An Introduction to TCP/IP

For Embedded System Designers
019-0074 » 020701-G

An Introduction to TCP/IP

019-0074 « 020701-G * Printed in U.SA.
©2001 Z-World Inc. < All rightsreserved.

Z-World reserves the right to make changes and
improvements to its products without providing notice.

Trademarks

Dynamic Cisaregistered trademark of Z-World Inc.
Windows® is aregistered trademark of Microsoft Corporation

Z-World, Inc.

2900 Spafford Street
Davis, California 95616-6800
USA

Telephone: 530.757.3737
Fax: 530.757.3792 or 530.753.5141
www.zworld.com

http://www.zworld.com

Table of Contents

I g 10 11 Tox o o 1R 1
A 1= 1 1S R S F S o1 SRR 3
2.1 EThErNE AQArESSoocviieee ettt et ettt sbe e s ae et e be e besbeeaeesbaeabesbeenbesbeenbesaeannes 3

2.2 PhySICal CONMECHIONSciuiitirieitieeieee ettt sttt e et e e sttt aeebe s b e sbesaese e benee e eneeneenas 3
A N O =3P 4

DG T = 1= TS 4
2.3 1 COllISIONS ...cvieeecieeee ettt ettt sbe st et e e besbesbeesbeeaseebeenbenbeenbesreennas 5

3. NEIWOIKS... .ttt e et e et e e et e e et e e e ab e e e eaaeesbseesnbeeesabeeesabeeeasseeenseennns 7
00 T 1 R 7
3.1.1 RepeaterS and BriAgESccoeieeeuinierieiie ettt et s se e 7

3.2 WA Lttt ettt et e see s b e eta e s be e st e e b e e et e be e beebeaaeeeheeaseaReebeeheeabeaheeabeehaenbeeaeenteebe e beeaeennas 8

3.2.1 PaCKEt SWITCHESccveiceecece ettt e b e bbb e re b enis 8

3.2.2 FOrwarding @aPaCketccccevieeeiiiie st st 8

TG T Y N T 9

3.4 NEIWOTK DEBVICES........oeiiceeeie ettt e et e st e s e et e e e sae e s st e e s s bte s saae e s sabessenbeessabeessbeessanenessnens 9
BT I 0 U (< £ 9

I A =TT KT 9

4.3 GBLEWEAYS. ... ccueeitietit ettt ettt ettt et e e et e b e he e b e ae e et et e Rt e e saesaeesaenneeas 10

3.5 NEWOIK ATCIITECIUIE.veeeei ettt et sttt sae s abe s be et e ebeeabesbeeneesaesnnesaeennens 10
3.5.1 Client/SErver NEIWOIKS......c.ccciirieiiiicie ettt ettt et sbe b sreeseesresanesaeennens 10

3.5.1.1 POt NUMDELS ..ottt et et see s e 11

4. NetWOrk ProtOCOlI LAYEIS......cccoieiieiieiesiee ettt 13
A1 Layering MOGEIS ..ottt bt bbbt e e b et ne s 13

4.2 TCP/IP ProtOCOl SEACKvecuvicrieiiiticite it seeseete st ettt be et seesaeenesaeesaesbeesbesbeesbesnnenbesanenbesseenses 14

5. TCP/IP ProtOCOIScc ettt ettt ettt ettt e e aae e e be e e e be e e saneeeenneeas 15
L300 T 1 SRR 16
BLLL TP AGAIESS.....oe ittt ettt ettt et sttt s st e st ettt e e s besbb et e enbesbeeessbeennesaneseeas 16

B.1.2 1P AArESS CIaSSES......vciiteiiieeitie it eetee ettt eiteesteeeste e sreebeestaeesseesaesabeessesesbessseesnbeesanes 16

B.1.3 NEIMASKS. .. uecuviiticeiite ettt sttt st st et s ae s b e st e sbe e st e sbeesbesbeesbesbessessasentssneestesbeeseesrenss 16

B.1.4 SUDNEL AQAIESSveecteecteectee ettt ettt et e e eae e be e st e e be e saeeesbeeenbeereas 17

5.1.5 Directed BroadCast AQArESS.........cccccueireeieecee ettt ettt e e e sreeebeenreas 17

5.1.6 Limited BroadCast AQArESS..........coceeeeeiiieieeeee ettt ettt st ete e enreebee e re 17

5.2 TP ROULING ©.veutieeeeeieeeete st ste st ste s e seestes e sasseesassessessessessessessesaeseenseseeseaseesessessessessesseseensensensnnennens 17

LG J Y o TR 18

5.4 T TIaNSPOI LBYENcoeeueeeirteierie ettt b st see bt st e b e se e b e e e e ebe e e ebesrenbesaesbenaas 18
LY N 1 1 = TSR 18

LI 2 O = TSR 18

5.4.2.1 TCP ConNECtiON/SOCKELcoovieriiirieeieecieccreeeee et see et sreesneesree e 19

B5.4.2.2 TCP HEAEN ...cvvceveeeceee ettt sttt sn et 19

LI T 1.1 =TT 21

5.5 The APPIICAiON LAYESociivieiesiiieee ettt sa e e e se e s sseesesrestesnese e seneeneeneenens 21
BU5.L DINS sttt st et b e b ba e beea b e be e benbe e e e ereennesanerea 21

5.5.1.1 DCRTCP.LIB Implementation of DNScccccoovrivrvrieninrerneereeeenens 22

An Introduction to TCP/IP iii

6. Dynamic C TCP/IP ImMplementation...........cccvecereereeieeseeneeseeseeseesseeseeseeseesseees 23

6.1 TCP/IP CoNfigUIration IMBCIOS.cccveverreriereisieseseesiesieseeseeseeseesessessessessessessessessessensessessenseseeenns 23
6.1.1 IPAddresses Set ManUallyccceeeiirenieieneeeneee s ees 23

6.1.2 IP Addresses Set DYNamiCallyccocviirireriesieeeneee st eseens 24

6.1.3 Default BUFfEr SIZE......ccioiiiriirrires e e e 24

6.1.4 Delay aCONNECHIONcueeeeeerireriestere e e e et sre e e eneeneeneeneenes 24

6.1.5 RUNtIME CONfigUIELION........ccvieeriecieie e e eneeneenes 25

6.2 SKEIELON PrOGIaIM.....c.ciiiiiteieieceie ettt ettt st st sttt sttt et et e st e s beneebeneebeneas 25
5.3 TCP SOCKEL ...vcveiteeiteirtesistesieteseete st ete st et st et et et seesesbesesbeseebaseebeseebeseebesaebesaetesanbesansessenessesesnseneas 26
RS =SS Y LY @ o= o USSR 26

6.3.1.1 Example of PassiVe OpPENccccooeeeerireriiniererie e 27

B.3.2 ACHIVE OPEN....cieieete ettt ettt bbb b b e e e et et eb e et eneeaenras 28

6.3.3 TCP SOCKEL FUNCLIONS......cc.citiiiiiiitiie ettt en e s e 29

6.3.3.1 CONtrol FUNCLIONScoiiuiriiiieriiieie et 29

6.3.3.2 SEAIUS FUNCLIONS ...ccueiuiiiiiiiiieniesieteie et e e 30

6.3.3.3 /O FUNCLIONS ..ottt s 31

B.4 UDP INEEITACE ... ettt ettt sttt ettt sbe et s ae et e s be e sbesbeesaesbaeatesbeenbesbeenbesteennas 31
6.4.1 Opening and ClOSINGccccvrirereriirieriereesereeseseeestese e sre e saesseseeseeseeneeseseesessesses 32

L3V 1 1 oo 32

LG = o (1 o 32

B.4.4 CRECKSUMS ...ttt sttt sttt ee sttt ettt bttt 32

LT o oo =0 TS o o USSR 33
6.5.1 State-Based Program DESIGN..........cie it st saesnas 33

6.5.2 Blocking vs. NON-BIOCKING.......ccciuiiiieieiniere e 33

6.5.3 BIOCKING MACIOSccuiiuiiiirieeiisiesie ettt b b e enesae e 34

6.6 MUItitasking @NA TCP/IP ...ttt e e 34
7. REFEIENCES.....ceeeeceeee ettt ettt e e s re e teeneenteenaesneenaennnens 35
NOLICETO USEN'S ...ttt sttt sttt a e et e st e be et e sneensennne s 37

An Introduction to TCP/IP

1. Introduction

This manual isintended for embedded systems engineers and support professionals who are not
familiar with basic networking concepts. An overview of an Ethernet network and the TCP/IP
suite of protocols used to communicate across the network will be given.

The implementation details that are discussed in this manual pertain to versions of Dynamic C
prior to 7.05. Improvements and additions to the TCP/IP suite of protocols are fully documented
in the Dynamic C TCP/IP User’s Manual.

An Introduction to TCP/IP 1

An Introduction to TCP/IP

2. Ethernet Basics

TCP/IP (Transmission Control Protocol/Internet Protocol) is a set of protocols independent of the
physical medium used to transmit data, but most data transmission for Internet communication
begins and ends with Ethernet frames.

The Ethernet can use either a bus or star topology. A bus topology attaches all devicesin sequence
on asingle cable. In astar topology all devicesarewired directly to acentral hub. 10Base-T usesa
combination called a star-shaped bus topology because while the attached devices can share all
data coming in on the cable, the actual wiring isin a star shape.

The access method used by the Ethernet is called Carrier Sense Multiple Access with Collision
Detect (CSMA/CD). Thisis acontention protocol, meaning it isa set of rulesto follow when there
is competition for shared resources.

2.1 Ethernet Address

All Ethernet interfaces have a unique 48-bit address that is supplied by the manufacturer. It is
called the Ethernet address (also known as the MAC address, for Media Access Control).
Ethernet-enabled Z-World boards store this value in Flash Memory (EEPROM) that is
programmed at the factory. If you need unique Ethernet addresses for some product you are
making, you can obtain them from the | EEE Reqgistration Authority.

To read the MAC address of a TCP/IP Development Board, run the utility program

di spl ay_MAC. c. Itislocated on the Technica Support Sample Program Web page:
http://www.rabbitsemi conductor.com/support_center/rab20_support.html. It isalso
included with Dynamic C, version 7.04 and above.

2.2 Physical Connections

A Realtek RTL8019 10Base-T interface chip provides a 10 Mbps Ethernet connection. Thischipis
used on many Ethernet-enabled Z-World boards. The corresponding port can be connected directly
to an Ethernet network.

By using hubs and routers, a network can include a large number of computers. A network might
include all the computersin aparticular building. A local network can be connected to the I nternet
by means of a gateway. The gateway is a computer that is connected both to the local network and
to the Internet. Data that must be sent out over the Internet are sent to the local network interface
of the gateway, and then the gateway sends them on to the Internet for routing to some other com-
puter in the world. Data coming in from the Internet are directed to the gateway, which then sends
them to the correct recipient on the local network.

An Introduction to TCP/IP 3

http://www.rabbitsemiconductor.com/support_center/rab20_support.html
http://standards.ieee.org/regauth/

2.2.1 Cables

Ethernet cables are similar to U.S. telephone plug cables, except they have eight connectors. For
our purposes, there are two types of cables—crossover and straight-through. In most instances, the
straight-through cables are used. It is hecessary to use a crossover cable when two computers are
connected directly without a hub (for example, if you want to connect your PC’s Ethernet directly
to the Rabbit Semiconductor TCP/IP Development Board.) Some hubs have one input that can
accept either a straight-through or crossover cable depending on the position of a switch. In this
case make sure that the switch position and cable type agree.

HUB
To Internet
cables \ / \ Gateway | a—»

Local Network Computers

Figure 1. Ethernet Network

2.3 Frames

Bits flowing across the Ethernet are grouped into structures called frames. A frame must be
between 46 and 1500 bytesin size. An Ethernet frame has four parts:

1. A Preamble of 8 bytes that helps synchronize the circuitry, thus allowing small bit rate differ-
ences between sender and receiver.

2. A Header of 14 bytesthat contains a 6 byte destination address, 6 byte source address and a 2
byte typefield.

3. A Data area of variable length that, along with the header, is passed to the IP layer (aka. the
Network layer).

4. A Trailer of 4 bytesthat contains a CRC to guard against corrupted frames.

If the destination addressis al 1 hits, it defines a broadcast frame and all systems on the local net-
work process the frame. There are also multicast frames. A subset of systems can form a*“multi-
cast” group that has an address that does not match any other system on the network. All systems
in a particular subset process a packet with a destination address that matches their subset. A sys-
tem can belong to any number of subsets.

A system may put its interface(s) into promiscuous mode and process all frames sent across its
Ethernet. Thisis known as "sniffing the ether." It is used for network debugging and spying.

4 An Introduction to TCP/IP

2.3.1 Collisions

In a star-shaped bus topology, all systems have access to the network at any time. Before sending
data, a system must determineif the network isfree or if it isalready sending aframe. If aframeis
aready being sent, a system will wait. Two systems can “listen” on the network and “hear” silence
and then proceed to send data at the same time. Thisis called a collision. Ethernet hardware has
collision detection sensors to take care of this problem. Thisisthe Collision Detect (CD) part of
CSMA/CD. The colliding dataisignored, and the systemsinvolved will wait a random amount of
time before resending their data.

An Introduction to TCP/IP 5

An Introduction to TCP/IP

3. Networks

A network is asystem of hardware and software, put together for the purpose of communication
and resource sharing. A network includes transmission hardware, devicesto interconnect trans-
mission media and to control transmissions, and software to decode and format data, as well asto
detect and correct problems.

There are several types of networks in use today. This chapter will focus on three of them:
* LAN - Loca AreaNetwork
* WAN - Wide Area Network
* VPN - Virtua Private Network

3.1 LAN

The most widely deployed type of network, LANs were designed as an alternative to the more
expensive point-to-point connection. A LAN has high throughput for relatively low cost. LANs
often rely on shared media, usually a cable, for connecting many computers. This reduces cost.
The computers take turns using the cable to send data.

3.1.1 Repeaters and Bridges

LANSs typically connect computers located in close physical proximity, i.e., all the computersin a
building. Repeaters are used to join network segments when the distance spanned causes electrical
signalsto weaken. Repeaters are basically amplifiers that work at the bit level; they do not actively
modify datathat is amplified and sent to the next segment.

Like repeaters, bridges are used to connect two LANSs together. Unlike repeaters, bridges work at
the frame level. Thisis useful, allowing bridges to detect and discard corrupted frames. They can
also perform frame filtering, only forwarding a frame when necessary. Both of these capabilities
decrease network congestion.

Bridged LANSs can span arbitrary distances when using a satellite channel for the bridge. The
resulting network is still considered a LAN and not a WAN.

An Introduction to TCP/IP 7

3.2 WAN

To be considered a WAN, a network must be able to connect an arbitrary number of sites across an
arbitrary distance, with an arbitrary number of computers at each site. In addition, it must have
reasonabl e performance (no long delays) and allow all of the computers connected to it to commu-
nicate simultaneously. This is accomplished with packet switches.

. T3

Switch Switch
at Site 1 at Site 2

L | L1

| High-speed |
Connection

| O 0O J-‘ O O
Switch Switch

at Site 3 at Site 4

5 5 7§

Figure 2. WAN with 4 switches.

3.2.1 Packet Switches

Packet switches are small computers with CPUs, memory and /O devices. They move complete
packets, using atechnique called Store and Forward. An incoming packet is stored in a memory
buffer and the CPU isinterrupted. The processor examines the packet and forwards it to the appro-
priate place. This strategy allows the switch to accept multiple packets simultaneously.

Asthe figure above illustrates, WANSs currently do not need to be symmetric.

3.2.2 Forwarding a Packet

A data structure contains the information that tells the switch where to send the packet next. This

is called arouting table. The destination address in the packet header determines the routing table
entry that is used to forward the packet. It could be forwarded to a computer attached to the switch
that is examining the packet or it could be to another switch in the WAN.

8 An Introduction to TCP/IP

3.3 VPN

VPNs are built on top of apublicly-accessible infrastructure, such asthe Internet or the public
telephone network. They use some form of encryption and have strong user authentication. Essen-
tialy aVPN isaform of WAN; the difference is their ability to use public networks rather than
private leased lines. A VPN supports the same intranet services as atraditional WAN, but also sup-
ports remote access service. Thisis good for telecommuting, asleased lines don't usualy extend
to private homes and travel destinations.

A remote VPN user can connect viaan Internet Service Provider (1SP) in the usual way. Thiselim-
inates long-distance charges. The user can then initiate atunnel request to the destination server.
The server authenticates the user and creates the other end of the tunnel. VPN software encrypts
the data, packagesit in an IP packet (for compatibility with the Internet) and sends it through the
tunnel, where it is decrypted at the other end.

There are several tunneling protocols available: | P security (1Psec), Point-to-Point Tunneling Pro-
tocol (PPTP) and Layer 2 Tunneling Protocol (L2TP).

3.4 Network Devices

Some network devices (repeaters, bridges and switches) were discussed in the previous sections.
These are all dedicated hardware devices. Network devices can also be non-dedicated systems
running network software.

3.4.1 Routers

A router isahardware device that connects two or more networks. Routers are the primary back-
bone device of the Internet, connecting different network technologies into a seamless whole.
Each router is assigned two or more IP addresses because each |P address contains a prefix that
specifies aphysical network.

Before a packet is passed to the routing software, it is examined. If it is corrupted, it is discarded.
If it is not corrupted, arouting table is consulted to determine where to send it next. By default,
routers do not propagate broadcast packets (see “ Directed Broadcast Address’ on page 17). A
router can be configured to pass certain types of broadcasts.

3.4.2 Firewalls

A firewall is acomputer, router, or some other communications device that controls data flow
between networks. Generaly, afirewall is afirst-line defense against attacks from the outside
world. A firewall can be hardware-based or software-based. A hardware-based firewall isaspecia
router with additional filter and management capabilities. A software-based firewall runs on top of
the operating system and turns a PC into afirewall.

Conceptually, firewalls can be categorized as Network layer (aka Data Link layer) or Application
layer. Network layer firewallstend to be very fast. They control traffic based on the source and
destination addresses and port numbers, using this information to decide whether to pass the data
on or discard it.

Application layer firewalls do not allow traffic to flow directly between networks. They are typi-
cally hosts running proxy servers. Proxy servers can implement protocol specific security because

An Introduction to TCP/IP 9

they understand the application protocol being used. For instance, an application layer firewall can
be configured to allow only e-mail into and out of the local network it protects.

3.4.3 Gateways

A gateway performs routing functions. The term default gateway is used to identify the router that
connectsaLAN to aninternet. A gateway can do more than arouter; it also performs protocol
conversions from one network to another.

3.5 Network Architecture

There are two network architectures widely used today: peer-to-peer and client/server. In peer-to-

peer networks each workstation has the same capabilities and responsibilities. These networks are
usually less expensive and simpler to design than client/server networks, but they do not offer the
same performance with heavy traffic.

3.5.1 Client/Server Networks
The client/server paradigm requires some computers to be dedicated to serving other computers. A
server application waits for a client application to initiate contact.

Table 1. Summary of Differences between Client and Server Software

Client Software Server Software

An arbitrary application program that becomes a A special-purpose, privileged program dedicated to

client when aremote serviceis desired. It also providing one service. It can handle multiple remote
performs other local computations. clients at the same time.
Actively initiates contact. Passively waits for contact.

Invoked when the system boots and executes

Invoked by auser and executes for one session. ;
through many sessions.

Capable of accessing multiple services as needed,
but actively contacts only one remote server at a
time.

Accepts contact from an arbitrary number of clients,
but offersasingle service or afixed set of services.

Can require powerful hardware and a sophisticated
operating system, depending on how many clients
are being served.

Does not require special hardware or asophisticated
operating system.

10 An Introduction to TCP/IP

3.5.1.1 Port Numbers

Port numbers are the mechanism for identifying particular client and server applications. Servers
select aport to wait for a connection. Most services have well-known port numbers. For example,
HTTP uses port 80. When aweb browser (the client) requests aweb page it specifies port 80 when
contacting the server. Clients usually have ephemeral port numbers since they exist only aslong as

the session lasts.
Some of the common well-known TCP port numbers are listed in the table below.

Port

Number Listening Application

7 Echo request

20/ 21 |File Transfer Protocol (FTP)

23 Telnet

25 Simple Mail Transfer Protocol (SMTP)
53 Domain Name Server

80 HTTP Server

An Introduction to TCP/IP 11

12

An Introduction to TCP/IP

4. Network Protocol Layers

Computers on a network communicate in agreed upon ways called protocols. The complexity of
networking protocol software callsfor the problem to be divided into smaller pieces. A layering
model aids this division and provides the conceptual basis for understanding how software proto-
cols together with hardware devices provide a powerful communication system.

4.1 Layering Models

In the early days of networking, before the rise of the ubiquitous Internet, the International Organi-
zation for Standardization (1SO) developed alayering model whose terminology persists today.

Table 2. ISO 7-Layer Reference Model

Name of Layer Purpose of Layer
Layer 7 Application Specifies how a particul ar application uses a network.
Layer 6 Presentation Specifies how to represent data.
Layer 5 on Specifies how to establish communication with aremote
Sess system.
Layer 4 Transport Specifies how to reliably handle data transfer.
Layer 3 Network Specifies addressing assignments and how packets are
forwarded.
Layer 2 Data Link Specifies the organization of datainto frames and how to
send frames over a network.
Layer 1 Physical Specifies the basic network hardware.

The 7-layer model has been revised to the 5-layer TCP/IP reference model to meet the current
needs of protocol designers.

Table 3. TCP/IP 5-Layer Reference Model

Name of Layer Purpose of Layer
Layer 5 Application Specifies how a particular application uses a network.
Layer 4 Transport Specifies how to ensure reliable transport of data.
Layer 3 Internet Specifies packet format and routing.
Layer 2 Network Specifies frame organization and transmittal.
Layer 1 Physical Specifies the basic network hardware.

An Introduction to TCP/IP

13

4.2 TCP/IP Protocol Stack

TCP/IP is the protocol suite upon which all Internet communication is based. Different vendors
have developed other networking protocols, but even most network operating systems with their
own protocols, such as Netware, support TCP/IP. It has become the de facto standard.

Protocols are sometimes referred to as protocol stacks or protocol suites. A protocol stack isan
appropriate term because it indicates the layered approach used to design the networking software

Sender Receiver

. . Virtual . _
Application Connection | Application

}
Identical Message

Transport Transport

Identical Message

Network Network

Identical Message

Data Link Data Link

Identical Message

Y

Hardware Hardware

Figure 3. Flow of data between two computers using TCP/IP stacks.

Each host or router in the internet must run a protocol stack. The details of the underlying physical
connections are hidden by the software. The sending software at each layer communicates with the
corresponding layer at the receiving side through information stored in headers. Each layer adds
its header to the front of the message from the next higher layer. The header is removed by the cor-
responding layer on the receiving side.

14 An Introduction to TCP/IP

5. TCP/IP Protocols

This chapter discusses the protocols available in the TCP/IP protocol suite. The following figure
shows how they correspond to the 5-layer TCP/IP Reference Model. Thisis not a perfect one-to-
one correspondence; for instance, Internet Protocol (1P) uses the Address Resolution Protocol
(ARP), but is shown here at the same layer in the stack.

— BOOTP
FTP | DHCP
—(SMTP — TFTP
_| PING
| HTTP | | DNS
Application
TCP UDP ICMP

Transport \ /

NI
~\

ARP IP

AN /
N/
N/

Ethernet

Network

Data Link

Figure 4. TCP/IP Protocol Flow

An Introduction to TCP/IP 15

5.1 IP

I P provides communication between hosts on different kinds of networks (i.e., different data-link
implementations such as Ethenet and Token Ring). It is a connectionless, unreliable packet deliv-
ery service. Connectionless means that there is no handshaking, each packet isindependent of any
other packet. It is unreliable because there is no guarantee that a packet gets delivered; higher-
level protocols must deal with that.

5.1.1 IP Address

I P defines an addressing scheme that is independent of the underlying physical address (e.g, 48-bit
MAC address). |P specifies a unique 32-bit number for each host on a network. This number is
known as the Internet Protocol Address, the |P Address or the Internet Address. These terms are
interchangeable. Each packet sent across the internet contains the | P address of the source of the
packet and the I P address of its destination.

For routing efficiency, the |P address is considered in two parts: the prefix which identifies the
physical network, and the suffix which identifies a computer on the network. A unique prefix is
needed for each network in an internet. For the global Internet, network numbers are obtained
from Internet Service Providers (ISPs). | SPs coordinate with a central organization called the
Internet Assigned Number Authority (IANA).

5.1.2 IP Address Classes

Thefirst four bits of an 1P address determine the class of the network. The class specifies how
many of the remaining bits belong to the prefix (aka Network 1D) and to the suffix (aka Host ID).
Thefirst three classes, A, B and C, are the primary network classes.

Class First 4 Bits Num_ber _Of Max # Of Num_ber _Of Max # Of Hosts Per
Prefix Bits Networks Suffix Bits Network
A Oxxx 7 128 24 16,777,216
B 10xx 14 16,384 16 65,536
C 110x 21 2,097,152 8 256
D 1110 Multicast
E 1111 Reserved for future use.

When interacting with mere humans, software uses dotted decimal notation; each 8 bitsistreated
as an unsigned binary integer separated by periods. |P reserves host address O to denote a network.
140.211.0.0 denotes the network that was assigned the class B prefix 140.211.

5.1.3 Netmasks

Netmasks are used to identify which part of the addressis the Network ID and which part isthe
Host ID. Thisisdone by alogical bitwise-AND of the IP address and the netmask. For class A
networks the netmask is always 255.0.0.0; for class B networksit is 255.255.0.0 and for class C
networks the netmask is 255.255.255.0.

16 An Introduction to TCP/IP

5.1.4 Subnet Address

All hosts are required to support subnet addressing. While the | P address classes are the conven-
tion, | P addresses are typically subnetted to smaller address sets that do not match the class sys-
tem. The suffix bits are divided into a subnet ID and ahost ID. This makes sensefor class A and B
networks, since no one attaches as many hosts to these networks asis allowed. Whether to subnet
and how many bhits to use for the subnet ID is determined by the local network administrator of
each network.

If subnetting is used, then the netmask will have to reflect this fact. On aclass B network with sub-
netting, the netmask would not be 255.255.0.0. The bits of the Host ID that were used for the sub-
net would need to be set in the netmask.

5.1.5 Directed Broadcast Address

IP defines a directed broadcast address for each physical network as all onesin the host ID part of
the address. The network ID and the subnet ID must be valid network and subnet values. When a
packet is sent to a network’s broadcast address, a single copy travels to the network, and then the
packet is sent to every host on that network or subnetwork.

5.1.6 Limited Broadcast Address

If the IP addressis all ones (255.255.255.255), thisis alimited broadcast address; the packet is
addressed to all hosts on the current (sub)network. A router will not forward this type of broadcast
to other (sub)networks.

5.2 IP Routing

Each | P datagram travels from its source to its destination by means of routers. All hosts and rout-
erson an internet contain | P protocol software and use arouting table to determine where to send a
packet next. The destination | P address in the | P header contains the ultimate destination of the IP
datagram, but it might go through several other | P addresses (routers) before reaching that destina-
tion.

Routing table entries are created when TCP/IP initializes. The entries can be updated manually by
anetwork administrator or automatically by employing arouting protocol such as Routing Infor-
mation Protocol (RIP). Routing table entries provide needed information to each local host regard-
ing how to communicate with remote networks and hosts.

When IP receives a packet from a higher-level protocol, like TCP or UDP, the routing table is
searched for the route that is the closest match to the destination | P address. The most specific to
the least specific route isin the following order:

* A route that matches the destination | P address (host route).
* A route that matches the network 1D of the destination |P address (network route).
* Thedefault route.

If amatching route is not found, IP discards the datagram.

An Introduction to TCP/IP 17

IP provides severd other services:

* Fragmentation: |P packets may be divided into smaller packets. This permitsalarge
packet to travel across a network which only accepts smaller packets. I P fragments and
reassembles packets transparent to the higher layers.

* Timeouts: Each IP packet hasa Time To Live (TTL) field, that is decremented every time
a packet moves through arouter. If TTL reaches zero, the packet is discarded.

* Options: IP alows a packet's sender to set requirements on the path the packet takes
through the network (source route); the route taken by a packet may be traced (record
route) and packets may be labeled with security features.

5.3 ARP

The Address Resolution Protocol is used to trand ate virtual addressesto physical ones. The net-
work hardware does not understand the software-maintained | P addresses. |P uses ARP to trans-
late the 32-bit | P address to a physical address that matches the addressing scheme of the
underlying hardware (for Ethernet, the 48-hit MAC address).

There are three general addressing strategies:
1. Table lookup
2. Trandlation performed by a mathematical function
3. Message exchange

TCP/IP can use any of the three. ARP employs the third strategy, message exchange. ARP defines
arequest and aresponse. A request message is placed in a hardware frame (e.g., an Ethernet
frame), and broadcast to all computers on the network. Only the computer whose | P address
matches the request sends a response.

5.4 The Transport Layer

There are two primary transport layer protocols: Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP). They provide end-to-end communication services for applications.

5.4.1 UDP

Thisisaminimal service over IP, adding only optiona checksumming of data and multiplexing by
port number. UDP is often used by applications that need multicast or broadcast delivery, services
not offered by TCP. Like IR, UDP is connectionless and works with datagrams.

542 TCP

TCP is aconnection-oriented transport service; it provides end-to-end reliability, resequencing,
and flow control. TCP enables two hosts to establish a connection and exchange streams of data,
which are treated in bytes. The delivery of datain the proper order is guaranteed.

TCP can detect errors or lost data and can trigger retransmission until the data is received, com-
plete and without errors.

18 An Introduction to TCP/IP

5.4.2.1 TCP Connection/Socket
A TCP connection is done with a 3-way handshake between a client and a server. Thefollowingis
asimplified explanation of this process.

* Theclient asks for aconnection by sending a TCP segment with the SYN control bit set.

* The server responds with its own SY N segment that includes identifying information that
was sent by the client in theinitial SYN segment.

* The client acknowledges the server’s SYN segment.

The connection is then established and is uniquely identified by a4-tuple called a socket or socket
pair:

(destination | P address, destination port number)
(source | P address, source port number)

During the connection setup phase, these values are entered in a table and saved for the duration of
the connection.

5.4.2.2 TCP Header

Every TCP segment has a header. The header comprises al necessary information for reliable,
complete delivery of data. Among other things, such as | P addresses, the header contains the fol-
lowing fields:

Sequence Number - This 32-bit number contains either the sequence number of the first byte
of datain this particular segment or the Initial Sequence Number (1SN) that identifies the first
byte of datathat will be sent for this particular connection.

The ISN is sent during the connection setup phase by setting the SYN control bit. An 1SN is
chosen by both client and server. The first byte of data sent by either side will be identified by
the sequence number ISN + 1 because the SYN control bit consumes a sequence number. The
following figure illustrates the three-way handshake.

An Introduction to TCP/IP 19

Host A Host B
(Client) SYN Segment (Server)
ISN=A, ACK=0

SYN/ACK Segment
ISN=B, ACK=A+1

ACK Segment
Seq #=A+1, ACK=B+1

Figure 5. Synchronizing Sequence Numbers for TCP Connection

The sequence number is used to ensure the data is reassembled in the proper order before
being passed to an application protocol.

Acknowledgement Number - This 32-bit number is the other host’s sequence number + 1 of
the last successfully received byte of data. It isthe sequence number of the next expected byte
of data. Thisfield isonly valid when the ACK control bit is set. Since sending an ACK costs
nothing, (because it and the Acknowledgement Number field are part of the header) the ACK
control bit is always set after a connection has been established.

The Acknowledgement Number ensures that the TCP segment arrived at its destination.

Control Bits - This 6-hit field comprises the following 1-hit flags (lft to right):

* URG - Makes the Urgent Pointer field significant.

* ACK - Makesthe Acknowledgement Number field significant.
* PSH - The Push Function causes TCP to promptly deliver data.
* RST - Reset the connection.

* SYN - Synchronize sequence numbers.

¢ FIN - No more data from sender, but can still receive data.

Window Size - This 16-bit number states how much data the receiving end of the TCP con-
nection will allow. The sending end of the TCP connection must stop and wait for an acknow!-
edgement after it has sent the amount of data allowed.

20

An Introduction to TCP/IP

Checksum - This 16-bit number is the one's complement of the one's complement sum of all
bytesin the TCP header, any data that isin the segment and part of the | P packet. A checksum
can only detect some errors, not all, and cannot correct any.

5.4.3 ICMP

Internet Control Message Protocol is a set of messages that communicate errors and other condi-
tions that require attention. ICMP messages, delivered in | P datagrams, are usually acted on by
either IP, TCP or UDP. Some ICMP messages are returned to application protocols.

A common use of ICMPis*“pinging” ahost. The Ping command (Packet | Nternet Groper) isa
utility that determines whether a specific |P addressis accessible. It sends an ICMP echo request
and waits for areply. Ping can be used to transmit a series of packets to measure average round-
trip times and packet loss percentages.

5.5 The Application Layer

There are many applications available in the TCP/IP suite of protocols. Some of the most useful
ones are for sending mail (SMTP), transferring files (FTP), and displaying web pages (HTTP).
These applications are discussed in detail in the TCP/IP User’s Manual.

Another important application layer protocol isthe Domain Name System (DNS). Domain names
are significant because they guide users to where they want to go on the Internet.

5.5.1 DNS

The Domain Name System is a distributed database of domain name and | P address bindings. A
domain name is simply an aphanumeric character string separated into segments by periods. It
represents a specific and unique place in the “domain name space.” DNS makes it possible for us
to use identifiers such as zworld.com to refer to an |P address on the Internet. Name servers con-
tain information on some segment of the DNS and make that information available to clients who
are called resolvers.

An Introduction to TCP/IP 21

5.5.1.1 DCRTCP.LIB Implementation of DNS
Ther esol ve() functionin DCRTCP. LI B immediately converts a dotted decimal 1P address
to its corresponding binary | P address and returns this value.

If resol ve() ispassed adomain name, aseries of queries take place between the computer that
calledr esol ve() and computers running name server software. For example, to resolve the
domain name www.rabbitsemiconductor.com, the following code (available in SAM

PLES\ TCP\ DNS. C) can be used.

#define MY_|I P_ADDRESS "10. 10. 6. 101"
#define MY_NETMASK "255. 255. 255. 0"
#defi ne MY_GATEWAY "10.10. 6. 19"
#defi ne MY_NAMESERVER "10. 10. 6. 19"

#memmap xnmem
#use dcrtcp.lib
mai n() {
| ongword i p;
char buffer[20];
sock init();
i p=resol ve("wwv. rabbi t sem conduct or. cont') ;
i f(ip==0)
printf("couldn’t find www. rabbitsen conductor.com n");
el se

printf("% is ww.rabbitsem conductors address.\n”,
inet_ntoa(buffer,ip));

Your local name server is specified by the configuration macro MY_NAMESERVER. Chances are
that your local name server does not have the requested information, so it queries the root server.
The root server will not know the I P address either, but it will know where to find the name server
that contains authoritative information for the .com zone. Thisinformation is returned to your
local name server, which then sends a query to the name server for the .com zone. Again, this
name server does not know the requested | P address, but does know the local name server that
handl es rabbitsemiconductor.com. This information is sent back to your local name server, who
sends afinal query to the local name server of rabbitsemiconductor.com. Thislocal name server
returns the requested | P address of www.rabbitsemiconductor.com to your local name server, who
then passes it to your computer.

22 An Introduction to TCP/IP

6. Dynamic C TCP/IP
Implementation

The Dynamic C TCP/IP protocol suite is contained in a number of Dynamic C libraries. The main
library fileis DCRTCP. LI B. IPversion 4 is supported, not version 6. This chapter will describe
the configuration macros and the functions used to initialize and drive TCF/IP,

The implementation details that are discussed here pertain to versions of Dynamic C prior to 7.05.
Improvements and additions to the TCP/IP suite of protocols are fully documented in the
Dynamic C TCP/IP User’s Manual.

6.1 TCP/IP Configuration Macros

TCP/1P can be configured by defining configuration macros at compile time, by using the
tcp_confi g() function (and other functions) at runtime or by using the Dynamic Host Config-
uration Protocol (DHCP). Some ISPs require that the user provide them with aMAC address from
the controller. Run the utility program discussed in Section 2.1 to display the MAC address.

6.1.1 IP Addresses Set Manually
Four pieces of information are needed by any host on a network:
1. ThelP address of the host (e.g., the TCP/IP Development Board).

2. The part of the IP address that distinguishes machines on the host’s network from machines on
other networks (the netmask).

3. ThelP address of the router that connects the host’s network to the rest of the world (the default
gateway).

4. The IP address of the local DNS server for the host’s network. Thisis only necessary if DNS
backups are needed.

MY_| P_ADDRESS, MY_NETMASK, MY_GATEWAY and MY_NAMESERVER respectively corre-
spond to these four critical addresses.

An Introduction to TCP/IP 23

6.1.2 IP Addresses Set Dynamically

The macro USE_ DHCP enables the Dynamic Host Configuration Protocol (DHCP). If this option
is enabled, a DHCP client contacts a DHCP server for the values of MY_| P_ADDRESS,

MY _NETMASK, MY GATEWAY and MY NAMESERVER.

DHCP servers are usually centrally located on alocal network and operated by the network
administrator.

6.1.3 Default Buffer Size
There are two macros used to define the size of the buffer that is used for UDP datagram reads and
TCP packet reads and writes: t cp_MaxBuf Si ze and SOCK_BUF_SI ZE.

t cp_MaxBuf Si ze isdeprecated in Dynamic C version 6.57 and higher and is being kept for
backwards compatibility. It has been replaced by SOCK_BUF_SI ZE.

If SOCK_BUF_SI ZE is 4096 bytes, the UDP buffer is 4096 bytes, the TCP read buffer is 2048
bytes and the TCP write buffer is 2048 bytes.

In Dynamic C versions 6.56 and earlier, t cp_MaxBuf Si ze determines the size of the input and
output buffers for TCP/IP sockets. Thesi zeof (t cp_Socket) will be about 200 bytes more
than doublet cp_MaxBuf Si ze. The optimum value for local Ethernet connections is greater
than the Maximum Segment Size (MSS). The MSSis 1460 bytes. You may want to lower

t cp_MaxBuf Si ze, which defaults to 2048 bytes, to reduce RAM usage. It can be reduced to as
little as 600 bytes.

t cp_MaxBuf Si ze will work dlightly differently in Dynamic C versions 6.57 and higher. In
these later versions the buffer for the UDP socket will bet cp_MaxBuf Si ze * 2, whichis
twice aslarge as before.

6.1.4 Delay a Connection

Sometimesiit is appropriate to accept a connection request when the resourcesto do so are not
available. This happens with web servers when web pages have severa graphic images, each
requiring a separate socket.

The macro USE_ RESERVEPORTS is defined by default. It allows the use of the function
tcp_reserveport (). When aconnection to the port specifiedint cp_reserveport () is
attempted, the 3-way handshaking is done even if thereis not yet a socket available. Thisis done
by setting the window parameter in the TCP header to zero, meaning, “| can take 0 bytes of data at
thistime.” The other side of the connection will wait until the value in the window parameter indi-
cates that data can be sent.

Whenusingt cp_reserveport (), the2MSL (for Maximum Segment Lifetime) waiting
period for closing a socket is avoided.

Using the companion function, t cp_cl earreser ve() , causes the connection to the port to be
donein the conventional way.

24 An Introduction to TCP/IP

6.1.5 Runtime Configuration

Functions are provided to change configuration values at runtime. The most general oneis
tcp_confi g() . It takestwo strings. The first string is the setting to be changed and the second
string is the value to change it to. The configuration macros MY_| P_ADDRESS, MY_NETMASK,
MY_GATEWAY, and MY_NAMESERVER can al be overridden by this function.

tcp_config("MY_I P_ADDRESS', "10. 10. 6. 101");

Some of thet cp_confi g() functionality is duplicated by other Dynamic C TCP/IP functions.
tcp_confi g() canoverridethe macro MY_| P_ADDRESS, and so canthe set host i d func-
tion.

6.2 Skeleton Program

The following program is a general outline for a Dynamic C TCP/IP program. The first couple of
defines set up the default | P configuration information. The “memmap” line causes the program to
compile as much code as it can in the extended code window. The “use” line causes the compiler
to compile in the Dynamic C TCP/IP code using the configuration data provided above it.

#define MY_| P_ADDRESS "10. 10. 6. 101"
#defi ne MY_NETMASK " 255. 255. 255. 0"
#defi ne MY_GATEWAY "10. 10. 6. 19"
#memap xmem

#use dcrtcp.lib

mai n() {
sock init();
for (;;) {

tcp_tick(NULL);
}
}
To run this program, start Dynamic C and open the SAMPLES\ TCPI P\ PI NGVE. Cfile. Edit the
MY _| P_ADDRESS, MY _NETMASK, and MY_GATEWAY macros to reflect the appropriate values
for your device. Run the program and try torun pi ng 10. 10. 6. 101 from acommand line on
acomputer on the same physical network, replacing 10. 10. 6. 101 with your value for
MY _| P_ADDRESS.

Thermai n() function first initializesthe DCRTCP. LI B TCP/IP stack with acall to
sock_init().Thiscal initiaizesinternal data structures and enables the Ethernet chip, which
will take a couple of seconds with the Real Tek chip. At this point, DCRTCP. LI B isready to han-
dle incoming packets.

DCRTCP. LI B processes incoming packetsonly whent cp_ti ck() iscalled. Internally, the
functionst cp_open(),udp_open(),sock _read(),sock write(),sock_cl ose(),
andsock_abort () alcaltcp_tick().Iltisagood practiceto make sure that
tcp_tick() iscaled periodicaly inyour program to insure that the system has had a chance to
process packets.

When you ping your device, the Ethernet chip temporarily stores the packet, waiting for
DCRTCP. LI Bto processit. DCRTCP. LI B removesthe packet the nexttimet cp_ti ck() gets
called, and responds appropriately.

An Introduction to TCP/IP 25

A rule of thumbistocaltcp_ti ck() around 10 times per second, although slower or faster
call rates should also work. The Ethernet interface chip has alarge buffer memory, and TCP/IPis
adaptive to the datarates that both end of the connection can handle; thus the system will generally
keep working over awide variety of tick rates.

A more difficult question is how much computing time is consumed by each call to
tcp_tick().Roughnumbers are lessthan amillisecond if thereis nothing to do, 10s of milli-
seconds for typical packet processing, and 100s of milliseconds under exceptional circumstances.

6.3 TCP Socket

For Dynamic C version 6.57 and above, each socket must have an associatedt cp_Socket of
145 bytesor audp_Socket of 62 bytes. The 1/O buffers are in extended memory.

For earlier versions of Dynamic C, each socket must haveat cp_Socket data structure that
holds the socket state and 1/O buffers. These structures are, by default, around 4200 bytes each.
The majority of this space is used by the input and output buffers.

There are two ways to open a TCP socket: passive or active.

6.3.1 Passive Open

To wait for someone to contact your device, open asocket witht cp_I i st en() . Thistype of
open is commonly used for Internet serversthat listen on awell-known port, like 80 for HTTP.
Yousupplytcp_| i sten() withapointertoat cp_Socket datastructure, theloca port
number otherswill be contacting on your device, and the | P address and port number that are valid
for the device. If you want to be able to accept connections from any | P address or any port num-
ber, set one or both to zero.

To handle multiple simultaneous connections, each new connection will require its own
t cp_Socket structure and aseparatecal tot cp_|i st en(), but using the same local port
number (I port value)

Thetcp_listen() cal will immediately return, and you must poll for the incoming connec-
tion. You can usethesock_wai t _est abl i shed macro, whichwill callt cp_ti ck() and
block until the connection is established or you can manually poll the socket using

sock _establ i shed.

26 An Introduction to TCP/IP

6.3.1.1 Example of Passive Open

The following example waits for a connection on port 7, and echoes back each line as you enter it.
To test this program, change the configuration information and start it running. From a connected
PC, telnet to the device using port 7.

#def i ne
#def i ne
#def i ne

#memrap

MY_I P_ADDRESS "10. 10. 6. 101"
MY_NETMASK " 255. 255. 255. 0"
MY_GATEWAY "10. 10. 6. 19"

Xmem

#use "dcrtcp.lib"

#def i ne

PORT 7

tcp_Socket echosock;

mai n() {

char

buf fer[2048];

i nt status;
sock _init();
while(1) {
tcp_listen(&echosock, PORT, 0, 0, NULL, 0);
sock _wait_established(&echosock, 0, NULL, &st at us);
printf("Receiving incom ng connection\n");
sock _node(&chosock, TCP_MODE _ASCI |) ;

whil e(tcp_tick(&echosock)) {

}

sock_wait_input(&echosock, 0, NULL, &st at us) ;
i f (sock_gets(&echosock, buffer, 2048))
sock put s(&echosock, buffer);

sock_err:
swi tch(status) {

case 1: /* foreignhost closed */
printf("User closed session\n");
br eak;

case -1: /* timeout */
printf("\nConnection timed out\n");
br eak;

An Introduction to TCP/IP 27

6.3.2 Active Open
When your Web browser retrieves a page, it is actively opening one or more connections to the
Web server’s passively opened sockets. To actively open aconnection, call t cp_open() , which
uses parametersthat are similar tothet cp_| i st en() call. It isnecessary to supply exact
parametersfor i na and port, but thel port parameter can be zero, which tells DCRTCP. LI B
to select an unused port between 1024 and 65536.

Whenyoucal t cp_open(), Dynamic C tries to contact the other device to establish the con-
nection. t cp_open() will fail and return a zero if the connection could not be opened due to
routing difficulties, such as an inability to resolve the remote host’s hardware address with ARP.

#def i
#def i
#def i
#def i

#def i
#def i
#def i

ne
ne
ne
ne

ne
ne
ne

#menmmap
#use "dcrtcp.lib"

mei n() {

MY_| P_ADDRESS "10. 10. 6. 101"
MY_NETMASK " 255. 255. 255. 0"
MY_GATEWAY "10. 10. 6. 19"
MY_NAMESERVER " 10. 10. 6. 19"

VWEBSI TE " www. zweng. cont
FILE "/"
PORT 80

xnmem

i nt status;

tcp_Socket s;
char
| ongword i p;

sock_init();

i p=resol ve(VEBSI TE) ;
tcp_open(é&s, 0, ip, PORT, NULL) ;

sock _wait_established(&s, 0, NULL, &st at us);

buf f er[2048] ;

sock _node(&s, TCP_MODE _ASCI |) ;

sprintf(buffer,"GET %\r\n", FILE);

sock_puts(&s, buffer);
while(tcp tick(&s)) {

}

sock_wait_input(&s, 0, NULL, &st at us);

i f(sock_gets(&s, buffer, 2048))

printf("%\n", buffer);

return O;

sock_err:
switch(status) {
case 1: /* foreignhostclosed */

printf("User closed session\n");

br eak;

case -1: /* timeout */

printf("\nConnection tinmed out\n");

br eak;

28

An Introduction to TCP/IP

6.3.3 TCP Socket Functions

There are many functions that can be applied to an open TCP socket. They fall into three main cat-
egories: control, status, and 1/0O. Each function is explained in the Dynamic C TCP/IP User’s Man-
ual.

6.3.3.1 Control Functions

e sock_abort () sock_flushnext ()

* sock_cl ose() tcp_listen()

e sock _flush() tcp_open()
tcp_open() andtcp_l i sten() haveaready been explained in the active and passive sec-
tions.

sock_cl ose() should be called when you want to end a connection. A call to

sock_cl ose() may not immediately close the connection because it may take some time to
send the request to end the connection and receive the acknowledgements. If you want to be sure
that the connection is completely closed before continuing your program, you can call
tcp_tick() withthe address of the socket. Whent cp_ti ck() returns zero, then the socket
iscompletely closed. Please note that if thereis data | eft to be read on the socket, the socket will
not completely close.

There may be some reason that you want to cancel an open connection. In this case, you can call
sock_abort (). Thisfunction will cause a TCP reset to be sent to the other end, and other
future packets sent on this connection will be ignored.

For performance reasons, data may not be immediately sent from a socket to its destination. If
your application requires the data to be sent immediately, you can call sock_f | ush() . This
function will cause DCRTCP. LI B to try sending any pending dataimmediately. If you know
ahead of time that datawill need to be sent immediately, call sock_f | ushnext () onthe
socket. Thisfunction will cause the next set of data written to the socket to be sent immediately,
and ismore efficient thansock_f 1 ush() .

An Introduction to TCP/IP 29

6.3.3.2 Status Functions

sock_byt esready() e sock _tbleft()

* sock_established() sock_thsize()

e sock_rbleft() e sock_thused()
e sock_rhbsize() e tcp_tick()

* sock_rbused()

When you supply t cp_ti ck() with apointer to a TCP socket, it will first process the packets
and then check to seeif the socket has an established connection. It returns a zero if the socket is
no longer open because of an error condition or if the socket has been closed. You can use this
functionality after calling sock _cl ose() onthe socket to determine whether the socket is com-
pletely closed.

sock cl ose(&my_socket);

whil e(tcp_tick(&y_socket)) {
/| check time-out, do idle work...

}

The status functions can be used to avoid blocking when using sock_wri t e() and some of the
other 1/O functions. The following blocks of code illustrate away of using the buffer management
and socket management functionsto avoid blocking. The first block of code checks to make sure
that there is enough room in the buffer before adding data with a blocking function. The second
makes sure that there is a string terminated with anew linein the buffer, or that the buffer isfull
before calling sock _get s() .

i f(sock _tbleft(&ry _socket, size)) {
sock_write(&ny_socket, buffer, size);
}

or:

sock _node(&rmy_socket, TCP_MODE _ASCI |) ;

i f(sock_bytesready(&ny_socket) !'= -1) {
sock_get s(buf fer, MAX BUFFER) ;
}

30 An Introduction to TCP/IP

6.3.3.3 I/O Functions

e sock _fastread() sock _putc()

e sock fastwite() e sock_puts()
e sock_getc() e sock_read()
e sock _gets e sock write()

e sock_preread()

There are two modes of reading and writing to TCP sockets: ASCII and binary. By default, a socket
is opened in binary mode, but you can change that with acall tosock_node() .

When a socket isin ASCII mode, DCRTCP. LI B assumes that the datais an ASCII stream with
record boundaries on the newline characters for some of the functions. This behavior means
sock byt esready() will return >=0 only when a complete newline-terminated string isin
the buffer or the buffer isfull. Thesock_put s() function will automatically place anewline
character at the end of astring, and sock_get s() will strip the newline character.

When in binary mode, do not usesock _get s().

6.4 UDP Interface

e sock _fastread() e sock_read()

e sock fastwite() e sock_recv()

e sock_getc() e sock recv_from)
e sock _gets e sock _recv_init()
e sock_putc() e sock write()

e sock_puts() e udp_open()

The UDP protocol is useful when sending messages where either alost message does not cause a
system failure or is handled by the application. Since UDP is a simple protocol and you have con-
trol over the retransmissions, you can decide if you can trade low latency for high reliability.
Another advantage of UDP is the ability to broadcast packets to a number of computers on the
same network. When done properly, broadcasts can reduce overall network traffic because infor-
mation does not have to be duplicated when there are multiple destinations.

An Introduction to TCP/IP 31

6.4.1 Opening and Closing

Theudp_open() function takes aremote | P address and port humber. If they are set to a spe-
cific value, all incoming and outgoing packets are filtered on that value (i.e., you talk only to the
one socket).

If the remote IP addressiis set to -1, it receives any packet, and outgoing packets are broadcast. If
the remote | P address is set to 0, no outgoing packets may be sent until a packet has been received.
Thisfirst packet completes the socket, filling in the remote | P address and port number with the
return address of the incoming packet. M ultiple sockets can be opened on the same local port, with
the remote address set to 0, to accept multiple incoming connections from separate remote hosts.
When you are done communicating on a socket that was started with a0 | P address, you can close
itwithsock_cl ose() and reopen to make it ready for another source.

6.4.2 Writing

The normal socket functions you used for writing to a TCP socket will work for a UDP socket, but
since UDPisasignificantly different service, the result could be different. Each atomic write—
sock_putc(),sock_puts(),sock_wite(),orsock_fastwite()—placesitsdata
into asingle UDP packet. Since UDP does not guarantee delivery or ordering of packets, the data
received may be different either in order or content than the data sent.

6.4.3 Reading

There are two ways to read packets using DCRTCP. LI B. The first method uses the normal
sock getc(),sock gets(),sock read(),andsock fastread() functions. These
functions will read the data as it came into the socket, which is not necessarily the data that was
written to the socket.

The second mode of operation for reading usessock_recv_init(),sock_recv(),and
sock _recv_from().Thesock _recv_init () functioninstallsalarge buffer areathat gets
divided into smaller buffers. Whenever adatagram arrives, DCRTCP. LI B stuffs that datagram
into one of these new buffers. sock _recv() scansthe buffersfor any datagrams received by
that socket. If thereis a datagram, the length is returned and the user buffer isfilled, otherwise it
returns zero.

Thesock _recv_from) functionworkslikesock _recv(), but it allowsyou to record the
| P address where the datagram originated. If you want to reply, you can open a new UDP socket
with the IP address modified by sock_recv_fron() . Thereisno way to send UDP packets
without a socket.

After callingsock_recv_i nit () onthesocket, you should not usesock _getc(),
sock _read(),orsock _fastread().

6.4.4 Checksums

Thereisan optional checksumfield inside the UDP header. Thisfield verifies only the header
portion of the packet and doesn’t cover any part of the data. This feature can be disabled on areli-
able network where the application has the ability to detect transmission errors. Disabling the UDP
checksumcan increase the performance of UDP packets moving through DCRTCP. LI B. This
feature can be modified by:

sock_node(s, UDP_MODE_CHK) ; /| enable checksums
sock_node(s, UDP_MODE_NOCHK) ; /| disable checksums

32 An Introduction to TCP/IP

6.5 Program Design

When designing your program, you must place some thought into how it will be structured. If you
plan on using the state-based approach, you need to select the appropriate functions.

6.5.1 State-Based Program Design

One strategy for designing your program with Dynamic C is to create a state machine within a
function where you pass it the socket. This method allows you to handle multiple sockets without
the services of amultitasking kernel. Thisis the way the HTTP. LI B functions are organized (see
HTTP in the Dynamic C TCP/IP User’'s Manual). The general states are waiting to beinitialized,
waiting for a connection, abunch of connected states, and waiting for the socket to be closed.
Many of the common Internet protocols fit well into this state machine model. An example of
state-based programming is SAMPLES\ TCPI P\ STATE. C. This program is a basic Web server
that should work with most browsers. It allows a single connection at atime, but could easily be
extended to allow multiple connections.

6.5.2 Blocking vs. Non-Blocking

Thesock_fastread() andsock_preread() functionsread as much dataasisavailablein
the buffers, and return immediately. Similarly, sock _fastwrite() fillsthebuffersand returns
the number of characters that were written. When using these functions, it is your responsibility to
ensurethat all of the data were written completely.

of f set =0;

whi | e(of f set<l ength) {
bytes_written=sock_fastwite(&socket, buffer+offset,|ength-offset);
i f(bytes_witten<0) {
/1 error handling

of fset +=bytes_witten;

}

The other functions do not return until they have completed or thereisan error. If it isimportant to
avoid blocking, you can check the conditions of an operation to insure that it will not block.

sock_node(socket, TCP_MODE_ASCI |) ;

i f (sock_bytesready(&nmy_socket) = -1){
sock_get s(buffer, MAX BUFFER) ;

}

Inthiscasesock_get s() will not block because it will be called only when there is a complete
new line terminated record to read.

An Introduction to TCP/IP 33

6.5.3 Blocking Macros

To block at acertain point and wait for a condition, DCRTCP. LI B provides some macros to make
thistask easier. In this program fragment, sock_wai t _est abl i shed isused to block the pro-
gram until a connection is established. Notice the time-out (second parameter) value of zero. This
tells Dynamic C to never time-out. Associated with these macrosisasock_er r label to jump to
when thereis an error. If you supply a pointer to a status integer, it will set the statusto an error
code. Vaid error codes are -1 for time-out and 1 for areset connection.

tcp_open(é&s, 0, ip, PORT, NULL) ;
sock_wait_established(&s, 0, NULL, &st at us);

/...
sock_err:
switch(status) {
case 1: [* foreign host closed */
printf("User closed session\n");
br eak;
case - 1: /* time-out */
printf("\nConnection timed out\n");
br eak;
}

6.6 Multitasking and TCP/IP
The TCP/IP engine may be used with the pC/OS real-time kernel. The line
#use ucos2.lib

must appear before the line
#use dcrtcp.lib

34 An Introduction to TCP/IP

7. References

1. A two-part article, Introduction to TCP/IP, in Embedded Systems Programming discusses
issues related to programming embedded systems.

http://www.embedded.com/internet/9912/9912ial.htm

2. Ethereal isagood, free program for viewing network traffic. It works under various Unix
operating systems and under Windows.

http://www.ethereal.com

3. Computer Networks and Internets, Douglas E. Comer. Published by Prentice Hall. ISBN 0-
13-239070-1. This book gives an excellent high-level description of networks and their
interfaces.

4, TCP/IP Illustrated, Volume 1 The Protocols, W. Richard Stevens. Published by Addison-
Wesley. ISBN 0-20-163346-9. This book gives many useful low-level details about TCP/IP,
UDPand ICMP.

An Introduction to TCP/IP 35

http://www.embedded.com/internet/9912/9912ia1.htm
http://www.ethereal.com

36

An Introduction to TCP/IP

Notice to Users

Z-WORLD PRODUCTS ARE NOT AUTHORIZED FOR USE
AS CRITICAL COMPONENTS IN LIFE-SUPPORT DEVICES
OR SYSTEMS UNLESS A SPECIFIC WRITTEN AGREE-
MENT REGARDING SUCH INTENDED USE IS ENTERED
INTO BETWEEN THE CUSTOMER AND Z-WORLD PRIOR
TO USE. Life-support devices or systems are devices or systems
intended for surgica implantation into the body or to sugtain life,
and whose failure to perform, when properly used in accordance
with instructions for use provided in the labeling and user’s man-
ual, can be reasonably expected to result in significant injury.

No complex software or hardware system is perfect. Bugs are
always present in asystem of any size. In order to prevent danger to
life or property, it is the responsibility of the system designer to
incorporate redundant protective mechanisms appropriate to the
risk involved.

The TCP/IP software is designed for use only with Rabbit Semi-
conductor chips.

An Introduction to TCP/IP

37

	Table of Contents
	�1. Introduction
	�2. Ethernet Basics
	2.1� Ethernet Address
	2.2� Physical Connections
	2.2.1� Cables

	2.3� Frames
	2.3.1� Collisions

	�3. Networks
	3.1� LAN
	3.1.1� Repeaters and Bridges

	3.2� WAN
	3.2.1� Packet Switches
	3.2.2� Forwarding a Packet

	3.3� VPN
	3.4� Network Devices
	3.4.1� Routers
	3.4.2� Firewalls
	3.4.3� Gateways

	3.5� Network Architecture
	3.5.1� Client/Server Networks
	3.5.1.1 Port Numbers

	�4. Network Protocol Layers
	4.1� Layering Models
	4.2� TCP/IP Protocol Stack

	�5. TCP/IP Protocols
	5.1� IP
	5.1.1� IP Address
	5.1.2� IP Address Classes
	5.1.3� Netmasks
	5.1.4� Subnet Address
	5.1.5� Directed Broadcast Address
	5.1.6� Limited Broadcast Address

	5.2� IP Routing
	5.3� ARP
	5.4� The Transport Layer
	5.4.1� UDP
	5.4.2� TCP
	5.4.2.1 TCP Connection/Socket
	5.4.2.2 TCP Header

	5.4.3� ICMP

	5.5� The Application Layer
	5.5.1� DNS
	5.5.1.1 DCRTCP.LIB Implementation of DNS

	�6. Dynamic C TCP/IP Implementation
	6.1� TCP/IP Configuration Macros
	6.1.1� IP Addresses Set Manually
	6.1.2� IP Addresses Set Dynamically
	6.1.3� Default Buffer Size
	6.1.4� Delay a Connection
	6.1.5� Runtime Configuration

	6.2� Skeleton Program
	6.3� TCP Socket
	6.3.1� Passive Open
	6.3.1.1 Example of Passive Open

	6.3.2� Active Open
	6.3.3� TCP Socket Functions
	6.3.3.1 Control Functions
	6.3.3.2 Status Functions
	6.3.3.3 I/O Functions

	6.4� UDP Interface
	6.4.1� Opening and Closing
	6.4.2� Writing
	6.4.3� Reading
	6.4.4� Checksums

	6.5� Program Design
	6.5.1� State-Based Program Design
	6.5.2� Blocking vs. Non-Blocking
	6.5.3� Blocking Macros

	6.6� Multitasking and TCP/IP

	�7. References
	Notice to Users

