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1 Introduction and Newton’s Laws

Dynamics - how things move and interact.
Math model - classical mechanics - good approx.
Need to be more sophisticated for objects which are:
• very small - quantum mechanics
• very fast - special relativity
• very heavy - general relativity.
Math model

1. Physical quantities → math objects

2. Make simplifications

3. Physical laws → equations

4. Solve the equations

5. (Compare results with experiment to see if the model is good.)

Physical laws: Newton’s laws of motion (1665, age 22).

N1: First Law:

Every body remains in a state of rest or in uniform motion in a straight
line unless acted upon by some external force.

N2: Second Law:

The rate of change of momentum of a body is equal to the net force
acting on it. (F = ma, if m constant).

N3: Third Law:

Action and reaction are equal and opposite.
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2 Kinematics

An object (eg. ball, planet,. . . ) is idealized as a point particle (zero size)
with a quantity of matter called mass.
Good approx if size of object � trajectory, and rotation not important.
A point particle has position vector r(t) at time t, given a chosen origin O.
Write down the equation of motion for r(t) (ODE) and solve it to find the
trajectory r(t) ie. a curve in space.

2.1 Definitions

Definitions of some quantities.

velocity

v =
dr

dt
= ṙ

is tangent to the trajectory.
speed, v = |v| ≥ 0, magnitude of the velocity.
momentum, p = mv.
acceleration

a =
dv

dt
= r̈

kinetic energy, T = 1
2mv

2.

2.2 Cartesian coordinates

r = xi + yj + zk
where i, j,k are fixed orthogonal unit vectors ie i · i = 1, i · j = 0, etc, eg.
i = (1, 0, 0).
In mechanics do not write just the components, r = (x, y, z), but include the
basis vectors ie. r = xi + yj + zk.

5



This is because sometimes the basis vectors are not constant, and then we
would get the wrong answer for the velocity if we just differentiated the
components.
If r = αe, then ṙ = α̇e + αė 6= α̇e if ė 6= 0.

eg. r = ti + j + t2k with m = 2.
v = ṙ = i + 2tk, v = |v| =

√
1 + 4t2, p = mv = 2v = 2i + 4tk,

a = v̇ = 2k, T = 1
2mv

2 = (1 + 4t2).

Note: Acceleration can be non-zero even if the speed is constant, since the
direction of the velocity might not be constant.

Given the acceleration at all times and initial position and velocity, the po-
sition can be found by integration.
eg. a = 2k, r(0) = j + k, v(0) = i.
v = 2tk + c, but v(0) = c = i therefore v = 2tk + i.
r = t2k + ti + d, but r(0) = d = j + k, therefore r = (t2 + 1)k + ti + j.

2.3 Polar coordinates and vectors

Consider motion in a plane, using polar coordinates r, θ, where x = r cos θ
and y = r sin θ.
r = xi + yj = r(cos θi + sin θj).
The radial unit vector er is a vector in the direction of r,
er = r

r = cos θi + sin θj.
The tangential unit vector eθ is a vector perpendicular to er, and is
eθ = − sin θi + cos θj, (increasing θ is anti-clockwise).

If the particle is moving then r and θ can depend on time.
ėr = dθ

dt
d
dθer = θ̇(− sin θi + cos θj) = θ̇eθ.

ėθ = dθ
dt

d
dθeθ = θ̇(− cos θi− sin θj) = −θ̇er.

Note: er · er = eθ · eθ = 1 and er · eθ = 0 for all time.

r = rer therefore ṙ = ṙer + rėr = ṙer + rθ̇eθ.
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r̈ = r̈er + ṙėr + ṙθ̇eθ + rθ̈eθ + rθ̇ėθ = (r̈ − rθ̇2)er + (2ṙθ̇ + rθ̈)eθ.

v = ṙer + rθ̇eθ, a = (r̈ − rθ̇2)er + (2ṙθ̇ + rθ̈)eθ.

Eg. Motion in a circle with constant speed
r = ρ with ρ constant.
v = ṙ = ṙer + rθ̇eθ = ρθ̇eθ.
Note that for circular motion v · r = 0 since eθ · er = 0.
v = |v| = |ρθ̇||eθ| = |ρθ̇|.
Hence for constant speed θ̇ = ω with ω constant (choose ω > 0.)
v = ωρ hence ω = v/ρ.

Since θ̇ is constant then θ̈ = 0, so
a = −ρω2er. Hence a = |a| = ρω2 = v2/ρ.
The acceleration is directed radially inwards.
This is called centripetal (centre-seeking) acceleration.
Warning: do not confuse with centrifugal (centre-fleeing) – see later.

2.4 Units and dimensions

Generally use SI units (often drop units altogether).
Mass kg, length m, time s. Remember to convert eg. mins to seconds.

Dimensions are similar to units but more significant.

Quantity Dimension

Mass M

Length L

Time T

Write [mass] = M etc
[velocity] = [ length

time ] = LT−1, [acceleration] = [velocity
time ] = LT−2.

Correct equations must have the same dimensions on each side.
Can check consistency using dimensional analysis.
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Eg. Period of a pendulum
Pendulum of length l and mass m swings under gravity (acceleration due to
gravity g). Its period is 2π

√
l/g. Check this has the correct dimensions

[2π

√√√√ l
g

] =

√√√√√ [l]

[g]
=

√√√√ L

LT−2
= T

.
An expression like mg/l is obviously wrong, since

[mg/l] = MLT−2L−1 = MT−2 6= T.

Can calculate the dimensions of constants in expressions.
Eg. suppose a force is given by κA, where A is the surface area of an object.

[force] = [mass× acceleration] = MLT−2 = [κA] = [κ]L2

hence [κ] = ML−1T−2, so could be given in units of kg/m/s2.

2.5 Relative motion

Figure 1: Relative position

r is the position of an object with respect to a fixed origin O. Let an observer
(possibly moving) have position R. Then the relative position of the object
to the observer is

r̃ = r−R.

Relative velocity ˙̃r = ṙ− Ṙ, relative acceleration ¨̃r = r̈− R̈,
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Eg. Bart is going north (direction j) on his skateboard at 10mph and feels
a headwind of 25mph. What is the windspeed (velocity) relative to the ground?

R is Bart’s position, and r is the position of an air particle.
(Units are miles and hours).
Ṙ = 10j, ˙̃r = −25j = ṙ− Ṙ
ṙ = −25j + 10j = −15j
Windspeed relative to the ground is 15mph southward.

If Bart now goes east at 15mph what wind does he feel?
Ṙ = 15i, ṙ = −15j, so ˙̃r = ṙ− Ṙ = −15j− 15i
| ˙̃r| = 15

√
2, so feels a wind of 15

√
2mph in the direction −(i + j)/

√
2 ie.

southwest.

Centrifugal acceleration
This is a result of viewing centripetal acceleration in rotating coordinates.
Let R be the position of an observer moving in circular motion with radius
ρ and constant speed v eg. child on a roundabout.
R̈ = −v2

ρ eR hence ¨̃r = r̈− R̈ = r̈ + v2

ρ eR,
so even for an object with no forces acting in this plane r̈ = 0,
eg. ball released by the child, then ¨̃r = v2

ρ eR, so observer sees a relative
acceleration directed radially outwards.
This is centrifugal (centre-fleeing) acceleration.
eg. Child sees the ball flying outwards.

2.6 Inertial frames

The above example appears to contradict N1 – no forces, no acceleration.
In fact N1 defines the type of observer (or better reference frame) for which
N2 holds.

An inertial frame is one which is not accelerating ie. R̈ = 0,
then ¨̃r = r̈− R̈ = r̈ so see the ‘true’ acceleration.
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N2 can be applied only in an inertial frame.

Eg. coordinates on the earth gives an approximately inertial frame
Radius of the earth ρ ≈ 6, 400km = 6.4× 106m.
Rotation frequency ω = 2π

T = 2π
24×60×60 ≈ 7.3× 10−5radians/s

At the equator, the centripetal acceleration has magnitude
ρω2 = 6.4× 106 × (7.3× 10−5)2 = 0.034ms−2

over a 100 times weaker than the acceleration due to gravity g = 9.8ms−2.
Regarding these coordinates as exactly inertial is a typical simplification.

3 Forces

A force is an influence (push, pull, gravity, friction,. . . ) that makes a body
change its momentum (velocity when m constant). It is modelled by a vector.

N2 :
d

dt
(mv) = F

where F is the sum of all forces that act.
If the mass m is constant then

F = ma.

The SI unit of force is the Newton; 1N = 1 kg ms−2.

Generally, mr̈ = F(t, r, ṙ) is a set of 3 coupled 2nd order ODE’s - tricky.
Simplify by (i) choice of coordinates, (ii) use of conservation laws.

3.1 One-dimensional problems

If the relevant forces all act along a line that coincides with the initial motion,
then a suitable choice of coordinates will reduce the problem to a 1D problem.
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eg. push a coin along a table top with constant velocity.
i horizontal direction of push, k vertical direction.
Forces: i push, friction; j none; k weight, reaction of table.
v = const so F = 0 = i(push+friction) + k(weight+reaction).
push+friction = 0 and weight+reaction = 0, N3.
If now push along i direction so that speed is not constant, only need to worry
about i component of F = ma ie. 1D problem.

eg. A beer glass of mass m slides along a horizontal bar, slowed by a frictional
force of magnitude beav, where v is the speed and a, b > 0 constants. If its
initial speed is u, how long does it take to come to rest?
Choose i as the horizontal direction along the bar.
r = xi and F = −beavi, where v = ẋ ≥ 0

mv̇ = m
dv

dt
= F = −beav,

∫
me−av dv =

∫
−b dt

−m
a
e−av + c = −bt, at t = 0, v = u, hence

m

a
(e−av − e−au) = bt

Comes to rest at t = T when v = 0 hence

T =
m

ab
(1− e−au).

Vertical motion near the Earth’s surface
Acceleration due to gravity g ≈ 9.8ms−2 is independent of mass (Galileo) and
is approximately constant (make this simplification) near the Earth’s surface.
The gravitational force of magnitude mg on a mass m is called its weight.

Choose i to be vertically up and x to be height above the ground.
F = −mgi, so mẍi = −mgi and hence ẍ = −g.
eg. If an object is thrown upwards from the ground with speed u find the
maximum height it reaches.
ẍ = −g so by integrating ẋ = −gt + c, but at t = 0 we have ẋ = u = c,
therefore ẋ = −gt + u and integrating once more x = −1

2gt
2 + ut + d where

d = 0 since at t = 0 we have x = 0.
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Maximum height is when ẋ = 0 hence at t = u/g at which time

x = −1

2
g(
u

g
)2 + u

u

g
=
u2

2g
.

xmax = 1
2u

2/g, eg. if u = 15ms−1 then xmax ≈ 11.5m.
Note 1: the answer is independent of mass.
Note 2: we ignored air resistance.

Terminal velocity
Friction, eg. air resistance, opposes the motion and slows it.
F = −bv, where b > 0, is a simple but reasonable model at low speeds.
Note: force depends on the velocity and not on the position.

eg. Parachutist dropping vertically from rest ie. v(0) = 0.
Choose i direction as vertically down, so v = ẋ ≥ 0.
mv̇ = mg − bv.
A terminal velocity is reached at which there is no further acceleration, ie.
v̇ = 0 if v = mg/b ≡ vT , when gravity and air resistance balance.
Note that vT depends on m (and b) so different objects fall at different speeds.

v̇ +
b

m
v = g

Solve using an integrating factor,

I = exp
∫ b

m
dt = ebt/m

v = e−bt/m
∫
gebt/m dt = e−bt/mg(

m

b
ebt/m + α)

v(0) = 0 gives α = −m/b and hence

v =
mg

b
(1− e−bt/m).

Note 1: As t→∞ then v → mg/b = vT .

Note 2: Can also solve with v(0) = u and see that vT does not depend on u.
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Figure 2: Sketch of v(t) showing approach to terminal velocity

Note 3: Terminal velocity is not reached in finite time, it is an asymptotic
limit as t→∞.

A better model of air resistance is F = −CρAvv where C is the drag coef-
ficient, ρ is the air density, A is the cross-sectional area of the object. This
model is quadratic in speed and is slightly harder to solve – try it as an ex-
ercise.
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Sliding with friction on an inclined plane

Figure 3: An object on a slope at angle α with i down slope and j normal to slope. Forces
are gravity acting down, normal part of planes reaction force and friction up slope.

Friction −Λv and normal part of reaction force is FN .

mv̇ = mg − Λv + FN .

r = xi + yj, with r · k = 0.
g = g(sinα i− cosα j), and FN = FN j.

r̈ = ẍi + ÿj = g sinα i− g cosα j− µ(ẋi + ẏj) +
FN
m

j

where µ = Λ/m.
ÿ = −g cosα− µẏ + FN

m

The motion remains on the plane so y = ẏ = ÿ = 0 giving FN = mg cosα.

ẍ = g sinα− µẋ, which can be written as v̇ + µv = g sinα where v = ẋ.

Given v(0) = 0 then solving using an integrating factor gives

v =
g sinα

µ
(1− e−µt).

Given an initial condition x(0) = 0 then

ẋ =
g sinα

µ
(1− e−µt)

can be directly integrated to give

x =
g sinα

µ

(
t+

1

µ
(e−µt − 1)

)
.
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3.2 Restoring forces and simple harmonic motion

Elastic/springy forces increase with deformation eg. springs, beams in bridges,
inter-molecular forces,. . . .
Usually, such forces depend only on position and not on velocity.

eg. spring, F = −Kxi, where K > 0 is called the spring constant.
Force is along a fixed line i and is always directed towards x = 0, hence a
restoring force.
mẍ = −Kx, so define K/m = ω2 to get ẍ = −ω2x.

Figure 4: A spring attached to a wall, with x = 0 as equilibrium.

This is the ODE of simple harmonic motion (SHM), with frequency ω.
General solution is x = A cos(ωt) +B sin(ωt) (∗).
The motion is periodic x(t+ T ) = x(t) with period (shortest repeat time)

T =
2π

ω
= 2π

√
m

K
.

Another way to write (∗) is as x = C sin(ωt − α) which agrees with (∗) if
C =

√
A2 +B2 and tanα = −A/B.

In this form it is clear that the amplitude is |x|max = C.

SHM is important because it occurs universally.
Note: oscillation can be about X = a not x = 0. If we shift coordinates and
write X = x+ a then Ẍ = ẍ hence Ẍ = −ω2(X − a).
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3.3 Ballistics

Ballistics - motion under gravity near the Earth’s surface.

Assume gravity is constant, ignore air resistance, ignore Earth’s rotation.

r̈ = g, solve to give r =
1

2
gt2 + ut+ r0

where u = ṙ(0) and r0 = r(0).

Figure 5: Coordinate system for 2D ballistics

Choose j vertically upwards, with k perpendicular to the plane of the trajec-
tory. Choose the origin to be the starting position.
r0 = 0, and u = u(cosαi + sinαj).
Then r = xi + yj = −1

2gt
2j + ut(cosαi + sinαj).

The horizontal component is free motion x = tu cosα.
The vertical motion is under gravity y = tu sinα− 1

2gt
2.

Note: rate of fall is independent of horizontal motion.

Time of flight and range
Let T be the time taken to return to the ground (y = 0).
Tu sinα− 1

2gT
2 = 0, gives (T = 0 is not the required solution)

T =
2u sinα

g
.

Let X be the range ie. x(T ) = X then

X = Tu cosα =
2u2 cosα sinα

g
=
u2 sin(2α)

g
.

16



Note 1: for a given u the range is maximal if α = π/4 = 45◦.
Note 2: doubling the speed increases the range by a factor of 4.

The trajectory is a parabola and can be found by eliminating t to write y(x).
From x = tu cosα then t = x/(u cosα).
Put this into y = tu sinα− 1

2gt
2 to get

y =
xu sinα

u cosα
− gx2

2u2 cos2 α
= x tanα− gx2

2u2 cos2 α
.

Maximum height is attained at the turning point

dy

dx
= 0 = tanα− gx

u2 cos2 α
,

which gives the solution

x =
u2 sinα cosα

g
=
u2 sin(2α)

2g
=
X

2
.

Figure 6: Parabolic trajectory with turning point at half range
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Hitting a target
For a given u we want to find the angle α to hit a target at (x0, y0),
ie. we want a solution with y(x0) = y0.
This gives the condition

y0 = x0 tanα− gx2
0

2u2 cos2 α

to be solved for α.
This can be written as a quadratic in tanα by using

1

cos2 α
= sec2 α = 1 + tan2 α

to give (gx2
0

2u2

)
tan2 α− x0 tanα +

gx2
0

2u2
+ y0 = 0.

This has two real roots if the target is in range, which merge to a repeated
root if the target is just in range. There are no real roots if the target is not
in range (too high or far away for given u).
Real solution(s) if

x2
0 − 4

(gx2
0

2u2

)(gx2
0

2u2
+ y0

)
≥ 0

u2

2g
≥ gx2

0

2u2
+ y0

y0 ≤
u2

2g
− gx2

0

2u2
.

Ballistics with air resistance
Include air resistance as a force −Λv where Λ > 0.

mv̇ = mg − Λv.

Let µ = Λ/m to write as
v̇ + µv = g.

Solve with the integrating factor

I = exp
∫
µ dt = eµt

18



to give

v = e−µt
∫
eµtg dt = e−µt(

1

µ
eµtg + c) =

1

µ
g + e−µtc.

With initial conditions v(0) = u then c = u− 1
µg so

v =
1

µ
g + e−µt(u− 1

µ
g).

Note: as t→∞ then v→ 1
µg = m

Λ g
so asymptotically the particle has a terminal velocity along g where gravity
and friction balance.
Integrate the equation once more to get

r =
1

µ
gt− 1

µ
e−µt(u− 1

µ
g) + d

Given the initial condition r(0) = r0 then

d = r0 +
1

µ
(u− 1

µ
g)

hence finally

r =
1

µ
gt+ r0 +

1

µ
(1− e−µt)(u− 1

µ
g).

Exercise: Check that µ→ 0 yields the previous result r = 1
2gt

2 + ut+ r0.

3.4 Motion of a charged particle in an electromagnetic field

A particle with electric charge q placed in an electric field E and magnetic
field B feels the Lorentz force

F = q(E + v ×B).

The magnetic part of the force is perpendicular to the motion and this curves
the trajectory.

mv̇ = q(E + v ×B).

This is generally difficult to solve since E and B could depend on r. Even if
they are constant then it is still not easy as all 3 components of the ODE can
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be coupled.

Simplified case: E and B are constant and parallel.
Choose E = Ek and B = Bk, then

v ×B = i ẏB − j ẋB.

The equation of motion then becomes

m(ẍi + ÿj + z̈k) = qEk + iqẏB − jqẋB.

The k component is simple to solve
mz̈ = qE, which is just a constant force

ż =
qE

m
t+ ż(0), we choose ż(0) = 0.

z =
qE

2m
t2 + z(0), we choose z(0) = 0.

z =
qE

2m
t2

The x and y equations are more difficult because they are coupled

mẍ = qBẏ, mÿ = −qBẋ.

Solve these equations with r(0) = 0 and ṙ = ui.

mẋ = qBy + c1, mẏ = −qBx+ c2

but at t = 0 then x = y = 0 and ẋ = u with ẏ = 0, hence
c1 = mu and c2 = 0 to give

mẋ = qBy +mu, mẏ = −qBx

Two first order ODE’s can be written as one second order ODE

mẍ = qBẏ = −q
2B2

m
x

which we can write in the form

ẍ = −ω2x, where ω2 =
q2B2

m2
.
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This is simple harmonic motion with solution
x = a cos(ωt) + b sin(ωt). Using x(0) = 0 gives a = 0.
Then ẋ = bω cos(ωt), so ẋ(0) = bω = u hence b = u/ω.

x =
u

ω
sin(ωt).

Next
y =

m

qB
(ẋ− u) =

m

qB
(u cos(ωt)− u) =

u

ω
(cos(ωt)− 1).

Note that the above solution satisfies the relation

x2 +
(
y +

u

ω

)2
=
u2

ω2

hence the motion in the (x, y)-plane is in a circle with radius u/ω centre
(x, y) = (0,−u/ω), and angular frequency ω = qB/m.

Figure 7: Cyclotron and helix trajectories

This is called cyclotron motion and ω is the cyclotron frequency.
Magnetic fields are used in this way to constrain charged particles to move in
circular paths. Accelerated charged particles radiate electromagnetic waves
– this is how radios/TVs/phones etc work.
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Recall that for our example z is also increasing quadratically with t, because
of the electric field. Hence the path of the particle is a helix with increasing
pitch (the distance in the z direction between points after one complete turn).

4 Energy

4.1 Energy conservation for one-dimensional problems

Suppose the force F (x) depends only on the position x and not on time t or
velocity ẋ.
Such a force is called a conservative force.
Friction for example is NOT a conservative force.
For a conservative force

mẍ = F (x)

and we can integrate by first multiplying by ẋ

mẋẍ = ẋF (x)

m

2

d

dt
(ẋ2) = − d

dt
V (x) = −ẋdV

dx
= ẋF

where we have defined V (x) by

V = −
∫
F dx so that − dV

dx
= F.

Trivially integrating the equation gives

m

2
ẋ2 = −V + E

where the constant of integration E is called energy.
This is the familiar relation

E =
m

2
v2 + V

total energy = kinetic energy + potential energy.
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Note 1: V (x) is only defined up to a constant, so we are free to choose a
convenient value as the zero of energy.

Note 2: Motion is constrained by the inequality E ≥ V since m
2 v

2 ≥ 0.

Note 3: The equation of motion mẍ = F is recovered from the conservation
of energy dE

dt = 0.

Eg. Gravity near the Earth’s surface.
Choose i to be up and x = 0 to be the Earth’s surface.
F = −mgi = F (x)i, hence F = −mg.

V = −
∫
F dx =

∫
mg dx = mgx, {chosen V (0) = 0}.

E =
m

2
v2 +mgx.

Suppose at x = x1 then v = v1 and at x = x2 then v = v2.

E =
m

2
v2

1 +mgx1 =
m

2
v2

2 +mgx2.

v2
2 − v2

1 = 2g(x1 − x2)

so the speed gained can be obtained from the distance fallen.

Eg. if a stone is thrown upwards from the ground with a speed u then it
reaches its maximum height X when v = 0.

E =
m

2
u2 = mgX, hence X =

u2

2g

as obtained before by solving the ODE.

The one-dimensional energy equation is a separable first order ODE for x(t).

m

2

(dx
dt

)2
+ V = E

can be re-written as

∫ dx√
E − V

= ±
√√√√ 2

m

∫
dt = ±

√√√√ 2

m
(t− t0).
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To write an explicit solution depends on being able to do the integral, which
depends on how complicated V (x) is.

Eg. Restoring force F = −Kx, with K > 0.

V = −
∫
F dx =

∫
Kxdx =

1

2
Kx2.

±
√√√√ 2

m
(t− t0) =

∫ dx√
E − 1

2Kx
2
.

The integral can be done in this case (exercise) to give

x = ±
√√√√2E

K
sin(ω(t− t0))

where ω =
√
K/m as before when we solved this problem of SHM.

4.2 Energy conservation for three-dimensional problems

In 3D the energy of a conservative system is

E =
m

2
ṙ · ṙ + V (r)

where

∇V =
∂V

∂x
i +

∂V

∂y
j +

∂V

∂z
k = −F = −Fxi− Fyj− Fzk.

Then
dE

dt
= mṙ · r̈ +

∂V

∂x
ẋ+

∂V

∂y
ẏ +

∂V

∂z
ż = ṙ · F− F · ṙ = 0

so energy is again conserved.

5 Motion near equilibrium

5.1 One-dimensional systems with V (x)

An equilibrium position (or point) x = x0 is where F (x0) = 0.
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ie. the particle remains at rest if placed at x = x0.
eg. restoring force,
mẍ = −Kx, where K > 0, only equilibrium point is x = 0.
For conservative systems F = −V ′(x) so equilibrium positions are stationary
points (max and min) of the potential energy V.
For the above eg. V ′ = Kx so V = 1

2Kx
2 and equilibrium position is x = 0,

where V is a minimum.

Figure 8: A typical potential with some maximum and minimum points

An equilibrium position x0 is a local minimum and is stable if V ′′(x0) > 0.
An equilibrium position x0 is a local maximum and is unstable if V ′′(x0) < 0.
Eg. V = x3 − x, so V ′ = 3x2 − 1, giving V ′ = 0 if x = ± 1√

3
.

Note that V (±∞) = ±∞, V (0) = 0, V (± 1√
3
) = ∓ 2

3
√

3
and V (±1) = 0.

For this example V ′′ = 6x, hence V ′′( 1√
3
) = 2

√
3 > 0, confirming that x = 1√

3

is a stable equilibrium, whereas V ′′(− 1√
3
) = −2

√
3 < 0, confirming that

x = − 1√
3

is an unstable equilibrium.

Small motion about a stable equilibrium is well described by SHM.
Consider motion close to a stable equilibrium x0.

Put x = x0 + ε then
mẍ = mε̈ = F = −V ′(x) = −V ′(x0 + ε)
Taylor expand to give
mε̈ = −V ′(x0)− εV ′′(x0) + . . .
But x0 is an equilibrium so V ′(x0) = 0, thus neglecting . . . gives
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Figure 9: Sketch of the cubic V = x3 − x to illustrate that x = 1√
3

is a local minimum and

x = − 1√
3

is a local maximum.

ε̈ = −ω2ε, where ω2 = V ′′(x0)/m > 0.

RESULT: Motion is approximately SHM with frequency ω =
√
V ′′(x0)/m

In the above example x0 = 1√
3

and V ′′( 1√
3
) = 2

√
3 hence ω =

√
2
√

3/m

Eg. particle of mass m moves in the potential V (x) = k(x2 − 2)e−2x, where
k > 0.

Figure 10: Sketch of V (x) = k(x2 − 2)e−2x.

Important values for plot are
V (∞) = 0, V (−∞) = +∞, V (±

√
2) = 0, V ′(−1) = 0, V ′(2) = 0.

V ′ = −2ke−2x(x+ 1)(x− 2), hence stationary points are x = −1 and x = 2.
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V ′′ = 2ke−2x(2x2 − 4x− 3),
hence V ′′(−1) = 6ke2 > 0 and V ′′(2) = −6ke−4 < 0.
Therefore x = −1 is a stable equilibrium and x = 2 is unstable (which agrees
with the sketch).

For the stable position ω =
√

6ke2

m =
√

6k
m e.

The period is

T =
2π

ω
=

2π

e

√
m

6k
.

Alternative method to calculate frequency of approx SHM.
Rather than calculating V ′′(x0) the frequency can be found by reading off the
linear term in ε in V ′(x0 + ε).
For the above example V ′(x) = −2ke−2x(x + 1)(x − 2) so mẍ = F = −V ′
gives
mẍ = 2ke−2x(x+ 1)(x− 2).
Now put x = −1 + ε and keep only terms linear in ε to get
mε̈ = 2ke2ε(−3) = −6ke2ε.

Therefore ε̈ = −ω2ε, where ω =
√

6k
m e as before.

Energy conservation and possible motion.
Energy conservation can be used to determine possible motion.
Eg. in the above problem, starting at the equilibrium position x = −1 with
speed u, then what value of u ensures that x→ +∞ as t→∞.

E =
m

2
ẋ2 + V =

m

2
u2 + V (−1) =

m

2
u2 − ke2.

The particle will escape to x = +∞ if and only if it has enough energy to get
to the top of the hill at x = 2 with some kinetic energy left. This requires
E > V (2) = 2ke−4 and hence

m

2
u2 − ke2 > 2ke−4 ⇔ u >

√√√√2k

m

( 2

e4
+ e2

)
.

Note 1: Minimum kinetic energy = potential energy difference.
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Note 2: In this example the particle can start with ẋ < 0 or ẋ > 0 because
if motion is first to the left it will then return and pass through the starting
point with the same speed but moving to the right.

5.2 Simple pendulum

Model as a point mass m on a light rod of length l, making an angle θ to the
vertical, and ignore air resistance, flexing, friction,...

Figure 11: A pendulum of length l, making an angle θ to the vertical.

The height above the hanging down position is z = l − l cos θ = l(1− cos θ).
V = mgz = mgl(1− cos θ), having chosen V (0) = 0.
Equilibrium points are where V ′(θ) = 0 = mgl sin θ giving
θ = 0 (hanging down) and θ = π (standing up).
From earlier work on motion in polar coordinates we have v = l|θ̇|, hence the
kinetic energy is

kinetic energy =
m

2
l2θ̇2.

E =
m

2
l2θ̇2 +mgl(1− cos θ)

This separable ODE can be solved but requires elliptic integrals (too hard).
The equation of motion follows from energy conservation

dE

dt
= 0 = ml2θ̇θ̈ +mglθ̇ sin θ
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so the equation of motion is

θ̈ +
g

l
sin θ = 0.

For small oscillations around θ = 0 then sin θ ≈ θ giving the approximate
equation

θ̈ = −ω2θ, where ω =

√
g

l
.

Thus SHM with period T = 2π/ω = 2π
√
l/g.

Use energy conservation to answer questions about the motion.
Eg. What angular speed Ω = θ̇(0) needed for propeller rotation from θ(0) = 0?
From the initial condition at t = 0 we have that E = m

2 l
2Ω2.

For propeller motion need to get to θ = π with some kinetic energy left ie.

E =
m

2
l2Ω2 > V (π) = 2mgl, ⇔ |Ω| > 2

√
g

l
.

6 Damped vibrations

So far we have not included damping (friction) terms when studying restoring
forces. We shall now include these.

Consider a mass m hanging vertically on a spring (with spring constant K)
and moving under the influence of gravity and a frictional (damping) force
of magnitude Λv.
mẍ = mg −Kx− Λẋ, with Λ > 0 the damping constant.
Equilibrium is where x = x0 so that ẋ = ẍ = 0 ie
0 = mg −Kx0 hence x0 = mg/K.

Let u = x− x0 = x−mg/K be the deformation from equilibrium

mü = mg −K(u+
mg

K
)− Λu̇

ü = −K
m
u− Λ

m
u̇

Note that if Λ = 0 (no damping) then SHM with frequency ω0 =
√
K/m, as

we have seen before.
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Figure 12: A spring hanging down with x measured downwards

Let p = Λ/m and q = K/m then
ü+ pu̇+ qu = 0, where p, q > 0.
Solve by finding roots of the characteristic equation
λ2 + pλ+ q = 0, where p relates to friction and q to spring constant.
There are 3 cases to consider:

Case (i). Complex roots ie. p2 − 4q < 0, which is small damping.
Define p2 − 4q = −4ω2 then the roots are

λ =
−p±

√
−4ω2

2
= −p

2
± iω

u = e−pt/2(A cosωt+B sinωt).

Note that ω2
0 = q hence ω2 = ω2

0 − p2

4 < ω2
0.

Friction slows the oscillation.

Case (ii). Distinct real roots ie. p2 − 4q > 0, which is large damping.
Define p2 − 4q = 4k2 then the roots are

λ =
−p±

√
4k2

2
= −p

2
± k

λ+ = −p
2

+ k, λ− = −p
2
− k,

are both negative.
u = Aeλ+t +Beλ−t
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Figure 13: Case (i): a damped oscillation
.

Figure 14: Cases (ii) and (iii): u→ 0 without oscillation
.

Note: u may change sign once if AB < 0.

Case (iii). Repeated root ie. p2 − 4q = 0, which is critical damping.
λ = −p/2 is a repeated root

u = e−pt/2(A+Bt).

Note: u may change sign once if AB < 0.
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In all 3 cases energy is lost through friction.
Damped oscillations occur in everyday life eg. shock absorbers, bed springs,
. . .
If friction can be balanced with spring stiffness then it is close to critical
damping. This gives a reasonable response and a smooth return to equilib-
rium.

eg. The deformation from equilibrium u(t) of a damped spring is described by
the equation

ü+ 2u̇+ 2u = 0.

Given that the spring is initially undeformed and given a velocity u̇(0) = −3,
find the subsequent deformation and sketch it.
Characteristic equation is λ2 + 2λ+ 2 = 0 with roots λ = −1± i
hence the general solution is u = e−t(A cos t+B sin t).
u(0) = 0 = A giving u = Be−t sin t.
Then u̇ = Be−t(− sin t+ cos t) so u̇(0) = −3 = B.

The subsequent deformation is therefore u = −3e−t sin t.

Figure 15: A plot of u = −3e−t sin t
.
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6.1 Forcing and resonance

Forced oscillations occur in many physical systems eg. a car shock absorber
on a bumpy road, wind blowing a bridge,. . .

To illustrate the main idea let us first consider a simple undamped spring
with unit mass and unit spring constant. Now introduce a forcing term with
unit amplitude and frequency α > 0. The equation of motion is

ü+ u = sin(αt).

General solution = complementary function + particular integral. The com-
plementary function is the solution describing SHM with frequency ω = 1

uCF = A cos t+B sin t

with A and B determined by the initial conditions.
If α 6= 1 then the particular integral has the form

u = a cos(αt) + b sin(αt)

and putting this in the equation of motion gives

a(1− α2) cos(αt) + b(1− α2) sin(αt) = sin(αt)

with solution a = 0 and b = 1/(1− α2).
The general solution is therefore

u = A cos t+B sin t+
sin(αt)

1− α2

Note that the final term does not depend upon the initial conditions and its
amplitude increases as the forcing frequency α gets closer to 1, which is the
frequency of the unforced spring.

This solution is not applicable if α = 1 ie. if the forcing frequency is equal to
the natural frequency of the spring. In this case the particular integral has
the form

u = t(a cos t+ b sin t)
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putting this into the equation of motion gives

−2a sin t+ 2b cos t = sin t

with solution a = −1
2 and b = 0. The general solution is therefore

u = A cos t+B sin t− 1

2
t cos t

Again the final term does not depend upon the initial conditions and in this
case its amplitude increases without limit as t increases. The applied force
is synchronized with the oscillation of the spring and adds constructively to
continually increase the amplitude – this is an example of resonance.

More generally, consider a damped spring and forcing by a periodic force of
the form

mẍ = mg −Kx− Λẋ+ Γ sin(αt).

As before put u = x − mg
K , and define p = Λ/m, q = K/m and r = Γ/m.

Then the equation becomes

ü+ pu̇+ qu = r sin(αt), (∗).

General solution = complementary function + particular integral
u = uCF + uPI ,
where uCF is the general solution of the problem (∗) with r = 0, which we
have solved already, and uPI is any solution of the problem (∗).

From earlier we know uCF → 0 as t → ∞, hence this transient response
vanishes rapidly - as does the memory of the initial condition.
Thus for large times u ≈ uPI is the steady state response.

Look for a solution of the form (method of undetermined coefficients)

uPI = A cos(αt) +B sin(αt)

comparing the cos(αt) and sin(αt) terms gives

−α2A+ αpB + qA = 0, and − α2B − αpA+ qB = r.
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The solution of these linear equations for A and B is

A =
−pαr

(q − α2)2 + p2α2
, B =

(q − α2)r

(q − α2)2 + p2α2
,

Hence we have the steady state response

uPI =
r

(q − α2)2 + p2α2
{(q − α2) sin(αt)− pα cos(αt)} =

r sin(αt− φ)√
(q − α2)2 + p2α2

where tanφ = pα/(q − α2).
φ is the phase difference between forcing and response.
If p2 is much smaller than 2q (small damping) then the response amplitude
is maximal if α2 ≈ q, ie. α ≈ √q =

√
K/m, which is the natural frequency of

the SHM without damping and forcing.
This is called resonance.
At resonance, with forcing amplitude r, the amplitude of response is ≈ r/(pα)
and φ ≈ π/2.
This could be very large (even if r is small) if pα is small (note that pα = 0
is not allowed for the solution we have found.)

eg. r = 1, p = 1/2, q = 1.
If α = 2, this is not at resonance, umax = 1/

√
(1− 4)2 + 1 = 1/

√
10� 1 = r.

However, if α = 1 =
√
q then this is resonance and umax = 2 > 1 = r.

Musical instruments use resonance, and sometimes bridges are destroyed by
it.

7 Conservation of momentum

Consider two particles of masses m1 and m2 with velocities v1 and v2, which
interact and there are no other forces (they are isolated). Then

d

dt
(m1v1) = F1
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where F1 is the force felt by particle 1 due to particle 2. Similarly

d

dt
(m2v2) = F2.

Now by N3 we have that F1 = −F2 hence

d

dt
(m1v1 +m2v2) = F1 + F2 = 0.

Total momentum is conserved.
For constant masses, consider the relative position r = r1−r2 where F1(r1, r2) =
F(r) = −F2(r1, r2). Then

r̈ = r̈1 − r̈2 =
( 1

m1
+

1

m2

)
F =

1

µ
F,

where the reduced mass µ is

µ =
m1m2

m1 +m2
.

This shows that the relative motion is the same as the motion of a particle
of mass µ.
Note that if m2 � m1 (eg. earth and a ball, or the sun and the earth) then
µ ≈ m1. The larger mass is effectively fixed and the smaller mass moves un-
der its force.

7.1 Particle collisions

A collision is called elastic if the total energy is conserved. In this case ki-
netic energy may be converted into potential energy during the interaction
but all the kinetic energy re-emerges after the interaction.

A collision is called inelastic if energy is lost as a result of the interaction
eg. lost into heat, deformation, sound,. . .

Eg. drop a golf ball onto a hard floor, then it regains most of the kinetic en-
ergy it had when it hit the floor as it bounces, and therefore bounces almost to
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the height it was dropped from – approx elastic. But a bean bag just deforms
and doesn’t bounce at all – inelastic.

Use conservation of momentum to determine the outcome of a collision.

Eg. A particle of mass 2m and speed v collides head-on with a particle at
rest of mass m and the two continue to move in the same direction, with
the heaviest particle moving at speed v/2. What is the speed u of the lightest
particle? What % of the initial kinetic energy is lost in the collision?

By conservation of momentum
2mv +m(0) = 2mv/2 +mu, giving u = v.

The initial energy is Ei = 2m
2 v

2 + m
2 (02) = mv2.

The final energy is Ef = 2m
2 (v/2)2 + m

2 v
2 = 3m

4 v
2.

Thus Ei − Ef = mv2(1− 3
4) = m

4 v
2 > 0, hence the collision is inelastic.

The % of kinetic energy lost is

(Ei − Ef)

Ei
× 100% =

mv2/4

mv2
× 100% = 25%.

If we know that a given collision is elastic, then the speed of both particles
after the collision can be found.

Eg. A particle of mass 2m and speed v collides elastically with a particle at
rest of mass m and the two continue to move in the same direction. What is
the speed of each particle after the collision?

Let w be the speed of the heavy particle and u the speed of the light particle
after the collision.
By conservation of momentum
2mv = 2mw +mu, giving w = v − 1

2u.
The initial energy is Ei = 2m

2 v
2 = mv2.

The final energy is Ef = 2m
2 w

2 + m
2 u

2.
The collision is elastic hence Ei = Ef giving v2 = w2 + 1

2u
2.
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Use the above result for w to get v2 = (v−u/2)2 + 1
2u

2, which gives vu = 3
4u

2.
Cancel the factor of u, since u = 0 is not the required solution (this is when
the particle passes through the other one) hence v = 3

4u.
Thus finally u = 4

3v and w = 1
3v.

8 Angular momentum and central forces

8.1 Angular momentum

So far we have seen examples of useful conserved quantities, such as energy
and momentum. We now introduce angular momentum which is a 3D con-
cept.

Consider a particle of mass m, with position r and velocity v = ṙ.
Its angular momentum (about r = 0) is defined as

L = r× p = mr× v.

The angular momentum about r0 is defined similarly as L = m(r− r0)× v,
but we wont need this.
L is associated with rotation since r parallel to v gives L = 0.

dL

dt
= mv × v +mr× v̇ = r× F.

This is called the torque or moment and is an angular force.

Note that by its definition L · r = L · v = 0.

Eg. r = ti + j + t2k. Calculate L.

v = ṙ = i + 2tk

L = mr× v = m(ti + j + t2k)× (i + 2tk) = m{−2t2j− k + 2ti + t2j}

L = m(2ti− t2j− k).

Exercise: Check that L · r = L · v = 0.
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8.2 Central forces

A central force involves attraction or repulsion from a fixed point (centre
of force).
Choose this point to be the origin then F is either parallel or anti-parallel to
r ie. F = f(r)er.
In this case

dL

dt
= r× F = rer × fer = rfer × er = 0.

Thus under a central force L is constant ie. angular momentum is conserved.

Since L · r = 0, we have that the motion lies in a plane perpendicular to the
constant L.

Note: Writing F = f(r)er then f < 0 is attraction, and f > 0 is repulsion.

Eg. Gravity is a central force.
Consider two particles of masses m and M, then there is an inverse square
attraction ie. the force on m due to M is

F = −GmM
r2

er

where G is Newton’s gravitational constant G ≈ 6.67× 10−11 m3(kg)−1s−2

and er is the unit radial vector pointing from M to m.

Close to the surface of the earth (radius R and mass M)

F ≈ −GmM
R2

er = −mger,

hence g = GM/R2.
Using R ≈ 6, 400 km and M ≈ 6× 1024 kg gives

g ≈ 6.67× 10−11 × 6× 1024

(6.4× 106)2
ms−2 =

6.67× 60

(6.4)2
ms−2 ≈ 9.8 ms−2.
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8.3 Motion under a central force

Recall that L is constant, so choose coordinates so that L is in the k direction
ie. L = Lk.
Also recall that the motion takes place in a plane perpendicular to L.
Let r and θ be polar coordinates in this plane.
From earlier we have that

r = rer, ṙ = ṙer + rθ̇eθ, r̈ = (r̈ − rθ̇2)er + (2ṙθ̇ + rθ̈)eθ.

We can work out the kinetic energy in these coordinates

kinetic energy =
m

2
|ṙ|2 =

m

2
(ṙ2 + r2θ̇2).

Similarly, the angular momentum is

L = mr× ṙ = mrer × (ṙer + rθ̇eθ) = mr2θ̇k.

Therefore, L = mr2θ̇.

The equation of motion is

mr̈ = F = f(r)er = m(r̈ − rθ̇2)er +m(2ṙθ̇ + rθ̈)eθ

Hence there is a radial and an angular equation

m(r̈ − rθ̇2) = f, 2ṙθ̇ + rθ̈ = 0.

Multiplying the angular equation by r we see that

2rṙθ̇ + r2θ̈ = 0 =
d

dt
(r2θ̇)

hence r2θ̇ = constant = L/m, using the result L = mr2θ̇.
The angular equation is therefore equivalent to conservation of angular mo-
mentum.
The radial equation can be written as an effective 1D problem by eliminating
θ̇ using θ̇ = L/(mr2). This gives

mr̈ − L2

mr3
= f, (∗).
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Introduce the potential V as f = −dV
dr , with V (∞) = 0 if f(∞) = 0.

The energy is

E =
m

2
(ṙ2 + r2θ̇2) + V

Again use θ̇ = L/(mr2) to write the energy as

E =
m

2
(ṙ2 +

L2

m2r2
) + V

and note that the equation (*) is eqivalent to dE
dt = 0.

At r =∞, then V = 0 hence if the particle is at infinity then E ≥ 0.
This shows that an orbit will be bound (ie. particle can not escape to infin-
ity) if E < 0, since E is conserved.

Eg. A unit mass particle moves under the influence of the attractive central
force f = −1/r2. It starts at the radius r = a, with speed u perpendicular to
r. Show that the particle cannot escape to infinity if au2 < 2. In this case find
the smallest and largest values of the radius r during the motion.

m = 1 and f = −1/r2 hence V = − ∫
f dr = −1/r.

E =
1

2
(ṙ2 +

L2

r2
)− 1

r
.

L = r2θ̇ = r(rθ̇) = au

where we have used the initial condition r = a and speed is u.

E =
1

2
(ṙ2 +

a2u2

r2
)− 1

r
=
a2u2

2a2
− 1

a
=
u2

2
− 1

a
,

where again we have used the initial condition r = a and ṙ = 0.
The particle cannot escape to infinity if E < 0, which gives au2 < 2,
ie. the particle cannot escape if it starts too close or too slow.

For a bound orbit, au2 < 2, the trajectory is an ellipse (see later).

E =
1

2
(ṙ2 +

a2u2

r2
)− 1

r
=
u2

2
− 1

a
< 0.
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The maximum and minimum values of r are turning points where ṙ = 0, ie.

a2u2

2r2
− 1

r
=
u2

2
− 1

a
.

Rearranging this gives the quadratic

(2− au2)r2 − 2ar + a3u2 = 0 = (r − a){(2− au2)r − a2u2}.

The roots are r = r+ = a and r = r− = a2u2/(2− au2) > 0 for bound orbit.

8.4 Kepler’s laws of planetary motion

K1 The planets move in elliptical orbits with the sun at one focus.

K2 The radius from the sun to a planet sweeps out equal areas in equal times.

K3 The square of the period of the orbit of a planet is proportional to the
cube of the semi-major axis.

An ellipse can be written as (X/a)2 + (Y/b)2 = 1, where a ≥ b.
The distance a is called the semi-major axis, and b is called the semi-minor
axis.
The eccentricity ε of the ellipse is defined as

ε =

√√√√1− b2

a2

and satisfies 0 ≤ ε < 1. If ε = 0 the ellipse becomes a circle.
Using ε the ellipse equation can be written as

X2 +
1

1− ε2
Y 2 = a2.

The points (X, Y ) = (±aε, 0) are called the foci.
A geometrical definition of an ellipse is that the sum of the distances to the
two foci is constant for all points on the ellipse.
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Figure 16: An ellipse

Let r and θ be polar coordinates, with one of the foci as the origin.
X = aε+ r cos θ
r2 = (X − aε)2 + Y 2 = (X − aε)2 + (a2 −X2)(1− ε2) = (a−Xε)2

Hence r = a−Xε. Using this and the earlier expression
Xε = a− r = aε2 + εr cos θ giving

r =
a(1− ε2)

1 + ε cos θ
.

Proof of K1.
Let M be the mass of the sun and m the mass of a planet.

f = −GMm

r2
, therefore V = −

∫
f dr = −GMm

r
.

E =
m

2
(ṙ2 +

L2

m2r2
)− GMm

r
We want to determine r(θ) to show that it is an ellipse.

ṙ =
dr

dt
= θ̇

dr

dθ
=

L

mr2

dr

dθ
.

Put this into E to get

E =
L2

2m

( 1

r4

(dr
dθ

)2
+

1

r2

)
− GMm

r
.
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We can either solve this differential equation (see exercise A below) or (see
exercise B below) simply check that the ellipse form is a solution

r =
C

1 + ε cos θ
, where C =

L2

GMm2
, and ε =

√√√√1 +
2EL2

G2M 2m3
.

Note ε ∈ [0, 1) since E < 0.

Exercise A

E =
L2

2m

( 1

r4

(dr
dθ

)2
+

1

r2

)
− GMm

r
.

Make the change of variable r = 1/u where u(θ). Then

dr

dθ
=
dr

du

du

dθ
= − 1

u2

du

dθ
= −u

′

u2

Putting this into the above and rearranging gives

u′2 + u2 − 2GMm2

L2
u =

2Em

L2
(?)

Differentiating (?) and dividing by 2u′ yields the second order constant coef-
ficient equation

u′′ + u =
GMm2

L2

with solution

u = A cos θ +B sin θ +
GMm2

L2
.

If we choose the coordinate θ so that θ = 0 is a turning point then u′(0) = 0
hence B = 0 and

u = A cos θ +
GMm2

L2
.

Putting this expression back into (?) we find

A2 sin2 θ +
(
A cos θ +

GMm2

L2

)2
− 2GMm2

L2

(
A cos θ +

GMm2

L2

)
=

2Em

L2

which simplifies to

A =
GMm2

L2

√√√√1 +
2EL2

G2M 2m3
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hence the solution

u =
GMm2

L2

(
cos θ

√√√√1 +
2EL2

G2M 2m3
+ 1

)

and finally

r =
1

u
=

C

1 + ε cos θ
where

C =
L2

GMm2
and ε =

√√√√1 +
2EL2

G2M 2m3
.

Exercise B

Check that the following form gives a solution

r =
C

1 + ε cos θ
.

Then
dr

dθ
=

Cε sin θ

(1 + ε cos θ)2

Putting these expressions in

E =
L2

2m

( 1

r4

(dr
dθ

)2
+

1

r2

)
− GMm

r

and simplifying gives

E =
L2

2mC2
(ε2 + 1 + 2ε cos θ)− GMm

C
(1 + ε cos θ).

E is a constant, which means that it cannot depend on θ, hence the coefficient
of the cos θ term in the above expression for E must vanish. This gives that

C =
L2

GMm2

and then E simplifies to

E =
G2M 2m3

2L2
(ε2 − 1)
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which determines that ε is given by

ε =

√√√√1 +
2EL2

G2M 2m3
.

Proof of K2.
For a small change in position r 7→ r + δr, the change in area (see figure) is

Figure 17: A small change in position

δA =
1

2
|r||δr| sin c =

1

2
|r× δr|.

Therefore
dA

dt
=

1

2
|r× ṙ| = L

2m
= constant

proving that there is a constant rate of change of area swept out.

Proof of K3.
This law states that T 2 = Ka3 where K is a constant, T is the period and a

is the semi-major axis of the ellipse.

We will prove this only in the special case that the ellipse is a circle, in which
case a is the radius of the circle.

For a circle the radius is constant r = a, ie. ṙ = r̈ = 0.
As L = mr2θ̇ = ma2θ̇ is constant then θ̇ = ω is constant.
The radial equation

mr̈ − L2

mr3
= f
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becomes

−maω2 = −GMm

a2
, giving ω2 =

GM

a3
.

The period T satisfies

T 2 =
(2π

ω

)2
=

4π2

GM
a3

giving the required result that T 2 = Ka3, with K = (4π2)/(GM).

To prove the result for an ellipse we need to use r = C/(1 + ε cos θ) and do
an integral.
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9 Waves on a string

9.1 Model

Figure 18: Transverse displacement of a string

u(x, t) is the transverse displacement of a string at position x and time t.
We will assume a thin and perfectly flexible string, neglect friction, gravity,
air resistance, . . .
Let the string have constant density ρ (mass per unit length) and constant
tension T (force).
The transverse component of the equation of motion of the segment of the
string between x and x+ δx is

ρδx
∂2u

∂t2
= (T sin θ)x+δx − (T sin θ)x.

For small angles

sin θ ≈ tan θ =
δu

δx
,

ρ
∂2u

∂t2
=

T

δx

{δu
δx

(x+ δx)− δu

δx
(x)

}
.

Taking the limit δx→ 0 gives

ρ
∂2u

∂t2
= T

∂2u

∂x2
, ie.

∂2u

∂t2
= c2∂

2u

∂x2
(∗)

48



Figure 19: Force on a segment of the string

where c =
√
T/ρ is the wave speed (dimensions are that of a speed).

The partial differential equation (*) is the wave equation in 1D.

9.2 d’Alembert’s formula for an infinite string

It is easy to prove that

u(x, t) = f(x− ct) + g(x+ ct)

solves the wave equation for any functions f and g.

Proof:

∂u

∂x
= f ′(x− ct) + g′(x+ ct),

∂2u

∂x2
= f ′′(x− ct) + g′′(x+ ct).

∂u

∂t
= −cf ′(x− ct) + cg′(x+ ct),

∂2u

∂t2
= c2f ′′(x− ct) + c2g′′(x+ ct) = c2∂

2u

∂x2
.

Solution is a linear combination of right- and left-moving waves.

To see that this gives all solutions we must be able to choose functions f and
g to give any initial conditions

u(x, 0) = R(x),
∂u

∂t
(x, 0) = S(x),
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where R(x) and S(x) can be any functions giving the initial position and
initial speed.
The choice that satisfies these initial conditions gives d’Alembert’s formula

u(x, t) =
1

2

{
R(x− ct) +R(x+ ct) +

1

c

∫ x+ct

x−ct
S(z) dz

}
.

Proof that the initial conditions are satisfied is as follows

u(x, 0) =
1

2
{R(x) +R(x)} = R(x).

∂u

∂t
(x, 0) =

1

2

{
−cR′(x) + cR′(x) +

1

c
(cS(x) + cS(x))

}
= S(x).

Eg1. Consider a plucked string (S = 0) with R = e−x
2

.

u(x, t) =
1

2

{
R(x− ct) +R(x+ ct)

}
=

1

2

{
e−(x−ct)2 + e−(x+ct)2

}
.

Initial wave splits into two identical half-size waves travelling in opposite di-
rections.

Eg2. Consider a struck string (R = 0) with S = 2cxe−x
2

.

u(x, t) =
1

2c

∫ x+ct

x−ct
S(z) dz =

1

2c

∫ x+ct

x−ct
2cze−z

2

dz =
1

2
[−e−z2]x+ct

x−ct

= −1

2
(e−(x+ct)2 − e−(x−ct)2).

Two waves of opposite sign moving apart.

9.3 Finite string and separation of variables

Consider a finite piece of string, of length L, fixed at the two ends.

∂2u

∂t2
= c2∂

2u

∂x2
for x ∈ (0, L) with boundary conditions u(0, t) = u(L, t) = 0.

Initial conditions are still

u(x, 0) = R(x),
∂u

∂t
(x, 0) = S(x).
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Could solve using d’Alembert’s formula but it is difficult to include the bound-
ary conditions using this approach. Better to try a separation of variables

u(x, t) = X(x)T (t),

Important: T should not be confused with the earlier tension.

∂2u

∂x2
= X ′′T,

∂2u

∂t2
= XT ′′

hence the wave equation becomes

XT ′′ = c2X ′′T.

Dividing by XTc2 gives
T ′′

Tc2
=
X ′′

X
= −α2,

where α is a constant. The solution of X ′′ = −α2X is

X = a cos(αx) + b sin(αx)

and the boundary conditions X(0) = X(L) = 0 give a = 0 and αL = nπ
where n is a positive integer. Similarly, the solution of T ′′ = −α2c2T is

T = ã cos(αct) + b̃ sin(αct)

giving the solution for u as

u = sin(
nπx

L
)
(
A cos(

nπct

L
) +B sin(

nπct

L
)
)

where A = bã and B = bb̃.
This is a solution for any positive integer n, and as the equation is linear
then any linear combination of such solutions is also a solution. This gives
the final form of the solution

u(x, t) =
∞∑
n=1

sin(
nπx

L
)
(
An cos(

nπct

L
) +Bn sin(

nπct

L
)
)
.

The set of constants An and Bn are determined by the initial conditions.

u(x, 0) = R(x) =
∞∑
n=1

An sin(
nπx

L
)
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∂u

∂t
(x, 0) = S(x) =

∞∑
n=1

Bn
nπc

L
sin(

nπx

L
).

An expansion of the form

R(x) =
∞∑
n=1

An sin(
nπx

L
) (†)

is called a half-sine fourier series, and there is an integral formula for the
coefficients

An =
2

L

∫ L
0
R(x) sin(

nπx

L
) dx.

Proof:
It is easy to prove (see tutorial exercise) that for positive integers n and m

2

L

∫ L
0

sin(
nπx

L
) sin(

mπx

L
) dx = δnm

where δnm equals 1 if n = m and zero otherwise.
Multiplying both sides of (†) by 2

L sin(mπxL ) and integrating gives

2

L

∫ L
0
R(x) sin(

mπx

L
) dx =

∞∑
n=1

An
2

L

∫ L
0

sin(
nπx

L
) sin(

mπx

L
) dx =

∞∑
n=1

Anδnm = Am.

Similarly, Bn
nπc
L are the coefficients of S(x) hence

Bn
nπc

L
=

2

L

∫ L
0
S(x) sin(

nπx

L
) dx.

Eg. A string is pulled aside and released from rest so that u(x, 0) = 1 if
0 < x < L/2 and u(x, 0) = −1 if L/2 < x < L. Find the series solution.

As the string is released from rest then S(x) = 0 hence Bn = 0 ∀n.

An =
2

L

∫ L
0
R(x) sin(

nπx

L
) dx =

2

L

{∫ L/2
0

sin(
nπx

L
) dx−

∫ L
L/2

sin(
nπx

L
) dx

}

=
2

L

L

nπ

{[
− cos(

nπx

L
)
]L/2
0

+
[
cos(

nπx

L
)
]L
L/2

}

=
2

nπ

{
−2 cos(

nπ

2
) + 1 + cos(nπ)

}
=

2

nπ

{
1 + (−1)n − 2 cos(

nπ

2
)
}
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Now cos(nπ/2) equals 0 if n is odd and equals (−1)n/2 if n is even, hence

A2r−1 = 0

A4r = 0

A4r−2 =
8

(4r − 2)π
=

4

(2r − 1)π
.

Finally,

u(x, t) =
∞∑
r=1

sin(
(4r − 2)πx

L
)

4

(2r − 1)π
cos(

(4r − 2)πct

L
)

=
4

π

{
sin(

2πx

L
) cos(

2πct

L
)+

1

3
sin(

6πx

L
) cos(

6πct

L
)+

1

5
sin(

10πx

L
) cos(

10πct

L
)+. . .

}

Or Eg. A string is pulled aside and released from rest so that u(x, 0) =
sin(2πx/L), ut(x, 0) = 0. Find the series solution.

Now, as before Bn = 0 and

R(x) =
∞∑
n=1

An sin(
nπx

L
).

However, as

R(x) = sin(
2πx

L
)

we see that only A2 6= 0, and is, in fact, 1 so the series consists of only one
term and we have

u(x, t) = sin(
2πx

L
) cos(

2πct

L
).

we can also consider a string that is pulled aside and released from rest so
that u(x, 0) = kx(L− x) and ut(x, 0) = 0.
In such a case we have to work harder.
We note the symmetry of u(x, 0) = kx(L−x) about x = L/2. Hence Aeven =
0.
Also for n = odd:

An =
2k

L

∫ L
0
x(L− x) sin(

nπx

L
) dx =

4k

L

∫ L/2
0

x(L− x) sin(
nπx

L
) dx =

8kL

(nπ)3
.

53



Thus

u(x, t) =
8kL

π3

∞∑
r=0

1

(2r + 1)3
sin

(
2r + 1

L
πx

)
cos

(
2r + 1

L
πct

)
.
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