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Preliminaries

These notes form part of the lecture notes for the mod-

ule G14TBS. This section is on Population Genetics, and

contains 14 lectures worth of material. During this section

will be doing some problem-based learning, where the em-

phasis is on you to work with your classmates to generate

your own notes. I will be on hand at all times to answer

questions and guide the discussions.

Reading List: There are several good introductory books

on population genetics, although I found their level of math-

ematical sophistication either too low or too high for the

purposes of this module. The following are the sources I

used to put together these lecture notes:

• Gillespie, J. H., Population genetics: a concise guide.

John Hopkins University Press, Baltimore and Lon-

don, 2004.

• Hartl, D. L., A primer of population genetics, 2nd

edition. Sinauer Associates, Inc., Publishers, 1988.

• Ewens, W. J., Mathematical population genetics: (I)

Theoretical Introduction. Springer, 2000.

• Holsinger, K. E., Lecture notes in population genet-

ics. University of Connecticut, 2001-2010. Available

online at

http://darwin.eeb.uconn.edu/eeb348/lecturenotes/notes.html.

• Tavaré S., Ancestral inference in population genetics.

In: Lectures on Probability Theory and Statistics.

Ecole d’Etés de Probabilité de Saint-Flour XXXI –

2001. (Ed. Picard J.) Lecture Notes in Mathematics,

Springer Verlag, 1837, 1-188, 2004. Available online

at

http://www.cmb.usc.edu/people/stavare/STpapers-pdf/T04.pdf

Gillespie, Hartl and Holsinger are written for non-mathematicians

and are easiest to follow. Ewens and Tavaré are more tech-

nically challenging, but both are written by pioneers in pop-

ulation genetics and are well worth looking through.
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Chapter 1

Everything you wanted

to know about genetics,

but were afraid to ask

Please email corrections and suggestions to

r.d.wilkinson@nottingham.ac.uk

If you know nothing about genetics, read through DNA

from the beginning, available at http://dnaftb.org/

We will now cover the very basics needed for this course.

Genetics essentially separates into two eras

• Classical genetics (Mendelian inheritance)

• Molecular genetics

1.1 Some history

We will describe briefly the development of genetics over

the past 150 years, but using modern terminology through-

out.

1.1.1 Classical genetics

The study of genetics began with the study of traits and

heredity, and it has long been known that traits are passed

5
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from parents to offspring. However, it wasn’t until 1865

that Gregor Mendel (an Augustian monk) posited the ex-

istence of discrete factors called genes inherited from par-

ents. Alternative forms of a trait come from alternative

forms of a gene (called alleles). By a large number of

meticulous experiments with pea plants, Mendel managed

to infer the following:

• genes come in pairs

• genes don’t blend

• some genes are dominant over others

• each trait is controlled by a pair of genes (he only

examined simple traits)

Mendel proposed the following two laws, now known as the

Mendelian laws of inheritance:

1. Law of segregation: when an individual produces

gametes (sex cells) the copies of each gene separate

so that each gamete receives only one copy (a process

known as meiosis).

2. Law of independent assortment: Alleles of differ-

ent genes assort independently of one another during

gamete formation.

The first law explained how replication works. The second

law leads to Mendel’s famous 3:1 ratio. Note that the

second law is only true for genes that are not linked (see

later).

Albinism

Consider a simple trait (determined by a single gene), e.g.,

albinism. Let A denote the normal gene, and a denote the

gene for albinism. We know that A is dominant over a.

Everybody carries two copies of this gene. There are three

possible genotypes: AA,Aa and aa. But there are only

two phenotypes: normal or albino.

We call people with the AA or aa genotypes homozygous,

and people with the Aa genotype are called heterozygous
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Figure 1.1: An illustration of meiosis, crossing-over and

recombination in the formation of gametes.

(for this gene). Mendelian genetics tells us what happens

when different genotypes breed.

For example, if two heterozygous individuals mate, then

Mendel’s first law says that all three genotypes are possible

for their progeny. Mendel also showed that the ratio of

normal offspring to non-normal (in this case albino) will

be 3:1 (Mendel’s experiments were with pea colour, not

albinos!). This is because

Aa× Aa produces


AA w.p. 1/4

Aa w.p. 1/2

aa w.p. 1/4

Hence, this breeding pair will produce 3 normal offspring

for every albino (on average).

A Mendelian trait is one controlled by a single locus

(gene location on a chromosome) and shows a simple Mendelian

inheritance pattern. Other examples include sickle cell ane-

mia and cystic fibrosis.
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NB Note the inherently probabilistic nature of Mendelian

inheritance.

Quantal nature of genes

Mendel’s work was completely ignored until 1900.

At the same time as Mendel was conducting his pea ex-

periments, the structure of the cell was being explored and

chromosomes (thin thread-like structures) were discovered.

It was suggested that chromosomes carry the information

needed for each life form. In the 1870s cell division and

chromosome replication (mitosis) was discovered, and it

was realised that all life must arise from pre-existing life via

replication. It was found that normal body cells (diploid

cells) have two copies of each chromosome, and that sex

cells (gametes) only have one set (haploid cells). Meiosis

(formation of gametes) was discovered in the 1890s, and

it was shown that meiosis halves the set of chromosomes

and randomly assorts homologous chromosomes into sex

cells (cf. Mendel’s second law). See Figure 1.1 for an

illustration of meiosis.

It was only once this experimental work was complete, that

Mendel’s abstract genetic theory was given the physical

context it needed.

Genetic Basis of gender

In 1905 the chromosomal basis of gender was discovered.

Humans were observed to have 22 homologous pairs of

chromosomes, and 1 pair of non-identical chromosomes (in

men) (46 chromosomes - 23 pairs in total), and similar

phenomena were observed in other species.

The sex chromosome, is XX in women and XY in men,

and the X chromosome is much longer than the Y chro-

mosome. Females produce only X gametes, whereas males

produce X and Y gametes in equal proportion, explaining

the genetic basis of gender.
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Morgan ushered in the era of modern genetics when he

showed that genes must be physically located on chromo-

somes. He also showed that some traits tend to occur to-

gether, e.g., they are linked. He showed that in Drosophila

melanogaster (the fruit fly), there were four linked groups

of traits, which equals the number of chromosomes pairs

in Drosophila - this provided further evidence that genes

are on chromosomes and began to explain why some traits

are linked. They used linkage to construct maps of fruit

fly chromosomes.

Morgan also observed that linked traits are sometimes sep-

arated during meiosis, breaking the laws of Mendelian in-

heritance. He concluded that how often they separated

provided a measure of the relative distance between them

on the chromosome. This started the idea that genes are

located linearly along a chromosome. Traits determined

by genes on the same chromosome tend to be inherited

together. However during meiosis, cross-over sometimes

occurs, and part of each homologous chromosome is passed

into the gamete - in this case the linkage is broken. The

chance of genes being split in this manner depends on how

far apart they are.

Evolution

Darwin published On the origin of species in 1859. In it

he laid out his theory that evolution occurred by natu-

ral selection. In the early 20th century it became clear

that mutations in genes are the source of variation and

that Mendelian genetics offered a statistical method for

analysing inheritance of new mutations. Sadly, these ideas

also led to eugenics, which wrongly assumed that complex

traits (intelligence, mental illness etc) could be explained

by the simple dominant/recessive gene theory of Mendel,

leading to the Nazi attempt to purify the German ‘race’.

We now know that most traits involve many genes, usually

in a non-trivial manner.
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Figure 1.2: A replicating dna molecule.

1.1.2 Molecular Genetics

In the late 19th and early 20th centuries, it was widely be-

lieve that proteins were the carriers of genetic information.

Proteins are long linear chains of amino acids. There is an

amino-acid ‘alphabet’ of 20 different ‘words’, and proteins

consist of long combinations of different words. We now

know that although proteins are the chief actors within a

cell, they are not the carriers of genes.

DNA (deoxyribonucleic acid) was discovered as a molecule

in 1860, however it wasn’t until 1941 that it was discovered

that genes are made of DNA. DNA consists of four ele-

ments, which are usually labelled A, C, G and T (adenine,

cytosine, guanine and thymine). It was initially thought

that DNA was just a monotonous sequence of these four

elements with no known function.

In 1953 Watson and Crick showed the double helix struc-

ture of DNA, which made clear how DNA replicates. In

particular, A always pairs with T, and G with C. When the

two helical strands separate, each forms a blueprint for a

complete dna molecule. See Figure 1.2.
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Figure 1.3: Translating codons into amino-acids.

In this course, we will think of dna as a long string of

the letters A, C, G and T, which we will call base pairs

(bp). Recall that A is always joined to T and C to G and

vice versa, so we only need to know the sequence on one

strand of the DNA molecule to know the entire sequence.

The ‘central dogma’ of genetics, is that DNA codes for

RNA, which then codes for protein, i.e., genetic information

flows from DNA to proteins. The DNA molecule is split into

codons, which are a sequence of three letters. Each codon

codes for a single amino-acid.

There is redundancy in this genetic code, with some codons

coding for the same amino-acid, and some being ‘start’ or

‘stop’ signals.

Mendel said a gene is a discrete unit of heredity that in-

fluences a visible trait. A modern understanding of a gene

is that is a discrete sequence of DNA encoding a protein,

beginning with a start codon and ending with a stop codon.

See Figure 1.3.

1.1.3 Genetic change

Each DNA difference results from a mutation. This can

range from
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• a single nucleotide change (a SNP - a single nu-

cleotide polymorphism)

• small repeated units in replication

• larger insertions and deletions

and mutations can have external causes, such as radiation,

or may be due to errors in replication.

Mutations can

• be beneficial (which might then spread through the

population leading to evolution)

• lead to disease

• be neutral.

In humans, the vast majority of mutations are neutral, usu-

ally because they occur in non-coding regions. Only 5% of

the human genome is thought to code for proteins, the rest

being non-coding.

Within humans, genetic variation is usually about 1 in 1000

base-pairs difference.

The human-genome, completed in 2001, successfully se-

quenced the entire human genome in one individual. Sci-

entists are now trying to locate and identify the function

of all the genes along the sequence.

1.1.4 Miscellaneous facts

Each chromosome is one continuous strand of DNA. The

human genome is 46 chromosomes – 23 pairs. The best

current estimate is that this is approximately 23,000 genes.

The complete genome is approximately 3 billion base pairs

long.

Higher cells also have a mitrochondrial chromosome that

is maternally inherited.
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Figure 1.4: The human genome.

1.2 Population Genetics

Hidden within the genetic code is compelling evidence of

the shared ancestry of all living things. It is a record of all

the mutations that have occurred and become fixed within

the genome. The aim of population genetics is to study

genetic variation and evolution to make conclusions about

entire populations and their history. This could be about

the growth of the cells in a tumor, the history of a small

group of individuals such as a family, or a larger population,

or a whole species, or a collection of species. We are still

only at the beginning of understanding and being able to

read the history that is embedded within the genome.

Examples of the types of question we might want to answer

are

• When did humans diverge from chimps? See Figure

1.5

• Did a population experience a drastic bottleneck in
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Figure 1.5: Primate evolution.

the past?

• Are two distinguishable populations mixing geneti-

cally? How much?

• Why did sex evolve?

• What impact does inbreeding have on a population?

For example, how much mutational damage has con-

sanguineous marriages in human populations caused?

Population genetics is a subject that is unimaginable with-

out sophisticated mathematics and statistics. Some of the

greatest names in mathematics and statistics have worked

in the field, including Fisher, Galton, Pearson, Hardy, ...

1.3 Genetics Glossary

Genetics is the study of genes.

• Alleles: Alternative forms of a genetic locus; a single

allele for each locus is inherited separately from each

parent (e.g., at a locus for eye color the allele might

result in blue or brown eyes).
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• Amino acid: Any of a class of 20 molecules that are

combined to form proteins in living things. The se-

quence of amino acids in a protein and hence protein

function are determined by the genetic code.

• Base pair (bp): Two nitrogenous bases (adenine and

thymine or guanine and cytosine) held together by

weak bonds. Two strands of DNA are held together

in the shape of a double helix by the bonds between

base pairs.

• Base sequence: The order of nucleotide bases in a

DNA molecule.

• Centimorgan (cM): A unit of measure of recombina-

tion frequency. One centimorgan is equal to a 1%

chance that a marker at one genetic locus will be

separated from a marker at a second locus due to

crossing over in a single generation. In human be-

ings, 1 centimorgan is equivalent, on average, to 1

million base pairs.

• Chromosomes: The self- replicating genetic struc-

tures of cells containing the cellular DNA that bears

in its nucleotide sequence the linear array of genes. In

prokaryotes, chromosomal DNA is circular, and the

entire genome is carried on one chromosome. Eu-

karyotic genomes consist of a number of chromo-

somes whose DNA is associated with different kinds

of proteins.

• Crossing over: The breaking during meiosis of one

maternal and one paternal chromosome, the exchange

of corresponding sections of DNA, and the rejoining

of the chromosomes. This process can result in an

exchange of alleles between chromosomes. Compare

recombination.

• DNA (deoxyribonucleic acid): The molecule that en-

codes genetic information. DNA is a double- stranded

molecule held together by weak bonds between base

pairs of nucleotides. The four nucleotides in DNA

contain the bases: adenine (A), guanine (G), cyto-
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sine (C), and thymine (T). In nature, base pairs form

only between A and T and between G and C; thus the

base sequence of each single strand can be deduced

from that of its partner.

• DNA sequence: The relative order of base pairs,

whether in a fragment of DNA, a gene, a chromo-

some, or an entire genome. See base sequence anal-

ysis. Double helix: The shape that two linear strands

of DNA assume when bonded together.

• Double helix: The shape that two linear strands of

DNA assume when bonded together.

• Eukaryote: Cell or organism with membrane- bound,

structurally discrete nucleus and other well- devel-

oped subcellular compartments. Eukaryotes include

all organisms except viruses, bacteria, and blue- green

algae. Compare prokaryote. See chromosomes.

• Gene: The fundamental physical and functional unit

of heredity. A gene is an ordered sequence of nu-

cleotides located in a particular position on a partic-

ular chromosome that encodes a specific functional

product (i.e., a protein or RNA molecule).

• Genetics: The study of the patterns of inheritance of

specific traits.

• Genome: All the genetic material in the chromo-

somes of a particular organism; its size is generally

given as its total number of base pairs.

• Haploid: A single set of chromosomes (half the full

set of genetic material), present in the egg and sperm

cells of animals and in the egg and pollen cells of

plants. Human beings have 23 chromosomes in their

reproductive cells. Compare diploid.

• Heterozygosity: The presence of different alleles at

one or more loci on homologous chromosomes.

• Kilobase (kb): Unit of length for DNA fragments

equal to 1000 nucleotides.

• Linkage: The proximity of two or more markers (e.g.,
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genes, RFLP markers) on a chromosome; the closer

together the markers are, the lower the probabil-

ity that they will be separated during DNA repair

or replication processes (binary fission in prokary-

otes, mitosis or meiosis in eukaryotes), and hence

the greater the probability that they will be inherited

together.

• Linkage map: A map of the relative positions of ge-

netic loci on a chromosome, determined on the basis

of how often the loci are inherited together. Distance

is measured in centimorgans (cM).

• Locus (pl. loci): The position on a chromosome

of a gene or other chromosome marker; also, the

DNA at that position. The use of locus is sometimes

restricted to mean regions of DNA that are expressed.

See gene expression.

• Marker: An identifiable physical location on a chro-

mosome (e.g., restriction enzyme cutting site, gene)

whose inheritance can be monitored. Markers can

be expressed regions of DNA (genes) or some seg-

ment of DNA with no known coding function but

whose pattern of inheritance can be determined. See

RFLP, restriction fragment length polymorphism.

• Megabase (Mb): Unit of length for DNA fragments

equal to 1 million nucleotides and roughly equal to 1

cM.

• Meiosis: The process of two consecutive cell divisions

in the diploid progenitors of sex cells. Meiosis results

in four rather than two daughter cells, each with a

haploid set of chromosomes.

• Mitosis: The process of nuclear division in cells that

produces daughter cells that are genetically identical

to each other and to the parent cell.

• Mutation: Any heritable change in DNA sequence.

Compare polymorphism.

• Nucleotide: A subunit of DNA or RNA consisting

of a nitrogenous base (adenine, guanine, thymine,



18 CHAPTER 1. INTRODUCTION TO GENETICS

or cytosine in DNA; adenine, guanine, uracil, or cy-

tosine in RNA), a phosphate molecule, and a sugar

molecule (deoxyribose in DNA and ribose in RNA).

Thousands of nucleotides are linked to form a DNA

or RNA molecule. See DNA, base pair, RNA.

• Nucleus: The cellular organelle in eukaryotes that

contains the genetic material.

• Physical map: A map of the locations of identifiable

landmarks on DNA (e.g., restriction enzyme cutting

sites, genes), regardless of inheritance. Distance is

measured in base pairs. For the human genome, the

lowest- resolution physical map is the banding pat-

terns on the 24 different chromosomes; the highest-

resolution map would be the complete nucleotide se-

quence of the chromosomes.

• Polymorphism: Difference in DNA sequence among

individuals. Genetic variations occurring in more than

1% of a population would be considered useful poly-

morphisms for genetic linkage analysis. Compare mu-

tation.

• Prokaryote: Cell or organism lacking a membrane-

bound, structurally discrete nucleus and other subcel-

lular compartments. Bacteria are prokaryotes. Com-

pare eukaryote. See chromosomes.

• Protein: A large molecule composed of one or more

chains of amino acids in a specific order; the order

is determined by the base sequence of nucleotides

in the gene coding for the protein. Proteins are re-

quired for the structure, function, and regulation of

the body’s cells, tissues, and organs, and each pro-

tein has unique functions. Examples are hormones,

enzymes, and antibodies.

• Recombination: The process by which progeny de-

rive a combination of genes different from that of

either parent. In higher organisms, this can occur by

crossing over.

• Sequence: See base sequence.
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• Sequencing: Determination of the order of nucleotides

(base sequences) in a DNA or RNA molecule or the

order of amino acids in a protein.

• Sex chromosomes: The X and Y chromosomes in

human beings that determine the sex of an individual.

Females have two X chromosomes in diploid cells;

males have an X and a Y chromosome. The sex

chromosomes comprise the 23rd chromosome pair in

a karyotype. Compare autosome.

• Single- gene disorder: Hereditary disorder caused by

a mutant allele of a single gene (e.g., Duchenne mus-

cular dystrophy, retinoblastoma, sickle cell disease).

Compare polygenic disorders.



20 CHAPTER 1. INTRODUCTION TO GENETICS



Chapter 2

Hardy-Weinberg

Equilibrium

Please email corrections and suggestions to

r.d.wilkinson@nottingham.ac.uk

Population genetics is the study of allele frequency distribu-

tions and changes under the influence of four evolutionary

processes:

1. Natural selection

• process whereby heritable traits that make it

more likely for an organism to survive and suc-

cessfully reproduce become more common in a

population over successive generations. Natural

selection acts on the phenotype, and can lead

to the development of new species.

2. Genetic drift

• changes in relative frequency of an allele due

to random sampling and chance (not driven by

environmental or adaptive processes). Changes

can be beneficial, neutral or detrimental. The

effect is larger in smaller populations.

3. Mutation

• changes in DNA caused by radiation, viruses,

replication errors, etc. Changes can be bene-

21
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ficial, neutral or detrimental. Usual mutation

rate in mammals is extremely low, about 1 in

107 bases. Some viruses benefit from a high

mutation rate, allowing them to evade immune

systems.

4. Gene flow

• exchanges of genes between populations, for

example by migration and breeding. Hindered

by mountains, oceans, deserts, Great Wall of

China, etc. Acts strongly against speciation.

Population genetics has a long and heated history of de-

bates between scientists who argue for the primacy of the

different causes of frequency changes. Before we can un-

derstand the mechanisms that cause a population to evolve,

we must consider what conditions are required for a popu-

lation not to evolve.

2.0.1 Types of genetic variation

Lets distinguish between three types of variation within a

population

1. The number of alleles at a locus

2. The frequency of alleles at a locus

3. The frequency of genotypes at a locus

The first type of variation can only change by mutation or

immigration. The second and third types of variation can

change solely by genetic drift, as well as being driven by

external forces.

Why do we need both of variation type 2 and 3 above?

Consider the following hypothetical population:

AA Aa aa

Popn 1 50 0 50

Popn 2 25 50 25
The frequency of allele A is 0.5 in both populations, but

the genotypic frequencies are very different.
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We can always calculate allele frequencies from genotype

frequencies, but we can’t do the reverse unless ....

2.1 The Hardy-Weinberg Law

The Hardy-Weinberg law is a zero-force law (like Newton’s

first law of dynamics). It says that in the absence of any

driving force on the population, allele frequencies remain

constant. This is an idealised law, which depends on many

assumptions which are never met in reality, however it is

important as deviations from Hardy-Weinberg (HW) equi-

librium can suggest what forces are acting on the popula-

tion.

Lets consider a single locus where there are just two alleles

segregating in a diploid population. The Hardy-Weinberg

assumptions are

1. No difference in gentype propotions between the sexes

2. Synchronous reproduction at discrete points in time

(discrete generations)

3. Infinite population size (so that frequencies can be

replaced by expectations)

4. No mutation

5. No migration (no immigration and balanced emigra-

tion)

6. No selection (your genotype does not influence the

probability that you reproduce)

7. Random mating (wrt their genotype at this particular

locus)

Suppose the two alleles are denoted A and a, and that the

genotype frequences are

Genotype AA Aa aa

Frequency X 2Y Z

Since we have random matings,
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• the frequency of matings of the type AA × AA is

X2, and the outcome is always zygotes with genotype

AA.

• the frequency of AA× Aa matings is 4XY (why?),

and the rules of Mendelian inheritance tell us that

this produces AA zygotes with probability 0.5, and

Aa zygotes with probability 0.5.

• the frequency of Aa × Aa matings is 4Y 2, and this

produces AA and aa with probability 0.25 each, and

Aa with probability 0.5.

• ...

• ...

• ...

Lets now consider the frequency genotypic frequencies in

the next generation, which we denote as X ′ for the fre-

quency of AA, 2Y ′ for Aa and Z ′ for aa.

X ′ = X2 +
1

2
(4XY ) +

1

4
(4Y 2)

= (X + Y )2 (2.1)

Similarly,

2Y ′ =
1

2
(4XY ) +

1

2
(4Y 2) + 2XZ +

1

2
(4Y Z)

= 2(X + Y )(Y + Z) (2.2)

Z ′ = Z2 +
1

2
(4Y Z) +

1

4
(4Y 2)

= (Y + Z)2 (2.3)

If we consider the next generation, we can find frequencies

X ′′, Y ′′ and Z ′′ by replacing X by X ′. Y by Y ′ etc in the

equations above. This gives
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X ′′ = (X ′ + Y ′)2 by Equation (2.1)

= (X + Y )2 by Equation (2.2) – why?

= X ′

Similarly,

Y ′′ =

=

= Y ′

and

Z ′′ =

=

= Z ′

Thus the genotypic frequencies established by the second

generation are maintained in the third generation and con-

sequently in all subsequent generations.

Frequencies having this property can be characterised as

those satisfying the relation

(Y ′)2 = X ′Z ′

Clearly, if this also holds for the first generation

Y 2 = XZ, (2.4)

then the frequencies will be the same in all generations.

Populations for which (2.4) is true are said to be in Hardy-

Weinberg equilibrium (HWE).

Why is this law important?

• Firstly, HWE says that if no external forces act, there

is no tendency for variation to disappear. This im-

mediately showed that the early criticism of Darwin-

ism, namely that variation decreases rapidly under

blending theory, does not apply with Mendelian in-

heritance. In fact, HW shows that under a Mendelian
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system of inheritance variation tends to be main-

tained (of course, selection will tend to remove vari-

ation). Note that it is the ‘quantal’ nature of the

gene that leads to the stability behaviour described

by HW. It is has been argued that if there is intel-

ligent life evolved by natural selection elsewhere in

the universe, the heredity mechanism involved must

be a quantal one (maybe Mendelian), since otherwise

it is not clear how the required variation for natural

selection could be maintained. It may be a coinci-

dence, but Quantum theory in physics was propsed

in the same year (1900) that Mendelian inheritance

was rediscovered.

• Secondly, HWE allows us (for populations which may

reasonably be assumed to undergo random mating)

to consider just the variation of alleles at a locus,

rather than having to consider the genotype frequen-

cies.

Since X + 2Y + Z = 1 we know only two of the

frequencies are independent. If Equation (2.4) also

holds, only one frequency is independent. Let x be

the frequency of the allele A. Then we can sum-

marise the Hardy-Weinbery law as

Theorem 1 (Hardy-Weinberg 1908) Under the stated

assumptions, a population having genotypic frequen-

cies X, 2Y and Z corresponding to genotypes AA,

Aa, aa respectively, achieves, after one generation

of random mating, stable genotypic frequences x2,

2x(1− x), (1− x)2, where x = X + Y and 1− x =

Y + Z. If the initial frequencies are already of this

form, then these frequencies are stable for all gener-

ations.

Hence, the mathematical behaviour of the population

can be examined in terms of the single frequency x,

rather than the triplet (X, Y, Z).

• Finally, if genotypes are not in Hardy-Weinberg pro-

portions, one or more of the 8 assumptions must be

false! Departures from HWE are one way in which
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we can detect evolutionary forces within populations

and estimate their magnitude.

Generalisation to multiple alleles

Suppose there are k different alleles, A1, . . . , Ak with pop-

ulation frequencies p1, . . . , pk. Then, upon random union,

the diploid frequencies are

Pii = p2
i for i = 1, 2, . . . , k

Pij = 2pipj for i 6= j

See questions 1, 2 and 4 on the example sheet.

2.2 Estimating Allele Frequencies

In order to make statements about the genetic structure

of populations, we need to be able to count the number

of genotypes and alleles. However, for simple Mendelian

traits, it is not possible to directly know someone’s geno-

type unless they possess the recessive trait. If one allele

is dominant over the other, then it means that there is a
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strong phenotypic effect in heterzygotes that conceals the

presence of the weaker allele.

Consider the famous example of industrial melanism in

moths. As pollution increased in Great Britain, several

species of moths evolved black camouflage when resting, so

that they would merge into the coal soot produced during

the industrial revolution. In most instances, the melanic

colour pattern has been found to be due to a single dom-

inant allele. In a 1956 study in a region of Birmingham,

it was found that 87% of the moth species Biston betu-

laria had the melanic colour pattern. In otherwords, 13%

of moths were found to be homozygous recessives.

How do we determine the frequency of the dominant allele

in the population? We don’t directly observe the number

of heterozygous moths, so we can’t simply determine the

frequency of the recessive allele. However, if we are pre-

pared to assume random mating in the population, then

we can use the Hardy-Weinberg equilibirum proportions to

determine the frequencies.

Let R denote the number of homozygous recessive carriers,

and let q be the frequency of the recessive allele. The HW

proportions are

AA Aa aa

(1− q)2 2q(1− q) q2

If we sampled N moths in total, then R will have a binomial
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distribution

P(R|q) =

(
N

R

)
(q2)R(1− q2)N−R

We will estimate q by its maximum likelihood estimate,

found by taking the log of the above likelihood, differenti-

ating, and setting the derivative to zero.

This gives

q̂ =

√
R

N

So for the moths, we observed R/N = 0.13, which gives an

estimate of q̂ =
√

0.13 = 0.36 for the recessive allele, and

0.64 for the dominant allele. The estimate of frequencies

of the dominant homozygotes, heterozygotes, and recessive

homozygotes are 0.41, 0.46 and 0.13 respectively.

Which Hardy-Weinberg assumptions might be violated here?

2.2.1 Fisher’s approximate variance formula

How confident are we in these estimates? One way to

answer this is to compute variances of our estimates. One

way to determine the variance of a frequency estimator is

to use Fisher’s approximate variance formula.
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Suppose we are given count data n1, n2, . . . , nk, with n =

n1 + . . .+ nk, which come from a multinomial distribution

with parameters q1, . . . qk.

P(n1, . . . , nk) =
n!∏
ni!

∏
qni
i

Fisher’s approximate variance function then says that if

T = T (n1, . . . , nk) is a function of the counts ni, then

Var(T ) ≈ n
∑

i

(
∂T

∂ni

)2

qi − n
(
∂T

∂n

)2

where qi is the true value of the ith parameter. In practice,

we have to replace qi by an estimator of it. The derivatives
∂T
∂ni

should be evaluated at their expected values, namely

with ni = qin.

The second term is only needed when T explicitly involves

the sample size n. The above approximation works when

either T is a ratio of functions of the same order in the

counts, or when the counts ni in T only appear divided by

the total sample size n.

Derivation

Fisher’s variance formula is derived using the Delta Method

(first seen in G12SMM). Suppose we have an estimator B

of the k-dimensional parameter β. Suppose further that

B is a consistent estimator which converges in probability

to its true value β as the sample size n → ∞. Suppose

we want to estimate the variance of a function T of the

estimator B. Keeping only the first two terms of the Taylor

series, and using vector notation for the gradient, we can

estimate T (B) as

T (β + (B− β)) = T (B) ≈ T (β) +∇T (β)t(B− β)

where βt = (β1, . . . ,βk), and

∇T (β)t =

(
∂T

∂β1

, . . . ,
∂T

∂βk

)
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This implies that the variance of T (B) is approximately

Var (T (B)) ≈ Var
(
T (β) +∇T (β)t(B− β)

)
= Var

(
T (β) +∇T (β)tB−∇T (β)tβ

)
= Var

(
∇T (β)tB

)
= ∇T (β)tVar(B)∇T (β)

where Var(B) is a k×k matrix with ijth entry Cov(Bi, Bj).

We can write this product as a sum, to find

Var (T (B)) ≈
k∑

i=1

k∑
j=1

∂T

∂βi

∂T

∂βj

Cov(Bi, Bj)

=
k∑

i=1

(
∂T

∂βi

)2

Var(Bi) +
k∑

i=1

k∑
j = 1

j 6= i

∂T

∂βi

∂T

∂βj

Cov(Bi, Bj)

If we specialise the above formula to the case where T =

T (n1, . . . , nk), and assume that (n1, . . . , nk) ∼ Multinomial(n; q1, . . . , qk).

Let βi = qi and note that Bi = ni/n is an estimator of qi,

with ni/n→ qi as n→∞. We can then rewrite the delta

formula as

Var (T (B)) ≈
k∑

i=1

(
∂T

∂ni

∂ni

∂qi

)2

Var
(ni

n

)
+

k∑
i=1

k∑
j = 1

j 6= i

(
∂T

∂ni

∂ni

∂qi

)(
∂T

∂nj

∂nj

∂qj

)
Cov

(ni

n
,
nj

n

)

=
k∑

i=1

(
∂T

∂ni

)2

Var (ni) +
k∑

i=1

k∑
j = 1

j 6= i

∂T

∂ni

∂T

∂nj

Cov (ni, nj)

where we evaluate the derivatives with ni = E(ni) = nqi.

This then gives ∂ni

∂qi
= n and so cancels with the 1/n2 from

Cov(ni/n, nj/n) = 1/n2Cov(ni, nj)
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Variances and covariances for the multinomial distribution

can be shown to be

Var(ni) = nqi(1− qi)
Cov(ni, nj) = −nqiqj

This gives

Var (T (B)) ≈ n

k∑
i=1

(
∂T

∂ni

)2

qi(1− qi)− n
k∑

i=1

k∑
j = 1

j 6= i

∂T

∂ni

∂T

∂nj

qiqj

= n
k∑

i=1

(
∂T

∂ni

)2

qi − n

(
k∑

i=1

∂T

∂ni

qi

)2

Finally, noting that

∂T

∂n
=

k∑
i=1

∂T

∂ni

∂ni

∂n

=
k∑

i=1

∂T

∂ni

qi

gives the required result.

Moths example

In this case, our estimator is

T = q̂ =

√
R

N

where R is our count. Fisher’s variance formula gives

Var(T ) ≈ N

(
∂T

∂R

)2

q2 −N
(
∂T

∂N

)2

We can see that

∂T

∂R

∣∣∣∣
R=q2N

=
1

2Nq
(2.5)

∂T

∂N

∣∣∣∣
R=q2N

= − q

2N
(2.6)
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which gives

Var(T ) = Var(q̂) (2.7)

≈ N

[(
1

2Nq

)2

q2 −
( q

2N

)2
]

(2.8)

=
1

4N
− q2

4N
(2.9)

We don’t know q of course, but we can substitute in the

estimate q̂ to get

Var(q̂) =
1

4N

(
1− R

N

)
If there were 100 moths in our study, this gives

Var(q̂) = 87/(4 ∗ 1002) = 0.0022

So our estimate of the recessive allele frequency is

0.36± 0.047

where se(q̂) = 0.046.

2.3 The EM algorithm

The EM algorithm is an iterative procedure for maximum

likelihood estimation. It is primarily useful when there is

missing data. By thinking about what kind of additional

data it would be useful to have, it is possible to make the

calculation simpler.

Suppose we write the likelihood function as

L(θ;x) = f(x|θ),

where θ is a vector of parameters and x denotes incomplete

data.

Suppose we can ‘complete’ x with y, so that (x,y) is the

complete data

We then consider the likelihood based upon (x,y), f(x,y|θ).

To estimate the maximum likelihood estimate θ̂ = arg maxL(θ;x)

we do the following:
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We start at θ(0); then generate a sequence of iterates,

θ(m). Each iteration consists of two steps.

E-step (E stands for expectation) Calculate

Q(θ,θ(m)) = EY [logL(θ|x,Y ) |X = x,θ(m)]

=

∫
Y

log(L(θ|x,y))f(y|θ(m),x)dy

where f(y|θ, x) is the pdf of y given θ and x.

M -step (M stands for maximisation) Find the value

of θ, called θ(m+1), which maximises Q(θ,θ(m)) by solving

∂Q

∂θj

(θ,θ(m)) = 0, j = 1, . . . , p.

The algorithm works by augmenting X with Y so that the

likelihood L(θ|X, Y ) is easier to maximise. We then

1. Estimate Y from a current estimate of θ given X = x

2. Maximise L(θ|x, y) with respect to θ

and iterate to convergence.

The EM algorithm produces a sequence of values that con-

verge to a stationary value.

• If the likelihood is unimodal it will converge to the

MLE.

• In general, there is no guarantee that it will give the

MLE, only that it will reach a maximum (which might

be a local maximum).

For proofs of convergence see G14CST.

2.3.1 Recessive allele frequency estimation

revisited

In order to consider a simple version of the EM algorithm

(before the more complex example to follow), consider the

two-allele considered before.
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AA Aa aa

(1− q)2 2q(1− q) q2

We observe naa (the number of recessive homozygotes)

and nd (the number of dominant homozygotes plus the

heterozygotes), but we don’t observe NAA or NAa, only

their sum nd. So we can consider NAA and NAa as missing.

The likelihood of the complete data is proportional to

((1− q)2)NAA(2q(1− q))NAa(q2)naa

Here we use upper case letters to emphasise that the vari-

ables NAA and NAa are unknown, but that naa is known.

The log-likelihood is thus proportional to

2NAA log(1− q) +NAa log(q(1− q)) + 2naa log(q)

We must take the expectation of this with respect to the

distribution of NAA and NAa given q(m) and naa and nd.

It is easy to see that

E(NAA|q(m), naa, nd) = nd
(1− q(m))2

(1− q(m))2 + 2q(m)(1− q(m))

= nd
1− q(m)

1 + q(m)

= nAA(m) say

E(NAa|q(m), naa, nd) = nd
2q(m)(1− q(m))

(1− q(m))2 + 2q(m)(1− q(m))

= nd
2q(m)

1 + q(m)

= nAa(m) say

So when we take the expectation of the log-likelihood above

we get

2nAA(m) log(1− q) + nAa(m) log(q(1− q)) + 2naa log(q)



36 CHAPTER 2. HARDY-WEINBERG EQUILIBRIUM

which can be maximised by differentiating, setting equal to

zero and solving for q. This gives

q(m+ 1) =
2naa + nAa(m)

2nAA(m) + 2nAa(m) + 2naa

=
2naa + nAa(m)

2n

To summarise, the EM algorithm for finding the recessive

allele frequency in the two allele problem iterates through

the following two equations until convergence

nAa(m) = nd
2q(m)

1 + q(m)
(2.10)

q(m+ 1) =
2naa + nAa(m)

2n
(2.11)

Lets apply this to the data above to check we get the same

answer. Recall that nd = 87 and naa = 13. Lets initialise

the algorithm with q(0) = 0.5 (you should try other start

values)

Iteration m nAa(m) q(m)

0 – 0.5

1 58.00 0.42

2 51.4648 0.3873

3 48.5787 0.3729

4 47.2604 0.3663

5 46.6489 0.3632

6 46.3633 0.3618

7 46.2295 0.3611

8 46.1667 0.3608

9 46.1372 0.3607

10 46.1233 0.3606

which agrees with our previous answer.

The reason for studying the EM algorithm, rather than just

directly maximising the likelihood, is that the EM algorithm

can be used in more complex situations where direct max-

imisation is not possible.
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2.3.2 More complex allele estimation prob-

lems

Consider the ABO blood group system in humans. There

are 4 distinct phenotypes distinguished and 6 different geno-

types.

Phenotype A AB B O

Genotype(s) aa ao ab bb bo oo

No. in sample nA nAB nB nO

Suppose we want to know the allele frequencies. There are

3 alleles in total: a, b and o. a and b are codominant, but

both dominant over o. Let pa be the frequency of allele

a in the population, similarly for pb and po. We want to

estimate these proportions.

Lets consider the missing data in this case to be Naa and

Nbb. The complete data is then (nA, Naa, nAB, nB, Nbb, nO),

and the likelihood of the complete data is proportional to

(p2
a)Naa(2papo)

nA−Naa(2papb)
nAB(p2

b)Nbb(2pbpo)
nB−Nbb(p2

o)nO

which makes the log-likelihood

2Naa log(pa)+(nA−Naa) log(2papo)+nAB log(2papb)+2Nbb log(pb)+(nB−Nbb) log(2pbpo)+2nO log(po)

The EM algorithm requires us to take expectations with re-

spect to the distribution of Naa and Nbb given nA, nB, nAB, nO

and pa(m), pb(m), po(m). As Naa and Nbb only occur as

simple linear combinations, we only require ENaa and ENbb

given nA, nB, nAB, nO and pa(m), pb(m), po(m). The ex-

pectations can easily be seen to be

ENaa = nA
pa(m)2

pa(m)2 + 2pa(m)po(m)

= naa(m) say

ENbb = nB
pb(m)2

pb(m)2 + 2pb(m)po(m)

= nbb(m) say
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Let nao(m) = nA − naa(m) and nbo(m) = nB − nbb(m).

Substituting these into the loglikelihood gives

2naa(m) log(pa) + na0(m) log(2papo) + nAB log(2papb)

+ 2nbb(m) log(pb) + nbo(m) log(2pbpo) + 2nO log(po)

We want to maximise this likelihood subject to the con-

straint that

pa + pb + p0 = 1.

Using Lagrange multipliers, we can do this by maximixing

2naa(m) log(pa) + na0(m) log(2papo) + nAB log(2papb)

+ 2nbb(m) log(pb) + nbo(m) log(2pbpo) + 2nO log(po)

+ λ(1− pa − pb − po)

Differentiating with respect to pa, pb, p0 and λ and setting

the derivatives to 0 gives

λ =
1

pa

(2naa(m) + nao(m) + nAB)

λ =
1

pb

(nbo(m) + nAB + 2nbb)

λ =
1

po

(nao(m) + nbo(m) + 2nO)

1 = pa + pb + po

Rearranging and adding the three equations gives

λ(pa + pb + po) = λ

= 2naa(m) + 2nAB + 2nao(m) + 2nbb(m) + 2nbo(m) + 2nO

= 2n

where n is the total number of subjects in the dataset.

Thus, we find

pa(m+ 1) =
2naa(m) + nao(m) + nAB

2n

pb(m+ 1) =
2nbb(m) + nbo(m) + nAB

2n

po(m+ 1) =
2nO + nao(m) + nbo(m)

2n
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To summarize, we can estimate the allele frequencies for

the ABO blood groups by first picking an initial value of

pa, pb, po, then iterating through the following equations:

naa(m) = nA
pa(m)2

pa(m)2 + 2pa(m)po(m)
(2.12)

nao(m) = nA − naa(m) (2.13)

nbb(m) = nB
pb(m)2

pb(m)2 + 2pb(m)po(m)
(2.14)

nbo(m) = nB − nbb(m) (2.15)

pa(m+ 1) =
2naa(m) + nao(m) + nAB

2n
(2.16)

pb(m+ 1) =
nbo(m) + nAB + 2nbb(m)

2n
(2.17)

po(m+ 1) =
nao(m) + nbo(m) + 2nO

2n
(2.18)

Lets try this on real data. On one test of 6313 Caucasians

in Iowa City, the numbers of individuals with blood types

A, B, O and AB were found to be

Phenotype A AB B O

Observed frequency 2625 226 570 2892

If we initialise the algorithm with pa = 1, pb = 0, po = 0

(you should try other starting points), we find we soon

reach convergence.

Iteration m pa(m) pb(m) po(m)

0 1 0 0

1 0.4337 0.1082 0.4581

2 0.2926 0.0678 0.6396

3 0.2645 0.0653 0.6702

4 0.2601 0.0651 0.6748

5 0.2594 0.0651 0.6755

6 0.2593 0.0651 0.6756

7 0.2593 0.0651 0.6756

8 0.2593 0.0651 0.6756

The R code for this operation is on the course website.
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2.4 Testing for HWE

We can think of the Hardy-Weinberg proportions as being

a hypothesis about the structure of the population. We

then want to test whatever observations we observe, to see

if there is evidence of departure from HWE.

Recall from G12SMM or G14FOS, the likelihood ratio test.

Suppose we have a statistical model of the data that de-

pends on unknown parameter θ ∈ Θ, described by likeli-

hood function L(θ). Suppose we want to test the following

two hypotheses about θ:

H0 : θ ∈ Θ0 vs H1 : θ 6∈ Θ0

where Θ0 ⊂ Θ. The likelihood-ratio statistic is

Λ = 2 log

(
supθ∈Θ L(θ)

supθ∈Θ0
L(θ)

)
= 2 log

(
L(θ̂)

L(θ̂0)

)

where θ̂ is the MLE and θ̂0 is the MLE when θ is restricted

to lie in Θ0.

Wilks’ theorem then says that under certain regularity con-

ditions and for n large, that under H0

2 log Λ ∼ χ2
p1−p0

where p1 = dim Θ and p0 = dim Θ0.

For multinomial models, i.e., where we assume the data

have a multinomial distribution with parameter θ, that is

(n1, n2, . . . , nk) ∼ Multinomial(n, θ1, θ2, . . . , θk), we can

usually make a further approximation and use Pearson’s

chi-squared statistic:

2 log Λ ≈
k∑

i=1

(Oi − Ei)
2

Ei

where Oi is the ith observed count and Ei is the the ex-

pected count under H0.
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2.4.1 Blood group example

Consider again the observed frequencies of the blood group

system:

Phenotype A AB B O

Genotype(s) aa ao ab bb bo oo

No. in sample 2625 226 570 2892

Lets test the following two hypotheses:

H0 : the sample is in HWE vs H1 : the sample is not in HWE

Saying the sample is in HWE is equivalent to saying we

expect the following frequencies

Phenotype A AB B O

Genotype(s) aa ao ab bb bo oo

HW frequencies p2
a + 2papo 2papb p2

b + 2pbpo p2
o

The likelihood ratio test says we should substitute unknown

frequencies θ = (pa, pb, po) by their maximum likelihood

estimates to estimate the expected phenotype frequencies

under H0. We found these in the previous section to be

θ̂0 = (0.2593, 0.0651, 0.6756). This gives

Phenotype A AB B O

Observed frequency 2625 226 570 2892

Expected frequency under H0 2636.3 213.1 582.0 2881.4

These two sets of figures look like they closely match, but

lets perform Pearson’s chi-squared test to be sure. We find

T =
k∑

i=1

(Oi − Ei)
2

Ei

= 1.11

To find the degrees of freedom, we need to consider the

number of free parameters.

• For Θ0, we constrain the four phenotype type fre-

quencies to be in their HW form - but we still need

to estimate pa, pb and po. This is only 2 free param-

eters, not 3, because we know they must add to 1.

So dim Θ0 = 2.
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• For H1, the only constraint is that the four pheno-

type frequencies add to 1. This gives us three free

parameters, so dim Θ = 3.

So the degrees of freedom is dim Θ−dim Θ0 = 3−2 = 1.

This gives that T ∼ χ2
1. The upper 95th percentile of χ2

1

is 3.8 and so there is not enough evidence to reject H0 at

the 5% level.

Notice that we haven’t proven that the population is in

HWE here (i.e. that H0 is true), we have only shown that

there is no evidence to suggest that it isn’t true!

See Q5 and Q6 on the example sheet.



Chapter 3

Genetic Drift and

Mutation

Please email corrections and suggestions to

r.d.wilkinson@nottingham.ac.uk

The Hardy-Weinberg equilibrium frequencies were derived

conditional upon a large number of assumptions. We de-

scribed the HWL as being a bit like Newton’s first law of

motion, as it describes what happens to allele frequencies in

the absence of any driving force. For the rest of the course,

we will examine what happens when we violate some of the

assumptions that were made before, such as

• Nonrandom mating

• Finite population size

• Non-zero selective forces

• Mutation of alleles

In this chapter we shall consider the effect of genetic drift

due to finite population size, and mutation.

3.1 Genetic drift

The previous chapter on HWE assumed that we were deal-

ing with an infinite population. This allowed us to deal only

43
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with expected frequencies from random mating, and to ig-

nore the stochastic effects of random sampling. For very

large populations, this might be a good assumption, but

for smaller populations, this is likely to lead to misleading

results.

Genetic drift is the name given to the random changes in

gene frequency that occur solely because of random sam-

pling. To appreciate the effects of random sampling, lets

consider the simplest model of drift, called the Wright-

Fisher model.

3.1.1 Wright-Fisher model

Consider a random mating diploid population of N indi-

viduals, and lets focus on a single locus which has two

naturally occuring alleles A and a.

In total, the population consists of 2N alleles, and we will

treat this population as if it was a population of 2N haploid

individuals. Lets assume that

1. Each individual in the population produces a large

and identical number of gametes.

2. Each gamete is an identical copy of its parent

3. The next generation is constructed by picking 2N

gametes at random from the large number originally

produced.

These are the assumptions of the Wright-Fisher model.

These assumptions are equivalent to assuming that we have

a population of constant size 2N . Each new generation,

every individual picks its type by sampling with replacement

from the types of the previous generation.

If we let Xt denote the number of A alleles in generation

t, then we can see that Xt will be a Markov chain, taking

one or other of the values 0, 1, . . . , 2N . Because we are

assuming that the genes in generation t+1 are chosen with

replacement from the genes of generation t, we can see that

Xt+1 will have a binomial distribution, with parameters 2N
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and Xt/2N . More explicitly, the transition probabilities of

this chain can be seen to be

Prx = P(Xt+1 = x|Xt = r) =

(
2N

x

)( r

2N

)x (
1− r

2N

)2N−x

(3.1)

This Markov chain has two absorbing states (states from

which we can never leave), and they are X = 2N and

X = 0. The first represents the fixation of allele A in the

population, and the second represents the loss of A from

the population.

One feature of genetic drift is that there is no systematic

tendency for the frequency of alleles to move up or down.

In other words, the nature of the random changes is neutral.

To see this, note that

E(Xt+1|Xt) = 2N
Xt

2N
= Xt. (3.2)

It is also possible to show that the probability that any al-

lele will eventually become fixed in the population is equal

to its current frequency. This useful result is easy to prove

but not done so here (see the section on martingale conver-

gence in G14ASP for a proof). For an informal proof, note

that eventually every gene in the population is descended

from a unique gene in generation zero. The probability that

suuch a gene is type A is simply the initial fraction of A

genes, namely X0/2N , and this must also be the fixation

probability of A.

To help understand these dynamics, lets look at some sim-

ulations. Suppose N = 20 and that initially the frequency

of A alleles is 20%. Then we can simulate from the Wright-

Fisher model forward for 100 generations to generate sam-

ple trajectories through time illustrating genetic drift. Fig-

ure 3.1 shows 10 simulated trajectories.

Each line represents the change in allele frequency in a

single population - no two trajectories are the same. We

can see that in some trajectories the A allele is removed

from the population (has frequency 0%), whereas in others

it is fixed (frequency 100%). Note that once the frequency

becomes fixed at 0 or 100% it cannot change in future
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Figure 3.1: 10 simulated trajectories for a population of 20

diploid individuals. The initial gene frequency is 0.2 in all

the trajectories.

generations. Only in 1 of the 10 trajectories is the frequency

not fixed at either 0 or 1 after 100 generations.

The strength of genetic drift depends on the size of the

population. We can see that

Var(Xt+1|Xt) = 2N
Xt

2N

(
1− Xt

2N

)
=
Xt(2N −Xt)

2N

or if pt = Xt/(2N), then

Var(pt+1|pt) =
pt(1− pt)

2N
. (3.3)

So if N is large, we can see that the variance of the fre-

quency in the next generation will be small, whereas if N

is small, it will be large. In the limit as N → ∞, we can

see that the variance will be zero, indicating that there is

no genetic drift. See Figure 3.2.

The effect of drift also depends on the current frequency

of the allele. If pt is close to 0 or 1, then the variance due

to drift is small, whereas if p = 1/2, then the variance of

drift is large.

Figure 3.1 illustrates another of the key effects of genetic

drift. Namely, genetic drift acts to reduce variation from

the population. Eventually, genetic drift will lead to the
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Figure 3.2: 10 simulated trajectories for a diploid popula-

tion of size 1000. Compare this with Figure 3.1 to see the

effect of N on genetic drift.

loss of all alleles in the population except one. Figure

3.3 shows the final frequency of allele A after a different

number of generations in 10,000 simulated trajectories of

this population. We will show this decay of heterozygosity

mathematically in the next section.

Some comments:

• There are two main sources of randomness that lead

to genetic drift. The first is Mendel’s law of seg-

regation and the second is the random number of

offspring had by each individual.

• Although the Wright-Fisher model does not explicitly

incorporate either of these two sources of random-

ness, it has been shown that more complex models

that do model these terms behave in a very similar

way to the Wright-Fisher model. Because the WF

model is easy to understand, it is very commonly

used.

Exercise:

What is the probability that a particular allele has a least

one copy in the next generation? Show that as N increases

this probability tends to 1− 1/e.
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Figure 3.3: Final frequency of allele A after 10, 20 50 and

100 generations, for a population of 20 diploid individuals

(10,000 simulated trajectories).
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3.1.2 Decay of heterozygosity

Consider a diploid population of N hermaphroditic indi-

viduals. Let G be the probability that two alleles different

by origin (drawn at random from the population without

replacement) are identical by state. Then G measures the

degree of genetic variation in the population;

G = 0⇒ every allele is different by state

G = 1⇒ every allele is identical by state

Then if we let G ′ be the value of G after one round of

random mating, we can show that

G ′ = 1

2N
+

(
1− 1

2N

)
G
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If we then let H = 1−G, so that H is the probability that

two randomly drawn alleles are different by state (H is a

measure of the heterozygosity of the population), then we

can show that

H′ =
(

1− 1

2N

)
H

and that

∆NH = − 1

2N
H.

We can see that the probability that two alleles are different

by state decreases at a rate of 1/(2N) for each generation,

and thus will be extremely slow for large populations.

See Q2 from the example sheet.

We can see that most populations will end up homozygous,

as genetic drift will tend to remove variation. However, the

rate of change is very slow. For example, a population of 1

million individuals will require about 1.37×106 generations

to reduce H by 1/2. If the generation time of the species

is 20 years (as in humans), then it would take 28 million

years to halve the genetic variation.

3.1.3 Mean absortion time

One question we might want to ask is, what is the mean

time to absorption of allele A (either at 0 or 100%) given

initial frequency X0 = i.

Propostion: Let t(i) denote the mean time to absorption

given X0 = i. Then

t(i) ≈ −4N(p log p+ (1− p) log(1− p))
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where p = i/2N .

Sketch of proof:

Let the initial frequency of allele A be X0 = i. Consider

the next generation X1. Then

t(i) =
∑

P(X1 = j|X0 = i)t(j) + 1

as if X1 = j, then the mean time to absorption is t(j) and

1 generation has already passed. We can write

t(i) = E(t(X1)|X0) + 1

Now lets convert to frequencies and write p = X0/2N

and t(p) and assume that 2N is large and that therefore

X1/2N − p is small. Then using Taylor’s theorem:

t(p) = E(t(p+ δp)) + 1

≈ E
(
t(p) + δpt′(p) +

1

2
δp2t′′(p)

)
+ 1

= t(p) + E(δp)t′(p) +
1

2
E(δp2)t′′(p) + 1

By Equation (3.2) we have E(δp) = 0, and using Equation(3.3)

we have

E(δp2) = E((p1 − p)2) = Var(p1) =
p(1− p)

2N

Thus, we find that

p(1− p)t′′(p) ≈ −4N

Solving this differential equation with boundary conditions

t(0) = 0 and t(1) = 0 we find

t(p) ≈ −4N

∫∫
1

x(1− x)
dx

= −4N (p log p+ (1− p) log(1− p)) (3.4)

as required.
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In the case i = 1, so that p = 1/2N , which is the appro-

priate value if A was a unique allele due to a new mutation

in an otherwise aa population, we find that

t(
1

2N
) ≈ 2 + 2 log(2N) generations

See question 4 on the examples sheet.

When p = 1
2

we find

t(
1

2
) ≈ 2.8N generations

So for a human population of size N = 106 individuals,

with average generation time of 20 years, we can expect to

wait 56 million years for a gene that is initially present in

the population to become fixed.

Put in this context we can see that genetic drift is only

a very weak driver of genetic change for large popula-

tions. This also suggests why the Hardy-Weinberg law is

useful, despite assuming infinite population size. We’ve

shown that genetic drift has a timescale of 2N genera-

tions, whereas random mating has a time scale of only one

or two generations. Because these two forces have such

different time scales, they don’t usually interact in an in-

teresting way. In any particular generation, the population

will appear to be in HWE. The deviation of the frequency

of a genotype from the HW value will be no more than

about 1/(2N), which isn’t a measureable deviation.

See question 6 on the examples sheet.

3.2 Mutation

Given that genetic drift acts to reduce variation, why aren’t

all populations completely homogenous? The reason is mu-

tation. In the process of replication and the production of

gametes, errors can occur in the new DNA sequences lead-

ing to new genes. These errors are the source of all genetic

variation.

Mutations can be beneficial, deleterious, or neutral (ie no

selective effect). As we haven’t yet encountered selection,
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we focus on neutral mutations. The ‘Neutral Theory’ of ge-

netics (proposed by Kimura) claims that most DNA differ-

ences between alleles within a population are due to neutral

mutation.

3.2.1 Infinite allele model

Lets assume that all mutations result in a unique allele -

ie one that is different by state from all other alleles that

have ever existed. This is called the infinite allele model.

Exercise: How many different alleles are one mutational

step away from an allele at a locus that is 3000 base pairs

long? How many are two mutational steps away?

Let u be the mutation rate for a particular locus, ie, the

probability that an allele in an offspring is different from

the allele it was derived from in the parent. This means

that mutations in the population of 2N haploid individuals

accumulate at rate 2Nu. This is counter-acted by drift

which removes variation at rate 1/2N . The first question

to ask, is what is the expected number of alleles in the

population at equilibrium?

The value of G after one round of random mating with drift

and mutation will be

G ′ = (1− u)2

(
1

2N
+

(
1− 1

2N

)
G
)

By assuming that u is small (typical values for u are in

the range 10−5 to 10−10), we can approximate (1− u)2 by

1− 2u to find that
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G ′ ≈ 1

2N
+

(
1− 1

2N

)
G − 2uG

If we now substitute H = 1−G and rearrange we find that

H′ ≈
(

1− 1

2N

)
H + 2u(1−H) (3.5)

which gives the change in H in a single generation to be

∆H ≈ − 1

2N
H + 2u(1−H) (3.6)

At equilibrium (∆H = 0), we find that

H =
4Nu

1 + 4Nu

and

G =
1

1 + 4Nu
.

We can break Equation (3.6) down further, by writing

∆H = ∆driftH + ∆mut.H

where

∆driftH = − 1

2N
H

is the change due to genetic drift, and

∆mut.H = 2u(1−H)

is the change due to mutation.

Equilibrium occurs when the rate of change due to muta-

tion equals rate of change due to drift, ie, when ∆mut.H =

−∆driftH. This equilibrium is only interesting when 4Nu

is moderate in magnitude. If 4Nu is very small, then ge-

netic drift dominates and all genetic variation is eliminated.

Conversely, if 4Nu is large, then mutation dominates and

all alleles in the population are different.
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3.2.2 Wright-Fisher model of mutation

We can extend the Wright-Fisher model so that it also

incorporates mutation, as well as genetic drift. Suppose

that gene A mutates to a at rate u, but that there is no

mutation from a to A. Then we can replace the model 3.1

by

Prx = P(Xt+1 = x|Xt = r) =

(
2N

x

)
(ψr)

x (1− ψr)
2N−x

(3.7)

where

ψr =
r(1− u)

2N

Here, loss of A is certain.

If we suppose further that a mutates to A at rate v, then

we can use

ψr =
r(1− u) + (2N − r)v

2N

You will be asked to simulate from these two models on

the examples sheet.

Xt is still a Markov chain, but now there are no absorbing

states. We know that any ergodic irreducible Markov chain

will converge to a stationary distribution π = (π0, π1, . . . , π2N),

where πi is the probability there are i alleles of type A at

equilibrium. Because π is the stationary distribution, we

can write

π = πP

where P is the transition matrix given by Equation (3.7).

Lets consider the mean number of A alleles when the model

is at equilibrium, namely

µ =
2N∑
i=0

iπi
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We can write this as

µ = πξ where ξ = (0, 1, . . . , 2N)T

= πPξ

=
∑

i

πi

(∑
j

Pijξj

)

=
∑

i

πi

(∑
j

j

(
2N

j

)
(ψi)

j (1− ψi)
2N−j

)
=
∑

i

πi (2Nψi)

=
∑

i

(i(1− u) + (2N − i)v) πi

= µ(1− u) + v(2N − µ)

Hence, if we solve for µ, we find that

µ =
2Nv

u+ v
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Selection

Please email corrections and suggestions to

r.d.wilkinson@nottingham.ac.uk

Selection is the evolutionary force most responsible for adap-

tation to the environment. Selection acts when alleles have

different fitnesses, and can occur in a variety of ways. For

example:

• Unfair meiosis, for example due to sperm or pollen

competition

• Fertility selection - the number of offspring produced

may depend on maternal or paternal genotype.

• Viability selection - survival from zygote to adult may

depend on genotype.

• Sexual selection - some individuals may be more suc-

cessful at finding mates than others. Since females

are typically the limiting sex (Bateman’s principle)

the differences typically arise either as a result of

male-male competition or female choice.

We will focus solely on viability selection, partly because its

the most important and illustrates all of the basic principles,

and also because its easier to understand mathematically

than the others.

57
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4.1 Viability selection

Consider an autosomal locus in a hermaphroditic species.

Viability selection acts between conception and sexual ma-

turity. Hardy-Weinberg equilibrium holds only at the mo-

ment of conception, i.e., in zygote frequency:

Freq in Freq in Freq in Freq in

parental gen. → zygotes → adults → zygotes

p p p′ p′

Suppose that the probability that a zygote survives to adult-

hood is determined by its genotype. Let w11, w12 and w22

denote the probabilities of survival (called the viabilities) of

zygotes of genotype A1A1, A1A2 and A2A2 respectively.

Then we can see that

freq. after selection = zygote freq. × viability

This gives the following frequency table

Genotype: A1A1 A1A2 A2A2

Freq. in zygotes: p2 2pq q2

Viability: w11 w12 w22

Freq. after selection: p2w11

w̄
2pqw12

w̄
q2w22

w̄

where w̄ = p2w11 + 2pqw12 + q2w22 is the constant of pro-

portionality, and is called the mean fitness of the population

by population geneticists.

We usually convert viabilities to relative fitnesses, as only

the relative size matters. We do this by dividing the viabil-

ities by w22.

Genotype: A1A1 A1A2 A2A2

Freq. in zygotes: p2 2pq q2

Relative fitness: 1 + s 1 + hs 1

Freq. after selection: p2w11

w̄
2pqw12

w̄
q2w22

w̄

We call s the selection coefficient. It is a measure of the

fitness of A1A1 relative to A2A2. Its sign determines which

homozygote is fitter.
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We call h the heterozygous effect. It is a measure of the

fitness of the heterozygote relative to the selective differ-

ence between the two homozygotes. We can think of h as

being a measure of dominance.

h = 0 A2 dominant, A1 recessive

h = 1 A1 dominant, A2 recessive

0 < h < 1 incomplete dominance

h < 0 under-dominance

h > 1 over-dominance.

Complete dominance rarely occurs. Even ‘recessive’ lethals

in human populations are now thought to be cases of in-

complete dominance with s large and h small but greater

than zero. Complete dominance does occur for morpho-

logical traits, but mainly in traits that don’t affect fitness.

If we let p denote the frequency of allele A1 in the first

generation, and p′ the frequency in the next generation,

then we can show that

∆p = p′ − p =
sp(1− p)(p+ h(1− 2p))

sp(p+ 2h(1− p)) + 1

which describes the deterministic behaviour of the popula-

tion.
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If we assume s and sh are small (typically less than 1%),

then we can write

∆p ≈ sp(1− p)(p+ h(1− 2p))

and if we measure time in units of one generation, we can

approximate this equation by

dp

dt
≈ sp(1− p)(p+ h(1− 2p)) (4.1)

Let t(p1, p2) be the time required for the frequency of A1

to move from some value p1 to some other value p2, then

we can see that

t(p1, p2) =

∫ p2

p1

1

sp(1− p)(p+ h(1− 2p))
dp

assuming that the frequency will eventually reach p2.

On the example sheet, you will be asked to characterize

the types of dominance behaviour that arise from Equation

(4.1).

For example, suppose that s > sh > 0. Then it is clear

from Equation (4.1) that the frequency of A1 slowly ap-

proaches 1. However, there is a (1−p) term in the denom-

inator in the integrand, so as p approaches 1 the rate of

increase slows and the time required even for small changes

in p will be large.

The special case of h = 1/2 is of particular interest, as

this represents additive fitness (the heterozygote is exactly

intermediate between the two homozygotes) which is com-

mon for many alleles with very small values of s. Q3 on the

example sheet asks you to find the number of generations

spent in various frequency ranges for this case.

4.2 Selection and drift

We now consider the interation of selection and genetic

drift. In an infinite population, an allele with a selective

advantage will eventually become fixed in the population.
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However, in finite populations there is a good chance that

new selectively advantageous mutations will be lost, due to

drift.

Natural selection is always a very weak force for rare alleles,

the behaviour of which is determined by both drift and

selection. For common alleles, the dynamics are mainly

determined by natural selection (as long as s >> 1/2N).

Lets consider a haploid population with 2N individuals for

which there is two alleles, A and a, with A enjoying a

selective advantage s over wild type a. Then we aim to

find the probability of fixation of allele A given that its

current frequency is p, which we donote by π(p).

We will show that

π(p) ≈ 1− e−4Nsp

1− e−4Ns
(4.2)

Proof: Consider the change of frequency going from p to

p + δp in a single generation. By the nature of Mendelian

inheritance, the change in p is Markovian, and so we can

write f(p, p + δp) for the probability of a change from p

to p+ δp in a single generation. We can write a backward

equation for the probability of fixation:

π(p) =

∫
f(p, p+ δp)π(p+ δp)dδp

≈
∫
f(p, p+ δp)

(
π(p) + δpπ′(p) +

1

2
δp2π′′(p)

)
dδp

= π(p) +m(p)π′(p) +
1

2
v(p)π′′(p)

where m(p) =
∫
δpf(p, p+δp)dδp is the mean change in p

given initial frequency p, and v(p) =
∫
δp2f(p, p+ δp)dδp

which approximately equals the variance of the change in

p (if m(p) is small).

Rearrange this last equation, and setting f(p) = π′(p) gives

the differential equation

f ′(p) +
2m(p)

v(p)
f(p) = 0
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We can solve this using the integrating factor

exp(B(p)) where B(p) = 2

∫ p

0

m(x)

v(x)
dx (4.3)

giving
d

dp

(
f(p)eB(p)

)
= 0

This implies

f(p) = c1e−B(p)

π(p) = c1

∫ p

0

e−B(y)dy + c2

We have boundary conditions π(0) = 0 and π(1) = 1. The

first condition implies c2 = 0 and the second that

c1 =
1∫ 1

0
e−B(y)dy

giving

π(p) =

∫ p

0
e−B(y)dy∫ 1

0
e−B(y)dy

(4.4)

To find m(p) and v(p) consider the following table:

Genotype A a

Freq before selection p q

Fitness 1+s 1

Freq. after selection p(1+s)
1+ps

1−p
1+ps

If X ′ denotes the number of A alleles after one round of

mating and selection, then the Wright-Fisher model says

that

X ′ ∼ Bin

(
2N,

p(1 + s)

1 + ps

)

Then m(p) = E(δp) = E( X′

2N
− p) where X is the current

number of A individuals. Thus

m(p) =
p(1 + s)

1 + ps
− p =

spq

1 + ps
≈ spq

as long as s is small.
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We can see that

v(p) = Var(
X ′

2N
− p)

=
1

4N2
Var(X ′)

=
1

4N2
2N · p(1 + s)

1 + ps
· 1− p

1 + ps

=
1

2N
pq

1 + s

(1 + ps)2

≈ pq

2N

Substituting m(p) and v(p) into Equation (4.3) gives

B(y) = 2

∫ y

0

pqs

pq/2N
dx = 4Nsy

and substituting this into Equation (4.4) gives

π(p) =

∫ p

0
e−4Nsydy∫ 1

0
e−4Nsydy

=
1− e−4Nsp

1− e−4Ns

as required.

The most important application of Equation (4.2) is for

finding the fixation probability of a new mutation, ie., when

p = 1/2N , which is

π(
1

2N
) =

1− e−2s

1− e−4Ns

Now if s is small, then e−2s ≈ 1− 2s and if 4Ns is large,

then e−4Ns ≈ 0, giving

π(
1

2N
) ≈ 2s

In other words, the probability of fixation for a new muta-

tion is twice its selective advantage.

If we are considering a diploid population, where Aa het-

erozygotes have selective advantage 1 +hs relative to wild

type aa, then we simply replace s by sh, to find that the

probability of fixation for a new mutation is 2sh. So for
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example, a new mutation with a 1% advantage when het-

erzygous, hs = 0.01, has only a 2% chance of fixation! A

1% advantage is rather strong selection. Once the allele is

at all common, selection will overwhelm drift. For exam-

ple, if N = 106 and the frequency of the allele is 0.01%

(p = 0.0001), we get a probability of 0.86 for fixation. But

there is still a 98% chance the mutation will be lost initially.
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Nonrandom Mating

Please email corrections and suggestions to

r.d.wilkinson@nottingham.ac.uk

In the previous two sections we have explored what happens

to the Hardy-Weinberg equilibrium when we violate the

following assumptions:

• infinite poplation size

• no mutation

• no selection

In this section we will violate the final major assumption,

namely that individuals mate at random with respect to

their genotype.

There are various ways in which individuals do not mate at

random with respect to their genotype:

• Assortative mating - the tendency to mate with phe-

notypes similar to your own, e.g., IQ or attractiveness

in humans

• Disassortative mating - the tendancy to mate with

phenotypes that are different from your own - com-

mon in plants, also sex differences in animals.

• Inbreeding, including self-fertilization in plants, sib-

mating, first-cousing mating, parent-offspring mating

etc.

65
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• Population subdivision - e.g., geographic separation.

We will only consider inbreeding and population subdivi-

sion, as assortative mating is similar.

The main outcome of non-random mating is increased lev-

els of homozygosity. Homozygosity can lead to reduced

viability and fitness, and so can reduce the health of a pop-

ulation.

5.1 Generalized Hardy-Weinberg

We introduce a new parameter, F , which we will give var-

ious interpretations throughout this section. However, we

will see that for a range of definitions it leads to the same

set of equations for gene frequencies.

To begin with, let

F = probability of homozygosity due to special circumstances (PHSC)

These special circumstances might be inbreeding, subdivi-

sion, self-fertilisation etc. We can then derive the general-

ized HW equations.

First consider the probability of a individual having geno-

type AA. If we pick a random individual, and then pick one

of its two alleles, the probability it is A is p. The probability

that the other allele is also A is then

F + p(1− F )

This breaks down into probability F that homozygosity

is due to special circumstances, or special circumstances

don’t apply (with probability 1−F ) so that random-mating

occurs, in which case the probability of an A is p. So the

probability of a randomly choosen individual being AA is

pF + p2(1− F ).

Similarly, the probability of genotype aa can be shown to

be q2(1 − F ) + qF where q = 1 − p. The probability of

heterzogosity is found by subtracting the other probabilities

from 1. Thus, the generalised HW frequencies are
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Genotype AA Aa aa

Frequency p2(1− F ) + pF 2pq(1− F ) q2(1− F ) + qF

Note that if F = 0 we recover the usual HW frequen-

cies. We can see that because 0 ≤ F ≤ 1, there will

be an excess of homozygotes when compared to the usual

HW frequencies. If F ≤ 0, then there will be an excess

of heterozygotes. Although we don’t allow F < 0 when

F=PHSC, under different interpretations of F , we might

allow a negative value.

5.2 Inbreeding

5.2.1 Identity by descent

In order to quantify inbreeding, we need a quantitative mea-

sure of the relationship between relatives. Two alleles at

a single locus are identical by descent (ibd) if they are

identical copies of the same allele in some earlier genera-

tion, i.e., both are copies that arose by DNA replication

from the same ancestral sequence without any intervening

mutation. Note that identical by type is not the same as

being identical by descent.

5.2.2 Coefficient of kinship

One useful measure of relationship, is the coefficient of

kinship. Suppose there are two individuals, U and V ,

then the coefficient of kinship fuv, is the probability that

two alleles, one from U and one from V , are identical by

descent.

Parent-offspring

What is the coefficient of kinship between a parent and

their offspring? We begin by choosing an allele at random

from the parent. The probability this is passed on to the

offspring is 1/2. We then pick a random allele from the
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offspring. The probability that this came from the parent

is also 1/2. Hence

fPO = P(ibd)

= P(allele chosen in parent is passed to offspring)

× P(allele choosen in offspring comes from this parent)

=
1

4

Pictures can help.

Full sibs

First draw a picture!

Let U denote one sibling and V the other. Then

fFS = P(ibd)

= P(U & V inherit same maternal allele)

× P(maternally inherited allele choosen in U & V|same maternal allele inherited)

+ P(U & V inherit same paternal allele)

× P(paternally inherited allele choosen in U & V|same paternal allele inherited)

=
1

2

1

4
+

1

2

1

4

=
1

4

On the example sheet you will be asked to calculate the

coefficient of kinship for half-sibs and first cousins.

5.2.3 More information

The fact that the coefficient of kinship is the same for

parent-offspring and full-sibs points out the deficiency of

using a single number to measure genetic relatedness. A

parent and its offspring always have exactly one allele each

that are ibd. Full-sibs, however, may have either zero, one

or two pairs of alleles that are ibd (recall f is the probability

of a random pair being ibd).

The most complete measure of relatedness is the set of

probabilities of sharing 0, 1, or 2 pairs of ibd alleles. The

following table gives some of these probabilities
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Relationship p0 p1 p2

Parent-offspring 0 1 0

Full sibs 1/4 1/2 1/4

Half-sibs

First cousins

For full sibs, the probability they share two ibd alleles can

be found as follows. Pick one of the alleles in individual U .

The probability that an allele ibd with this allele is present

in V is 1/2. Now pick the other allele in U . As it necessarily

came from the other parent, its chance of having an ibd

allele in V is independent of the history of the first allele,

and so this probability is also 1/2. Thus, the probability of

full sibs having two pairs of ibd alleles is p2 = 1/4. We can

reason similarly for p0, and then obtain p1 by subtraction.

Exercise: Complete the table for half-sibs and first cousins.

Given the values in the table above, the coefficient of kin-

ship may be written in terms of the pi as

fuv =
1

4
p1 +

1

2
p2

The mean number of shared alleles is

p̄ = p1 + 2p2

and p = 1
2
p̄ is called the coefficient of relatedness. Note

that fuv = 1
2
p.

5.2.4 Mating between relatives

Inbreeding occurs when an individual mates with a relative.

The level of inbreeding is measured by the inbreeding co-

efficient FI , which is the probability that two alleles in an

individual are ibd. As one of the alleles comes from one

parent and the other from the other parent, the inbreeding

coefficient is just the coefficient of kinship of its parents

FI = fxy.

If we calculate the genotype frequencies expected from

mating between relatives, we find exactly the equations

found for mating with special circumstances above. For
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example, consider the frequency of AA genotypes. An indi-

vidual could be AA for two reasons - either both alleles are

identical by descent, or they are not but are both A due to

random mating.

P(AA) = P(AA| ibd )P( ibd ) + P(AA| not ibd )P( not ibd )

= pF + p2(1− F )

which is exactly the expression found previously. The other

two frequencies also turn out to be the same.

5.2.5 Inbreeding coefficient for the popu-

lation

In general we will not be able to analytically calculate the

inbreeding coefficient F for the population, as populations

don’t usually inbreed in a regular way. Instead, we are

forced to estimate F for the entire population. One way to

do this is to rearrange the equation for the heterozygosity

x12 = 2pq(1− F ). This gives

F = 1− x12

2pq

If we assume that we observe the heterozygosity without

error, and note that 2pq is the expected heterozygosity

under Hardy-Weinberg, then we get another definition for

F

F = 1− Observed heterozygosity

Expected heterozygosity

If F is defined this way it is usually called the population

inbreeding coefficient.

5.2.6 Self-fertilization

One particular form of inbreeding is self-fertilization. Many

plants reproduce by a mixture of outcrossing and self-fertilization,

in otherwords, they reproduce by a mixture of selfing and

random mating.

Let σ be the fraction of progeny produced through self-

fertilization. Let xAA be the frequency of AA genotypes
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in the current generation, and let x′AA be the frequency in

the next generation. Then it is easy to show that

x′AA = p2(1− σ) + (xAA +
xAa

4
)σ

x′Aa = 2pq(1− σ) + σ
xAa

2

x′aa = q2(1− σ) + (xaa +
xAa

4
)σ

Exercise: Verify that the allele frequencies don’t change

between parents and offspring.

Because homozygous parents can always have heterozygous

offspring (when they outcross), heterozygotes are never

completely eliminated. We can solve for the equilibrium

frequency of heterzygotes:

x̂Aa = 2pq(1− σ) + σ
x̂Aa

2

=
2pq(1− σ)

1− σ/2

and we can find similar expressions for x̂AA and x̂aa. If we

now let

F =
σ

2− σ
(another definition for F ), we then find

x̂Aa = 2pq(1− F )
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as before, thus showing that this definition of F is equiv-

alent to the others in this case! The same equations can

also be derived for the frequency of x̂aa and ˆxAA.

Exercise: Suppose you observed without error, the follow-

ing genotype frequencies in a plant species that engages in

mixed selfing and outcrossing:

Genotype: AA Aa aa

Frequency: 0.828 0.144 0.028

What is the frequency of selfing, σ, if the population is at

equilibrium?

5.3 Estimating p and F

How do we estimate values of p and F? We could use

the EM algorithm as before (indeed, the example sheet

asks you to do just that), but instead this time we’ll use a

multivariate Newton-Raphson method, as seen previously.

Using second derivatives, we have a multivariate NR method.

From point θ0 = (p0, F0)T we move to point

θ′ = θ0 + I(θ0)−1S(θ0),

where S(θ) = ∇l(θ) is the gradient vector =
(

∂l
∂p
, ∂l

∂F

)>
of

the log-likelihood l(θ), usually called the score function in

statistics.

I(θ0) is the p× p negative Hessian matrix with (i, j) ele-

ment − ∂2l

∂θi∂θj

usually called the observed information ma-

trix.

This method is very fast if θ0 starts sufficiently close to a

solution. However it does require first and second deriva-

tives and inversion of a matrix, so can be costly in terms

of time spent deriving equations.

Exercise: Find p and F for a population of size 1000

for which the genotype frequences of AA, Aa and aa are

0.056, 0.288, and 0.656 respectively.
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Lets first begin by writing down the likelihood. As before,

assuming that the model is true, we find that the frequen-

cies have a multinomial distribution

P(nAA, nAa, naa|p, F ) =
n!

nAA!nAa!naa!

(
pF + p2(1− F )

)nAA

× (2p(1− p)(1− F ))nAa
(
(1− p)F + (1− p)2(1− F )

)naa

If we apply NR starting from p = 0.8 and F = 0.8, we go

through the following iterations

Iteration p F

0 0.8 0.8

1 0.6121254 0.6760076

2 0.2951159 0.4644971

3 0.1694039 0.1682794

4 0.19645003 0.09939278

5 0.1999503 0.0999270

7 0.19999999 0.09999997

8 0.2 0.1

9 0.2 0.1

quickly converging to the maximum likelihood estimate p̂ =

0.2, F̂ = 0.1. The Newton-Raphson method automatically

provides an estimate of the covariance matrix of the MLE

via the inverse of the observed or expected information

matrix, evaluated at the MLE. Therefore it is possible to

quantify the precision of the maximum likelihood estimate.

In this case, we find

I−1
0 (θ̂) =

(
8.8e− 05 0.000027000

2.7e− 05 0.001182375

)

This gives se(p̂) = 0.0094 and se(F̂ ) = 0.034.

R code for this implementation (including algebraic calcu-

lation of derivatives) is given on the course website.

See question 4 on the examples sheet.


