)
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Boundary conditions

The inviscid condition dictates that the flow velocity must be

tangential to the surface of a solid body. This is to say that the

velocity vector must be at the right-angle (90 ◦) with respect to the

normal vector of the solid surface.

If the solid surface is expressed functionally as f (x , y , z) = 0, this

flow tangency condition can be expressed mathematically in

Cartesian tensor notation as:

~u · ∇f = ui

∂f

∂xi

= (U∞ + ux)
∂f

∂x
+ uy

∂f

∂y
+ uz

∂f

∂z
= 0 (263)

Since ux can be neglected relative to U∞, this condition can be

further simplified as:

U∞

∂f

∂x
+ uy

∂f

∂y
+ uz

∂f

∂z
= 0 (264)
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Boundary conditions

As an illustration, a two-dimensional case shall be considered, for

which uz = 0, and
∂f

∂z
= 0. This gives:

uy

U∞

= −∂f /∂x

∂f /∂y
=

dy

dx
(265)

Since dy/dx ⊥ ∇f is the slope of the body, which is perpendicular

to normal vector of the body surface, and uy/U∞ approximates the

slope of the streamline, the boundary condition requires that the

velocity component uy at the body surface should be equal to U∞

multiplied by the slope of the body at that point.

To justify the use of small-perturbation assumption, the body needs

to be thin, |y | ≪ 1. Applying Taylor series expansion:

uy (x , y) = uy (x , 0) + y
∂uy

∂y

∣

∣

∣

∣

(x ,0)

+
y2

2

∂2uy

∂y2

∣

∣

∣

∣

(x ,0)

+ · · · (266)
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Boundary conditions

For the 2-D case, it is only necessary to keep the first term, leading

to the following boundary condition:

uy (x , 0) = U∞ (dy/dx)|body (267)

The previous expression is still valid for a planar 3-D case, since it

requires ∂f /∂z ≈ 0. In this case, the boundary condition becomes:

uy (x , 0, z) = U∞ (∂y/∂x)|body (268)

Note that this does not apply to axisymmetric cases, since the

transverse perturbation velocity cannot be expanded in power series

in the neighbourhood of the axis.

Finally, the far-field boundary condition can be set by requiring the

perturbation velocities to die out, or approaching some finite value,

depending on the nature of the problem.
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Flow past a wave-shaped wall — an example

A simple application of the small-perturbation theory in 2-D can be

served by the following example of a flow over a wave-shaped wall.

The surface of wall can be described as a sinusoidal shape of a

magnitude ǫ and a wavelength l = 2π/α:

y − ǫ sin (αx) = 0 (269)
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Flow past a wave-shaped wall — an example

Since this example only deals with subsonic and moderate

supersonic flows, the linear small-perturbation can be used, subject

to finite values of ux and uy at far-field:

(

1 − Ma2
∞

) ∂2φ
∂x2 + ∂2φ

∂y2 = 0 (270)

At the wall, flow tangency is enforced:

uy (x , 0) = U∞

dy

dx

∣

∣

∣

∣

body

= U∞ǫα cos (αx) (271)

Due to vastly different behaviours of the two flow regimes, the

subsonic case and the supersonic case shall be investigated

separately.
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Flow past a wave-shaped wall — subsonic case

Let m2 = 1 − Ma2, and rewrite:

∂2φ

∂x2
+

1

m2

∂2φ

∂y2
= 0 (272)

Using the separation of variable technique, φ (x , y) = X (x) Y (y),
the following is obtained:

X
′′

X
= − 1

m2

Y
′′

Y
= −k2 (273)

This gives two ordinary differential equations, whose solutions are:

X = X1 cos (kx) + X2 sin (kx) (274)

Y = Y1 cosh (mky) + Y2 sinh (mky) (275)
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Flow past a wave-shaped wall — supersonic case

In the supersonic case, define λ2 = Ma2 − 1, and rewrite:

∂2φ

∂x2
− 1

λ2

∂2φ

∂y2
= 0 (276)

This equation is in the form of what is commonly referred to as the

second order wave equation. The solutions are simply the sum of

two arbitrary functions f and g :

φ (x , y) = f (x − λy) + g (x + λy) (277)

The lines x ∓ λy = constant are recognizable as the characteristics

of the flow, carrying information toward downstream and upstream,

respectively.

But since this is a supersonic flow with limited upstream influence,

only one solution is valid, which is f .
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