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Introduction

These notes are based on the course “Electrodynamics” given by Dr. M. y.iRerr
Cambridge in the Michaelmas Term 1997. These typeset notes have beecqatod
mainly for my own benefit but seem to be officially supported. The recometend
books for this course are discussed in the bibliography.

A word or two about the philosophy of these notes seem in order. Tldyesed in
content on the lectures given, but | have felt free to expand and contramtisaétails,
as well as to clarify explanations and improve the narrative flow. Emozentent are
(hopefully) mine and mine alone but | accept no responsibility foryme of these
notes.

Other sets of notes are available for different courses. At the timepofdythese
courses were:

Probability Discrete Mathematics
Analysis Further Analysis
Quantum Mechanics | Fluid Dynamics 1
Quadratic Mathematics Geometry

Dynamics of D.E.'s Foundations of QM
Electrodynamics Methods of Math. Phys
Fluid Dynamics 2

They may be downloaded from

http://pdm23.trin.cam.ac.uk/"pdm23/maths/ or
http://www.damtp.cam.ac.uk/

or you can email me opdm23@cam.ac.uk to get a copy of the sets you require.
Even if you download them please email me to let me know, so that | can keegpyou u
to date with the errata and new note sets. The other people who havibete time

and effort to these note sets are:

Richard Cameron Analysis Hugh Osborn Proofreading
Claire Gough Proofreading| Malcolm Perry Accomodation
Kate Metcalfe Probability

Although these notes are free of charge anyone who wishes to expreshaimks
could send a couple of bottles of interesting beer to Y1 Burrell’s Fiéldnge Road.

Paul Metcalfe
4t December 1997
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Chapter 1

Point of departure

This is a review of terminology and results from Special Relativity Bfettromag-
netism (possibly rewritten in a more grown-up way).

1.1 Maxwell's Equations

These are :

divE =2
€o

curlE = —B

divB = 0

curl B = poj + /,Loe(]E.

p is the charge density, is called the permittivity of free space. It is not a funda-
mental constant but merely determines units. Similardyis the permeability of free
space and merely determines unjtg.andeq satisfyugeo = ¢ 2, wherec is the speed
of light (and a fundamental constant). In familiar units: 2.997 x 10® ms~!, but we
will choose units such that= 1.! Dimensional analysis can replacé any derived
formulae.

1.2 Electrostatics

This is the case where there is no current and a time independent chartipeitilist.
Then Maxwell's equations reduce &v E = £ andcurl E = 0. We will assume
= 0, but it does not affect the equations for ‘the electrlc field.
The electric field due to a point chargeis E = frl -sT. To measure the electric
field we can take a charge and measure the forde = ng onit.

1Despite the fact that the Schedules mandate Sl units. Exastiqos will be set such that= 1.

1
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1.2.1 Coulomb’s Law
The force between two point charges is

1
F = q192

4meg 2

directed on the line between the centres. It is repulsive for two like elsarg

A point charge can be regarded as a charge distribution which is a dett#ofun
p = ¢16(r). To find the electric field due to a distribution of charges we can use linear
superposition to findE everywhere. Asurl E = 0 we can introduce the electrostatic
potentialg such thatE = —V¢. ThenV?¢ = :—0’) We can solve this using a Green'’s
function, that is a functioi?(r, r') such thatV2G(r,r') = 6(r,r’). We can see that
G(r,r') = -1 L. Then

T an r—r'|"

o(r) = _1 a3 G(r,r")p(r").

€0

Proof. Firstly, we see that
Vip = 1 /d3r’ V2G(r, ' )p(r")
€0

S d*r' §(x, ") p(r')
€0

—p(r)

€0 '

Then we merely note that solutions to Poisson’s equation are unique. O

1.2.2 Multipole expansion

Suppose we have a charge distribution in a redces shown.

The multipole expansion of the potential is what happens to a gengradssion
for ¢ if |r| > |r'|. We expanqrj—r,‘ using the binomial expansion.

1
| /|=(7“2—2m2+r’2)‘%
r—r
1
1 2 T2\ 2
—;<1‘ 2 T
1 rrt 19023 (r,r’)2
= — ]_ r_ — 1
r( e 272 2 ot +

We substitute into the general expressionddo obtain

1 rirh 1
¢(r) = /Bd3r'p(r') <1 + ;2’ +tog (Brorjrir — r*oyrirs) +. > .

dmegr
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1.3. SPECIAL RELATIVITY 3

This is an expansion af in inverse powers of. The term inr ! is referred to as
the2!-pole term.

When! = 0 we have a monopole. ) = [ d*r' p(r') theng = 47207"’ which is
usually called the Coulomb term.

When! = 1 we have a dipole. Let; = [ @' p(r')r} (the dipole moment). Then
¢ = 471'6107"3 rldz

When! = 2 we have a quadrupole and the contributionjtds ﬁnerij,
whereQ;; is the quadrupole moment aiyf; = & [ d® p(x') (3rir — 0i;1'%). Qij
is a symmetric tracefree tensor, as

Qijéij = %/d3r' p(I‘l) (37“;7“;62] — 6ij6ijr’2) = O

It has 5 independent components. In generattiigerm ha2 + 1 independent com-
ponents. Wheih = 3 we have the octopole moment and wtien 4 the hexadecapole
moment, but these become increasingly cumbersome.

1.3 Special Relativity

Special relativity has two postulates:

1. The laws of nature are the same in any inertial frame.

2. The speed of light is independent of the speed of its source.

This leads us to consider Minkowski space, vi.= (t,x) = (t,z%). u runs from

0 to 3 and: runs from1 to 3. These are inertial co-ordinates. If a particle is at rest at

x = 0 att = 0 then in remains at rest at = 0 for all time. ¢ is then the proper time
for that particle — what a clock sitting on the particle would measure.

We can relate the physics in one inertial frame to another by Lorentz dramaf
tions. Suppose that one has a second frame moving with veloaityhe x direction
relative to the first frame. Then we have new inertial co-ordinates

t

7(v)(t = vz)
V() (z — vt)
Y

!
!
!
!

IS S

)

wherey(v) = \/11_7 This can be writte’# = A#,x", whereA#, is the matrix

form of the Lorentz transformation, in this case:

¥y —yv 0 O
—-yv v 0 0
0 0 10
0 0 01

To find the Lorentz transformation of arbitrary motion described byiawector
n then we conside? ! (n)AR(n), whereR(n) is a rotation to moven into thez
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direction.
1
0
0 R;
0

with R3 an ordinary spatial rotation. We can make Lorentz transformations ikek |
rotations — if we puty(v) = cosh ¢, thenvyv = sinh ¢, which implies thaty =
tanh ¢. This is sometimes called a hyperbolic rotation.

We define a distanags® = —dt* + dz? + dy® + dz* between two infinitesimally
separated points. This can be shown to be invariant under Lorentz tnaussfbds = 0
then it reduces to the ordinary Euclidean metrid®n

If ds*> > 0 we say the two points are spacelike separatedsif < 0 they are
timelike separated and ifs> = 0 they are null, or lightlike separated. The interior of
the light cone hads? < 0 and the exteriods? > 0.

Proper distance is defined for spacelike separated eventsdtodred proper time
dr for timelike separated events dy? = —ds?. The invariance oflr means that the
time seen by a clock sitting on some object can be computed in any inertia.fram

It is easier to writels? = Nuodztdz”, wheren,, is called the metric tensor and is

-1 0 0 0
0 1 0 0
0 010
0 0 01

We also have the inverse metyje” defined byn*n,, = 4. The matrix form of
n*¥ is (obviously?)

1 0 0 0
0O -1 0 O
0o 0 -1 0

Given two vectorse” and y# we want a scalar product that should be invariant
under Lorentz transformations, asd= 7, z*y"” will do the trick. This gives us the
idea of defining covectors by, = n,,z* and thenS = z,y”. Then there is the
inverse operation*’z, = n*"n,,z” = x*.

We ask ourselves how a covector transforms, and we obtair ), = A"z,
whereA,* = n,,A?,n7*, or in matrix form

v v 0 O
v v 0 0
0 0 1 0
0 0 01

for the transform we looked at earlier. We see thgt,) ' = A,* and
Tyt - :vLy’“ = ALz, Ay
= AN oz py°
=6hx,y”

_ o
=ZsY ,
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which is, on the whole, a good thing. This is analogous to rotatiori®® preserv-
ing the metric, the rotations being classified By R = 1 andR;;01 R = 6y ex-
cluding reflections. A Lorentz transform preserves the Minkowski spasteicrand
Ao A", = n,,. To see the equivalence multiply both sides5y to get (eventu-
ally) 62 = 6.

The Lorentz transforms are defined By, A,"n,. = n,, (the groupSO(3,1))
with no spatial reflections and preservation of time, giving the Lorerdam
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Chapter 2

The relativistic theory of
electromagnetism

We start with the Lorentz force lavE = e¢E + ev A B and seek to generalise it.
Non-relativistically we have

d2z?

STE

—e¢(E+vAB),

and we already know the equation of motion for a free relativistic patticl

A2z
m—
dr?

We also recall the non-relativistic velocity 4-vector,

e ut = (1,u),

and we know thair? is Lorentz invariant and heneel = u*u”n,,. We guess a force
law

We see immediately that by the quotient theordfti,, must be a tensor. We also
know that this equation must be true in any inertial frame, and so is altmags We
take the non-relativistic case, whefe = £ to find whatF*, must be.

dt dz d dz
eEy +e(vyB, —v,By) = eFlog + eFlla + eFlgd—qy_ + €F13E
We thus identifyFy = E,, F'y = 0, F's = B, andF'; = —B,. We repeat this
process withy andz, and lower the index, giving us

E 0 B, -B

A _ T z Y

nLLAF v — My Ey _BZ 0 BI
E. B, -B, 0
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We note that the spatial part of this is antisymmetric, and since we paatsnd time
equivalently, we can finally define

0 -E, —E, —E.
s _|B 0 B -B,
w=|E, -B. 0 B,
E. B, -B, 0

This is the electromagnetic field (strength) tensor, or Maxwell tendw.ohly puzzle
is what the time component of the relativistic Lorentz equation repteskism Lt =

) dr2
eFOi‘fJ—””T’. We note that:* = ~y(1, v) and thaty is a kind of relativistic energy, giving
% (m~y) = ev.E, which we know as “the rate of change of energy equals the rate of
doing work by the electric field".

2.0.1 Relativistic motion in constant electric field

We consider a constant electric field in thelirection. We have a particle with charge
e which starts at rest at the origin. The non-relativistic caseis= eE, which gives
z = 224 andi = ££¢, which eventually exceeds

Relativisticallymg = mZz = 0, which are trivial. We also have the equations
mi = eF*yi = eEt andmi = eFi.
We integrate these once and use the initial conditions terget eEx + C) and

In the relativistic
casef = 4.

Copyright © 2000 University of Cambridge. Not to be quoted or reproduced without permission.

ma = eEt. (Note that we set = 0 att = 0.) Integrating again we get

E E
x(1) = Asinh 7 4 Beosh &1 - mCy
m m eE
E E ~
t(r) = Acosh T 4 Bsinh =L 4+ ¢

m m

We have the boundary conditioms= @ = 0 atT = 0 andt = 0 at7 = 0. There
is a temptation to put = 0 atT = 0 — but this is inconsistent, as1 = utu, =
(—#% 4+ #?). Thus we put = 1 at7 = 0 — which we could have guessed, we know
that at rest, co-ordinate time is the same as proper time. Finally, we get

To find the velocity we can write(t) by eliminatingr

m G2 F242\ 2
a:(t):e—E<<1+ - > —1>.

We can now find the velocity

der eFE t

E_m / 2E2t2.
1+€T

For smallt we have the reassurirgf = <£L, but in the large case we find only
thatv — 1 from below, and is always less than
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2.1 Transformation of £,

We Lorentz transform (in the direction with velocityv) the tensot,, to see how the
electric and magnetic fields change under Lorentz transformations.
We know thatF,, F,’“, = AN F,, and we just perform these sums to get:

E, =E,
E;, =(Ey —vB.)
E. =vy(E. + vBy)
B, =B,
B; =v(By + vE;)
Blz = ’7(Bz - ’UEy).

These are radically different from what we would expect if there were tworgdect
and magnetic 4-vectors.

2.2 Lorentz invariant scalars

We know thatF,, andn,, are Lorentz invariant, and we can derive some Lorentz
scalars from them. The most obvious oneFig,n*", but asF' is antisymmetric
andn symmetric this evaluates to zero. A more useful Lorentz scalaj,jg'*” =
2 (B2 - E2).

We can get another Lorentz scalar by introducingahernating tensorwhich is
defined as

1 if pvpo is an even permutation 6fl23
eh?? = ¢ —1 if pvpo is an odd permutation @123
0  otherwise.

We can now define the dual field strength tenget! = 1e#7PF,,. We can
evaluate this

0 -B, -B, -B.
G _|B: 0 -E. E,
w=\B, E. 0 -E,

B. -E, E, 0

The dual tensoG can be found fromF by E — B andB +— —E, which
is sometimes called a duality rotation. We can now define a further Loreatars
F,,G" = -4E.B.

2.3 Tensorial form of Maxwell’'s equations

We start from Maxwell's equations to see what they turn into in tenstation. We
take them in an slightly unusual ordéiy E = pop andcurl B = ppj + E and seek
to write them as tensor equations.
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We note thatll; = F;o = —F% andB; = Le¢;;,F7*. The divergence equation
become®); F;p = uop- The curl equation is

1 1
§€ijkaj5klmFlm = 5 (0;F; — 0;F;)

= 0;Fj = poji + doFio.

We hope that this is consistent with a tensor equaliph*” = X". If we study
this we see that this works X# = —pug(p,j). Thus two of the Maxwell equations
become

8uFuV = _Nij-

wherej# = (p,j) is the 4-vector (electric) current. This illustrates that a moving
charge and a current are just the same thingf'ds a four-vector and so is consistent
with Lorentz transforms.

Incidentally, we have not lost conservation of charge &sd, 0, F** = —p100,3".

We now go after the next two Maxwell equatiodsy B = 0 andcurl E = —B.
The first is easy; it gived;e;;r Fjr = 0. We guess that this is a component of
e#*?9,F,, = 0, and indeed if we evaluate the spatial components we reproduce
the last Maxwell equation.

We can rewrite this in terms of the dual field-strength tensor t@gét” = 0 —
this says that there is no magnetic current. It turns out to be moralusefxplicitly
antisymmetrize our equation to get

6V-chr + ame/ + aO'Fl/p = 0.

2.3.1 Potentials

In the non-relativistic case we know tHAtandB can be derived from potentials:

E= —gradgb—A
B = curl A.

It turns out that we can come up with an electromagnetic 4-vector poteftiak
(¢, A) such thatF),, = 9,4, — 9, A, (simply expand this to see).

We know thatA is not unique in non-relativistic electromagnetism; we can add
on the gradient of any scalar function — called a gauge transformationla8imive
see that the 4-vector potentid|, is unique up ta, A for any scalar functiork. This
means we can try to impose extra conditionsgnwhich (partially) prevents gauge
transformations (called gauge fixing). The point is to ensure thatendi,, is the
product of a moderately uniqué, .

A useful covariant gauge is to impo8g A* = 0. Thus if we haved” such that
Fu, = 0,A, —0,A, and we sed’* = A* 4 9 A, then we can have = 9, A’ =
Oy A* + 0,,0*A. In principle we can solvé, 0" A = —0, A*, so this gauge condition
is possible.

If we consider this a little more, we see that is still non-unique, but only up
to a solution of the wave equatiofi, 0 A = 0. Solutions of the wave equation are a

1What “moderately unique” means has yet to be defined.
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combination of plane waves!»*", wherek* = (w,k) andw = |k|. k* is the wave
4-vector or the momentum 4-vector.

If we wish to find F#¥ given a collection of charges and currents we solve the
equationd, 0* A¥ — 9,0" A* = —ppj". This is where our gauge condition comes in
useful, we geb, 0" A¥ = —pugj¥, orOAY = —pugj¥, whered, 0" = O (pronounced
“box”). We can now see thal, A” = 0 is sensible — it is compatible with current
conservation.

2.4 Least action principles

2.4.1 Particle motion

For a single free particle in special relativity we have the action

I = /drm\/—j:“j:”nul,.

The usual Euler-Lagrange equatiofis (2%.) — 2% = 0 give —mi,, = 0.

ain ) Baxr

For a particle with chargein a potential4* we can generalise this to

I= [ drmy/—2+tzVn,, —eA,z".

But can this possibly be gauge invariant — the quarityappears explicitly? But
we see a current resulting from the motionjéf= ei*. So suppose we make a small
gauge transformation such tiied,, = 9, A. Then

6/d7-j“Au = /drj"auA and integrating by parts we get
=— / dro,j"A =0 by conservation of charge.

This is all somewhat academic if varying does not give us the Lorentz force law.
Using the Euler-Lagrange equations we get

d —mz¥ N, d Ly
0= I (*“) — — (eA,) +ex”0,A,

N dr
T is the proper time s6*&"n,, = —1 on the worldline

d
= gy (Fmiu) = ed" 0, A, + e O, Ay

=—mi” + ex" F,.

This is the Lorentz force law. One can use the action as a quick way ofifjiide
motion of a particle. For a constant electric field in thdirection we getd* = —Et
and all other components df* are zero. To get the motion of the particle we vary the
action

I= /dTm\/L£2 — 22 + eEtx.

The Euler-Lagrange equations give the same differential equationsfanstion
of the particle as before, but more easily.
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2.4.2 Field action

We also want to find a Lagrangighthat reproduces Maxwell’s equations, that is if we

take
I= /d4w£,

oI = 0 under variations of something or other must reproduce Maxwell's equsatio
L must be a Lorentz scalar, built out Bf, (or A,) and it must be gauge invariant.
The Maxwell equations involve first derivatives Bf, (or second derivatives of,,).
So the only real possibilities are varyidg, and£ must be quadratic ifr,, . e**?? F,,
gives nothing. The usual choice is
L=—LpwE, 4 j.An
4po

This is gauge invariant. B4, = 9, A, then if we assumé),, = 9,4, — 0, A,
we getdF,, = 8,0,A — d,0,A = 0. The [ j, A" part gives) as before.

I=— /d%« <4LFWFW —juA“> and
(6F,y F" + F,, 6F") — j“éA,,)

SF,, F1 — j”éAl,)

I
|
—
9
~
8

— (0,04, — 0,0A,) F" — j”6A,,>

Il

|

oL

-

8

N7 N T NN

)
|- £
o o

(0,64,) F™ — 5ij”>
= /d%éAU (LouFm +5*).

We perform the last line by integrating by parts and assuming thatdaoy condi-
tions are all zero. As we can arbitrarily vasy, we must have;tl—oauF“" = —j". The
other Maxwell equation is automatic as we have assumedHhats derived from a
potential4,. This least action principle requires that there is no magnetic current.
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Chapter 3

Energy - Momentum Tensor

3.1 Definition

We seek a relativistic form of the field energy. We define the (stressggtensor

THY — i (F/,LJFUU _ %nuquanU) .

We note in passing that this is a symmetric tensor. Note thaf theomponent is
2%0 (E? 4+ B?), which reproduces the non-relativistic energy density. To interpeet th
rest of the components @#* we recall Poynting’s theorem.

Poynting’s Theorem. Let D be a region in space. Then the rate of change of

energy inD is

1 1 . .
—2/ E’>+B%dV = —/ E.E+B.BdV
2,&0 ot D Mo Jp
1
= — [ E.(curl B — ppj) — B.curl EdV
Mo JD

1
—/j.EdV+—/ E.curl B— B.curlE4dV
D Ho JD

—/j.EdV— N.dS,
D oD

where we have introduced the Poynting ve@be= :—OE A B. The Poynting vector is
the energy flux.
By performing the sum we find thai®* = N*. We find that

Energy | Energy flux
density ‘
" = Energy
flux

“Stress”

We want to evaluate the “stress” part of this tensor.

13
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Tij = 35 (FuF" = 3nii FP7 Fpo)

= = (FoF}° + Fy Fj* — 105 (—2E° + 2B%))
i (—EiEj + i Biejim Bm + 305, E° — $0;; B?)
=1 (—EiEj + %52'J'E2 — BiBj + %(52']'32) .

Ko
This is the Maxwell stress tensor, and can be thought of as the predstime o
electromagnetic field.

3.1.1 Conservation of energy-momentum

We compute the divergence 6.

&,T’“’ — ul_oa” (F’WF”J _ %nuquana)
= L ((0,F") F¥ 5 + F* (8,F";) — £ (0"F*7) F,,)

= —F"j, + - Fpp (50" FP7 + 0,F"7)
= —F"j, — 5—F, (0"F*" + 0" F"" + 8’ F")

2u0
= —FH"j, by Maxwell's equations.

Thus in the absence of charges/currents, the energy-momentum tensaes/eain
We can evaluate the right hand side of this equation to get

8,T" = (-j.E,pE +j A B).

The time component of this is the work done by the electromagneticdiedhe
spatial components give the electric force on a curjetite toB and on a charge
densityp due toE.

3.2 Plane waves
This has the equation A* = 0 in the gaugé), A* = 0, which has solutions
A, = Ae,exp (tho2?),

Note that this is a complex solution, so when we work viitandB we must take
the real part of théield, which corresponds to the imaginary part4yf.

€, IS the polarisation vector, and, = (—w, k) is the wave 4-vectorw is the
angular frequency is the wave vector ank| = w. A is the amplitude. Imposing the
gauge condition requires k* = 0, so we have the transversality of the wave.

This does not completely specify the gauge. If weddi, = 9,A with A =
—1Ce™® thene, s ¢, + Ck,. Sincek,k* = 0 this preserves the gauge condition.
This freedom is usually exploited to puf’ = 0. In this case,

A, = (0, Aee’™®) = (0, Aee?x—w1)

Y

wheree is a spatial vector. The gauge condition gikes = 0.
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FindingE andB from A,, is easy:
E; = —Fy; = —0pA; + 0; A9 = wA;.
and
B; = Y€1 Fji = €iju0j A = —k A A.

The physical fields correspond to the real parts of these quantities.

3.3 Radiation pressure

Suppose that we have a situation as drawn above, with a plane wavagpating in
the z direction. Then the electric and magnetic fields are ingthend = directions
respectively, withE, = wAsinw(t — z) andB, = wAcosw(t — 2).

The rate of flow of momentum per unit areg|, whereN is the Poynting vector
and this has a time averag%wQAQ. This is coincidentally the same as the energy
density. We also evaluate the stress-energy tensor

Ty =1

Ho

(30i (E* + B*) - EiE; — B;B;) .

This is clearly diagonal, and evaluating the diagonal components W& get= 0,
(Tyy) = 0and(T,,) = ﬁwQAQ. There is a pressure due to the wave, but importantly
it is not isotropic
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Chapter 4

Solving Maxwell’'s Equations

4.1 A Green’s Function

We hope to find a general expression f#y given a time dependent distribution of
charges and currents. We will work in thig A# = 0 gauge, and so we have to solve
the equatiom A* = —pugj*. We proceed naively and see what happens.

We hope to find a Green’s functi@i(z, ') such thallG = §(*) (z, z') and so

At(2) = —po / d'a! Gz, )" (')

is a solution o0 A* = —pugj*. One problem is thdl is a hyperbolic operator so there
exist non-trivial solutions tél¢ = 0 with ¢ — 0 at infinity.
The four dimension Fourier transform is defined by

fk) = /d%f(:r)e’”“'m.

The minus sign in the exponential is not arbitraryf s a plane wave () ~ e-®
thenf(k) = (27)*6™ (p — k), which is what we want.

We will solve OG(z,2') = 6 (x,2') using the Fourier transformG(k, z') =
—k~?e~*** and so defining,, = z, — ), = (2, z) we find

0,0
ezk.ze—zk z

1
G(x:xl) = W/d3kdk0 W

and note that if we perform thi, integral we see that the integrand is singular at
ko = £ |k|. We thus need to choose on which contour to perform the integral.

If we consider the retarded Green'’s functi@p;, which we get by integrating along
'y, we see that for? < 0, G(z,z') = 0 as we can close the contour in the upper half

17
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plane and apply Cauchy’s theorem. Edr> 0 we have to close the contour in the
lower half plane. In doing this we pick up two polesiatk| and can apply the residue
theorem.

The advanced Green'’s functi@gy is obtained by integrating alorig,. In this
caseG is only non-zero for? > 0.

The retarded Green’s function agrees with intuitive ideas of causality sasee
that. All we have to do now is evaluate it.

0 1 5 0 ezk.zefzko 0
Gret(l‘,l") :9(2 )7/(1 kdk W

We close the contour clockwise so we get2m: _ residues for the k integral, thus

2m€ e—tklz® _ oulk|2°
Gret(x:xl) = - /d3k' elkz (2—l(| .

We convert this into spherical polarskaspacek, = ksinf cos ¢, k, = ksinfsin ¢
andk. = kcosf and so

4(20 1kz cosd .
Gret(z,2') = _Zléjr 3) / k2dk sin6df d¢ (e"k”o - e““’])
_ 8 1kz cos 6 (e—zkzo B ezkzo)

0 —
— 6( ) /0 dk [eszCOSH]Z;g (e—zkzo _ ezkzo) )

82z

The integrand is even ik, so

0 o 0 0
Gret(x CE) fé;’: )z/ dk (e—zk; _ ezk;) (e—zk; _ ezkz ) )

Recall that/_dke** = 2rd(z). Thus the integral is a combination of four delta
functions, but the step functidghkills two of them off and we get

6(z°)
Az

Gret(z,7') = — §(z — 29).

For the recordGaqy = 9(4;20) §(z+2%). We can make our result fe# look more

covariant by recalling that

wheref(a;) = 0. Then asi® (22) = §(|z|* — 2°°) (z is a four-vector) we have

53 (22) = ﬁ (5<3>(\z| — %)+ 63 (2| + 20))
Z
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and as the step function removes one of these delta functions we get

1
27

Gret(z,2') = 6(2°)6®) (22), 2t =gk — M,
Now suppose we wish to evaluaté (z) for some current distributioft* as shown.
We get

Ab(z) = g—;/d4m’j“(x’)6(3) ((z —2")?) 6(z° — 2').

This comes about because we ch@gg. The advanced Green’s function gives the
reverse. Thug&r e is consistent with our ideas of causality. Other choice&/aire
not. This choice goes beyond local physics. It is presumably solved fisatipg to
cosmology or quantum theory.

We also note that the only contributions #¢ () come from pointse’ such that
(x — 2")? = 0 — that is only whenz andz’ can be joined by a light ray pointing
towards the future of’.

4.2 The field of a moving charge

Suppose we have a moving charge, with (non-relativistically) ed*(x — (¢)) and

thereforej = e%éB(X — (¢)). In the relativistic case we replagét) with y*(7) and

getj* = eu”d3(x — y(t)). We can use a trick to make this look more covariant,

jH* = e/d¢u“64(a:” —y¥(71)).
Then

m
ar =0 [t ar (@ - ) 00 - ) ot (o — (1),
T T

which has the effect of integrating over the backward light cone. This cavahested
by carrying out ther' integral first. Note that

2" —y°) +6(jx —y[ + (° —3?))
—2(z —y), G

vdr

6((33 _y)2) — 6(‘X_ Y‘ B (

The second delta function does not contribute (because we are usirgased
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Green'’s function) and so

qp = o dy" (|x —y| = (2° = y°))
B vdyy
27 dr —2(33 — y) %
epo B

=
4 %(m—y),, _—

wherer is the value ofr on the world-line where the past light conesofntersects
the world line of the particle. This is usually referred to as evaluaingpme instant
of retarded time. These are the Lienard-Wiechert potentials, and are painfsg tin
arbitrary relativistic motion.

The result

dy*
dr

Al = % /dT&((w —y)?) 0(z° —y°)

is useful for relativistic motion. To evaluate the fields we need to calctdates of the
form

v €lo dyll v
6 AU = ﬁ dTG(l'O — yo)?a (5((1’ — y)2)
dy* z” —y"(r) d
dT ddL:(x — y)p dT

_ EHo 0_ .0
=L [aro@ - ()

5((z —y)?)

To evaluate this we integrate by parts. We take# 4° and thus remove points on
the world-line of the particle from consideration. The field is natlvdefined there.
Thus

v o dyt
et A [(@ =y Y — (o - )Y
27 dr %L:(w—y)p rero

We write (z — y)* = (+R, Rn) whereR is the spatial distancix — y| andn is
a unit vector. The plus sign aR comes from the retarded Green’s function. We also
need the velocity = (v, yv) wherev = ﬂ—’t’. After evaluating this we get

_%[ n—v n/\{(n—v)/\V}}
2r [v*(1 —nv)3R? (I-nv)’R retarded time
B=nAE.

The first term in the expression f@& is just the Coulomb field (pu¢ = 0 to
see this). The second term only appears i 0 — it depends on the acceleration.
ThenE ~ acceleratioR andB ~ acceleratio® and are perpendicular. Thus the
Poynting vector iN ~ m}gigaﬁoﬁ. Thus the energy flux out of a large radius sphere
~ acceleratioh— accelerating particles radiate energy.

For a non-relativistic particle it is somewhat easier. We use the LieWaechert
potentials

AH = % _ ddy:
4 ddy (x —y)

T

retarded time
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and putz# = (t,x), y* = (t',y) with x — y = Rn wheren is a unit vector. For
non-relativistic motiorf- = (1, v) and

A“:% (1,v)
Ar x=Yllay ¢ —r

_ Itis straightforward to calculate andB from B = curl A andE = — grad AD —
A. We first evaluatd, and note that we are only interested in heR ') terms —
to get the radiation at infinity. Thus

B~ — €lg €lg

— v and E~ ——— v] .
471_Rn/\v 471_Rn/\[nv]

The Poynting vectoN = ;—OE A B evaluates alN = 15% (¥)? sin®0 n.

The radiation is mainly perpendicular to the direction of the acceleratiorisand
axisymmetric about that axig: determines the time dependence of the radiation and
thus the frequency can be found by Fourier transforniing

The power radiated (or the total flux of radiation)/idN.dS over a sphere at in-
finity which we assume is at a large distance from the particle (the cdlsptiere).
Converting to polars we get

- o .0 [ .3 €0 r2
flux of radiation= o3 (¥) /sm 6 dfdo = o (¥)".

This is Larmor’s formula.

4.2.1 Radiation reaction

We consider a particle with mass and charge moving under an external for@@.y:.
Assume (naively) Newton's Lawny = Fey and dot this withy and integrate to get
that the change in kinetic energy equals the work done by the applied Brteve
know that this is not true — there are radiative losses at infinity. Wgeefore guess
another forcéF'r and proposeny = Fey + Fr. Dotting this withy and integrating

we see thaF i.y is the radiative energy loss. Using Larmor’s formula and assuming
that there is no acceleration at the endpoints of the motion w& get %y and
derive the Abraham-Lorentz equation

2
m (y _fh Y> = Fext.
6mm

This is very odd and leads to embarrassing difficulties. To solve such ati@gu
three initial conditions are needed, position, velocity and acceleratiohif &e take
Fe = 0 We see that the solutions afe+ Bt + Ce~, wherer is the timescalé;%,j.
This exponential runaway solution is presumed to be unphysical.
If Fext is a delta function and we assume the initial conditiens # = 0 we
have to adjust to suppress the runaway solution. We see that the particle (if charged)
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must start acceleratingeforethe force is applied. This acausal behaviour is called pre-
acceleration and is governed by the timesealehich for an electron is approximately
6 x 10~%4s, into the realm of quantum mechanical effects.

4.3 Oscillating Fields

Assume thaj*(x,t) = j#(x)e*! with j# non-zero only in some domain.

Using our result ford* we get

1 )
A“(X,t) — Z_Oezwt /delj,u,(X/) e—zw|x—x |

T |x — x|

x—x'

_1
11 ] 2x.x' x'[*)
x-x| R\  R? * R?

1 xx 1% 3(xx)?
= (1+ —§| ‘ +—( ) R

If R > dwe can expangll—‘ in the usual way as

R R2 R2 "2 R*

TheO(R~2%) and lower terms do not contribute to the radiation and will be omitted.
We get

Au(X’t) — Ll‘:__ORel!-Ut/delju(X/)€,Zw|xixr‘.

. . . — — ! .
We can perform a similar expansion on x| and finally get

At (x,t) = —41:3%62”(“1?) /dSw’j“(x')el”x%l
providedR > ), the wavelength. Thus the expansion we have derived is valid when
R > d, . This is called the radiation zone.

Thus at large distances the system appears to be a source of spherical veaves. T
proceed further we can expand out the phase factor in powers\We get

2
L+ MX.X’ L (x.x")

R 2R?

+ ...

AM(x,t) = —471_0Re‘“’(t’R) /de'j“(x’)

In the radiation zone whend >> 1 these terms are successively smaller.
Recall thatj* = (p,j). Then
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_ w
AO(x:t):éll:r_ORelw(t R) |:Q+Ex'p+"':|

wherep is the electric dipole moment of the system. Note tat= 0 as the total
charge cannot depend on time. For the vector potential,

i Mo qw(t—
A (X,t):me (t-R)

/d3a:' Gi(x") + %xj /d3a:' i (x") + .. }
We can simplify this by noting (integrate by parts) that
/d3x'ji(xl) = —/d3x' ;0,4 (x")

and applying the continuity equation, which in this casevis + div j = 0. Thus

and we get

A0 — WHO  yw(t—R)P-X and A = WHO 4w(t—R) ]
ArR? R arR ¢ p

We can now calculatE andB as

WQ:UO w(t—
=t (t—F) (R2p—(x.p)x)

WQ:UO w(t—R
= R° t=BxA(xAp) and

2
_ WHO w(t-R)

 4ATR? X AP

The time averaged Poynting vector thus points radially outwards anddgsitude

N = “302“;2‘1‘;‘22 sin? G_and the average power radiated is theref@#glrLF. _
The scattered light has* dependence times the spectrum of the light. Thus blue

light is scattered preferentially to red and the sky appears blue. This gtairexthe

red sun at sunset; since there is more scattering when the angle of tleelewrand

the blue light is scattered more.
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Chapter 5

Quantum mechanical effects

5.1 Minimal coupling

Consider a particle with charge worldline z*(7) in an electromagnetic field with
potentialA*. Recall we obtained an action

I= —/d’l‘ (m -2 —eAux'“) = /dTE(x,x'),

where the minus sign is inessential; it just normalizes things nigélg.momentum
m# conjugate tac# is gTﬁ = mi* +eAH, consisting of the mechanical momentum and
a modification due to the electromagnetic field. The Hamiltodidn, ) = n*%, —
L= (m—eA)?

.

The replacement qf with 7 = p + eA is usually termed “minimal coupling” and
corresponds to classical electrodynamics.

In quantum mechanics the momentpris replaced with a momentum operafor
and we assume that the momentum operator for charged particles is modkethdi
classical momentum”, that js— 7 = p + eA — —1hV + eA.

The Schrodinger equation for a static fiéld A) is %w = Enp, which according
to minimal coupling, and turning into an operator, ié%w = E.

Since gauge transformations are not supposed to have any physical eftect s
tions of the Schrodinger equation in one gauge must be solutioaisdther gauge. If
we start with the universal combinati¢r:iV + eA) 1, on sendingA — A + VA
the universal combination becomgs:aV + eA + eVA)¢'. This must be invariant
(up to a phase factor), and souf = e % we get(—hV + eA +eVA) Y =
e™*% (—ihV — eVA + eA + eVA) ¢ and the universal combination is invariant (up
to a phase factor). Phase should not be too disturbing; the matrmeeit

2eA

/d3x¢1*0¢2 - /d%me%éwe— z

and under all normal circumstances the phase factors cancel; the matrix element is
invariant.

This minimal coupling means that the vector potential can give rise terehisle
physical effects. One which you may have met before is the Aharonov - Bdiect.

25
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Consider the long, thin solenoid shown, wih # 0 inside andB = 0 outside.
In classical mechanics, charged particles with be unaffected Bnee0 outside the
solenoid.

In quantum mechanics; consider eigenstates sfates) with (—1AV + eA) ¢ =
mip. If the phases of the waves on the two paths differ then there will bieudéige
interference.

Now suppose that a neutral particle has a wavefunetiga). For a charged par-

ticle the corresponding wavefunctiomigz) = o (z) exp (—% f;”o A.dl). Thus the
phase factor (the difference in phase) between the two paths is

- 4Adl _ e—% [ curl A.dS
_ % [Bas

— ef%ﬁlux).

By appropriate choice of the fluk we can get as much or as little interference as
we want. Ifz® = = then there is completely destructive interference;® = 27 then
the interference is completely constructive and the solenoid is undetectableneral
if ® = @ the solenoid is unobservable. This is an inherently quantum mechanical
effect.

One might think thaB = 0 outside the solenoid implies that = 0 outside the
solenoid. This is true only if the region is simply connected — wliiébn’'t. We can
make a gauge transformation to pAit = 0 at a point but because the region is not
simply connected we cannot do this everywhere.

This was experimentally verified in the 1960’s.

5.2 Conduction

An ordinary conductor looks something like a regular lattice of atamith the valence
electrons forming an electron gas throughout the material.

An appliedE field moves the gas, but electrons collide with atoms and stop. Sup-
pose they move with an average veloaityThen the current density is the charge on an
electronx the number densitx v. The mean free path only depends on the geometry,
so the current density isE, with o the conductivity.

Superconductivity is very different. It was first discovered by KammgHi®nnes
in 1905; he noticed that when some metals are cooled4& the electric conductivity
became infinite. Nowadays superconductivity is observed in certain matepidats u
about liquid nitrogen temperatures,100K.

The fundamental description of superconductivity is due to Bardeerpe&Zamd
Schreiffer and is in detail beyond this course. The result is that thertigran inher-
ently quantum mechanical effect in which bound states of pairs of electronsebabav
bosons rather than as fermions. They have a chafgeand an effective mass of

(say).
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We will examine the Landau-Ginzburg theory. Suppose the charge candee a
wavefunctiony = Re'?. We can then interpret the probability current as the flux of
these particles. We can evaluate

h h
i = — *v — V * = —RQV .
Jprob um (X X — (Vx) X) m ¢
We interpretR? as a number density, and so we guess an electric currgnt
%qu. However this is not gauge invariant and as the electric current musthstay t
same under gauge transformations we fix up the equation to get the(velsiclh can
be derivedfrom the BCS theory)

5.2.1 Meissner effect

SincedivB = 0 lines of B cannot end. However if one takes a material in a mag-
netic field and cools it to its superconducting temperature one observasgecin the
magnetic field.

We are led to guess thBt = 0 inside a superconductor. The above expression for
js and the Maxwell equations giverrl B = £22 ['y¢ — LA}, Taking the curl of
this we get a differential equation f&3:

2
vB= Kl g
m

. . . . 2B _ 2”5 . _
In the region shown this simplifies t%z—o = #1-2-B and so we find thaB =
Boexp —4/ %z taking the negative root since the energy must be bounded.

B decays exponentially away from the surface on a distance scat&—, which

Nsq~ o
is of the order of atomic size. Thus in practice we h#/e= 0 inside a supercon-
ductor and this is a better definition of a superconductor than saying tiest infinite
conductivity.

A is not necessarilg, but in order to get a superconducting current we must have
ns 7 0. Landau and Ginzburg tried to construct an analog of the Schrodinger@uguati
which gave this result.

It is easier (as always) to start from an action:
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I= /d% [kinetic energy— potential energly
h2
= [ [——wvw - Vw*w}
2m
= /d% [i (—1hVp)* (—hVY) + V@Zz*w}
2m
incorporating the magnetic field via minimal coupling

_ /d% [(—ihVe — gAY)" (—hVe — gAY) + Vi) .

This is gauge invariant.

It cannot depend on where we are in the superconductor alidisaonstant. We
get the familiar Schrodinger equation which has the obvious solutiea 0 and no
other solution independent &f

Landau and Ginzburg proposed the addition of a tébrw4 to this action to get

I:/d%%(V—%A)w2+vw2+%b|¢|‘l.

This action can be derived from BCS theory and gives a nonlinear analog of the

Schrodinger equation:
1 2 2
—— (—th—qA)" Y+ Vip+ b ¢ =0.
4m

The currenf, = 2 (y* Vi — ¢ (Vi)") — 22 A [

We get a non-vanishing spatially independent solution of this “Stihger equa-
tion” whenV < 0 andb > 0. This occurs when the temperatdrds less than some
critical temperaturd’,.; normal matter ha¥ > 0.

BCS theory give$ > 0 andV = 14 (T — T,).

5.3 Superconducting flux quantisation

Consider a ring of superconducting material as shown.

In the materiaB = 0 andj = 0. Sincej (V¢ — $A) we must haveA = %Vqﬁ
inside the ring.
The magnetic flux through the loop is

/ B.dS = jl{ A.dl
shaded surface boundary loop
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Evaluating this inside the superconductor we @@b]. As the wavefunction must
be single valued this must kﬁé’;—h and since the charge carriers are electron pairs then
the flux is quantised in units £

If we make a current flow on the surface of the superconductor then as the flux

through the loop is the inductance times the current, and so the tjwaigtised we see
that the current is quantised.

5.4 Magnetic monopoles

Suppose that B field Z—gPT% is possible, by analogy with the Coulomb field in elec-
trostatics.
Using Gauss’ Law we have

P = ! B.dS:i/dideV.
Mo

Ho Jclosed surface

Thus if div B = 0 everywhere ther® = 0 and magnetic charges cannot arise.
Thus Maxwell's equations must be modified in order to get this field.

A suitable vector potentiaA is 4, = “ff (1 + cosf) (in spherical polars). We
have|A| = 4o (50 There js a difficulty a8 = 0 for all 7.

This singularity on the North axis is called the Dirac string. It cammwed about
by gauge transformations; if we have— A + V#q& we can put the Dirac string
onto the South axis.

Since (by axiom) the observable physics should not depend on the gaedé¢he
string singularity should be unobservable.

We showed earlier that the phase difference between two paths going irofront
behind the string is ¢ A.dl and this must be an integer multiple &f. Evaluating

the integral gives the Dirac quantisation conditi®nr= ni’fT’;
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Chapter 6

Born-Infeld Theory

This material is starred and
was included as a fill-in lec-
ture.
1 1
I=— [d*a— ~F,F",
Mo 4

Recall that Maxwell's theory is (in the absence of currents) governed by amactio

giving the two Maxwell equation8, F,, + 0,F,,0,F,, = 0 andg,F*" = 0.
There is a hidden duality symmetry und€r, — e,,,,F*° of both the action and
the equations of motion.

Recall also that electric charges have a radial compoBgnt <1 and that

4meq 2
the energy density in the electric fieldéiso \E\Q. We can see that the energy density
blows up at the origin and also that the total energy in the electric fiahdinste.
We also propose a similiar magnetic monopole fiBld = 11‘;0 T%; the energy in
this magnetic field is also infinite.
The Born-Infeld theory emerges from string theory. It depends on a pdean
with the dimensions of length. We take a new action;

1
e /d4;p {1_ V/Idet n, +bFW}

and we suppose that,, = 0,4, — 0, A4,.
Since we have that, up to a Lorentz transform,

0 A 0 0

- |=x 0 0 o0
Fw=Fw=1 19 o o
0 0 =X O

we can see thatet 7, + bFu,, = det n,, + bF},, and so we can evaluate the action as

1 1 1

The limit b — 0 (clearly) gives the Maxwell action. Since we are assuming that
F,,, is derived from a potential we still have the equatip#, , + 8, F),, + 0,F),, =0
and the other equation &,G*” = 0, the difference being that the equation {8t is

31
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a horrible mess:
2
Fre — L PATe 5 FopFyse®h70

- 2 4 2
\/1 — G Fe FEC = 95 (ceexm PO FXT)

gli

(you have no idea how difficult it was to find that many different Greeletsjt
We obtain
1

1
T, v — LAFV - w£
1 1 {QL At 477L }

where. is the Lagrangianf = ;> {1 —+/|det nu, + bFu,,\}.

There is a symmetry in these equations undigy — 1e,,,,G°7 andg,, —
—%su,,ngﬂ": the Lagrangian and equations of motions are invariant. This has the
effect of swappingE andB.

The analog of the electric field of a point charge idafield which is purely radial,
defined bydg = ¢ andE,. = —V,.¢. In this case the action reduces to

1

v /r2drsin9d9d¢ [1 _ /1= b%ﬂ
0

and variation of this yields

A = const= a.
Solving this forg, = —E, yields
Boo___ @
TV o
and so ag — oo, B, ~ —-%. Thus if we wish to reproduce the Maxwell field for
large distances = —47?60. Thus as — 0 we see that), — %

The energy density In the electric field is

1 LN (U S Y LA
ob® | V1= B°E2  pob? 16m2€or?

which is singular (but integrably so) at= 0. Performing the integral to find the
total energy in the electric field we obtain

ELI (9)%
3WVBI($)? \4)
which is noticably finite.

This theory also has magnetic monopoles; an easy way is to see that theisheory
invariant under swapping andB. The energy in a magnetic monopole field is

|-

O ol

if B, ~ foz asr — 0o.

In fact B, = “2£. which although it looks singular is perfectly reasonable.

4mr2
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