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Introduction

This is a summary of topics covered during lectures at FAU in the summer semesters 2018 and
2019. A first goal of the class is to introduce the student to the physics of fundamental processes in
light-matter interactions such as:
• stimulated emission/absorption, spontaneous emission
• motional effects of light onto atoms, ions and mechanical resonators (optomechanics)
• electron-vibrations-light coupling in molecules

The main purpose of the class is to build a toolbox of methods useful for tackling real applications
such as cooling, lasing, etc. Some of the general models and methods introduced here and used
throughout the notes are:
• quantum master equations
• the Jaynes (Tavis)-Cummings Hamiltonian
• the Holstein Hamiltonian
• the radiation pressure Hamiltonian
• quantum Langevin equations
• the polaron transformation

Among others, some of the applications presented either within the main course or as exercises
cover aspects of:
• laser theory
• Doppler cooling, ion trap cooling, cavity optomechanics with mechanical resonators
• electromagnetically induced transparency
• optical bistability
• applications of subradiant and superradiant collective states of quantum emitters

Here is a short list of relevant textbooks.
• Milburn
• Gardiner and Zoller
• Zubairy

Other references to books and articles are listed in the bibliography section at the end of the course
notes.
As some numerical methods are always useful here is a list of useful programs and platforms for
numerics in quantum optics:
• Mathematica
• QuantumOptics.jl - A Julia Framework for Open Quantum Dynamics
• QuTiP - Quantum Toolbox in Python

The exam will consist of a 90 mins written part and 15 mins oral examination.

Max Planck Institute for the Science of Light, Erlangen, April-July 2019

https://qojulia.org/
http://qutip.org/
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1. Quantum light and the two level system

The purpose of this chapter to introduce the simplest model that can describe light-matter in-
teractions at the quantum level and specifically explain phenomena such as stimulated emis-
sion/absorption and spontaneous emission. On the light side, we proceed by quantizing the
electromagnetic field in a big box by introducing photon creation and annihilation operators. The
action of a creation operator is to produce an excitation of a given plane wave mode while the
annihilation operator does the opposite. We analyze the states of light in the number (Fock) basis
and show how to construct coherent, thermal and squeezed states. We then describe the matter
system as an atom with two relevant levels between which a transition dipole moment exists and can
be driven by a light mode. A minimal coupling Hamiltonian in the dipole approximation between
the two level system and the quantum light in the box then describes emission and absorption
processes.

1.1 Light in a box
Let us consider a finite box of dimensions L×L×L consisting of our whole system. Later we will
eventually take the limit of L→ ∞. The box is empty (no charges or currents). We can write then
the following Maxwell equations:

∇ ·E = 0 ∇×E =−∂tB, (1.1)

∇ ·B = 0 ∇×B =
1
c

∂tE, (1.2)

where the speed of light emerges as c = 1/
√

ε0µ0. We can also connect both the electric and
magnetic field amplitudes to a vector potential

E =−∂tA B = ∇×A, (1.3)

which fulfills the Coulomb gauge condition

∇ ·A = 0. (1.4)
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We immediately obtain a wave equation for the vector potential (of course we could have already

∇
2A(r, t) =

1
c2

∂ 2A(r, t)
∂ t2 (1.5)

with solutions that can be separated into positive and negative components.

A(+)(r, t) = i∑
k

ckuk(r)e−iωkt , (1.6)

and A(+)(r, t) = [A(−)(r, t)]∗. Notice that ∇2A = ∇(∇ ·A)−∇×∇×A. We have separated c-
numbers, spatial dependence and time dependence. Moreover, the index k generally can include
two specifications: i) the direction and amplitude of the wavevector k and ii) the associated
polarization of the light mode contained in the unit vector ε̂λ

k where λ = 1,2 denotes the two
possible transverse polarizations (one can choose as basis either linear of circular polarizations).
For simplicity we will stick to the linear polarization choice such ε̂k is real. As we are in free space
the dispersion relation is simply ωk = ck, relating the frequency of the mode only to the absolute
value of the wavevector. Plugging these type of solutions into the wave equation we find that the
set of vector mode functions have to satisfy[

∇
2 +

ω2
k

c2

]
uk(r) = 0. (1.7)

Remember that the Coulomb gauge condition requires that the divergence of individual spatial
mode functions is vanishing

∇ ·uk(r) = 0. (1.8)

Since these are eigenvectors of the differential operator above they form a complete orthonormal
set: ∫

V
dru∗k(r)uk′(r) = δkk′ . (1.9)

Imposing periodic boundary conditions, the proper solutions for the above equation are traveling
waves:

uk(r) =
1

L3/2 eik·r
ε̂k. (1.10)

We could have as well chosen different boundary conditions which would have given standing
waves for the mode functions. The allowed wave-vectors have components (nx,ny,nz)2π/L where
the indexes are positive integers. Finally we can write

A(r, t) = i∑
k

√
h̄

2ε0ωkV
[ckeik·re−iωkt − c∗ke−ik·reiωkt ]ε̂k, (1.11)

and derive the expression for the electric field as

E(r, t) = ∑
k

√
h̄ωk

2ε0V
[ckeik·re−iωkt + c∗ke−ik·reiωkt ]ε̂k. (1.12)

The quantization is straightforward and consists in replacing the c-number amplitudes with operators
satisfying the following relations: [ak,a

†
k′ ] = δkk′ . Let’s write the expression for the quantized
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electric field (which we will extensively use in this class) as a sum of negative and positive
frequency components:

Ê(r) = ∑
k

Ek

[
akeikr +a†

ke−ikr
]
= Ê(+)+ Ê(−), (1.13)

where Ek =
√

h̄ωk/(2ε0V ) is the zero-point amplitude of the electric field. Notice that the electric
field is written now in the Schrödinger picture where the time dependence is not explicit. Instead,
when writing equations of motion for the field operators we will recover time dependence in the
time evolution of the creation and annihilation operators as we will shortly see in the next section.
Starting now from the Hamiltonian of the electromagnetic field as an integral over the energy
density over the volume of the box, we obtain a diagonal representation as a sum over an infinite
number of quantum harmonic oscillator free Hamiltonians:

H =
1
2

∫
V

dr
(

ε0Ê2(r)+
1
µ 0

B̂2(r)
)
= ∑

k
h̄ωk

(
a†

kak +
1
2

)
. (1.14)

There is a first observation that the sum over the 1/2 term might diverge: this is the starting point
for the derivation of effects such as the vacuum-induced Casimir force. We will not deal with it in
this course but instead remove the term in the following as it does not play any role in our intended
derivations. The second observation is that free evolution of operators in the Heisenberg picture

d
dt

ak(t) =
i
h̄
[H0,ak(t)] =−iωkak(t), (1.15)

directly gives us the expected time evolution of the expectation value of the electric field operator

〈Ê〉(r, t) = ∑
k

Ek

[
〈ak〉eikre−iωkt + 〈a†

k〉e
−ikreiωkt

]
, (1.16)

1.2 Quantum states of light
Until now we dealt with operators. We found that the electric field operator and total free Hamilto-
nian for a quantum electromagnetic field inside the box can be expressed as an expansion in plane
waves and with coefficients which are creation and annihilation operators. Now we will focus a
bit on the possible states of light. We will especially describe fundamental differences between
properties of coherent and thermal states. For this we use the properties of a the single mode
harmonic oscillator detailed in Appendix. 1.6.1. For a given mode k we will then use the Fock basis
|nk〉 where the index goes from 0 to ∞. The collective basis is then expressed as ∏k |nk〉 where all
indexes go from 0 to ∞ and a tensor product over all allowed wave-vectors and polarizations is
performed.

Thermal light
Let us assume that the box is in contact and thermalizes with a heat bath at constant temperature T .
This means each of the modes of the box is in thermal equilibrium and this described by a diagonal
density operator at some initial time t = 0 given by:

ρF(0) =
e−HF/(kBT )

TrF [e−HF/(kBT )]
= ∏

k
ρ
(k)
F = ∑

k
∑
nk

P(nk)|nk〉〈nk|, (1.17)

where the occupancy probability is given by

P(nk) =
e−nkh̄ωk/(kBT )

1− e−h̄ωk/(kBT )
. (1.18)
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Each mode defined by a given wavevector is in a thermal state with some average occupancy set by
the temperature T . To evaluate the electric field at some position r at a later time t we use Eq. 1.16.
From the single mode calculations in Appendix. 1.6.1 we know that for each mode the thermal
distribution predicts zero average for the creation and annihilation operators. This means that the
elctric field amplitude is on average actually zero in a thermal state. On the other hand, one can
compute the variance of the field which is equal to the expectation value of the photon number.

Coherent light
Let us now imagine that the box has a very little hole where an antenna emits coherent light. This
means that a specific mode with wave-vector k0 (and frequency ω0 = ck0) is constantly externally
driven into a coherent state of amplitude αk0 . With all other modes in the vacuum state we can
write the initial density operator as:

ρF(0) = |αk0〉〈αk0 |⊗ |0〉〈0|. (1.19)

We can now again evaluate the electric field expectation value at some time t (and r = 0)

〈Ê〉(r, t) = ∑
k

Ek[〈ak〉e−iωkt + 〈a†
k〉e

iωkt ]ε̂k = Ek0 [α`e−iω0t +α
∗
` eiω0t ]ε̂. (1.20)

As opposed to thermal light, the coherent state as a non-zero average electric field amplitude Ek0αk0 .

The Mollow transformation
Let us again consider the case described above where an antenna continuously drives a given mode
in the coherent state |αk0〉. This mode evolves in time at its natural frequency so the state can be
written as: |αk0(t)〉= |αk0e−iωk0 t〉. We would like to remove the coherent state from the vacuum
which we can do by performing an inverse displacement transformation:

ρ̃F = D†
αk0
|αk0〉〈αk0 |Dαk0

⊗|0〉〈0|= |0〉〈0| . (1.21)

This transformation simply displaces the coherent state back into the vacuum. Let’s see what
happens to the Hamiltonian:

H̃F = D†
αk0

[
∑
k

h̄ωk

(
a†

kak +
1
2

)]
Dαk0

= ∑
k

h̄ωk

(
a†

kak +
1
2

)
+ |αk0 |2 + h̄

(
α
∗
k0

ak0 +αk0a†
k0

)
(1.22)

The first constant term is a simple constant energy shift of the Hamiltonian which can be ignored.
The next term shows how a Hamiltonian for driving the vacuum into the coherent state should be
written. Let us also notice that the electric field operator has now a different term:

ˆ̂E(r) = D†
αk0

[
Ê(r)

]
Dαk0

= ∑
k

Ek

[
akeikr +a†

ke−ikr
]
+Ek0

[
αk0e−iωk0 teikr +α

∗
k0

eiωk0 te−ikr]
(1.23)

The last part is what we will refer to in the future as a classical field in a coherent state (as produced
by a laser).

1.3 Light-matter interactions: the dipole approximation
Let us consider an atom (nucleus static positioned at the origin and an electron with a position r)
in the presence of external electromagnetic fields described by scalar potential Φ(r, t) and vector
potential A(r, t) . From classical electrodynamics (see Jackson) we know that the Hamiltonian of a
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charged particle in the presence of external fields is modified (the conjugate variable of the position
is no-longer the momentum but the generalized momentum)

H(r, t) =
1

2m
(p+ eA(r, t))2− eΦ(r, t)+V (r). (1.24)

The term V (r) is the spherically symmetric Coulomb potential. In the absence of an external field
the solutions to the above Hamiltonian are therefore simply the Hydrogen atom wavefunctions.
We impose the Coulomb gauge Φ(r, t) = 0 under the observation that even if this gauge is not
relativistically invariant, most of quantum optics phenomena is non-relativistic anyway. Next we
make an observation which will be pretty important and therefore we list it in a special box.

Important 1.3.1 — The dipolar approximation. As the size of the electronic orbital (on a
Bohr radius length scale of 10−10 m) is much smaller than a typical optical wavelength (around
microns - 10−6 m) we can estimate that the vector potential is practically position independent
A(r, t) = A(t)

This allows us to write a simplified Hamiltonian:

H(r, t) =
p2

2m
+

e
m

A(t) ·p+
e2

2m
A2(t)+V (r). (1.25)

We now perform a gauge transformation to a length gauge via the following function:

χ(r, t) =−A(t) · r. (1.26)

which results in the new scalar and vector fields:

Φ
′(r, t) =−∂ χ(r, t)

∂ t
=−∂A(t)

∂ t
r = r ·E(t). (1.27)

and

A′(r, t) = A(t)+∇χ(r, t) = A(t)−∇(A(t) · r) = 0. (1.28)

so we end up with a transformed Hamiltonian

H ′ =
p2

2m
+V (r)−d ·E(t), (1.29)

where the dipole moment is defined as d =−er. From here on one can proceed with a semiclassical
picture where only the dipole is quantized so that the interaction is time dependent −d̂ ·E(t) or a
fully quantum picture where also the electromagnetic modes are quantized with time-independent
interaction Hamiltonian −d̂ · Ê.

1.4 The two level system
We consider now a two level system with ground state |g〉 and some excited state |e〉 which can
be reached from the ground state as a dipole-allowed transition. In the Appendix. 1.6.2 we show
in detail what we mean by ground and excited on the easy to understand particular case of the
Hydrogen atom. Excluding possibilities that the electron can go anywhere else except these
two levels the basis is then complete meaning that |g〉〈g|+ |e〉〈e| = I2 (I2 is the identity in the
2-dimensional Hilbert space). The two terms can be though of as projectors or either the ground or
excited state. We then define ladder operators that take the system up and down

σ = |g〉〈e| and σ
† = |e〉〈g| . (1.30)
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According to the Appendix. 1.6.2, the dipole moment operator does not have matrix elements on the
individual orbitals such that 〈g|d̂|g〉= 0 and 〈e|d̂|e〉= 0 We then can write the basis decomposition
of the dipole moment operator as

d̂ = |g〉dge 〈e|+ |e〉d∗ge 〈g| where dge = 〈g|d̂|e〉 . (1.31)

Finally we can now write the total Hamiltonian in terms of ladder operators as:

H = h̄ωeσ
†
σ + h̄ωg(1−σ

†
σ)+

[
σdeg ·E(t)+σ

†dge ·E(t)
]

(1.32)

As we are free to substract a constant energy from the system, we will substract the term h̄ωgI2
and denote the energy diference ωe−ωg = ω0. Moreover, in some cases (see Appendix. 1.6.2) the
transition dipole moment element can be real: we will therefore, for simplicity, set deg = d∗eg = d.
We can now write the final form of the free Hamiltonian plus the interaction with the field as

H = h̄ω0σ
†
σ −d ·E(t)

[
σ +σ

†] (1.33)

Next we will introduce another crucial approximation. To this end first we consider the case of
a classically driven TLS (as we mentioned before as a semiclassical picture). For an atom in the
origin a classical drive at frequency ω` is

E(t) = E` cos(ωLt)ε̂ =
E`

2
(e−iω`t + eiω`t)ε̂. (1.34)

The semiclassical interaction then can be expressed as a sum of four terms:

Hint = h̄
(d · ε)E`

2h̄

(
σeiω`t +σ

†e−iω`t +σe−iω`t +σ
†eiω`t

)
. (1.35)

First, we will denote the frequency (d · ε)E`/2h̄ as the Rabi frequency. Most importantly, we
will perform a transformation into the Heisenberg picture (with the free Hamiltonian as shown in
Appendix. 1.6.3):

HHP
int = h̄

(d · ε)E`

2h̄

(
σei(ω`−ω0)t +σ

†e−i(ω`−ω0)t +σe−i(ω`+ω0)t +σ
†ei(ω`+ω0)t

)
. (1.36)

Notice that some terms are very quickly oscillating in time which means that their effect
averages to zero over any small interval much larger than 1/ω0. This allows us to make the
following statement:

Important 1.4.1 — Rotating wave approximation (RWA). One can neglect the quickly os-
cillating terms in the dipole Hamiltonian and only keep terms showing detunings (frequency
differences). The interaction Hamiltonian in the RWA then becomes

Hint = h̄Ω`

(
σeiω`t +σ

†e−iω`t
)
. where Ω` =

(d · ε)E`

2h̄
. (1.37)

The same arguments apply to the fully quantum light-matter Hamiltonian. We can directly
write it as

Hint = h̄ω0σ
†
σ +∑

k
h̄ωka†

kak +∑
k

h̄gk

(
akσ

† +σa†
k

)
(1.38)

where the coupling is

gk =

√
h̄ωk

2ε0V
d · ε̂k

h̄
=

Ekd · ε̂k

h̄
. (1.39)
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Here the rotating wave approximation has a more direct interpretation. Terms like akσ† should be
read as photon destroyed accompanied by an excitation of the TLS while its hermitian conjugate
σa†

k shows the creation of a photon accompanying the de-excitation of the TLS. These are terms
conserving energy. The terms which are equivalent with the counter-rotating terms discussed above
are a†

kσ† with its hermitian conjugate. These terms are energy-non-conserving (creating photons
while exciting the TLS).

1.5 Spontaneous and stimulated emission, stimulated absorption
Let us now analyze the fundamental processes through which a TLS inside the big quantization
box can make transitions between the ground and excited states. First, let us assume an atom in the
excited state while the whole box is in the vacuum state except for a given specific mode which is
already occupied by a photon (with a given direction and polarization specified by a k0), i.e. we
start with the state |e〉⊗ |0...1k0 ...0〉. The interaction Hamiltonian will then produce a sum of two
states

H |e〉⊗ |0...1k0 ...0〉= h̄gk0

√
2 |e〉⊗ |0...2k0 ...0〉+ ∑

k 6=k0

h̄gk |e〉⊗ |0...1k0 ....1k..0〉 . (1.40)

The first one is a stimulated emission process where the first photon stimulates the emission of a
second photon in exactly the same direction and with the same polarization as the first one. The
second term is a spontaneous emission event where a photon is emitted in a random direction
with any polarization. which means that the atom gets de-excited while a photon is emitted into a
random direction with any polarization.
Let us now start with an initially ground state TLS and a given specific one photon state, i.e. in the
state |g〉⊗ |0...1k0 ...0〉. The action of the Hamiltonian is then:

H |g〉⊗ |0...1k0 ...0〉= h̄gk0 |e〉⊗ |0...0...0〉 . (1.41)

The only possible process now is a stimulated absorption of the laser photon and subsequent
excitation of the atom.
Notice that there are factors multiplying the transition probabilities for the stimulated processes, i.e.
if we start with an arbitrary Fock state |0...nk0 ...0〉 the action of creation and annihilation operators
will lead to an extra√nk0 or

√
nk0 +1 factor. More generally, let us assume that the filled mode is

in a coherent state αk0 which will see that both the stimulated absorption and emission will have
collectively enhanced rates gk0αk0
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1.6 Appendix
1.6.1 Appendix A: The quantum harmonic oscillator

The one dimensional quantum harmonic oscillator is described by the following Hamiltonian

H =
1
2

h̄ω(P̂2 + Q̂2), (1.42)

where ω is the oscillation frequency while the two canonically conjugated operators fulfill the
following commutation relation [Q̂, P̂] = ih̄. For the electromagnetic field the dimensionless Q̂, P̂
operators have the meaning of quadratures associated with the electric and magnetic fields. For
a finite mass system, they are dimensionless position and momentum operators obtained via the
following transformations from the real momentum and position:

p̂ = P̂
√

mh̄ω = pzpmP̂ and x̂ = Q̂

√
h̄

mω
= xzpmQ̂ (1.43)

From here one can go further to define (non-hermitian) creation and annihilation operators:

a =
1√
2
(Q̂+ iP̂) and a† =

1√
2
(Q̂− iP̂), (1.44)

where [a,a†] = 1 and the Hamiltonian becomes H = h̄ω(a†a+ 1
2). Of course the inverse transfor-

mations are

Q̂ =
1√
2
(a+a†) and P̂ =

i√
2
(a†−a) (1.45)

Number (Fock) basis. Displacement operator. Coherent states.
The ground state is defined as the empty state |0〉 such that a |0〉 = 0. Fock (number states) are
created by the continuous application of the creation operator onto the vacuum:

|n〉=
√

1
n!

a†n |0〉 , a |n〉=
√

n |n−1〉 and a† |n〉=
√

n+1 |n+1〉 . (1.46)

A special category of states, coherent states, are obtained by displacing the vacuum |α〉=Dα |0〉
via the following operator

Dα = eαa†−α∗a = e−|α|
2
eαa†

e−α∗a. (1.47)

We have applied above the Baker-Hausdorff-Campbell formula

eA+B = eAeBe−[A,B]/2 when [A, [A,B]] = 0 and [B, [A,B]] = 0. (1.48)

One can then generally express the coherent state as a sum over the number states with Poissonian
coefficients

|α〉= e−|α|
2

∞

∑
n=0

αn
√

n!
|n〉. (1.49)

Notice a couple of useful properties such as

a|α〉= α|α〉, 〈α|a† = α
∗〈α|, D†

αaDα = a+α, D†
αa†Dα = a† +α

∗. (1.50)

Assuming that one wants to characterize the signal-to-noise ratio in a coherent state, the following
two expressions come in handy:

n̄ = 〈α|a†a|α〉= |α|2 and ∆n =

√
n̄2− n̄2 =

√
n̄ = |α|. (1.51)

For large amplitudes the average is much larger then the variance which means the signal-to-noise
ratio n̄/∆n = 1/

√
n̄ = 1/|α| is extremely high. For quadratures notice that

Q̄ =
1√
2
(α +α

∗), Q̄ =
i√
2
(α∗−α), ∆Q̂ = ∆P̂ = 1/2. (1.52)
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Thermal states
A system in a pure state can be represented by a single ket and satisfies the Schrödinger equation
ih̄∂t |ψ〉 = H |ψ〉. One can as well rewrite the equation for the following quantity, the density
operator or density matrix ρ = |ψ〉〈ψ| with the following von Neumann equation of motion:
ih̄∂tρ = [H,ρ]. More generally however, the system is in a mixed state where the density matrix is
expressed as ρ = ∑ψ pψ |ψ〉〈ψ| which also satisfy the von-Neumann equation of motion.
An example of a mixed state is the thermal state, where the density operator can be written as

ρth =
e−H/kBT

Tr[e−H/kBT ]
=

1
1− e−h̄ω/kBT e−h̄ωa†a/kBT . (1.53)

As a reminder, the trace is obtained by summing all the diagonal terms of the density matrix in the
Fock basis Tr[O] = ∑

∞
n=0 〈n|O|n〉. Let’s compute the average occupancy in such a state (we will

make the notation β = h̄ω/(kBT ):

n̄ = Tr(ρtha†a) = (1− e−β )Tr[e−βa†aa†a] = (1− e−β )
∞

∑
n=0

ne−βn. (1.54)

We have used the property that the exponential of the Hamiltonian is diagonal in the number basis.
In the above equation we can immediately see that the term (1− e−β )∑

∞
n=0 ne−βn plays the role

of a probability distribution p(n). We will evaluate it after finding the expression for the average.
Notice that the sum above is the derivative of the following sum.

∞

∑
n=0

ne−βn =− d
dβ

∞

∑
n=0

e−βn =− d
dβ

1
1− e−β

=
e−β

(1− e−β )2 . (1.55)

This readily gives us the expected result of a Planck distribution average number and distribution

n̄ =
1

eβ −1
=

1
eh̄ω/(kBT )−1

and pn =
e−βn

1− e−β
=

1
1− n̄

(
n̄

1+ n̄

)n

(1.56)

We can also compute (exercise) the variance in a thermal state

[∆n]th =
√

n̄+ n̄2. (1.57)

and remark that for large n̄ this is at the level [∆n]th ' n̄ which is much larger than the variance of
the coherent state of [∆n]coh =

√
n̄. Let us also remark h̄/kBT is around 10−11s at T = 1K, which

means that the exponent can very well be approximated (β � 1→ eβ ' 1+β and the average
number is given by

n̄' h̄ω

kBT
. (1.58)

This is valid especially for small frequencies such as vibrations of membranes/mirrors, of ions in a
trap, or acoustic phonons in a bulk solid. For high frequencies (optical frequencies of a mode in an
optical cavity, molecular vibrations etc) we have β � 1 and the average occupancy is estimated by

n̄ = e−h̄ω/(kBT ). (1.59)

Notice that we can also re-express the density operator as

ρth =
1

1+ n̄

∞

∑
n=0

(
n̄

1+ n̄

)n

|n〉〈n|. (1.60)
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1.6.2 Appendix B: The hydrogen atom. Dipole allowed transitions.
In general operator notations the problem of an electron (momentum and position operators p̂ and
r̂)orbiting around a (fixed - in a first, simplifying approximation) nucleus can be solved by solving
the following Schrödinger equation

ih̄∂t |ψ〉= H |ψ〉 , with H =
p̂2

2µ
+V (r̂). (1.61)

Generally one separates time dependence from spatial dependence and then solves a time indepen-
dent Schrödinger equation H |ψ〉= E |ψ〉 to get the solutions for the eigenvectors |nlm〉 indexed by
(n, l,m). The indexes satisfy the following inequalities 1≤ n < ∞,0≤ `≤ n−1 and −`≤ m≤ `).

Denoting the eigenvalues of the Hamiltonian by Enlm the diagonal representation is Hamiltonian
is then

H = ∑Enlm|nlm〉〈nlm|. (1.62)

The standard procedure is to turn the Schrödinger equation into a second order differential equation.
This is done by writing it in the position representation where the position operator is replaced
by the position parameter while the momentum is replaced by −ih̄∇. One then has to solve the
following differential equation:

ih̄
∂

∂ t
ψ(r, t) =

[
− h̄2

2µ
∇

2 +V (r, t)
]

ψ(r, t). (1.63)

Notice that the potential is assumed spherically symetric as is the case for the Coulomb interaction.
Without further details we now state the well known results obtained for the Hydrogen atom
(reducing the nucleus to a single proton). The eigenvalue and eigenvectors are

En =−

[
µe4

32π2ε2
0 h̄2

]
1
n2 and ψnlml (r,θ ,φ) = 〈r|nlm〉= Rnl(r)Yl,m(θ ,φ). (1.64)

The energies only depend on the principal quantum number n (which will not be the case anylonger
when one considers spin-orbit interactions, relativistic corrections etc). The radial part of the
wavefunction for the Hydrogen atom (in reduced coordinate ρ = 2r/(na) is

Rnl(r) =−
(

2
na

)3 (n− l−1)!
2n[(n+ l)!]3

ρ
lL2l+1

n+l (ρ)e
−ρ/2. (1.65)

where the Bohr radius is a = 4πε0h̄2/(µe2) (µis the reduced mass roughly equal to the electron
mass) and is around 0.529×10−10m.

The average orbital radius can be computed to give the result:

r̄nl = n2a0

[
1+

1
2

(
1− l(l +1)

n2

)]
(1.66)

An atom is normally found in the electronic ground state in the absence of light-induced excitations.
For the Hydrogen atom the ground state is the 1s state. We will denote it by the ket |g〉. The states
closest in energy are lying at energy differences close to h̄×1015 Hz. This means that for resonant
excitation we will need electromagnetic modes at optical frequencies around 1015 Hz. Now the
atom is embedded in the vacuum which might be thermal. The vacuum is made by a collection of
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harmonic oscillators in thermal states and therefore with average occupancy n̄ = e−h̄ω/kBT . Let’s
remember the constants h̄ = 1.0545× 10−34m2kg/s and kB = 1.3806× 10−23m2kgs−2K−1. We
can compute a useful quantity in kB/h̄ = 1.309× 1011K−1s−1. Now we see that even at room
temperature with T = 300K the value of n̄ is pretty small as (1015Hz/(kBT/h̄) ' 10÷ 100. In
conclusion, thermal effects at such high frequencies do not play any role.
Now we assume that we can somehow couple to state 2p in either of the degenerate sublevels
indexed by m =−1,0,1. Let’s select a single possible excited state and denote it by the ket |e〉. We
can evaluate now the matrix elements of the dipole moment operator d̂ =−er̂ as follows

〈g|r̂|e〉=
∫

dr
∫

dr′〈g|r〉〈r|r̂|r〉〈r|e〉=
∫

drψ
∗
g (r)rψe(r). (1.67)

Explicitly writing the integral in spherical coordinates for an unspecified m we get any of the
sublevels of 2p∫ ∫ ∫

drdθdφ(r2 sinθ)

[
2

1
a3/2 e−r/2a 1√

4π

]
(xx̂+ yŷ+ zẑ)

[
1

8
√

3
1

a3/2

2r
2a

e−r/2aY1,m(θ ,φ)

]
=

(1.68)
1√
4π

1
4
√

3
1
a4

∫
dr(r4)e−r/a

∫ ∫
dθdφ(sinθ)(sinθ cosφ x̂+ sinθ sinφ ŷ+ cosθ ẑ)Y1,m(θ ,φ).

The m=0 case: For m = 0 the last integral over angles becomes√
3

4π

∫ ∫
dθdφ(sin2

θ cosφ x̂+ sin2
θ sinφ ŷ+ sinθ cosθ ẑ)cosθ . (1.69)

We immediately see that the φ integration kills the contributions on x and y. The result is

2π

√
3

4π

∫
dθ sinθ cosθ

2ẑ = 2π

√
3

4π

2
3
=

√
4π

3
. (1.70)

Putting it together

〈1s|r̂|2pz〉=
1

12a4 .
∫

dr(r4)e−r/aẑ =
1

12a4 .(24a5)ẑ = 2aẑ. (1.71)

The m= - 1 case: For m =−1 the last integral over angles becomes√
3

8π

∫ ∫
dθdφ(sin2

θ cosφ x̂+ sin2
θ sinφ ŷ+ sinθ cosθ ẑ)sinθe−iφ . (1.72)

We immediately see that the φ integration kills the contribution on z. We then use
∫

dφ cos2 φ =∫
dφ sin2

φ = π and
∫

dφ sinφ cosφ = 0. The integral above becomes\pi

π

√
3

8π

[∫
dθ sin3

θ(x̂− iŷ)
]
=

√
3

4π

4π

3
(x̂− iŷ) =

√
4π

3
(x̂− iŷ). (1.73)

n l m Orbital Rnl(ρ) Yl,m(θ ,φ)

1 0 0 1s 2 1
a3/2 e−ρ/2 1√

4π

2 0 0 2s 1
2
√

2
1

a3/2 (2−ρ)e−ρ/2 1√
4π

1 -1 2p 1
8
√

3
1

a3/2 ρe−ρ/2
√

3
8π

sinθe−iφ

1 0 2p 1
8
√

3
1

a3/2 ρe−ρ/2
√

3
4π

cosθ

1 1 2p 1
8
√

3
1

a3/2 ρe−ρ/2 −
√

3
8π

sinθeiφ

Table 1.1: Energy levels and orbitals for the Hydrogen atom.
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Putting it together

〈1s|r̂|2p−1〉= 2a(x̂− iŷ). (1.74)

The m= +1 case:
For m = 1, similarly we get

〈1s|r̂|2p+1〉= 2a(x̂+ iŷ). (1.75)

1.6.3 Appendix C: Changing of picture (Interaction picture).
Let us see how a change of picture is performed. Suppose we start with the Schrödinger equation:

ih̄∂t |ψ〉= H |ψ〉 , with H = h̄ω0σ
†
σ + h̄Ω`

(
σeiω`t +σ

†e−iω`t
)

(1.76)

and aim at removing the time dependence in the driving part of the Hamiltonian. To this end we
transform into a different picture by a time dependent operator unitary U(t) such that |ψ〉IP =
U(t) |ψ〉. Doing the proper transformations we end up with

ih̄∂t |ψ〉IP =
[
U(t)HU†(t)− ih̄U(t)∂tU†(t)

]
|ψ〉IP . (1.77)

So we simply rewrote the Schrödinger equation in a different picture where the Hamiltonian is
properly modified as indicated above. Let us try our luck with the following choice for U(t) =
e−iω`tσ†σ . The last term leads to a modification of the free Hamiltonian from h̄ω0σ†σ to h̄(ω0−
ω`)σ

†σ . The transformation of operators is a bit more complicated:

σIP =U(t)σU†(t) (1.78)

=

[
1+
−iω`t

1!
σ

†
σ +

(−iω`t)2

2!
σ

†
σ + ...

]
σ

[
1+

iω`t
1!

σ
†
σ +

(iω`t)2

2!
σ

†
σ + ...

]
=

(1.79)

= σ

[
1+

iω`t
1!

σ
†
σ +

(iω`t)2

2!
σ

†
σ + ...

]
= σ

[
1+

iω`t
1!

+
(iω`t)2

2!
+ ...

]
= σe−iω`t

(1.80)

We have used the properties σσ = 0 and σσ†σ =σ . Check them out! In the end, the transformation
to the IP removes the fast time dependence in the driving Hamiltonian and one can write the
following Schrödinger equation: the Schrödinger equation for the transformed |ψ〉IP =U(t) |ψ〉
(with U(t) = e−iH0t/h̄)

ih̄∂t |ψ〉IP = HIP |ψ〉IP with HIP = h̄(ω0−ω`)σ
†
σ + h̄Ω`

(
σ +σ

†) (1.81)



2. The driven, decaying two level system

In the last chapter we discussed the quantization of light inside a box containing an infinite number
of modes (which we treated as plane waves) with wave vectors pointing in any direction. We then
added a TLS and derived the light-matter interaction Hamiltonian. The dynamics of the system then
is unitary as excitations can flow from the field to the TLS and back. However, in reality we would
like to take the limit of an infinite box where a photon emitted by the TLS will practically never
return to it. To this end we perform an elimination of the box modes and derive the dynamics only
in the 2-dimensional Hilbert space of the TLS. All other information about the electromagnetic
modes is then uninteresting and the TLS dynamics becomes irreversible.

2.1 The quantum master equation for spontaneous emission

We start with an initial state density operator in the full Hilbert space of the TLS plus the infinitely
many electromagnetic modes. We assume that the initial state at some time t is separable and write

ρ(t) = ρA(t)⊗ρF(t). (2.1)

This could be the case for example by starting with the atom in state |e〉 and field in vacuum state at
zero temperature such that ρF(t) = |0〉〈0| (the thermal bath case will be discussed later on). Also,
the case where a coherent driving is present can be reduced to the vacuum case plus a classical term
according to the Mollow transformation introduced in the previous chapter. More on this detail will
be presented later when we describe the Bloch equations.
At some time t the total density operator fulfills the following equation of motion

dρ(t)
dt

=− i
h̄
[H,ρ(t)]. (2.2)

where the Hamiltonian is the one derived in the previous chapter

H = h̄ω0σ
†
σ +∑

k
h̄ωka†

kak +∑
k

h̄gk

(
akσ

† +σa†
k

)
, (2.3)
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which one can break down into a sum of free evolution Hamiltonians HA and HF and the interaction
part. Remember the scaling of the coupling coefficients of each mode k with the two level system
incorporating the zero point electric field amplitude, the dipole transition element and the angle
with respect to the polarization of the respective electromagnetic mode:

gk =

√
h̄ωk

2ε0V
d · ε̂k

h̄
=

Ekd · ε̂k

h̄
. (2.4)

Let us now remove the free evolution part by moving into an interaction picture with a unitary
operator U(t) = e−i(HA+HF )t/h̄ (see Appendix 1.6.3) which transforms ρI =U†ρU and

HI = ∑
k

h̄gk

[
akσ

†ei(ω0−ωk)t +σa†
ke−i(ω0−ωk)t

]
= h̄F̂†(t)σ + h̄F̂(t)σ†. (2.5)

Notice that we have compactly written time dependent operators acting only on the photon states
and with the following properties

F̂(t) = ∑
k

gkakei(ω0−ωk)t , F̂(t) |0〉= 0 and 〈0| F̂†(t) = 0. (2.6)

We can now write the von Neumann equation in the IP which looks exactly as before except that
the Hamiltonian is the one above written in the IP. For simplicity of notation we will not write the
index I but still remember that until the end of the derivation we stay in the IP. Let us then proceed
by formally integrating the equation of motion for the density operator in a small interval ∆t (we
will clarify towards the end of the derivation how small the interval actually is - compared to other
timescales involved in the problem):

dρ(t)
dt

=− i
h̄
[HI(t),ρ(t)] → ρ(t +∆t) = ρ(t)− i

h̄

∫ t+∆t

t
dt1[HI(t1),ρ(t1)], (2.7)

For any moment in time such that t < t1 < t + ∆t we can again write the formal solution as
ρ(t1) = ρ(t)−

∫ t1
t dt2[HI(t2),ρ(t2)] and plug it back in the above expression to get

ρ(t +∆t) = ρ(t)− i
h̄

∫ t+∆t

t
dt1[HI(t1),ρ(t)]−

1
h̄2

∫ t+∆t

t
dt1
∫ t1

t
t2[HI(t1), [HI(t2),ρ(t2)].

(2.8)

This is still exact. We can now continue dividing the interval even further in the following ordered
sequence t < ...t3 < t2 < t1 < t +∆t and obtain more and more terms in the expansion above.
However, assuming that the field-TLS couplings are small compared to the energies of the TLS or
the field modes, a truncation at the second order level suffices as a perturbative approach. This is
equivalent to replacing ρ(t2) with ρ(t) in the above formula and obtain the following equation

ρ(t +∆t) = ρ(t)− i
h̄

∫ t+∆t

t
dt1

i
h̄
[HI(t1),ρ(t)]−

1
h̄2

∫ t+∆t

t
dt1
∫ t1

t
dt2[HI(t1), [HI(t2),ρ(t)].

(2.9)

Since we are only interested in the state of the TLS and not of the bath we would like to re-write
the above equation into an effective equation for ρA = TrF [ρ]. This means we will have to perform
traces like TrF [HI(t1),ρA(t)⊗ρF(t)] and TrF [HI(t1), [HI(t2),ρA(t)⊗ρF(t)].

First order traces
Remember that ρF(t) = |0〉〈0| which means that in the following trace TrF [HI(t1),ρA(t)⊗ρF(t)]
only the vacuum state survives. This is easily seen by explicitly writing the trace: TrF [HI(t1),ρA(t)⊗
ρF(t)] = ∑n 〈n| [HI(t1),ρA(t)⊗ρF(t)] |n〉. Using 〈n|0〉= δn,0 we end up with

TrF [HI(t1),ρA(t)⊗ρF(t)] = 〈0|HI(t1)|0〉ρA(t)−ρA(t)〈0|HI(t1)|0〉= 0. (2.10)
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Second order traces
Let’s explicitly separate the second order terms coming from the double commutator [HI(t1), [HI(t2),ρ(t)]
into 4 distinct parts:

T1 = TrF [HI(t1)HI(t2)ρA(t)⊗ρF(t)] , (2.11)

T2 =−TrF [HI(t1)ρA(t)⊗ρF(t)HI(t2)] , (2.12)

T3 =−TrF [HI(t2)ρA(t)⊗ρF(t)HI(t1)] , (2.13)

T4 = TrF [ρA(t)⊗ρF(t)HI(t2)HI(t1)] . (2.14)

Before evaluating the terms above we can observe a few simplifying rules. With the results
F(t) |0〉 = 0 and 〈0|F†(t) = 0 it means that we can reduce some terms like HIρF = h̄σF† and
ρFHI = h̄σF . Moreover the field operators do not act on ρA so we can commute them. Let’s then
work out the first term T1 according to these rules

T1 = h̄2TrF [
(
F†(t1)σ +F(t1)σ†)

σF†(t2)ρA(t)⊗ρF(t)] (2.15)

= h̄2
σ

†
σρATrF

[
F(t1)F†(t2)ρF(t)

]
. (2.16)

Similarly we can find:

T2 =−h̄2
σρAσ

†TrF [F̂(t1)F̂†(t2)ρF(t)], (2.17a)

T3 =−h̄2
σρAσ

†TrF [F̂(t2)F̂†(t1)ρF(t)], (2.17b)

T4 = h̄2
ρAσ

†
σTrF [F̂(t2)F̂†(t1)ρF(t)]. (2.17c)

We see that in the end we are left with the task of evaluating bath correlations at different times and
then integrate over them. For example, the term coming from T1 will be

B =
∫ t+∆t

t
dt1
∫ t1

t
dt2TrF [F̂(t1)F̂†(t2)ρF(t)]. (2.18)

Also notice that inversing the time ordering has the effect of a complex conjugate: TrF [F̂(t2)F̂†(t1)ρF(t)]=
TrF [F̂(t1)F̂†(t2)ρF(t)]∗. Adding everything up we can find a compact expression connecting the
reduced density operator at two different times:

ρA(t +∆t)−ρA(t) = (B+B∗)σρA(t)σ†−σ
†
σρA(t)B−ρA(t)σ†

σB∗. (2.19)

A closer inspection of the terms inside the B coefficient show that they are not too hard to evaluate
and understand. Writing in detail

TrF
[
F̂(t1)F̂†(t2)ρF(t)

]
= 〈0|∑

k
∑
k′

gkg∗k′aka†
k′e

i(ω0−ωk)t1e−i(ω0−ω ′k)t2 |0〉 (2.20)

= ∑
k
|gk|2ei(ω0−ωk)(t1−t2). (2.21)

We have used the fact that aka†
k′ |0〉= δkk′ |0〉 to reduce to a single sum. Putting it all together we

again see that the task is to evaluate the following quantity

B = ∑
k
|gk|2

∫ t+∆t

t
dt1
∫ t1

t
dt2ei(ω0−ωk)(t1−t2). (2.22)

This we can do in two steps: first summing over all k-vectors and polarizations and then performing
the time integral.
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Summing over k-vectors and polarizations
To evaluate the sum we will write it as an integral. The general rule for turning a sum into an
integral is

∑
k
|gk|2...= ∑

λ

∫
dk|gk|2D(k)..., (2.23)

where D(k) is a function also called density of states, which should verify that we count everything
correctly. It is obvious that for the sum to integral transformation to be valid it should satisfy the
following condition within a given volume in k-space

∑
k

1 = ∑
λ

∫
dkD(k), (2.24)

Let us notice that as we quantized the field in a box of dimensions L×L×L the allowed k-vector
components on a given axis are separated by 2π/L. Therefore we will only find one k-vector with a
given polarization within a volume (2π/L)(2π/L)(2π/L)×8∗π3/V . Writing the above condition
then results in 2 = D(k)8∗π3/V which readily gives

D(k) =
V

4π3 . (2.25)

The term stemming from the coupling is expressed as

|gk|2 =
ωk

2h̄ε0V
(d · ε̂k)

2. (2.26)

For any given direction defined the unit vector k̂, the three unit vectors ε̂
(1)
k , ε̂

(2)
k and k̂ are orthonor-

mal and thus constitute a basis. Therefore we can write d = (d · ε̂(1)
k )ε̂

(1)
k +(d · ε̂(2)

k )ε̂
(2)
k +(d · k̂)k̂

and consequently the amplitude squared |d|2 = (d · ε̂(1)
k )2+(d · ε̂(2)

k )2+(d · k̂)2. We can then express

∑
λ

|gk|2 =
ωk

2h̄ε0V

[
|d|2− (d · k̂)2] . (2.27)

Assuming the d points out in the z direction, we effectively have |d|2− (d · k̂)2 = |d|2(1− cos2 θ).
Now we can write the integral

∑
λ

∫
dk|gk|2D(k)...=

V
4π3

∫ 2π

0
dφ

∫
π

0
dθ sinθ(1− cos2

θ)
∫

∞

0
dkk2 ωk|d|2

2h̄ε0V
... (2.28)

=
|d|2

8π3h̄ε0

∫ 2π

0
dφ

∫
π

0
dθ sinθ(1− cos2

θ)
∫

∞

0
dkk2

ωk..., (2.29)

and already perform the angle integral
∫ 2π

0 dφ
∫

π

0 dθ sinθ(1− cos2 θ) = 2π(4/3) = 8π/3 leading
to

∑
λ

∫
dk|gk|2D(k)...=

|d|2

8π3h̄ε0

8π

3

∫
dkk2

ωk...=
|d|2

3π2c3h̄ε0

∫
dωkω

3
k .... (2.30)

Performing the time integral
We finally get to the time dependant part as we can state

B =
|d|2

3π2c3h̄ε0

∞∫
0

dωk

t+∆t∫
t

dt1

t1∫
t

t2e−i(ωk−ω0)(t1−t2)ω3
k . (2.31)
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Let us rewrite it for clarity with the transformation ωk−ω0 = x (and noticing that as ω0 is a very
high frequency we can extend the integration over to −∞)

B =
|d|2

3π2c3h̄ε0

∞∫
−∞

dx
∆t∫

0

dt1e−ixt1

t1∫
0

t2eixt2(x+ω0)
3 =

|d|2

3π2c3h̄ε0
I (∆t), (2.32)

We also removed the lower bound t to zero as the initial time is irrelevant in the integral. Notice
that the exponential oscillates and averages the polynomial to zero unless x is around the origin.
proceed with the first integral, where caution has to be taken as a singularity appears at x = 0. We
will deal with this by the following trick:

t1∫
0

t2eixt2(x+ω0)
3 = lim

ε→0

∫ t1

0
t2eixt2−εt2(x+ω0)

3 = lim
ε→0

(x+ω0)
3

ix− ε

(
eixt1−εt1−1

)
= (2.33)

Plugging it back into the integral

I (∆t) =
∞∫
−∞

dx
∆t∫

0

dt1 lim
ε→0

(x+ω0)
3

ix− ε

(
e−εt1− e−ixt1

)
. (2.34)

If ∆t is very large (can be taken to infinity), the last contribution is averaged to zero (the one from
e−ixt1). The first contribution can be rewritten:

lim
ε→0

−(ix+ ε)(x+ω0)
3

x2 + ε2 = lim
ε→0

−(ix+ ε)(x+ω0)
3

x2 + ε2 = (2.35)

=−lim
ε→0

ε

x2 + ε2 (x+ω0)
3− ilim

ε→0

x
x2 + ε2 (x+ω0)

3. (2.36)

The limits make sense as distributions. The real part becomes a delta function

lim
ε→0

ε

x2 + ε2 = πδ (x), (2.37)

while the imaginary part becomes the principal value distribution

lim
ε→∞

x
x2 + ε2 = P(

1
x

), (2.38)

defined (in the sense of a distribution thus acting on test functions) as∫
∞

−∞

dxP(
1
x

)f(x) = lim
ε→0

[
∫ −ε

−∞

dx+
∫

∞

ε

dx]
f (x)

x
. (2.39)

The principal part (as one can for example check numerically for safety) makes very little contribu-
tion. Keeping the delta function only one obtains:

I (∆t) = πω
3
0 ∆t. (2.40)

Finally we can put everything together and find that the coefficient B in the density operator
evolution is proportional to the small time increment

B =

[
|d|2ω3

0
3πc3h̄ε0

]
∆t. (2.41)
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Final result
Finally, as the terms in the right side of the master equation are real and proportional to ∆t, we
can write we can express the master equation as ρA(t +∆t)−ρA(t) = ∂tρA(t)∆t. Moreover, we
will now transform back from the interaction picture and write a very simple form for the master
equation (written below in the Schrödinger picture)

Important 2.1.1 — The master equation for spontaneous emission.

d
dt

ρA =− i
h̄
[HA,ρA]+ γ

{
2σρAσ

†−ρAσ
†
σ −σ

†
σρA

}
. (2.42)

A few words on this. Without the box, the atom simply evolves in a coherent, deterministic way
governed by the free Hamiltonian HA. The interaction with the box brings along an infinity of terms
describing the coupling of the TLS with any of the electromagnetic modes supported by the box.
The trace over the bath modes leads to an irreversible dynamics contained in the super-operator
Linbdlad term that describes the non-trivial action of the collapse operator σ at rate γ on the
density operator. The action is non-trivial as it cannot be represented as a matrix multiplication. In
simplified notation we can also write

d
dt

ρA =− i
h̄
[HA,ρA]+ γD [σ ,ρA] with D [σ ,ρA] = 2σρAσ

†−
{

ρA,σ
†
σ
}
+
. (2.43)

where the brackets indexed by a plus sign show the anticommutator.
The quantity in the brackets is the spontaneous emission rate of a two-level system into the
electromagnetic vacuum modes:

γ =
|d|2ω3

0
3πc3h̄ε0

. (2.44)

Let’s check out the value of the decay rate for the Hydrogen 1s to 2p transition. The constants are:
h̄ = 1.055× 10−34m2s−1kg, c = 3× 108m/s, ε0 = 8.85× 10−12A2s4kg−1m−3. The 1s energy is
−13.6eV while the 2p energy is roughly −13.6/4 eV. We can equate h̄ω0 = 3/4×13.6×1.602×
10−19J to obtain ω0 = 1.139×1015 Hz. Remembering from the first lecture that for the z-polarized
transition, the dipole matrix element is 2a0e where the Bohr radius is a0 = 0.53×10−10 m, we can
compute γ = 1.79×106 Hz, so on the order of MHz.

Master equation in a thermal bath
The calculation performed on an initial vacuum state of the bath can be easily extended to a
thermally occupied bath at temperature T and with an average photon number occupancy n̄(ω0).
For such a bath we can write the initial density operator

ρF(t) =
e−HF/(kBT )

TrF [e−HF/(kBT )]
= ∏

k

e−nkh̄ωk/(kBT )

1− e−h̄ωk/(kBT )
|nk〉〈nk|. (2.45)

Without going into the details of the derivation notice that the only step where a difference occurs
is the calculation of the correlations of the bath. These correlations will give rise to a modified
emission rate and an extra term showing the possibility that the bath can induce absorption. In short
one obtains:

d
dt

ρA =− i
h̄
[HA,ρA]+ γ (n̄(ω0)+1)D [σ ,ρA]+ γ n̄(ω0)D [σ†,ρA]. (2.46)

The Linblad term with collapse operator σ contains the expected spontaneous emission term to
which a thermally activated stimulated emission is added. The second Linblad term has a collapse
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operator σ† showing inverse decay from the ground to the excited state, i.e. stimulated absorption
from the thermal bath. As we mentioned before, typically we will deal with optical transition
where even at room temperature n̄(ω0)� 1 such that we will not make too much use of the above
expression.

Alternative derivation of the decay rate
One can use a variety of methods to derive the spontaneous emission rate. For example, some
textbook are using the so-called Wigner-Weisskopf derivation. We can sketch another simple
intuitive derivation by making use of the Fermi’s golden rule for the computation of the transition
probability between states |e,0〉 and |g,1k〉 for any possible direction and polarization of the emitted
photon. We use

we→g =
2π

h̄2 ∑
k
|〈e,0|Hint |g,1k〉|2δ (ωk−ω0) = (2.47)

= 2π ∑
k

∑
k′

∑
k′
〈e,0|Hint |g,1k〉〈g,1k|Hint |e,0〉δ (ωk−ω0) =

= 2π ∑
k
〈e,0|gk′ak′σ

†|g,1k〉〈g,1k|gk′′a
†
k′′σ |e,0〉δ (ωk−ω0) =

= 2π ∑
k
|gk|2δ (ωk−ω0) =

2π|d|2

3π2c3h̄ε0

∫
dωkω

3
k δ (ωk−ω0) =

=
2|d|2ω3

0
3πc3h̄ε0

= γ.

Notice that the rate obtained at which the system emits spontaneously is exactly twice the rate we
computed before via the master equation derivation.

2.2 Bloch equations (in the Schrödinger picture)

We now know how the effect of the interaction with the vacuum on a TLS can be mathematically
described. The resulting dynamics in the reduced Hilbert space of dimension 2 is irreversible and
characterized by the action of a super-operator onto the density operator. Let us now add a coherent
drive and check out the resulting driven-dissipative dynamics. This can be done as described in the
first chapter by assuming one of the field modes to be in a coherent state characterized by a given
direction k0 including a given polarization εk0 . After performing the Mollow transformation one
ends up with the effect of the drive as a semiclassical Hamiltonian (H`) added to the free evolution
Hamiltonian (H0):

H = h̄ω0σ
†
σ + h̄Ω

(
σeiω`t +σ

†e−iω`t
)
. (2.48)

The Rabi frequency depends on the amplitude of the coherent states as well as on the transition
dipole moment and its overlap with the light mode polarization vector:

Ω =
1
h̄
Ek0αk0d · ε̂k0 (2.49)

We now can follow the evolution of the system in the Schrödinger picture by solving the complete
equation of motion for the density operator (we drop in the following the A subscript but remember
we are always working in the 2-dimensional Hilbert space of the TLS):

d
dt

ρ =− i
h̄
[H,ρ]+ γ

{
2σρσ

†−ρσ
†
σ −σ

†
σρ
}
. (2.50)
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Derivation starting from the density operator
Notice that in the Hilbert space spanned by the two basis states |g〉 and |e〉 the density operator has
four matrix elements. The elements are computed the usual way as sandwiches between bras and
ket, for example: ρeg = 〈e|ρ |g〉. Let us as an example compute the evolution of ρeg. To this end
we sandwich the master equation above between 〈e| and |g〉:

d
dt

ρeg =−
i
h̄
〈e| [H,ρ] |g〉+ γ

{
2〈e|σρσ

† |g〉−〈e|ρσ
†
σ |g〉−〈e|σ†

σρ |g〉
}
. (2.51)

We now remember the action of operators on the ladder operators on states σ |e〉= |g〉, σ |g〉= 0,
σ† |e〉= 0, σ† |g〉= |e〉 and so on. Let’s break the terms down in 3 parts. Free evolution gives

− i
h̄
〈e| [H0,ρ] |g〉=−iω0 〈e|

(
σ

†
σρ−ρσ

†
σ
)
|g〉=−iω0ρeg. (2.52)

The drive terms leads to the following contribution:

− i
h̄
〈e| [H`,ρ] |g〉=−iΩ〈e|(σeiω`t +σ

†e−iω`t)ρ−ρ(σeiω`t +σ
†e−iω`t) |g〉 (2.53)

=−iΩ〈g|e−iω`tρ |g〉+ iΩ〈e|e−iω`tρ |e〉= iΩ(ρee−ρgg)e−iω`t

Finally, the spontaneous emission gives rise to

γ
{

2〈e|σρσ
† |g〉−〈e|ρσ

†
σ |g〉−〈e|σ†

σρ |g〉
}
=−γρeg. (2.54)

Putting it all together we obtain an equation of motion for the ’coherence’ ρeg showing free evolution
at frequency ω0, driving with strength Ω and frequency ω` and decay at amplitude decay rate γ

d
dt

ρeg =−γρeg− iω0ρeg + iΩ(ρee−ρgg)e−iω`t . (2.55)

Notice that the drive depends on the population difference between excited state ρee and ground
state ρgg. One can continue in deriving the equations for the other elements. Notice that since
the trace of the density operator is conserved then ρee +ρgg = 1. This basically means that the
population can only be in one of the two states of the system. Also notice that ρge = ρ∗eg. In effect
we only have to compute the excited state population evolution equation which we list below:

d
dt

ρee =−2γρee + iΩ(ρegeiω`t −ρgee−iω`t). (2.56)

Derivation on the level of the density matrix
A more direct way to obtain all the equations is to make use of the matrix representation of the
density operator, i.e. the density matrix formalism. We start by representing the states as vectors
and properly writing the density operator as a matrix in this basis:

|g〉 →
[

0
1

]
|e〉 →

[
1
0

]
and ρ =

[
ρee ρeg

ρge ρg

]
. (2.57)

It is the straightforward to write the ladder operators as well as the projectors into the excited and
ground state as matrices as well:

σ =

[
0 0
1 0

]
σ

† =

[
0 1
0 0

]
σ

†
σ =

[
1 0
0 0

]
σσ

† =

[
0 0
0 1

]
, (2.58)
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and check that they perform the required tasks by multiplying them with the state vectors. The free
and driving Hamiltonians are then written as

H0 =

[
h̄ω0 0

0 0

]
, H` =

[
0 h̄Ωe−iω`t

h̄Ωeiω`t 0

]
, (2.59)

from which one can derive the Hamiltonian part of the master equation from matrix multiplications.

− i
h̄
[H,ρ] =

[
iΩ(ρegeiω`t −ρgee−iω`t) −iω0ρeg + iΩe−iω`t(ρee−ρgg))

−iω0ρge−+iΩeiω`t(ρee−ρgg)) −iΩ(ρegeiω`t −ρgee−iω`t)

]
(2.60)

Notice that the Lindblad part gives rise to the following matrix on the rhs of the master equation:

γD [σ ,ρ] =

[
−2γρee −γρeg

−γρge 2γρee

]
(2.61)

Important 2.2.1 — Bloch equations. Putting it all together we get a set of equations describing
the free evolution, effect of driving and spontaneous emission of a single TLS:

∂tρee =−2γρee + iΩ(t)(ρegeiω`t −ρgee−iω`t), (2.62a)

∂tρeg =−γρeg− iω0ρeg + iΩ(t)(ρee−ρgg)e−iω`t . (2.62b)

Remember that the other two matrix elements are derived from ρee +ρgg = 1 and ρge = ρ∗eg.

We can easily remove the time dependence by moving into a rotating frame, procedure which is
equivalent of saying that we write equations only for the slowly varying envelopes ρeg = ρ̃ege−iω`t .
Notice that ∂tρeg = ∂t ρ̃ege−iω`t− iω`ρ̃eg. We end up with rewriting equations of motion in a rotating
frame and with defined detuning: ∆ = ω0−ω`. I’ll drop the tilde since it takes forever to type it in
latex :)

∂tρee =−2γρee + iΩ(t) [ρeg−ρge] , (2.63a)

∂tρeg =−γρeg− i∆ρeg + iΩ(t)(ρgg−ρee) . (2.63b)

2.3 Bloch equations (in the Heisenberg picture)
An equivalent procedure is to solve not for the density operator time evolution but instead to derive
equations of motion for single or more operator averages. For example let us compute the evolution
for 〈σ〉(t) = Tr[σρ(t)]. We notice that ∂t 〈σ〉(t) = ∂tTr[σ(t)ρ(0)] = ∂tTr[σρ(t)] = Tr[σ∂tρ(t)]
which means we can now use the master equation to write

∂t 〈σ(t)〉= Tr
[

σ(− i
h̄
[H,ρ]+ γ

{
2σρAσ

†−ρσ
†
σ −σ

†
σρ
}
)

]
(2.64)

=−iω0 〈σ(t)〉− γ 〈σ(t)〉+ iΩe−iω`t 〈σ†
σ −σσ

†〉 .

As one can observe that 〈σ〉(t) = Tr[|g〉〈e|ρ(t)] = 〈e|ρ(t) |g〉 = ρeg(t) the equation above is no
surprise.

2.4 Time dynamics of the driven-dissipative TLS
We will now analyze the time dynamics imposed by the above equations under different conditions.
We will mainly distinguish between resonant versus off-resonant driving, coherent versus incoherent
evolution, transient versus steady state dynamics and linear versus non-linear regimes.
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Figure 2.1: Response of a TLS under driving and decay.

Rabi oscillations
We now focus on the purely coherent dynamics of a drive system (no dissipation included). We
start with the equations of motion after the removal of the fast optical oscillations such that

∂tρee = iΩ(t) [ρeg−ρge] , (2.65a)

∂tρeg =−i∆ρeg + iΩ(t)(ρgg−ρee) , (2.65b)

∂tρge = i∆ρge− iΩ(t)(ρgg−ρee) . (2.65c)

We can simplify things a bit by the following notations: X = ρeg + ρge, Y = i(ρeg− ρge) and
Z = ρee−ρgg. In terms of these three (real) values one can write

∂tZ = 2Ω(t)Y, (2.66a)

∂tX =−∆Y (2.66b)

∂tY = ∆X +Ω(t)Z. (2.66c)

d
dt

ρge =−
γ

2
ρge + i∆ρge− iΩ(t)(ρgg−ρee) , (2.67)

allows us to derive the real and imaginary parts evolving as

d
dt
(ρge +ρeg) =−

γ

2
(ρge +ρeg)+ i∆(ρge−ρeg) (2.68)

d
dt
(ρge−ρeg) =−

γ

2
(ρge−ρeg)+ i∆(ρge +ρeg)−2iΩ(t)(1−2ρee) . (2.69)

For a simple solution we now focus on resonance where only two equations are consequently
coupled.

d
dt

ρee =−γρee− iΩ(t) [ρge−ρeg] , (2.70)
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d
dt
(ρge−ρeg) =−

γ

2
(ρge−ρeg)−2iΩ(t)(1−2ρee) . (2.71)

In vector form one can write:

d
dt

[
ρee

ρge−ρeg

]
=

[
−γ −iΩ(t)

4iΩ(t) −γ/2

][
ρee

ρge−ρeg

]
+

[
0

−2iΩρee

]
. (2.72)

The solutions from above are pretty complicated. The physics is pretty straighfoward though.
We will first set γ to zero, set the Rabi driving time independent and check the existense of Rabi
oscillations and their period. Consider again:

d
dt
(ρgg−ρee) = 2iΩ [ρge−ρeg] , (2.73)

d
dt
(ρge−ρeg) =−2iΩ(ρgg−ρee) . (2.74)

Taking the double derivative of the first expression we get

d2

dt2 (ρgg−ρee) = 2iΩ [−2iΩ(ρgg−ρee)] , (2.75)

which turns into a driven harmonic oscillator problem:

d2

dt2 (ρgg−ρee)+4Ω
2(ρgg−ρee) = 0, (2.76)

with solutions (ρgg−ρee)(t) = Acos2Ωt +Bsin2Ωt. Let’s consider an initial ground state atom
such that (ρgg−ρee)(0) =−1. Also the coherences are vanishing at zero time meaning that the B
term is zero. The following evolution will be

(ρgg−ρee)(t) =−cos2Ωt. (2.77)

A so-called pi pulsecan be achieved when 2Ωt = π such that (ρgg−ρee)(t = π/(2Ω) =−1) and
the population has been completely transferred in the excited state. For 2Ωt = π/2 a pi/2 pulse is
realized where t (ρgg−ρee)(t = π/(4Ω) = 0) but the coherence between the levels is maximal.

π and π/2 pulses
Rate equations and steady state solutions
We now include spontaneous emission and look at the dynamics on a timescale larger than γ−1

where we can in a first step we can eliminate the dynamics of the coherence ρeg by setting its
derivative to zero. We then obtain(for simplicity we assume constant driving)

∂tρee =−2γρee− iΩ [ρge−ρeg] , (2.78a)

ρeg =
iΩ

γ + i∆
(ρgg−ρee) (2.78b)

After a few steps one can check that the population equation becomes

d
dt

ρee =−γ

[
1+

2Ω2

γ2 +∆2

]
ρee +

γΩ2

γ2 +∆2 , (2.79)
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Figure 2.2: Power broadening effect shown as a modification of the Lorentzian lineshape for
increasing Rabi frequencies. Black is the γ-limited linear response (Ω`� γ) while red and orange
are for Ω` = 3γ and Ω` = 10γ

.

where we have replaced ρgg = 1−ρee. For longer times the system will then settle in a steady state
with a final excited state occupancy

ρ
ss
ee =

Ω2

γ2 +∆2 +2Ω2 . (2.80)

One can then compute the corresponding steady state value of the coherence

ρeg =−
γΩ

γ2 +∆2 +2Ω2(t)
− i

∆Ω

γ2 +∆2 +2Ω2 (2.81)

Linear response
Under the assumption of weak driving such that Ω� γ one gets a linear response of the TLS where
its coherence is proportional to the applied field (by ignoring the 2Ω2 term in the denominator):

ρeg =−
γ− i∆

γ2 +∆2 Ω (2.82)

Nonlinear response. Power broadening.
In the strong pump regime one can reexpress the Lorentzian profile as:

ρeg =−
γ− i∆√

γ2 +Ω22
+∆2

Ω, (2.83)

which describes a Lorentzian with modified linewidth γ →
√

γ2 +Ω2. The effect is dubbed power
broadening as it shows that a given transition line can be modified under strong driving conditions.
The excited state population is similarly broadened

ρee =
Ω2√

γ2 +Ω22
+∆2

. (2.84)

A Taylor expansion up to third order in Ω shows the next order nonlinearity called Kerr nonlinearity:

ρeg =−
γ− i∆√

γ2 +Ω22
+∆2

Ω, (2.85)



2.5 Application: population inversion in three level systems 31

2.5 Application: population inversion in three level systems
The previous section has already shown that a population inversion cannot be established in a two
level system under steady state conditions. However we can consider a more complicated situation
where driving is performed indirectly via an intermediate level |i〉 aimed to provide inversion
between the main |g〉 and |e〉 states (see Fig). We now make use of the formalism developed for
TLS to apply it for each pair of levels. The Hamiltonian of the system is:

H = h̄ω0 |e〉〈e|+ h̄(ω0 +ν) |i〉〈i|+ h̄Ω
[
|g〉〈i|eiω`t + |i〉〈g|e−iω`t

]
. (2.86)

To this we add all the damping processes as usual Lindblad terms with the proper rate and collapse
operator specifications

∂tρ =− i
h̄
[H,ρ]+ γiD [|g〉〈i| ,ρ]+ γD [|g〉〈e| ,ρ]+ΓD [|e〉〈i| ,ρ] (2.87)

One can proceed with deriving the following set of Bloch equations by using the rules we have
derived for the closed two level system case:

∂tρee =−2γρee +Γρii, (2.88)

∂tρeg = iδρeg−
γe

2
ρeg + iΩρe1, (2.89)

∂tρgg = γeρee + γ1ρ11 + iΩ [ρg1−ρ1g] , (2.90)

∂tρ11 =−γ1ρ11− γnrρ11− iΩ [ρg1−ρ1g] , (2.91)

∂tρ1g =−
γnr + γ1

2
ρ1g− iΩ(ρgg−ρ11) , (2.92)

∂tρe1 = iδρe1−
γ1 + γe + γnr

2
ρe1 + iΩρeg. (2.93)

We want to close the equations for the e-g system under the condition that γnr�Ω,γ1g,γeg. Notice
that we can transform both ρeg and ρe1 with δand eliminate

ρe1 =
2iΩ

γ1 + γe + γnr
ρeg. (2.94)

In a rotating frame we get

d
dt

ρeg = iδρeg−
γe

2
ρeg−

2Ω2

γ1 + γe + γnr
ρeg. (2.95)

Now we eliminate

ρ1g =
2iΩ

γnr + γ1
(ρgg−ρ11) , (2.96)

leading to

iΩ [ρg1−ρ1g] =
4Ω2

γnr + γ1
(ρgg−ρ11) , (2.97)

and subsequently

ρ11 =
4Ω2

(γnr + γ1)
2 (ρgg−ρ11) , (2.98)

which results in

ρ11 =
4Ω2

4Ω2 +(γnr + γ1)
2 ρgg. (2.99)
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The effective two-level model
Plugging all this back into the equations we get:

d
dt

ρee =−γegρee +
4Ω2γnr

4Ω2 +(γnr + γ1g)
2 ρgg, (2.100)

d
dt

ρeg =−
(

γe

2
+

2Ω2

γ1 + γe + γnr

)
ρeg, (2.101)

d
dt

ρgg = γegρee−
4Ω2γnr

4Ω2 +(γnr + γ1g)
2 ρgg. (2.102)

Under typical conditions, γnr� γe,γ1 and Ω� γnr , we can simplify to a common pump rate

Γ≈ 4Ω2

γnr
, (2.103)

and write the following equations: Plugging all this back into the equations we get:

d
dt

ρee =−2γegρee +2Γρgg, (2.104)

d
dt

ρeg =−(γe +Γ)ρeg. (2.105)

d
dt

ρgg = γegρee−Γρgg. (2.106)

This is exactly a model for incoherent pumping (or inverse decay). We can rewrite it as:

ρ̇ =− i
h̄
[H0,ρ]+ γeD[|g〉〈e|,ρ]+ΓD[|e〉〈g|,ρ]. (2.107)

Let’s check out if this is true:

ρ̇eg = 〈e|Γ [|2e〉〈g|ρ|g〉〈e|− |g〉〈g|ρ−ρ|g〉〈g|] |g〉=−Γρeg. (2.108)
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2.6 Appendix: The Bloch sphere
Anticipating the discussion in Chapter 7 on qubit operations in ion traps let us encode the 0 and 1
qubits in the internal levels |0〉 ≡ |g〉 and |1〉 ≡ |e〉 of a two level system. We will in the following
follow a matrix approach where we denote:

|0〉 ≡
[

0
1

]
and |1〉 ≡

[
1
0

]
(2.109)

For any pure state we can form the most general superposition as:

|ψ〉= cos
θ

2
|1〉+ eiφ sin

θ

2
|0〉. (2.110)

This can be vizualized on a unit sphere surface as a point described by a Bloch vector:

a = (sinθ cosφ ,sinθ sinφ ,cosθ) = (X ,Y,Z). (2.111)

More generally, states can be mixed and then they are described by density operators. A density
operator in a 2×2 space can be written uniquely as a combination of the identity matrix and three
independent Pauli matrices (as they form a complete basis in this Hilbert space)

ρ =
1
2
(I2 +a ·σ) =

1
2

[
1+Z X− iY

X + iY 1−Z

]
=

[
ρ11 ρ10
ρ01 ρ00

]
, (2.112)

where by definition

σx =

[
0 1
1 0

]
= σ +σ

†, (2.113a)

σy =

[
0 −i
i 0

]
= i(σ −σ

†), (2.113b)

σz =

[
1 0
0 −1

]
= σ

†
σ −σσ

†. (2.113c)

Now we have 3 independent parameters translatable to two angles and a radius: the corresponding
Bloch vector can now be anywhere inside the Bloch sphere. For pure states this reduces to the state
vector representation shown above. Let us define rotations around the axes as:

Rx,y,z(ζ ) = e−iζ/2σx,y,z . (2.114)

For all Pauli matrices, as they satisfy σ2
x,y,z = I, one can show that (as usual we expand the

exponential and use the property listed above):

Rx,y,z = I2 cos
ζ

2
− iσx,y,z sin

ζ

2
. (2.115)

Let’s write them in matrix form:

Rx(ζ ) =

[
cos ζ

2 −isin ζ

2
−isin ζ

2 cos ζ

2

]
, (2.116a)

Ry(ζ ) =

[
cos ζ

2 −sin ζ

2
sin ζ

2 cos ζ

2

]
, (2.116b)

Rz(ζ ) =

[
e−iζ/2 0

0 e−iζ/2

]
. (2.116c)
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Notice a few properties:

Rx(π) =

[
0 −i
−i 0

]
, Rx(π/2) =

1√
2

[
1 −i
−i 1

]
, Rx(2π) =

[
−1 0
0 −1

]
=−I2,

(2.117)

and

Ry(π) =

[
0 −1
1 0

]
, Ry(π/2) =

1√
2

[
1 −1
1 1

]
, Ry(2π) =

[
−1 0
0 −1

]
=−I2,

(2.118)

Single qubit gate: Hadamard gate
To perform a rotation from an initially zero state qubit into superpositions we apply the following
transformation:

H|0〉= 1√
2

[
−1 1
1 1

][
0
1

]
= Ry(

π

2
)|0〉= 1√

2

[
1
1

]
=

1√
2
(|0〉+ |1〉) . (2.119)

Also one can check:

H|1〉= 1√
2

[
−1 1
1 1

][
1
0

]
= Ry(

π

2
)||1〉= 1√

2

[
−1
1

]
=

1√
2
(|0〉− |1〉) . (2.120)

Single qubit gate: Pauli-X gate (NOT gate)
To negate a qubit is equivalent to turn it from 0 to 1 and the other way around. For this one can
check that:

iRx(π) = i
[

0 −i
−i 0

]
,=

[
0 1
1 0

]
(2.121)

X |0〉=
[

0 1
1 0

]
|0〉=

[
0 1
1 0

][
0
1

]
=

[
1
0

]
= |1〉, (2.122)

X |1〉=
[

0 1
1 0

]
|1〉=

[
0 1
1 0

][
1
0

]
=

[
0
1

]
= |0〉, (2.123)



3. Cavity quantum electrodynamics

An arrangement of two highly reflective mirrors (either dielectric or metallic) placed parallel to
each other at a small distance ` can provide a high density of electromagnetic modes in the space
in between. Such an arrangement defines an optical cavity and is widely used as a platform that
can amplify the typically small light-matter interaction in free space. While in free space a single
photon sent onto a TLS would interact once and then depart, in an optical cavity the photon bounces
back and forth many time therefore increasing the chance to interact with the TLS. We will first
proceed in providing a classical description of the optical cavity properties such as longitudinal
modes, loss rate, finesse etc. We then introduce the quantum model for a single cavity mode
and derive two equivalent formalisms: the quantum master equation and the Langevin equations.
Then we describe the quantum model for a single cavity mode interacting with a TLS known as
the Jaynes-Cummings model and introduce the strong coupling regime where hybrid light-matter
states known as polaritons occur. Finally we list a few applications of cavity QED such as optical
bistability, the Purcell effect (modification of the decay rate of an atom) and photon blockade.

3.1 Optical cavity - classical treatment

We assume a quasi 1D geometry where light can only propagate in the z direction and two highly
reflective boundaries are placed at z = 0 and z = `. From the 1D Helmoltz equation we derive
longitudinal modes of light inside the cavity and show that they have a Lorentzian profile owing to
the tunneling of light through the mirrors. To obtain these characteristics we solve the Helmoltz
equation in a very straightforward transfer matrix formalism.

Longitudinal modes
We assume that the boundaries are perfectly reflective such that the tangential electric field com-
ponent will vanish at z = 0 and z = `. We make the simplification that the electric field has an x̂
polarization direction. The configuration assumed will be referred to in the following by the term
optical cavity or optical resonator. We then have to solve a 1D wave equation

∂zzE(z, t)+ c−2
∂ttE(z, t) = 0, (3.1)
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in the region between 0 and ` with boundary conditions E(0, t) = E(`, t) = 0. Writing the solutions
E(z, t) = E (z) f (t) we have

E −1(z)∂zzE (z) =−c−2 f (t)−1(t)∂tt f (t) =−k2, (3.2)

where we have applied the usual technique of separation of variables to derive two equations:

f (t)+(ck)2
∂tt f (t) = 0, (3.3a)

∂zzE (z)+ k2E (z) = 0, (3.3b)

with E(0) =E(`) = 0. The second equation with the imposed boundary conditions E (0) = E (`) = 0
leads to solutions:

E (z) = N sinkz, (3.4)

where the allowed values of k are

k=
mπ

`
, (3.5)

which expressed in terms of wavelengths is

λ=
2`
m

. (3.6)

Notice that the fundamental mode for m = 1 implies that the cavity is a half wavelength `= λ/2.
The orthonormality requires

N2
∫ `

0
dzsinkzsink′z = N2

δkk′
`

2
. (3.7)

so that the normalization constant is: N =
√

2/`. In the following we will assume that there is a
transverse area where light is confined and denote S` as a quantization volume.

Lossy cavities: a transfer matrix approach
However, mirrors are not perfect so that some tunneling between the cavity mode and the continuum
of modes outside the cavity is always present. We will first take a classical approach based on
multiplications of transfer matrices to derive the transmission properties of an optical cavity as well
as the shape of the cavity modes.

Assuming a scatterer (mirror, membrane, atom etc) in a fix position, we denote the waves on
its left by Ae−ikx (left propagating) and Beikx (right propagating) and on the right of it as Ce−ikx

(left propagating) and Deikx (right propagating). The scatterer is assumed to have a reflectivity
(complex) r and transmissivity t. The two are actually connected as

t = 1+ r, (3.8)

Figure 3.1: Transfer matrix of a single scatterer.
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and notice that in the absence of absorption we have

|r|2 + |t|2 = 1. (3.9)

One can relate the outgoing fields to the incoming fields as

D = tB+ rC, (3.10a)

A = rB+ tD, (3.10b)

and rewrite the conditions connecting the amplitudes on the right side with the ones on the left side
of the beamsplitter:[

C
D

]
=

1
t

[
1 −r
r t2− r2

][
A
B

]
=

[
1− iζ −iζ

iζ 1+ iζ

][
A
B

]
. (3.11)

An important aspect is that the parametrization is done with a real polarizability ζ based on the
following transformation:

ζ =− ir
t
=− ir

1− r
. (3.12)

We can inverse this to obtain

r =
−ζ

ζ − i
. (3.13)

Notice that the intensity reflectivity is then given by

|r|2 = ζ 2

ζ 2 +1
. (3.14)

which further allows to express

ζ
2 =

|r|2

1−|r|2
. (3.15)

For large polarizabilities one gets a close to unity reflectivity. Rewriting we get

r = |r|

[
ζ√

1+ζ 2
− i

1√
1+ζ 2

]
= |r|eiφ , (3.16)

with

sinφ =− 1√
1+ζ 2

, and cosφ =
ζ√

1+ζ 2
. (3.17)

We can also inverse this transformation:[
A
B

]
=

1
t

[
t2− r2 r
−r 1

][
C
D

]
. (3.18)

The free space accumulation of phase is easily written as[
A′

B′

]
=

[
e−ik` 0

0 eik`

][
A
B

]
. (3.19)
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A two mirror arrangement
Let’s now assume an arrangement of two identical mirrors at z = 0 and z = ` and no input from the
right side (C = 0) while the left side has a unit propagating field amplitude (B = 1). We can then
write [

rc

1

]
=

1
t

[
t2− r2 r
−r 1

][
e−ik` 0

0 eik`

]
1
t

[
t2− r2 r
−r 1

][
0
tc

]
, (3.20)

where now the D and A components become the transmission and reflection of the compound object
i.e. the optical cavity. With a bit of math one finds

1
t2

[
t2− r2 r
−r 1

][
e−ik` 0

0 eik`

][
t2− r2 r
−r 1

]
= (3.21)

=
1
t2

[
t2− r2 r
−r 1

][
e−ik`(t2− r2) re−ik`

−reik` eik`

]
=

=
1
t2

[
e−ik`(t2− r2)2 + r2eik` (t2− r2)re−ik`+ reik`

−(t2− r2)re−ik`− reik` −r2e−ik`+ eik`

]
.

Denoting the whole transfer matrix by M one can easily notice that

tc =
1

M22
=

t2

eik`− r2e−ik` =
t2eik`

e2ik`− r2 . (3.22)

Let’s analyze the intensity transmission

Tc = |tc|2 =
|t|2

|e2ik`− r2|2
=

|t|2

|e2i(k`−φ)−|r|2|2
=

|t|2

|e2i(k`−φ)−1+ |t|2|2
. (3.23)

A maximum is possible at unity. Resonances are reached around the values we expected minus a
small contribution:

2km`= 2πm+2φ → km =
πm
`
− φ

`
. (3.24)

For large polarizability

φ '− 1√
1+ζ 2

' ζ
−1. (3.25)

Cavity linewidth, cavity decay rate and finesse.
Expanding around the resonance condition:e−2ik` = 1− 2i(δk)` = 1− 2i(k− km), we obtain a
Lorentzian shape of the transmission function around some resonance km,

T m
c (k) =

1
|1+2iζ 2`(k− km)|2

. (3.26)

Notice that t =−i/ζ so that The linewidth of this Lorentzian is given by the condition of T m
c (km +

δk) = 1/2 which leads to

δk =
1

2ζ 2`
. (3.27)

Expressed as a cavity decay rate (for units of frequency) one can define

κ = cδk =
c

2ζ 2`
. (3.28)
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Figure 3.2: Exchange interaction of cavity modes with outside modes for a single-ended cavity.
The left mirror allows for both inside (mode a) and outside modes (denoted by bk) to penetrate
through.

Reexpressing in terms of wavelengths:

δλ = 2π
δk
k2

m
=

π

k2
mζ 2`

=
π

( 2π

λm
)2ζ 2`

=
λ 2

m

4πζ 2`
. (3.29)

An important quantity is the finesse of a cavity defined as:

F =
∆λ

2δλ
, (3.30)

where ∆λ is the free spectral range expressed in wavelengths. This is easy to compute: ∆λ =
λm−λm+1 =

2
m+1`−

2
m`' λ 2

m/(2`). Finally

F = πζ
2 =

π|r|2

1−|r|2
. (3.31)

Roughly speaking, the finesses represents the number of round trips before the field intensity inside
the cavity decays considerably (to e−2) of the initial value. One can also define the cavity decay
rate as:

κ =
πc

2F `
, (3.32)

and a quality factor:

Q =
ωm

κ
=

2F `

λm
. (3.33)

3.2 Optical cavity: quantum Langevin equations
Even the simplest example of an optical cavity that we employ based on two parallel highly
reflective mirrors can support many (longitudinal) modes. Real cavities are designed with curved
mirrors and add to these modes additional, transverse ones (eventually degenerate). As in the first
chapter we can proceed with quantizing all these modes and introducing a total Hamiltonian as a
sum over many quantum harmonic oscillators, with creation/annihilation operators for each mode.
However, there are good arguments for simplifying the treatment to only one optical mode. Notice
that a typical free spectral range is about THz. This is much larger than the decay rate of an atom
which is of the level of 10 MHz or so. In consequence, for a given TLS transition only one cavity
mode can considerably interact with it. So, let us reduce the field dynamics to a single mode with
operator a (referring to a standing wave with frequency ωc) and express the field as:

Ê(z) = E0
(
a+a†)sinkz, where E0 =

[
h̄ω

ε0`S

]1/2

. (3.34)
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We have introduced the mode area S and grouped terms inside the zero point electric field amplitude
such that the integration of the Hamiltonian volume density over the whole volume leads to

H = h̄ωc

[
a†a+

1
2

]
. (3.35)

As before we will disregard the constant energy shift. As the cavity mirrors are not perfect the
intra-cavity field can permeate through the dielectric material and tunnel to the outside. At the
same time the outside field can also tunnel inside the cavity. If this were not the case than the cavity
would be useless as no driving would be possible. Having learned what the classical treatment
predicts for a cavity resonance transmission linewidth, we are in the position of writing a quantum
model for the coupling of a quantized cavity mode to the continuum of modes outside. To this
end we consider the Hamiltonian for the cavity mode plus the infinity of outside modes and their
interaction (modelled a an excitation exchange term)

H = h̄ωca†a+∑
k

h̄ωkb†
kbk + h̄∑

k
gk

[
b†

ka+a†bk

]
. (3.36)

From here we can derive a set of equations of motion Let’s write the equations of motion:

ȧ =
i
h̄
[H,a] =−iωca− i∑

k
gkbk, (3.37a)

ḃk =
i
h̄
[H,bk] =−iωkbk− igka. (3.37b)

The plan is to formally integrate the equation of motion for the outside modes and plug the solutions
back into the cavity mode evolution equation. This will result in a differential-integro equation. In
a first step we have

bk(t) = bk(0)e−iωkt − igk

t∫
0

dt ′a(t ′)e−iωk(t−t ′). (3.38)

Replacing this expression into the cavity mode equation of motion we obtain:

ȧ =−iωca−∑
k

g2
k

t∫
0

dt ′a(t ′)e−iωk(t−t ′)− i∑
k

gkbk(0)e−iωkt . (3.39)

The decay rate
The first term, similarly to the summation performed in the case of the spontaneous emission master
equation for atoms, gives a delta function selecting only the coupling terms at the cavity frequency.
The terms turns into a decay term

−∑
k

g2
k

t∫
0

dt ′a(t ′)e−iωk(t−t ′) =−κa(t), (3.40)

at a rate which one can prove is the classically derived term in the previous section.

The input noise
The second term is an infinite sum over the input modes which we will denote by

F(t) =−i∑
k

gkbk(0)ei−ωkt . (3.41)
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Going back in the original picture we can write a Langevin equation:

ȧ =−iωca(t)−κa(t)+F(t). (3.42)

Notice that in the vacuum

〈0|F(t)|0〉=−i∑
k

gk〈0|bk(0)|0〉e−iωkt = 0. (3.43)

Looking at the correlations of the input term assuming the modes outside in the vacuum, all but one
term vanish:

〈0|F(t)F†(t ′)|0〉= ∑
k

g2
ke−iωk(t−t ′) = 2κδ (t− t ′). (3.44)

Finally we can write a standard Langevin equation for the cavity mode under the following form:

ȧ =−iωca(t)−κa(t)+
√

2κAin, (3.45a)
√

2κAin(t) = η +
√

2κain(t), (3.45b)

For vacuum states the input noise is delta normalized such that 〈Ain(t)A
†
in(t
′)〉= δ (t− t ′).

The driving term
Let’s now assume that one of the incoming modes at frequency ckLis populated by a coherent state
αLwhile all the other modes are in the vacuum. We can then evaluate

〈αL|F(t)|αL〉=−i∑
k

gk〈αL|bk(0)|αL〉eiωkt =−iαLe−iωLt . (3.46)

We then separate the input noise into a classical part and a zero-average quantum part:

F(t) =
√

2κAin =−iαLe−iωLt +
√

2κain. (3.47)

Generally, in terms of zero-average noise and classical drive, in a rotating frame at the laser
frequency one can write the following Langevin equation:

ȧ =−κa− i(ωL−ωc)a+η +
√

2κain , (3.48)

where we made the notation η =−iαL.

Input-output relations
Similarly with the procedure above we can integrate the equation for the outside modes from
t to infinity.

b̃k(t) = b̃k(∞)+ i
∞∫

t

dt ′gkã(t ′)e−i(ω−ωk)t ′ . (3.49)

A similar calculation leads to

ȧ =−iωca(t)+κa(t)−
√

2κaout , (3.50)

where aoutstems from the new noise term

F̃(t) = i∑
k

gkb̃k(∞)ei(ωc−ωk)t . (3.51)

This is a convoluted way of assuming that for an interaction that lasts for a limited time, the initial
conditions are obtained by evaluating the fields outside at time 0 (or equivalently −∞) while the
final state is obtained by evaluating the fields after the interaction at t = ∞. Finally we get the input
output relations:

Aout +Ain =
√

2κa . (3.52)
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Two sided cavities. Transmission and reflection.
The input-output relations are valid at each interface. Let us assume a two-sided cavity with equal
reflectivities and thus equal decay rates on each mirror κ/2. Driving occurs from the left and is
included in the Ain term such that 〈Ain〉= η/

√
κ . The input field (in zero average state) from the

right is denoted by bin. We then have:

Ain +Bout =
√

κa, (3.53a)

bin +Aout =
√

κa. (3.53b)

We can define transmission and reflection coefficients as: tc = 〈Aout〉/〈Ain〉and rc = 〈Bout〉/〈Ain〉.
Taking an average over the equations above we have

1+ rc =
κ

η
〈a〉, (3.54a)

tc =
κ

η
〈a〉, (3.54b)

which gives the usual relation as we used in the transfer matrix tc = rc +1.The Langevin equations
with both input noises are:

ȧ =−κa− i(ωL−ωc)a+η +
√

κain +
√

κbin, (3.55)

and a classical average in steady state (assuming times longer than κ−1) gives:

〈a〉= η

κ + i(ωL−ωc)
. (3.56)

Consequently the transmission of intensity is given by:

Tc = |tc|2 =
κ2

κ2 +(ωL−ωc)2 . (3.57)

3.3 Optical cavity: master equation

Following the lines of the derivation carried out for spontaneous emission, we can show that the
following master equation for a driven cavity undergoing decay can be obtained:

d
dt

ρ =− i
h̄
[H,ρ]+κ

{
aρa†− 1

2
[
{a†aρ +ρa†a

]}
, (3.58)

with

H = h̄ωca†a+ ih̄η
(
aeiωLt −a†e−iωLt) . (3.59)

3.4 The Jaynes-Cummings Hamiltonian.

Let’s now place an atom within the cavity. We assume that the atom is closely resonant with a
given cavity resonance and far away from any other resonances. The dipole-electric field coupling
Hamiltonian will now be written as:

HJC = h̄g
[
a†

σ +aσ
†] . (3.60)
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The coupling strength is the usual:

g =
1
h̄
E0deg =

[
ω

h̄ε0`S

]1/2

deg. (3.61)

Let us inspect the properties of a coupled atom-cavity field system without any incoherent
processes. The full Hamiltonian is:

H = h̄ωca†a+ h̄ωaσ
†
σ + h̄g

[
a†

σ +aσ
†] . (3.62)

Let’s consider the complete basis in the full Hilbert space spanned by |g,n〉 and |e,n〉. All the
possible matrix elements are:

〈g,n|H|g,m〉= h̄ωcnδnm, (3.63a)

〈e,n|H|e,m〉= h̄ωcnδnm + h̄ωaδnm, (3.63b)

〈g,n|H|e,m〉= h̄g
√

n+1δnm+1, (3.63c)

〈e,n|H|g,m〉= h̄g
√

nδnm−1. (3.63d)

Let’s write it in matrix form agreeing that we start with vectors ordered as: |g,0〉, |g,1〉, |e,0〉, |g,2〉,
|e,1〉 ....

h̄


ωc +ωa g

√
2 0 0 0

g
√

2 2ωc 0 0 0
0 0 ωa g 0
0 0 g ωc 0
0 0 0 0 0

 . (3.64)

Notice that for a given n only states |g,n+1〉and |e,n〉are coupled. One can then block diagonalize
the whole Hamiltonian in excitation subspaces spanned by a constant number of excitations.

We see that the Hamiltonian matrix contains blocks which are not coupled. Let’s first focus in
the single excitation block with state vectors |g,1〉, |e,0〉. To bring this block into diagonal form we
have to diagonalize the following matrix:[

ωa g
g ωc

]
. (3.65)

Eigenvalues are given by the equation: (ωa−λ )(ωc−λ ) = g2. Let’s rewrite this as: (λ −ωc +
ωc−ωa)(λ −ωc) = g2 and make notations ωc−ωa = ∆.Then we have to solve: x2 +∆x−g2 = 0
leading to

λ = ωc−
∆

2
±

√(
∆

2

)2

+g2 =
ωc +ωa

2
±

√(
ωc−ωa

2

)2

+g2. (3.66)

For zero detuning ωc = ωa = ω the two eigenstates are located at

E (1) = h̄(ω±g) , (3.67)

in energy and are combinations

|p±〉=
|e,0〉±, |g,1〉√

2
. (3.68)

In higher excitation subspaces, the result is (by diagonalizing the blocks with n photons):

E (n) = h̄
(
ω±g

√
n
)
. (3.69)
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The polariton transformation
For the resonant case, we will perform a transformation from the bare atom and cavity operators to
polariton operators:

u =

√
1
2
(a+σ), (3.70a)

d =

√
1
2
(a−σ). (3.70b)

The inverse transformations:

a =

√
1
2
(u+d), (3.71a)

σ =

√
1
2
(u−d). (3.71b)

Notice that the application of the polariton operators to the vacuum creates the previously derived
states:

u†|g,0〉=
√

1
2
(a† +σ

†)|g,0〉= |e,0〉+ |g,1〉√
2

. (3.72)

The Hamiltonian contains terms as:

a†a =
1
2
(u† +d†)(u+d) =

1
2
(
u†u+d†d +u†d +d†u

)
, (3.73a)

σ
†
σ =

1
2
(u†−d†)(u−d) =

1
2
(
u†u+d†d−u†d−d†u

)
, (3.73b)

σ
†a =

1
2
(u†−d†)(u+d) =

1
2
(
u†u−d†d +u†d−d†u

)
, (3.73c)

a†
σ =

1
2
(u† +d†)(u−d) =

1
2
(
u†u−d†d−u†d +d†u

)
. (3.73d)

Adding everything we immediately find what we expected which is that the Hamiltonian can be
diagonalized via this transformation:

H = h̄(ω−g)d†d + h̄(ω +g)u†u. (3.74)

The strong coupling regime
Introducing decay we see that the polariton transformation already diagonalizes the Lindblad term.
Let’s apply the transformation above to the Lindblad terms:

Lγ = γ
[
2σρσ

†−
(
σ

†
σρ−ρσ

†
σ
)]
, (3.75)

Lκ = κ
[
2aρa†−

(
a†aρ−ρa†a

)]
, (3.76)

Working it out:

2σρσ
† = (u−d)ρ(u†−d†) = uρu† +dρd†−uρd†−dρu†, (3.77a)

σ
†
σρ =

1
2
(u†−d†)(u−d)ρ = u†uρ +d†dρ−u†dρ−d†uρ, (3.77b)

ρσ
†
σ =

1
2

ρ(u†−d†)(u−d) = ρu†u+ρd†d−ρu†d−ρd†u, (3.77c)
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Also

2aρa† = (u+d)ρ(u† +d†) = uρu† +dρd† +uρd† +dρu†, (3.78a)

a†aρ =
1
2
(u† +d†)(u+d)ρ = u†uρ +d†dρ +u†dρ +d†uρ, (3.78b)

ρa†a =
1
2

ρ(u† +d†)(u+d) = ρu†u+ρd†d +ρu†d +ρd†u. (3.78c)

Adding everything we find a simple result:

L [ρ] = L(γ+κ)/2[d,ρ]+L(γ+κ)/2[u,ρ], (3.79)

which states that the two polariton operators make up two equally decaying channels at rates
(γ +κ)/2.

The Purcell effect
Let’s first investigate such interactions in the regime where the cavity field is very quickly decaying
κ � γ . We also assume the atom being resonant to the cavity mode both at ω . We can go into a
rotating frame where both a and σ rotate at the ω frequency. Thus, we have to solve the dynamics
of a system with the following complete dynamics:

d
dt

ρ =−ig
[
a†

σ +aσ
†,ρ
]
+κD [a,ρ]+ γD [σ ,ρ]. (3.80)

Let’s look at the evolution of the field operator:

d
dt

a =−κa− igσ +
√

2κain. (3.81)

We can go into a rotating frame where both a and σ rotate at the ω frequency. Formal integration
will lead to

a(t) = a(0)e−κt − ig
t∫

0

dt ′σ(t ′)e−κ(t−t ′)−κa− igσ +
√

2κ

t∫
0

dt ′ain(t ′)e−κ(t−t ′). (3.82)

The first term decays fast and will vanish for t� κ−1. The second term we will integrate by parts:

1
κ

t∫
0

dt ′σ(t ′)
[
eκt ′
]′
=

1
κ

σ(t ′)eκt ′ |t0−
1
κ

t∫
0

dt ′σ ′(t ′)eκt ′ . (3.83)

Putting it together we get:

−ig
t∫

0

dt ′σ(t ′)e−κ(t−t ′) =− ig
κ

(
σ(t)−σ(0)e−κt)+ ig

κ

t∫
0

dt ′σ ′(t ′)e−κ(t−t ′). (3.84)

The transient term will vanish again in the same long time limit. The second term can be again
integrated by parts and slowly we get smaller and smaller terms containing κ−2, κ−3etc. We then
conclude that:

a(t)'− ig
κ

σ(t)+ āin. (3.85)
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Now let’s replace the first term in the expression in the Lindblad term for the cavity field:

κ

{
aρa†− 1

2
[
{aaρ +ρa†a

]}
=

g2

κ

{
σρσ

†− 1
2
[
{σ†

σρ +ρσ
†
σ
]}

. (3.86)

We see that the cavity contributes to the decay of the atom with a rate g2/κ . The total decay rate of
the atom will therefore be:

γ +
g2

κ
= γ(1+C), (3.87)

where we will denote the cooperativity parameter by

C =
g2

γκ
. (3.88)

Let us remember what all these parameters are:

g2 =

[
ω

h̄ε0`S

]
d2

eg (3.89a)

γ =
d2

egω3

3πc3h̄ε0
, (3.89b)

κ =
πc

2F `
. (3.89c)

Putting it all together:

C =
ω

h̄ε0`S
d2

eg
3πc3h̄ε0

d2
egω3

2F `

πc
=

6F c2

Sω2 . (3.90)

Also, replacing ω/c = k = 2π/λ we have 6c2/ω2 = 6λ 2/(4π2) so that

C = F
3λ 2

2π2

S
. (3.91)

One can then only improve this quantity by designing better mirrors and focusing down the cavity
mode area to small values.

3.5 Optical bistability

We will now add decay into the problem at ratesγ for the atom and κ for the cavity field. We also
assume a weak pump coming through the left mirror and analyze the transmission properties of the
system. We can derive the equations of motion for the field and atomic operators:

d
dt
〈a〉=−κ〈a〉+ i∆〈a〉− ig〈σ〉+η , (3.92a)

d
dt
〈σ〉=−γ〈σ〉+ i∆〈σ〉+ ig〈a

(
σ

†
σ −σσ

†)〉. (3.92b)

We assumed atoms resonant to the cavity mode and the detuning is ∆ = ωL−ωc. The equations are
non-linear as the last term contains correlations between the field and the atom dipole. However,
under the weak pumping condition: η � κ , the cavity field in steady state will have much less
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than one photon and the atom will pretty much stay close to the ground state. We therefore replace
σ†σ −σσ† with −1 and analyze the set of linearized equations

d
dt
〈a〉=−κ〈a〉+ i∆〈a〉− ig〈σ〉+η , (3.93a)

d
dt
〈σ〉=−γ〈σ〉+ i∆〈σ〉− ig〈a〉. (3.93b)

Looking at steady state we have:

〈σ〉=− ig
γ− i∆

〈a〉, (3.94)

such that

〈a〉
[

κ− i∆+
g2

γ− i∆

]
= η . (3.95)

Rewriting the last equation:

〈a〉
[

κ +
g2γ

γ2 +∆2 − i∆
(

1− g2

γ2 +∆2

)]
= η . (3.96)

Remember from last lecture that the transmission of the cavity is:

Tc =

∣∣∣∣√κ〈a〉
η/
√

κ

∣∣∣∣2 = κ2∣∣∣κ + g2γ

γ2+∆2 − i∆
(

1− g2

γ2+∆2

)∣∣∣2 . (3.97)

One observation is that we see that ∆ = 0 gives the maximum so the minimum of the transmission
at

Tc(∆ = 0) =
κ2∣∣∣κ + g2

γ

∣∣∣2 =
1

(1+C)2 , (3.98)

where the cooperativity C = g2/(κγ) (just as before in the limit of bad-cavity we defined it
proportional to the Purcell factor) plays a major role. One can also see the effect in the next order
approximation for the equation of motion when more significant population in the excited state is
taken into account. Let’s rewrite

d
dt
〈a〉=−κ〈a〉+ i∆〈a〉− ig〈σ〉+η , (3.99)

d
dt
〈σ〉=−γ〈σ〉+ i∆〈σ〉+ ig〈a

(
σ

†
σ −σσ

†)〉. (3.100)

d
dt
〈σ†

σ −σσ
†〉=−2γ〈σ†

σ −σσ
†〉+ ig〈a†

σ −aσ
†〉−2γ. (3.101)

We perform two factorizations〈a
(
σ†σ −σσ†

)
〉= 〈σ†σ−σσ†〉〈a〉 and 〈a†σ−aσ†〉= 〈a†〉〈σ〉−

〈a〉〈σ†〉 and evaluate in steady state:

〈σ〉(γ− i∆) = ig〈a〉〈σ†
σ −σσ

†〉, (3.102)

〈σ〉∗ (γ + i∆) =−ig〈a〉∗〈σ†
σ −σσ

†〉. (3.103)

This immediatily leads to

ig〈a〉∗〈σ〉(γ− i∆) =−g2|〈a〉|2〈σ†
σ −σσ

†〉, (3.104)

−ig〈a〉〈σ〉∗ (γ + i∆) =−g2|〈a〉|2〈σ†
σ −σσ

†〉, (3.105)
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so that

ig〈a†
σ −aσ

†〉=− 2γg2

γ2 +∆2 |〈a〉|
2〈σ†

σ −σσ
†〉 (3.106)

The equation for the population difference then gives

〈σ†
σ −σσ

†〉=−1− 2g2

γ2 +∆2 |〈a〉|
2〈σ†

σ −σσ
†〉 → 〈σ†

σ −σσ
†〉= −1

1+ 2g2

γ2+∆2 |〈a〉|2
.

(3.107)

Now we directly have

〈σ〉= −ig
γ− i∆

〈a〉
1+ 2g2

γ2+∆2 |〈a〉|2
, (3.108)

which leads to the cavity field amplitude in steady state:

〈a〉(κ− i∆) =
−g2

γ− i∆
〈a〉

1+ 2g2

γ2+∆2 |〈a〉|2
+η , (3.109)

or

〈a〉

(κ− i∆)+
1

1+ 2g2

γ2+∆2 |〈a〉|2
g2

γ− i∆

= η . (3.110)

The expression above shows that the cavity resonances are shifted for larger input fields as the
intracavity field intensity depends nonlinearly on the input field. Taking the absolute value squared
for the above expression leads to

Ic

∣∣∣∣∣∣(κ− i∆)+
1

1+ 2g2

γ2+∆2 Ic

g2

γ− i∆

∣∣∣∣∣∣
2

= Ip, (3.111)

which is an equation with more than one solution (three) for give ranges of the input For example,
at ∆ = 0,

Icκ
2

1+
C2(

1+ 2g2

γ2 Ic

)2

= Ip, (3.112)

leading to

Icκ
2

((
1+

2g2

γ2 Ic

)2

+C2

)
= Ip

(
1+

2g2

γ2 Ic

)2

. (3.113)

3.6 Photon blockade
One notices that in the first and second excitation manifolds nonlinearities appear due to the
progressive g

√
n shifts of levels. Looking at the resonance condition for single cavity input photon

one notices two resonances at the lower (at ω−g ) and at the upper (ω +g) polaritons. Assuming
the driving frequency at the lower polariton, one can also notice that the 2 photon resonance
condition is not fulfilled as a detuning (2ω−

√
2g)−2(ω−g) = (2−

√
2)g appears. In the limit

that this detuning is very large, the presence of the atom strongly coupled to the cavity effectively
suppresses the entering of a second photon, thus providing a photon blockade mechanism.
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3.7 Appendix: Langevin equations in the Fourier domain.
A Fourier transformation can simplify our task of finding operator averages and correlations (at
equal or different times) as it transforms the set of coupled differential equations into an ordinary
set of equations. Notice however that this is only valid around steady state. When one needs to take
the initial conditions into account, the Laplace transform can be used instead.

Let us introduce the Fourier transform of the time dependent operators:

a(ω) = F [a(t)] =
1√
2π

∫
dta(t)e+iωt , (3.114)

a(t) =
1√
2π

∫
dωa(ω)e−iωt . (3.115)

Notice two properties. First the Fourier transform of a derivative is:

F [ȧ(t)] =−iωa(ω), (3.116)

Second, we use:

a†(ω) = F [a†(t)] =
1√
2π

∫
dta†(t)e+iωt , (3.117)

which leads to:

[a(ω)]† =
1√
2π

∫
dta†(t)e−iωt = a†(−ω). (3.118)

For delta-correlated input noise (of zero average) then we have:

〈a(ω)a†(ω ′)〉= 1
2π

∫
dt
∫

dt ′〈a(t)a†(t ′)〉e+iωte+iω ′t ′ = (3.119)

=
1

2π

∫
dt
∫

dt ′δ (t− t ′)e+iωte+iω ′t ′ =
1

2π

∫
dte+i(ω+ω ′)t = δ (ω +ω

′). (3.120)

We consider a driven cavity

ȧ =−κa+ i∆a+η +
√

κ (ain +bin) , (3.121)

and first linearize around steady state:

δ̇a =−κδa+ i∆δa+
√

2κdin, (3.122)

while the average is as above. We also wrote din = (ain +bin)/
√

2 with the combined input noise
being delta correlated in time. Taking the Fourier transform:

δa(ω) [κ− i(∆+ω)] =
√

2κdin(ω), (3.123)

together with its couterpart

δa†(ω) [κ + i(∆−ω)] =
√

2κd†
in(ω). (3.124)

One can express these in terms of the susceptibilities:

δa(ω) = ε(ω)
√

2κdin(ω), (3.125)
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δa†(ω) = ε
∗(−ω)

√
2κd†

in(ω), (3.126)

The intracavity correlations are:

〈δa(ω)δa†(ω ′)〉= ε(ω)ε∗(−ω
′)2κ〈din(ω)d†

in(ω
′)〉= (3.127)

= 2κ |ε(ω)|2 δ (ω +ω
′) =

2κ

κ2 +(∆+ω)2 δ (ω +ω
′). (3.128)

The linearized input-output relations (for zero-average operators) transform straighforwardly into
the Fourier space:

aout(ω) =
√

κδa(ω)−bin(ω), (3.129)

bout(ω) =
√

κδa(ω)−ain(ω), (3.130)

and

a†
out(ω) =

√
κδa†(ω)−b†

in(ω), (3.131)

b†
out(ω) =

√
κδa†(ω)−a†

in(ω). (3.132)

One can connect output noise to input noise directly:

aout(ω) = ε(ω)κain(ω)−bin(ω) [1− ε(ω)κ] , (3.133)

a†
out(ω) = ε

∗(−ω)κa†
in(ω)−b†

in(ω) [1− ε
∗(−ω)κ] , (3.134)

Now we can express for example:

〈aout(ω)a†
out(ω

′)〉= ε(ω)ε∗(−ω
′)κ2〈ain(ω)a†

in(ω
′)〉+[1− ε(ω)κ]

[
1− ε

∗(−ω
′)κ
]
〈bin(ω)b†

in(ω
′)〉=

(3.135)

=
[
1+2κ

2|ε(ω)|2−2κRe[ε(ω)]
]

δ (ω +ω
′) = (3.136)

=

[
1+

2κ2

κ2 +(∆+ω)2 −2κ
κ

κ2 +(∆+ω)2

]
δ (ω +ω

′) = δ (ω +ω
′) (3.137)
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We will now make use of the techniques developed in the previous chapters to describe a few
characteristics of a lasing cavity filled with a gain medium. Our goals are modest as we only
aim at providing a simplistic treatment to reveal two main characteristic of lasing action: i) the
existence of a threshold for lasing connected to the achieved population inversion, and ii) the
statistics of photons exiting a laser cavity (ideally close to a Poisson distribution characteristic of a
coherent state). We will employ two slightly different models to derive these crucial aspects. First,
we assume a collection of effective two level systems incoherently pumped such that population
inversion can be achieved. We show that in the macroscopic limit of large number of gain medium
atoms the cavity can sustain the build-up of a non-zero amplitude field past a certain pumping
threshold. We then follow a standard approach (Milburn, Scully) of four-level systems passing
through a cavity to arrive at a simplified form for the photon number distribution and prove that
past the threhold a laser exhibits Poissonian statistics. Finally, we analyze the laser linewidth by
well above threshold and connect it to the diffusion process that the cavity field undergoes during
spontaneous emission events.

4.1 Laser threshold
We assume N identical two level systems equally coupled to a cavity mode. The Hamiltonian of the
system is comprised of

H0 = h̄ωa†a+∑
j

h̄ωσ
( j)
z , (4.1a)

HJC = ∑
j

h̄g
[
a†

σ j +aσ
†
j

]
. (4.1b)

The Lindblad terms contain the natural spontaneous emission at rate γ , cavity decay at rate κ as well
as the engineered pump rate (described as an artificial inverse decay terms as derived in Chapter 2)
at rate Γ

L = γ ∑
j

D [σ j,ρ]+Γ∑
j

D [σ†
j ,ρ]+κ ∑

j
D [a,ρ]. (4.2)
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Of course we can immediately get rid of the free evolution by moving into the interaction picture
with respect to H0. We can write equations of motion for the averages:

d
dt
〈a〉=−κ〈a〉− ig∑

j
〈σ j〉, (4.3a)

d
dt
〈σ j〉=−

Γ+ γ

2
〈σ j〉+2ig〈aσ

( j)
z 〉, (4.3b)

d
dt
〈σ ( j)

z 〉=−(Γ+ γ)〈σ ( j)
z 〉+ ig〈a†

σ j−aσ
†
j 〉+

Γ− γ

2
. (4.3c)

Let’s quickly check that this is correct. In the absence of coupling to the cavity starting with the
ground state we get a steady state with

〈σ ( j)
z 〉=

Γ− γ

2(Γ+ γ)
= d0. (4.4)

This is the expected population inversion when pumping the system. If Γ� γ , we get d0 close to
1/2 meaning most of the population is in the excited state. The above equations are coupled and
nonlinear and thus not easy to solve. First we notice that we can perform sums such that:

d
dt
〈a〉=−κ〈a〉− ig〈S〉, (4.5a)

d
dt
〈S〉=−Γ+ γ

2
〈S〉+2ig〈aSz〉, (4.5b)

d
dt
〈Sz〉=−(Γ+ γ)〈Sz〉+ ig〈a†S−aS†〉+N

Γ− γ

2
. (4.5c)

where the collective operators are:

S = ∑
j

σ j and Sz = ∑
j

σ
( j)
z . (4.6)

In steady state without cavity we will now have 〈Sz〉= Nd0 = D0.In the large system expansion
when N� 1, one can analyze the classical equations for this system by factorizing (we split each
operator into an average and a zero average fluctuation):

〈aSz〉= 〈(α +δa)(sz +δSz)〉= αsz + 〈δaδSz〉 ' αsz, (4.7a)

〈a†S〉= 〈
(
α
∗+δa†)(s+δS)〉= α

∗s+ 〈δa†
δS〉 ' α

∗s, (4.7b)

〈aS†〉= 〈(α +δa)
(
s∗+δS†)〉= αs∗+ 〈δaδS†〉 ' αs∗. (4.7c)

This should be valid as long as the averages of fluctuation products are small compared to the
averages.

Classical equations. Threshold.
Let’s proceed with the system to be solved:

dα

dt
=−κα− igs, (4.8a)

ds
dt

=−Γ+ γ

2
s+2igαsz, (4.8b)

dsz

dt
=−(Γ+ γ)sz + ig(α∗s−αs∗)+N

Γ− γ

2
. (4.8c)
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We set steady state conditions and notice that

s =
4ig

Γ+ γ
αsz. (4.9)

Replacing in equation 3 we get:[
(Γ+ γ)+

8g2

Γ+ γ
|α|2

]
sz = N

Γ− γ

2
. (4.10)

In simplified notation:

sz =
D0

1+ 8g2

(Γ+γ)2 |α|2
. (4.11)

Notice that as the cavity field is turned on the population inversion starts going down. We can now
compute:

s =
4ig

Γ+ γ

D0

1+ 8g2

(Γ+γ)2 |α|2
α, (4.12)

which leads to an effective equation of motion for the cavity field amplitude:

dα

dt
=−κα +

4g2

Γ+ γ

D0

1+ 8g2

(Γ+γ)2 |α|2
α. (4.13)

With more notations:

n0 =
(Γ+ γ)2

8g2 , C =
4g2D0

κ(Γ+ γ)
=

2g2 (Γ− γ)

κ(Γ+ γ)2 '
2g2

κΓ
(4.14)

we can rewrite:

dα

dt
= κ

[
−1+

C
1+ |α|2/n0

]
α. (4.15)

It is easy to see that the steady state is zero unless the gain surpasses the cavity loss. We then find a
thresold at C = 1 and compute the cavity field intensity as:

1 =
C

1+ |α|2/n0
, leading to |α|2 = n0 (C−1) . (4.16)

Well above threshold
Consider C� 1 and look again at the population inversion

sz =
D0

C
=

κΓ

4g2,
=

Γ2

8g2
κ

Γ
. (4.17)

Notice that as the cavity field is turned on the population inversion starts going down. We can now
compute:

s =
4ig

Γ+ γ

D0

1+ 8g2

(Γ+γ)2 |α|2
α, (4.18)
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4.2 Photon statistics of a laser
We now move to a more standard model for deriving equations for the reduced density operator of
the cavity field alone. The goal is to find the photon number distribution of cavity photons below
and above threshold and see the transition from thermal light to coherent light in the cavity output.
The model is used extensively in Quantum Optics textbooks (Milburn, Scully, etc). It consists of
a collection of four level atoms where the important ones are levels |2〉 (excited) and |1〉(ground)
both of them decaying to some other levels with γ2 (from |2〉to |4〉) and with γ1(from |1〉to |3〉).
There is no spontaneous emission (or negligible) between the lasing levels, and the transition is
coupled resonantly to a cavity field.

Model assumptions
The atoms are prepared in the excited state and sent through the cavity spending a time τ inside
which is much larger than the time it takes the atoms to reach steady state (roughly given by γ

−1
1,2 ).

The rate of which atoms are pushed into the cavity is r (understood as number of atoms per unit
time). The probability of an atom entering the cavity during a small time interval ∆t would then be
r∆t while the opposite event has the probability (1− r∆t). We now assume that at time t the cavity
field is in state ρ(t). After the passing of an atom through the cavity the reduced cavity field density
operator becomes

ρF(t +∆t) = P(∆t)ρF(t). (4.19)

Summing together probabilities that either an atom passed or not through the cavity we will have a
final density operator for the cavity:

ρF(t +∆t) = r∆tP(∆t)ρF(t)+(1− r∆t)ρF(t). (4.20)

In the small ∆t limit, we will have an effective reduced master equation:

dρF(t)
dt

= r(P−1)ρF(t)+κDa[ρF ], (4.21)

after writing the difference as a derivative and adding the decay Lindblad term for the cavity field.

The action of a single atom on the cavity field
Let us now focus on deriving the action P(∆t). We set the initial time to zero for simplicity and
consider an initial density matrix generally expressed as:

ρF =
∞

∑
n,m=0

ρ
F
nm(0)|n〉〈m|. (4.22)

Of course the atom initial density matrix is |2〉〈2|. We will show that

ρF(∆t) =
∞

∑
n,m=0

ρ
F
nm(0) [Anm|n〉〈m|+Bnm|n+1〉〈m+1|] . (4.23)

The master equation to be solved during the ∆t time interval evolution is:

dρ(t)
dt

=
i
h̄
[H,ρ]+ γDσ1 [ρ]+ γDσ2 [ρ], (4.24)

where σ1 = |3〉〈1| and σ2 = |4〉〈2| and the D superoperators acts as usual as Lindblad terms
describing decay. Notice that one can rewrite the master equation in the following form:

dρ(t)
dt

=
i
h̄

[
He f f ρ−ρH†

e f f

]
+R[ρ], (4.25)
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grouping recycling terms:

R[ρ] = 2γ

[
σ1ρσ

†
1 +σ2ρσ

†
2

]
, (4.26)

and adding the rest in an effective Hamiltonian (careful that this is an effective non-hermitian
evolution operator)

He f f = H− iγ
(

σ
†
1 σ1 +σ

†
2 σ2

)
. (4.27)

A zeroth order solution can be found by taking the derivatives of the following function:

ρ0(t) = B(t)ρ(0)B†(t) = S(t)[ρ(0)], (4.28)

satisfying the equation:

dρ0(t)
dt

=
i
h̄

[
He f f ρ0(t)−ρ0(t)H

†
e f f

]
. (4.29)

Now we look for the next order solution of the form:

ρ(t) = ρ0(t)+B(t) [ρ1(t)]B†(t) = S(t)[ρ(0)]+S(t)[ρ1(t)]. (4.30)

One can check that the master equation turns into:

dρ0(t)
dt

+ Ḃ(t) [ρ1(t)]B†(t)+ Ḃ(t) [ρ1(t)]B†(t)+ Ḃ(t) [ρ̇1(t)] Ḃ†(t) = (4.31)

=
i
h̄

[
He f f ρ0−ρ0H†

e f f

]
+

i
h̄

[
He f f B(t) [ρ1(t)]B†(t)−B(t) [ρ1(t)]B†(t)H†

e f f

]
+

R[ρ0 +B(t) [R[ρ1(t)]]B†(t).

After simplifications one arrives at (ignoring the last term):

dρ1(t)
dt

= B(t) [R[ρ0(t)]]B†(t) = S(t) [R [S(t) [ρ(0)]]] , (4.32)

and integration gives:

ρ1(∆t) =
∆t∫

0

dtS(t) [R [S(t) [ρ(0)]]] . (4.33)

Finally, one can put it all together:

ρ(∆t) = S(∆t) [ρ(0)]+
∆t∫

0

dtS(t) [R [S(t) [ρ(0)]]]+ .... (4.34)

After painful calculations one can derive the next order terms and show that they are vanishing.
Let’s therefore focus on the zeroth and first order term. We are left with evaluating terms like:

B(∆t)|n〉|2〉= c+n (∆t)|n,+〉+ c−n (∆t)|n,−〉, (4.35)

where the states defined as

|n±〉=
1√
2
[|n,2〉± |n,1〉] (4.36)
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are the polariton states in the n+1 excitation manifold. One can find a simple expression (based on
the assumptions γ1 = γ2):

c+n (∆t) =
1

2
√

2
e−ig

√
n+1te−γ∆t , (4.37a)

c−n (∆t) =
1

2
√

2
eig
√

n+1te−γ∆t . (4.37b)

We can find the first action:

S(t)[ρ(0)] = B(t)ρ(0)B†(t) =
[
c+n (t)|n+〉+ c−n (t)|n−〉

][
c+∗n (t)〈n+|+ c−∗n (t)〈n−|

]
. (4.38)

When plugged in to replace the zeroth order solution the results is zero in the limit ∆t� γ−1. The
next term however will not vanish. Let’s first calculate one term to get an idea what the recycling
term does.

R [|n+〉〈n+|] = 2γ

[
σ1|n+〉〈n+|σ†

1 +σ2|n+〉〈n+|σ†
2

]
= (4.39)

= γ [|n+1,3〉〈n+1,3|+ |n,4〉〈n,4|] .

Then we can work out all the other terms and trace over the atomic states to obtain:

TrA [S(t) [R [S(t) [ρ(0)]]]] = γ
[
c+n (t)+ c−n (t)

][
c+∗m (t)+ c−∗m (t)

]
|n〉〈m|+ (4.40)

+ γ
[
c+n (t)− c−n (t)

][
c+∗m (t)− c−∗m (t)

]
|n+1〉〈m+1|.

Finally, performing the integral over the first order solution one obtaines:

ρF(∆t) =
∞

∑
n,m=0

ρ
F
nm(0) [Anm|n〉〈m|+Bnm|n+1〉〈m+1|] , (4.41)

where

Anm =

∆t∫
0

dt
[
c+n (t)+ c−n (t)

][
c+∗m (t)+ c−∗m (t)

]
, (4.42a)

Bnm =

∆t∫
0

dt
[
c+n (t)− c−n (t)

][
c+∗m (t)− c−∗m (t)

]
. (4.42b)

For the diagonal elements one can check that the result is:

Ann =
g2(n+1)+2γ2

2g2(n+1)+ γ2 , (4.43a)

Bnn = 1−Ann. (4.43b)

The reduced master equation and photon statistics
Putting together the results of the last two subsections we get an effective master equations written
as:

dρnm

dt
= G

[ √
nm

1+(n+m)/(2ns)
ρn−1,m−1−

(m+n+2)/2+(m−n)2/(8ns)

1+(n+m+2)/(2ns)
ρnm

]
+ (4.44)

+κ

[
2
√
(n+1)(m+1)ρn+1,m+1− (n+m)ρnm

]
.
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The gain is derived as:

G =
r

2ns
, where ns =

γ2

g2 . (4.45)

Focusing now on the photon number distribution, let’s consider the diagonal elements (pn = ρnn):

d pn

dt
=−G

[
n+1

1+(n+1)/ns
pn−

n
1+n/ns

pn−1

]
+2κ [(n+1)pn+1−κnpn] . (4.46)

We will analyze some simplified cases.

Thermal statistics (below threshold)
The first one assumes ns� 1 such that the average photon number is much smaller than ns. This
allows the approximation leading to:

d pn

dt
=−G [(n+1)pn−npn−1]+2κ [(n+1)pn+1−κnpn] . (4.47)

In steady state one can show that the solution to this recursive equation is:

pn = p0

(
G
2κ

)n

. (4.48)

Together with the normalization condition ∑ pn = 1, one can deduce

pn =

(
1− G

2κ

)−1( G
2κ

)n

. (4.49)

This can be casted in terms of a black-body radiation distribution with the identification:

G
2κ

= e−
h̄ω

kBT , (4.50)

where one computes the effective temperature for values lower than the threshold. Notice that the
average number of photons in the cavity (in thermal state) is

n̄ =
G

2κ−G
. (4.51)

As a remark, the amplitude of the field is zero; characteristically of the thermal state, the average
photon number instead is non-zero and equal to the fluctuations.

Poisson statistics (well-above threshold)
We now assume that we are well beyond threshold such that n̄� ns and only look at photon
numbers around the average (since we expect a Poisson distribution quite narrow far from the
threshold). We can approximate again:

d pn

dt
=−G [ns pn−ns pn−1]+2κ [(n+1)pn+1−κnpn] . (4.52)

Setting steady state condition, the recursive equation leads to the following solution:

pn = e−n̄ n̄n

n!
, (4.53)

with an average photon number

n̄ =
Gns

2κ
. (4.54)

This is a Poisson distribution made up by the contribution of many coherent states with different
phases.
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Four-level system: Laser linewidth.
The phase of the output light is undergoing a continuous phase diffusion owing to the spontaneous
emission events accompanying the coherent exchanges between excited atoms and the cavity field.
While the Poisson nature indicates that the amplitude of the cavity field stays pretty much stable,
we can derive an equation for the damping of the phase. Let’s first write:

〈a〉= Tr [aρF ] =
∞

∑
n=0
〈n|aρF |n〉=

∞

∑
n=1

√
nρn,n−1. (4.55)

and its derivative

d
dt
〈a〉=

∞

∑
n=1

√
n

d
dt

ρn,n−1. (4.56)

Using the general equation derived above for the laser, one can show (see Scully) that:

d
dt
〈a〉=−G

2

∞

∑
n=1

1/(4ns)−1
1+(2n+1)/(2ns)

ρn,n−1 '−
G
8n̄
〈a〉. (4.57)

We can also look at the laser field spectrum defined as (and using a quantum regression theorem):

S(ω) =
1√
2π

∫
dτ〈a†(τ)a(0)〉e−iωτ = F [n̄e−

G
8n̄τ ] =

n̄

ω2 +
( G

8n̄

)2 . (4.58)

The conclusion is that the laser spectrum is a Lorentzian with a linewidth of

∆ω =
G
8n̄

. (4.59)



5. Cooling of atoms

Up to here we examined fundamental processes between quantized light (photons) and static two
(or more than two) level systems. However, as a photon is emitted or absorbed by an atom a transfer
of momentum occurs modifying its initial motional state. In order to properly account for this we
will supplement the starting Hamiltonian of a TLS in a box containing quantized light with the free
particle Hamiltonian. This allows us then to derive the effect of stimulated absorption/emission
as well as that of spontaneous emission on the atom. The fact that light can have an impact on
the motion of atoms also means that manipulation of its state means of lasers is possible. In a
semiclassical approximation we then exemplify a simple derivation of the cooling force of a TLS
in plane and standing waves. This is known as Doppler cooling. We describe its particularities
including the final achievable temperature. We also shortly review dipole forces (arising from
motion in focused light beams used in optical tweezers) and describe the mechanism for polarization
gradient cooling.

5.1 Light-induced forces.

Let us consider an atom moving in one dimension only (axis y) and quantize its motion (that of
the nucleus) by imposing the commutation relations [ŷ, p̂] = ih̄. In the absence of any confining
potentials or interaction its evolution is described by the kinetic energy operator p̂2/2M. One
can go either in the position or momentum representation to describe the system’s evolution. We
choose (for a good reason) the momentum representation where the basis is given by |p〉 such that
p̂ |p〉= p |p〉 and p̂ |p〉= ih̄∂p |p〉. Notice that in this reciprocal space representation the action the
following action is simply a translation (the proof involves a Taylor expansion)

eikŷ |p〉= |p+ h̄k〉 . (5.1)

Of course the atom, as it has an internal electronic structure will also have the following free
Hamiltonian h̄ωσ†σ . The basis for the Hilbert space just increased as it contains |g, p〉 or |e, p〉.
On top of this the atom is always in contact with the electromagnetic environment. We also assume
a laser drive, which after the Mollow transformation (presented in the first chapter) is included as a



60 Chapter 5. Cooling of atoms

Figure 5.1: An atom is assumed to move in one (quantized) direction y and can be driven with
z-polarized fields. The laser drive is in the positive y direction with momentum k0. Photons can be
spontaneously emitted in all directions meaning that the recoil kicks suffered by the atom can be in
any direction. However, we only quantify the mechanical effect in the direction of interest.

semiclassical term. We fix the direction and magnitude of the laser drive as k0ε̂y, Rabi frequency
Ω` and its frequency ω`. Let’s write the total Hamiltonian:

H =
p̂2

2M
+ h̄ω0σ

†
σ +∑

k
h̄ωka†

kak + h̄Ω`

(
σeiω`te−ik0ŷ +σ

†e−iω`teik0ŷ
)

(5.2)

+∑
k

h̄gk

(
σa†

ke−ikyŷe−i(kxx+kzz)+akσ
†eikyŷei(kxx+kzz)

)
Notice that as we only quantized the motion along the y-axis we write the other two coordinates
without a hat. Also we have assumed that the electronic transition can be excited only by a z-
polarized light field. The total Hilbert space now spans all the momentum states, the ground or
excited for internal electronic states and all the states of the photon field with occupancies from 0
to infinity. However the interesting states are limited to initial states of the form: |p0〉⊗ |g〉⊗ |0〉
or |p0〉⊗ |e〉⊗ |0〉. We basically reproduce the derivation of fundamental light-matter scattering
processes described in the first chapter but considering now the change in the particle’s motion.
First we take the atom in the ground state and compute the final possible states:

H |p0〉⊗ |g〉⊗ |0〉=
p2

0
2M
|p0〉⊗ |g〉⊗ |0〉+ h̄Ω`e−iω`t |p0− h̄k0〉⊗ |e〉⊗ |0〉 (5.3)

We have just deduced that the stimulated absorption process is actually accompanied by a change
of the state of the atom by the photon transferred momentum. Notice that, as expected, the vacuum
states do not play a role in this process. However, when starting in the excited state we will have a
different expression:

H |p0〉⊗ |e〉⊗ |0〉=
(

p2
0

2M
+ h̄ω0

)
|p0〉⊗ |g〉⊗ |0〉+ h̄Ω`eiω`t |p0 + h̄k0〉⊗ |g〉⊗ |0〉 (5.4)

+∑
k

h̄gke−ikyŷe−i(kxx+kzz) |p0− h̄ky〉⊗ |g〉⊗ |0〉 .

The above expression includes terms associated with the stimulated emission showing a change in
the momentum by h̄k0 (opposite in sign to the change acquired with stimulated absorption) and
changes in momentum with the projection on the y-axis of the momentum of the spontaneously
emitted photon h̄ky. Let us now proceed by deriving a fully quantum expression for the force acting
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onto the atom by making use of the Heisenberg equations of motion:

∂t p̂ =iΩ`

(
σeiω`t [e−ik0ŷ, p̂]+σ

†e−iω`t [eik0ŷ, p̂]
)

(5.5)

+∑
k

igk

(
σa†

k[e
−ikyŷ, p̂]e−i(kxx+kzz)+akσ

†[eikyŷ, p̂]ei(kxx+kzz)
)
.

We see that we need to evaluate commutators like [e±ikŷ, p̂]. This we can do by expanding the
exponential

[eikŷ, p̂] =
∞

∑
j=0

(ik) j

j!
[ŷ j, p̂] = 0+

(ik)1

1!
(ih̄)+

(ik)2

2!
2ih̄ŷ+

(ik)3

3!
3ih̄ŷ2 + ...=−h̄keikŷ. (5.6)

Above we have used the general rule that [ŷ j, p̂] = [ŷŷ j−1, p̂] = ŷ[ŷ j−1, p̂]+ [ŷ, p̂]ŷ j−1. For the sign
change in the exponential we obtain a simple sign change in the momentum: [e−ikŷ, p̂] = h̄keikŷ.
Finally we can properly write the equation of motion.

∂t p̂ =ih̄k0Ω`

(
σeiω`te−ik0ŷ−σ

†e−iω`teik0ŷ
)

(5.7)

+∑
k

ih̄kygk

(
σa†

ke−ikyŷe−i(kxx+kzz)−akσ
†eikyŷei(kxx+kzz)

)
.

We obtain two contributions, one from the laser drive and a second one from the vacuum field.

5.2 Doppler cooling

Any light emission or absorption event by an atom is associated with a transfer of momentum
∆p = h̄k = h̄ω/c. If absorption is followed by stimulated emission then the momentum change at
absorption will cancel the momentum change at emission and no net momentum is transfered to
the atom. If absorption is followed by spontaneous emission, as the spontaneously emitted atom,
on average a net momentum change will be obtained. Assuming an atom initially at rest, the recoil
energy can be computed from the acquired kinetic energy (∆p)2/2m. One can then define a recoil
frequency:

h̄ωrec =
(∆p)2

2m
=

(h̄k)2

2m
. (5.8)

For atoms, the value is typically in the range of kHz. To derive the effect of a light field onto
the motion of an atom we will first consider a semiclassical formulation where the atom position
and momentum are classical parameters undergoing some trajectory described by R(t) and P(t).
We will the write a Hamiltonian that has these variables as parameters (so it is a time dependent
Hamiltonian):

HA+F = HA +HV +HA−L +HA−V , (5.9)

separated into free atom Hamiltonian and free vacuum field Hamiltonian,

HA +HV = h̄ωegσ
†
σ +∑

k
h̄ωka†

kak. (5.10)

classical laser-atom interaction (already in the rotating wave approximation)

HA+L = h̄
[
Ω(R)σeiωLt +Ω

∗(R)σ†e−iωLt] , (5.11)
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and quantum vacuum field-atom interaction (also already in the rotating wave approximation)

HA+V = h̄∑
k
(gka†

kσe−ik·R +g∗kakσ
†eik·R). (5.12)

We can derive a semiclassical force operator:

F(R) =−〈∇H〉=−〈∇HA−L〉−〈∇HA−V 〉, (5.13)

stemming from the effect of the laser onto the atom and of the vacuum onto the atom as well. The
vacuum force is a zero average force as one can derive from applying the gradient: ∇eik·R = keik·Rand
summing over alll directions. Let us analyze the laser driving induced force which is

−〈∇HA−L〉=−h̄ [∇Ω(R)]〈σ〉eiωLt − h̄ [∇Ω
∗(R)]〈σ†〉e−iωLt . (5.14)

The averages that we have to compute are simply the density matrix elements ρeg,ρge (coherences)
in the fast rotating frame. We can reexpress

F(R) =−2h̄ℜ
[
∇Ω(R)ρegeiωLt] . (5.15)

Let us assume that the atom is driven by a plane wave with k = kẑ propagating from left to right.
The electric field assumed polarized in the x̂ direction is a sum of positive and negative frequency
terms: a plane wave with the electric field:

E(R, t) = E(+)(R, t)+E(−)(R, t) = E0e−iωLteik·Rx̂+E0eiωLte−ik·Rx̂ = (5.16)

= 2E0x̂cos(k ·R−ωLt) = 2E0 cos(kz−ωLt). (5.17)

We aim at computing the semiclassical force expression from the expression above with Ω(R)
replaced by Ωeikz. We immediatily see that

F(z) =−2h̄kΩℜ

[
ρegeikzeiωLt

]
ẑ (5.18)

5.2.1 Modified Bloch equations
We have previously derived a set of Bloch equations for static atoms. Now the driving Hamiltonian
has a position dependence on theR function:

HA+L = h̄Ω

[
σe−ikzeiωLt +σ

†eikze−iωLt
]
, (5.19)

It is easy to compute the modified Bloch equations in the original frame (making no transformations
yet)

d
dt

ρee =−γρee− iΩ
[
e−iωLteikz

ρge− eiωLte−ikz
ρeg

]
, (5.20)

d
dt

ρeg =−
γ

2
ρeg− iωegρeg + iΩeikze−iωLt (ρgg−ρee) . (5.21)

We see that in order to eliminate the time dependence we will have to transform to a slow moving
frame by removing the laser frequency: ρeg = ρ̃ege−iωLt . With∆ = ωeg−ωL we have

d
dt

ρ̃ee =−γρ̃ee− iΩ
[
eikz

ρ̃ge− e−ikz
ρ̃eg

]
, (5.22)
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d
dt

ρ̃eg =−
γ

2
ρ̃eg− i∆ρ̃eg + iΩe−ikz (ρ̃gg− ρ̃ee) . (5.23)

We will now assume that the atom is instanteneously performing a linear motion with constant ve-
locity such that z = vt. The terms eikz = eikvt give time dependence which we again can eliminate via
the usual transformation ρ̃eg = ρ̄egeikvt so that ρeg = ρ̄ege−ikvte−iωLt or inversely ρ̄eg = ρegeikvteiωLt

d
dt

ρ̄ee =−γρ̄ee− iΩ [ρ̄ge− ρ̄eg] , (5.24)

d
dt

ρ̄eg =−
γ

2
ρ̄eg− i(∆− kv) ρ̄eg + iΩe−ikz (ρ̄gg− ρ̄ee) . (5.25)

If we look at the new detuning appearing above ∆− kv = ωeg−ωL− kv we notice that this simply
shows a Doppler shifting effect. In other words, when the atom is moving away from the laser, it
looks as if the laser has a lower frequency by the quantity kv.

5.2.2 Steady state
Let us look at the steady state of the system. We set the derivatives to zero and remember that
ρ̄gg + ρ̄ee = 1. We then get (see Lecture 3)

ρ̄eg =−
γΩ/2

γ2/4+(∆− kv)2 +2Ω2
− i

∆Ω

γ2/4+(∆− kv)2 +2Ω2
. (5.26)

We only need the real part of this expression and obtain the optically induced force as:

F(z) = h̄k
γΩ2

γ2/4+(∆− kv)2 +2Ω2
ẑ. (5.27)

Notice that for an atom at rest the force is positive and has a maximum value of 2h̄k/γ (in the limit
of high pumping power). The origin of the force is in absorption-spontaneous emission cycles
where a momentum h̄k can be imparted to the atom and not compensated by the stimulated emission
−h̄k imparted momentum. In the limit Ω� γ and kv� ∆we can expand the force:

F(z) = h̄k
γΩ2

γ2/4+(∆− kv)2 ẑ'

{
h̄k

γΩ2

γ2/4+∆2 + h̄k
γΩ2k∆

[γ2/4+∆2]2
v

}
ẑ = (F0 +βv) ẑ. (5.28)

The first one is a constant force while the second gives rise to friction as it is proportional to the
velocity and it changes sign as the detuning is changed. Notice that changing the direction of the
laser propagation corresponds to a sign flip of k resulting in:

F(z) = (−F0 +βv) ẑ. (5.29)

5.3 Force experienced in standing waves

We now assume two counterpropagating waves making up a standing wave. We can then write at
the position of the atom (for a sum of waves coming from the left and from the right):

E(R, t) = E(+)
L (R, t)+E(+)

R (R, t)+E(−)
L (R, t)+E(−)

R (R, t) = (5.30)
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= E0e−iωLteik·R +E0e−iωLte−ik·R +E0eiωLteik·R +E0eiωLte−ik·R = 2E0 cos(k ·R)e−iωLt +2E0 cos(k ·R)eiωLt =
(5.31)

= 4E0 cos(k ·R)sin(ωLt). (5.32)

As above we restrict to the z direction and replace Ω(R) replaced by Ωcos(kz). We immediatily
see that

F(z) =−2h̄kΩℜ
[
ρeg sin(kz)eiωLt] ẑ. (5.33)

One has therefore to rederive the Bloch equations and their solution for the two waves. However, as
intuition also dictates, in the limit of low intensity the interference between the two waves vanishes
and the total force is simply the sum of the forces of two counterpropagating waves:

Fstanding(z) = (F0 +βv) ẑ+(−F0 +βv) ẑ = 2βvẑ. (5.34)

The net effect is that an atom can be cooled with a damping rate

β = h̄k2 γΩ2∆

[γ2/4+∆2]2
. (5.35)

The maximum cooling rate (for negative detunings so that the rate is negative) occurs at ∆ =
−γ/(2

√
3) and equals:

βmax =−h̄k2 6
√

3Ω2

γ2 . (5.36)

We can write an equation of motion for the momentum:

ṗ =−2β

m
p. (5.37)

The solution is an exponential decay of the momentum to zero:

p(t) = p(0)e−
2β

m t . (5.38)

The cooling rate is:

2β

m
=

h̄k2

2m
4γΩ2∆

[γ2/4+∆2]2
= ωrec

4γΩ2∆

[γ2/4+∆2]2
. (5.39)

Remembering that we asked for the pump to be weak with respect to the decay rate, even at optimal
detuning, the cooling rate is limited by the recoil frequency, thus in the range of kHz.

5.3.1 Final temperature
To obtain the final temperature of the cooled atoms one has to model the random kicks obtained
from spontaneous emission. They lead to a diffusion process which limits the final achievable
temperature or in other words leaves the atom in a state with momentum uncertainty characterized
by (∆p)2/(2m) = kBT/2. For a simple justification of the origin of the diffusion process let us go
back to the starting point of our derivation and start again with the full Hamiltonian
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HA+F = HA +HV +HA−L +HA−V , (5.40)

but this time we add the kinetic energy operator in the z direction

HA +HV =
p̂2

2m
+ h̄ωegσ

†
σ +∑

k
h̄ωka†

kak. (5.41)

We have assumed a single direction of interest z with a quantized momentum p. Now we don’t take
the classical limit but directly derive Heisenberg equations of motion for the momentum operator:

˙̂p =
i
h̄
[H, p̂] =

i
h̄
[HA−L, p̂]+

i
h̄
[HA−V , p̂]. (5.42)

The first term will lead to commutators like

i
h̄
[HA−L, p̂] = i [Ω(z), p̂]σeiωLt + i [Ω∗(z), p̂]σ†e−iωLt . (5.43)

Let us assume that the driving is with a plane wave. Then, using[
e±ikLz, p̂

]
=±h̄ke±ikLz, (5.44)

the first component of the force will lead to:

i
h̄
[HA−L, p] =−h̄kLΩσe−ikLzeiωLt − h̄kLσ

†e+ikLze−iωLt . (5.45)

which is quantum version of the classically derived force in the first section. The last term and
quantum vacuum field-atom interaction (also already in the rotating wave approximation)

i
h̄
[HA−V , p] = i∑

k
(gka†

kσ

[
e−ikzz, p

]
+g∗kakσ

†
[
eikzz, p

]
) =−∑

k
h̄kz(gka†

kσe−ikzz +g∗kakσ
†eikzz).

(5.46)

The final equation is a Langevin type which can be written as:

ṗ =− f (p)+ζ (t), (5.47)

with

pin =−∑
k

h̄kz(gka†
kσe−ikzz +g∗kakσ

†eikzz), (5.48)

a zero-average stochastic operator with correlations:

〈ζ (t)ζ (t ′)〉= 〈∑
k

h̄kz(gka†
kσe−ikzz +g∗kakσ

†eikzz)∑
k

h̄k′z(gk′a
†
k′σ(t ′)e−ik′zz +g∗kakσ

†(t ′)eik′zz)〉=

(5.49)

= ∑
k

h̄2k2
z |gk|2〈σ†(t)σ(t ′)〉. (5.50)

One has to perform the sum over all directions of the emitted photon and then obtain a result:

〈ζ (t)ζ (t ′)〉= Dδ (t− t ′). (5.51)
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In general D depends on a few factors especially on the excited state population. However, the
expression can be greatly simplified in the optimal cooling regime:

D =
h̄ωrecγ

2
. (5.52)

We will now use the previously derived result and write an effective equation for

〈ζ (t)ζ (t ′)〉= Dδ (t− t ′). (5.53)

The equation of motion for the momentum has now damping and diffusion

ṗ(t) =−2β

m
p(t)+ζ (t), (5.54)

and we will consider in the following the scenario where the damping is optimal such that −2β

m '
ωrec.The formal solution is

p(t) = p(0)e−ωrect +

t∫
0

dt ′e−ωrec(t−t ′)
ζ (t ′). (5.55)

We will only look in the long time limit t� ω−1
rec where 〈p(t)〉= 0 and

〈p2(t)〉=
t∫

0

dt ′
t∫

0

dt ′′e−ωrec(t−t ′)e−ωrec(t−t ′′)〈ζ (t ′)ζ (t ′′)〉= (5.56)

= D
t∫

0

dt ′e−2ωrec(t−t ′) =
[
De−2ωrect] 1− e2ωrect

2ωrec
' D

2ωrec
. (5.57)

In consequence the final variance of kinetic energy will be

〈 p2

2m
〉= D

2ωrec
=

h̄γ

4
. (5.58)

This can be expressed as an effective temperature by assuming that the equipartition theorem applies
and the system is in thermal equilibrium 〈 p2

2m〉= kBTe f f /2 such that

Te f f =
h̄γ

2kB
. (5.59)

5.4 Semiclassical gradient forces (trapping in focused beams)
Let us consider now a focused light beam propagating into the z direction and with a strong variation
along the transverse (x,y) coordinates. We can compute the force in the transverse direction as:

F(x,y) =−2h̄ℜ
[
∇⊥Ω(x,y)ρegeiωLt] . (5.60)

We can use the result computed above

ρ̄eg =−
γΩ(x,y)/2

γ2/4+(∆− kv)2 +2Ω(x,y)2
− i

∆Ω(x,y)

γ2/4+(∆− kv)2 +2Ω(x,y)2
, (5.61)
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in the limit Ω(x,y)� γ and assuming small velocities, we can derive

F(x,y) =− 2h̄∆

γ2/4+∆2 ∇⊥Ω
2(x,y). (5.62)

Let’s see what happens for a Gaussian beam with a minimum at x = 0,y = 0 :

Ω(x,y) = Ω0e−(x
2+y2)/w2

. (5.63)

The gradient gives:

∇⊥Ω
2(x,y) =

−2
w2 Ω

2
0e−(x

2+y2)/w2
(xx̂+ yŷ) =

−2
w2 Ω

2(x,y) (5.64)

so that the force is

F(x,y) =
2h̄∆

γ2/4+∆2
−2
w2 Ω

2(x,y)(xx̂+ yŷ) . (5.65)

By adjusting the sign of the detuning, the force can push the incoming atoms towards the center
of the focused beam thus providing a means for trapping them (assuming some loss of energy
allowing for trapping occurse at the same time).

5.5 Polarization gradient cooling
We have see above that the limit in Doppler cooling is the spontaneous emission rate. This is
typically in the MHz regime. One can however, go below that, to the recoil limit by assuming
that the two counterpropagating waves have oposite polarizations and that the atom is a three level
lambda-system where each transition can only be driven by a given polarization.

5.6 Other cooling techniques

5.7 Exercises





6. Cavity optomechanics

We start by deriving the relations between the noise spectrum and the damping rate and occupancy
number for a good macroscopic mechanical oscillator (large quality factor) in the presence of a
quantized thermal bath. We then describe the coupling of a cavity mode to the vibrations of a mirror
or membrane in a standard optomechanical scenario. Classical considerations based on the transfer
matrix approach are used to derive the modification of the cavity resonances in the presence of small
resonator displacements. The full quantum model is then analyzed in a quantum Langevin equations
picture and fundamental concepts such as optomechanical cooling in the resolved sideband limit
derived and discussed.

6.1 A macroscopic quantum oscillator in thermal equilibrium

Assume a macroscopic quantum oscillator of frequency ωm in thermal equilibrium with the envi-
ronment at some temperature T . We can write a set of Langevin equations to describe the dynamics
of the oscillator (in terms of dimensionless quadratures):

q̇ = ωm p, ṗ =−γm p−ωmq+ζ (t). (6.1)

Remember from exercise 1 that the dimensionless quadratures are defined by the following renor-

malizations px = p
√

mh̄ω = ppzpm and x = q
√

h̄
mω

= qxzpm. The zero point motion xzpm simply

gives the spatial extent of the wavepacket in the ground state (around 10−15m for micro-to nanogram
oscillators), while the zero-point momentum is pzpm = h̄/xzpm. The model includes a noise terms
responsible for thermalization and damping at rate γm. The correlations (in the time domain) are:

〈ζ (t)ζ (t ′)〉= γm

ωm

∞∫
−∞

dωe−iω(t−t ′)
ω

[
coth

h̄ω

2kBT
+1
]
=

1
2π

∞∫
−∞

dωe−iω(t−t ′)Sth(ω), (6.2)

where the thermal spectrum of the stochastic force has been denoted by Sth(ω). We will assume in
the following two things: 1) the oscillator is a very good one such that γm� ωm and 2) h̄ωm� kBT
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such that x = h̄ωm/(2kBT )� 1. One can then make the following approximation:

coth
h̄ω

2kBT
=

ex + e−x

ex− e−x =
e2x +1
e2x−1

' 2+2x
2x

= 1+
1
x
. (6.3)

Now notice that the average occupancy is

n̄ =
1

e2x−1
' 1

2x
, (6.4)

such that we can approximate the thermal noise spectrum at ±ωm as:

Sth(ωm) = γm
ωm

ωm

[
coth

h̄ωm

2kBT
+1
]
= γm

ωm

ωm

[
1+

1
2x

+1
]
= 2γm (n̄+1) , (6.5a)

Sth(−ωm) = γm
−ωm

ωm

[
coth
−h̄ωm

2kBT
+1
]
=−γm

[
−1− 1

2x
+1
]
= 2γmn̄. (6.5b)

Notice that both the decay rate and the thermal occupancy can be derived from the the thermal
spectrum: First observation is that the spectrum difference at sideband frequencies indicates the
decay rate:

γm =
Sth(+ωm)−Sth(−ωm)

2
and n̄ =

Sth(−ωm)

2γm
. (6.6)

Now let’s see what this means. We use the Fourier domain transformations we have introduced in
Lecture 6.

q(ω) = F [q(t)] =
1√
2π

∫
dtq(t)e+iωt , q(t) =

1√
2π

∫
dωq(ω)e−iωt . (6.7)

First we will analyze the properties of the noise in the Fourier domain:

〈ζ (ω)ζ (ω ′)〉= 1
(2π)2

∫
dt
∫

dt ′
∞∫
−∞

dω
′′e−iω ′′(t−t ′)Sth(ω

′′)e+iωte+iω ′t ′ = Sth(ω)δ (ω +ω
′).

(6.8)

We will use the property that the Fourier transform of a derivative is F [q̇(t)] = −iωq(ω) and
correspondingly transform the equations of motion:

−iωq(ω) = ωm p(ω), (6.9a)

−iω p(ω) =−γm p(ω)−ωmq(ω)+ζ (ω). (6.9b)

We can the write an effective equation for the position quadrature in terms of the mechanical
susceptibility

q(ω) = ε(ω)ζ (ω), with ε(ω) =
ωm

ω2
m−ω2− iγmω

. (6.10)

One can now compute the variance of the quadrature in steady state:

〈q2(t)〉= 1
2π

∫
dω

∫
dω
′〈q(ω)q(ω ′)〉e−iωte−iω ′t =

1
2π

∫
dω|ε(ω)|2Sth(ω). (6.11)
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Notice that the susceptibility function is sharply peaked at ±ωmand also that
∫

∞

0 dω|ε(ω)|2 =
π/(2γm). This allows us to simply estimate the slowly varying function of the spectrum at the ±ωm

leading to

〈q2(t)〉= 1
4γm

(Sth(−ωm)+Sth(+ωm)) = n̄+
1
2
. (6.12)

Similarly one has

〈p2(t)〉= n̄+
1
2
, (6.13)

fulfilling the equipartition theorem. Of course this is what we would have guessed from the
beginning imposing that in steady state, under thermal equilibrium, the equipartitition theorem
holds and one would have 〈q〉= 〈p〉= 0 and 1/2

[
〈q2(t)〉+ 〈p2(t)〉

]
= n̄+1/2.

6.2 Transfer matrix approach to optomechanics

A given resonance of a cavity of length ` is given by

ω0 =
2πc

2`/m
=

πc
`

m, (6.14)

and its variations with respect to small cavity changes would lead to

ω(δx) =
πc

`+δx
m' πc

`
m(1− δx

`
) = ω0(1−

δx
`
). (6.15)

A direct naive Hamiltonian for the optomechanical interaction can be directly derived as:

H = h̄ω0(1−
δx
`
)a†a+

h̄ωm

2
(q2 + p2). (6.16)

Writing δx = xzpmq the effective optomechanical coupling is

gOM = h̄
ω0xzpm

`
. (6.17)

The full radiation pressure optomechanical Hamiltonian becomes then:

H = h̄ω0a†a+
1
2
(q2 + p2)+ h̄gOMa†aq. (6.18)

6.2.1 Transfer matrix for end-mirror
The naive approach can be supplemented by a more rigourous approach based on cascaded transfer
matrix multiplications

M(k,δx) =
[

1+ iζ iζ
−iζ 1− iζ

][
eik(`+δx) 0

0 e−ik(`+δx)

][
1+ iζ iζ
−iζ 1− iζ

]
. (6.19)

Looking at the matrix element giving the amplitude transmission coefficient we get:

t(k,δx) =
1

ζ 2eik(`+δx)+(1− iζ )2e−ik(`+δx)
. (6.20)
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Imposing the resonance condition for the static case with δx = 0 we find the system resonances
where the denominator is exactly unity. We can then write

ζ
2eik0`+(1− iζ )2e−ik0` = 1. (6.21)

Neglecting terms involving the product of small variations δkδx, we can expand

eik(`+δx) = eik0`ei`δkeik0δx ' eik0`(1+ i`δk)(1+ ik0δx)' eik0` [1+ i(`δk+ k0δx)] . (6.22)

Lets rewrite the denominator using this expansion

t−1(k,δx) = ζ
2eik0`+(1− iζ )2e−ik0`+ i

[
ζ

2− (1− iζ )2](`δk+ k0δx). (6.23)

The first terms gives unity and we ask for the second term to vanish in order to reach the modified
resonance. This gives a very simple result:

δk
δx

=−k0

`
, (6.24)

which one immediately sees to coincide with the prediction of the naive approach previously used.

6.2.2 Transfer matrix for membrane-in-the-middle approach
The naive approach however does not help us for deriving the proper optomechanical interaction
of a membrane-in-the-middle setup. We have to properly write the transfer matrices and compute
the resonance changes with respect to small variations of the membrane’s position around the
equilibrium. Let us write the whole matrix as:

M(k,x) =
[

1+ iζ iζ
−iζ 1− iζ

][
eiφ1 0
0 e−iφ1

][
1+ iζm iζm

−iζm 1− iζm

][
eiφ2 0
0 e−iφ2

][
1+ iζ iζ
−iζ 1− iζ

]
.

(6.25)

We have assumed the membrane to have a susceptibility ζm and the two phases accumulated during
the evolution of the field between the left mirror and the membrane and the membrane to the right
mirror are φ1,2such that φ1 +φ2 = k` and φ1−φ2 = 2kx. Multiplying we obtain:

t(k,x) =
1

(1+ iζm)ζ 2eik`+2ζ ζm(1− iζ )cos(2kx)+(1− iζm)(1− iζ )2e−ik` . (6.26)

The resonance depend on the positioning of the membrane inside the cavity. Let us assume a fixed
position and variations around it x0 +δx leading to changes in the resonance k0 +δk. Rewriting
the denominator

t−1(δk,δx) = (1+ iζm)ζ
2eik0`+2ζ ζm(1− iζ )cos(2k0x0)+(1− iζm)(1− iζ )2e−ik0`

(6.27)

+ eik0`(1+ iζm)ζ
2(i`δk)+2ζ ζm(1− iζ )(2sink0x0)(x0δk+ k0δx)

+ e−ik0`(1− iζm)(1− iζ )2(−i`δk).

We now set the first part (the unperturbed resonance condition) to unity and ask for the second part
to vanish.[

(1+ iζm)ζ
2eik0`− (1− iζm)(1− iζ )2e−ik0`

]
i`δk+ (6.28)

2ζ ζm(1− iζ )(2sink0x0)(x0δk+ k0δx) = 0. (6.29)

Working it out a bit we get

δk
δx

=
2ζmk0 sin2k0x0

`(cosk0`−ζm sink0`)−2x0ζm sin2k0x0
. (6.30)
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6.3 Quantum cavity optomechanics

Having derived a model for the optomechanical interaction, let us see the effect of a driven cavity
onto the mechanical resonator. We start with the Hamiltonian

H = h̄ω0a†a+ h̄
ωm

2
(q2 + p2)− h̄gOMa†aq− ih̄η(aeiωLt −a†e−iωLt), (6.31)

to which we add dissipation as a Lindblad term at rate κ for the optical mode and via the correlations
described above for the mechanical resonator. We will work the dynamics in the Langevin equations
formalism. We get the following equations of motion including noise in the momentum and the
cavity field operator:

q̇ = ωm p, (6.32a)

ṗ =−γm p−ωmq+gOMa†a+ζ (t). (6.32b)

ȧ =−(κ + i∆0)a+ igOMaq+η +
√

2κain, (6.32c)

where ∆0 = ω0−ωL.

Steady state solution

We can first solve the steady state problem by expanding a = α +δa, q = qs +δq and p = ps +δ p.
From the steady state equations (of course we took an average that canceled all the zero-average
noises and fluctuation terms)

0 = ωm ps, (6.33a)

0 =−γm ps−ωmqs +gOM|α|2, (6.33b)

0 =−(κ + i∆0)α + igOMαqs +η , (6.33c)

we derive

ps = 0, (6.34a)

qs =
gOM

ωm
|α|2, (6.34b)

α

[
κ + i

(
∆0−

g2
OM

ωm
|α|2

)]
= η . (6.34c)

The last equation can have more than one solution. It gives rise to bistability. Let us assume a
steady state solution exists with α and qsnon-zero and we compactly write the detuning

∆ = ∆0−
g2

OM
ωm
|α|2. (6.35)

Linearized Langevin equations (for fluctuation operators)

We can now write equations for the fluctuations

δ̇q = ωmδ p, (6.36a)
˙δ p =−γmδ p−ωmδq+G(δa† +δa)+ζ (t). (6.36b)

δ̇a =−(κ + i∆)δa+ iGδq+
√

2κain, (6.36c)
˙δa† =−(κ− i∆)δa†− iGδq+

√
2κa†

in. (6.36d)
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One way to proceed with solving the set of equations is to transform them into the Fourier domain:

−iωδq = ωmδ p, (6.37a)

−iωδ p =−γmδ p−ωmδq+G(δa† +δa)+ζ (ω), (6.37b)

−iωδa =−(κ + i∆)δa+ iGδq+
√

2κain, (6.37c)

−iωδa† =−(κ− i∆)δa†− iGδq+
√

2κa†
in. (6.37d)

More compactly, we have a modified version of the Fourier domain response of the mechanical
position operator:

δq(ω) = εm(ω)
[
G(δa† +δa)+ζ (ω)

]
, (6.38)

with the mechanical susceptibility

εm(ω) =
ωm

ω2
m−ω2− iγmω

. (6.39)

One should understand the equation above as a competition between two noise terms: i) from the
thermal environment and ii) via the cavity mode. Expressing the cavity operators:

[(κ + i∆)− iω]δa = iGδq+
√

2κain, (6.40a)

[(κ− i∆)− iω]δa† =−iGδq+
√

2κa†
in, (6.40b)

and with notation:

ε f (ω) =
1

i(∆−ω)+κ
, (6.41)

we can write in simplified fashion:

δa(ω) = ε f (ω)
[
iGδq+

√
2κain

]
, (6.42a)

δa(ω) = ε
∗
f (−ω)

[
−iGδq+

√
2κa†

in

]
. (6.42b)

Plugging it back in the equation for the mechanical position:{
ε
−1
m (ω)− iG2 [

ε f (ω)− ε
∗
f (−ω)

]}
δq =

√
2κG

[
ε f (ω)ain + ε

∗(−ω)a†
in

]
+ζ (ω). (6.43)

We have an effective modified susceptibility and an effective input noise. Let us analyze the
susceptibility first:

ε̄
−1
m = ε

−1
m (ω)− iG2 [

ε f (ω)− ε
∗
f (−ω)

]
(6.44)

=
1

ωm

[
ω

2
m−ω

2− iγmω− iG2
ωm

[
1

i(∆−ω)+κ
− 1
−i(∆+ω)+κ

]]
=

1
ωm

[
ω

2
m−ω

2− iγmω− iG2
ωm

[
i(∆−ω)+κ

(∆−ω)2 +κ2 −
−i(∆+ω)+κ

(∆+ω)2 +κ2

]]
=

1
ωm

[
ω

2
m−ω

2− iγmω− iG2
κωm

[
1

(∆−ω)2 +κ2 −
1

(∆+ω)2 +κ2

]]
+

+G2
ωm

[
(∆−ω)

(∆−ω)2 +κ2 +
(∆+ω)

(∆+ω)2 +κ2

]
.

The imaginary term gives a renormalization of the damping rate. Evaluating at the mechanical
frequency we get:

Γopt = G2
κ

[
1

(∆−ωm)2 +κ2 −
1

(∆+ωm)2 +κ2

]
. (6.45)

The real term is a renormalization of the mechanical frequency (optical spring effect) and it’s
typically small unless the oscillator is slow.
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Perturbative approach
Taking the approach sketched in the first section, we can simply find all the properties of the
oscillator in steady state by analyzing the correlations of the noise. Let us denote by

Fopt(ω) =
√

2κG
[
ε f (ω)ain + ε

∗(−ω)a†
in

]
, (6.46)

the optical zero average Langevin force stemming from the optical field action onto the resonator.
The correlations are straightforward to compute

〈Fopt(ω)Fopt(ω
′)〉= 2κG2

ε f (ω)ε∗(−ω
′)〈ain(ω)a†

in(ω
′)〉= 2κG2|ε f (ω)|2δ (ω +ω

′).
(6.47)

We then simply have to compute the spectrum at the sidebands:

Sopt(±ωm) = 2κG2|ε f (±ωm)|2, (6.48)

and we can write the optical damping term as:

Γopt =
Sopt(ωm)−Sopt(−ωm)

2
=

κG2

κ2 +(ωm−∆)2 −
κG2

κ2 +(ωm +∆)2 . (6.49)

The final temperature can then be written as:

neff =
Sopt(−ωm)+Sth(−ωm)

2(Γopt + γm).
. (6.50)

The resolved sideband regime
Let us assume ωm� κ . We can estimate that the largest damping rate occurs at ∆ = ωm such that

Γopt =
G2

κ
− κG2

κ2 +4ω2
m
' G2

κ
. (6.51)

In the limit that Γopt� γm, the final occupancy is given by

neff =
γmn̄
Γopt

=
n̄

COM
, (6.52)

where we can define an optomechanical cooperativity

COM =
G2

κγm
=

g2
OM

κγm
|α|2. (6.53)
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7. Cooling of trapped ions

We describe dynamics of ions in linear Paul traps. The interaction of internal levels with the
center-of-mass motion allows for indirect cooling of the motion to the vibrational quantum ground
state via a properly detuned laser driving. We extend the treatment to two ions where two normal
modes (center of mass versus relative motion) occur in the trap owing to the intrinsic coupling via
the Coulomb force.

7.1 Radio frequency traps (short summary)
Let us assume a combination of electrodes that gives rise to an effective quadratic potential (in all
directions) of the form:

Φ(x,y,z) =
U
2
(αx2 +βy2 + γz2). (7.1)

Imposing the Laplace equation 4Φ = 0 requires a constraint α + β + γ = 0 which cannot be
fulfilled. This cannot with only positive coefficients α,β ,γ > 0 (which is the condition for having
harmonic trapping in all three directions). Therefore one should consider an additional time-
dependent potential. Typically one assumes a rf driving (frequencies ωrf of the order of MHz) of
the following form:

Φrf(x,y,z) =
Ū
2
(α ′x2 +β

′y2 + γ
′z2)cos(ωrft). (7.2)

Let us consider the motion in the x direction (along the trap axis):

ẍ =−Q
M

∂Φ

∂x
=−Q

M

(
αU +α

′Ū cos(ωrft)
)

x. (7.3)

We make the following notations:

ζ =
ωrft

2
, ax =

4QUα

Mω2
rf
, qx =

2QŪα ′

Mω2
rf

, (7.4)
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with which we can express the equation of motion as a Mathieu differential equation:

d2x(ζ )
dζ 2 +[ax−2qx cos(ωrft)]x(ζ ) = 0. (7.5)

This is an equation with periodic coefficients that allows the following general solution:

x(ζ ) = Aeiβxζ
∞

∑
n=−∞

C2nei2nζ +Be−iβxζ
∞

∑
n=−∞

C2ne−i2nζ = 0. (7.6)

For a linear Paul trap one sets qz = 0 and qx =−qy such that the rf potential is hyperbolic:

Φrf(x,y,z) =
Ū
2
(x2− y2)cos(ωrft). (7.7)

In the lowest order approximation one assumes |ax|,q2
x � 1 and finds an approximate solution:

x(t)≈ 2AC0 cos
(

βx
ωrft

2

)[
1− qx

2
cos(ωrft)

]
. (7.8)

This is periodic motion at a slow frequency:

ωx = βx
ωrf

2
=

√
ax +

q2
x

2
ωrf

2
, (7.9)

with a amplitude modulated by the rf frequency.

7.2 Laser cooling
Let us assume that we have perfect harmonic motion in the x direction and we quantize this motion
via the usual procedure. On top of this we add the internal degrees of freedom for the ion consisting
of two levels resonant to the laser frequency. The laser direction is assumed in the x axis with
wavevector kx̂ and polarization in the z direction (assuming the dipole is also along z polarized. We
can write the usual coupling by stating the complete Hamiltonian in the Schrödinger picture:

H =
p2

x

2M
+

1
2

Mω
2
x x2 + h̄ω0σ

†
σ + h̄Ω

[
e−ikx

σeiωLt + eikx
σ

†e−iωLt
]
. (7.10)

Let us already write the Hamiltonian of the motion in terms of center-of-mass vibrations operators
for creation and destruction of quanta: b and b†and express

px = i(b−b†)

√
mh̄ω

2
= pzpmi

b−b†
√

2
, (7.11)

and

x = (b−b†)

√
h̄

2mω
=

xzpm.√
2

(
b+b†) . (7.12)

The Lamb-Dicke limit
Moreover, we will asumme that the motional state is not too highly excited meaning that

kx� 1. (7.13)

This would basically mean that we ask for the Lamb-Dicke parameter

η = kxzpm/
√

2 =
√

2πxzpm/λ � 1 (7.14)
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and η〈b†b〉 � 1. In such a case we can expand the exponent

e±ikx ' 1± kx = 1±η(b+b†). (7.15)

The total Hamiltonian (now written in a frame rotating at the laser frequency such that ∆ = ωL−ω0)
is now:

H = h̄ωxb†b+ h̄ω0σ
†
σ + h̄Ω

[
σ +σ

†]− ih̄ηΩ
[
σ −σ

†][b+b†] . (7.16)

We’ll denote ω0−ωL = ∆. Let us go back to our previous lecture formulation in terms of
position and momentum and derive an equation with Langevin forces:

q̇ = ωx p, (7.17a)

ṗ =−ωxq+ iηΩ
[
σ −σ

†] , (7.17b)

σ̇ =−(γ + i∆)σ + iΩσz +σin, (7.17c)

σ̇† =−(γ− i∆)σ†− iΩσz +σ
†
in. (7.17d)

We will make a simplification of low driving and replace σz with −1 while considering the noise
terms to be delta correlated: 〈σin(t)σ

†
in(t
′)〉= δ (t− t ′). In steady state we will have

0 = ωx ps, (7.18a)

0 =−ωxqs + iηΩ [β −β
∗] , (7.18b)

0 =−(γ + i∆)β − iΩ, (7.18c)

0 =−(γ− i∆)β + iΩ. (7.18d)

One can now compute

β −β
∗ =

−iΩ
γ + i∆

− iΩ
γ− i∆

=−i
2γΩ

γ2 +∆2 , (7.19)

This leads to

qs =
2γηΩ2

ωx(γ2 +∆2)
. (7.20)

Now we can again compute the spectrum of the force Fopt = ηΩ
[
δσ −δσ†

]
by first going into the

Fourier domain:

δq(ω2−ω
2
x ) = iηΩ

[
δσ −δσ

†] , (7.21a)

δσ(ω) [γ + i(∆−ω)] = σin, (7.21b)

δσ
†(ω) [γ− i(∆−ω)] = σ

†
in. (7.21c)

As in the previous lecture we compute

〈Fopt(ω)Fopt(ω
′)〉= η

2
Ω

2
εion(ω)ε∗(−ω

′)〈σin(ω)σ†
in(ω

′)〉 (7.22)

= 2γη
2
Ω

2|εion(ω)|2δ (ω +ω
′), (7.23)

so that we can state that the spectrum of the Langevin force is:

Sopt(ω) = 2γη
2
Ω

2|εion(ω)|2 = 2γη2Ω2

γ2 +(∆−ω)2 . (7.24)
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Evaluating the sidebands we find:

Γopt = γη
2
Ω

2
[

1
γ2 +(∆−ωx)2 −

1
γ2 +(∆+ωx)2

]
. (7.25)

The final temperature is given by:

n̄ =
Sopt(−ωx)

2Γopt
. (7.26)

In the resolved sideband limit, where γ � ωx, we can assume that Sopt(ωx)� Sopt(−ωx) and

Γopt '
η2Ω2

γ
. (7.27)

The final temperature is then

n̄' γ2

γ2 +4ω2
x
'
(

γ

2ωx

)2

. (7.28)

7.3 Collective ion trap modes

Let’s consider more than one ion inside a trap. On top of the external trapping potential, the ions
also experience a mutual Coulomb force depending on the distance. In the absence of driving (and
for the moment we don’t consider the internal structure) we can therefore write a Hamiltonian (at
the moment classical) for the two ions in the trap:

H1+2 =
p2

1
2M

+
p2

2
2M

+
1
2

Mω
2
x (x

2
1 + x2

2)+
1

4πε0

Q2

|x1− x2|
. (7.29)

Equilibrium

The average distance we will denote by ` = x(0)1 − x(0)2 where the two positions are written with
respect to the origin fixed at the center of the trap. We set the condition for equilibrium by canceling
the force on each ions:

0 = 2Mω
2
x x(0)1 −

1
4πε0

2Q2

`2 , (7.30a)

0 = 2Mω
2
x x(0)2 +

1
4πε0

2Q2

`2 . (7.30b)

We find as a solution:

x(0)1 =−x(0)2 = 3

√
1

4πε0

Q2

4Mω2
x
. (7.31)

Typically this is of the order of a few microns, providing enough separation that ions can be excited
and imaged independently from each other. Notice an useful expression:

Q2

4πε0`3 =
1
2

Mω
2
x . (7.32)
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Normal modes of oscillation
Now we assume small variations of the equilibrium position with x1 = −`/2+ δx1 and x2 =
`/2+δx2. The harmonic term leads to:

1
2

Mω
2
x (x

2
1 + x2

2) =
1
8

Mω
2
x `

2 +
1
2

Mω
2
x (δx2

1 +δx2
2)+

1
2

Mω
2
x `(δx2−δx1). (7.33)

The Coulomb term can be expanded in terms of the small parameter ((δx1−δx2)/`)

1
4πε0

Q2

|x1− x2|
=

Q2

4πε0`

1
1+(δx2−δx1)/`

=
Q2

4πε0`

[
1− δx2−δx1

`
+

(
δx2−δx1

`

)2
]
.

(7.34)

Notice that the linear term can be reexpressed:

Q2

4πε0`

δx2−δx1

`
=

1
2

Mω
2
x `

3 1
`

δx2−δx1

`
=

1
2

Mω
2
x `(δx2−δx1), (7.35)

cancelling the term previously obtained from the purely harmonic trap. Apart from the trivial
energy shifts one gets:

H1+2 =
p2

1
2M

+
p2

2
2M

+
1
2

Mω
2
x
[
δx2

1 +δx2
2 +(δx2−δx1)

2] (7.36)

=
p2

1
2M

+
p2

2
2M

+Mω
2
x
[
δx2

1 +δx2
2−δx2δx1

]
.

Writing equations of motion

ẋ1 =
p1

M
, (7.37a)

ẋ2 =
p2

M
, (7.37b)

ṗ1 =−Mω
2
x (2δx1−δx2), (7.37c)

ṗ2 =−Mω
2
x (2δx2−δx1). (7.37d)

We can simplify to two coupled second order differential equations:

δ̈x1 =−ω
2
x (2δx1−δx2), (7.38a)

δ̈x2 =−ω
2
x (2δx2−δx1). (7.38b)

Assuming solutions of the form A1,2eiωt we are left with the following diagonalization:

(2ω
2
x −ω

2)A1−ω
2
x A2 = 0, (7.39a)

−ω
2
x A1 +(2ω

2
x −ω

2)A2 = 0. (7.39b)

The system has nontrivial solutions only if the multiplying matrix has a zero determinant. In other
words, we have to find the eigenvalues of a simple matrix [{2,−1},{−1,2}] which are 1 and 3.
Finally, we have the two modes of vibration (center-of-mass versus relative motion)

ω = ωx and ω =
√

3ωx (7.40)

and

δxCM =
1√
2
(δx2 +δx1) , and δxRM =

1√
2
(δx2−δx1) . (7.41)
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We could’ve realized from the start, of course, that one can write:

δx2
1 +δx2

2 +(δx2−δx1)
2 =

1
2
[
(δx2 +δx1)

2 +3(δx2−δx1)
2] , (7.42)

which would have given the diagonalized Hamiltonian in terms of CM and RM:

Hharm
1+2 =

p2
CM

2M
+

p2
RM

2M
+

1
2

Mω
2
x δx2

CM +
1
2

M(
√

3ωx)
2
δx2

RM. (7.43)

7.4 Ion trap logic
Red and blue sideband addressing
Let’s look again on a single ion addressing but now in an interation picture:

H = h̄Ω
[
σe−i∆t +σ

†ei∆t]− ih̄ηΩ
[
σe−i∆t −σ

†ei∆t][beiωxt +b†e−iωxt] . (7.44)

We can set the resonance of some processes by playing with the laser frequency. For example, the
blue sideband addressing where ∆ = ωx will lead to the following process being resonant

Hred =−ih̄ηΩ [σb−h.c] . (7.45)

while for ∆ =−ωx we would have

Hblue =−ih̄ηΩ
[
σb†−h.c

]
. (7.46)

Let us assume we are in a state |g,n〉 (see Figure above). From here we either cycle up to |e,n〉
and back down to |g,n〉 via the driving which is uncoupled to motion or up to |e,n−1〉 via Hblue or
up to |e,n+1〉 via Hred . The uncoupled driving could be followed by decay back into |g,n〉 which
means nothing happened except some recoil kick. The driving to |e,n−1〉 followed by decay into
|g,n−1〉mean effective cooling of the motion. This is the process which we try to optimize via
detuning of the laser below the atomic frequency.

7.4.1 Two qubit gate: Controlled NOT gate (CNOT gate)
This is a gate acting on 2 qubits placing one in control of the state of the other one. If the first qubit
is in 0 nothing happens to the other one. If the first qubit is in state 1 then a negation of the second
one occurs. In matrix form one writes it as:

CNOT =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 (7.47)

Let’s first write the two qubit state as:

|00〉 ≡


0
0
0
1

 and |01〉 ≡


0
0
1
0

 and |10〉 ≡


0
1
0
0

 and |11〉 ≡


1
0
0
0

, (7.48)

and check the action of the gate:

CNOT|00〉=


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0




0
0
0
1

=


0
0
0
1

= |00〉, (7.49)
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CNOT|01〉=


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0




0
0
1
0

=


0
0
1
0

= |01〉, (7.50)

CNOT|10〉=


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0




0
1
0
0

=


1
0
0
0

= |11〉, (7.51)

CNOT|11〉=


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0




1
0
0
0

=


0
1
0
0

= |10〉. (7.52)

7.4.2 Two qubit gate with trapped ions
The conditional operation is allowed by the common interaction of the two qubits with the phonon
bus. One prepares the phonon is the ground state |0〉and applies three steps:

(1) map the internal state of one ion to the motion of an ion string,
(2) to flip the state of the target ion conditioned on the motion of the ion string,
(3) to map the motion of the ion string back onto the original ion.

CNOT = R(
π

2
,0)Rblue (π,

π

2
)Rblue (π/

√
2,0)Rblue (π,

π

2
)Rblue (π/

√
2,0)Rblue (π/2,π)

(7.53)
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8. Collective effects:super/subradiance

8.1 Master equation for coupled systems

8.2 Subradiance and superradiance

8.3 Exercises





9. Interaction of light with molecules

9.1 The Holstein Hamiltonian for vibronic coupling
Let us justify the form of the Holstein Hamiltonian by following a first-principle derivation for a
single nuclear coordinate R of effective mass µ . We assume that, along the nuclear coordinate, the
equilibria for ground (coordinate Rg, state vector |g〉) and excited (coordinate Re and state vector
|e〉) electronic orbitals are different. Notice that, for the simplest case of a homonuclear diatomic
molecule made of nuclei each with mass m, a single vibrational mode exists corresponding to the
relative motion mode with effective mass µ = m/2; the equilibria coordinates Rg and Re correspond
to the bond length in ground/excited states. Assuming that both the ground and the excited state
have the same parabolic shape around the minima (with second derivative leading to a vibrational
frequency ν) one can write the total Hamiltonian:

H =

[
ωegae +

p2

2µ
+

1
2

µν
2 (R−Re)

2
]

σ
†
σ +

[
p2

2µ
+

1
2

µν
2 (R−Rg)

2
]

σσ
†. (9.1)

Notice that the Hamiltonian is written in a Hilbert space spanning both electronic dynamics (via
the Pauli operators) and mechanical dynamics. Introducing small oscillations around the equilibria
Q = R−Rg and subsequently R−Re = Q+Rg−Re =: Q−Rge we obtain

H =
P2

2µ
+

1
2

µν
2Q2 +ωegaeσ

†
σ −µν

2QRgeσ
†
σ +

1
2

µν
2R2

geσ
†
σ . (9.2)

The last term is a renormalization of the bare electronic transition frequency energy (absent in
some theoretical treatments) which will naturally go away when diagonalizing the Hamiltonian
via the polaron transformation resulting in ωegae as the natural electronic transition. We can now
rewrite the momentum and position operators in terms of bosonic operators Q = rzpm(b† + b),
P = ipzpm(b†− b) by introducing the zero-point-motion rzpm = 1/

√
2µν and pzpm =

√
µν/2.

Reexpressing the terms above via the Huang-Rhys factor λ = µνRgerzpm yields the Holstein-
Hamiltonian

H = νb†b+(ωe +λ
2
ν)σ†

σ −λν(b† +b)σ†
σ . (9.3)
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One can bring this Hamiltonian into diagonal form νb†b+ωeσ†σ via the polaron transformation
U† = Dσ†σ where the displacement is defined as D = exp(−i

√
2λ p) = exp[λ (b† − b)] with

the dimensionless momentum quadrature p = i(b† − b)/
√

2 as generator (we also define the
dimensionless position quadrature q = (b† +b)/

√
2). Notice that the polaron transformation also

removes the vibronic shift of the excited state.

9.1.1 The polaron transformation
This Hamiltonian is not diagonal. Let’s compute it’s matrix elements:

〈e,m|H0|g,n〉= 0, (9.4)

but

〈g,m|H0|g,n〉= h̄νnδmn (9.5)

and

〈e,m|H0|e,n〉= h̄νnδmn + h̄ωegaeδmn + h̄λν

[√
nδmn−1 +

√
n+1δmn+1

]
. (9.6)

So it can mix vibrational levels in the electronic excited orbital. We will perform a polaron
transformation with

S = λ (b†−b)σ†
σ (9.7)

such that S† = −S and the operation eS is unitary. Notice that this is simply a coherent state
displacement operator with the particularity that it only displaces vibrational states in the excited
electronic manifold. Of course, the displacement is also an operator instead of a c-number. First
notice that it comutes with the population operator so that it leaves the following term unchanged:

h̄ωegaeeS
σ

†
σe−S = h̄ωegaeσ

†
σ . (9.8)

Using the displacement rules that we have listed in Exercises 1 when looking at the coherent states,
we have

eSb†e−S = b†−λσ
†
σ and eSbe−S = b−λσ

†
σ . (9.9)

Then we can work out

h̄νeSb†be−S = h̄ν(b†−λσ
†
σ)(b−λσ

†
σ) = h̄νb†b+λ

2h̄νσ
†
σ −λ h̄ν(b+b†)σ†

σ

(9.10)

h̄λνeS(b+b†)σ†
σe−S = h̄λν(b+b†−2λσ

†
σ)σ†

σ = λ h̄ν(b+b†)σ†
σ −2λ

2h̄νσ
†
σ

(9.11)

Putting it all together we get the Hamiltonian

H̄ = eSH0e−S = h̄(ωegae−λ
2
ν)σ†

σ + h̄νb†b, (9.12)

in diagonal form in the new picture.
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9.1.2 Transition strengths
We would like to know how the absorption and emission spectra of such a simple diatomic molecule
look like. To this end we add a driving term:

Hd = h̄η(σeiωegaLt +σ
†e−iωegaLt). (9.13)

and see how it looks like in the new picture (let’s assume already an interaction picture where the
new energy levels are ωegae−ωegaL−λ 2ν)

H̄d = h̄η(eS
σe−S + eS

σ
†eS) = h̄ησeλ (b−b†)+ h̄ησ

†e−λ (b−b†). (9.14)

We can now ask a few questions. For example, assuming a molecule in the ground state |g,0〉driven
by a laser what transitions are possible. For this let’s write:

〈n,e|H̄|g,0〉= h̄η〈n|e−λ (b−b†)|0〉= h̄η〈n||λ 〉coh = h̄ηe−λ 2/2 λ n
√

n!
. (9.15)

We used the following relation: e−λ (b−b†) = eλb†
e−λbe−λ 2/2. Also notice that the operator we used

for the transformation is simply a displacement operator creating a coherent state from the vacuum.
The conclusion is straightforward i.e. the efficiency of the laser excitation depends very much on
the Frank-Condon overlap of the wavefunctions in the ground and excited states. For example, the
zero-phonon line is weakened by a factor e−λ 2/2. The maximum of the absorption spectrum is then
obtained by finding the Fock state with most probability in the Poissonian distribution. For the
emission spectrum let’s analyze

〈n,g|H̄|e,0〉= h̄η〈n|eλ (b−b†)|0〉= h̄η〈n|−λ 〉coh = h̄ηe−λ 2/2 (−λ )n
√

n!
. (9.16)

9.1.3 The branching of the radiative decay rates.
We now transform the Lindblad term

D [σ ,ρ] = σρσ
†− 1

2
(
ρσ

†
σ +σ

†
σρ
)

(9.17)

with the polaron transformation. This leads to

eSD [σ ,ρ]e−S = σeλ (b−b†)
ρ̃σ

†e−λ (b−b†)− 1
2
(
ρ̃σ

†
σ +σ

†
σρ̃
)

(9.18)

Now let us assume non-radiative transitions coming from a Lindblad term:

D [b,ρ] = bρb†− 1
2
(
ρb†b+b†bρ

)
(9.19)

The transformation leads to:

eSD [b,ρ]e−S = (b−λσ
†
σ)ρ̃(b†−λσ

†
σ)− 1

2
(
ρ̃(b†−λσ

†
σ)(b−λσ

†
σ)+(b†−λσ

†
σ)(b−λσ

†
σ)ρ̃

)
=

(9.20)

= bρ̃b†− 1
2
[
ρ̃b†b+b†bρ̃

]
+ (9.21)

λ
2
[

σ
†
σρ̃σ

†
σ − 1

2
[
ρ̃σ

†
σ +σ

†
σρ̃
]]

+ (9.22)

−λ
[
bρ̃σ

†
σ +σ

†
σρ̃b†]+ λ

2
[
ρ̃(b† +b)σ†

σ +(b† +b)σ†
σρ̃
]
. (9.23)
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