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PREFACE

The Department of Mechanical Engineering at MIT offers a series of graduate level sub-

jects on the Mechanics of Solids and Structures which include:

2.071: Mechanics of Solid Materials,

2.072: Mechanics of Continuous Media,

2.074: Solid Mechanics: Elasticity,

2.073: Solid Mechanics: Plasticity and Inelastic Deformation,
2.075: Advanced Mechanical Behavior of Materials,

2.080: Structural Mechanics,

2.094: Finite Element Analysis of Solids and Fluids,

2.095: Molecular Modeling and Simulation for Mechanics, and
2.099: Computational Mechanics of Materials.

Over the years, I have had the opportunity to regularly teach the second and third of
these subjects, 2.072 and 2.074 (formerly known as 2.083), and the current three volumes
are comprised of the lecture notes I developed for them. The first draft of these notes was
produced in 1987 and they have been corrected, refined and expanded on every following
occasion that I taught these classes. The material in the current presentation is still meant

to be a set of lecture notes, not a text book. It has been organized as follows:
Volume I: A Brief Review of Some Mathematical Preliminaries
Volume II: Continuum Mechanics
Volume III: Elasticity

My appreciation for mechanics was nucleated by Professors Douglas Amarasekara and
Munidasa Ranaweera of the (then) University of Ceylon, and was subsequently shaped and
grew substantially under the influence of Professors James K. Knowles and Eli Sternberg
of the California Institute of Technology. I have been most fortunate to have had the
opportunity to apprentice under these inspiring and distinctive scholars. 1 would especially
like to acknowledge a great many illuminating and stimulating interactions with my mentor,

colleague and friend Jim Knowles, whose influence on me cannot be overstated.

I am also indebted to the many MIT students who have given me enormous fulfillment

and joy to be part of their education.

My understanding of elasticity as well as these notes have also benefitted greatly from

many useful conversations with Kaushik Bhattacharya, Janet Blume, Eliot Fried, Morton E.
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Gurtin, Richard D. James, Stelios Kyriakides, David M. Parks, Phoebus Rosakis, Stewart
Silling and Nicolas Triantafyllidis, which I gratefully acknowledge.

Volume 1 of these notes provides a collection of essential definitions, results, and illus-
trative examples, designed to review those aspects of mathematics that will be encountered
in the subsequent volumes. It is most certainly not meant to be a source for learning these
topics for the first time. The treatment is concise, selective and limited in scope. For exam-
ple, Linear Algebra is a far richer subject than the treatment here, which is limited to real

3-dimensional Euclidean vector spaces.

The topics covered in Volumes IT and III are largely those one would expect to see covered
in such a set of lecture notes. Personal taste has led me to include a few special (but still
well-known) topics. Examples of this include sections on the statistical mechanical theory
of polymer chains and the lattice theory of crystalline solids in the discussion of constitutive
theory in Volume II; and sections on the so-called Eshelby problem and the effective behavior

of two-phase materials in Volume III.

There are a number of Worked Examples at the end of each chapter which are an essential
part of the notes. Many of these examples either provide, more details, or a proof, of a
result that had been quoted previously in the text; or it illustrates a general concept; or it

establishes a result that will be used subsequently (possibly in a later volume).

The content of these notes are entirely classical, in the best sense of the word, and none
of the material here is original. I have drawn on a number of sources over the years as |
prepared my lectures. I cannot recall every source I have used but certainly they include
those listed at the end of each chapter. In a more general sense the broad approach and

philosophy taken has been influenced by:

Volume I: A Brief Review of Some Mathematical Preliminaries
.M. Gelfand and S.V. Fomin, Calculus of Variations, Prentice Hall, 1963.

J.K. Knowles, Linear Vector Spaces and Cartesian Tensors, Oxford University Press,
New York, 1997.

Volume II: Continuum Mechanics
P. Chadwick, Continuum Mechanics: Concise Theory and Problems, Dover,1999.
J.L. Ericksen, Introduction to the Thermodynamics of Solids, Chapman and Hall, 1991.
M.E. Gurtin, An Introduction to Continuum Mechanics, Academic Press, 1981.
J. K. Knowles and E. Sternberg, (Unpublished) Lecture Notes for AM136: Finite Elas-
ticity, California Institute of Technology, Pasadena, CA 1978.



C. Truesdell and W. Noll, The nonlinear field theories of mechanics, in Handbiich der
Physik, Edited by S. Fliigge, Volume II1/3, Springer, 1965.

Volume IIII: Elasticity
M.E. Gurtin, The linear theory of elasticity, in Mechanics of Solids - Volume II, edited
by C. Truesdell, Springer-Verlag, 1984.
J. K. Knowles, (Unpublished) Lecture Notes for AM135: Elasticity, California Institute
of Technology, Pasadena, CA, 1976.
A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover, 1944.
S. P. Timoshenko and J.N. Goodier, Theory of Elasticity, McGraw-Hill, 1987.

The following notation will be used consistently in Volume I: Greek letters will denote real
numbers; lowercase boldface Latin letters will denote vectors; and uppercase boldface Latin
letters will denote linear transformations. Thus, for example, «, 3,~... will denote scalars
(real numbers); a, b, c, ... will denote vectors; and A, B, C, ... will denote linear transforma-
tions. In particular, “o” will denote the null vector while “0” will denote the null linear
transformation. As much as possible this notation will also be used in Volumes IT and III

though there will be some lapses (for reasons of tradition).
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Chapter 1

Matrix Algebra and Indicial Notation

Notation:
{a} ... m X 1 matrix, i.e. a column matrix with m rows and one column
Qe element in row-i of the column matrix {a}
P21 — m X n matrix
Aij element in row-i, column-j of the matrix [A]

1.1 Matrix algebra

Even though more general matrices can be considered, for our purposes it is sufficient to
consider a matrix to be a rectangular array of real numbers that obeys certain rules of

addition and multiplication. A m x n matrix [A] has m rows and n columns:

All A12 < Aln
[A] _ A21 A22 R Agn : (11>
Aml Am2 s Amn

A;; denotes the element located in the ith row and jth column. The column matrix

T

T2

{z} =

Im
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has m rows and one column; The row matrix

{y} = {yi. v, und (1.3)

has one row and n columns. If all the elements of a matrix are zero it is said to be a null

matriz and is denoted by [0] or {0} as the case may be.

Two m xn matrices [A] and [B] are said to be equal if and only if all of their corresponding

elements are equal:

If [A] and [B] are both m x n matrices, their sum is the m x n matrix [C] denoted by
[C] = [A] + [B] whose elements are

Cij:Aij+Bij7 i:1,2,...m, j:1,2,...,n. (15)

If [A] is a p X ¢ matrix and [B] is a ¢ X r matrix, their product is the p x r matrix [C] with

elements

q
Cij=>_ AwBy, i=12..p j=12..¢ (1.6)
k=1

one writes [C] = [A][B]. In general [A][B] # [B][A]; therefore rather than referring to [A][B]
as the product of [A] and [B] we should more precisely refer to [A][B] as [A] postmultiplied
by [B]; or [B] premultiplied by [A]. It is worth noting that if two matrices [A] and [B] obey
the equation [A][B] = [0] this does not necessarily mean that either [A] or [B] has to be the
null matrix [0]. Similarly if three matrices [A], [B] and [C] obey [A][B] = [A][C] this does
not necessarily mean that [B] = [C] (even if [A] # [0].) The product by a scalar o of a m xn

matrix [A] is the m X n matrix [B] with components
B;j = aAy;, 1=1,2,...m, j=12...,n; (1.7)
one writes [B] = a[A].

Note that a m; X n; matrix [A;] can be postmultiplied by a mg X ny matrix [As] if and
only if ny = my. In particular, consider a m X n matrix [A] and a n x 1 (column) matrix
{z}. Then we can postmultiply [A] by {x} to get the m x 1 column matrix [A]{z}; but we
cannot premultiply [A] by {z} (unless m=1), i.e. {x}[A] does not exist is general.

The transpose of the m x n matrix [A] is the n x m matrix [B] where

B;j = Aj; foreacht=1,2,...n, and j =1,2,...,m. (1.8)



1.1. MATRIX ALGEBRA 3

Usually one denotes the matrix [B] by [A]”. One can verify that
[A+B]" =[A]" +[B]",  [AB]" = [B]"[A]". (1.9)

The transpose of a column matrix is a row matrix; and vice versa. Suppose that [A] is a
m X n matrix and that {z} is a m X 1 (column) matrix. Then we can premultiply [A] by
{x}T, ie. {x}T[A] exists (and is a 1 X n row matrix). For any n x 1 column matrix {z} note
that

{2} oz} = oo} =23+ 235, + 22 = fo (1.10)

A n x n matrix [A] is called a square matriz; the diagonal elements of this matrix are the

A;i’s. A square matrix [A] is said to be symmetrical if

A=A, for each 7,7 =1,2,...n; (1.11)
skew-symmetrical if

Ajj=—-A; for each 7,7 =1,2,...n. (1.12)
Thus for a symmetric matrix [A] we have [A]T = [A]; for a skew-symmetric matrix [A] we
have [A]T = —[A]. Observe that each diagonal element of a skew-symmetric matrix must be
zero.

If the off-diagonal elements of a square matrix are all zero, i.e. A;; = 0 for each ¢,7 =
1,2,...n,1 # j, the matrix is said to be diagonal. If every diagonal element of a diagonal

matrix is 1 the matrix is called a unit matriz and is usually denoted by [I].

Suppose that [A] is a n X n square matrix and that {z} is a n x 1 (column) matrix. Then
we can postmultiply [A] by {z} to get a n x 1 column matrix [A]{z}, and premultiply the
resulting matrix by {z}7 to get a 1 x 1 square matrix, effectively just a scalar, {z}T[A]{z}.
Note that .

(o} Az} = > ) Ay, (1.13)
=1 j=1
This is referred to as the quadratic form associated with [A]. In the special case of a diagonal
matrix [A]

The trace of a square matrix is the sum of the diagonal elements of that matrix and is
denoted by trace[A]:

trace[A] = )~ Ay (1.15)
=1
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One can show that
trace([A][B]) = trace([B][4]). (1.16)

Let det[A] denote the determinant of a square matrix. Then for a 2 x 2 matrix

An A
det ( A:i A;z ) = A11A22 - A12A217 (117)

and for a 3 X 3 matrix

All Al2 A13 A A A A A A
det A21 AQQ A23 = AH det 2 23 — A12 det 2 2 + A13 det 2 22 .
32 A33 31 A33 31 A32
ASI A32 A33

(1.18)
The determinant of a n x n matrix is defined recursively in a similar manner. One can show
that
det([A][B]) = (det[A]) (det[B]). (1.19)
Note that trace[A] and det[A] are both scalar-valued functions of the matrix [A].

Consider a square matrix [A]. For each i =1,2,...,n, a row matrix {a}; can be created
by assembling the elements in the ith row of [A]: {a}; = {Ai1, Aie, Ais, ..., Ain}. If the only

scalars «; for which

aj{a}s + ao{ats + as{a}ls + ... a,{a}, = {0} (1.20)

are a; = g = ... = a,, = 0, the rows of [A] are said to be linearly independent. If at least
one of the a’s is non-zero, they are said to be linearly dependent, and then at least one row

of [A] can be expressed as a linear combination of the other rows.

Consider a square matrix [A] and suppose that its rows are linearly independent. Then
the matrix is said to be non-singular and there exists a matrix [B], usually denoted by
[B] = [A]™! and called the inverse of [A], for which [B][A] = [A][B] = [I]. For [4] to be
non-singular it is necessary and sufficient that det[A] # 0. If the rows of [A] are linearly

dependent, the matrix is singular and an inverse matrix does not exist.

Consider a n x n square matrix [A]. First consider the (n—1) x (n—1) matrix obtained by
eliminating the ith row and jth column of [A]; then consider the determinant of that second
matrix; and finally consider the product of that determinant with (—1)**. The number thus
obtained is called the cofactor of A;;. If [B] is the inverse of [A], [B] = [A] ™!, then

cofactor of Aj;

det[A]

B = (1.21)
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If the transpose and inverse of a matrix coincide, i.e. if
(A7 = A, (1.22)

then the matrix is said to be orthogonal. Note that for an orthogonal matrix [A], one has
[A][A]T = [A]T[A] = [I] and that det[A] = +1.

1.2 Indicial notation

Consider a n x n square matrix [A] and two n x 1 column matrices {x} and {b}. Let A;;
denote the element of [A] in its i*® row and j* column, and let z; and b; denote the elements

in the i'" row of {x} and {b} respectively. Now consider the matrix equation [A]{z} = {b}:

A A o0 A £y by
Ao A ... Agy x b
21 A2 2 2 _ 2 . (1.23)
Anl AnQ s Ann Tn bn
Carrying out the matrix multiplication, this is equivalent to the system of linear algebraic
equations
Anzy +Apry + +AT, = b1,
Ay +Apze +... +Apz, = ba,
(1.24)
+... + +... =...
Anlml +An2x2 + +Ann$n = bn

This system of equations can be written more compactly as
Ajpxy + Apra+ ... Ajpx, = by with i taking each value in the range 1,2,...n; (1.25)

or even more compactly by omitting the statement “with ¢ taking each value in the range

1,2,...,n”, and simply writing

with the understanding that (1.26) holds for each value of the subscript i in the range i =
1,2,...n. This understanding is referred to as the range convention. The subscript i is called
a free subscript because it is free to take on each value in its range. From here on, we shall

always use the range convention unless explicitly stated otherwise.
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Observe that
Ajlxl + AJQ[EQ + ...+ AjnZL’n = bj (127)

is identical to (1.26); this is because j is a free subscript in (1.27) and so (1.27) is required
to hold “for all j = 1,2,...,n” and this leads back to (1.24). This illustrates the fact that
the particular choice of index for the free subscript in an equation is not important provided

that the same free subscript appears in every symbol grouping.?

As a second example, suppose that f(x,za,...,x,) is a function of x1, s, ..., z,, Then,
if we write the equation
of
— = 3, 1.28
B K (1.28)
the index k in it is a free subscript and so takes all values in the range 1,2,...,n. Thus

(1.28) is a compact way of writing the n equations

of of af
0wy TV Gm, O C o, T (1.29)
As a third example, the equation
A,y = xp1y (1.30)

has two free subscripts p and ¢, and each, independently, takes all values in the range

1,2,...,n. Therefore (1.30) corresponds to the nine equations
.
A =xim, A =1122, ... Ay =117,
Agp = oy,  Agy = Tax9, ... Aoy = X7y,
(1.31)
Anl = Tply, An? = Tpla, ... Ann = Tnlp.

/

In general, if an equation involves N free indices, then it represents 3V scalar equations.

In order to be consistent it is important that the same free subscript(s) must appear once,
and only once, in every group of symbols in an equation. For example, in equation (1.26),
since the index 7 appears once in the symbol group A;;x1, it must necessarily appear once
in each of the remaining symbol groups A;xo, Ajzxs,... A;x, and b; of that equation.

Similarly since the free subscripts p and ¢ appear in the symbol group on the left-hand

!By a “symbol group” we mean a set of terms contained between +, — and = signs.
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side of equation (1.30), it must also appear in the symbol group on the right-hand side.
An equation of the form A,, = z;x; would violate this consistency requirement as would
Ajiz; + Ajoxs = 0.

Note finally that had we adopted the range convention in Section 1.1, we would have
omitted the various “i=1,2,...,n” statements there and written, for example, equation (1.4)
for the equality of two matrices as simply A;; = B;;; equation (1.5) for the sum of two
matrices as simply Cj; = A;; + B;;; equation (1.7) for the scalar multiple of a matrix as
B;; = aA;j; equation (1.8) for the transpose of a matrix as simply B;; = Aj;; equation
(1.11) defining a symmetric matrix as simply A;; = Aj; and equation (1.12) defining a

skew-symmetric matrix as simply A;; = —Aj;.

1.3 Summation convention

Next, observe that (1.26) can be written as
j=1

We can simplify the notation even further by agreeing to drop the summation sign and instead
imposing the rule that summation is implied over a subscript that appears twice in a symbol

grouping. With this understanding in force, we would write (1.32) as

with summation on the subscript j being implied. A subscript that appears twice in a
symbol grouping is called a repeated or dummy subscript; the subscript j in (1.33) is a

dummy subscript.

Note that

is identical to (1.33); this is because k is a dummy subscript in (1.34) and therefore summa-
tion on k in implied in (1.34). Thus the particular choice of index for the dummy subscript

is not important.

In order to avoid ambiguity, no subscript is allowed to appear more than twice in any
symbol grouping. Thus we shall never write, for example, A;x; = b; since, if we did, the

index ¢ would appear 3 times in the first symbol group.
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Summary of Rules:

1. Lower-case latin subscripts take on values in the range (1,2,...,n).

2. A given index may appear either once or twice in a symbol grouping. If it appears
once, it is called a free index and it takes on each value in its range. If it appears twice,

it is called a dummy index and summation is implied over it.
3. The same index may not appear more than twice in the same symbol grouping.

4. All symbol groupings in an equation must have the same free subscripts.

Free and dummy indices may be changed without altering the meaning of an expression
provided that one does not violate the preceding rules. Thus, for example, we can change

the free subscript p in every term of the equation

Az, = by (1.35)
to any other index, say k, and equivalently write

We can also change the repeated subscript ¢ to some other index, say s, and write
The three preceding equations are identical.

It is important to emphasize that each of the equations in, for example (1.24), involves
scalar quantities, and therefore, the order in which the terms appear within a symbol group
is irrelevant. Thus, for example, (1.24); is equivalent to x1 Ay + 22412 + ... + T, A1, =
bi. Likewise we can write (1.33) equivalently as x;A;; = b;. Note that both A;;z; = b;
and x;A;; = b; represent the matrix equation [A]{z} = {b}; the second equation does not
correspond to {z}[A] = {b}. In an indicial equation it is the location of the subscripts that
is crucial; in particular, it is the location where the repeated subscript appears that tells us
whether {x} multiplies [A] or [A] multiplies {z}.

Note finally that had we adopted the range and summation conventions in Section 1.1,
we would have written equation (1.6) for the product of two matrices as Cj; = A;xByj;
equation (1.10) for the product of a matrix by its transpose as {z}7{x} = x;x;; equation
(1.13) for the quadratic form as {z}[A]{x} = A;;z;z;; and equation (1.15) for the trace as
trace [A] = Aj;.
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1.4 Kronecker delta

The Kronecker Delta, 6;;, is defined by

L if i

by=q (1.38)
0 if i#j.

Note that it represents the elements of the identity matrix. If [(Q)] is an orthogonal matrix,

then we know that [Q][Q]? = [Q]T[Q] = [I]. This implies, in indicial notation, that

QikQjr = QriQrj = 045 - (1.39)

The following useful property of the Kronecker delta is sometimes called the substitution
rule. Consider, for example, any column matrix {u} and suppose that one wishes to simplify
the expression u;0;;. Recall that u;0;; = w101; + u2da; + ... + uydy,;. Since d;; is zero unless
1 = 7, it follows that all terms on the right-hand side vanish trivially except for the one term

for which ¢ = j. Thus the term that survives on the right-hand side is u; and so

Thus we have used the facts that (i) since 0;; is zero unless i = j, the expression being
simplified has a non-zero value only if i = j; (ii) and when ¢ = j, J;; is unity. Thus replacing
the Kronecker delta by unity, and changing the repeated subscript ¢ — j, gives u;0;; = u;.
Similarly, suppose that [A] is a square matrix and one wishes to simplify A,;;dy;. Then by the
same reasoning, we replace the Kronecker delta by unity and change the repeated subscript
j — £ to obtain?

Ay = Ag. (1.41)

More generally, if d;, multiplies a quantity C;js representing n* numbers, one replaces

the Kronecker delta by unity and changes the repeated subscript ¢ — p to obtain
Cijék §ip = ij@k- (142)

The substitution rule applies even more generally: for any quantity or expression 7j,,. ., one
simply replaces the Kronecker delta by unity and changes the repeated subscript ¢ — j to
obtain

Tipgoz 0 = Tipg.o (1.43)

20bserve that these results are immediately apparent by using matrix algebra. In the first example, note
that 0;,u; (which is equal to the quantity d;;u; that is given) is simply the jth element of the column matrix
[I]{u}. Since [I[{u} = {u} the result follows at once. Similarly in the second example, d,;A4; is simply the
¢, k-element of the matrix [I][A]. Since [I][A] = [A], the result follows.
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1.5 The alternator or permutation symbol

We now limit attention to subscripts that range over 1,2,3 only. The alternator or permu-

tation symbol is defined by

(0 if two or more subscripts i, j, k, are equal,

Cijk = +1 if the subscripts i, j, k, are in cyclic order,

—1 if the subscripts i, j, k, are in anticyclic order,
(1.44)

0 if two or more subscripts i, j, k, are equal,
= +1 for (4,7, k) = (1,2,3),(2,3,1),(3,1,2),
—1 for (4,5, k) = (1,3,2),(2,1,3),(3,2,1).

\

Observe from its definition that the sign of e;;;, changes whenever any two adjacent subscripts

are switched:

€ijk = —€jik = €jki- (1-45)

One can show by direct calculation that the determinant of a 3 matrix [A] can be written

in either of two forms
det[A] = eijkAMAnggk or det[A] = eijkAilAngkg; (146)

as well as in the form

1
det[A] = 6 eijkepqrAiijqur. (147)

Another useful identity involving the determinant is
Epgr det[A] = eijkAiijqur. (148)

The following relation involving the alternator and the Kronecker delta will be useful in

subsequent calculations

eijkequ = (51 5j — (51 6jp- (149)

It is left to the reader to develop proofs of these identities. They can, of course, be verified

directly, by simply writing out all of the terms in (1.46) - (1.49).
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1.6 Worked Examples.

Ezample(1.1): If [A] and [B] are n x n square matrices and {z}, {y}, {z} are n x 1 column matrices, express

the matrix equation
{v} = [A{z} + [BI{z}
as a set of scalar equations.

Solution: By the rules of matrix multiplication, the element y; in the i*" row of {/} is obtained by first pairwise
multiplying the elements A;1, Az, . .., Ai, of the i*® row of [A] by the respective elements 1, x, ..., T, of
{z} and summing; then doing the same for the elements of [B] and {z}; and finally adding the two together.
Thus

yi = Aijzj + Bijz;
where summation over the dummy index j is implied, and this equation holds for each value of the free index
i=1,2,...,n. Note that one can alternatively — and equivalently — write the above equation in any of the

following forms:
Yk = Ag;x; + Brjzj, Yr = ArpTp + Brpzp, Yi = AipTp + Bigzg.

Observe that all rules for indicial notation are satisfied by each of the three equations above.

Ezample(1.2): The n x n matrices [C], [D] and [E] are defined in terms of the two n x n matrices [A] and
[B] by

Express the elements of [C], [D] and [E] in terms of the elements of [A4] and [B].

Solution: By the rules of matrix multiplication, the element Cj; in the ith row and ;' column of [C] is
obtained by multiplying the elements of the i*" row of [A], pairwise, by the respective elements of the ;I
column of [B] and summing. So, C;; is obtained by multiplying the elements A;1, As2, . .. Aip by, respectively,
Bij, Baj, ... By and summing. Thus

Cij = AirByj;

note that 4 and j are both free indices here and so this represents n? scalar equations; moreover summation
is carried out over the repeated index k. It follows likewise that the equation [D] = [B][A] leads to

Dij = Bip Akj; or equivalently  D;; = Ay;Big,

where the second expression was obtained by simply changing the order in which the terms appear in the
first expression (since, as noted previously, the order of terms within a symbol group is insignificant since
these are scalar quantities.) In order to calculate E;;, we first multiply [A] by [B]T to obtain E;; = AikB,Z}.
However, by definition of transposition, the i, j-element of a matrix [B]? equals the j,i-element of the matrix
[B]: Bj; = Bj; and so we can write

Eij = Aszjk
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All four expressions here involve the ik, kj or jk elements of [A] and [B]. The precise locations of the
subscripts vary and the meaning of the terms depend crucially on these locations. It is worth repeating that

the location of the repeated subscript k& tells us what term multiplies what term.

Ezxample(1.3): If [S] is any symmetric matrix and [W] is any skew-symmetric matrix, show that
Si]‘Wij =0.

Solution: Note that both ¢ and j are dummy subscripts here; therefore there are summations over each of

them. Also, there is no free subscript so this is just a single scalar equation.

Whenever there is a dummy subscript, the choice of the particular index for that dummy subscript is
arbitrary, and we can change it to another index, provided that we change both repeated subscripts to the
new symbol (and as long as we do not have any subscript appearing more than twice). Thus, for example,
since ¢ is a dummy subscript in S;;W;;, we can change ¢ — p and get S;;W;; = S,;W,;. Note that we can
change ¢ to any other index except j; if we did change it to j, then there would be four j’s and that violates

one of our rules.

By changing the dummy indices ¢ — p and j — ¢, we get S;;W;; = SpqWpq. We can now change dummy
indices again, from p — j and ¢ — ¢ which gives Sp,Wps = S;;Wji. On combining, these we get

Effectively, we have changed both ¢ and j simultaneously from ¢ — j and j — .

Next, since [S] is symmetric S;; = S;;; and since [W] is skew-symmetric, W;; = —W,;. Therefore
S;iWj; = —S;3W;;. Using this in the right-hand side of the preceding equation gives

from which it follows that S;;W;; = 0.

Remark: As a special case, take S;; = w;u; where {u} is an arbitrary column matrix; note that this [S] is

symmetric. It follows that for any skew-symmetric [W],

Wijusu; =0 for all u;.

Ezample(1.4): Show that any matrix [A] can be additively decomposed into the sum of a symmetric matrix

and a skew-symmetric matrix.

Solution: Define matrices [S] and [W] in terms of the given the matrix [A] as follows:
1 1
Sip = 5(Aij + 4z0), Wiy = 5(Ay — 450).
It may be readily verified from these definitions that S;; = S;; and that W;; = —W;;. Thus, the matrix [S]

is symmetric and [W] is skew-symmetric. By adding the two equations in above one obtains

Sij + Wij = Aij,
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or in matrix form, [4] = [S] + [W].

Example (1.5): Show that the quadratic form T;ju;u; is unchanged if T;; is replaced by its symmetric part.
i.e. show that for any matrix [T],

1
Tijuiuj = Sijuiuj for all U; where Sij = i(TfL] + T]z) (1)

Solution: The result follows from the following calculation:

1 1 1 1
Tij ujuj = (2Tij + §Tij + ETji - ij;) uiu; =

1 1
3 Tij + Tji) wiuj + 5 (Tij — Tji) uu;

3 2
= Sij Uiy,

where in the last step we have used the facts that A;; = Tj; — Tj; is skew-symmetric, that B;; = u;u; is

symmetric, and that for any symmetric matrix [A] and any skew-symmetric matrix [B], one has A;;B;; = 0.

Example (16) Suppose that Dllll; ]D)1112, NN ]D)lllna NN ]D)11217 D1122, PN Dllan N ]D)nnnn are ’17,4

constants;
and let D;jre denote a generic element of this set where each of the subscripts ¢, j,k, ¢ take all values in
the range 1,2,...n. Let [E] be an arbitrary symmetric matrix and define the elements of a matrix [A] by

Aij = DjjkeEre. Show that [A] is unchanged if D, is replaced by its “symmetric part” C;;x, where

1 .
Cijre = i(Di]’ké + Dok ). (i)

Solution: In a manner entirely analogous to the previous example,

1 1 1 1
Aij = DB = <2Dijk€ + §Dijk€ + §Dij6k - QDijék> Ee
1 1
= i(Dijke + Dijer) Ere + i(Dijké — Dsjer) Ere
= Cijre Erg,

where in the last step we have used the fact that (D jxe — Djjex) Exe = 0 since D; e — Djjex is skew symmetric
in the subscripts k, £ while Ey, is symmetric in the subscripts k, ¢.

Exzample (1.7): Evaluate the expression 0;;0;0;4.

Solution: By using the substitution rule, first on the repeated index ¢ and then on the repeated index j, we
have 5ij Oik 5jk: = 6jk 5jk =0 =011 + 022+ ...+ 0pp =n.

Ezample(1.8): Given an orthogonal matrix [@], use indicial notation to solve the matrix equation [Q]{z} =

{a} for {z}.
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Solution: In indicial form, the equation [Q]{z} = {a} reads

Qijz; = a;.
Multiplying both sides by Q;i gives

QixQijr; = Qiray.
Since [Q)] is orthogonal, we know from (1.39) that Q,,Qrq = dpq. Thus the preceding equation simplifies to
djrr; = Qiras,

which, by the substitution rule, reduces further to

Tk = Qira; -

In matrix notation this reads {} = [Q]” {a} which we could, of course, have written down immediately from
the fact that {z} = [Q]~*{a}, and for an orthogonal matrix, [Q]~! = [Q]7.

Ezample(1.9): Consider the function f(x1,x2,...,2,) = A;jz;x; where the A;;’s are constants. Calculate
the partial derivatives 9f/0x;.

Solution: We begin by making two general observations. First, note that because of the summation on
the indices i and j, it is incorrect to conclude that 0f/0x; = A;jx; by viewing this in the same way as
differentiating the function Ajsx1x2 with respect to x1. Second, observe that if we differentiatiate f with
respect to z; and write 0f/0x; = 0(A;jzx5)/0x;, we would violate our rules because the right-hand side
has the subscript ¢ appearing three times in one symbol grouping. In order to get around this difficulty we
make use of the fact that the specific choice of the index in a dummy subscript is not significant and so we

can write f = Apqrpx,.
Differentiating f and using the fact that [A] is constant gives

af 0 0 ox oz
871‘1- = %(quxpwq) = qu%(fpxq) = Apq 87331) Tq + xpaixj

Since the x;’s are independent variables, it follows that

o, 0 if i # 7, o 5
9z, , il i.e. on, ij -
Using this above gives
% = Apq [0piTq + Tplgi] = ApgOpitq + Apgpdys
which, by the substitution rule, simplifies to

of

Sy, = Aiata + Apiwp = Aijoj + Ajiwg = (Ayg + Aji)z; -
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Ezample (1.10): Suppose that {x}T[A]{z} = 0 for all column matrices {z} where the square matrix [A4] is
independent of {z}. What does this imply about [A]?

Solution: We know from a previous example that that if [4] is a skew-symmetric and [S] is symmetric then
A;;S;; = 0, and as a special case of this that A;;z;2; = 0 for all {}. Thus a sufficient condition for the

given equation to hold is that [A] be skew-symmetric. Now we show that this is also a necessary condition.

We are given that A;;2;2; = 0 for all ;. Since this equation holds for all z;, we may differentiate both

sides with respect to x; and proceed as follows:

0= %(Aijxixj) = Aija%k(xixj) = Aij% T+ AijT; % = Aijlik x5 + Aij i 05 (i)
where we have used the fact that 0x;/0x; = 6;; in the last step. On using the substitution rule, this simplifies
to

Apjxj+ Ay zy = (Ag; + Aji) z; = 0. (ii)
Since this also holds for all x;, it may be differentiated again with respect to x; to obtain
(Ar; + Ajr) % = (Arj + Aj) 0j; = A + Ajp = 0. (iii)

Thus [A] must necessarily be a skew symmetric matrix,

Therefore it is necessary and sufficient that [A] be skew-symmetric.

Ezample (1.11): Let C,j; be a set of n* constants. Define the function W([E]) for all matrices [E] by
W([ED = W(Ell,Elg, Enn) = % CijklEijEkl~ Calculate

—6W and 762W (i)
8E1~ 8Eij(9Ekl ’

Solution: First, since the E;;’s are independent variables, it follows that

0F,, 1 if p=1i and ¢=j,
OFi 0 otherwise.
Therefore,
oF ..
aEI:j = 6pi §qj. (ll)
Keeping this in mind and differentiating W (E11, E12, ....E33) with respect to E;; gives
ow 0 1 1 OFE OF
=—1=C T‘SE Ers = -C s 7mErs E, —
9E;, _ OE (2 parsEpq > 2 pq‘(@Eij + 7 B aEij>
1

= 5 Cpqrs (6171’ 5qj Eys + 0y 553‘ qu)

[\]

1
Cijrs B+ 5 (Cpqij qu

N | =

1
5 (Ciqu + Cpqij) qu'
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where we have made use of the substitution rule. (Note that in the first step we wrote W = % CpgrsEpgErs
rather than W = % Cijki Eij Er because we would violate our rules for indices had we written 3(% CijuiEijEr)/OFE;;.)

Differentiating this once more with respect to Ey; gives

0*W o [1 1
OE;: OEy, = OF s <2 ((Ciqu + Cpqij) qu) = 5 (Ciqu + (Cpqij) Opk0qi (iii)
ij
1 .
= 5 (Cigrr + Craiy) (iv)

Ezample (1.12): Evaluate the expression e;jxer;;.

Solution: By first using the skew symmetry property (1.45), then using the identity (1.49), and finally using
the substitution rule, we have e;;reri; = —€ijr€ik; = — (01 0k — 05 0kk) = — (05 — 0,5 0kx) = —(3—3x3) = 6.

Ezample(1.13): Show that
eiijjk =0 (1)

if and only if the matrix [S] is symmetric.

Solution: First, suppose that [S] is symmetric. Pick and fix the free subscript ¢ at any value ¢ = 1,2,3. Then,
we can think of e;;;; as the j, k element of a 3 x 3 matrix. Since e;j; = —e;x; this is a skew-symmetric matrix.
In a previous example we showed that S;;W;; = 0 for any symmetric matrix [S] and any skew-symmetric

matrix [W]. Consequently (i) must hold.

Conversely suppose that (i) holds for some matrix [S]. Multiplying (i) by e;p, and using the identity
(1.49) leads to
CipgCijhSik = (OpjOqk — Opkdqj)Sik = Spg = Sqp =0

where in the last step we have used the substitutin rule. Thus S,q = Sgp and so [S] is symmetric.

Remark: Note as a special case of this result that
€ijkVjVk = 0 (11)

for any arbitrary column matrix {v}.
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Chapter 2

Vectors and Linear Transformations

Notation:
a .. scalar
a .. vector
A linear transformation

As mentioned in the Preface, Linear Algebra is a far richer subject than the very restricted
glimpse provided here might suggest. The discussion in these notes is limited almost entirely
to (a) real 3-dimensional Euclidean vector spaces, and (b) to linear transformations that
carry vectors from one vector space into the same vector space. These notes are designed
to review those aspects of linear algebra that will be encountered in our study of continuum
mechanics; it is not meant to be a source for learning the subject of linear algebra for the

first time.

The following notation will be consistently used: Greek letters will denote real numbers;
lowercase boldface Latin letters will denote vectors; and uppercase boldface Latin letters will
denote linear transformations. Thus, for example, «, 3,7... will denote scalars (real num-
bers); a, b, c,... will denote vectors; and A, B, C, ... will denote linear transformations. In

G

particular, “o” will denote the null vector while “0” will denote the null linear transforma-

tion.

17
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2.1 Vectors

A wector space V is a collection of elements, called vectors, together with two operations,
addition and multiplication by a scalar. The operation of addition (has certain properties
which we do not list here) and associates with each pair of vectors x and y in V, a vector
denoted by x +y that is also in V. In particular, it is assumed that there is a unique vector
o € V called the null vector such that x + o = x. The operation of scalar multiplication (has
certain properties which we do not list here) and associates with each vector x € V and each

real number «, another vector in V denoted by ax.

Let x1,Xo,...,X; be k vectors in V. These vectors are said to be linearly independent if
the only real numbers ay, as. .., ay for which

1X] + 9Xg - -+ X = O (2.1)

are the numbers a; = ay = ...y = 0. If V contains n linearly independent vectors but

does not contain n + 1 linearly independent vectors, we say that the dimension of V is n.

Unless stated otherwise, from hereon we restrict attention to 3-dimensional vector spaces.

If V is a vector space, any set of three linearly independent vectors {ej, e, e3} is said to
be a basis for V. Given any vector x € V there exist a unique set of numbers &1, &, &5 such
that

x = §1e1 + &aen + 3€3; (2.2)

the numbers &, &, & are called the components of x in the basis {ej, e, e3}.

Let U be a subset of a vector space V; we say that U is a subspace (or linear manifold)
of V if, for every x,y € U and every real number «, the vectors x +y and ax are also in U.
Thus a linear manifold U of V is itself a vector space under the same operations of addition

and multiplication by a scalar as in V.

A scalar-product (or inner product or dot product) on V is a function which assigns to
each pair of vectors x, y in V a scalar, which we denote by x - y. A scalar-product has

certain properties which we do not list here except to note that it is required that
X-y=y-X for all x,y € V. (2.3)

A Euclidean vector space is a vector space together with an inner product on that space.
From hereon we shall restrict attention to 3-dimensional Euclidean vector spaces and denote

such a space by Es.
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The length (or magnitude or norm) of a vector x is the scalar denoted by |x| and defined
by
x| = (x-x)2. (2.4)

A vector has zero length if and only if it is the null vector. A unit vector is a vector of unit

length. The angle § between two vectors x and y is defined by

X'y

= 0<6<m. (2.5)
|x|[y]

cos 6 =
Two vectors x and y are orthogonal if x -y = 0. It is obvious, nevertheless helpful, to note
that if we are given two vectors x and y where x-y = 0 and y # o, this does not necessarily
imply that x = o; on the other hand if x -y = 0 for every vector y, then x must be the null

vector.

An orthonormal basis is a triplet of mutually orthogonal unit vectors e, ey, e3 € E3. For
such a basis,
€, € = (51‘]‘ for ’L,j = 1, 2, 3, (26)

where the Kronecker delta ;; is defined in the usual way by

1 if i
Gy=q (2.7)
0 if ¢# 7.

A wvector-product (or cross-product) on Ej is a function which assigns to each ordered pair
of vectors x,y € E3, a vector, which we denote by x x y. The vector-product must have

certain properties (which we do not list here) except to note that it is required that
YXX=—-XXY for all x,y € V. (2.8)

One can show that

x Xy = |x]| |y| sinf n, (2.9)

where 6 is the angle between x and y as defined by (2.5), and n is a unit vector in the
direction x X y which therefore is normal to the plane defined by x and y. Since n is parallel
to x X y, and since it has unit length, it follows that n = (x X y)/|(x X y)|. The magnitude
|x x y| of the cross-product can be interpreted geometrically as the area of the triangle
formed by the vectors x and y. A basis {ej, e, €3} is said to be right-handed if

(e1 X eg) -es3 > 0. (210)
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2.1.1 Euclidean point space

A FBuclidean point space P whose elements are called points, is related to a Euclidean vector
space E3 in the following manner. Every order pair of points (p,q) is uniquely associated

with a vector in Eg, say p_&, such that

(i) p_c}: —q_f? for all p,q € P.
(ii) pq + qr=pr for all p,q,r € P.

(iii) given an arbitrary point p € P and an arbitrary vector x € E3, there is a unique point

q € P such that x :1721. Here x is called the position of point ¢ relative to the point p.

Pick and fix an arbitrary point o € P (which we call the origin of P) and an arbitrary basis
for E5 of unit vectors e, e;, e3. Corresponding to any point p € IP there is a unique vector
079: X = x1€1 + To€y + x3e3 € E3. The triplet (zq,x2,23) are called the coordinates of p
in the (coordinate) frame F = {o;e1, ey, €3} comprised of the origin o and the basis vectors
e, e, e;3. If e1, ey, €3 is an orthonormal basis, the coordinate frame {o;e;, e, €3} is called a

rectangular cartesian coordinate frame.

2.2 Linear Transformations.

Consider a three-dimensional Euclidean vector space E3. Let F be a function (or transfor-

mation) which assigns to each vector x € E3, a second vector y € E,
y = F(x), x € E3, y € Es; (2.11)
F is said to be a linear transformation if it is such that
F(ax + fy) = aF(x) + SF(y) (2.12)

for all scalars «, 8 and all vectors x,y € E3. When F is a linear transformation, we usually
omit the parenthesis and write Fx instead of F(x). Note that Fx is a vector, and it is the

image of x under the transformation F.

A linear transformation is defined by the way it operates on vectors in E3. A geometric
example of a linear transformation is the “projection operator” Il which projects vectors

onto a given plane P. Let P be the plane normal to the unit vector n.; see Figure 2.1. For
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P

Figure 2.1: The projection IIx of a vector x onto the plane P.

any vector x € [E3, IIx € P is the vector obtained by projecting x onto P. It can be verified
geometrically that P is defined by

IIx=x—(x-n)n for all x € E;. (2.13)

Linear transformations tell us how vectors are mapped into other vectors. In particular,
suppose that {y,,y,,y3} are any three vectors in E3 and that {x;,xs,x3} are any three
linearly independent vectors in 3. Then there is a unique linear transformation F that
maps {Xi, X, X3} into {y;,¥,¥3}: ¥1 = Fx1,y, = Fxo,y; = Fx3. This follows from the
fact that {x1,x2,x3} is a basis for E3. Therefore any arbitrary vector x can be expressed
uniquely in the form x = £1x1 + £3X2 + £3x3; consequently the image Fx of any vector x is
given by Fx = &y, + &Y, + £3y5 which is a rule for assigning a unique vector Fx to any

given vector x.

The null linear transformation 0 is the linear transformation that takes every vector x
into the null vector o. The identity linear transformation 1 takes every vector x into itself.
Thus

0x = o, Ix =x for all x € Es. (2.14)

Let A and B be linear transformations on E; and let o be a scalar. The linear trans-
formations A + B, AB and oA are defined as those linear transformations which are such
that

(A+B)x =Ax+ Bx for all x € Eg, (2.15)
(AB)x = A(Bx) for all x € Ej, (2.16)
(0A)x = a(Ax) for all x € Es, (2.17)

respectively; A + B is called the sum of A and B, AB the product, and oA is the scalar

multiple of A by a. In general,
AB # BA. (2.18)
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The range of a linear transformation A (i.e., the collection of all vectors Ax as x takes
all values in E3) is a subspace of E;. The dimension of this particular subspace is known
as the rank of A. The set of all vectors x for which Ax = o is also a subspace of Es; it is

known as the null space of A.

Given any linear transformation A, one can show that there is a unique linear transfor-

mation usually denoted by AT such that
Ax - y=x-Aly for all x,y € Es. (2.19)
AT is called the transpose of A. One can show that

(@A) =aA”, (A+B)'=AT+B", (AB)" =B'A". (2.20)

A linear transformation A is said to be symmetric if
A=AT; (2.21)
skew-symmetric if
A=—-A" (2.22)

Every linear transformation A can be represented as the sum of a symmetric linear trans-

formation S and a skew-symmetric linear transformation W as follows:

1 1
A=S+W where S:§(A+AT), W:§(A—AT). (2.23)

For every skew-symmetric linear transformation W, it may be shown that
Wx-x=0 for all x € Eg; (2.24)
moreover, there exists a vector w (called the axial vector of W) which has the property that

Wx =w X x for all x € Es. (2.25)

Given a linear transformation A, if the only vector x for which Ax = o is the zero
vector, then we say that A is non-singular. It follows from this that if A is non-singular
then Ax # Ay whenever x # y. Thus, a non-singular transformation A is a one-to-one
transformation in the sense that, for any given y € [E3, there is one and only one vector x € [E;
for which Ax = y. Consequently, corresponding to any non-singular linear transformation
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A, there exists a second linear transformation, denoted by A~ and called the inverse of A,

such that Ax =y if and only if x = A™'y, or equivalently, such that

AATT=ATTA=1 (2.26)

If {y,,¥2,¥5} and {x1,x2,x3} are two sets of linearly independent vectors in Ej, then
there is a unique non-singular linear transformation F that maps {x1, X2, x3} into {y, ¥, ¥3}:
vy, = Fxy,y, = Fxy,y; = Fx3. The inverse of F maps {y,,y,,¥3} into {x1,x2,x3}. If both
bases {x1,X2,x3} and {y;,ys,y3} are right-handed (or both are left-handed) we say that

the linear transformation F preserves the orientation of the vector space.

If two linear transformations A and B are both non-singular, then so is AB; moreover,
(AB)'=B'A. (2.27)

If A is non-singular then so is A”; moreover,

(A= (AT, (2.28)
and so there is no ambiguity in writing this linear transformation as A7 .

A linear transformation Q is said to be orthogonal if it preserves length, i.e., if
|Qx| = |x| for all x € Es. (2.29)
If Q is orthogonal, it follows that it also preserves the inner product:
Qx-Qy=x-y for all x,y € Es. (2.30)

Thus an orthogonal linear transformation preserves both the length of a vector and the angle

between two vectors. If Q is orthogonal, it is necessarily non-singular and
Q'=qQ". (2.31)
A linear transformation A is said to be positive definite if

Ax-x >0 for all x € E3, x # o; (2.32)

positive-semi-definite if
Ax-x >0 for all x € Es. (2.33)
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A positive definite linear transformation is necessarily non-singular. Moreover, A is positive
definite if and only if its symmetric part (1/2)(A + AT) is positive definite.

Let A be a linear transformation. A subspace U is known as an invariant subspace of
A if Av € U for all v € U. Given a linear transformation A, suppose that there exists an
associated one-dimensional invariant subspace. Since U is one-dimensional, it follows that if
v € U then any other vector in U can be expressed in the form Av for some scalar A. Since
U is an invariant subspace we know in addition that Av € U whenever v € U. Combining

these two fact shows that Av = Av for all v € U. A vector v and a scalar A such that
Av = )v, (2.34)

are known, respectively, as an eigenvector and an eigenvalue of A. Each eigenvector of A
characterizes a one-dimensional invariant subspace of A. Every linear transformation A (on

a 3-dimensional vector space E3) has at least one eigenvalue.

It can be shown that a symmetric linear transformation A has three real eigenvalues
A1, A2, and A3, and a corresponding set of three mutually orthogonal eigenvectors ey, ey, and

e3. The particular basis of E3 comprised of {e;, es, e3} is said to be a principal basis of A.

Every eigenvalue of a positive definite linear transformation must be positive, and no
eigenvalue of a non-singular linear transformation can be zero. A symmetric linear transfor-

mation is positive definite if and only if all three of its eigenvalues are positive.

If e and A are an eigenvector and eigenvalue of a linear transformation A, then for any
positive integer n, it is easily seen that e and A" are an eigenvector and an eigenvalue of A"
where A" = AA...(n times)..AA; this continues to be true for negative integers m provided

A is non-singular and if by A~ we mean (A~H™, m > 0.

Finally, according to the polar decomposition theorem, given any non-singular linear trans-
formation F, there exists unique symmetric positive definite linear transformations U and

V and a unique orthogonal linear transformation R such that
F =RU = VR. (2.35)

If A and r are an eigenvalue and eigenvector of U, then it can be readily shown that A and

Rr are an eigenvalue and eigenvector of V.

Given two vectors a,b € 3, their tensor-product is the linear transformation usually
denoted by a ® b, which is such that

(a®@b)x = (x-b)a  for all x € Es. (2.36)
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Observe that for any x € Es, the vector (a ® b)x is parallel to the vector a. Thus the range
of the linear transformation a ® b is the one-dimensional subspace of Ej consisting of all

vectors parallel to a. The rank of the linear transformation a ® b is thus unity.

For any vectors a, b, c, and d it is easily shown that
(a®@b)l =b®a, (a®@b)(c®d) = (b-c)(a®d). (2.37)
The product of a linear transformation A with the linear transformation a ® b gives

A(a®b) =(Aa)®Db, (a®@b)A =a® (ATb). (2.38)

Let {e;, ey, €3} be an orthonormal basis. Since this is a basis, any vector in E3, and
therefore in particular each of the vectors Ae;, Aey, Aes, can be expressed as a unique
linear combination of the basis vectors ej,es, e3. It follows that there exist unique real

numbers A;; such that

3
Aej = ZAijei’ j = 1, 2, 3, (239)
i=1

where A;; is the it" component on the vector Ae;. They can equivalently be expressed as

A;j =e; - (Aej). The linear transformation A can now be represented as

A=

3

D Aijle;@ey). (2.40)

=1 j=1

One refers to the A;;’s as the components of the linear transformation A in the basis
{e1, es,e3}. Note that

3

3
Y eiwe =1 D (Ae)@e; = A. (2.41)
=1

i=1

Let S be a symmetric linear transformation with eigenvalues Ay, A2, A3 and corresponding
(mutually orthogonal unit) eigenvectors e;, e, e3. Since Se; = \je; for each j = 1,2, 3, it
follows from (2.39) that the components of S in the principal basis {e;,es, e3} are Sy; =
A, 901 = S31 = 0; 512 = 0,550 = A9, S30 = 0; 513 = So3 = 0,533 = A3. It follows from the

general representation (2.40) that S admits the representation

3

S=> X (e;®e); (2.42)

=1
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this is called the spectral representation of a symmetric linear transformation. It can be

readily shown that, for any positive integer n,
3
S" =) N (e;®e); (2.43)
i=1
if S is symmetric and non-singular, then
3
ST =" (1/N) (e @ey). (2.44)

=1

If S is symmetric and positive definite, there is a unique symmetric positive definite linear
transformation T such that T? = S. We call T the positive definite square root of S and
denote it by T = /S. Tt is readily seen that

V=YV (ei®e). (2.45)

2.3 Worked Examples.

Ezxample 2.1: Given three vectors a, b, ¢, show that
a-(bxc)=b-(cxa)=c-(axDb).
Solution: By the properties of the vector-product, the vector (a + b) is normal to the vector (a + b) X c.

Thus
(a+b)-[(a+Db)xc]=0.

On expanding this out one obtains
a-(axc)t+a-(bxc)+b-(axc)+b-(bxc)=0.

Since a is normal to (a X c), and b is normal to (b x c), the first and last terms in this equation vanish.

Finally, recall that a x ¢ = —c x a. Thus the preceding equation simplifies to
a-(bxc)=b-(cxa).

This establishes the first part of the result. The second part is shown analogously.

Example 2.2: Show that a necessary and sufficient condition for three vectors a, b, c in E3 — none of which

is the null vector — to be linearly dependent is that a- (b x ¢) = 0.
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Solution: To show necessity, suppose that the three vectors a, b, c, are linearly dependent. It follows that
acaa+ fb+~yc=o0

for some real numbers «, 3,7, at least one of which is non zero. Taking the vector-product of this equation

with ¢ and then taking the scalar-product of the result with a leads to
Ba-(bxc)=0.

Analogous calculations with the other pairs of vectors, and keeping in mind that a- (b x¢) =b-(c x a) =
c- (axDb), leads to
aa-(bxc)=0, fa-(bxc)=0, ~va- (b xc)=0.

Since at least one of a, 3,7 is non-zero it follows that necessarily a- (b x ¢) = o.

To show sufficiency, let a- (b x ¢) = 0 and assume that a, b, ¢ are linearly independent. We will show that
this is a contradiction whence a, b, c must be linearly dependent. By the properties of the vector-product,
the vector b x c is normal to the plane defined by the vectors b and c. By assumption, a- (b x ¢) =0, and
this implies that a is normal to b x c¢. Since we are in Eg this means that a must lie in the plane defined by

b and c. This means they cannot be linearly independent.

Ezample 2.3: Interpret the quantity a- (b x ¢) geometrically in terms of the volume of the tetrahedron defined
by the vectors a, b, c.

Solution: Consider the tetrahedron formed by the three vectors a, b, c as depicted in Figure 2.2. Its volume
Vo = % Ag hg where Ag is the area of its base and hg is its height.

Height hg Volume = % Ay X hy
c A0=|G,Xb|
Area Ay b
0=c-n
n— axb
a "~ |a x b

Figure 2.2: Volume of the tetrahedron defined by vectors a, b, c.

Consider the triangle defined by the vectors a and b to be the base of the tetrahedron. Its area Ay can
be written as 1/2 base x height = 1/2|a|(|b|| sin f|) where 6 is the angle between a and b. However from the
property (2.9) of the vector-product we have |a x b| = |a||b||sin 6| and so Ay = |a x b|/2.

Next, n = (a x b)/|a x b| is a unit vector that is normal to the base of the tetrahedron, and so the

height of the tetrahedron is hg = ¢ - n; see Figure 2.2.

Therefore

Vo= ot = g (P50 om = ) e o

1
3 2 6
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Observe that this provides a geometric explanation for why the vectors a, b, ¢ are linearly dependent if and
only if (ax b)-c=0.

Ezample 2.4: Let ¢(x) be a scalar-valued function defined on the vector space Es. If ¢ is linear, ie. if
dlax+ By) = ap(x)+ Bp(y) for all scalars a, 8 and all vectors x,y, show that ¢(x) = c-x for some constant
vector c. Remark: This shows that the scalar-product is the most general scalar-valued linear function of a

vector.

Solution: Let {e;,es,e3} be any orthonormal basis for E3. Then an arbitrary vector x can be written in

terms of its components as x = rie1 + x2eo + x3e3. Therefore
P(x) = p(z1€1 + z2€2 + 23€3)
which because of the linearity of ¢ leads to
P(x) = v19(e1) + r20(e2) + T30(€3).
On setting ¢; = ¢(e;),7 = 1,2, 3, we find
d(x) = w101 + Taca + X303 = C- X

where ¢ = c1e1 + coes + czes.

Example 2.5: If two linear transformations A and B have the property that Ax -y = Bx -y for all vectors
x and y, show that A = B.

Solution: Since (Ax — Bx) -y = 0 for all vectors y, we may choose y = Ax — Bx in this, leading to

|Ax — Bx/|? = 0. Since the only vector of zero length is the null vector, this implies that
Ax =Bx for all vectors x (i)

and so A = B.

Ezxample 2.6: Let n be a unit vector, and let P be the plane through o normal to n. Let II and R be the

transformations which, respectively, project and reflect a vector in the plane P.

a. Show that IT and R are linear transformations; II is called the “projection linear transformation”

while R is known as the “reflection linear transformation”.
b. Show that R(Rx) = x for all x € Es.

c. Verify that a reflection linear transformation R is non-singular while a projection linear transformation

II is singular. What is the inverse of R?

d. Verify that a projection linear transformation IT is symmetric and that a reflection linear transforma-

tion R is orthogonal.
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P

Figure 2.3: The projection ITx and reflection Rx of a vector x on the plane P.

e. Show that the projection linear transformation and reflection linear transformation can be represented
asII=I-n®nand R =1-2(n® n) respectively.

Solution:

a. Figure 2.3 shows a sketch of the plane P, its unit normal vector n, a generic vector x, its projection

IIx and its reflection Rx. By geometry we see that
IIx =x— (x-n)n, Rx=x—2(x-n)n. (i)

These define the images ITx and Rx of a generic vector x under the transformation IT and R. One

can readily verify that IT and R satisfy the requirement (2.12) of a linear transformation.

b. Applying the definition (i)3 of R to the vector Rx gives
R(Rx) = (Rx) — 2((Rx) : n)n

Replacing Rx on the right-hand side of this equation by (i)2, and expanding the resulting expression
shows that the right-hand side simplifies to x. Thus R(Rx) = x.

c. Applying the definition (i); of IT to the vector n gives
IIn=n—(n-njn=n—-—n=o.

Therefore IIn = o and (since n # o) we see that o is not the only vector that is mapped to the null

vector by II. The transformation IT is therefore singular.

Next consider the transformation R and consider a vector x that is mapped by it to the null vector,
i.e. Rx = 0. Using (i)2

x =2(x-n)n.

Taking the scalar-product of this equation with the unit vector n yields x - n = 2(x - n) from which
we conclude that x - n = 0. Substituting this into the right-hand side of the preceding equation leads

to x = 0. Therefore Rx = o if and only if x = o and so R is non-singular.

To find the inverse of R, recall from part (b) that R(Rx) = x. Operating on both sides of this
equation by R™! gives Rx = R™'x. Since this holds for all vectors x it follows that R™' = R.
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d. To show that IT is symmetric we simply use its definition (i); to calculate IIx - y and x - ITy for
arbitrary vectors x and y. This yields
Mx-y = (x = (x-n)n) -y =x-y — (x-n)(y -n)
and
x-Ily =x- (y—(x~n)n) =x-y—(x-n)(y-n).
Thus IIx -y = x - IIy and so II is symmetric.

To show that R is orthogonal we must show that RR” =T or RY = R™!. We begin by calculating
R”. Recall from the definition (2.19) that the transpose satisfies the requirement x - R’y =Rx-y.
Using the definition (i)2 of R on the right-hand side of this equation yields

x-RTy =x.y —2(x-n)(y - n).
We can rearrange the right-hand side of this equation so it reads
x-Rly=x- (y—2(y~n)n).

Since this holds for all x it follows that R”y =y — 2(y - n)n. Comparing this with (i), shows that
R” = R. In part (c) we showed that R™' = R and so it now follows that R = R™*. Thus R is

orthogonal.

e. Applying the operation (I — n ® n) on an arbitrary vector x gives
(Ifn®n>x:xf(n®n)x:xf(Xon)n:Hx

andsoII=1—-n®n.

Similarly
(I—2n®n)x:x—2(x-n)n:Rx

and so R=1-2n®n.

Example 2.7 If W is a skew symmetric linear transformation show that
Wx-x=0 for all x . (i)
Solution: By the definition (2.19) of the transpose, we have Wx - x = x - Wx; and since W = —W7 for a

skew symmetric linear transformation, this can be written as Wx -x = —x- Wx. Finally the property (2.3)

of the scalar-product allows this to be written as Wx - x = —Wx - x from which the desired result follows.

Ezample 2.8: Show that (AB)T = BTAT.
Solution: First, by the definition (2.19) of the transpose,

(AB)x-y =x-(AB)"y . (i)
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Second, note that (AB)x -y = A(Bx) -y. By the definition of the transpose of A we have A(Bx) -y =
Bx-ATy: and by the definition of the transpose of B we have Bx- ATy = x-BT ATy. Therefore combining

these three equations shows that
(AB)x-y =x-BTATy (ii)

On equating these two expressions for (AB)x -y shows that x - (AB)Ty = x- BT A"y for all vectors x,y
which establishes the desired result.

Ezxample 2.9: If o is the null vector, then show that Ao = o for any linear transformation A.

Solution: The null vector o has the property that when it is added to any vector, the vector remains
unchanged. Therefore x + o = x, and similarly Ax + o = Ax. However operating on the first of these
equations by A shows that Ax + Ao = Ax, which when combined with the second equation yields the
desired result.

Example 2.10: If A and B are non-singular linear transformations show that AB is also non-singular and
that (AB)"! =B 'A%,

Solution: Let C = B™*A™!. We will show that (AB)C = C(AB) = I and therefore that C is the inverse
of AB. (Since the inverse would thus have been shown to exist, necessarily AB must be non-singular.)

Observe first that
(AB)C=(AB)B'A'=ABB HA ' =AIA' =1,

and similarly that
C(AB)=B'A'(AB)=B '(A"'A) B==B'IB=1.

Therefore (AB)C = C(AB) =1 and so C is the inverse of AB.

Ezample 2.11: If A is non-singular, show that (A™H)7 = (AT)~1,

Solution: Since (AT)~! is the inverse of AT we have (AT)~'A” = I. Post-operating on both sides of this
equation by (A™1)7 gives
(AT)LTAT(AH)T = (AT
Recall that (AB)T = BT AT for any two linear transformations A and B. Thus the preceding equation
simplifies to
(AT ATA)T =TT

Since A"'A =TI the desired result follows.

Example 2.12: Show that an orthogonal linear transformation Q preserves inner products, i.e. show that

Qx - Qy = x -y for all vectors x,y.
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Solution: Since
(x-y) (x—y)=x-x+ty y—2x-y
it follows that )
x-y =g {xP+ vl - lx-y[}. (i)

Since this holds for all vectors x,y it must also hold when x and y are replaced by Qx and Qy:

Qx-Qy = 5 {|Qx” + 1Qy P - [Qx - QyP}

By definition, an orthogonal linear transformation Q preserves length, i.e. |Qv| = |v| for all vectors v. Thus

the preceding equation simplifies to

1 "

Qx-Qy = 5 {X[* + Iy~ x - ¥’} . (i)

Since the right-hand-sides of the preceding expressions for x - y and Qx - Qy are the same, it follows that
Qx-Qy =x"y.

Remark: Thus an orthogonal linear transformation preserves the length of any vector and the inner product
between any two vectors. It follows therefore that an orthogonal linear transformation preserves the angle

between a pair of vectors as well.

Ezxample 2.13: Let Q be an orthogonal linear transformation. Show that

a. Q is non-singular, and that
b. Q7' =Q".
Solution:

a. To show that Q is non-singular we must show that the only vector x for which Qx = o is the null
vector x = 0. Suppose that Qx = o for some vector x. Taking the norm of the two sides of this
equation leads to |Qx| = |o| = 0. However an orthogonal linear transformation preserves length and
therefore |Qx| = |x|. Consequently |x| = 0. However the only vector of zero length is the null vector

and so necessarily x = 0. Thus Q is non-singular.

b. Since Q is orthogonal it preserves the inner product: Qx-Qy = x-y for all vectors x and y. However
the property (2.19) of the transpose shows that Qx-Qy = x- QTQy. It follows that x - QTQy =Xy
for all vectors x and y, and therefore that QT Q = I. Thus Q' = Q.

Ezxample 2.14: If a; and as are two distinct eigenvalues of a symmetric linear transformation A, show that

the corresponding eigenvectors a; and as are orthogonal to each other.

Solution: Recall from the definition of the transpose that Aa; -as = ay - ATa,, and since A is symmetric
that A = AT, Thus
Aa1 saAg = a1 -Aa2 .
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Since a; and ay are eigenvectors of A corresponding to the eigenvalues «; and «g, we have Aa; = aja; and

Aas; = asas. Thus the preceding equation reduces to aja; - ag = asa; - ag or equivalently
(a1 — 042)(31 . a2) = 0

Since, a; # as it follows that necessarily a; - ap = 0.

Ezxample 2.15: If X and e are an eigenvalue and eigenvector of an arbitrary linear transformation A, show
that A and P~ 'e are an eigenvalue and eigenvector of the linear transformation P"'AP. Here P is an

arbitrary non-singular linear transformation.

Solution: Since PP™! = I it follows that Ae = APP 'e. However we are told that Ae = \e, whence
APP 'e = )e. Operating on both sides with P~ gives P"'APP 'e = AP 'e which establishes the

result.

Ezample 2.16: If X is an eigenvalue of an orthogonal linear transformation Q, show that || = 1.

Solution: Let A and e be an eigenvalue and corresponding eigenvector of Q. Thus Qe = e and so |Qe| =
|Ae| = |A| |e|. However, Q preserves length and so |Qe| = |e|. Thus [A\| = 1.

Remark: We will show later that +1 is an eigenvalue of a “proper” orthogonal linear transformation on Eg.

The corresponding eigvector is known as the axis of Q.

Ezample 2.17. The components of a linear transformation A in an orthonormal basis {e1, ez, e3} are the

unique real numbers A;; defined by

3
Ae; =) Aje;,  j=1,2,3 (i)

Show that the linear transformation A can be represented as

3 3

i=1 j=1

Solution: Consider the linear transformation given on the right-hand side of (ii) and operate it on an arbitrary
vector X:

3

3 3 3 3 3 3 3
Z Z AIL] e; X e] = Z Z AZ] X - e] = Z Z Ai]‘l‘jei = Z.Tj <Z Aijei> s
i=1 j=1 j=1 i=1

i=1 j=1 i=1 j=1
where we have used the facts that (p®q)r = (q-r)p and z; = x-e;. On using (i) in the right most expression
above, we can continue this calculation as follows:

3

3 3
Z Z Aij(ei®ej) X:ijAej:AZ:rjej:Ax
j=1 j=1

i=1 j=1
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The desired result follows from this since this holds for arbitrary vectors x.

Example 2.18: Let R be a “rotation transformation” that rotates vectors in IE3 through an angle 8,0 < 6 <

about an axis e (in the sense of the right-hand rule). Show that R can be represented as
R=e®e+(e1®e;+es®ey)cosl — (e1 ey —ex ®eq)sinb, (1)

where e; and ey are any two mutually orthogonal vectors such that {ej,eq, e} forms a right-handed or-

thonormal basis for IEs.

Solution: We begin by listing what is given to us in the problem statement. Since the transformation R

simply rotates vectors, it necessarily preserves the length of a vector and so
|IRx| = |x] for all vectors x. (ii)

In addition, since the angle through which R rotates a vector is #, the angle between any vector x and its
image Rx is 6:
Rx-x = |x|?cosf for all vectors x. (iii)

Next, since R rotates vectors about the axis e, the angle between any vector x and e must equal the angle
between Rx and e:
Rx-e=x-e for all vectors x; (iv)

moreover, it leaves the axis e itself unchanged:
Re=e. (v)

And finally, since the rotation is in the sense of the right-hand rule, for any vector x that is not parallelel to

the axis e, the vectors x, Rx and e must obey the inequality

(xxRx)-e>0 for all vectors x that are not parallel to e. (vi)

Let {e1, ez, e} be a right-handed orthonormal basis. This implies that any vector in Ej, and therefore

in particular the vectors Re;, Re; and Re, can be expressed as linear combinations of e1, e; and e,

Re; = Rje; + Ryesx + Rae,
R92 = R1261 + Rggeg + Rgge, (Vll)
Re = Rjze; + Rozes + Raze,

for some unique real numbers R;;,7,7 = 1,2, 3.
First, it follows from (v) and (vii)s that
Ri3=0, Ry3=0, R33=1.

Second, we conclude from (iv) with the choice x = e; that Re; -e = 0. Similarly Res-e = 0. These together
with (vil) imply that
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Third, it follows from (iii) with x = e; and (vii); that Ry; = cosf. One similarly shows that Rss = cos6.
Thus
R11 = R22 = cosf.

Collecting these results allows us to write (vii) as

Re; = cosfe; +Ro eo,
Re; = Rize; +cosb ey, (viii)
Re = e,

Fourth, the inequality (vi) with the choice x = e1, together with (viii) and the fact that {e1, eq, e} forms
a right-handed basis yields Ro; > 0. Similarly the choice x = e, yields Ri2 < 0. Fifth, (ii) with x = e;
gives |Re;| = 1 which in view of (viii); requires that Ro; = £sin6. Similarly we find that R;2 = £sin6.

Collecting these results shows that
R21 = +sin 0, R12 = —sin 0,

since 0 < § < w. Thus in conclusion we can write (viii) as

Re; = cosf e; +sinf es,
Re, = —sinfe; -+cost eo, (ix)
Re = e.

Finally, recall the representation (2.40) of a linear transformation in terms of its components as defined

in (2.39). Applying this to (ix) allows us to write
R =cosf (e1®e1) +sinf (ea®ey) —sinh (e; ® ez) + cosb (ex R ez) + (e R e) (x)

which can be rearranged to give the desired result.

Ezample 2.19: If F is a nonsingular linear transformation, show that FZ F is symmetric and positive definite.

Solution: For any linear transformations A and B we know that (AB)T = BTA” and (AT)T = A. Tt
therefore follows that
(F'F)" =F" (F')" =F'F; (i)

this shows that FTF is symmetric.

In order to show that FTF is positive definite, we consider the quadratic form F?Fx - x. By using the

property (2.19) of the transpose, we can write
F'Fx-x = (Fx) - (Fx) = [Fx|> > 0. (i)

Further, equality holds here if and only if Fx = o, which, since F is nonsingular, can happen only if x = o.
Thus FTFx - x > 0 for all vectors x # o and so FTF is positive definite.
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Ezxample 2.20: Consider a symmetric positive definite linear transformation S. Show that it has a unique
symmetric positive definite square root, i.e. show that there is a unique symmetric positive definite linear

transformation T for which T2 = S.

Solution: Since S is symmetric and positive definite it has three real positive eigenvalues o1, 03,03 with
corresponding eigenvectors s, s2, 83 which may be taken to be orthonormal. Further, we know that S can

be represented as
3

i=1
If one defines a linear transformation T by

3
T=>) oi(s;®s;) (ii)
i=1
one can readily verify that T is symmetric, positive definite and that T? = S. This establishes the existence

of a symmetric positive definite square-root of S. What remains is to show uniqueness of this square-root.

Suppose that S has two symmetric positive definite square roots Ty and Ty : S = T? = Tg. Let 0 >0
and s be an eigenvalue and corresponding eigenvector of S. Then Ss = ¢s and so Tfs = os. Thus we have

(T1 + VoI)(T, — ol)s =0 . (ii)
If we set f = (T1 — \/oI)s this can be written as
T\f = —/of . (iv)

Thus either f = o or f is an eigenvector of T corresponding to the eigenvalue —/o(< 0). Since T; is

positive definite it cannot have a negative eigenvalue. Thus f = o and so

Tis =+/0s. (v)
It similarly follows that Tos = y/os and therefore that

Tis = Tys. (vi)

This holds for every eigenvector s of S: i.e. Tys; = Tas;, i = 1,2,3. Since the triplet of eigenvectors form a

basis for the underlying vector space this in turn implies that T1x = Tsx for any vector x. Thus T = Ts.

Example 2.21: Polar Decomposition Theorem: If F is a nonsingular linear transformation, show that there
exists a unique positive definite symmetric linear transformation U, and a unique orthogonal linear trans-
formation R such that F = RU.

Solution: Tt follows from Example 2.19 that FTF is symmetric and positive definite. It then follows from

Example 2.20 that FTF has a unique symmetric positive definite square root, say, U:

U= VF'F. (i)
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Finally, since U is positive definite, it is nonsingular, and its inverse U™! exists. Define the linear
transformation R through:
R=FU . (ii)

All we have to do is to show that R is orthogonal. But this follows from
R'R=FUH (FUH=(UHFTFU'=U'UU'=1 (iif)

In this calculation we have used the fact that U, and so U™}, are symmetric. This establishes the proposition

(except for the uniqueness which if left as an exercise).

Example 2.22: The polar decomposition theorem states that any nonsingular linear transformation F can
be represented uniquely in the forms F = RU = VR where R is orthogonal and U and V are symmetric
and positive definite. Let A;,r;, i = 1,2,3 be the eigenvalues and eigenvectors of U. From Example 2.15 it
follows that the eigenvalues of V are the same as those of U and that the corresponding eigenvectors €; of

V are given by £; = Rr;. Thus U and V have the spectral decompositions

3 3
U:Z)\iri®ri, V:Z)\Z&Q@Ez
i=1 i=1
Show that X ;
=1 =1

Solution: First, by using the property (2.38); and £; = Rr; we have

3
F=RU=R » Ar;@r; = Z)\ Rr;) ®r; = Zu @r;. (i)
i=1

Next, since U is non-singular
3
= E Ml @y
- i 7 i
i=1

and therefore
3 3
R=FU '=) \&ior Y \'rner= ZZA A8 @ri)(r; @),
i=1 j=1 i=1 j=1

By using the property (2.37)2 and the fact that r; - r; = 6,5, we have (£; ® r;)(r; ®r;) = (r; -1r;)(4; ®1j) =
0i;(£; ® rj). Therefore

R=Y > AA16;(6;@r)=> AN (Lior)=> (Lior). (ii)

i=1 j=1 i=1 i=1

Example 2.23: Determine the rank and the null space of the linear transformation C = a ® b where a #

o,b # o.
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Solution: Recall that the rank of any linear transformation A is the dimension of its range. (The range of A
is the particular subspace of E3g comprised of all vectors Ax as x takes all values in E3.) Since Cx = (b-x)a
the vector Cx is parallel to the vector a for every choice of the vector x. Thus the range of C is the set of

vectors parallel to a and its dimension is one. The linear transformation C therefore has rank one.

Recall that the null space of any linear transformation A is the particular subspace of E3 comprised of
the set of all vectors x for which Ax = o. Since Cx = (b - x)a and a # o, the null space of C consists of all

vectors x for which b - x, i.e. the set of all vectors normal to b.

Ezxample 2.24: Let Ay < Ay < A3 be the eigenvalues of the symmetric linear transformation S. Show that S
can be expressed in the form

S=I+a®b)(I+b®a) a#o,b#o, (1)

if and only if
0< <1, =1 A3>1 (ii)

Example 2.25: Calculate the square roots of the identity tensor.

Solution: The identity is certainly a symmetric positive definite tensor. By the result of a previous example
on the square-root of a symmetric positive definite tensor, it follows that there is a unique symmetric positive
definite tensor which is the square root of I. Obviously, this square root is also I. However, there are other
square roots of I that are not symmetric positive definite. We are to explore them here: thus we wish to
determine a tensor A on Ez such that A2 =1, A #Iand A # —L

First, if Ax = x for every vector x € Eg, then, by definition, A = I. Since we are given that A # I,

there must exist at least one non-null vector x for which Ax # x; call this vector f; so that Af; # f;. Set
er = (A—T)fi; (i)
since Af; # fi, it follows that e; # 0. Observe that
(A+T)e; = (A+1)(A-Df = (A2 - I)f, = Of, = o. (ii)

Therefore

Ae1 = —€e; (111)

and so —1 is an eigenvalue of A with corresponding eigenvector e;. Without loss of generality we can assume
that |e1| = 1.

Second, the fact that A # —I, together with A? = I similary implies that there must exist a unit vector
e, for which

Aer = ey, (iv)

from which we conclude that +1 is an eigenvalue of A with corresponding eigenvector es.
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Third, one can show that {e,es} is a linearly independent pair of vectors. To see this, suppose that for
some scalars &1, &> one has

§1e1 + §2e2 = 0.
Operating on this by A yields £; Ae; + {3Aes = 0, which on using (iii) and (iv) leads to
—&1e1 + &€ = 0.

Subtracting and adding the preceding two equations shows that &1e; = £:e5 = 0. Since e; and es are
eigenvectors, neither of them is the null vector o, and therefore £&; = £ = 0. Therefore e; and e; are linearly

independent.

Fourth, let e3 be a unit vector that is perpendicular to both e; and e;. The triplet of vectors {e1, es, €3}
is linearly independent and therefore forms a basis for E;.

Fifth, the components A;; of the tensor A in the basis {e1, e, €3} are given, as usual, by

Aej; = Ajje;. (v)
Comparing (v) with (iii) yields Ay = —1, 431 = As; = 0, and similarly comparing (v) with (iv) yields
Asy =1, A5 = Azo = 0. The matrix of components of A in this basis is therefore
-1 0 A3
[A] = 0 1 Ay |. (vi)
0 0 As3
It follows that
1 0 —Aiz + A13Ass
(A% =[AP = [4][A]=| © 1 Ags + AgzAss | - (vii)
0 0 A2,

(Notation: [A?] is the matrix of components of A% while [A4]? is the square of the matrix of components of
A. Why is [A%] = [A]??) However, since A? = I, the matrix of components of A? in any basis has to be the

identity matrix. Therefore we must have

—A13 + A13A33 =0, Agz + AgzAsz3 =0, A3y =1, (viii)
which implies that
A3 = arbitrary, A3 = 0,
either Axs = 0, or Ass = arbitrary, (ix)
A3z = 1, Azz = —1.

Consequently the matrix [A] must necessarily have one of the two forms

-1 0 o -1 0 O
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where a; and «g are arbitrary scalars.

Sixth, set

o .
pP1 = ey, q = —e; + 71 €s. (xi)

Then
(07
PIOq =—€ Qe +71e1 ® es,

and therefore
I+2pi®q1 = <e1®e1 +e2®e2—|—e3®e3) —2e;1®e; +aje; ®es
= —e1®e1+e2®e2+e3®e3+a1e1®e3.

Note from this that the components of the tensor I+ 2p; ® q; are given by (x);. Conversely, one can readily
verify that the tensor
A=T1+2p;®q (Xii)

has the desired properties A2 =1, A # I, A # —I for any value of the scalar o;.

Alternatively set

Q2
p2 = €3, qz = ez + 5 & (xiii)
Then
(€]
P2 ®qe = e2®e2+762®93,
and therefore
,I+2p2®q2 = (*el®el — ey ey 763@63) + 2e3 ® ey + ases ® eg

= —e; Qe t+esR®e —e3R®es+ ares R es.

Note from this that the components of the tensor —I + 2py ® qo are given by (x)s. Conversely, one can
readily verify that the tensor
A=-T+2p;®Qqz (xiv)

has the desired properties A2 = I, A # I, A # —I for any value of the scalar as.

Thus the tensors defined in (xii) and (xiv) are both square roots of the identity tensor that are not

symmetric positive definite.
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Chapter 3

Components of Vectors and Tensors.

Cartesian Tensors.

Notation:
a e scalar
{a} ... 3 x 1 column matrix
a .. vector
a . i*" component of the vector a in some basis; or i element of the column matrix {a}
4 . 3 x 3 square matrix
A L linear transformation
Ay i,7 component of the linear transformation A in some basis; or 4, j element of the square matrix [A]
Cijke o 1,4, k, £ component of 4-tensor C in some basis
Tivig..in  ooene i143....i, component of n-tensor T in some basis.

3.1 Components of a vector in a basis.

Let IE3 be a three-dimensional Fuclidean vector space. A set of three linearly independent
vectors {ej, e, e3} forms a basis for [E3 in the sense that an arbitrary vector v can always
be expressed as a linear combination of the three basis vectors; i.e. given any v € [E3, there

are unique scalars «, 3,y such that
v = ae; + fes + ves. (3.1)

If each basis vector e; has unit length, and if each pair of basis vectors e;, e; are mutually

orthogonal, we say that {ej, ey, e3} forms an orthonormal basis for [E3. Thus, for an

41
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orthonormal basis,

where 0;; is the Kronecker delta. In these notes we shall always restrict attention to or-
thonormal bases unless explicitly stated otherwise. If the basis is right-handed, one has in
addition that

e; - (ej X ek) = €45k (33)
where e, is the alternator introduced previously in (1.44).

The components v; of a vector v in a basis {e;, ey, e3} are defined by
—— (3.4
The vector can be expressed in terms of its components and the basis vectors as
vV = ;€. (3.5)

The components of v may be assembled into a column matrix

{fo}=1 v |. (3.6)

Figure 3.1: Components {v1,v2,v3} and {v], v, v4} of the same vector v in two different bases.

Even though this is obvious from the definition (3.4), it is still important to emphasize
that the components v; of a vector depend on both the vector v and the choice of basis.

Suppose, for example, that we are given two bases {ej, es,e3} and {€], €}, €;} as shown in
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Figure 3.1. Then the vector v has one set of components v; in the first basis and a different

set of components v} in the second basis:

v =V-e, vi=v-e. (3.7)
Thus the one vector v can be expressed in either of the two equivalent forms

vV = v;€; or  v=ue. (3.8)

The components v; and v] are related to each other (as we shall discuss later) but in general,
v; # V.

Once a basis {e1, e, e3} is chosen and fixed, there is a unique vector x associated with
any given column matrix {z} such that the components of x in {e;, ey, e3} are {z}. Thus,
once the basis is fixed, there is a one-to-one correspondence between column matrices and
vectors. It follows, for example, that once the basis is fixed, the vector equation z = x +y

can be written equivalently as

{z}={o}+{y} or z=m+uy (3.9)
in terms of the components z;,y; and z; in the given basis.

If u; and v; are the components of two vectors u and v in a basis, then the scalar-product
u - v can be expressed as
u-v =g (3.10)

the vector-product u x v can be expressed as
u X v = (e;5u;0;)€; or equivalently as  (u X v); = e;jpu;vy, , (3.11)

where e;;;, is the alternator introduced previously in (1.44).

3.2 Components of a linear transformation in a basis.

Consider a linear transformation A. Any vector in IE3 can be expressed as a linear combina-
tion of the basis vectors e, e; and e3. In particular this is true of the three vectors Ae;, Ae,
and Aes. Let A;; be the ith component of the vector Ae; so that
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We can also write
The 9 scalars A;; are known as the components of the linear transformation A in the

basis {e1, ez, e3}. The components A;; can be assembled into a square matrix:

An A A
[Al=| Aa Ay Ay |. (3.14)
Azt Az Asg

The linear transformation A can be expressed in terms of its components A;; and the basis

vectors e; as
3 3

j=1 i=1
The components A;; of a linear transformation depend on both the linear transformation
A and the choice of basis. Suppose, for example, that we are given two bases {ej, ez, €3}
and {e], e}, e5}. Then the linear transformation A has one set of components A;; in the first

basis and a different set of components A}; in the second basis:
Aij =€; - (Aej), A;] = e; . (Ae;) (316)

The components A;; and Aj; are related to each other (as we shall discuss later) but in
general A;; # Ajj.

The components of the linear transformation A = a ® b are

Aij = (libj. (317)

Once a basis {ej, e, e3} is chosen and fixed, there is a unique linear transformation M
associated with any given square matrix [M] such that the components of M in {e;, ey, €3}
are [M]. Thus, once the basis is fixed, there is a one-to-one correspondence between square
matrices and linear transformations. It follows, for example, that the equation y = Ax

relating the linear transformation A and the vectors x and y can be written equivalently as

{y} =[A{z} or yi= Ajz; (3.18)

in terms of the components A;;, x; and y; in the given basis. Similarly, if A,B and C are
linear transformations such that C = AB, then their component matrices [A], [B] and [C]

are related by
[Cl=[A][B] or Cy = AuBy;. (3.19)
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The component matrix [/] of the identity linear transformation I in any orthonormal basis
is the unit matrix; its components are therefore given by the Kronecker delta ¢;;. If [A] and
[AT] are the component matrices of the linear transformations A and A, then [AT] = [A]”
and AZ-TJ- = Aj.

As mentioned in Section 2.2, a symmetric linear transformation S has three real eigen-
values A1, Ay, A3 and corresponding orthonormal eigenvectors ey, €2, €3. The eigenvectors are
referred to as the principal directions of S. The particular basis consisting of the eigenvec-
tors is called a principal basis for S. The component matrix [S] of the symmetric linear

transformation S in its principal basis is

A 0 0
S]={ o0 x o0 | (3.20)
0 0 A3

As a final remark we note that if we are to establish certain results for vectors and linear
transformations, we can, if it is more convenient to do so, pick and fix a basis, and then
work with the components in that basis. If necessary, we can revert back to the vectors and
linear transformations at the end. For example the first example in the previous chapter
asked us to show that a- (b X c) = b: (c x a). In terms of components, the left hand
side of this reads a- (b x ¢) = a;(b x ¢); = a;e;jxbjck = eijra;bjc,. Similarly the right-
hand side reads b - (¢ x a) = b;(c x a); = bie;jpciar = e;jparbic;. Since i, j, k are dummy
subscripts in the right-most expression, they can be changed to any other subscript; thus by
changing k — 4,1 — j and j — k we can write b - (¢ X a) = ejj;a;b;cx. Finally recalling
that the sign of e;;; changes when any two adjacent subscripts are switched we find that
b (c x a) = ejpabjcp = —ejipaibjcy = ejra;bjc, where we have first switched the ki and
then the ji in the subscript of the alternator. The right-most expressions of a- (b x ¢) and
b - (c x a) are identical and therefore this establishes the desired identity.

3.3 Components in two bases.

Consider a 3-dimensional Euclidean vector space together with two orthonormal bases {e1, e, e3}
and {e], e}, e,}. Since {e;, ey, e3} forms a basis, any vector, and therefore in particular the
vectors e}, can be represented as a linear combination of the basis vectors ey, ez, e3. Let Q;;

be the jth component of the vector €] in the basis {e1, e, e3}:

e;- = Qijej. (321)
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By taking the dot-product of (NNN) with e}, one sees that
Qij = e; - €5, (322)

and so ;; is the cosine of the angle between the basis vectors €] and e;. Observe from
(NNN) that @j; can also be interpreted as the jth component of e; in the basis {€], €}, e}}

whence we also have

The 9 numbers );; can be assembled into a square matrix [()]. This matrix relates the
two bases {e1,es,e3} and {e}, e}, e,}. Since both bases are orthonormal it can be readily
shown that [@)] is an orthogonal matrix. If in addition, if one basis can be rotated into the
other, which means that both bases are right-handed or both are left-handed, then [Q)] is a
proper orthogonal matrix and det[Q] = +1; if the two bases are related by a reflection, which
means that one basis is right-handed and the other is left-handed, then [Q)] is an improper
orthogonal matrix and det[Q)] = —1.

We may now relate the different components of a single vector v in two bases.
Let v; and v be the ith component of the same vector v in the two bases {ej, ey, e3} and

{e}, €}, €,}. Then one can show that

v; = Qv;  or equivalently  {v'} = [Q]{v} (3.24)

Since [@Q)] is orthogonal, one also has the inverse relationships
v; = Qv or equivalently — {v} = [Q]"{v'}. (3.25)

In general, the component matrices {v} and {v'} of a vector v in two different bases are
different. A vector whose components in every basis happen to be the same is called an
isotropic vector: {v} = [Q]{v} for all orthogonal matrices [@Q]. It is possible to show that

the only isotropic vector is the null vector o.

Similarly, we may relate the different components of a single linear transforma-
tion A in two bases. Let A;; and A; be the ij-components of the same linear transformation

A in the two bases {e1, ez, e3} and {e], €}, e;}. Then one can show that
Al = QpQjigAp  or equivalently  [A'] = [Q][A][Q]". (3.26)
Since [@Q)] is orthogonal, one also has the inverse relationships

Ay = QuiQq AL, or equivalently  [A] = [Q]"[A][Q]. (3.27)
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In general, the component matrices [A] and [A’] of a linear transformation A in two
different bases are different. A linear transformation whose components in every basis happen
to be the same is called an isotropic linear transformation: [A] = [Q][A][Q]T for all
orthogonal matrices [@]. It is possible to show that the most general isotropic symmetric

linear transformation is a scalar multiple of the identity al where « is an arbitrary scalar.

3.4 Scalar-valued functions of linear transformations.

Determinant, trace, scalar-product and norm.

Let ®(A;eq, ey, e3) be a scalar-valued function that depends on a linear transformation
A and a (non-necessarily orthonormal) basis {e;, ey, e3}. For example ®(A;e;, e, e3) =
Ae; - e;. Certain such functions are in fact independent of the basis, so that for every two
(not-necessarily orthonormal) bases {e;,eq, e3} and {€], e}, e,} one has ®(A;e;, ey, e3) =
D(A;e), €, e;), and in such a case we can simply write ®(A). One example of such a

function is

(Ae1 X Aeg) . Aeg

; (3.28)
(though it is certainly not obvious that this function is independent of the choice of basis).

Equivalently, let A be a linear transformation and let [A] be the components of A in some
basis {er, ez, e3}. Let ¢([A]) be some real-valued function defined on the set of all square
matrices. If [A'] are the components of A in some other basis {e], e}, e}, then in general
o([A]) # ¢[A']). This means that the function ¢ depends on the linear transformation A
and the underlying basis. Certain functions ¢ have the property that ¢([A]) = ¢[A’]) for
all pairs of bases {e;, ey, e3} and {e}, e}, e}} and therefore such a function depends on the

linear transformation only and not the basis. For such a function we may write ¢(A).

We first consider two important examples here. Since the components [A] and [A'] of
a linear tranformation A in two bases are related by [A] = [Q][A][Q]T, if we take the

determinant of this matrix equation we get
det[A'] = det([Q][A][Q]T) = det[Q] det[A] det[Q]" = (det[Q])?* det[A] = det[A], (3.29)

since the determinant of an orthogonal matrix is +1. Therefore without ambiguity we may
define the determinant of a linear transformation A to be the (basis independent) scalar-

valued function given by
det A = det[A]. (3.30)
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We will see in an example at the end of this Chapter that the particular function ® defined
in (3.28) is in fact the determinant det A.

Similarly, we may define the trace of a linear transformation A to be the (basis inde-

pendent) scalar-valued function given by

trace A = tr[A]. (3.31)

In terms of its components in a basis one has
det A = eijkAliAszgk = eijkAﬂAngkg, traceA = Am, (332)

see (1.46). It is useful to note the following properties of the determinant of a linear trans-

formation:

det(AB) = det(A) det(B), det(aA)=a® det(A), det(A”) =det (A). (3.33)

As mentioned previously, a linear transformation A is said to be non-singular if the only
vector x for which Ax = o is the null vector x = 0. Equivalently, one can show that A is
non-singular if and only if

det A # 0. (3.34)

If A is non-singular, then
det(A™") =1/det(A). (3.35)

Suppose that A and v # o are an eigenvalue and eigenvector of given a linear transfor-
mation A. Then by definition, Av = Av, or equivalently (A — A\I)v = 0. Since v # o it

follows that A — A\I must be singular and so
det(A — A\I) = 0. (3.36)

The eigenvalues are the roots A of this cubic equation. The eigenvalues and eigenvectors of a
linear transformation do not depend on any choice of basis. Thus the eigenvalues of a linear
transformation are also scalar-valued functions of A whose values depends only on A and
not the basis: A\; = A\;(A). If S is symmetric, its matrix of components in a principal basis

are

S]= o0 x» o | (3.37)
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The particular scalar-valued functions
Li(A) = tr A,
L(A) = 1/2][(tr A)? —tr (A?)], (3.38)
I3(A) = detA,

will appear frequently in what follows. It can be readily verified that for any linear trans-

formation A and all orthogonal linear transformations Q,

L(Q"AQ)=1(A), L(Q'AQ)=L(A), L(Q'AQ)=IL(A), (3.39)

and for this reason the three functions (3.38) are said to be invariant under orthogonal trans-
formations. Observe from (3.37) that for a symmetric linear transformation with eigenvalues
A1, Az, Az

Li(S) =M+ X+ As,

I(S) = XAz + Aadg + A3y, (3.40)
[3(8) - )\1)\2)\3.

The mapping (3.40) between invariants and eigenvalues is one-to-one. In addition one can

show that for any linear transformation A and any real number «,
det(A — al) = —a® + [, (A)o? — L(A)a + I3(A).

Note in particular that the cubic equation for the eigenvalues of a linear transformation can

be written as

N — (AN + (AN — I3(A) = 0.
Finally, one can show that
A’ — [[(A)A® + L,(A)A — ;(A)I = O. (3.41)
which is known as the Cayley-Hamilton theorem.

One can similarly define scalar-valued functions of two linear transformations A and B.
The particular function ¢(A,B) defined by

(A, B) = tr(AB") (3.42)
will play an important role in what follows. Note that in terms of components in a basis,
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This particular scalar-valued function is often known as the scalar product of the two

linear transformation A and B and is written as A - B:
A B =tr(AB"). (3.44)

It is natural then to define the magnitude (or norm) of a linear transformation A, denoted
by |A| as
Al = VA - A = /tr(AAT). (3.45)

Note that in terms of components in a basis,
[A]? = A Ayj. (3.46)
Observe the useful property that if |A| — 0, then each component
Aij — 0. (3.47)

This will be used later when we linearize the theory of large deformations.

3.5 Cartesian Tensors

Consider two orthonormal bases {e;, ez, e3} and {e}, €}, e;}. A quantity whose components

v; and v} in these two bases are related by
v; = Qijv; (3.48)

is called a 1%*-order Cartesian tensor or a l-tensor. It follows from our preceding discussion

that a vector is a 1-tensor.

A quantity whose components A;; and A; in two bases are related by
A;j = Qinqupq (3-49)

is called a 2"-order Cartesian tensor or a 2-tensor. It follows from our preceding discussion

that a linear transformation is a 2-tensor.

The concept of an n't-order tensor can be introduced similarly: let T be a physical entity
which, in a given basis {ej, e, €3}, is defined completely by a set of 3" ordered numbers
Tiiiy.. i,- The numbers T, ;, ;. are called the components of T in the basis {e;, eq, e3}. If,

for example, T is a scalar, vector or linear transformation, it is represented by 3°, 3! and 32
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components respectively in the given basis. Let {€], €}, €;} be a second basis related to the
first one by the orthogonal matrix [Q], and let T} ;, , be the components of the entity T
in the second basis. Then, if for every pair of such bases, these two sets of components are
related by

Thin.in = Qijr Qizga -+ Qingw Tirjowcin: (3.50)

the entity T is called a n*"-order Cartesian tensor or more simply an n-tensor.

Note that the components of a tensor in an arbitrary basis can be calculated if its com-

ponents in any one basis are known.
Two tensors of the same order are added by adding corresponding components.

Recall that the outer-product of two vectors a and b is the 2—tensor C = a ® b whose
components are given by C;; = a; b;. This can be generalized to higher-order tensors. Given
an n-tensor A and an m-tensor B their outer-product is the (m + n)—tensor C = A® B

whose components are given by

Cirig.injrjo-im = Airig...in Birjo...jm- (3.51)

Let A be a 2-tensor with components A;; in some basis. Then “contracting’” A over its
subscripts leads to the scalar A;. This can be generalized to higher-order tensors. Let A
be a n-tensor with components A; ;, ; in some basis. Then “contracting” A over two of its
subscripts, say the i;th and i;th subscripts, leads to the (n — 2)—tensor whose components

in this basis are A i,. Contracting over two subscripts involves

11 12 .. ij,1 P ij+1 g1 P Tkl e

setting those two subscripts equal, and therefore summing over them.

Let a,b and T be entities whose components in a basis are denoted by a;,0; and T;;.
Suppose that the components of T in some basis are related to the components of a and b
in that same basis by a; = T;;b;. If a and b are 1-tensors, then one can readily show that
T is necessarily a 2-tensor. This is called the quotient rule since it has the appearance
of saying that the quotient of two 1-tensors is a 2-tensor. This rule generalizes naturally to
tensors of more general order. Suppose that A, B and T are entities whose components in a
basis are related by,

Aiigin = Thikooke Bjrjojm (3.52)

where some of the subscripts maybe repeated. If it is known that A and B are tensors, then

T is necessarily a tensor as well.

In general, the components of a tensor T in two different bases are different: T;; ., #

T

ivis..in- HOWever, there are certain special tensors whose components in one basis are the



52 CHAPTER 3. COMPONENTS OF TENSORS. CARTESIAN TENSORS

same as those in any other basis; an example of this is the identity 2-tensor I. Such a tensor
is said to be isotropic. In general, a tensor T is said to be an isotropic tensor if its
components have the same values in all bases, i.e. if

T

1112...0n

=Ty 4, (3.53)

in all bases {e1,es,e3} and {e}, €}, €;}. Equivalently, for an isotropic tensor
Tirig..in = Qiviy Qisjs - Qinjn Tirjo..jn for all orthogonal matrices [Q]. (3.54)

One can show that (a) the only isotropic 1-tensor is the null vector o; (b) the most general
isotropic 2-tensor is a scalar multiple of the identity linear transformation, al; (c¢) the most
general isotropic 3-tensor is the null 3-tensor o; (d) and the most general isotropic 4-tensor

C has components (in any basis)
Cijr = a0i0p + Boindj + v0udju (3.55)

where «, 3,7 are arbitrary scalars.

3.6 Worked Examples.

In some of the examples below, we are asked to establish certain results for vectors and linear
transformations. As noted previously, whenever it is more convenient we may pick and fix a
basis, and then work using components in that basis. If necessary, we can revert back to the
vectors and linear transformations at the end. We shall do this frequently in what follows

and will not bother to explain this each time.

It is also worth pointing out that in some of the example below calculations involving
vectors and/or linear transformation are carried out without reference to their components.
One might have expected such examples to have been presented in Chapter 2. They are
contained in the present chapter because they all involve either the determinant or trace of a
linear transformation, and we chose to define these quantities in terms of components (even

though they are basis independent).

Ezample 3.1: Suppose that A is a symmetric linear transformation. Show that its matrix of components [A]

in any basis is a symmetric matrix.
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Solution: According to (3.13), the components of A in the basis {e1, es, e3} are defined by
Aji = ej . Aei. (1)

The property (NNN) of the transpose shows that e; - Ae; = ATej - e;, which, on using the fact that A
is symmetric further simplifies to e; - Ae; = Ae; - e;; and finally since the order of the vectors in a scalar

product do not matter we have e; - Ae; = e; - Ae;. Thus
Aji=e;-Aej . (ii)
By (3.13), the right most term here is the A;; component of A, and so (ii) yields
Aji = Ayj. (iii)
Thus [A] = [A]T and so the matrix [A] is symmetric.

Remark: Conversely, if it is known that the matrix of components [A] of a linear transformation in some

basis is is symmetric, then the linear transformation A is also symmetric.

Ezxample 2.5: Choose any convenient basis and calculate the components of the projection linear transfor-

mation IT and the reflection linear transformation R in that basis.

Solution: Let es be a unit vector normal to the plane P and let e; and ey be any two unit vectors in
P such that {e;,eq,es} forms an orthonormal basis. From an example in the previous chapter we know
that the projection transformation IT and the reflection transformation R in the plane P can be written as
IT=TI-e3®e3 and R =1—2(e3® e3) respectively. Since the components of e5 in the chosen basis are ds;,
we find that

IL;; = d;5 — (e3)i(e3); = dij — 03035, Rij = 65 — 203:03;.

Ezample 3.2: Consider the scalar-valued function
f(A,B) = trace(ABT) (i)
and show that, for all linear transformations A, B, C, and for all scalars «, this functionf has the following
properties:
A.B) = f(B,A),
aA,B) = af(A,B),
A+C,B)=f(A,B) + f(C,B) and
A A) > 0 provided A # 0.
Solution: Let A;; and B;; be the components of A and B in an arbitrary basis. In terms of these components,

(ABT)ij = AikBIZ} = AikBjk; and so
f(A,B) = Ay By, . (ii)
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It is now trivial to verify that all of the above requirements hold.

Remark: 1t follows from this that the function f has all of the usual requirements of a scalar product.

Therefore we may define the scalar-product of two linear transformations A and B, denoted by A - B, as
A -B = trace(AB") = A;;B,;. (iii)

Note that, based on this scalar-product, we can define the magnitude of a linear transformation to be

Al = VA A= \/A;A;. (iv)

Ezxample 3.3: For any two vectors u and v, show that their cross-product u x v is orthogonal to both u and

V.
Solution: We are to show, for example, that u- (u x v) = 0. In terms of their components we can write
u-(uxv)=u; (uXv); =u; (€;jru;vr) = €;jrUiUjV) . (i)

Since e = —ejir and wu; = uju, it follows that e;ji is skew-symmetric in the subscripts 75 and w;u; is
symmetric in the subscripts ij. Thus it follows from Example 1.3 that e;j,u;u; = 0 and so u- (u x v) = 0.

The orthogonality of v and u x v can be established similarly.

Example 3.4 Suppose that a, b, c, are any three linearly independent vectors and that F be an arbitrary

non-singular linear transformation. Show that

(Fax Fb)-Fc = detF (axb)-c (1)

Solution: First consider the left-hand side of (i). On using (3.10), and (3.11), we can express this as
(Fa x Fb) -Fc = (Fa x Fb); (Fc); = e;;x (Fa); (Fb)i (Fc),, (ii)
and consequently
(Fa x Fb) - Fc = e;;i (Fjp ap) (Frq bg) (Fir ¢r) = €ijk Fir FjpFrqap bg ¢y . (iii)
Turning next to the right-hand side of (i), we note that
detF (a x b)-c=det[F|(a x b);c; = det[Fle;;jra;brc; = det[Fleypgapbgc, . (iv)

Recalling the identity e,,q det[F| = €, Fir FjpFiq in (1.48) for the determinant of a matrix and substituting
this into (iv) gives
detF (a x b) - c = e;jiFir FjpFrqapbgcr. (v)

Since the right-hand sides of (iii) and (v) are identical, it follows that the left-hand sides must also be equal,
thus establishing the desired result.
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Ezxample 3.5 Suppose that a,b and c are three non-coplanar vectors in IE3. Let V) be the volume of the
tetrahedron defined by these three vectors. Next, suppose that F is a non-singular 2-tensor and let V' denote
the volume of the tetrahedron defined by the vectors Fa, Fb and Fc. Note that the second tetrahedron is

the image of the first tetrahedron under the transformation F. Derive a formula for V' in terms of V and F.

Volume V
Volume V; F
/*\
¢ Fc
a

Fa

Figure 3.2: Tetrahedron of volume Vj defined by three non-coplanar vectors a,b and c¢; and its image

under the linear transformation F.

Solution: Recall from an example in the previous Chapter that the volume Vj of the tetrahedron defined by

any three non-coplanar vectors a, b, ¢ is

1
VOZE(axb)c.

The volume V of the tetrahedron defined by the three vectors Fa, Fb, Fc is likewise
V= %(Fa x Fb) - Fc.
It follows from the result of the previous example that
V/Vo =detF

which describes how volumes are mapped by the transformation F.

Ezxample 3.6: Suppose that a and b are two non-colinear vectors in IE3. Let ag be the area of the par-
allelogram defined by these two vectors and let ng be a unit vector that is normal to the plane of this
parallelogram. Next, suppose that F is a non-singular 2-tensor and let a and n denote the area and unit
normal to the parallelogram defined by the vectors Fa and Fb. Derive formulas for @ and n in terms of

ag,ng and F.

Solution: By the properties of the vector-product we know that

axb
0&0:|a><t)|7 l'lozm7
and similarly that
F Fb
a = |[Fax Fb|, ax

"= Fax Fb|’
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F
T Area o
ng Area ay
(W
\ Fb
a n

Fa

Figure 3.3: Parallelogram of area ag with unit normal ng defined by two non-colinear vectors a and b;

and its image under the linear transformation F.

Therefore

apng = a X b, and om = Fa x Fb. (i)
But
(Fa X Fb)s = €sij (Fa)Z(Fb)J = esijFl-paijqbq. (11)
Also recall the identity epq, det[F| = e, FipFjqFrr introduced in (1.48). Multiplying both sides of this
identity by F;! leads to
epgr det[FIF! = eijiFipFiq Fin L1 = eijiFipFiqOks = eijsFipFiq = esij FipFlq (iii)

Substituting (iii) into (ii) gives

(Fa x Fb), = det[Flepqr Fi apby = det[Fle,pgapbg Fra! = det F(a x b), F5T = detF(F’T(a x b))

s
and so using (i),

on = ag det F(F~"ny).
This describes how (vectorial) areas are mapped by the transformation F. Taking the norm of this vector
equation gives

o = | det Pl [F~"ngl;

and substituting this result into the preceding equation gives

Lo Finy
[F~ "y

Ezample 3.5: Let {e1,ez,e3} and {€], e}, e4} be two bases related by nine scalars @;; through €] = Q;;e;.
Let Q be the linear transformation whose components in the basis {e1, €2, e3} are @);;. Show that

T
e;:Q €;;

thus Q7 is the transformation that carries the first basis into the second.
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Solution: Since @);; are the components of the linear transformation Q in the basis {e1, ez, e3}, it follows

from the definition of components that
Qe; = Qje;.

Since [@)] is an orthogonal matrix one readily sees that Q is an orthogonal transformation. Operating on

both sides of the preceding equation by Q7 and using the orthogonality of Q leads to
e; = Qi;Q"e;.

Multiplying both sides of this by Qx; and noting by the orthogonality of Q that Q;Q:; = ki, we are now
led to

Qrje; = Q'ey,
or equivalently
Qe = Qije;.

This, together with the given fact that €] = Q;;e;, yields the desired result.

Ezample 3.6: Determine the relationship between the components v; and v] of a vector v in two bases.

Solution: The components v; of v in the basis {e1,eq, e3} are defined by
Vi =V - e,

and its components v} in the second basis {€], e}, e} are defined by

It follows from this and (NNN) that
vi=v-e;=v-(Qije;) = QiV - e; = Qijv;.
Thus, the components of the vector v in the two bases are related by

U; = Qijvj~

Ezample 3.7. Determine the relationship between the components A;; and A;j of a linear transformation A

in two bases.

Solution: The components A;; of the linear transformation A in the basis {e1, ez, e3} are defined by
Aij = e; - (Aej), (i)
and its components Aj; in a second basis {e}, e, e3} are defined by

Agj =e)- (Ae;»). (ii)
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By first making use of (NNN), and then (i), we can write (ii) as

A;j =e;- (Ae;-) = Qipep - (AQjgeq) = QipQjqep - (Aey) = QipQiigApg. (iii)
Thus, the components of the linear transformation A in the two bases are related by

A;j = Qinqupq- (iv)

Ezample 3.8: Suppose that the basis {€], e}, e5} is obtained by rotating the basis {e1, ez, es} through an
angle # about the unit vector es; see Figure 3.4. Write out the transformation rule for 2-tensors explicitly
in this case.

!
€3, €3
S

€2

€

Figure 3.4: A basis {e],€),e}} obtained by rotating the basis {e;,ez,e3} through an angle § about the

unit vector es.

Solution: In view of the given relationship between the two bases it follows that

e = cosf ey +sinf ey,
e, = —sinf e; +cosh es,
e = es.

The matrix [()] which relates the two bases is defined by Q;; = €] - e;, and so it follows that

cosf sinf 0
Q=] —sinf cosf 0

0 0 1
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Substituting this [Q] into [A'] = [Q][A][Q]T and multiplying out the matrices leads to the 9 equations

A A A — A A A
o= 11 + Ag2 4 An 22 590 4 12 + Ao sin 26,
2 2 2
Ap — A Ap — A Ay — A
AL, = 12 21, A 21 L e0p _ Al 22 sin 20,
2 2 2
Ay — A Ay — A A — A
Ay = — 12 21 Ai2 21 cop _ Al 22 o 2.
2 2 2
A A A — A A A
A, = 11+ A2 An 22 L 0g — 12 + A2 sin 20,
2 2 2
Als = Ajzcosf + Asssind, Al = Az1cosf + Aszgsinb,
Abs = Agzcosf — Ajzsind, Aby = Asgcosf — Aspsind,
Aby = Asz.
In the special case when [A] is symmetric, and in addition A3 = Ag3 = 0, these nine equations simplify to
A A A — A
= 11—; 2 4 A 2 0820 + Ars sin 20,
A A A — A
A, = 11;_ 2 _ 2 5 2 c0s20 — Ay sin26),
A — A
A, = - % sin 26,

together with Aj; = Al = 0 and AL, = Aszs. These are the well-known equations underlying the Mohr’s

circle for transforming 2-tensors in two-dimensions.

Ezxample 3.9:

a. Let a,b and 7 be entities whose components in some arbitrary basis are a;, b; and 7;;. The components
of T in any basis are defined in terms of the components of a and b in that basis by

Tijk = aib;by. (i)
If a and b are vectors, show that 7 is a 3-tensor.
b. Suppose that A and B are 2-tensors and that their components in some basis are related by
Ajj = CyjreBie. (ii)

Show that the C;ji¢’s are the components of a 4-tensor.
Solution:

a. Let a;,a; and b;, Y]

; be the components of a and b in two arbitrary bases. We are told that the

components of the entity 7 in these two bases are defined by

Tijk = aibjby, Tijk = aibb. (i)
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Since a and b are known to be vectors, their components transform according to the 1-tensor trans-
formation rule
a; = Qiaj, by = Qijb;. (iv)

Combining equations (iii) and (iv) gives

i/jk = a;b;- e = QipapQgbgQrrbr = QipQjqQrrapbebr = QipQjgQur Tpgr- (v)
Therefore the components of T in two bases transform according to 7;3 i = QipQiqQurTpgr. Therefore
T is a 3-tensor.

i Bigs (ngke be the components of A, B,C in two arbitrary bases:

Aij = CijkgB]d, A;] = Cl’jkIZB;M‘ (Vl)

.

We are told that A and B are 2-tensors, whence
A/ij = Qinqupqa ng = Qinqupqa (Vii)
and we must show that Cjji, is a 4-tensor, i.e that (C;ju = QipQjqQurQrsCpqrs. Substituting (vii)
into (vi)y gives
QipQjgApg = (ngkéQkaéquqv (viii)
Multiplying both sides by Q;mQ;» and using the orthogonality of [Q)], i.e. the fact that Q;pQim = dpm,
leads to
OpmOgnApg = (ngkeQimanQkaqupq’ (ix)
which by the substitution rule tells us that
Amn = C;jleimanQkaquPq’ (x)

or on using (vi); in this that
CrnpgBpg = (ngkeQimanQkaZquw (xi)
Since this holds for all matrices [B] we must have
Crnpg = CijreQimQjnQupQeq- (xii)

Finally multiplying both sides by QamQunQcpQdq, using the orthogonality of [Q)] and the substitution
rule yields the desired result

Qamechdequnpq = :zbcd' (Xlll)

FEzample 3.10: Verify that the alternator e;;, has the property that

eijk = Qip QjqQkr epgr for all proper orthogonal matrices [Q)], (i)

but that more generally

eijk # Qip QjqQrr €pqr for all orthogonal matrices [Q)]. (ii)
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Note from this that the alternator is not an isotropic 3-tensor.

Fxample 3.11: If Cyjp, is an isotropic 4-tensor, show that necessarily Cj;re = adye for some arbitrary scalar

a.
Solution: Since C;;; is an isotropic 4-tensor, by definition,

(Cijkl = Qip qu ri le Cpq'rs

for all orthogonal matrices [Q]. On setting ¢ = j in this; then using the orthogonality of [Q]; and finally

using the substitution rule, we are led to

Ciirt = Qip Qiq ri le (Cpqrs = 5pq ri le (Cpq'rs = ri le (Cpprs .

Thus C;;re obeys
Ciikt = Qrr Qus Cpprs for all orthogonal matrices [Q],

and therefore it is an isotropic 2-tensor. The desired result now follows since the most general isotropic

2-tensor is a scalar multiple of the identity.

Ezxample 3.12: Show that the most general isotropic vector is the null vector o.
Solution: In order to show this we must determine the most general vector u which is such that
u; = Qiju; for all orthogonal matrices [Q)]. (1)

Since (i) is to hold for all orthogonal matrices [Q], it must necessarily hold for the special choice [Q] = —[I].
Then Q;; = —9;;, and so (i) reduces to
U; = —52']'Uj = —Uy; (11)

thus u; = 0 and so u = o.

Conversely, u = o obviously satisfies (i) for all orthogonal matrices [Q]. Thus u = o is the most general

isotropic vector.

Example 3.13: Show that the most general isotropic symmetric tensor is a scalar multiple of the identity.

Solution: We must find the most general symmetric 2-tensor A whose components in every basis are the
same; i.e.,

[A] = [Q][A][Q]" for all orthogonal matrices [Q)]. (1)
First, since A is symmetric, we know that there is some basis in which [4] is diagonal. Since A is also
isotropic, it follows that [A] must therefore be diagonal in every basis. Thus [A] has the form

A1 0 0
[A=] 0 X 0 (ii)
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in any basis. Thus (i) takes the form

At 0 0 A0 0
0 X 0 [=Q] 0 X 0 |[Q] (iii)
0 0 )\3 0 0 /\3

0 0 1
Q=100 [, (iv)
010
in which case (iii) reduces to
A 00 X 0 O
0 A2 0O = 0 A O . (V)
0 0 X 0 0 X3

Therefore, A1 = Ao.

A permutation of this special choice of [@Q] similarly shows that Ay = A3. Thus A\ = Ay = A3 = say .

Therefore [A] necessarily must have the form [A] = a[I].

Conversely, by direct substitution, [A] = «[I] is readily shown to obey (i) for any orthogonal matrix [Q)].
This establishes the result.

Example 3.14: If W is a skew-symmetric tensor, show that there is a vector w such that Wx = w x x for
all x € IE.

Solution: Let W;; be the components of W in some basis and let w be the vector whose components in this
basis are defined by

1 .
wi=—5 eijk Wik (i)
Then, we merely have to show that w has the desired property stated above.

Multiplying both sides of the preceding equation by e;,, and then using the identity e;jreipq = dpOrq —

0jq0kp, and finally using the substitution rule gives
1 1
CipqWi = D) (8pOq — 0jq0kp) Wik = D) (Wpq — Wop)
Since W is skew-symmetric we have W;; = —Wj; and thus conclude that
Wi' = —€ijkWk-

Now for any vector x,

Wijl'j = —C kWX = €ikjWETj = (W X X)i.

Thus the vector w defined by (i) has the desired property Wx = w x x.
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Ezxample 3.15: Verify that the 4-tensor
Cijre = adij0re + Boir0je + ¥6i00 (1)
where o, 3, are scalars, is isotropic. If this isotropic 4-tensor is to possess the symmetry C;jre = Cjipe,

show that one must have g = ~.

Solution: In order to verify that C,j,e are the components of an isotropic 4-tensor we have to show that
Cijie = Qip Qjq Qir Qus Cpgrs for all orthogonal matrices [Q]. The right-hand side of this can be simplified
by using the given form of C,jxe; the substitution rule; and the orthogonality of [()] as follows:
Qip Qjg Qrr Qus Cpgrs

= Qip Qjq Qur Qus(tSpg 6rs + B Opr g5 + ¥ ps Igr)

= aQiqQjq Qus Qus + B Qir Qjs Qur Qus +7 Qis Qjr Qrr Qus

= o (QiqQjq) (QrsQrs) + B (QirQur) (Q)sQes) + 7 (QisQes) (QjrQur)

= i 0pe+ B ik 0o+ v b b

= Cijke (ii)
This establishes the desired result.

Turning to the second question, enforcing the requirement C;jx = Cj;x¢ on (i) leads, after some simpli-

fication, to

(B—=") (0ir 650 — 05 63¢) =0 . (iii)
Since this must hold for all values of the free indices 4, j, k, £, it must necessarily hold for the special choice
i=1, j=2, k=1, { =2. Therefore (8 —7)(d11 d22 — d21 d12) = 0 and so

B=r. (iv)
Remark: We have shown that 8 = v is necessary if C given in (i) is to have the symmetry C;jre = Cjipe.

One can readily verify that it is sufficient as well. It is useful for later use to record here, that the most

general isotropic 4-tensor C with the symmetry property C;jre = Cjpe is
Cijre = adij0re + B (dixdje + 6i0djk) (v)
where « and 3 are scalars.

Remark: Observe that C;;,e given by (v) automatically has the symmetry C;jre = Cpyij.

Ezxample 3.16: If A is a tensor such that
Ax-x=0 for all x (1)
show that A is necessarily skew-symmetric.

Solution: By definition of the transpose and the properties of the scalar product, Ax-x = x-A7x = ATx x.

Therefore A has the properties that

Ax-x=0, and ATx-x=0 for all vectors x.
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Adding these two equations gives
Sx-x=0 where S:(A+AT).
Observe that S is symmetric. Therefore in terms of components in a principal basis of S,
Sx - x = 0122 + 0913 + 0322 =0

where the o;’s are the eigenvalues of S. Since this must hold for all real numbers xy, it follows that every
eigenvalue must vanish: 0; = 03 = 03 = 0. Therefore S = O whence

A=-AT.

Remark: An important consequence of this is that if A is a tensor with the property that Ax -x = 0 for all

X, it does not follow that A = 0 necessarily.

Ezxample 2.18: For any orthogonal linear transformation Q, show that det Q = +1.

Solution: Recall that for any two linear transformations A and B we have det(AB) = det A det B and
det B = det BY. Since QQ” =1 it now follows that 1 = detT = det(QQ”) = det Qdet Q" = (det Q)2. The
desired result now follows.

Example 2.20: If Q is a proper orthogonal linear transformation on the vector space IEs, show that there

exists a vector v such that Qv = v. This vector is known as the axis of Q.

Solution: To show that there is a vector v such that Qv = v, it is sufficient to show that Q has an eigenvalue
+1, i.e. that (Q —I)v) = o or equivalently that det(Q — I) = 0.

Since QQ” = I we have Q(Q” —I) = I — Q. On taking the determinant of both sides and using the
fact that det(AB) = det A det B we get

det Q det(QT —I) =det (I Q) . (i)

Recall that det Q = +1 for a proper orthogonal linear transformation, and that det A = AT and det(—A) =

(—1)3det(A) for a 3-dimensional vector space. Therefore this leads to
det(Q —I) = —det(Q — 1), (ii)

and the desired result now follows.

Ezample 2.22: For any linear transformation A, show that det(A — uI) = det(Q” AQ— 1) for all orthogonal
linear transformations Q and all scalars u.

Solution: This follows readily since

det(QTAQ - uI) = det(QTAQ— QT Q) = det (QT(A - uI)Q) — det Q7 det(A —puI) det Q = det(A — ).
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Remark: Observe from this result that the eigenvalues of QT AQ coincide with those of Q, so that in
particular the same is true of their product and their sum: det(Q?7 AQ) = det A and tr(QTAQ) = tr A.

Ezample 2.26: Define a scalar-valued function ¢(A; e, eq,es3) for all linear transformations A and all (not

necessarily) orthonormal bases {e1,e2,e3} by

Ae; - (ex xe3)+er-(Aey xe3)+ e (e x Aes)
€eq - (62 X 63)

¢(A7 €1, ez, 93) =

Show that ¢(A, e, ez, e3) is in fact independent of the choice of basis, i.e., show that
(A, e1,eq,e3) = I1(A, €], ey, e5)

for any two bases {e1,es,e3} and {e], e}, e5}. Thus, we can simply write ¢(A) instead of ¢(A,er, e, €3);
®(A) is called a scalar invariant of A.

Pick any orthonormal basis and express ¢(A) in terms of the components of A in that basis; and hence
show that ¢(A) = trace A.

Ezample 3.7: Let F(t) be a one-parameter familty of non-singular 2-tensors that depends smoothly on the

parameter ¢t. Calculate
d
—det F(¢).
3 det F(1)

Solution: From the result of Example 3.NNN we have
(F(t)ax F(t)b) -F(t)c = detF(t) (axb)-c

Differentiating this with respect to t gives
d

(F(t)ax F(t)b) - F(t)c + (F(t)a x F(t)b) - F(t)c + (F(t)a x F(t)b) -F(t)c = S detF(t) (axb)-c
where we have set F(t) = dF /dt. We can write this as
) . . d
(FF 'Fax Fb) -Fc+ (Fax FF 'Fb) - Fc + (Fa x Fb) - FF'Fc = (dt det F) (axb)-c.
In view of the result of Example 3.NNN, this can be written as
N d
trace(FF ") (Fa x Fb) - Fe = ( —detF ) (axb)-c
and now using the result of Example 3.NNN once more we get

trace(FF_l) detF (axb)-¢c = ((i det F) (axb)-c.

or

d . 1
e det F = trace (FF ) det F.
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Ezxample 2.30: For any integer N > 0, show that the polynomial
PN(A) :COI"’ClA“"CQAQ+...CkAk+...+CNA.N

can be written as a quadratic polynomial of A.

Solution: This follows readily from the Cayley-Hamilton Theorem (3.41) as follows: suppose that A is non-
singular so that I5(A) = det A # 0. Then (3.41) shows that A® can be written as a linear combination of
I, A and A?. Next, multiplying this by A tells us that A* can be written as a linear combination of A, A2
and A®, and therefore, on using the result of the previous step, as linear combination of I, A and A2, This
process can be continued an arbitrary number of times to see that for any integer k, A* can be expressed as
a linear combination of I, A and A% The result thus follows.

Example 2.31: For any linear transformation A show that
det(A —oI) = —a® + I1(A)o? — I(A)a + I3(A)
for all real numbers o where I1(A), Io(A) and I3(A) are the principal scalar invariants of A:

I;(A) = trace A, I(A) = 1/2[(trace A)? — trace(A?)], I35(A) = det A.

Example 2.32: Calculate the principal scalar invariants I, Is and I3 of the linear transformation a ® b.
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Chapter 4

Characterizing Symmetry: Groups of

Linear Transformations.

Linear transformations are mappings of vector spaces into vector spaces. When an object
is mapped using a linear transformation, certain transformations preserve its symmetry
while others don’t. One way in which to characterize the symmetry of an object is to
consider the collection of all linear transformations that preserve its symmetry. The set of
such transformations depends on the object: for example the set of linear transformations
that preserve the symmetry of a cube is different to the set of linear transformations that
preserve the symmetry of a tetrahedron. In this chapter we touch briefly on the question of

characterizing symmetry by linear transformations.

Intuitively a “uniform all-around expansion”, i.e. a linear transformation of the form ol
that rescales the object by changing its size but not its shape, does not affect symmetry.
We are interested in other linear transformations that also preserve symmetry, principally
rotations and reflections. In this Chapter we shall consider those linear transformations that
map the object back into itself. The collection of such transformations have certain important

and useful properties.

67
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C

““>h.

Figure 4.1: Mapping a square into itself.

4.1 An example in two-dimensions.

We begin with an illustrative example. Consider a square, ABCD, which lies in a plane
normal to the unit vector k, whose center is at the origin o and whose sides are parallel
to the orthonormal vectors {i,j}. Consider mappings that carry the square into itself. The
vertex A can be placed in one of 4 positions; see Figure 4.1. Once the location of A has
been determined, the vertex B can be placed in one of 2 positions (allowing for reflections
or in just one position if only rotations are permitted). And once the locations of A and
B have been fixed, there is no further flexibility and the locations of the remaining vertices
are fixed. Thus there are a total of 4 x 2 = 8 symmetry preserving transformations of the

square, 4 of which are rotations and 4 of which are reflections.

Consider the 4 rotations. In order to determine them, we (a) identify the axes of rotational
symmetry and then (b) determine the number of distinct rotations about each such axis.
In the present case there is just 1 axis to consider, viz. k, and we note that 0°,90°, 180°
and 270° rotations about this axis map the square back into itself. Thus the following 4
distinct rotations are symmetry transformations: I, R 2, ﬂ, Rizr/ ? where we are using the
notation introduced previously, i.e. R% is a right-handed rotation through an angle ¢ about

the axis n.

Let Gsquare denote the set consisting of these 4 symmetry preserving rotations:

/2 T 3m/2
gsquare = {Ia Rk/ ) k Rk/ }
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This collection of linear transformations has two important properties: first, observe that
the successive application of any two symmetries yields a third symmetry, i.e. if P; and P,

are in Gsquare, then so is their product P;P,. For example, RERZ 2 = Ri’:/ 2, Rir{/ 2R?1’{7T/ 2 =

I, R?lf/ 2Ri{”/ 2 _ Rﬂ etc. Second, observe that if P is any member of Gyquare, then so is its

inverse P~!. For example (RL)™ = R, (Ri:/ A1 = Rﬂk/ ? ete. As we shall see in Section

4.4, these two properties endow the set Gsquare With a certain special structure.

w/2

Next consider the rotation Rk and observe that every element of the set Gsquare can be
represented in the form (Rir{/ 2)” for the integer choices n = 0,1, 2,3. Therefore we can say

that the set Ggquare is “generated” by the element Rﬂ/ 2,

Finally observe that
g/square = {Ia Rﬂ—}
is a subset of Gsquare and that it too has the properties that if P, Py € G'square then their

product P1P5 is also in G'square; and if P € G'gquare S0 is its inverse Pl

We shall generalize all of this in Section 4.4.

4.2 An example in three-dimensions.

k 4j

A
l il
o i

A

Figure 4.2: Mapping a cube into itself.

Before considering some general theory, it is useful to consider the three-dimensional

version of the previous problem. Consider a cube whose center is at the origin o and whose
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edges are parallel to the orthonormal vectors {1, j, k}, and consider mappings that carry the
cube into itself. Consider a vertex A, and its three adjacent vertices B, C, D. The vertex
A can be placed in one of 8 positions. Once the location of A has been determined, the
vertex B can be placed in one of 3 positions. And once the locations of A and B have been
fixed, the vertex C can be placed in one of 2 positions (allowing for reflections or in just one
position if only rotations are permitted). Once the vertices A, B and C have been placed,
the locations of the remaining vertices are fixed. Thus there are a total of 8 x 3 x 2 = 48
symmetry preserving transformations of the cube, 24 of which are rotations and 24 of which

are reflections.

First, consider the 24 rotations. In order to determine these rotations we again (a) identify
all axes of rotational symmetry and then (b) determine the number of distinct rotations about
each such axis. In the present case we see that, in addition to the identify transformation I

itself, we have the following rotational transformations that preserve symmetry:

1. There are 3 axes that join the center of one face of the cube to the center of the
opposite face of the cube which we can take to be 1i,j,k, (which in materials science
are called the {100} directions); and 90°, 180° and 270° rotations about each of these
axes maps the cube back into the cube. Thus the following 3 x 3 = 9 distinct rotations
are symmetry transformations:

RI?, RY, R, R}T/Q, R}, R;’“/z, Ry%, R, R

2. There are 4 axes that join one vertex of the cube to the diagonally opposite vertex of
the cube which we can take to be i+ j+ k,i—j+k,i+j—k,i—j—k, (which in
materials science are called the {111} directions); and 120° and 240° rotations about
each of these axes maps the cube back into the cube. Thus the following 4 x 2 = 8

distinct rotations are symmetry transformations:

2m/3 47 /3 2m/3 47 /3 2m/3 4/3 2m/3 47/3
Rigoe Bigie Bigae Bijae Bije Bije RBije Bij
3. Finally, there are 6 axes that join the center of one edge of the cube to the center
of the diagonally opposite edge of the cube which we can take to be i + j,i — j,i+
k,i—k,j+k,j— k (which in materials science are called the {110} directions); and
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180 rotations about each of these axes maps the cube back into the cube. Thus the

following 6 x 1 = 6 distinct rotations are symmetry transformations:

Rﬁj’ Rilj, R7ir+k’ Rirfk’ R3r+k’ Rjjrfk‘

Let Geune denote the collection of these 24 symmetry preserving rotations:

gcube = {Ia

w/2 T 3m/2 w/2 T 3m/2 w/2 T 3m/2
Ri 9 Ri, Ri 9 Rj 9 Rj, Rj 3 Rk 9 k’ Rk

2m/3 4 /3 2m/3 4w /3 2m/3 4m/3 2m/3 4r/3
Rigoe Bigae Bigae Bijoe Bije Bige Rije Bijx

Rir+j’ Rir—j’ Rir+k’ R7ir—k’ Rjerrk7 Rjjr—k }-
(4.1)
If one considers rotations and reflections, then there are 48 elements in this set, where the
24 reflections are obtained by multiplying each rotation by —I. (It is important to remark
that this just happens to be true for the cube, but is not generally true. In general, if R is a
rotational symmetry of an object then —R is, of course, a reflection, but it need not describe
a reflectional symmetry of the object; e.g. see the example of the tetrahedron discussed

later.)

The collection of linear transformations G, has two important properties that one can
verify: (i) if P; and Py € Geype, then their product PPy is also in Geype, and (i) if P € Geype,

then so does its inverse P~ 1.

Next, one can verify that every element of the set G..ne can be represented in the form
(R;r/ 2)1’(R3/ 2)q(Ri/ ?)7 for integer choices of p, ¢, . For example the rotation Ri:gik (about
a {111} axis) and the rotation RY  (about a {110} axis) can be represented as

R = () (R Rpg= (B) (R

(One way in which to verify this is to use the representation of a rotation tensor determined in
Example 2.18.) Therefore we can say that the set Geupne is “generated” by the three elements

R™* R™? and R7/>.
i j k
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4.3 Lattices.

A geometric structure of particular interest in solid mechanics is a lattice and we now make
a few observations on the symmetry of lattices. The simplest lattice, a Bravais lattice
L{0;¥,£5,03}, is an infinite set of periodically arranged points in space generated by the

translation of a single point o through three linearly independent lattice vectors {€;, £, €3}:

3
E{O;£1,£2,£3} = {X ‘ X:O+Zni£i, n; € 7 } (42)
n=1
where 7Z is the set of integers. Figure 4.3 shows a two-dimensional square lattice and one
possible set of lattice vectors £y, €. (It is clear from the figure that different sets of lattice

vectors can correspond to the same lattice.)

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
a
[ ] [ ] [ ] [ ] [ ] [ ] [ ]
a
j [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
1/
i [ ] [ ] [ ] [ ] el [ ] [ ] [ ]

Figure 4.3: A two-dimensional square lattice with lattice vectors £;, £o.

It can be shown that a linear transformation P maps a lattice back into itself if and only
if

Pe =Y M, (4.3)

for some 3 x 3 matrix [M]| whose elements M;; are integers and where det[M] = 1. Given a
lattice, let Giattice be the set of all linear transformations P that map the lattice back into
itself. One can show that if P1, Py € Glattice then their product PP is also in Giagice; and if

P € Gluttice SO is its inverse PL. The set Glatiice 1S called the symmetry group of the lattice;



4.4. GROUPS OF LINEAR TRANSFORMATIONS. 73

and the set of rotations in Gice 1 known as the point group of the lattice. For example the

point group of a simple cubic lattice! is the set Geupne of 24 rotations given in (4.1).

4.4 Groups of Linear Transformations.

A collection G of non-singular linear transformations is said to be a group of linear trans-
formations if it possesses the following two properties:

(1) if Py €Gand Py € G then PPy € G,

(ii) if P € G then P7' €.

Note from this that the identity transformation I is necessarily a member of every group G.

Clearly the three sets Gsquare; Geube and Giattice €ncountered in the previous sections are
groups. One can show that each of the following sets of linear transformations forms a group:
- the set of all orthogonal linear transformations;
- the set of all proper orthogonal linear transformations;
- the set of all unimodular linear transformations? (i.e. linear transformations with de-
terminant equal to +1); and
- the set of all proper unimodular linear transformations (i.e. linear transformations

with determinant equal to +1).

The generators of a group G are those elements Py, P,, ..., P,, which, when they and
their inverses are multiplied among themselves in various combinations yield all the elements

of the group. Generators of the groups Gsquare and Geyne Were given previously.

In general, a collection of linear transformations G’ is said to be a subgroup of a group
g if
(1) G"C G and
(17) G’ is itself a group.

!There are seven different types of symmetry that arise in Bravais lattices, viz. triclinic, monoclinic,
orthorhombic, tetragonal, cubic, trigonal and hexagonal. Because, for example, a cubic lattice can be body-

centered or face-centered, and so on, the number of different types of lattices is greater than seven.
2While the determinant of an orthogonal tensor is £1 the converse is not necessarily true. There are

unimodular tensors, e.g. P = I + ai ® j, that are not orthogonal. Thus the unimodular group is not

equivalent to the orthogonal group.
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One can readily show that the group of proper orthogonal linear transformations is a sub-
group of the group of orthogonal linear transformations, which in turn is a subgroup of the

group of unimodular linear transformations. In our first example, G'square i a subgroup of

gsquare .

It should be mentioned that the general theory of groups deals with collections of elements
(together with certain “rules” including “multiplication”) where the elements need not be
linear transformations. For example the set of all integers Z with “multiplication” defined
as the addition of numbers, the identity taken to be zero, and the inverse of x taken to be

—x is a group. Similarly the set of all matrices of the form

coshx sinhzx
where — oo < x < 00,
sinhxz coshxz

with “multiplication” defined as matrix multiplication, the identity being the identity matrix,

and the inverse being
cosh(—x) sinh(—x)

sinh(—z) cosh(—x)

can be shown to be a group. However, our discussion in these notes is limited to groups of

linear transformations.

4.5 Symmetry of a scalar-valued function of symmetric

positive-definite tensors.

When we discuss the constitutive behavior of a material in Volume 2, we will encounter
a scalar-valued function ¢ (C) defined for all symmetric positive definite tensors C. (This
represents the energy in the material and characterizes its mechanical response). The sym-
metry of the material will be characterized by a set G of non-singular tensors P which has

the property that, for each P € G,

Y(C) = (PTCP) for all symmetric positive — definite C. (4.4)
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It can be readily shown that this set of tensors G is a group. To see this, first let
P.,P; € G so that
¥(C) = p(PTCPy),  ¢(C) = ¢(P;CPy), (4.5)

for all symmetric positive-definite C. Then 9 ((P1Py)"CP,Py) = ¢(PI(PTCP,)P,) =
Y(PTCP;) = ¢(C) where we have used (4.5); and (4.5); in the penultimate and ultimate
steps respectively. Thus if P; and P, are in G, then so is P;P5. Next, suppose that P € G.
Since P is non-singular, the equation S = PTCP provides a one-to-one relation between
symmetric positive definite tensors C and S. Thus, since (4.4) holds for all symmetric
positive-definite C, it also holds for all symmetric positive-definite linear transformations
S = PTCP. Substituting this into (4.4) gives ¥(S) = (P 'SP™') for all symmetric
positive-definite S; and so P! is also in G. Thus the set G of nonsingular tensors obeying

(4.4) is a group; we shall refer to it as the symmetry group of ¢.

Observe from (4.4) that the symmetry group of ¢ contains the elements I and —I, and
as a consequence, if P € G then —P € G also.

To examine an explicit example, consider the function
»(C) = J( det C). (4.6)

It is seen trivially that for this QZ, equation (4.4) holds if and only if det P = £1. Thus the
symmetry group of this ¢ consists of all unimodular tensors ( i.e. tensors with determinant

equal to £1).

As a second example consider the function

b(C) = zﬁ(cn : n> (4.7)

where n is a given fixed unit vector. Let Q, be a rotation about the axis n through an

arbitrary angle. Then since n is the axis of Q, we know that Q,n = n. Therefore

o~

¥(QIcq,) = 4(QIcQn n) = 4(CQn-Qn) = §(Cn-n) =4(C).  (48)

The symmetry group of the function (4.7) therefore contains the set of all rotations about

n. (Are there any other tensors in G?)
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The following result will be useful in Volume 2. Let H be some fixed nonsingular linear
transformation, and consider two functions v (C) and ¢,(C), each defined for all symmetric

positive-definite tensors C. Suppose that 1, and 1y are related by
Y(C) = ¢ (H'CH) for all symmetric positive — definite tensors C. (4.9)
If G; and G, are the symmetry groups of ¢; and 1), respectively, then it can be shown that
G, =HGH™' (4.10)

in the sense that a tensor P € G, if and only if the tensor HPH™' € G,. As a special case
of this, if H is a spherical tensor, i.e. if H = oI, then G; = Gs.

Next, note that any nonsingular tensor P can be written as the product of a spherical
tensor al and a unimodular tensor T as P = (aI)T provided that we take o = (| det P|)'/3
since then det T = +1. This, together with the special case of the result noted in the
preceding paragraph provides a hint of why we might want to limit attention to unimodular

tensors rather than consider all nonsingular tensors in our discussion of symmetry.

This motivates the following slight modification to our original notion of symmetry of a
function ¥ (C). We characterize the symmetry of ¢ by the set G of unimodular tensors P
which have the property that, for each P € G,

Y(C) = (PTCP) for all symmetric positive — definite C. (4.11)

It can be readily shown that this set of tensors G is also a group, necessarily a subgroup of

the unimodular group.

A function v is said to be isotropic if its symmetry group G contains all orthogonal

tensors. Thus for an isotropic function 1,
$(C) = Y(PTCP) (1.12)

for all symmetric positive-definite C and all orthogonal P. From a theorem in algebra it
follows that an isotropic function v depends on C only through its principal scalar invariants

defined previously in (3.38), i.e. that there exists a function 7:/1\ such that

¥(C) = (1(C). 1(C). I5(C) (4.13)
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where
L(C) = trace C
I,(C) = 1/2[(trace C)? — trace (C?)], (4.14)
L(C) = detC.

As a second example consider “cubic symmetry” where the symmetry group G coincides
with the set of 24 rotations Geupe given in (4.1) plus the corresponding reflections obtained
by multiplying these rotations by —I. As noted previously, this group is generated by
R;r/ 2, Rjir/ 2, R™? and —I, and contains 24 rotations and 24 reflections. Then, according to a

k
theorem in algebra (see pg 312 of Truesdell and Noll),

Q

= C'226’122 + 033031 + 0330223 + 0110122 + C’HC’% + 0220223
- 0110:%10122 + 02201220223 + 0330223031
= (3;C5Cs3 + C3,C53C11 + CF,C11 0o

Q

.
[e 2]

Q

.
©

$(C) = (zl(C), i5(C),i3(C),i4(C), i5(C), i(C), i(C), is(C), 2'9(0)) (4.15)
where
i1(C) = Ci+ Cyp + Css,
i2(C) = CpCss+ Cs3C; + C11Cy
7’3(0) = CIIC22C33
i4(C) = 0223 + 0321 + C'122
is(C) = C30% + Ch0%5 + CHC3 (4.16)
Zﬁ(c) = C(2361316112
(C)
(C)
(C)

If G contains I and all rotations Rfl, 0 < ¢ < 2w, through all angles ¢ about a fixed axis

n, the corresponding symmetry is called transverse isotropy.

If G includes the three elements —Rgr, —Rjir, —Rﬂ which represent reflections in the

planes normal to i, j and k, the symmetry is called orthotropy.

4.6 Worked Examples.

Ezample 4.1: Characterize the set Hgquare Of linear transformations that map a square back into a square,

including both rotations and reflections.
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j
A

Figure 4.4: Mapping a square into itself.

Solution: We return to the problem describe in Section 4.1 and now consider the set rotations and reflections
Hsquare that map the square back into itself. The set of rotations that do this were determined earlier and
they are

/2 T 3r/2
gsquare = {17 Rk/ s k Rk/ }

As the 4 reflectional symmetries we can pick

H = reflection in the horizontal axis i,
V = reflection in the vertical axis j,
D = reflection in the diagonal with positive slope i+ j,
D’ = reflection in the diagonal with negative slope —i + j,
and so
Houare = {I R R, RY/* H,V,D,D'} . (i)

One can verify that Hsquare 1S @ group since it possesses the property that if P; and Py are two transfor-
mations in G, then so is their product P, Py; e.g. D' = Ri)’:/zH, D= HRT{’T/2 etc. And if P is any member
of G, then so is its inverse; e.g. H™! = H etc.

Ezample 4.2: Find the generators of Hsquare and all subgroups of Hsquare-

Solution: All elements of Hgsquare can be represented in the form (Rﬂ/ 2)¢Hj for integer choices of i = 0,1,2,3
and j =0,1:
T /2 3 /2 /212 /2
R = R/’ R =®RY? 1=RY)"
D' = (R{*P’H, V=(Ry*’H, D=R{’H

Therefore the group Hgsquare is generated by the two elements H and R™/2.

One can verify that the following 8 collections of linear transformations are subgroups of Hgquare:
{LR72R" R} (ID.D'R}, {LHV.R"}, {LR7},

(LD}, {LD}, {LH}, {LV},
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Geometrically, each of these subgroups leaves some aspect of the square invariant. The first leaves the face
invariant, the second leaves a diagonal invariant, the third leaves the axis invariant, the fourth leaves an axis

and a diagonal invariant etc. There are no other subgroups of Hyquare-

Example 4.3 Characterize the rotational symmetry of a regular tetrahedron.

Figure 4.5: A regular tetrahedron ABCD, three orthonormal vectors {i, j,k} and a unit vector p. The axis
k passes through the vertex A and the centroid of the opposite face BCD, while the unit vector p passes
through the center of the edge AD and the center of the opposite edge BC.

Solution:

1. There are 4 axes like k in the figure that pass through a vertex of the tetrahedron and the centroid
of the opposite face; and right-handed rotations of 120° and 240° about each of these axes maps the
tetrahedron back onto itself. Thus these 4 x 2 = 8 distinct rotations — of the form Riﬂ/ 3 Ril:/ 3 ete.

— are symmetry transformations of the tetrahedron.

2. There are three axes like p shown in the figure that pass through the mid-points of a pair of opposite
edges; and a right-handed rotation through 180° about each of these axes maps the tetrahedron
back onto itself. Thus these 3 x 1 = 3 distinct rotations — of the form RY), etc. — are symmetry

transformations of the tetrahedron.

The group Gietrahedron Of rotational symmetries of a tetrahedron therefore consists of these 11 rotations

plus the identity transformation I.

Example 4.4: Are all symmetry preserving linear transformations necessarily either rotations or reflections?

Solution: We began this chapter by considering the symmetry of a square, and examining the different ways

in which the square could be mapped back into itself. Now consider the example of a two-dimensional a X a
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square lattice, i.e. the set of infinite points
Lsquare = {X | X = n1ai + noaj, ni,ne € Z = Integers} (i)

depicted in Figure 4.6, and examine the different ways in which this lattice can be mapped back into itself.

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
a
[ ] [ ] [ ] [ ] [ ] [ ] [ ]
a
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

£,

Figure 4.6: A two-dimensional ¢ x ¢ square lattice.

We first note that the rotational and reflectional symmetry transformations of a a x a square are also
symmetry transformations for the lattice since they leave the lattice invariant. There are however other
transformations, that are neither rotations nor reflections, that also leave the lattice invariant. For example,
if for every integer n, one rigidly translates the n*® row of the lattice by precisely the amount nf in the
i direction, one recovers the original lattice. Thus, the “shearing” of the lattice described by the linear
transformation

P=1I+di®j (i)

is also a symmetry preserving transformation.

Example 4.5: Show that each of the following sets of linear transformations forms a group: all orthogonal
tensors; all proper orthogonal tensors; all unimodular tensors (i.e. tensors with determinant equal to £1);

and all proper unimodular tensors (i.e. tensors with determinant equal to +1).

Ezxample 4.6: Show that the group of proper orthogonal tensors is a subgroup of the group of orthogonal

tensors, which in turn is a subgroup of the group of unimodular tensors.

Ezample 4.7 Suppose that a function ¢(C) is defined for all symmetric positive definite tensors C and that
its symmetry group is the set of all orthogonal tensors. Show that 1) depends on C only through its principal

scalar invariants, i.e. show that there is a function zZ such that

¥(C) = (1(C). 1(C), (C))
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where I;,(C), i = 1,2,3, are the principal scalar invariants of C defined previously in (3.38).

Solution: We are given that ¢ has the property that for all symmetric positive-definite tensors C and all

orthogonal tensors Q
¥(C) =4(Q'CQ). (i)
In order to prove the desired result it is sufficient to show that, if C; and Cy are two symmetric tensors

whose principal invariants I; are the same,
I,(Cy) = I(Cy), I,(Cy) = I5(Cy), I3(Cq) = I3(Co), (ii)

then (C1) = (Ca).

Recall that the mapping (3.40) between principal invariants and eigenvalues is one-to-one. It follows

from this and (ii) that the eigenvalues of C; and Cy are the same. Thus we can write

3 3
=Y nelV@el),  Co=Y relP @el?, (i)
=1 1=1

(1)

where the two sets of orthonormal vectors {eg ,e2 ,e3 } and {e1 , €5 ,e3 } are the respective principal

bases of 01 and C,. Since each set of basis vectors is orthonormal, there is an orthogonal tensor R that

carries {e1 ,eél),edl)}mto {e1 ,e2 ,e3 }

Rel’ =e?  i=123. (iv)
Thus
3 3 3 3
R” (Z Ael? ® e§2>> R=Y AR wel)R=1 MR R e?) = Nl @ (el"), (v)
=1 =1 =1 =1

and so RTCyR = C;. Therefore 1)(C;) = »(RTCyR) = 1)(Cs) where in the last step we have used (i).
This establishes the desired result.

Ezample 4.8: Consider a scalar-valued function f(x) that is defined for all vectors x. Let G be the set of all
non-singular linear transformations P that have the property that for each P € G, one has f(x) = f(Px)
for all vectors x.

i) Show that G is a group.

ii) Find the most general form of f if G contains the set of all orthogonal transformations.
Solution:

i) Suppose that P; and Py are in G, i.e. that

fx) = f(P1x) for all vectors x, and
f(x) = [f(P2x) for all vectors x.
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Then
F((P1P2)x) = f(P1(P2x)) = f(Pox) = f(x)
where in the penultimate and ultimate steps we have used (i); and (i)a respectively.

Next, suppose that P € G so that
fx) = f(Px) for all vectors x.
Since P is non-singular we can set y = Px and obtain
fPty) = f(y) for all vectors y.

It thus follows that G has the two defining properties of a group.

ii) If x; and x5 are two vectors that have the same length, we will show that f(x1) = f(x2), whence

f(x) depends on x only through its length |x|, i.e. there exists a function fsuch that

~

f(x) = f(x]) for all vectors x.

If x; and x5 are two vectors that have the same length, there is a rotation tensor R that carries xo
to x1: Rxs = x1. Therefore

f(x1) = f(Rx2) = f(x2),
where in the last step we have used the fact that G contains the set of all orthogonal transformations,
ie. that f(x) = f(Px) for all vectors x and all orthogonal P. This establishes the result claimed

above.

Ezample 4.9: Consider a scalar-valued function g(C, m®m) that is defined for all symmetric positive-definite
tensors C and all unit vectors m. Let G be the set of all non-singular linear transformations P that have
the property that for each P € G, one has g(C,n®n) = g(P*CP, P’ (n ® n)P) for all symmetric positive-
definite tensors C and some particular unit vector n. If G contains the set of all orthogonal transformations,

show that there exists a function g such that
9(C.n @) = §((C), 1»(C), I5(C), 1(C,n), I5(C, m))
where I1(C), I5(C), I3(C) are the three fundamental scalar invariants of C and
I,(C,n) =Cn - n, I5(C,n) = C?’n-n.

Remark: Observe that with respect to an orthonormal basis {e;, €2, €3} where e3 = n one has I, = C33 and
Iy =C3 + C3, + C3s.
Solution: We are told that

9(C,n@n)=4(Q"CQ, Q" (n®n)Q) (1)
for all orthogonal Q and all symmetric positive definite C. As in Example 4.7, it is sufficient to show that if

C; and C; are two symmetric positive definite linear transformations whose “invariants” I;,i = 1,2,3,4,5”

are the same, i.e.

Il(Cl) = 11(02), IQ(Cl) = IQ(CQ), Ig(Cl) = Ig(CQ), I4(C1,1’1) = 14((}2,1’1)7 I5(C1,Il) = I5(CQ,1’1) (11)
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then ¢g(Cq1,n®n) = g(Cz,n ®n). From (ii)1 2 3 and the analysis in Example 4.7 it follows that there is an
orthogonal tensor R such that R CyR = C;. It is readily seen from this that R C2R = C? as well. It
now follows from this, the fact that R is orthogonal, (ii)4 5 and the definitions of I, and I5 that

Rn-Rn=n-n, CoRn-Rn=Csn - n, C2Rn-Rn = C2n - n, (iii)
and this must hold for all symmetric positive define Cs. This implies that
Rn=+n and consequently R'n = +n,
as may be seen, for example, for expressing (iii) in a principal basis of Cy. Consequently
9(Ci,n®n) = g(R"C;R, (R"n) ® (R"n)) = g(R"C2R,R" (n®@n)R) = g(C2,n ®n)

where we have used (i) in the very last step. This establishes the desired result.
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Chapter 5

Calculus of Vector and Tensor Fields

Notation:
a scalar
{a} ... 3 x 1 column matrix
a ... vector
a; e ith component of the vector a in some basis; or i*! element of the column matrix {a}
A4 .. 3 x 3 square matrix
A L second-order tensor (2-tensor)
Ay i,j component of the 2-tensor A in some basis; or 4, j element of the square matrix [A]
c .. fourth-order tensor (4-tensor)
Cijke . 1,7, k, ¢ component of 4-tensor C in some basis
Tivig..iy  ooene 1142....1, component of n-tensor T in some basis.

5.1 Notation and definitions.

Let R be a bounded region of three-dimensional space whose boundary is denoted by OR and
let x denote the position vector of a generic point in R + 0R. We shall consider scalar and
tensor fields such as ¢(x), v(x), A(x) and T(x) defined on R + dR. The region R + 9R and
these fields will always be assumed to be sufficiently regular so as to permit the calculations

carried out below.

While the subject of the calculus of tensor fields can be dealt with directly, we shall take
the more limited approach of working with the components of these fields. The components
will always be taken with respect to a single fixed orthonormal basis {ej, €2, e3}. Each com-

ponent of say a vector field v(x) or a 2-tensor field A (x) is effectively a scalar-valued function

85
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on three-dimensional space, v;(x1, ¥, x3) and A;;(x1, x2, x3), and we can use the well-known
operations of classical calculus on such fields such as partial differentiation with respect to

L.

In order to simplify writing, we shall use the notation that a comma followed by a sub-
script denotes partial differentiation with respect to the corresponding z-coordinate. Thus,

for example, we will write

_ 99 b= 0%¢ UH_@UZ-
N 8557;’ e &Eiaxj’ A 8:1:]-’

P, (5.1)

and so on, where v; and z; are the i*® components of the vectors v and x in the basis
{61,92793}-

The gradient of a scalar field ¢(x) is a vector field denoted by grad ¢ (or V¢). Its

i""-component in the orthonormal basis is

(grad ¢); = ¢, (5.2)
so that

grad ¢ = ¢ e;.

The gradient of a vector field v(x) is a 2-tensor field denoted by grad v (or Vv). Its ij'-

component in the orthonormal basis is
(grad V)ij = Vij, (53)

so that

grad VvV = Ui’jei X ej.

The gradient of a scalar field ¢ in the particular direction of the unit vector n is denoted by

0¢/0n and defined by
d¢

The divergence of a vector field v(x) is a scalar field denoted by div v (or V - v). It is
given by
div v = Vi i- (55)

The divergence of a 2-tensor field A(x) is a vector field denoted by div A (or V - A). Its

it"-component in the orthonormal basis is
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so that
div A = Aij,jei.

The curl of a vector field v(x) is a vector field denoted by curl v (or V x v). Its ith-

component in the orthonormal basis is
(curl v); = e;jxVk, (5.7)

so that

curl v = €0y j€;.

The Laplacians of a scalar field ¢(x), a vector field v(x) and a 2-tensor field A(x) are

the scalar, vector and 2-tensor fields with components

vng - qb,kk; (V2V)z - Ui,kk7 (VQA-)U - Aij,kk7 (58)

5.2 Integral theorems

Let D be an arbitrary regular sub-region of the region R. The divergence theorem allows
one to relate a surface integral on 0D to a volume integral on D. In particular, for a scalar

field ¢(x)
¢n dA = / VodV  or ony, dA = / ¢ dV. (5.9)
D oD D

oD

Likewise for a vector field v(x) one has

/ V~ndA:/ V- -vdV or / VT dA:/ Vg r AV, (5.10)
oD D oD D

as well as

/ vendA= / Vv dV or / ving dA = / v dV. (5.11)
oD D oD D

More generally for a n-tensor field T(x) the divergence theorem gives

0
/ Tiriy..in i dA = / (Tiyiy..ip) AV (5.12)
oD D

Oz,

where some of the subscripts i1, s, ... ,4, may be repeated and one of them might equal k.
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5.3 Localization

Certain physical principles are described to us in terms of equations that hold on an arbitrary
portion of a body, i.e. in terms of an integral over a subregion D of R. It is often useful
to derive an equivalent statement of such a principle in terms of equations that must hold
at each point x in the body. In what follows, we shall frequently have need to do this, i.e.

convert a “global principle” to an equivalent “local field equation”.

Consider for example the scalar field ¢(x) that is defined and continuous at all x €
R + 0 R and suppose that

/ p(x)dV =0 for all subregions D C R. (5.13)
D

We will show that this “global principle” is equivalent to the “local field equation”
o(x)=0 at every point x € R. (5.14)

Figure 5.1: The region R, a subregion D and a neighborhood B.(z) of the point z.

We will prove this by contradiction. Suppose that (5.14) does not hold. This implies that
there is a point, say z € R, at which ¢(z) # 0. Suppose that ¢ is positive at this point:
¢(z) > 0. Since we are told that ¢ is continuous, ¢ is necessarily (strictly) positive in some
neighborhood of z as well. Let B.(z) be a sphere with its center at z and radius € > 0. We
can always choose € sufficiently small so that B.(z) is a sufficiently small neighborhood of z
and

o(x) >0 at all x € B(z). (5.15)

Now pick a region D which is a subset of B(z). Then ¢(x) > 0 for all x € D. Integrating ¢

over this D gives
/ o(x)dV >0 (5.16)
D

thus contradicting (5.13). An entirely analogous calculation can be carried out in the case

¢(z) < 0. Thus our starting assumption must be false and (5.14) must hold.
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5.4 Worked Examples.

In all of the examples below the region R will be a bounded regular region and its boundary

OR will be smooth. All fields are defined on this region and are as smooth as in necessary.

In some of the examples below, we are asked to establish certain results for vector and
tensor fields. When it is more convenient, we will carry out our calculations by first picking
and fixing a basis, and then working with the components in that basis. If necessary, we will
revert back to the vector and tensor fields at the end. We shall do this frequently in what

follows and will not bother to explain this strategy each time.

Ezample 5.1: Calculate the gradient of the scalar-valued function ¢(x) = Ax -x where A is a constant

2-tensor.
Solution: Writing ¢ in terms of components
¢ = Aijziz;.
Calculating the partial derivative of ¢ with respect to xj, yields
b = Aij(ziz;) k = Agj (T gy + xij8) = Agj(Sanj + 2i051) = Agjrj + Agers = (Agj + Aji)x;

or equivalently Vo = (A + AT)x.

Ezample 5.2: Let v(x) be a vector field and let v;(x1, z2, x3) be the i*"-component of v in a fixed orthonormal
basis {e1, e, e3}. For each i and j define
Fij = vij.

Show that Fj; are the components of a 2-tensor.

Solution: Since v and x are 1-tensors, their components obey the transformation rules
/ / / /
v; = Qirvk, Vi = Qrivy and @ = QjrTE, T = Qe

Therefore
, _ Ov;  Ov; Oxy
A 8x;- T Ome é)x;

which is the transformation rule for a 2-tensor.

0(Qirvr)
8%@

61};- 81}k
= @Qﬂ = Qje = QikQﬂa—w = QixQ;¢Fre,

Ezample 5.3: If ¢(x), u(x) and A(x) are a scalar, vector and 2-tensor fields respectively. Establish the

identities

a. div (¢pu) =u-grad ¢ + ¢ divu
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b. grad (¢u) = u® grad ¢ + ¢ grad u
c. div (pA) = A grad ¢ + ¢ div A

Solution:

a. In terms of components we are asked to show that (¢u;) ;

= u;¢,; + ¢ u; ;. This follows immediately
by expanding (¢u;) ; using the chain rule.

b. In terms of components we are asked to show that (¢u;),;, = w;¢,; + ¢ u; ;. Again, this follows

immediately by expanding (¢u;) ; using the chain rule.

c. In terms of components we are asked to show that (¢A;;) ; = A;jé; + & A;j ;. Again, this follows
immediately by expanding (¢A;;) ; using the chain rule.

Ezample 5.4: If ¢(x) and v(x) are a scalar and vector field respectively, show that
VX (¢v)=d(Vxv)—vxVe (i)
Solution: Recall that the curl of a vector field u can be expressed as V x u = e;juy je; where e; is a fixed
basis vector. Thus evaluating V x (¢v):
V x (gi)V) = €k (gbvk),j €, = €k (;5 Vk,j € —+ €ijk ¢7j Vg €; = ¢ V X v+ ng XV (11)

from which the desired result follows because a x b = —b x a.

Ezample 5.5: Let u(x) be a vector field and define a second vector field £(x) by &(x) = curl u(x). Show
that

a. V-£€=0;
b. (Vu— VuT)a = ¢ x a for any vector field a(x); and
c. £ £€=Vu-Vu—Vu-vu’
Solution: Recall that in terms of its components, & = curl u = V x u can be expressed as

& = €iji Uk - (i)

a. A direct calculation gives
V& =& = (€ijk ukj),i = €iji Uk,ji =0 (i)

where in the last step we have used the fact that e;;; is skew-symmetric in the subscripts i, j, and
Uk j; is symmetric in the subscripts 4, j (since the order of partial differentiation can be switched) and

therefore their product vanishes.
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b. Multiplying both sides of (i) by e;pq gives
€ipq &i = €ipq €ijk Uk,j = (Opj Ogk — Opk Oq5) Uk,j = Ug,p — Up.g, (iii)

where we have made use of the identity e;pq €ijx = 0pj Ogi — Opk 05 between the alternator and the
Kronecker delta infroduced in (1.49) as well as the substitution rule. Multiplying both sides of this
by a4 and using the fact that e;pq = —epiq gives

epiq &ittq = (Up,g — Uq,p)aq, (iv)
or ¢ xa=(Vu-Vul)a.

c. Since (Vu);; = u; ; and the inner product of two 2-tensors is A - B = A;;B;;, the right-hand side of
the equation we are asked to establish can be written as Vu- Vu — Vu - Vu? = (Vu);;(Vu);; —
(Vu);;(Vu)j; = u; ju; j — u; juj,;. The left-hand side on the hand is £ - £ = & &;.

Using (i), the aforementioned identity between the alternator and the Kronecker delta, and the sub-

stitution rule leads to the desired result as follows:

&i &i = (iji uk,j) (€ipg Up,g) = (8jp Okg — 0jg Okp) Uk,j Upg = Uq,p Up,q — Up,g Up,q - (v)

Ezample 5.6: Let u(x),E(x) and S(x) be, respectively, a vector and two 2-tensor fields. These fields are
related by

1
E= 3 (Vu+ VuT) , S = 2uE + X trace(E) 1, (i)
where A and p are constants. Suppose that
u(x)="b ig where r=|x|, |x|#0, (i)
r

and b is a constant. Use (i); to calculate the field E(x) corresponding to the field u(x) given in (ii), and then
use (i)2 to calculate the associated field S(x). Thus verify that the field S(x) corresponding to (ii) satisfies
the differential equation:

div S = o, |x| # 0. (iii)

Solution: We proceed in the manner suggested in the problem statement by first using (i); to calculate the
E corresponding to the u given by (ii); substituting the result into (i)2 gives the corresponding S; and finally
we can then check whether or not this S satisfies (iii).

In components,
1 .
E;j = B (wij —ujq), (iv)

and therefore we begin by calculting w; ;. For this, it is convenient to first calculate Or/0x; = r ;. Observe
by differentiating 2 = |x|? = z; x; that

27‘7‘1]‘ = 2xi,j xTr; = 2(51].%1 = 2.’Ej7 (V)

and therefore
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Now differentiating the given vector field u; = bxz; /r® with respect to x; gives

b b T
Ui j @iy +br (%) = 50y = 3bg
r r r (vi)
T . b(S 3bx”53
r3 rtor r3
Substituting this into (iv) gives us E;;:
E;j = 5(ui,j +u;;)=0b ( r—g -3 " j> . (viii)
Next, substituting (viii) into (i), gives us S;;:
(51' i 3l‘i X 5k1~c Tk T
Sij = 2pEij + AEgkdi; = 2ub (Tj - 7"5]) + Ab ( 5 35 )0

(5”' 31’1 Zj 3 T'2 (5”' 31’1 Zj
= Qﬂb(rg 5 )+)\b(r33r5 0ij = 2ub P, .

Finally we use this to calculate 95;;/0x; = S;; ;

1 3

b Sii = 6y (r %), — 5 (25 ;) 5 — 3wy xj (r™°)

3 3 5
= (SZJ (—747’73') — 7"75 (5@' T+ T (Sjj) —3z; T; (_7.6 ryj)

15x; x; zj

5%] x; 3

rd r 76 r

Ezxample 5.7: Show that
/ x®@ndA=VI, (1)
OR
where V' is the volume of the region R, and x is the position vector of a typical point in R + OR.

Solution: In terms of components in a fixed basis, we have to show that
R

The result follows immediately by using the divergence theorem (5.11):

/ Tin; dA:/ x;; dV = / di; AV —6”/ v =6;V. (iii)
OR

Ezample 5.8: Let A(x) be a 2-tensor field with the property that

A(x)n(x)d4A = o for all subregions D C R, (i)
oD



5.4. WORKED EXAMPLES. 93

where n(x) is the unit outward normal vector at a point x on the boundary dD. Show that (i) holds if and
only if div A = o at each point x € R.

Solution: In terms of components in a fixed basis, we are told that
/m) A;j;(x)nj(x)dA = 0 for all subregions D C R. (i)
By using the divergence theorem (5.12), this implies that
/DAij’j dV =0 for all subregions D C R. (iii)
If A;; ; is continuous on R, the result established in the previous problem allows us to conclude that
Aij; =0 at each x € R. (iv)

Conversely if (iv) holds, one can easily reverse the preceding steps to conclude that then (i) also holds. This
shows that (iv) is both necessary and sufficient for (i) to hold.

Ezample 5.9: Let A(x) be a 2-tensor field which satisfies the differential equation div A = o at each point
in R. Suppose that in addition

/ x X An dA = o for all subregions D C R.
oD

Show that A must be a symmetric 2-tensor.

Solution: In terms of components we are given that
/ eijkl'jAkaLp dA = 0,
aD
which on using the divergence theorem yields
/ €ijk(2jArp) p AV = / €ijk|0jp Akp + 2 Akp,p] AV = 0.
D D

We are also given that A;; ; = 0 at each point in R and so the preceding equation simplifies, after using the
substitution rule, to

/ eijkAkj dv =0.
D
Since this holds for all subregions D C R we can localize it to
eijkAr; =0 ateachxe R.
Finally, multiplying both sides by e;,, and using the identity e;pq€ijr = 0pjdge — Iprdq; in (1.49) yields
(5pj5qk - 5pk5qj)Akj =Agp — Apg =0

and so A is symmetric.
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Ezample 5.10: Let e1(x1,x2) and eo(x1,22) be defined on a simply connected two-dimensional domain R.

Find necessary and sufficient conditions under which there exists a function w(z1, z2) such that

U1 = €1, U = €2 for all (331,.732) e R. (1)
Solution: In the presence of sufficient smoothness, the order of partial differentiation does not matter and so
we necessarily have u 12 = u 21. Therefore a necessary condition for (i) to hold is that £1,e2 obey

€12 =¢9, forall (z1,22) € R. (ii)

(1, 82) = (£1(5), £5(5)) S1= M2, 52=M

Figure 5.2: (a) Path C from (0, 0) to (21, 72). The curve is parameterized by arc length s as & = &1(s), & =
&(s), 0 < s < sp. The unit tangent vector on S, s, has components (s1,s2). (b) A closed path C’ passing
through (0,0) and (z1, 22) and coinciding with C over part of its length. The unit outward normal vector on

S is n, and it has components (n1,ns)

To show that (ii) is also sufficient for the existence of wu, we shall provide a formula for explicitly
calculating the function v in terms of the given functions €1 and eo. Let C be an arbitrary regular oriented
curve in R that connects (0,0) to (z1,z2). A generic point on the curve is denoted by (£1,&2) and the curve

is characterized by the parameterization
§1=E1(5), &2 = &2(s), 0<s < s, (iif)

where s is arc length on C and (£1(0),£2(0)) = (0,0) and (£1(s0), €2(50)) = (21, 22). We will show that the

function

uarzn) = [ (2609 LD + (69,650 s (iv)

satisfies the requirement (i) when (ii) holds.
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To see this we must first show that the integral (iv) does in fact define a function of (1, x3), i.e. that it
does not depend on the path of integration. (Note that if a function u satisfies (i). then so does the function
u + constant and so the dependence on the arbitrary starting point of the integral is to be expected.) Thus
consider a closed path C’ that starts and ends at (0,0) and passes through (z1,z2) as sketched in Figure
NNN (b). We need to show that

| (B, £6)6 () + ea(6(s) ()8 () )ds = 0. )

Recall that (&](s),&5(s)) are the components of the unit tangent vector on C’ at the point (£1(s),&a(s)):
s1 = &1(s), s2 = &4(s). Observe further from the figure that the components of the unit tangent vector s and

the unit outward normal vector n are related by s; = —ns and sa = ny. Thus the left-hand side of (v) can

// (5131 +52$2)ds = // (62711 - €1n2>ds = // (52,1 - 61,2>dA (vi)

where we have used the divergence theorem in the last step and D’ is the region enclosed by C’. In view of

be written as

(ii), this last integral vanishes. Thus the integral (v) vanishes on any closed path C’ and so the integral (iv) is

independent of path and depends only on the end points. Thus (iv) does in fact define a function u(z1,x2).

Finally it remains to show that the function (iv) satisfies the requirements (i). This is readily seen by

writing (iv) in the form

(w1,22)
u(z1,r2) = /( (51(51752)0151 + 52(51,52)d€2) (vii)

0,0)

and then differentiating this with respect to x; and zs.

Ezample 5.11: Let a1 (1, 22) and a2(x1,x2) be defined on a simply connected two-dimensional domain R.

Suppose that a; and ay satisfy the partial differential equation
ay,1(x1,z2) + as2(z1,22) =0 for all (z1,22) € R. (1)
Show that (i) holds if and only if there is a function ¢(z1, z2) such that

111(%1,172) = ¢,2($1,$2), 02($1,IE2) = *¢,1($1,$2)- (ii)

Solution: This is simply a restatement of the previous example in a form that will find useful in what follows.

Ezample 5.12: Find the most general vector field u(x) which satisfies the differential equation

(Vu+Vvu’)=0 atallxe R. (i)

DN | =

Solution: In terms of components, Vu = —Vu? reads:

Uij = —Uji- (i)
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Differentiating this with respect to zj, and then changing the order of differentiation gives

Uik = —Ujik = —Ujki-
However by (ii), uj % = —ug,;. Using this and then changing the order of differentiation leads to
U,k = —Uj,ki = Uk,ji = Uk,ij-
Again, by (ii), ug; = —u; . Using this and changing the order of differentiation once again leads to
Ui jk = Uk,ij = Ui kj = —Uj jk-
It therefore follows that
Uq,jk = 0
Integrating this once gives
ui,] = C,’j (111)

where the Cj;’s are constants. Integrating this once more gives
U; = Oijl‘j + ¢, (IV)
where the ¢;’s are constants. The vector field u(x) must necessarily have this form if (ii) is to hold.

To examine sufficiency, substituting (iv) into (ii) shows that [C] must be skew-symmetric. Thus in
summary the most general vector field u(x) that satisfies (i) is

u(x)=Cx+c

where C is a constant skew-symmetric 2-tensor and c is a constant vector.

Ezample 5.13: Suppose that a scalar-valued function f(A) is defined for all symmetric tensors A. In terms
of components in a fixed basis we have f = f(A11, A1, A13, Ao1, ... Asz). The partial derivatives of f with

respect to A,
of
0A;;

are the components of a 2-tensor. Is this tensor symmetric?

(i)

Solution: Consider, for example, the particular function f = A - A = A;;A;; which, when written out in

components, reads:
f=fi(An1, Arg, Ay, Aoy, .. Azg) = A3 + A3, + A2, +2A%, + 242, + 242, . (ii)

Proceeding formally and differentiating (ii) with respect to A2, and separately with respect to Asy, gives

df1 afi
91, oy 0, (iii)

which implies that 8f1/81412 #* 8f1/8A21.
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On the other hand, since A;; is symmetric we can write
1 .
Aij = 5 (A” + Aﬂ) . (IV)
Substituting (IV) into the formula (11) for f gives f = f2 (Alla Alg, 14137 Agl, . A33) :
fa(A11, Ara, Ays, Aot ... Ass)

1 2 1 2
A3+ AL+ A3, 2 |:2(A12 + Agl):| +2 [2(1423 + Agl):|

1 2
+2 {2(1431 + A13)} )

1 1 1 1
= A} + A%, + A+ §A§2 + Ao Aoy + §A§1 +.o+ §A§1 + As1 A1z + 5A33 . (v)
Note that the values of f1[A] = fa[A] for any symmetric matrix [A]. Differentiating f> leads to
5, 0 .
anfg = A1z + Ao, 8Tf; = A1 + Arz (vi)

and so now, 0fs/0A12 = 0f3/0As;.

The source of the original difficulty is the fact that the 9 A;;’s in the argument of f; are not independent
variables since A;; = Aj;; and yet we have been calculating partial derivatives as if they were independent.
In fact, the original problem statement itself is ill-posed since we are asked to calculate 0f/0A;; but told

that [A] is restricted to being symmetric.

Suppose that fo is defined by (v) for all matrices [A] and not just symmetric matrices [A]. We see that
the values of the functions f; and fy are equal at all symmetric matrices and so in going from f; — fs,
we have effectively relaxed the constraint of symmetry and expanded the domain of definition of f to all
matrices [A]. We may differentiate fy by treating the 9 A;;’s to be independent and the result can then be

evaluated at symmetric matrices. We assume that this is what was meant in the problem statement.

In general, if a function f(A11, A12,... As3) is expressed in symmetric form, by changing A;; — 3(A;; +
Aj;), then 0f /0A;; will be symmetric; but not otherwise. Throughout these volumes, whenever we encounter
a function of a symmetric tensor, we shall always assume that it has been written in symmetric form; and

therefore its derivative with respect to the tensor can be assumed to be symmetric.

Remark: We will encounter a similar situation involving tensors whose determinant is unity. On occasion we
will have need to differentiate a function g;(A) defined for all tensors with det A = 1 and we shall do this
by extending the definition of the given function and defining a second function g2(A) for all tensors; gs is
defined such that g1 (A) = g2(A) for all tensors with unit determinant. We then differentiate g, and evaluate
the result at tensors with unit determinant.
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Chapter 6

Orthogonal Curvilinear Coordinates

6.1 Introductory Remarks

The notes in this section are a somewhat simplified version of notes developed by Professor
Eli Sternberg of Caltech. The discussion here, which is a general treatment of orthogonal
curvilinear coordinates, is a compromise between a general tensorial treatment that includes
oblique coordinate systems and an ad-hoc treatment of special orthogonal curvilinear co-
ordinate systems. A summary of the main tensor analytic results of this section are given
in equations (6.32) - (6.37) in terms of the scale factors h; defined in (6.17) that relate
the rectangular cartesian coordinates (z1,x9,x3) to the orthogonal curvilinear coordinates
(21, T, T3).

It is helpful to begin by reviewing a few aspects of the familiar case of circular cylindrical
coordinates. Let {e1, ez, e3} be a fived orthonormal basis, and let O be a fized point chosen
as the origin. The point O and the basis {e;, es, €3}, together, constitute a frame which we
denote by {O;eq, ey, e3}. Consider a generic point P in R3 whose position vector relative
to this origin O is x. The rectangular cartesian coordinates of the point P in the frame

{O; e1,e5,e3} are the components (x1, zo, x3) of the position vector x in this basis.

We introduce circular cylindrical coordinates (7,0, z) through the mappings

r1=rcosl; xo=rsinf; x3=z
(6.1)
for all (r,0,z) € [0,00) x [0,27) X (—00,00).

The mapping (6.1) is one-to-one except at r = 0 (i.e. z; = x5 = 0). Indeed (6.1) may be

99
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explicitly inverted for r > 0 to give

r=/z?+ 1% cosf = xy/r, sinf = xy/r; z = 3. (6.2)

For a general set of orthogonal curvilinear coordinates one cannot, in general, explicitly
invert the coordinate mapping in this way.

The Jacobian determinant of the mapping (6.1) is
Ox1/0r Ox1/00 0Ox,1/0z
A(r,0,z) =det | Oxy/Or 012/00 Ox9/0z | = 1 > 0.
Oxs/0r Ox3/00 0Ox3/0z

Note that A(r,0,z) = 0 if and only if » = 0 and is otherwise strictly positive; this reflects
the invertibility of (6.1) on (r,0,z) € (0,00) x [0,27) X (—00,00), and the breakdown in
invertibility at » = 0.

2z = constant

#-coordinate line

r-coordinate line i

7 = constant

0 = constant
E /

T2

Z z-coordinate line

Figure 6.1: Circular cylindrical coordinates (r, 8, z).

The circular cylindrical coordinates (7,6, z) admit the familiar geometric interpretation
illustrated in Figure 6.1. In view of (6.2), one has:

r = r, = constant: circular cylinders, co — axial with x3 — axis,
@ = 60, = constant : meridional half — planes through z3 — axis,
z = 2z, = constant: planes perpendicular to xr3 — axis.

The above surfaces constitute a triply orthogonal family of coordinate surfaces; each “regular

point” of E3 (i.e. a point at which r > 0) is the intersection of a unique triplet of (mutually
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perpendicular) coordinate surfaces. The coordinate lines are the pairwise intersections of
the coordinate surfaces; thus for example as illustrated in Figure 6.1, the line along which
a r-coordinate surface and a z-coordinate surface intersect is a #-coordinate line. Along
any coordinate line only one of the coordinates (r, 6, z) varies, while the other two remain

constant.
In terms of the circular cylindrical coordinates the position vector x can be written as
x =x(r,0,z) = (rcosf)e; + (rsinf)e, + zes. (6.3)
The vectors
ox/or, 0x/00, 0x/0z,

are tangent to the coordinate lines corresponding to r,0 and z respectively. The so-called
metric coefficients h,., hg, h. denote the magnitudes of these vectors, i.e.

h, = |0x/0r|, hy = |0x/00)|, h, = |0x/0z|,

and so the unit tangent vectors corresponding to the respective coordinate lines r, 6 and z

are:

1 1 1
e, = h—T(E)x/aT), €y = h_9<ax/ag)’ €: = h—z(ax/ﬁz).

In the present case one has h, =1,hg =r,h, =1 and

e = hi(@x/(’)r) = cosfe + sinf ey, \
1

e = h—(@x/@@) = —sinfe; + cosfey,
0

e, = hi(ax/(?z) = es.

The triplet of vectors {e,, ey, e,} forms a local orthonormal basis at the point x. They are
local because they depend on the point x; sometimes, when we need to emphasize this fact,
we will write {e,(x), ey(x), e,(x)}.

In order to calculate the derivatives of various field quantities it is clear that we will
need to calculate quantities such as de,/dr, Oe,/00, ... etc. ; and in order to calculate the
components of these derivatives in the local basis we will need to calculate quantities of the

form
e, - (Oe,./0r), ey - (Oe,./0r), e, (de./0r),
(6.4)
e, - (Oey/0r), ey - (Oeg/0r), e, - (Jey/0r), ...etc.
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Much of the analysis in the general case to follow, leading eventually to Equation (6.30) in

Sub-section 6.2.4, is devoted to calculating these quantities.

Notation: As far as possible, we will consistently denote the fixed cartesian coordinate system
and all components and quantities associated with it by symbols such as x;, e;, f(z1, x2, 73),
vi(21, T2, w3), Aij(21, 29, x3) ete. and we shall consistently denote the local curvilinear coor-
dinate system and all components and quantities associated with it by similar symbols with

~ -~

“hats” over them, e.g. j?i, él', f(:i’l, i’g, .fg), @i(jll, i’g, Li’g), Aij(jla JAIQ, i‘3) etc.

6.2 (General Orthogonal Curvilinear Coordinates

Let {e1,eq,e3} be a fized right-handed orthonormal basis, let O be the fized point cho-
sen as the origin and let {O; e, eq, e3} be the associated frame. The rectangular cartesian

coordinates of the point with position vector x in this frame are

(1, 22,73) where z; = x - ;.

6.2.1 Coordinate transformation. Inverse transformation.

We introduce curvilinear coordinates (&1, 9, Z3) through a triplet of scalar mappings

zi = xi(21, Zo, &3)  for all (1, &o, &3) € R, (6.5)
where the domain of definition R is a subset of Es. Each curvilinear coordinate Z; belongs
to some linear interval £;, and R = L1 X Ly x L3. For example in the case of circular
cylindrical coordinates we have £, = {(#1 | 0 < &7 < oo}, Lo = {(Z2 | 0 < &9 < 27} and
Ly = {(&#3] —oo < &3 < oo}, and the “box” R is given by R = {(&1,22,43) | 0 < &1 <
00,0 < Zg < 2T, —00 < I3 < 00}. Observe that the “box” R includes some but possibly not
all of its faces.

Equation (6.5) may be interpreted as a mapping of R into E;. We shall assume that
(21, z9, x3) ranges over all of Eg as (21,29, 23) takes on all values in R. We assume further
that the mapping (6.5) is one-to-one and sufficiently smooth in the interior of R so that the
inverse mapping

li‘i = Zil‘(l‘l,l'g,l’g) (66)

exists and is appropriately smooth at all (x7, 29, x3) in the image of the interior of R.
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Note that the mapping (6.5) might not be uniquely invertible on some of the faces of R
which are mapped into “singular” lines or surfaces in E3. (For example in the case of circular
cylindrical coordinates, 27 = r = 0 is a singular surface; see Section 6.1.) Points that are not

on a singular line or surface will be referred to as “regular points” of [Es.
The Jacobian matrix [J] of the mapping (6.5) has elements

(91:2-
i,

and by the assumed smoothness and one-to-oneness of the mapping, the Jacobian determi-
nant does not vanish on the interior of R. Without loss of generality we can take therefore

take it to be positive:
1 ; 0T
det[J] O0z; Oxj Oz,

€ijkCpgr o~ A~ A=
6 """ 0, 0%, 01,

-1

> 0. (6.8)

The Jacobian matrix of the inverse mapping (6.6) is [J]

The coordinate surface T; = constant is defined by
Ti(x1, 9, x3) = T = constant, i =1,2,3;

the pairwise intersections of these surfaces are the corresponding coordinate lines, along
which only one of the curvilinear coordinates varies. Thus every regular point of E3 is the
point of intersection of a unique triplet of coordinate surfaces and coordinate lines, as is
illustrated in Figure 6.2.

Recall that the tangent vector along an arbitrary regular curve
I''x=x(t), (a<t<p), (6.9)

can be taken to be! x(t) = @;(t)e;; it is oriented in the direction of increasing ¢. Thus in the

case of the special curve
[y i x =x(21,09,¢3), &1 € Ly, ¢y = constant, c¢3 = constant,
corresponding to a Zj-coordinate line, the tangent vector can be taken to be 0x/0%;. Gen-

eralizing this, 0x/0%; are tangent vectors and

) 1 ox

e, = M (9_531 (HO Sum) (610)

'Here and in the sequel a superior dot indicates differentiation with respect to the parameter t.
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I3 Z1-coordinate surface

Z3-coordinate surface

-» » T2

€

I

Figure 6.2: Orthogonal curvilinear coordinates (21, 42,#3) and the associated local orthonormal basis
vectors {€1, 65, €3}. Here &; is the unit tangent vector along the i;-coordinate line, the sense of &; being
determined by the direction in which #; increases. The proper orthogonal matrix [Q] characterizes the

rotational transformation relating this basis to the rectangular cartesian basis {e;, es,e3}.

are the unit tangent vectors along the z; — coordinate lines, both of which point in the sense
of increasing ;. Since our discussion is limited to orthogonal curvilinear coordinate systems,

we must require

ox Ox oxy, Oxp
. = . pr— . .]_]_
A Pt P P (6.11)

fori#j: ¢€-€,=0 or

6.2.2 Metric coefficients, scale moduli.

Consider again the arbitrary regular curve I' parameterized by (6.9). If s(t) is the arc-length

of I', measured from an arbitrary fixed point on I', one has

5(0)] = 1x(0)] = /(D) - X(0). (6.12)
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One concludes from (6.12), (6.5) and the chain rule that

ds\? dx dx  dap day  (Ompdid;\  (Oxpdi;\  (Ome Oy diy ddy
dt) A&t dt  dt dt  \ 0 dt Oi; dt ) \0%; 03;) dt dt’

where

2i(t) = Zi(x1(t), 22(1), 23(1)), (a <t <B),
Thus

ds d:p,dx] 2 o
T L

in which g¢;; are the metric coefficients of the curvilinear coordinate system under consider-

ation. They are defined by
ox 0x o 85L’k 8Ik

Y97 9z, 01;  0@; 0%,

(6.14)

Note that
as a consequence of the orthogonality condition (6.11). Observe that in terms of the Jacobian

matrix [J] defined earlier in (6.7) we can write g;; = Jy;Ji; or equivalently [g] = [J]*[J].
Because of (6.14) and (6.15) the metric coefficients can be written as
gij = hih;oij, (6.16)

where the scale moduli h; are defined by??

8xk al'k 6171 0x2 2 8x3 2
0x; 04 \/ a'tz 3@) T (3@2) >0, (6.17)

noting that h; = 0 is precluded by (6.8). The matrix of metric coefficients is therefore

20 0
=10 n} o |. (6.18)
0 0 h}
From (6.13), (6.14), (6.17) follows
(ds)? = (h1di1)? + (hod?s)® + (hsdis)®  along T, (6.19)

2Here and henceforth the underlining of one of two or more repeated indices indicates suspended sum-

mation with respect to this index.
3Some authors such as Love define h; as 1/, /Gi; instead of as /g;;
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which reveals the geometric significance of the scale moduli, i.e.

d
h; = d:s along the z; — coordinate lines. (6.20)
T

It follows from (6.17), (6.10) and (6.11) that the unit vector €; can be expressed as

1 0x
and therefore the proper orthogonal matrix [@)] relating the two sets of basis vectors is given
by

(6.22)

6.2.3 Inverse partial derivatives

In view of (6.5), (6.6) one has the identity
x; = 2;(T1(21, T2, T3), To(21, T2, T3), T3(21, T2, X3)),

so that from the chain rule,

ox; 0Ty

02y Ox;
Multiply this by O0x;/0%,,, noting the implied contraction on the index ¢, and use (6.14),
(6.16) to confirm that

= 51]

O 0w, MO
Thus the inverse partial derivatives are given by

By (6.22), the elements of the matrix [@)] that relates the two coordinate systems can be

written in the alternative form

. Iz,
Qij=¢i-ej=h

o (6.24)

Moreover, (6.23) and (6.17) yield the following alternative expressions for h;:

= )+ () ()
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6.2.4 Components of 0¢;/0%; in the local basis (&, €3, &3)

In order to calculate the derivatives of various field quantities it is clear that we will need to
calculate the quantities 0€;/0%;; and in order to calculate the components of these derivatives
in the local basis we will need to calculate quantities of the form & - 9¢;/0z;. Calculating
these quantities is an essential prerequisite for the transformation of basic tensor-analytic
relations into arbitrary orthogonal curvilinear coordinates, and this subsection is devoted to

this calculation.

From (6.21),

06 o [ 1ohox 1 ox | 1ox
dz; " | h20i; 0 hi 03,05 [ hyOdy’

while by (6.14), (6.17),
ox 0Ox

C o = 9i = Oihihy. 6.25
85@ 83?:] Jis 7T ( )
Therefore
8@1 “ 5@]9 6h, 1 82x 8x
e = ——— . : 6.26
05, T T h 03, ' huhg 0210, O (6.26)

In order to express the second derivative term in (6.26) in terms of the scale-moduli and

their first partial derivatives, we begin by differentiating (6.25) with respect to &j. Thus,

0*x .8X+ 0*x _(9X_(5“ 0
04,03y, 0%;  0%;0%, 03 70w

(hshy) - (6.27)

If we refer to (6.27) as (a), and let (b) and (c) be the identities resulting from (6.27) when
(i, j, k) are replaced by (j, k,4) and (k,1, j), respectively, then ${(b)-+(c) -(a)} is readily found
to yield

Px  ox 1 d 0 P
5505 % " 2 {5 (hjhi) + Ogim—(hihi) — 5%—@(1%11]-)} . (6.28)

jk A~ ki 3=
= 830, al'j

Substituting (6.28) into (6.26) leads to

oe; . 01 Ohy; 1 0 0 0
Al — L ) 4 8- (b)) — 8- (bbb 9

Equation (6.29) provides the explicit expressions for the terms 0e;/0z; - € that we sought.
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Observe the following properties that follow from it:

SZ e, =0 if (4,4, k) distinct,
a?i_ék: if k=1,
o (6.30)
07, T Thyor, "
08, 10hy ..
o= —— f .
9o T Thom TR

6.3 Transformation of Basic Tensor Relations

Let T be a cartesian tensor field of order N > 1, defined on a region R C E3 and suppose
that the points of R are regular points of [£3 with respect to a given orthogonal curvilinear

coordinate system.

The curvilinear components kan of T are the components of T in the local basis

(él, ég, ég) ThIlS,

~

T‘Un = Qinjq s Qanpq...m where Qip = éz 1 €p. (631)

6.3.1 Gradient of a scalar field

Let ¢(x) be a scalar-valued function and let v(x) denote its gradient:
v =V¢ orequivalently v, =¢;,.

The components of v in the two bases {ej, ey, e3} and {€;,€,, €3} are related in the usual
way by
U = Qrivi
and so
Ok = Qrivi = kag—i

On using (6.22) this leads to

U =\ 0iy ) Omi Ry Oz 03y
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so that by the chain rule X
1 9¢

- % 6.32
Uy 0dy (6.32)

where we have set

Qg(iﬂhﬁ:%ii’)) = ¢(x1(Z1, Ta, T3), T2 (T1, T, T3), x3(T1, o, T3)).

6.3.2 Gradient of a vector field

Let v(x) be a vector-valued function and let W(x) denote its gradient:
W = Vv orequivalently W;; = v ;.

The components of W and v in the two bases {e;, e;, e3} and {€;, &, €3} are related in the

usual way by
Wz] = Qip@jquw Up = an@m

and therefore

0%,
VVU Qw@ma szQan (anvn) szquaA (anvn) xq
Thus by (6.24)*
— 1 0
Wij = Qip@jq mzﬂ anqE(anvn) .
Since QjqQmg = Om;, this simplifies to
— 1 0 .
Wzg — Qiph_la_i,j<anvn);
which, on expanding the terms in parentheses yields
= 81}1 aan 5
However by (6.22)
oQn, ; 0 . 0e, .
le 8A b szaA ‘ (en ep)v =e;- 8—%'0717
and so L (o6 9e
pagm (% ~ €n| ~
Wi =— . i | Un (s 6.33
! hj{a%‘Jr{e 3%}?}} (6.33)

in which the coefficient in brackets is given by (6.29).

4We explicitly use the summation sign in this equation (and elsewhere) when an index is repeated 3 or

more times, and we wish sum over it.
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6.3.3 Divergence of a vector field

Let v(x) be a vector-valued function and let W(x) = Vv(x) denote its gradient. Then
div v = trace W = v, ;.

Therefore from (6.33), the invariance of the trace of W, and (6.30),

TS 1 Ui 1 Oh; .
diVV:traceW:traceW:I/Vii:ZE{ag +Z—a_vn}.

Collecting terms involving vy, U9, and 03 alone, one has

18@1 @1 ahQ @1 ahi’)

div v = —
R S o N A EN Sy T
Thus
div v = ——— L2 (hohgin) + 2 (hyhiis) + o (hahaily) (6.34)
T hyhohs | 0@y 2 TV T gy T ga, VTHRTS ( ‘

6.3.4 Laplacian of a scalar field
Let ¢(x) be a scalar-valued function. Since

Vip = div(grad ¢) = ¢

the results from Sub-sections (6.3.1) and (6.3.3) permit us to infer that

1 0 (hahs 06N\ 0 (hshy 9¢N\ 9 (hihy 09
2 = 213 sha
Voo = hihsohs {392’1< hy ail) + a:i_2< hy 89?;2) + 8§:3< hs a:%3>} (635)

where we have set

~

¢(5€17§72, 5%3) = <Z5(371(52'175627§73), xz(ihi’m 53'3)7 353(5%1, T, 52'3))

6.3.5 Curl of a vector field

Let v(x) be a vector-valued field and let w(x) be its curl so that

w = curl v or equivalently w; = e;;,v ;.
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Let
W = Vv orequivalently W;; =uv;; .

Then as we have shown in an earlier chapter
w; = €5 Whj, w; = e Wh;.

Consequently from Sub-section 6.3.2,
ik k- ~ n (-
h J 8xj

By (6.30), the second term within the braces sums out to zero unless n = j. Thus, using the

second of (6.30), one arrives at

3
SR 90, 10k,
Wi Zl h_f”’“{a@] Ty Dy, }

This yields

1
m pr— h 3 - h U
w1 haoha { AQ( 3U3) §:3( 21’2)},
1 0
~ hit) — Rat) 6.36
Wa hghl{ ij3( 101) (%1( 3?13)}» ( )

N 1 0 0 .
w3y = h1h2 {axl (hQ’UQ) 8,@2 (hl’ljl)} .

6.3.6 Divergence of a symmetric 2-tensor field

Let S(x) be a symmetric 2-tensor field and let v(x) denote its divergence:
v=divS, S=87 orequivalently v; = Sijgs Sij = Sji-

The components of v and S in the two bases {e;, ez, e3} and {€1, 65,63} are related in the
usual way by

@z = Qipvp7 Sij = QmianSmna
and consequently

. or
V; = QipSpj] sza (Qmenj mn) szaA (Qmen] mn) (%k .
J
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By using (6.24), the orthogonality of the matrix (@], (6.30) and S’Z-j = S’ji we obtain

1 0

0 A o . R
= 57, (2l ~=—(hsh haih
U hrihals {8:%1( 2h3S11) + 811?2( 3h1S12) + 8:%3( 1 2513)}

1%A+18h1A_18h2A_1%A
hihe 039 2 " hihs 0330 hihe 03y 20 hihy 03,

with analogous expressions for vy and 03.

(6.37)
+

Equations (6.32) - (6.37) provide the fundamental expressions for the basic tensor-analytic
quantities that we will need. Observe that they reduce to their classical rectangular cartesian

forms in the special case x; = Z; (in which case h; = hy = hg = 1).

6.3.7 Differential elements of volume

When evaluating a volume integral over a region D, we sometimes find it convenient to
transform it from the form
/ ( . )da:ldxgdxg into an equivalent expression of the form < . )dildigdfcg.
D D!

In order to do this we must relate dzjdzodzs to dzdzodzs. By (6.22),

det[Q]

- det[.J].
hihahs et[J]

However since [()] is a proper orthogonal matrix its determinant takes the value +1. Therefore
det[J] = hlhghg
and so the basic relation dzjdzedrs = det[J] dZ;dzed a3 leads to

dl’ldl‘gdl’g) = h1h2h3 d[i’ld‘ffgd.’i'g (638)

6.3.8 Differential elements of area

Let dA; denote a differential element of (vector) area on a Zj-coordinate surface so that
dA, = (di, 9x/0i) x (disdx/Dis). In view of (6.21) this leads to dA; = (diy hy &) X
(di3 hs €3) = hohgdZodis €1. Thus the differential elements of (scalar) area on the -, Zo-
and Z3-coordinate surfaces are given by

dA; = hohsdiadis,  dAy = hyhidisddy,  dAs = hihod@dis, (6.39)

respectively.
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6.4 Some Examples of Orthogonal Curvilinear Coordi-

nate Systems

Circular Cylindrical Coordinates (r, 6, z):

x1 =1cosb, To = 1rsinb, xr3 = 2;
for all (1,0, z) € [0,00) x [0,27) x (—00,00); (6.40)
h.=1, hg=r, h,=1

Spherical Coordinates (r, 0, ¢):

x1 = rsinf cos ¢, ZTo = rsinfsin @, r3 = 1 Ccosb;
for all (r,0,¢) € [0,00) x [0,27) X (—m, 7|; (6.41)
h, =1, hg=r, hy=rsinb .

Elliptical Cylindrical Coordinates (&, 7, 2):

x1 = a cosh & cosn, ZTo = a sinh & sinn, T3 = 2;
for all (fﬂ?az) S [O,OO) X (_7T77T] X <_OO7OO)7 (642)
he = h,, = a\/sinh2§+sin27], h,=1.

Parabolic Cylindrical Coordinates (u, v, w):

(W®=v?),  m=w,  r3=w;

N[ =

for all (u,v,w) € (—00,00) X [0,00) X (—00, 0); (6.43)

hy =hy, =vVu?+v2, h,=1.

6.5 Worked Examples.

Ezample 6.1: Let E(x) be a symmetric 2-tensor field that is related to a vector field u(x) through

E = (Vu—i—VuT) .

DN | =
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In a cartesian coordinate system this can be written equivalently as
Ei‘ _ } 8u, + auj )
2 \0z; Ouw;

Establish the analogous formulas in a general orthogonal curvilinear coordinate system.

Solution: Using the result from Sub-section 6.3.2 and the formulas for & - (0€;/02; one finds after elementary

simplification that

5 190u 1 Ohi, 1 Ohy .
En = o T A Eoy = Faq =
! hy 01 hihg 03y > hihs 0ds 22 ,» Ess , Y
1
~ ~ 1 hl 0 ’&1 h2 0 ,a2
Eipn = FEy=-{"2 uy hy 0 (g Bee e
- B 2{M8@<h)*iumn(@)}’ = Eyi=..

Ezample 6.2: Consider a symmetric 2-tensor field S(x) and a vector field b(x) that satisfy the equation
div S+b =o.

In a cartesian coordinate system this can be written equivalently as

S,
81‘]‘

+b; =0.

Establish the analogous formulas in a general orthogonal curvilinear coordinate system.

Solution: From the results in Sub-section 6.3.6 we have

L [0 gy, 00, a . 0.3
m {%(h2h3511) + aii.z(hﬁhlsﬂ) + %(hlhgslg)}
1 ahl -~ 1 ahl ~ 1 8h2 - 1 3h3

hiha O =Sy~ —— 2 — ——~—Ss3 + b = i
Tty 05 ¥ Tty 05 Ty 02102 Ty 0y 20 T 0= 0 @

Bi = Qip bp

Ezample 6.3: Consider circular cylindrical coordinates (T1,%2,43) = (1,0, z) which are related to (x1,x2, x3)

through
r1 =rcosf, xy=rsinfh, x3=2z,

0<r<oo, 0<0<2m, —o00<z<o0.

Let f(x) be a scalar-valued field, u(x) a vector-valued field, and S(x) a symmetric 2-tensor field. Express

the following quanties,

(a) grad f
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- e, = cosfe; + sinf ey,
3
A .
eg = —sinfe; + cosb ey,
‘kez ez = e3)
€y
[
eT
4
> T2
T

0 })

Z1

Figure 6.3: Cylindrical coordinates (r,6,z) and the associated local curvilinear orthonormal basis
{er;e97ez}-

(b) V2f

(c) divu

(d) curl u

(e) 3 (Vu+vu”) and

(f) div S
in this coordinate system.

Solution: We simply need to specialize the basic results established in Section 6.3.

In the present case we have
(Z1,89,23) = (1,0, 2) (i)
and the coordinate mapping (6.5) takes the particular form
r1 =rcosb, To =rsinb, T3 = 2. (ii)
The matrix [0x;/0%,] therefore specializes to

Ox1/0r 0x1/00 0Ox1/0z cos —rsinf 0
Oxo/0r 0x9/00 0Ox9/0z = sinf rcosf® 0 |,

Ox3/0r 0x3/00 0Ox3/0z 0 0 1



116 CHAPTER 6. ORTHOGONAL CURVILINEAR COORDINATES

and the scale moduli are

(5 ()5 - -

We use the natural notation

(Umumuz) = (ﬁ17ﬁ2,’&3) (IV)

for the components of a vector field, and
(Srr, Srg,---) = (S11, 512, - .) (v)
for the components of a 2-tensor field, and
(er,eg,e;) = (é1,62,863) (vi)

for the unit vectors associated with the local cylindrical coordinate system.
From (ii),
x = (rcosf)e; + (rsinf)es + (2)es,

and therefore on using (6.21) and (iii) we obtain the following expressions for the unit vectors associated

with the local cylindrical coordinate system:

e, = cosf e, 4+ sinf ey,
eg = —sinfe; + cosl ey,
[SP = €3,

which, in this case, could have been obtained geometrically from Figure 6.3.

(a) Substituting (i) and (iii) into (6.32) gives

- (e () ()

where we have set f(r,0,z2) = f(z1, 2, x3).
(b) Substituting (i) and (iii) into (6.35) gives
~ 02f 10f 109*f O°F
2p_ ) 29 29 ) YT
V= or? +1"81" +r2892 +8z2

-~

where we have set f(r,0,2) = f(x1,z2,23).
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(¢) Substituting (i) and (iii) into (6.34) gives

Ou + 1 + 1% 4 dus
ar o0 0z
(d) Substituting (i) and (iii) into (6.36) gives

lu— lauz_% n au,._auz o + %4_@_16%‘
aru=ATo 02 )\ "o ) \or T T e )

divu=

(e) Set E=(1/2)(Vu + VuT). Substituting (i) and (iii) into (6.33) enables us to calculate Vu whence we
can calculate E. Writing the cylindrical components EAij of E as

(EyryErg, Eysy .. ) = (Br1, Ero, Bz ),

one finds i o

T o

1 r
Bu = Gt
i
By = ;(iaa%r+8(9zf_1f)’
o= (o )

1 2 r
=5 (5 5)

Alternatively these could have been obtained from the results of Example 6.1.

(f) Finally, substituting (i) and (iii) into (6.37) gives

. . aS’M’ 1 aSr@ aSrz Srr - SGO
divs = (87“ T o0 o: T r )er
0Srg  10Spg 0Sp, 2Srg
+ ( or ' r 00 + 0z - r )ee

+ 8Szr lasza aSzz + Szr
or r 00 0z e

Alternatively these could have been obtained from the results of Example 6.2.

Ezample 6.4: Consider spherical coordinates (1,%2,%3) = (1,0, ¢) which are related to (x1,x2,z3) through
x1 =rsinfcosp, w9 =rsinfsing, x3=rcosb,
0<r<oo, 0<O0<m 0<¢<2m.

Let f(x) be a scalar-valued field, u(x) a vector-valued field, and S(x) a symmetric 2-tensor field. Express

the following quanties,
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T3
A
e, e, = (sinfcos¢) e + (sinfsing) e; + cosb e,
e ey = (cosfcosd) e; + (cosfsing) es — sinf es,
! ey = —sing e; + cos ¢ ey,
~6 | €6
T 1
: > T2
¢_/? :
e}

Zy

Figure 6.4: Spherical coordinates (r, 6, ) and the associated local curvilinear orthonormal basis {e,., ey, €,}.

(a) grad f

(b) div u

(c) V2f

(d) curl u

(e) 1 (Vu+wvuT) and
(f) div S

in this coordinate system.

Solution: We simply need to specialize the basic results established in Section 6.3.

In the present case we have
(21,22, 23) = (1,0, 9), (i)
and the coordinate mapping (6.5) takes the particular form
x1 = rsinf cos @, To = rsinfsin ¢, x3 = rcosb. (ii)
The matrix [0x;/0%;] therefore specializes to
O0x1/0r 0x1/00 Ox1/0¢ sinfcos¢ rcosfcosd —rsinfdsin ¢

Oxo/0r 0x9/00 0Oxa/0¢ = sinfsing rcosfsin ¢ rsinf cos ¢

Ox3/0r Ox3/00 Ox3/0¢ cos —rsind 0
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and the scale moduli are

- a$1 2 8952 2 85&3 2 -
heo = \lae) ") tlag) = (i)
(31'1 2 81'2 2 8£E3 2 .
he = — — - = 0.
& 90 + ( 96 + 96 7 sin
We use the natural notation
(ur, ug,ugp) = (1,2, Us) (iv)
for the components of a vector field,

(SprsSrgy Srg - ) = (Si1, S12, S13- . ) (v)

for the components of a 2-tensor field, and

(erveeve(b) = (élaéQaéS) (Vl)
for the unit vectors associated with the local spherical coordinate system.

From (ii),

x = (rsinfcos¢)e; + (rsinfsin@)es + (rcosb)es,

and therefore on using (6.21) and (iii) we obtain the following expressions for the unit vectors associated
with the local spherical coordinate system:

e, = (sinfcos¢)e; + (sinfsing)es + cosb es,
ep = (cosfcosp)e; + (cosfsing) ey, — sinf es,
e, = —sing e;  + cos ¢ e,

which, in this case, could have been obtained geometrically from Figure 6.4.

(a) Substituting (i) and (iii) into (6.32) gives

of 10f 1 8f
V= < T)e Jr( 89>e +<rsin98¢> ¢

where we have set f(r,&, @) = f(z1,22,23).

(b) Substituting (i) and (iii) into (6.35) gives

9%f 20f 108%F 1 of 1 0f
2 —_— —_— — JR— PR —_—
Vi=Gz o trae T2t aar o

where we have set f(r,@, @) = f(x1,22,23).
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(¢) Substituting (i) and (iii) into (6.34) gives

o1 9, 5 . 0, . 0
divu= g {&“(r sin 0 u,.) + %(r sin Qug) + &zb(ruqb)} .

(d) Substituting (i) and (iii) into (6.36) gives
1 g, . 0 1 [dv, O, .
curlu = (ﬂsm& [89(7‘51110114)) — %(rvg)}) e+ (rsinﬁ [&b - ar(rsmG%)]) ey

+ C [;(rvg) - %Q’QD e .

(e) Set E=(1/2)(Vu + Vul). We substitute (i) and (iii) into (6.33) to calculate Vu from which one can

~

calculate E. Writing the spherical components F;; of E as

(ETT;ETGaEchv .- ) = (-/E\llaE12,E13 .. ')a

one finds o,
E.. = o
10 -
Eo = 1gp T
1 0 - t 6
Eos = rsinH@L(; u? - o
5o - (15 x)
e = 3k ).
Bor = ;<rsiln965‘1;;+881j:#_1?>’

Alternatively these could have been obtained from the results of Example 6.1.
(f) Finally substituting (i) and (iii) into (6.37) gives

0S,, 105 1 8Ss 1
( or "7 00 " remd 99 +r[25”"3‘995¢¢+c°t95“"]> ©r
(asre

+
1 0Sye 1 0S5pe 1
or - r 90 + rsing 0¢ N ;[35}9 ot (5o SM)]) “
N (asﬂb 10854 1 95

or r 00 rsinf 0¢

divS =

+

1
+ ; [SST¢ + 2 cot 959¢]> €y

Alternatively these could have been obtained from the results of Example 6.2.

Ezample 6.5: Show that the matrix [Q] defined by (6.22) is a proper orthogonal matrix.

Proof: From (6.22),
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and therefore 1 9z 8 )
Tk Ok
ikWjk = 75— = ——4ij = dij,
Qs =30 Ba; 0, hghy 70 = 0

where in the penultimate step we have used (6.14) and in the ultimate step we have used (6.16). Thus [Q)]
is an orthogonal matrix. Next, from (6.22) and (6.7),

where J;; = 0z;/0%; are the elements of the Jacobian matrix. Thus

det[Q]

= el det[J] >0

where the inequality is a consequence of the inequalities in (6.8) and (6.17). Hence [Q)] is proper orthogonal.
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Chapter 7

Calculus of Variations

7.1 Introduction.

Numerous problems in physics can be formulated as mathematical problems in optimization.
For example in optics, Fermat’s principle states that the path taken by a ray of light in
propagating from one point to another is the path that minimizes the travel time. Most
equilibrium theories of mechanics involve finding a configuration of a system that minimizes
its energy. For example a heavy cable that hangs under gravity between two fixed pegs
adopts the shape that, from among all possible shapes, minimizes the gravitational potential
energy of the system. Or, if we subject a straight beam to a compressive load, its deformed
configuration is the shape which minimizes the total energy of the system. Depending on
the load, the energy minimizing configuration may be straight or bent (buckled). If we dip a
(non-planar) wire loop into soapy water, the soap film that forms across the loop is the one
that minimizes the surface energy (which under most circumstances equals minimizing the
surface area of the soap film). Another common problem occurs in geodesics where, given
some surface and two points on it, we want to find the path of shortest distance joining those

two points which lies entirely on the given surface.

In each of these problem we have a scalar-valued quantity I’ such as energy or time that
depends on a function ¢ such as the shape or path, and we want to find the function ¢ that
minimizes the quantity F' of interest. Note that the scalar-valued function F' is defined on a

set of functions. One refers to I as a functional and writes F{¢}.

As a specific example, consider the so-called Brachistochrone Problem. We are given two

123
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points (0,0) and (1, A) in the x, y-plane, with h > 0, that are to be joined by a smooth wire.
A bead is released from rest from the point (0,0) and slides along the wire due to gravity.

For what shape of wire is the time of travel from (0,0) to (1, h) least?

(0,0) 1

9]
< :(1, h)
y = ¢(x)

— >

\4
Y
Figure 7.1: Curve joining (0,0) to (1, h) along which a bead slides under gravity.

In order to formulate this problem, let y = ¢(x),0 < x < 1, describe a generic curve
joining (0,0) to (1,h). Let s(t) denote the distance traveled by the bead along the wire at
time ¢ so that v(t) = ds/dt is its corresponding speed. The travel time of the bead is

ds

()

T =

where the integral is taken along the entire path. In the question posed to us, we are to find
the curve, i.e. the function ¢(x), which makes 7" a minimum. Since we are to minimize T by
varying ¢, it is natural to first rewrite the formula for 7" in a form that explicitly displays

its dependency on ¢.

Note first, that by elementary calculus, the arc length ds is related to dx by

ds = \/da? + dy? = \/1 + (dy/dz)?dz = \/1+ (¢')? dz

and so we can write

T:/l—"l—'—wdx.

Next, we wish to express the speed v in terms of ¢. If (z(t),y(t)) denote the coordinates
of the bead at time t, the conservation of energy tells us that the sum of the potential and

kinetic energies does not vary with time:

—mgo(a(t)) + Sm(t) = 0,
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where the right hand side is the total energy at the initial instant. Solving this for v gives

2go.

Finally, substituting this back into the formula for the travel time gives

1+ (¢)?
290

Given a curve characterized by y = ¢ x), this formula gives the corresponding travel time

T{¢} = (7.1)

for the bead. Our task is to find, from among all such curves, the one that minimizes T{¢}.

This minimization takes place over a set of functions ¢. In order to complete the for-
mulation of the problem, we should carefully characterize this set of “admissible functions”
(or “test functions”). A generic curve is described by y = ¢(z), 0 < & < 1. Since we are
only interested in curves that pass through the points (0,0) and (1, h) we must require that
¢»(0) = 0,¢(1) = h. Finally, for analytical reasons we only consider curves that are continu-
ous and have a continous slope, i.e. ¢ and ¢’ are both continuous on [0, 1]. Thus the set A of

admissible functions that we wish to consider is
A={0()]| ¢:[0,1] =R, ¢ € C'[0,1], ¢(0) =0, ¢(1) =h}. (7.2)
Our task is to minimize T{¢} over the set A.

Remark: Since the shortest distance between two points is given by the straight line that
joins them, it is natural to wonder whether a straight line is also the curve that gives the
minimum travel time. To investigate this, consider (a) a straight line, and (b) a circular arc,
that joins (0,0) to (1,h). Use (7.1) to calculate the travel time for each of these paths and
show that the straight line is not the path that gives the least travel time.

Remark: One can consider various variants of the Brachistochrone Problem. For example, the
length of the curve joining the two points might be prescribed, in which case the minimization
is to be carried out subject to the constraint that the length is given. Or perhaps the position
of the left hand end might be prescribed as above, but the right hand end of the wire might
be allowed to lie anywhere on the vertical line through = = 1. Or, there might be some
prohibited region of the x, y-plane through which the path is disallowed from passing. And

SO on.

In summary, in the simplest problem in the calculus of variations we are required to find
a function ¢(x) € C*[0, 1] that minimizes a functional F{¢} of the form

Fio) = /0 ' f,6,0)da
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over an admissible set of test functions A. The test functions (or admissible functions) ¢ are
subject to certain conditions including smoothness requirements; possibly (but not neces-
sarily) boundary conditions at both ends z = 0, 1; and possibly (but not necessarily) side
constraints of various forms. Other types of problems will be also be encountered in what

follows.

7.2 Brief review of calculus.

Perhaps it is useful to begin by reviewing the familiar question of minimization in calculus.
Consider a subset A of n-dimensional space R™ and let F(x) = F(x1,2,...,2,) be a real-

valued function defined on A. We say that x, € A is a minimizer of F if!

F(x) > F(x,) for all x € A. (7.3)

Sometimes we are only interested in finding a “local minimizer”, i.e. a point x, that
minimizes I’ relative to all x that are “close” to xq. In order to speak of such a notion we
must have a measure of “closeness”. Thus suppose that the vector space R" is Euclidean so
that a norm is defined on R™. Then we say that x, is a local minimizer of F' if F(x) > F(x,)

for all x in a neighborhood of x,, i.e. if
F(x) > F(x,) forall x suchthat |x—x,|<r (7.4)
for some r > 0.

Define the function F/(g) for —gy < € < g by

F(g) = F(xq + €n) (7.5)
where n is a fixed vector and ¢y is small enough to ensure that xo+en € Aforall e € (—¢p, €9).

In the presence of sufficient smoothness we can write

A A A 1.
F(e) — F(0) = F'(0)e + 5F”(o)g2 +O(?). (7.6)
Since F(xo +en) > F(xq) it follows that F'() > F(0). Thus if X is to be a minimizier of F

it is necessary that
F'(0)=0,  F"(0)>0. (7.7)

LA maximizer of F is a minimizer of —F so we don’t need to address maximizing separately from mini-

mizing.
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It is customary to use the following notation and terminology: we set
dF(x,,n) = F'(0), (7.8)
which is called the first variation of F' and similarly set
52F (x,,n) = F"(0) (7.9)

which is called the second variation of F'. At an interior local minimizer x,, one necessarily
must have

0F(x,,m) =0 and §*F(xo,n) > 0 for all unit vectors n. (7.10)

In the present setting of calculus, we know from (7.5), (7.8) that dF'(x,,n) = VF(x,) -n
and that §*F(x,,n) = (VV F(x,))n-n. Here the vector field V F is the gradient of F' and the
tensor field VV F is the gradient of V F'. Therefore (7.10) is equivalent to the requirements
that

VF(x,)-n=0 and (VVFE(x,))n-n >0 for all unit vectors n (7.11)

or equivalently

"\ OF L~ OF
> il ni=0 and > ) G nin; > 0 (7.12)

i=1 =Xo i=1 j=1 X=Xo
whence we must have VF(x,) = o and the Hessian V'V F'(x,,) must be positive semi-definite.

Remark: It is worth recalling that a function need not have a minimizer. For example, the
function Fi(z) = x defined on A; = (—00, 00) is unbounded as x — +oo. Another example is
given by the function Fy(z) = = defined on Ay = (—1, 1) noting that F5 > —1 on Ay; however,
while the value of F, can get as close as one wishes to —1, it cannot actually achieve the
value —1 since there is no x € Ay at which f(z) = —1; note that —1 ¢ A,. Finally, consider
the function F3(x) defined on Ag = [—1,1] where F3(z) =1 for —1 <2z <0 and F(z) ==z
for 0 < x < 1; the value of F3 can get as close as one wishes to 0 but cannot achieve it since
F(0) = 1. In the first example A; was unbounded. In the second, Ay was bounded but open.
And in the third example A; was bounded and closed but the function was discontinuous on
As. In order for a minimizer to exist, A must be compact (i.e. bounded and closed). It can
be shown that if A is compact and if F' is continuous on A then F' assumes both maximum

and minimum values on A.
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7.3 The basic idea: necessary conditions for a mini-
mum: 0F =0, §*F > 0.

In the calculus of variations, we are typically given a functional F' defined on a function
space A, where F' : A — R, and we are asked to find a function ¢, € A that minimizes F
over A: i.e. to find ¢, € A for which

F{o} > F{¢o} for all ¢ € A.

Y
A
y = ¢a(x)
(1,0)
|
gl
|
—y = ¢i(z)
(0,a)s [

|
|
:

0 —> 7
1

Figure 7.2: Two functions ¢; and ¢ that are “close” in the sense of the norm || - ||o but not in the sense

of the norm || - [|;.

Most often, we will be looking for a local (or relative) minimizer, i.e. for a function ¢g
that minimizes F relative to all “nearby functions”. This requires that we select a norm so
that the distance between two functions can be quantified. For a function ¢ in the set of
functions that are continuous on an interval [zq, x5, i.e. for ¢ € C[x1,xs], one can define a

norm by

[¢llo = max [o(x)].

z1<z<z2
For a function ¢ in the set of functions that are continuous and have continuous first deriva-

tives on [z, x], i.e. for ¢ € C[x1, 2] one can define a norm by

lolls = max [6(@)] + max [¢/()];

z1<x<T2

and so on. (Of course the norm ||¢[|y can also be used on C[xy, x5].)
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When seeking a local minimizer of a functional F' we might say we want to find ¢, for
which
F{o} > F{¢,} for all admissible ¢ such that ||¢ — ¢ollo <7

for some r > 0. In this case the minimizer ¢ is being compared with all admissible functions
¢ whose values are close to those of ¢qg for all x1 < x < x5. Such a local minimizer is called a

strong minimizer. On the other hand, when seeking a local minimizer we might say we want
to find ¢q for which

F{¢} > F{¢,} for all admissible ¢ such that ||¢ — ¢o||1 <7

for some r > 0. In this case the minimizer is being compared with all functions whose values
and whose first derivatives are close to those of ¢q for all x1 < x < x5. Such a local minimizer

is called a weak minimizer. A strong minimizer is automatically a weak minimizer.

Unless explicitly stated otherwise, in this Chapter we will be examining weak local ex-
trema. The approach for finding such extrema of a functional is essentially the same as that
used in the more familiar case of calculus reviewed in the preceding sub-section. Consider
a functional F{¢} defined on a function space A and suppose that ¢, € A minimizes F. In

order to determine ¢y we consider the one-parameter family of admissible functions

o(z;e) = po(x) + e n(x) (7.13)

that are close to ¢g; here ¢ is a real variable in the range —gg < ¢ < g¢ and 7(x) is a once
continuously differentiable function. Since ¢ is to be admissible, we must have ¢g + ecn € A
for each € € (—ep, o). Define a function F(¢) by

F(e) = F{¢o +en}, —eg < € < &. (7.14)
Since ¢y minimizes F it follows that F{¢y + en} > F{po} or equivalently F(g) > F(0).
Therefore ¢ = 0 minimizes F(¢). The first and second variations of F are defined by
SF{¢o,n} = F'(0) and 6°F{¢g,n} = F"(0) respectively, and so if ¢, minimizes F, then
it is necessary that

These are necessary conditions on a minimizer ¢,. We cannot go further in general.
In any specific problem, such as those in the subsequent sections, the necessary condition
dF{¢o,n} = 0 can be further simplified by exploiting the fact that it must hold for all
admissible 7. This allows one to eliminate 7 leading to a condition (or conditions) that only

involves the minimizer ¢.
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Remark: Note that when 7 is independent of ¢ the functions ¢o(x) and ¢g(x) + en(z), and
their derivatives, are close to each other for small . On the other hand the functions ¢ (x)
and ¢o(x)+esin(z/e) are close to each other but their derivatives are not close to each other.
Throughout these notes we will consider functions 7 that are independent of € and so, as

noted previously, we will be restricting attention exclusively to weak minimizers.

7.4 Application of the necessary condition 0F = 0 to

the basic problem. Euler equation.

7.4.1 The basic problem. Euler equation.

Consider the following class of problems: let A be the set of all continuously differentiable
functions ¢(z) defined for 0 < z <1 with ¢(0) = a, ¢(1) = b:

A={¢()]| ¢:[0,1] = R, ¢ € C'[0,1], (0) =a, ¢(1)=0b}. (7.16)

Let f(x,y,z) be a given function, defined and smooth for all real x,y, z. Define a functional
F{¢}, for every ¢ € A, by

Fio} = / f (2, 8(z), ¢'(x)) da. (7.17)

We wish to find a function ¢ € A which minimizes F{¢}.

Y
A

Figure 7.3: The minimizer ¢y and a neighboring function ¢q + en.
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Suppose that ¢g(x) € A is a minimizer of F, so that F{¢} > F{¢o} for all ¢ € A. In
order to determine ¢y we consider the one parameter family of admissible functions ¢(x;¢) =
¢o(z) + € n(z) where ¢ is a real variable in the range —eg < ¢ < gy and 7n(z) is a once
continuously differentiable function on [0, 1]; see Figure 7.3. Since ¢ must be admissible we
need ¢g +en € A for each . Therefore we must have ¢(0,¢) = a and ¢(1,¢) = b which in
turn requires that

n(0) =n(1) = 0. (7.18)

Pick any function n(z) with the property (7.18) and fix it. Define the function F(e) =
F{¢o + en} so that

1
F(e) = Fido +en) = / F(@, do+em, &+ ) d. (7.19)

We know from the analysis of the preceding section that a necessary condition for ¢, to
minimize F' is that
0F{¢o,n} = F'(0) = 0. (7.20)

On using the chain-rule, we find ’(¢) from (7.19) to be

al ! af / / af / N7
F'(e) = (7, o +en, ¢p+en)n+5=(x, ¢o+en, ¢o+en)n | dz,
o \9y 0z
and so (7.20) leads to

. L7o 0
7oy = PO = [ (Lwonspm+ Lo ) ae =0 @

Thus far we have simply repeated the general analysis of the preceding section in the
context of the particular functional (7.17). Our goal is to find ¢ and so we must eliminate 7
from (7.21). To do this we rearrange the terms in (7.21) into a convenient form and exploit
the fact that (7.21) must hold for all functions n that satisfy (7.18).

In order to do this we proceed as follows: Integrating the second term in (7.21) by parts

YOO e [ OFTT A (08

/o (8) oo {" a] / dz (8) e

However by (7.18) we have 1(0) = (1) = 0 and therefore the first term on the right-hand
side drops out. Thus (7.21) reduces to

/o1 B_i - % (%)} ndx = 0. (7.22)

gives
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Though we have viewed n as fixed up to this point, we recognize that the above derivation
is valid for all once continuously differentiable functions n(z) which have n(0) = n(1) = 0.
Therefore (7.22) must hold for all such functions.
Lemma: The following is a basic result from calculus: Let p(z) be a continuous function on [0, 1] and suppose
that

/01 p(x)n(z)de = 0

for all continuous functions n(x) with n(0) = n(1) = 0. Then,

In view of this Lemma we conclude that the integrand of (7.22) must vanish and therefore

obtain the differential equation

d |0 0
{a—ﬁ(%éﬁoa %)] - a—‘;;(x, Po,dp) =0 for 0<z<1. (7.23)

dx

This is a differential equation for ¢q, which together with the boundary conditions

(bO(O) = a, ¢0(1> = b? (724)

provides the mathematical problem governing the minimizer ¢o(x). The differential equation
(7.23) is referred to as the Euler equation (sometimes referred to as the Euler-Lagrange

equation) associated with the functional (7.17).

Notation: In order to avoid the (precise though) cumbersome notation above, we shall drop
the subscript “0” from the minimizing function ¢q; moreover, we shall write the Euler equa-
tion (7.23) as

d [0f of
T {8_¢’<x’¢’ Cb')} - 8_¢($’ ¢, ¢') =0, (7.25)

where, in carrying out the partial differentiation in (7.25), one treats x, ¢ and ¢’ as if they

were independent variables.

7.4.2 An example. The Brachistochrone Problem.

Consider the Brachistochrone Problem formulated in the first example of Section 7.1. Here
we have
1+ (¢)?

f(@.6.9) =/ =5,



7.4. APPLICATION OF NECESSARY CONDITION 6F =0 133

and we wish to find the function ¢g(x) that minimizes

1+ [¢/(2)]?
29¢(x)
over the class of functions ¢(x) that are continuous and have continuous first derivatives on

,1|, and satisty the boundary conditions =0, ¢(1) = h. Treating z, ¢ an as if the
[0,1], and satisfy the boundary diti #(0) =0, ¢(1) = h. Treating x, ¢ and ¢’ as if they

are independent variables and differentiating the function f(z, ¢, ¢’) gives:

Fip} = / f(, 6(x), & (2))dz

of _ [1+(¢)? 1 of _ ¢
9¢ 29 2(¢)¥? 08" \/296(1+ (¢)2)

and therefore the Euler equation (7.23) specializes to

d d VAR CIRN i
dw( <¢><1+<¢f>2>> dgpr — el (726)

with associated boundary conditions

$(0) =0,  ¢(1) =h. (7.27)

The minimizer ¢(x) therefore must satisfy the boundary-value problem consisting of the

second-order (nonlinear) ordinary differential equation (7.26) and the boundary conditions

(7.27).

The rest of this sub-section has nothing to do with the calculus of variations. It is simply
concerned with the solving the boundary value problem (7.26), (7.27). We can write the

differential equation as

¢’ d ¢/ 1
7 — =0
Vol + (@)?) 49 ( o0+ <¢f>2>) "2
which can be immediately integrated to give

1L __ ¢ (7.28)

(¢'(2))* ¢ —o(x)

where ¢ is a constant of integration that is to be determined.

It is most convenient to find the path of fastest descent in parametric form, z = z(0), ¢ =
¢(0),0: < 6 < 0y, and to this end we adopt the substitution

2

¢ = %(1 —cosf) = sin’(0/2), 0, <0< 0. (7.29)
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Differentiating this with respect to = gives
2

¢ (z) = % sinf ' (x)

so that, together with (7.28) and (7.29), this leads to

dr 2
= 5(1 — cosf)
which integrates to give
2
z = %(H—sinﬁ)—i—cl, 0, < 6 < 0. (7.30)

We now turn to the boundary conditions. The requirement ¢(z) = 0 at = = 0, together
with (7.29) and (7.30), gives us ; = 0 and ¢; = 0. We thus have

r = —(0—sinb),
0<0< 6. (7.31)
¢» = —(1—-cosb),

The remaining boundary condition ¢(z) = h at x = 1 gives the following two equations for
finding the two constants 6y and c:

02

1 = 5(92 — sin 62),
(7.32)
2
h = 5(1 — cosby).

Once this pair of equations is solved for ¢ and 6, then (7.31) provides the solution of the
problem. We now address the solvability of (7.32).

To this end, first, if we define the function p(f) by

6 —sind
g) = LY
r(®) 1 —cosf’

then, by dividing the first equation in (7.32) by the second, we see that 6, is a root of the

0<6<2m, (7.33)

equation

p(fy) = h 1. (7.34)
One can readily verify that the function p(f) has the properties
p—0 asf — 0+, p—o0 asf — 2r—,

dp _ cos6/2
do  sin®6/2

(tanf/2 —0/2) >0 for 0 <6 < 27.
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no

>
0o 27r0

Figure 7.4: A graph of the function p(f) defined in (7.33) versus 6. Note that given any h > 0 the equation
h=1 = p(#) has a unique root 6 = 0y € (0,27).

Therefore it follows that as € goes from 0 to 2, the function p(f) increases monotonically
from 0 to oo; see Figure 7.4. Therefore, given any h > 0, the equation p(6;) = h™! can be
solved for a unique value of 65 € (0,27). The value of ¢ is then given by (7.32);.

Thus in summary, the path of minimum descent is given by the curve defined in (7.31)
with the values of 0, and ¢ given by (7.34) and (7.32); respectively. Figure 7.5 shows that
the curve (7.31) is a cycloid — the path traversed by a point on the rim of a wheel that rolls
without slipping.

P'— AP cosf = R(1 — cosb)
P' — APsinf = R(f — sin#)

Y

Figure 7.5: A cycloid x = 2(0),y = y(0) is generated by rolling a circle along the r-axis as shown, the

parameter 6 having the significance of being the angle of rolling.
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7.4.3 A Formalism for Deriving the Euler Equation

In order to expedite the steps involved in deriving the Euler equation, one usually uses the
following formal procedure. First, we adopt the following notation: if H{¢} is any quantity
that depends on ¢, then by 6 H we mean?

0H = H(¢ +en) — H(¢) up to linear terms. (7.35)
that is,
dH
O0H =¢ M , (7.36)
de .

For example, by d¢ we mean

00 = (¢ +en) — (¢) = en; (7.37)
by ¢’ we mean
0¢' = (¢' +en’) — (¢') =en’ = (69)"; (7.38)

by 6 f we mean

of = flx, o+en, ¢ +en)— f(x,0,¢)

0 0
_ 8_£(x’ o, ¢') en+ a—é,(x, ¢, ¢') en (7.39)

_ (9f o\ <.
- <a¢) o9+ (w) o

1
and by 0F, or 5/ f dx, we mean
0

OF = Flo+en}t—F{¢}=¢ [%F{Qﬁ + 577}} )

[ [ ()]«

B 1 g ﬁ /:| B 1
_ /0 {a¢5¢+a¢/5¢ dx—/oéfda:.

We refer to d¢(z) as an admissible variation. When n(0) = n(1) = 0, it follows that

56(0) = 66(1) = 0.

2Note the following minor change in notation: what we call §H here is what we previously would have
called e 0 H.
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We refer to 0F' as the first variation of the functional F. Observe from (7.40) that

5F:5/1fdx:/16fdx. (7.41)
0 0

Finally observe that the necessary condition for a minimum that we wrote down previously

can be written as

IF{$,00} =0 for all admissible variations d¢. (7.42)

For purposes of illustration, let us now repeat our previous derivation of the Euler equa-
tion using this new notation®. Given the functional F, a necessary condition for an extremum
of Fis

0F =0

and so our task is to calculate 0 F":

1 1
§F:5/ fdxz/&fdx.
0 0

Since f = f(x,$,¢'), this in turn leads to*

~[T[(of f\ ..
or= | Ka@) 5(’”(@—@) 54 -

From here on we can proceed as before by setting 0F = 0, integrating the second term by
parts, and using the boundary conditions and the arbitrariness of an admissible variation

d¢(x) to derive the Euler equation.

7.5 Generalizations.

7.5.1 (Generalization: Free end-point; Natural boundary conditions.

Consider the following modified problem: suppose that we want to find the function ¢(x)

from among all once continuously differentiable functions that makes the functional

Flo) = / fla.é, &) du

3If ever in doubt about a particular step during a calculation, always go back to the meaning of the

symbols d¢, etc. or revert to using &, etc.
4Note that the variation § does not operate on z since it is the function ¢ that is being varied not the

independent variable x. So in particular, 6 f = fyd¢ + f4d¢’ and not 6 f = fudx + fpdd + f4r 0.
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a minimum. Note that we do not restrict attention here to those functions that satisfy
#(0) = a, ¢(1) = b. So the set of admissible functions A is

A={p()¢:[0,1] =R, ¢€C'0,1]} (7.43)

Note that the class of admissible functions A is much larger than before. The functional
F{¢} is defined for all ¢ € A by

Fis} = /O F(2, 6,8 de. (7.44)

We begin by calculating the first variation of F"

5F:5/01fdx:/015fdx:/0 Kgi) 5¢+<3§) 54 (7.45)

Integrating the last term by parts yields

_ ['[of _d (of f
oo [ 2 2 (Y] soan [ 2] ”
Since 6F = 0 at an extremum, we must have
Yrof d [of of B
[ 5  (56)| oo [%’54 - (747

for all admissible variations d¢(x). Note that the boundary term in (7.47) does not automat-
ically drop out now because d¢(0) and d¢(1) do not have to vanish. First restrict attention
to all variations d¢ with the additional property d¢(0) = d¢(1) = 0; equation (7.47) must
necessarily hold for all such variations d¢. The boundary terms now drop out and by the
Lemma in Section 7.4.1 it follows that

d [0f of _
This is the same Euler equation as before. Next, return to (7.47) and keep (7.48) in mind.

We see that we must have

o o) — 9L

o' | _, D¢’

for all admissible variations d¢. Since d¢(0) and d¢(1) are both arbitrary (and not necessarily

6¢(0) =0 (7.49)

=0

zero), (7.49) requires that
af

aqy—Oatx—Oand:c—l (7.50)
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Equation (7.50) provides the boundary conditions to be satisfied by the extremizing function
¢(x). These boundary conditions were determined as part of the extremization; they are
referred to as natural boundary conditions in contrast to boundary conditions that are given

as part of a problem statement.

Example: Reconsider the Brachistochrone Problem analyzed previously but now suppose
that we want to find the shape of the wire that commences from (0,0) and ends somewhere
on the vertical through = 1; see Figure 7.6. The only difference between this and the first

Brachistochrone Problem is that here the set of admissible functions is

Ar={o()| ¢:10,1]] = R, ¢ € C'[0,1], ¢(0) =0};

note that there is no restriction on ¢ at x = 1. Our task is to minimize the travel time of
the bead T{¢} over the set A,.

0 1
|
|
|
|
|
|

< <

Figure 7.6: Curve joining (0,0) to an arbitrary point on the vertical line through z = 1.

The minimizer must satisfy the same Euler equation (7.26) as in the first problem, and
the same boundary condition ¢(0) = 0 at the left hand end. To find the natural boundary

condition at the other end, recall that

1+ (¢')?

f(2:0.0) =\ 5,5

Differentiating this gives
of _ ¢’

0¢  \/290(1+ (9))
and so by (7.50), the natural boundary coundition is
¢/
V290(1 + (¢')?)

=0 at x=1,
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which simplifies to

#(1) = 0.

7.5.2 Generalization: Higher derivatives.

The functional F{¢} considered above involved a function ¢ and its first derivative ¢'. One

can consider functionals that involve higher derivatives of ¢, for example

1
Fio} = /0 f(z, 6, &, &) da.

We begin with the formulation and analysis of a specific example and then turn to some

theory.

Figure 7.7: The neutral axis of a beam in reference (straight) and deformed (curved) states. The bold lines
represent a cross-section of the beam in the reference and deformed states. In the classical Bernoulli-Euler

theory of beams, cross-sections remain perpendicular to the neutral axis.

Example: The Bernoulli-Euler Beam. Consider an elastic beam of length L and bending
stiffness EI, which is clamped at its left hand end. The beam carries a distributed load p(z)
along its length and a concentrated force F' at the right hand end x = L; both loads act in
the —y-direction. Let u(x), 0 <z < L, be a geometrically admissible deflection of the beam.
Since the beam is clamped at the left hand end this means that u(x) is any (smooth enough)

function that satisfies the geometric boundary conditions

w(0) =0,  «(0)=0; (7.51)
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the boundary condition (7.51); describes the geometric condition that the beam is clamped
at © = 0 and therefore cannot deflect at that point; the boundary condition (7.51)s describes
the geometric condition that the beam is clamped at = 0 and therefore cannot rotate at

the left end. The set of admissible test functions that we consider is
A={u()|u:[0,L] >R, ueC0,L], u(0)=0, v'(0) =0} , (7.52)
which consists of all “geometrically possible configurations”.

From elasticity theory we know that the elastic energy associated with a deformed con-
figuration of the beam is (1/2)EI(u”)? per unit length. Therefore the total potential energy
of the system is

d{u} = /0 %El(u"(az:))2 dr — /0 p(x)u(z) de — F u(L), (7.53)

where the last two terms represent the potential energy of the distributed and concentrated
loading respectively; the negative sign in front of these terms arises because the loads act
in the —y-direction while w is the deflection in the +y-direction. Note that the integrand
of the functional involves the higher derivative term u”. In addition, note that only two
boundary conditions u(0) = 0,4'(0) = 0 are given and so we expect to derive additional

natural boundary conditions at the right hand end x = L.

The actual deflection of the beam minimizes the potential energy (7.53) over the set
(7.52). We proceed in the usual way by calculating the first variation d® and setting it equal
to zero:

P = 0.
By using (7.53) this can be written explicitly as
L L
/ EId"6u" dx — / p dudr — F du(L) = 0.
0 0

Twice integrating the first term by parts leads to

L L L L
/ EIv"u dx —/ p dudr — F éu(L) — [E’]u'"(Su] + [E]u"éu’} =0.

0 0 0 0

The given boundary conditions (7.51) require that an admissible variation du must obey

du(0) = 0,6u’'(0) = 0. Therefore the preceding equation simplifies to

/L (EIu" —p)oudr — [EIu" (L) + F|éu(L) + EIu"(L)éu' (L) = 0.
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Since this must hold for all admissible variations du(x), it follows in the usual way that the

extremizing function u(x) must obey
Elu"(x)—p(x) = 0 for 0<z<L,
EIW"(L)+F = 0, (7.54)
EIu"(L) = 0.

Thus the extremizer u(z) obeys the fourth order linear ordinary differential equation (7.54),

the prescribed boundary conditions (7.51) and the natural boundary conditions (7.54) 3.

The natural boundary condition (7.54)s describes the mechanical condition that the beam
carries a concentrated force F' at the right hand end; and the natural boundary condition
(7.54)5 describes the mechanical condition that the beam is free to rotate (and therefore has

zero “bending moment”) at the right hand end.

Exercise: Consider the functional

1
Fio} = /0 f(2,6,8,¢")da

defined on the set of admissible functions A consisting of functions ¢ that are defined and

four times continuously differentiable on [0, 1] and that satisfy the four boundary conditions

¢(0) = ¢o, ¢'(0) =¢p, o(1) =1, &(1) =

Show that the function ¢ that extremizes F' over the set A must satisfy the Euler equation

of d (0f & (of\
a_qs_%(a—d>+@<a¢ﬁ>—0 for 0<z<1

where, as before, the partial derivatives df /0¢, f /0¢' and Of /0¢" are calculated by treating
¢,¢" and ¢ as if they are independent variables in f(x, ¢, @', ¢").

7.5.3 Generalization: Multiple functions.

The functional F{¢} considered above involved a single function ¢ and its derivatives. One

can consider functionals that involve multiple functions, for example a functional

1
F{u,v} = / f(x, u, v, v, v')dz
0
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that involves two functions u(x) and v(x). We begin with the formulation and analysis of a

specific example and then turn to some theory.

Example: The Timoshenko Beam. Consider a beam of length L, bending stiffness® EI and
shear stiffness GA. The beam is clamped at x = 0, it carries a distributed load p(z) along its
length which acts in the —y-direction, and carries a concentrated force F' at the end x = L,

also in the —y-direction.

In the simplest model of a beam — the so-called Bernoulli-Euler model — the deformed
state of the beam is completely defined by the deflection u(z) of the centerline (the neutral
axis) of the beam. In that theory, shear deformations are neglected and therefore a cross-
section of the beam remains perpendicular to the neutral axis even in the deformed state.

Here we discuss a more general theory of beams, one that accounts for shear deformations.

Figure 7.8: The neutral axis of a beam in reference (straight) and deformed (curved) states. The bold lines
represent a cross-section of the beam in the reference and deformed states. The thin line is perpendicular
to the deformed neutral axis, so that in the classical Bernoulli-Euler theory of beams, where cross-sections
remain perpendicular to the neutral axis, the thin line and the bold line would coincide. The angle between
the vertical and the bold line if ¢. The angle between the neutral axis and the horizontal, which equals the
angle between the perpendicular to the neutral axis (the thin line) and the vertical dashed line, is «’. The

decrease in the angle between the cross-section and the neutral axis is therefore u’ — ¢.

In the theory considered here, a cross-section of the beam is not constrained to remain

perpendicular to the neutral axis. Thus a deformed state of the beam is characterized by two

5E and G are the Young’s modulus and shear modulus of the material, while I and A are the second

moment of cross-section and the area of the cross-section respectively.
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fields: one, u(z), characterizes the deflection of the centerline of the beam at a location z,
and the second, ¢(x), characterizes the rotation of the cross-section at z. (In the Bernoulli-
Euler model, ¢(x) = u/(x) since for small angles, the rotation equals the slope.) The fact
that the left hand end is clamped implies that the point z = 0 cannot deflect and that the

cross-section at x = 0 cannot rotate. Thus we have the geometric boundary conditions
u(0) =0, »(0) =0. (7.55)

Note that the zero rotation boundary condition is ¢(0) = 0 and not u'(0) = 0.

In the more accurate beam theory discussed here, the so-called Timoshenko beam theory;,
one does not neglect shear deformations and so u(x) and ¢(z) are (geometrically) independent
functions. Since the shear strain is defined as the change in angle between two fibers that

are initially at right angles to each other, the shear strain in the present situation is
V(@) = u'(z) — ¢(x);

see Figure 7.8. Observe that in the Bernoulli-Euler theory ~(z) = 0.

S = GAy

M =FEI¢
Figure 7.9: Basic constitutive relationships for a beam.

The basic equations of elasticity tell us that the moment-curvature relation for bending
is

M(x) = BI¢(2)
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and that the associated elastic energy per unit length of the beam, (1/2)M ¢/, is

1

SEI ()2

Similarly, we know from elasticity that the shear force-shear strain relation for a beam is®

S(x) = GAy(x)
and that the associated elastic energy per unit length of the beam, (1/2)S%, is

1
SGAG (@)
The total potential energy of the system is thus

L L
o= ofuoh = [ {GEN6@P +56AWE ~ o) | o — [ pute)ds - Fun),

’ ’ (7.56)
where the last two terms in this expression represent the potential energy of the distributed
and concentrated loading respectively (and the negative signs arise because w is the deflection
in the +y-direction while the loadings p and F are applied in the —y-direction). We allow
for the possibility that p, EI and GA may vary along the length of the beam and therefore
might be functions of x.

The displacement and rotation fields u(x) and ¢(z) associated with an equilibrium con-
figuration of the beam minimizes the potential energy ®{u, ¢} over the admissible set A of

test functions where take
A= {u(-),6()|lu:[0,]] =R, ¢:[0,]] =R, uec C*|0,L]), ¢ € C*|0, L]), u(0) = 0, #(0) = 0}.

Note that all admissible functions are required to satisfy the geometric boundary conditions
(7.55).

To find a minimizer of ® we calculate its first variation which from (7.56) is

L L
5 = /O {E1¢’ 56 + GA(W — ¢)(u' — 6¢)}d:c - /0 pouds — Fou(L).

6Since the top and bottom faces of the differential element shown in Figure 7.9 are free of shear traction,
we know that the element is not in a state of simple shear. Instead, the shear stress must vary with y such
that it vanishes at the top and bottom. In engineering practice, this is taken into account approximately by
replacing GA by kG A where the heuristic parameter £ ~ 0.8 — 0.9.
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Integrating the terms involving du’ and d¢’ by parts gives

0P

[Ew’ 5¢]j _ /0 ’ % (Elgb’) 56 da

+ [GAw - 6)0d] " /OL d% (GA@W = ¢))dudz - /OL GAW — ¢)5¢ do

0
L
- / poudr — Fou(L).
0

Finally on using the facts that an admissible variation must satisfy du(0) = 0 and d¢(0) = 0,

and collecting the like terms in the preceding equation leads to

50 = EI¢(L)oo(L) + [GA(u’(L) —¢(L)) —F]éu(L)

“Td
- /0 {@ (B16) + GAW - ¢>} 56(x) da (7.57)
L d .
- /0 {% (GAw - 9)) -I—p} dulz) da.
At a minimizer, we have 6® = 0 for all admissible variations. Since the variations

du(x), d¢(x) are arbitrary on 0 < z < L and since du(L) and d¢(L) are also arbitrary,
it follows from (7.57) that the field equations

i(EIqZﬁ’)—i—GA(u'—(b) = 0, 0<x<L,

dx

p (7.58)
%<GA(U —¢)> Yp =0, O<az<lL,

and the natural boundary conditions
BEI§(L)=0, GA (u’(L) - ¢(L)) —F (7.59)

must hold.

Thus in summary, an equilibrium configuration of the beam is described by the deflec-
tion u(x) and rotation ¢(x) that satisfy the differential equations (7.58) and the boundary
conditions (7.55), (7.59). [Remark: Can you recover the Bernoulli-Euler theory from the
Timoshenko theory in the limit as the shear rigidity GA — 0o?]

Exercise: Consider a smooth function f(x,y1,vs, ..., Yn, 21, 22, - . ., 2,) defined for all , y1, v, . .

21y ey 2n. Let ¢1(x), do(2), . . ., ¢n(z) be n once-continuously differentiable functions on [0, 1]

* 7yTL7
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with ¢;(0) = a;, ¢;(1) = b;. Let F' be the functional defined by

1
F{¢1,¢2,...,¢n}:/0 f([lf,¢1,¢2,...,Qﬁn,qbll,QSé,...,Qb{n) dIZ' (760)

on the set of all such admissible functions. Show that the functions ¢1(x), ¢2(z), ..., dn(x)

that extremize F' must necessarily satisfy the n Euler equations

£
dv [0¢;] 0

for 0<x<1, (1=1,2,...,n). (7.61)

7.5.4 Generalization: End point of extremal lying on a curve.

Consider the set A of all functions that describe curves in the x, y-plane that commence from

a given point (0,a) and end at some point on the curve G(z,y) = 0. We wish to minimize a

functional F'{¢} over this set of functions.

A

—>»

zp+0zR
Figure 7.10: Curve joining (0,a) to an arbitrary point on the given curve G(z,y) = 0.

Suppose that ¢(z) € A is a minimizer of F. Let © = xp be the abscissa of the point at
which the curve y = ¢(x) intersects the curve G(z,y) = 0. Observe that xg is not known a
priori and is to be determined along with ¢. Moreover, note that the abscissa of the point
at which a neighboring curve defined by y = ¢(x) + d¢(z) intersects the curve G = 0 is not

TR but xr + dxpg; see Figure 7.10.

At the minimizer,

Fi} = / "t 6, ¢)da
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and at a neighboring test function

TRHOTR

F{é+ 66} = /0 F(2,6+ 66,8 + 68')d.

Therefore on calculating the first variation §F, which equals the linearized form of F{¢ +

do} — F{¢}, we find

TRr+TR TR
o= [ (0. + ol )60+ fy(o.0.0000 o = [ fa,0,)da

where we have set f; = 0f/0¢ and fy = 0f/0¢'. This leads to

o= [ swonir 4 [ (10,0000 + ol 6.1 )i

TR 0

which in turn reduces to

oF = f(ﬂCR, d(zr), ¢/($R)) 0TRr + /0 ' (f¢ 0p + fy 5¢/>dl’-

Thus setting the first variation 6 F' equal to zero gives

f(zr, d(xR), ¢ (xr)) dxr + /0 ’ (f¢5¢+ fo (5¢’>da; = 0.

After integrating the last term by parts we get

/ R o d _
Flomotan). o @n))on + [fuso] " + [ (fa=Jfir)oods = 0
which, on using the fact that d¢(0) = 0, reduces to
TR d
[(wr, dlwn), ¢ (2r)) 62r + fo(vn, den), ¢ (2r)) 00(en) + / (fo— - fu)d0dz = 0.
(7.62)

First limit attention to the subset of all test functions that terminate at the same point
(xg, ¢(zr)) as the minimizer. In this case dxg = 0 and dp(xg) = 0 and so the first two
terms in (7.62) vanish. Since this specialized version of equation (7.62) must hold for all such

variations d¢(x), this leads to the Euler equation

d
fo— 7 fo =0,  0<z<ap (7.63)

We now return to arbitrary admissible test functions. Substituting (7.63) into (7.62) gives

f(zr, d(xr), ¢ (xr)) 0xr + fo (2R, ¢(zR), ¢ (zr)) 6d(zr) = O (7.64)
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which must hold for all admissible dzr and d¢(zg). It is important to observe that since
admissible test curves must end on the curve G = 0, the quantities dzr and d¢(xg) are not
independent of each other. Thus (7.64) does not hold for all dxp and d¢(zr); only for those
that are consistent with this geometric requirement. The requirement that the minimizing

curve and the neighboring test curve terminate on the curve G(z,y) = 0 implies that
Gop é(en)) =0, Glon+8un, 6(en +0zp) +60(wn + dur)) = 0,.
Note that linearization gives
G(zr + xR, ¢(xr + 6xR) + d¢(TR + d7R))
= Glen +San, d(er) + ¢/ (2n)0xn + 66(xr))
= Glor, (vr) + Galwn, 0(wr))rn + Gywr, o(wr) (¢ (vr)dwn + 09(wn)),
= Glap, 9(wn) + (Colan, 6(xr)) + ¢/ (@r)Gy (e, () ) 5ar + Gy an, d(an)) 36(x).

where we have set G, = 0G/0z and G, = 0G/0x. Setting 6G = G(xg + dzg, p(xp+ dzR) +
d¢p(xr+zR)) —G(xR, p(xR)) = 0 thus leads to the following relation between the variations
dzgr and d¢p(xR):

(Gulwn, dlen)) + ¢/ (wr)Gy(wn, d(wn)) ) an + Gyan, 6(wn)) 66(zr) = 0. (7.65)
Thus (7.64) must hold for all §zr and d¢(zr) that satisfy (7.65). This implies that”
f(an, d(an). ¢ (@) = A(Gulwn. 6(wr)) + o (wr)Gy(wn, dlwn)) = 0,
for(wr, d(xn), ¢ () = AGy(xn, $(r)) = 0,

for some constant A\ (referred to as a Lagrange multiplier). We can use the second equation

above to simplify the first equation which then leads to the pair of equations
f(lUR, P(zR), ¢/($R)) — ¢'(zr) fy (fL’R> P(zr), (b/(xR)) — MGy (xR, 9(zR)) = O,
fo (xR, ¢(xr), ¢ (xr)) — AGy(xR, ¢(zR)) = 0.

"It may be helpful to recall from calculus that if we are to minimize a function I(e1,e2), we must satisfy
the condition dI = (01/0e1)dey + (01/0e2)des = 0. But if this minimization is carried out subject to the
side constraint J(e1,e2) = 0 then we must respect the side condition dJ = (9J/0¢e1)dey + (0J/0e3)des = 0.
Under these circumstances, one finds that that one must require the conditions 91 /91 = A\0J /0e1, 01 /Deq =

(7.66)

A0J /0eq where the Lagrange multiplier A is unknown and is also to be determined. The constrain equation

J = 0 provides the extra condition required for this purpose.
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Equation (7.66) provides two natural boundary conditions at the right hand end = = xg.

In summary: an extremal ¢(x) must satisfy the differential equations (7.63) on 0 <
x < zp, the boundary condition ¢ = a at z = 0, the two natural boundary conditions
(7.66) at * = xp, and the equation G(zg,d(rr)) = 0. (Note that the presence of the
additional unknown A is compensated for by the imposition of the additional condition

G(rr, ¢(zr)) =0.)

Example: Suppose that G(z,y) = ciz+coy+c3 and that we are to find the curve of shortest

length that commences from (0, a) and ends on G = 0.

Since ds = \/dx? + dy? = \/1 + (¢/)2dz we are to minimize the functional

F:/ ST @) dr.

Thus

F(2,6,8) = V1T @2 fole.,¢) =0 and f¢f(x,¢,¢’)=\/%w- (7.67)

On using (7.67), the Euler equation (7.63) can be integrated immediately to give
¢'(x) = constant for 0<z<uaxp.
The boundary condition at the left hand end is
¢(0) = a,

while the boundary conditions (7.66) at the right hand end give

1 _ ¢'(zr)

S — — e,
1 + ¢’2<$R> 1 + ¢/2($R>

Finally the condition G(zg, ¢(zr)) = 0 requires that
c1Zg + codp(xr) + 3 =0.

Solving the preceding equations leads to the minimizer

_Cl(aCQ + ¢3)

= f <<
o(r) = (e2/c1)x +a or <z 2t
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7.6 Constrained Minimization

7.6.1 Integral constraints.

Consider a problem of the following general form: find admissible functions ¢; (), ¢o(x) that
minimizes .
Flondah = [ fla, 01(0). éala), (o), 63(a) da (7.68)
0

subject to the constraint

(b1, 6) = / f(@. 1(2), a(x), &, (x), Sy(x)) dx =0, (7.69)

For reasons of clarity we shall return to the more detailed approach where we introduce
parameters €1, €9 and functions 7, (), n;(x), rather than following the formal approach using
variations d¢1(x), d¢o(x). Accordingly, suppose that the pair ¢y (), ¢2(2) is the minimizer. By
evaluating F' and G on a family of neighboring admissible functions ¢1(x) 4+ e1m1(x), p2(z) +

g9a(x) we have

~

F(er,e2) = F{¢1(x) +em(w), do(x) + coma()},

~

Gler,62) = G((x)+erm(x), po(z) + eamp(x)) = 0.

(7.70)

If we begin by keeping n; and 7, fixed, this is a classical minimization problem for a function
of two variables: we are to minimize the function F (e1,€2) with respect to the variables
€1 and &5, subject to the constraint G(al,gg) = 0. A necessary condition for this is that
dF(e1,e5) = 0, i.e. that
. OF OF
dF = —d —dey =0 7.71
Dz, €1+ Dz, €2 ; ( )
for all deq, deo that are consistent with the constraint. Because of the constraint, de; and des
cannot be varied independently. Instead the constraint requires that they be related by
e oG
dG = —d —dey = 0. 7.72
861 1t 882 °2 ( )
If we didn’t have the constraint, then (7.71) would imply the usual requirements OF /0eq =
OF /dey = 0. However when the constraint equation (7.72) holds, (7.71) only requires that
oF 9G oF Aa@

el S R (7-73)
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for some constant A, or equivalently

0 - A d - A

—(F — \G) =0, —(F — \G) =0. 7.74
(P =26) (P =6) (774
Therefore minimizing F subject to the constraint G=0is equivalent to minimizing F—)\G
without regard to the constraint; A is known as a Lagrange multiplier. Proceeding from
here on leads to the Euler equation associated with F' — AG. The presence of the additional

unknown parameter A is balanced by the availability of the constraint equation G = 0.

Example: Consider a heavy inextensible cable of mass per unit length m that hangs under
gravity. The two ends of the cable are held at the same vertical height, a distance 2H apart.
The cable has a given length L. We know from physics that the cable adopts a shape that

minimizes the potential energy. We are asked to determine this shape.

4

Let y = ¢(z), —H < x < H, describe an admissible shape of the cable. The potential
energy of the cable is determined by integrating mg¢ with respect to the arc length s along
the cable which, since ds = \/dz? + dy? = \/1 + (¢/)? dz, is given by

L H
V{p} = / mgo ds = mg/ o1+ (@)% dx. (7.75)
0 —H
Since the cable is inextensible, its length

o} = /OL ds = /IZ\/TWCLT (7.76)

must equal L. Therefore we are asked to find a function ¢(x) with ¢(—H) = ¢(H), that
minimizes V{¢} subject to the constraint ¢{¢} = L. According to the theory developed
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above, this function must satisfy the Euler equation associated with the functional V{¢} —
M{ ¢} where the Lagrange multiplier A is a constant. The resulting boundary value problem
together with the constraint ¢ = L yields the shape of the cable ¢(z).

Calculating the first variation of V' —Amg{, where the constant X is a Lagrange multiplier,

leads to the Euler equation

1+ (¢')?

This can be integrated once to yield

PRy

c2?

%{(gb—)\)L}— 1+(¢)? =0, —H<x< H.

where ¢ is a constant of integration. Integrating this again leads to
¢(z) = ccosh[(z + d)/c] + A, —H <x<H,

where d is a second constant of integration. For symmetry, we must have ¢'(0) = 0 and
therefore d = 0. Thus

¢(x) = ccosh(z/c) + A, —H <z <H. (7.77)

The constant A in (7.77) is simply a reference height. For example we could take the x-axis
to pass through the two pegs in which case ¢(+H) = 0 and then A = —c cosh(H/c) and so

¢(z) = c|cosh(z/c) — cosh(H/c)], —H <z < H. (7.78)
Substituting (7.78) into the constraint condition ¢{¢} = L with ¢ given by (7.76) yields
L = 2¢sinh(H/c). (7.79)

Thus in summary, if equation (7.79) can be solved for ¢, then (7.78) gives the equation

describing the shape of the cable.

All that remains is to examine the solvability of (7.79). To this end set z = H/c and
w= L/(2H). Then we must solve pz = sinh z where ¢ > 1 is a constant. (The requirement
1 > 1 follows from the physical necessity that the distance between the pegs, 2H, be less
than the length of the rope, L.) One can show that as z increases from 0 to oo, the function
sinh z — pz starts from the value 0, decreases monotonically to some finite negative value at
some z = z, > 0, and then increases monotonically to co. Thus for each > 0 the function
sinh z — pz vanishes at some unique positive value of z. Consequently (7.79) has a unique
root ¢ > 0.
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7.6.2 Algebraic constraints

Now consider a problem of the following general type: find a pair of admissible functions

¢1(x), po(x) that minimizes
1
| e onondh s

subject to the algebraic constraint
g(x, P1(x), pa(z)) =0 for 0<z<1.

One can show that a necessary condition is that the minimizer should satisfy the Euler

equation associated with f — Ag. In this problem the Lagrange multiplier A may be a function
of x.

Example: Consider a conical surface characterized by
g(21, 29, 13) = 2% + 25 — R*(23) = 0, R(z3) = z3tana, xg > 0.

Let P = (p1,po,p3) and Q = (¢1,92,93), g3 > p3, be two points on this surface. A smooth
wire lies entirely on the conical surface and joins the points P and Q. A bead slides along
the wire under gravity, beginning at rest from P. From among all such wires, we are to find

the one that gives the minimum travel time.

Figure 7.11: A curve that joins the points (pi1, p2,p3) to (g2, 2, q3) and lies on the conical surface x3 +

2 _ 24002 0 —
5 — w5 tan‘ a = 0.

Suppose that the wire can be described parametrically by z1 = ¢1(x3), 22 = ¢o(x3) for
ps < 23 < g3. (Not all of the permissible curves can be described this way and so by using
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this characterization we are limiting ourselves to a subset of all the permited curves.) Since

the curve has to lie on the conical surface it is necessary that

9(d1(w3), Pa(x3), 23) = 0, Pz < 23 < gs. (7.80)

The travel time is found by integrating ds/v along the path. The arc length ds along the
path is given by

ds = \/dx% +da3 + dad = \/(¢))2 + (¢y)% + 1 dxs.
The conservation of energy tells us that %mv2(t) — mgxs(t) = —mgps, or
v =1/2g(x3 — p3).

Therefore the travel time is

()2 + (95)? + 1

dl’g .
p3 29($3 - p3)

T{¢1, 02} =

Our task is to minimize T{¢, ¢} over the set of admissible functions

A= {(¢1,¢2) ‘ ¢i: [ps,a3] = R, ¢ € C?[ps,as), di(ps) = pi, di(as) = ¢, i = 1,2},

subject to the constraint

g(¢1<$3), (bg(ﬂ?g), x3) = 07 p3 < w3 < 3.

According to the theory developed the solution is given by solving the Euler equations
associated with f — A(z3)g where

V(1)? + (¢5)? + 1
2g9(x3 — p3)

and  g(zy, T, x3) = 73 + 75 — 73 tan’

f(fL’3, ¢17¢27¢/1a gbé) =

subject to the prescribed conditions at the ends and the constraint g(zq,x2,z3) = 0.

7.6.3 Differential constraints

Now consider a problem of the following general type: find a pair of admissible functions

¢1(x), P2(x) that minimizes

1
/(; f(x>¢17¢27¢/17¢/2>dx
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subject to the differential equation constraint

g(xu¢1(x)7¢2<x>7¢,1<m>’¢,2<x>>207 for OSJ"S L.
Suppose that the constraint is not integrable, i.e. suppose that there does not exist a func-
tion h(z, ¢1(x), p2(x)) such that g = dh/dz. (In dynamics, such constraints are called non-
holonomic.) One can show that it is necessary that the minimizer satisfy the Euler equation

associated with f — Ag. In these problems, the Lagrange multiplier A\ may be a function of

x.

Example: Determine functions ¢;(z) and ¢o(x) that minimize

1
JREC A
0
over an admissible set of functions subject to the non-holonomic constraint

g(l'7¢1a¢27¢,17¢/2> :¢2_¢,1 :07 for OSZES L. (781)
According to the theory above, the minimizers satisfy the Euler equations

0 for 0<z<1, (7.82)

A on] _oh ., d[Oh]_0h _
de |0¢, |  0¢y 7 dx |04, Opy

where h = f — Ag. On substituting for f and ¢, these Euler equations reduce to

d[af+A] of _, d[é’f

- L = — A= i 1. .
iz |99 96, ; . 3¢’2]+ 0 or 0<z< (7.83)

Thus the functions ¢;(x), ¢2(x), \(x) are determined from the three differential equations
(7.81), (7.83).

Remark: Note by substituting the constraint into the integrand of the functional that we can

equivalently pose this problem as one for determining the function ¢;(z) that minimizes

1
/() f(xa ¢17¢/17 &/)d‘%

over an admissible set of functions.
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7.7 Pilecewise smooth minimizers. Weirstrass-Erdman

corner conditions.

In order to motivate the discussion to follow, first consider the problem of minimizing the

functional )
Fio} = [ (@) = 1P (7.89)
over functions ¢ with ¢(0) = ¢(1) = 0.

This is apparently a problem of the classical type where in the present case we are
to minimize the integral of f(x,¢,¢") = [(¢’)2 — 1]2 with respect to x over the interval
[0, 1]. Assuming that the class of admissible functions are those that are C*[0, 1] and satisfy
¢(0) = ¢(1) = 0, the minimizer must necessarily satisfy the Euler equation -L(9f/0¢') —
(0f /0¢) = 0. In the present case this specializes to 2[ (¢')*—1](2¢") = constant for 0 < z < 1,
which in turn gives ¢/(x) = constant for 0 < x < 1. On enforcing the boundary conditions
»(0) = ¢(1) = 0, this gives ¢(z) = 0 for 0 < x < 1. This is an extremizer of F{¢} over
the class of admissible functions under consideration. It is readily seen from (7.84) that the

value of F' at this particular function ¢(z) =01is F =1

Note from (7.84) that F' > 0. It is natural to wonder whether there is a function ¢.(z)
that gives F'{¢.} = 0. If so, ¢, would be a minimizer. If there is such a function ¢,, we know
that it cannot belong to the class of admissible functions considered above, since if it did,
we would have found it from the preceding calculation. Therefore if there is a function ¢, of
this type, it does not belong to the set of functions A. The functions in A were required to
be C[0,1] and to vanish at the two ends z = 0 and z = 1. Since ¢, ¢ A it must not satisfy
one or both of these two conditions. The problem statement requires that the boundary

conditions must hold. Therefore it must be true that ¢ is not as smooth as C*[0, 1].

If there is a function ¢, such that F{¢,} = 0, it follows from the nonnegative character
of the integrand in (7.84) that the integrand itself should vanish almost everywhere in [0, 1].

This requires that ¢/(x) = £1 almost everywhere in [0, 1]. The piecewise linear function

x for 0<xz<1/2,

bu(x) = (7.85)
(1—2z) for 1/2<z <1,

has this property. It is continuous, is piecewise C', and gives F{¢.} = 0. Moreover ¢, ()

satisfies the Euler equation except at z = 1/2.
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But is it legitimate for us to consider piecewise smooth functions? If so are there are
any restrictions that we must enforce? Physical problems involving discontinuities in certain
physical fields or their derivatives often arise when, for example, the problem concerns an

interface separating two different mateirals. A specific example will be considered below.

7.7.1 Piecewise smooth minimizer with non-smoothness occuring

at a prescribed location.

Suppose that we wish to extremize the functional

Fio} = /0 f(2,6,8)de

over some suitable set of admissible functions, and suppose further that we know that the
extremal ¢(x) is continuous but has a discontinuity in its slope at x = s: i.e. ¢'(s—) # ¢'(s+)
where ¢'(s£) denotes the limiting values of ¢'(s £ ¢) as ¢ — 0. Thus the set of admissible
functions is composed of all functions that are smooth on either side of x = s, that are

continuous at x = s, and that satisfy the given boundary conditions ¢(0) = ¢g, ¢(1) = ¢1:

A={o()|¢:[0,1] >R, ¢ € C'([0,5) U (s,1]), ¢ € C[0, 1], 6(0) = ¢o, ¢(1) =61} .

Observe that an admissible function is required to be continuous on [0, 1], required to have
a continuous first derivative on either side of x = s, and its first derivative is permitted to

have a jump discontinuity at a given location x = s.

YA

Figure 7.12: Extremal ¢(z) and a neighboring test function ¢(z) + d¢(z) both with kinks at z = s.



7.7. WEIRSTRASS-ERDMAN CORNER CONDITIONS 159

Suppose that F' is extremized by a function ¢(z) € A and suppose that this extremal has
a jump discontinuity in its first derivative at x = s. Let d¢(z) be an admissible variation
which means that the neighboring function ¢(z) 4+ d(z) is also in A which means that it is
C' on [0,5)U (s, 1] and (may) have a jump discontinuity in its first derivative at the location

x = s; see Figure 7.12. This implies that
0p(z) € C((0,1]),  do(x) € CH([0,5) U (s,1]),  d6(0) = dg(1) = 0.

In view of the lack of smoothness at z = s it is convenient to split the integral into two parts

and write . :
F = ? ' d ) ) ! d )
(0} /0 f(a:,aﬁd))wr/s Pz, 6, &)da
and . .
F{o+ 09} = /O flx, 0+ 06,0 + ¢ )dx + / flx, ¢+ 06,0 + ¢ )dx.

Upon calculating § F', which by definition equals F'{¢ + d¢} — F'{¢} upto terms linear in d¢,
and setting 0 F' = 0, we obtain

S 1
/0 (fo00 + fy0¢) dx + / (f400 + fp0d') da = 0.

Integrating the terms involving §¢’ by parts leads to

[, d ", d of o L [905]
/0 [fqb o (f¢/)] 0¢ dv + /S [f¢ -0 (qu/)] 0¢ dv + {a_gé/(w} 7 [8_¢’5¢] L 0.
However, since 0¢(0) = d¢(1) = 0, this simplifies to
"fof d (of of of _
[ 1563 (5| o e + (55| L - 5] ) oo =0

First, if we limit attention to variations that are such that d¢(s) = 0, the second term
in the equation above vanishes, and only the integral remains. Since d¢(z) can be chosen
arbitrarily for all z € (0,1), z # s, this implies that the term within the brackets in the

integrand must vanish at each of these z’s. This leads to the Euler equation

of d (0f

a_gb_@(@_qb’)zo for 0<zx<1, z#s.
Second, when this is substituted back into the equation above it, the integral now disappears.
Since the resulting equation must hold for all variations d¢(s), it follows that we must have

or, - of
8(?’ rT=8— - &b’ r=s+




160 CHAPTER 7. CALCULUS OF VARIATIONS

at x = s. This is a “matching condition” or “jump condition” that relates the solution on
the left of = s to the solution on its right. The matching condition shows that even though

¢’ has a jump discontinuity at = s, the quantity df/0¢’ is continuous at this point.

Thus in summary an extremal ¢ must obey the following boundary value problem:

%(%)_2—2:0 for 0<x<1,:c7és,\
¢(0) = ¢o,
(7.86)
o(1) = ¢n,
ﬁ = ﬁ at x = s
09 loms— 0 loms+ ' ,
Ay n2($7y)
(6, B)
nl(xay) 0+ L
_ _E‘V -----
0 —>7
(0,4) s=0 o <y<oo

Figure 7.13: Ray of light in a two-phase material.

Example: Consider a two-phase material that occupies all of x, y-space. The material oc-
cupying x < 0 is different to the material occupying > 0 and so x = 0 is the interface
between the two materials. In particular, suppose that the refractive indices of the materials
occupying x < 0 and x > 0 are ny(x,y) and nq(z,y) respectively; see Figure 7.13. We are
asked to determine the path y = ¢(x),a < x < b, followed by a ray of light travelling from
a point (a, A) in the left half-plane to the point (b, B) in the right half-plane. In particular,
we are to determine the conditions at the point where the ray crosses the interface between

the two media.
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According to Fermat’s principle, a ray of light travelling between two given points follows
the path that it can traverse in the shortest possible time. Also, we know that light travels
at a speed ¢/n(x,y) where n(z,y) is the index of refraction at the point (x,y). Thus the
transit time is determined by integrating n/c along the path followed by the light, which,

since ds = /1 + (¢’)? dx can be written as

{6} = [ % nle. o) VIT @F do

Thus the problem at hand is to determine ¢ that minimizes the functional T{¢} over the

set of admissible functions

A= {6()]¢ € Cla,b],6 € C*([a,0) U (0,b]), p(a) = A, 6(b) = B}.
Note that this set of admissible functions allows the path followed by the light to have a
kink at x = 0 even though the path is continuous.

The functional we are asked to minimize can be written in the standard form

_ n(z,9)

C

b
{6} = / f@,6,8) de where  f(z,6,¢) T (@) .

Therefore

of _n(z,0) ¢
W e I+ (@)

and so the matching condition at the kink at x = 0 requires that

n ¢

¢ V1+(¢)
Observe that, if 6 is the angle made by the ray of light with the z-axis at some point along
its path, then tanf = ¢’ and so sinf = ¢'//1 + (¢')2. Therefore the matching condition

requires that nsin @ be continuous, or

be continuous at z = 0.

nysinf, =n_sinf_

where ny and 64 are the limiting values of n(z, ¢(z)) and 6(x) as x — 0+. This is Snell’s

well-known law of refraction.
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7.7.2 Piecewise smooth minimizer with non-smoothness occuring

at an unknown location

Suppose again that we wish to extremize the functional

1
F(¢) = L0, 0')d
0= [ f@o.0)a
over the admissible set of functions
A={¢(-):¢:10,1]] = R, ¢ € C[0,1],¢ € C,[0,1],$(0) = a,p(1) = b}

Just as before, the admissible functions are continuous and have a piecewise continuous first
derivative. However in contrast to the preceding case, if there is discontinuity in the first
derivative of ¢ at some location x = s, the location s is not known a priori and so is also to

be determined.

YA

$(x) + 6¢(x) $(x) + 6¢(x)

Ss+4s 1

Figure 7.14: Extremal ¢(z) with a kink at = s and a neighboring test function ¢(x) + d¢(z) with kinks

at £ = s and s+ Js.

Suppose that F is extremized by the function ¢(z) and that it has a jump discontinuity
in its first derivative at x = s; (we shall say that ¢ has a “kink” at = s). Suppose further
that ¢ is C' on either side of x = s. Consider a variation d¢(z) that vanishes at the two ends
z =0 and x = 1, is continuous on [0,1], is C* on [0, 1] except at z = s + ds where it has a

jump discontinuity in its first derivative:
5¢ € C10,1]UC0, s+ ds) UC (s + 85, 1],  66(0) = (1) = 0.

Note that ¢(x) + 0¢(z) has kinks at both = s and x = s+ ds. Note further that we have
varied the function ¢(z) and the location of the kink s. See Figure 7.14.
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Since the extremal ¢(x) has a kink at * = s it is convenient to split the integral and
express F{¢} as

S 1
o} = /0 f(x,qb,gb’)dx—Ir/ f(x, ¢, ¢")dx.

Similarly since the the neigboring function ¢(z) + é(x) has kinks at x = s and = s + s,
it is convenient to express F'{¢ + d¢} by splitting the integral into three terms as follows:

s s+ds
F{p+dp} = /O flx, ¢+ 06,0 + 68" )dx + / flx,¢+06¢,¢ +6¢)dx

1

+ (z,¢+d¢,¢ +d¢")dx.

s+ds

We can now calculate the first variation 6 F' which, by definition, equals F{¢ + do} — F{¢}
upto terms linear in d¢. Calculating 6 F' in this way and setting the result equal to zero, leads

after integrating by parts, to

/1A5¢>(a:)da: + Béo(s) + Cos—0,
0

where

_ 9f _d (of
4= % dx<8¢>f)’

_ (9f _(9f
v <3¢’)m:s (a¢'>m+’ (7.87)

o (o) (o)
rT=8— r=s+

By the arbitrariness of the variations above, it follows in the usual way that A, B and C all
must vanish. This leads to the usual Euler equation on (0,s) U (s, 1), and the following two

additional requirements at x = s:

of | of
99/ ls- 09/ ler” 75
OIN| _ (401
(f _%w) .= (f ¢3¢/) 78

The two matching conditions (or jump conditions) (7.88) and (7.89) are known as the
Wierstrass-Erdmann corner conditions (the term “corner” referring to the “kink” in ¢).

Equation (7.88) is the same condition that was derived in the preceding subsection.
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Example: Find the extremals of the functional

F(9) = / f(2,6,) do = / (¢ — 12(¢' + 1)da

over the set of piecewise smooth functions subject to the end conditions ¢(0) = 0, ¢(4) = 2.

For simplicity, restrict attention to functions that have at most one point at which ¢’ has a

discontinuity.
Here
fa.0,8) = [(¢) 1] (7.90)
and therefore on differentiating f,
oy =ler -1, -0 (7.91)
Consequently the Euler equation (at points of smoothness) is
d d
%f(;y —fs = e [4¢'((¢/)* = 1)] = 0. (7.92)

First, consider an extremal that is smooth everywhere. (Such an extremal might not, of
course, exist.) In this case the Euler equation (7.92) holds on the entire interval (0,4) and
so we conclude that ¢'(x) = constant for 0 < z < 4. On integrating this and using the
boundary conditions ¢(0) = 0,¢(4) = 2, we find that ¢(z) = z/2, 0 < x < 4, is a smooth

extremal. In order to compare this with what follows, it is helpful to call this, say, ¢¢. Thus
bo(r) = = for 0<ax<4,

is a smooth extremal of F'.

Next consider a piecewise smooth extremizer of F' which has a kink at some location
x = s; the value of s € (0,4) is not known a priori and is to be determined. (Again, such an
extremal might not, of course, exist.) The Euler equation (7.92) now holds on either side of
x = s and so we find from (7.92) that ¢’ = ¢ = constant on (0, s) and ¢’ = d = constant on
(s,4) where ¢ # d; (if ¢ = d there would be no kink at z = s and we have already dealt with
this case above). Thus
¢ for 0<zx<s,

¢'(x) =

d for s<z<A4.
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Integrating this, separately on (0, s) and (s, 4), and enforcing the boundary conditions ¢(0) =
0, p(4) = 2, leads to
cx for 0 <z <s,
o(r) = (7.93)
dlzx—4)+2 for s<az<A4.
Since ¢ is required to be continuous, we must have ¢(s—) = ¢(s+) which requires that
cs = d(s —4) + 2 whence

(7.94)
Note that s would not exist if ¢ = d.

All that remains is to find ¢ and d, and the two Weirstrass-Erdmann corner conditions
(7.88), (7.89) provide us with the two equations for doing this. From (7.90), (7.91) and (7.93),

of de(c? —1) for 0<z<s,
2z 4d(d* = 1) for s <z <4
and , )
f_¢/%: —(c*=1)(1+3c¢*) for 0<zx<s,
¢ (@ —1)(1+3d?) for s<az<4d.

Therefore the Weirstrass-Erdmann corner conditions (7.88) and (7.89), which require re-
spectively the continuity of 0f /0¢" and f—¢'0f /0¢’ at x = s, give us the pair of simultaneous

equations
c(c* —1) = d(d® - 1),

(A=1)(1+4+3c%) = (d&*—1)(1+ 3d%).
Keeping in mind that ¢ # d and solving these equations leads to the two solutions:
c=1,d=—1, and c=—1,d=1.

Corresponding to the former we find from (7.94) that s = 3, while the latter leads to s = 1.

Thus from (7.93) there are two piecewise smooth extremals ¢;(z) and ¢o(x) of the assumed

form:
T for 0<x <3,
o1(z) =
—x+6 for 3<x<4.
—x for 0 <z <1,
Pa(x) =

z—2 for 1<z<4.
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3t o1() s o1(z)
M

2,,
L+ ¢o(x)
: >
1 2 3 4
$2() Pa(T)

Figure 7.15: Smooth extremal ¢o(x) and piecewise smooth extremals ¢;(z) and ¢q(z).

Figure 7.15 shows graphs of ¢,, ¢; and ¢,. By evaluating the functional I’ at each of the

extremals ¢g, ¢; and ¢9, we find
F{o} =9/4,  F{or} = F{os} = 0.

Remark: By inspection of the given functional

F(g) = /0 [(¢)? — 1%,

it is clear that (a) F' > 0, and (b) F' = 0 if and only if ¢/ = £1 everywhere (except at
isolated points where ¢’ may be undefined). The extremals ¢; and ¢, have this property and

therefore correspond to absolute minimizers of F.

7.8 Generalization to higher dimensional space.

In order to help motivate the way in which we will approach higher-dimensional problems
(which will in fact be entirely parallel to the approach we took for one-dimensional problems)

we begin with some preliminary observations.

First, consider the one-dimensional variational problem of minimizing a functional

1
Fio} = /0 flx, 6.8 8" da
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on a set of suitably smooth functions with no prescribed boundary conditions at either
end. The analogous two-dimensional problem would be to consider a set of suitably smooth

functions ¢(z,y) defined on a domain D of the x, y-plane and to minimize a given functional

Fio} = /D F(x, y, 6, 060z, 06/dy, F*6/0a, 96 [0xdy, 09/0y?) dA

over this set of functions with no boundary conditions prescribed anywhere on the boundary
JdD.

In deriving the Euler equation in the one-dimensional case our strategy was to exploit
the fact that the variation d¢(x) was arbitrary in the interior 0 < z < 1 of the domain. This
motivated us to express the integrand in the form of some quantity A (independent of any
variations) multiplied by d¢(z). Then, the arbitrariness of d¢ allowed us to conclude that A
must vanish on the entire domain. We approach two-dimensional problems similarly and our
strategy will be to exploit the fact that d¢(x,y) is arbitrary in the interior of D and so we
attempt to express the integrand as some quantity A that is independent of any variations
multiplied by d¢. Similarly concerning the boundary terms, in the one-dimensional case we
were able to exploit the fact that d¢ and its derivative d¢’ are arbitrary at the boundary
points x = 0 and x = 1, and this motivated us to express the boundary terms as some
quantity B that is independent of any variations multiplied by d¢(0), another quantity C
independent of any variations multiplied by §¢'(0), and so on. We approach two-dimensional
problems similarly and our strategy for the boundary terms is to exploit the fact that d¢
and its normal derivative 0(d¢)/0On are arbitrary on the boundary 0D. Thus the goal in
our calculations will be to express the boundary terms as some quantity independent of any
variations multiplied by d¢, another quantity independent of any variations multiplied by
0(d¢)/0n etc. Thus in the two-dimensional case our strategy will be to take the first variation

of F' and carry out appropriate calculations that lead us to an equation of the form

OF = / Adp(z,y)dA + / Bog(x,y) ds + / C <§((5¢(m, y))) ds = 0 (7.95)

D oD oD n

where A, B, C are independent of d¢ and its derivatives and the latter two integrals are on
the boundary of the domain D. We then exploit the arbitrariness of d¢(x,y) on the interior
of the domain of integration, and the arbitrariness of d¢ and 0(d¢)/On on the boundary
0D to conclude that the minimizer must satisfy the partial differential equation A = 0 for
(z,y) € D and the boundary conditions B = C' =0 on 9D.

Next, recall that one of the steps involved in calculating the minimizer of a one-dimensional

problem is integration by parts. This converts a term that is an integral over [0, 1] into terms
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that are only evaluated on the boundary points z = 0 and 1. The analog of this in higher

dimensions is carried out using the divergence theorem, which in two-dimensions reads

oP 9@\ j4 =
/D (8:16 + 8y) dA /BD (Png + @Qny) ds (7.96)

which expresses the left hand side, which is an integral over D, in a form that only involves
terms on the boundary. Here n,,n, are the components of the unit normal vector n on 9D
that points out of D. Note that in the special case where P = 0x/dx and @ = dx/dy for
some x(z,y) the integrand of the right hand side is dy/on.

Remark: The derivative of a function ¢(z,y) in a direction corresponding to a unit vector m
is written as d¢/0m and defined by 0¢/0m = V¢-m = (0¢/0x) m, + d¢p/dy) m, where m,,
and m, are the components of m in the z- and y-directions respectively. On the boundary
0D of a two dimensional domain D we frequently need to calculate the derivative of ¢ in
directions n and s that are normal and tangential to 9D. In vector form we have
dp . 0¢p. O 0
V¢:3_f1+8_jJ:£n+£s

where i and j are unit vectors in the z- and y-directions. Recall also that a function ¢(z,y)
and its tangential derivative d¢/ds along the boundary 0D are not independent of each other
in the following sense: if one knows the values of ¢ along 9D one can differentiate ¢ along
the boundary to get d¢/0s; and conversely if one knows the values of d¢/0s along 0D one
can integrate it along the boundary to find ¢ to within a constant. This is why equation
(7.95) does not involve a term of the form E 0(d¢)/0s integrated along the boundary 0D
since it can be rewritten as the integral of —(0F/0s) ¢ along the boundary

Example 1: A stretched membrane. A stretched flexible membrane occupies a regular
region D of the x, y-plane. A pressure p(z, y) is applied normal to the surface of the membrane
in the negative z-direction. Let u(z,y) be the resulting deflection of the membrane in the

z-direction. The membrane is fixed along its entire edge 0D and so
u=0 for (z,y) € 0D. (7.97)

One can show that the potential energy ® associated with any deflection u that is compatible

with the given boundary condition is

@{u}:/%’VU‘QdA—/pudA
D D
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where we have taken the relevant stiffness of the membrane to be unity. The actual deflection
of the membrane is the function that minimizes the potential energy over the set of test

functions

A={u|ueC*D),u=0 for (z,y) € 9D}

Z\(?D Fixed

Figure 7.16: A stretched elastic membrane whose mid-plane occupies a region D of the z,y-plane and
whose boundary 9D is fixed. The membrane surface is subjected to a pressure loading p(x,y) that acts in

the negative z-direction.

Since

1
O {u} :/ (g, +uyu,)dA — / pudA,
D 2 D

its first variation is

P :/ (uz0uy + uyou,)dA — / poudA,
D D

where an admissible variation du(z,y) vanishes on OD. Here we are using the notation
that a comma followed by a subscript denotes partial differentiation with respect to the
corresponding coordinate, for example u, = du/dx and u 4, = 0%u/0xdy. In order to make
use of the divergence theorem and convert the area integral into a boundary integral we
must write the integrand so that it involves terms of the form (...), + (...),; see (7.96).

This suggests that we rewrite the preceding equation as

0d = / ((ugﬁu)x + (uyou) y — (e + u’yy)5u> dA — / poudA,
D D

or equivalently as

0P = /D ((uxdu)x + (u7y(5u)7y> dA — /D (um + U gy +p) dudA.
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By using the divergence theorem on the first integral we get

P = / (uzn27 + u,yny) duds — / (U e + Uyy +p) oudA
oD D

where n is a unit outward normal along 0D. We can write this equivalently as

(5<I>:/ %(Mds - /(V2u+p) dudA. (7.98)
G D

Dan

Since the variation du vanishes on 9D the first integral drops out and we are left with
b = — / (V?u+p) dudA (7.99)
D

which must vanish for all admissible variations du(z,y). Thus the minimizer satisfies the

partial differential equation
Viu+p=0 for (v,y)€D

which is the Euler equation in this case that is to be solved subject to the prescribed boundary
condition (7.97). Note that if some part of the boundary of D had not been fixed, then we
would not have du = 0 on that part in which case (7.98) and (7.99) would yield the natural
boundary condition d¢/0n = 0 on that segment.

NNN Show the calculations for just one term w?,. Include nu # 0 in text. NNN
NNN Check signs of terms and sign conventionNNN

Example 2: The Kirchhoff theory of plates. We consider the bending of a thin plate
according to the so-called Kirchhoff theory. Solely for purposes of mathematical simplicity
we shall assume that the Poisson ratio v of the material is zero. A discussion of the case
v # 0 can be found in many books, for example, in “Energy & Finite Elements Methods in
Structural Mechanic” by I.H. Shames & C.L. Dym. When v = 0 the plate bending stiffness
D = Et?/12 where E is the Young’s modulus of the material and ¢ is the thickness of the
plate. The mid-plane of the plate occupies a domain of the x, y-plane and w(z,y) denotes
the deflection (displacement) of a point on the mid-plane in the z-direction. The basic con-
stitutive relationships of elastic plate theory relate the internal moments M, M,,, M,,, M,

(see Figure 7.17) to the second derivatives of the displacement field w ;,, W 4y, W 4, by

M, = —Dw,,, M,=—Duw,, M, =M, =—Duw,,, (7.100)
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where a comma followed by a subscript denotes partial differentiation with respect to the
corresponding coordinate and D is the plate bending stiffness; and the shear forces in the

plate are given by
V, = —D(V?w) 4, V, = —=D(V?w),,. (7.101)

The elastic energy per unit volume of the plate is given by

D
(waﬂ;x + Myw 4y + Myyw 5 + Myxww) =5 (wQM + wiy + Qw?zy) ) (7.102)

DN | —

dz
M, = D(wzg + vwy,) v
M, = D(w gy + vwy,) M—N/
Mgy = Mys =D(1 —v)w g, % v
V, = D(Vw),
V, = D(Vw),

Figure 7.17: A differential element dz x dy x t of a thin plate. A bold arrow represents a force and thus V,,
and Vj, are (shear) forces. A bold arrow with two arrow heads represents a moment whose sense is given by
the right hand rule. Thus Mg, and M,, are (twisting) moments while M, and M, are (bending) moments.

1 d y
09; Clampe Y 0y
y / Clamped Free
b
’
2 ng=1,ny=0
; s 4 Sz=0,5=1
7 — 1
07 >z
a

02 Free

Figure 7.18: Left: A thin elastic plate whose mid-plane occupies a region 2 of the z, y-plane. The segment
02y of the boundary is clamped while the remainder 0f); is free of loading. Right: A rectangular a x b plate
with a load free edge at its right hand side x = a,0 < y < b.
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It is worth noting the following puzzling question: Consider the rectangular plate shown
in the right hand diagram of Figure 7.18. Based on Figure 7.17 we know that there is a
bending moment M,, a twisting moment M,,, and a shear force V, acting on any surface
x = constant in the plate. Therefore, in particular, since the right hand edge x = a is free
of loading one would expect to have the three conditions M, = M,, = V, = 0 along that
boundary. However we will find that the differential equation to be solved in the interior of
the plate requires (and can only accommodate) two boundary conditions at any point on
the edge. The question then arises as to what the correct boundary conditions on this edge
should be. Our variational approach will give us precisely two natural boundary conditions
on this edge. They will involve M,, M,, and V, but will not require that each of them must

vanish individually.

Consider a thin elastic plate whose mid-plane occupies a domain €2 of the z, y-plane as
shown in the left hand diagram of Figure 7.18. A normal loading p(z,y) is applied on the
flat face of the plate in the —z-direction. A part of the plate boundary denoted by 02, is
clamped while the remainder 02, is free of any external loading. Thus if w(z,y) denotes the

deflection of the plate in the z-direction we have the geometric boundary conditions

w = 0w/On =0 for (x,y) € 0%. (7.103)

The total potential energy of the system is

o{w} = /Q [g <w2m + 2w’ + w?yy> —pw } dA (7.104)

where the first group of terms represents the elastic energy in the plate and the last term
represents the potential energy of the pressure loading (the negative sign arising from the
fact that p acts in the minus z-direction while w is the deflection in the positive z direction).
This functional ® is defined on the set of all kinematically admissible deflection fields which
is the set of all suitably smooth functions w(z,y) that satisfy the geometric requirements
(7.103). The actual deflection field is the one that minimizes the potential energy ® over this

set.

We now determine the Euler equation and natural boundary conditions associated with

(7.104) by calculating the first variation of ®{w} and setting it equal to zero:
/ <w,m(5w,m + 2 3y OW gy + W 4y OW yy — %(511}) dA = 0. (7.105)
Q

To simplify this we begin be rearranging the terms into a form that will allow us to use

the divergence theorem, thereby converting part of the area integral on €2 into a boundary
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integral on 0€2. In order to use the divergence theorem we must write the integrand so that

it involves terms of the form (...), + (...),; see (7.96). Accordingly we rewrite (7.105) as

0 = / <w,m5w,m + 20 4y OW 4y + W 4y OW ) — (p/D)5w> dA,
Q

= / [(w,xzéw,z + w,xyaw,y> @ T (w,wyéwx + wyyy5w7y> Y
Q

—W 4 OW g — W gy OW gy — W 0y OW p — W g, OW y — (p/D)éw} dA,

= /ag [(w,m&u,x + w7a:y6'lU,y> ng + (w,xydw,x + w,yy(;w’y) ny} s (7.106)

— / [w’mxéw@ + W 32y OW gy + W 4y OW 5+ Wy OW , + (p/D)éw} dA,
Q

= / ]1d8-/]2dA
[2/9] Q

We have used the divergence theorem (7.96) in going from the second equation above to the
third equation. In order to facilitate further simplification, in the last step we have let Iy

and I, denote the integrands of the boundary and area integrals.

To simplify the area integral in (7.106) we again rearrange the terms in Iy into a form

that will allow us to use the divergence theorem. Thus

JoLdA = /Q 0000000+ 1,000+ 10,0300+ 10,00, + p/ D S| dA,
- /Q (w0000 40,0300 (10000 0 60)
— (W + 20 00y + Wy — /D) | dA,
- /8 ) (0 a0+ 10y 0 1 - (W00 + 10 g0 ), | s
_ /Q (Viw - (/D)) bwda, (7.107)

= / [w@mnx F W gy Mg + W gy My + wvyyyny] owds
o0

—/ (V4w — p/D) owdA,

= / P16wds—/P2(5wdA,
a0 Q
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where we have set
P) = W 330M0 + W gy Ny + W g3 Myy + W g1y and P, =Viw — p/D. (7.108)

In the preceding calculation, we have used the divergence theorem (7.96) in going from the

second equation in (7.107) to the third equation, and we have set

4 2 2
Viw =V (V w) = W gzax + 2w,myy + W yyyy-

Next we simplify the boundary term in (7.106) by converting the derivatives of the
variation with respect to x and y into derivatives with respect to normal and tangential
coordinates n and s. To do this we use the fact that Vow = dw i+ dw,j = dw,n + dw s
from which it follows that dw, = dw, n, + dw s s, and dw, = dw, ny, + ow s s,. Thus from
(7.106),

Joq Trds = /8Q [(u;,g,mﬁnx(Su;,373 + w,mynxéw’y> + (w,mynyéw@ + w,yyny5w7y>} ds,
= / (wwnx + w,xyny>5w7x + (w,xynx + w,yyny>5w,y] ds,
oo

= / (wmnm + w,xyny> <6wmmr + 5w,ssx> + (w@ynx + w,yyny> <6w7nny + 5w,ssy>] ds,
ot

[ 2 2
= / (wvmnx + W gy Mgy + W gyNany + wvyyny> ow
ot

+ <w7mnxsx + W 3y SNy + W 5yNz Sy + w7yynysy> 5w75} ds,

— / (wmni + W gy NNy + W gy Ny, + w7yyn§) ow, + 13:| ds.
oot
(7.109)
To further simplify this we have set I3 equal to the last expression in (7.109) and this term

can be written as
Joq Isds = /{m [(wwna,sx + W gy SpMy + W gy Ny Sy + w,yynysy> (5w73} ds,
= / [(w,mnzsz W 2y STy + W gy Nz Sy + w7yynysy) 6w} s (7.110)
o9
— [(wwnmsx + W gy SpMNy + W 3y Nz Sy + w,yynysy> s (5w} ds.
If a field f(x,y) varies smoothly along 0€2, and if the curve 0f itself is smooth, then

of
— = A11
. Ds ds 0 (7.111)
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since this is an integral over a closed curve®. It follows from this that the first term in the

last expression of (7.110) vanishes and so

Joq Isds = —/ [(wmnxsx—i-w,mysrny—l—w,xynxsy—l—w,yynysy)’séw} ds. (7.112)
B
Substituting (7.112) into (7.109) yields
0 0
Lids = | P3—(dw)ds — —(Py) owd 7.113
| nas = [ Pigl@as— [ Spyswds (7113

where we have set

2

_ 2
Py = w 3205 + W 5yNahy + W gy Ngny + W gy My

(7.114)

Py = W 321285 + W 3Ny Sz + W 3y Nz Sy + W 4y Ny Sy

Finally, substituting (7.113) and (7.107) into (7.106) leads to

/P26wdA _ / (P1+3(P4)> 5wd5+/ Py (ow)ds = 0 (7.115)
Q o0 s s On

which must hold for all admissible variations dw. First restrict attention to variations which
vanish on the boundary 092 and whose normal derivative d(dw)/0n also vanish on 0f2. This
leads us to the Euler equation P, = 0:

Viw—-p/D=0 for (z,y) € Q. (7.116)

Returning to (7.115) with this gives

0 0

Since the portion 0€); of the boundary is clamped we have w = dw/dn = 0 for (x,y) € 0.
Thus the variations dw and 9(dw)/0n must also vanish on 9. Thus (7.117) simplifies to

—/ (P1 + 2(P4)) dwds + / Py 2(521}) ds =0 (7.118)
Io Js o0, O

n

for variations dw and J(dw)/On that are arbitrary on 02y where 0 is the complement of
08y, i.e. 092 = 01 U 9€Qy. Thus we conclude that Py + 0P;/0s = 0 and P3 = 0 on 0€:

W zzaNa + WayyTNe + W aayTy + W yyy Ty

+%(w,xxnazsx + W gy Ty Sy + W gy M Sy + w,yynysy) =0 for (m, y) c aQ2

2 2
W oMy + W gy NNy + W gy Mgy + wWyyny, = 0,

(7.119)

8In the present setting one would have this degree of smoothness if there are no concentrated loads applied

on the boundary of the plate 92 and the boundary curve itself has no corners.
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Thus, in summary, the Kirchhoff theory of plates for the problem at hand requires that
one solve the field equation (7.116) on € subjected to the displacement boundary conditions
(7.103) on 0€ and the natural boundary conditions (7.119) on 0.

Remark: If we define the moments M,,, M, , and force V,, by

M, = —D (Wgy NaNy + Way NaMy + W gy NyNy + W 4y Ny
Mys = =D (Wap Ny Sy 4 Wy Ny Sz + Wye Ny Sy + Wy Ny Sy) (7.120)
Vi = =D (Waee Ny + Wayy Na + W yar Ny + W gy Ny)

then the two natural boundary conditions can be written as

M, =0, M) +V,, = 0. (7.121)

55

As a special case suppose that the plate is rectangular, 0 < x < a,0 < y < b and that
the right edge z = a,0 < y < b is free of load; see the right diagram in Figure 7.18. Then
ny =1,n,=0,5, =0,s, =1 on 0O and so (7.120) simplifies to

M, = —Duwg,
My, = —Duw,, (7.122)
Vn = —D (w,xxa: + w,a:yy)

which because of (7.100) shows that in this case M,, = M,, M,s = M,,,V,, = V,.. Thus the

natural boundary conditions (7.121) can be written as

0

M, =0, —
dy

(May) + V2 = 0. (7.123)

This answers the question we posed soon after (7.101) as to what the correct boundary
conditions on a free edge should be. We had noted that intuitively we would have expected
the moments and forces to vanish on a free edge and therefore that M, = M,, =V, = 0 there;
but this is in contradiction to the mathematical fact that the differential equation (7.116)
only requires two conditions at each point on the boundary. The two natural boundary
conditions (7.123) require that certain combinations of M,, M,,, V, vanish but not that all

three vanish.

Example 3: Minimal surface equation. Let C be a closed curve in R3 as sketched in

Figure 7.19. From among all surfaces S in R?® that have C as its boundary, we wish to
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determine the surface that has minimum area. As a physical example, if C corresponds to
a wire loop which we dip in a soapy solution, a thin soap film will form across C. The
surface that forms is the one that, from among all possible surfaces S that are bounded
by C, minimizes the total surface energy of the film; which (if the surface energy density is

constant) is the surface with minimal area.

C:z=h(z,y)

Figure 7.19: The closed curve C in R3 is given. From among all surfaces S in R? that have C as its boundary,

the surface with minimal area is to be sought. The curve 0D is the projection of C onto the x, y-plane.

Let C be a closed curve in R3. Suppose that its projection onto the z,y-plane is denoted
by 0D and let D denote the simply connected region contained within 0D; see Figure 7.19.
Suppose that C is characterized by z = h(z,y) for (z,y) € D. Let z = ¢(x,y) for (z,y) € D
describe a surface S in R? that has C as its boundary; necessarily ¢ = h on dD. Thus the

admissible set of functions we are considering are

A{g|¢:D =R, ¢ € C(D), $=hondD} .

Consider a rectangular differential element on the z, y-plane that is contained within D.
The vector joining (z,y) to (x+dx,y) is dx = dz i while the vector joining (z,y) to (z, y+dy)
is dy = dyj. If du and dv are vectors on the surface z = ¢(z,y) whose projections are dx

and dy respectively, then we know that
du =dzi+ ¢, dxk, dv =dyj+ ¢, dyk.

The vectors du and dv define a parallelogram on the surface z = ¢(z,y) and the area of

this parallelogram is |[du x dv|. Thus the area of a differential element on S is

du x dv| = | — ¢,dzdyi— é,drdyj+ dudy k‘ = /1 + 62 + ¢2 dudy.
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Consequently the problem at hand is to minimize the functional

F{¢}:/l),/1+¢g+¢g dA.

over the set of admissible functions
A={¢|¢:D—=R,¢cC*D), ¢=hondD}.

It is left as an exercise to show that setting the first variation of F' equal to zero leads to the

so-called minimal surface equation

Remark: See en.wikipedia.org/wiki/Soap_bubble and www.susqu.edu/facstaff/b/brakke/ for

additional discussion.

7.9 Second variation. Another necessary condition for

a minimum.

In order to illustrate the basic ideas of this section in the simplest possible setting, we confine

the discussion to the particular functional

mwzlf@¢wm

defined over a set of admissible functions A. Suppose that a particular function ¢ minimizes
F, and that for some given function 7, the one-parameter family of functions ¢ + en are

admissible for all sufficiently small values of the parameter €. Define a (e) by

1
F(e)=F{¢+en} = /0 flx, ¢ +en, ¢ +en)dx

so that by Taylor expansion,

A

F(e) = F(0) + cF'(0) + %ﬁ"(o) +0(%),

where

F0) = [ fla,¢,¢)dx = F{¢},
eF'(0) = 0F{¢,n},
def

E2F0) = € [ {foon® + 2 o0 + oo ()?} dz = 82 F{o,n}.
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Since ¢ minimizes F, it follows that & = 0 minimizes F'(¢), and consequently that

82 F{¢,n} >0,

in addition to the requirement 6 F'{¢,n} = 0. Thus a necessary condition for a function ¢ to
minimize a functional F' is that the second variation of F' be non-negative for all admissible

variations d¢:

0°F{¢,00} = /O {f56(00)* + 244 (60)(60') + for(6¢')*} dx > 0, (7.124)

where we have set ¢ = en. The inequality is reversed if ¢ maximizes F'.

The condition §F{¢,n} > 0 is necessary but not sufficient for the functional F' to have

a minimum at ¢. We shall not discuss sufficient conditions in general in these notes.

Proposition: Legendre Condition: A necessary condition for (7.124) to hold is that
foo(x,0(x),¢'(x)) >0  for 0<a<1

for the minimizing function ¢.

Example: Consider a curve in the x, y-plane characterized by y = ¢(z) that begins at (0, ¢g)
and ends at (1, ¢;). From among all such curves, find the one that, when rotated about the

x-axis, generates the surface of minimum area.

Thus we are asked to minimize the functional

1
Fip} = / fa.6,¢) de where f(z,6,¢') = ov/T 1 ()2,

over a set of admissible functions that satisfy the boundary conditions ¢(0) = ¢g, ¢(1) = ¢1.

A function ¢ that minimizes F' must satisfy the boundary value problem consisting of

the Euler equation and the given boundary conditions:
d o9/
— | ————= ) - V1+(¢)* =0,
L( ) v
¢(0) =¢o,  &(1) = o1
The general solution of this Euler equation is

r—p

«

¢(x) = acosh
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where the constants a and [ are determined through the boundary conditions. To test the

Legendre condition we calculate fy4 and find that

B o)
foo = AT @r

which, when evaluated at the particular function ¢(x) = acosh(z — )/« yields

foo - S
P9 lo=acosh(@=B)/e ™ oah?(z — B) /o’

Therefore as long as « > 0 the Legendre condition is satisfied.

7.10 Sufficient condition for minimization of convex

functionals

Y

A
F(z1) > F(z2) + F'(z2)(x1 — z5)  forall z,z5 € D.

y = F(z)

—y = F(z9) + F'(z2)(z — x2)
> T

Figure 7.20: A convex curve y = F(z) lies above the tangent line through any point of the curve.

We now turn to a brief discussion of sufficient conditions for a minimum for a special
class of functionals. It is useful to begin by reviewing the question of finding the minimum of
a real-valued function of a real variable. A function F'(z) defined for z € A with continuous

first derivatives is said to be convez if

F(x1) > F(xg) + F'(x9) (21 — 1) for all , 29 € A;
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see Figure 7.20 for a geometric interpretation of convexity. If a convex function has a station-
ary point, say at x,, then it follows by setting x5 = z, in the preceding equation that z, is a
minimizer of F'. Therefore a stationary point of a convex function is necessarily a minimizer.
If F is strictly convex on A, i.e. if F' is convex and F(z1) = F(xg) + F'(x9)(x1 — x2) if and
only if 1 = x4, then F' can only have one stationary point and so can only have one interior

minimum.

This is also true for a real-valued function F' with continuous first derivatives on a domain

A in R", where convewity is defined by
F(x1) > F(x3) + 0F(xg,%x] — X3) for all xq,x9 € A.

If a convex function has a stationary point at, say, X,, then since dF(x,,y) = 0 for all y
it follows that x, is a minimizer of F'. Therefore a stationary point of a convex function
is necessarily a minimizer. If F' is strictly convex on A, i.e. if F'is convex and F(x;) =
F(x2) + 0F(x2,%x; — X2) if and only if x; = x5, then F' can have only one stationary point

and so can have only one interior minimum.

We now turn to a functional F'{¢} which is said to be convez on A if

F{¢+n} > F{¢} +6F{¢,n} forall ¢,6+n€A.

If F is stationary at ¢, € A, then F{¢,,n} = 0 for all admissible 7, and it follows that ¢,
is in fact a minimizer of F'. Therefore a stationary point of a convex functional is necessarily

a minimizer.

For example, consider the generic functional

F{¢} = /01 f(z, ¢, ¢)dx. (7.125)

L7 0
5F{¢m}=/0 (a—£n+a—£,n’)d:ﬁ

and so the convexity condition F'{¢ + n} — F{¢} > dF{¢,n} takes the special form

Then

: o , (Lo 2)
) I - )y ¥ d il ~ d 7126
[ lrwornsem-swodaz [(Fns L) o

In general it might not be simple to test whether this condition holds in a particular case.

It is readily seen that a sufficient condition for (7.126) to hold is that the integrands satisfy

9See equation (??) for the definition of §F(x,y).
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the inequality

f($,y+v,z+w)—f(x,y,z)2g—‘gvjt%w (7.127)

for all (x,y,2), (z,y + v,z + w) in the domain of f. This is precisely the requirement that

the function f(x,y,2) be a convex function of y, z at fixed z.

Thus in summary: if the integrand f of the functional F' defined in (7.125) satisfies the
convexity condition (7.127), then, a function ¢ that extremizes F' is in fact a minimizer of F'.

Note that this is simply a sufficient condition for ensuring that an extremum is a minimum.

Remark: In the special case where f(z,y, z) is independent of y, one sees from basic calculus
that if 92f/02* > 0 then f(z,2) is a strictly convex function of z at each fixed .

Example: Geodesics. Find the curve of shortest length that lies entirely on a circular
cylinder of radius a, beginning (in circular cylindrical coordinates (r,0,&)) at (a,6;,&;) and

ending at (a, 6, &;) as shown in the figure.

A€

\¢

(0’7 01:51)‘
, @(aﬁz 2)

Figure 7.21: A curve that lies entirely on a circular cylinder of radius a, beginning (in circular cylindrical

coordinates) at (a, 61,&;) and ending at (a, 62, &2).

We can characterize a curve in R3 using a parametric characterization using circular
cylindrical coordinates by r = r(0),& = £(6), 61 < 0 < 05. When the curve lies on the surface

of a circular cylinder of radius a this specializes to

r=a, £ =¢(0) for 6, <60 <0.
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Since the arc length can be written as

ds = VAt R2a g = \J(0)" + () + (€0) a0 = = /(a2 + (£10))" ab.

our task is to minimize the functional

02
Fiey= [ 10.660),€0)d0  where f(r,y,2) = VaTT 22

01
over the set of all suitably smooth functions £(#) defined for #; < 6 < 0, which satisfy
£(0h) = &1, £(02) = &

Evaluating the necessary condition d F' = 0 leads to the Euler equation. This second order

differential equation for £(#) can be readily solved, which after using the boundary conditions

£(01) = &1, £(0) = & leads to

§0) =&+ (gi :gz) (0 —061). (7.128)

Direct differentiation of f(x,y, z) = va? + 22 shows that

82f B a2 0
022 (a2 + 22)3/2 -

and so f is a strictly convex function of z. Thus the curve of minimum length is given
uniquely by (7.128) — a helix. Note that if the circular cylindrical surface is cut along a

vertical line and unrolled into a flat sheet, this curve unfolds into a straight line.

7.11 Direct method of the calculus of variations and

minimizing sequences.

We now turn to a different method of seeking minima, and for purposes of introduction, begin
by reviewing the familiar case of a real-valued function f(x) of a real variable x € (—o00, 00).
Consider the specific example f(x) = x?. This function is nonnegative and has a minimum

value of zero which it attains at « = 0. Consider the sequence of numbers

1
To, T1, T, T3...Th,.-. where xk:§ ,

and note that
lim f(z) =0.

k—o00
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@)

Figure 7.22: (a) The function f(z) = 2? for —00 < ¥ < 0o and (b) the function f(x) = 1 for z < 0,
f(z) =22 for z > 0.

The sequence 1/2, 1/2%, ..., 1/2% ... is called a minimizing sequence in the sense that
the value of the function f(z) converges to the minimum value of f as k — oco. Moreover,
observe that

lim T — 0
k—o00

as well, and so the sequence itself converges to the minimizer of f, i.e. to x = 0. This latter
feature is true because in this example
f(lim ) = lim f(xy).
k—o0 n—00

As we know, not all functions have a minimum value, even if they happen to have a finite
greatest lower bound. We now consider an example to illustrate the fact that a minimizing
sequence can be used to find the greatest lower bound of a function that does not have a
minimum. Consider the function f(x) =1 for z < 0 and f(z) = 2* for x > 0. This function
is non-negative, and in fact, it can take values arbitrarily close to the value 0. However it
does not have a minimum value since there is no value of x for which f(z) = 0; (note that
f(0) = 1). The greatest lower bound or infimum (denoted by “inf”) of f is

inf  f(xz)=0.

—oo<r<o0

Again consider the sequence of numbers

o, T1, T, T3...Tk,... where 1z, = o

and note that
lim f(z) =0.

k—o00
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In this case the value of the function f(z) converges to the infimum of f as & — oo. However
since

lim z, =0
k—o0

the limit of the sequence itself is z = 0 and f(0) is not the infimum of f. This is because in

this example

f(lim ay) # lim f(zy).

Returning now to a functional, suppose that we are to find the infimum (or the minimum

if it exists) of a functional F'{¢} over an admissible set of functions A. Let

inf F{¢} =m (> —00).

dEA
Necessarily there must exist a sequence of functions ¢1, ¢o, ... in A such that
lim F{¢r} = m;
n—oo

such a sequence is called a minimizing sequence.

If the sequence ¢1, ¢o, ... converges to a limiting function ¢,, and if
F{lim ¢} = lim F{gp},

then it follows that F'{¢.} = m and the function ¢, is the minimizer of F'. The functions ¢y
of a minimizing sequence can be considered to be approximate solutions of the minimization

problem.

Just as in the second example of this section, in some variational problems the limiting
function ¢, of a minimizing sequence ¢1, ¢o, ... does not minimize the functional F'; see the

last Example of this section.

7.11.1 The Ritz method

Suppose that we are to minimize a functional F{¢} over an admissible set A. Consider an
infinite sequence of functions ¢1, ¢2,... in A. Let A, be the subset of functions in A that
can be expressed as a linear combination of the first p functions ¢y, ¢o,...¢,. In order to

minimize F' over the subset A, we must simply minimize

ﬁ(al,ag,...,ap) = F{Oé1¢1 +052¢2 4+ ... +Oép¢p}
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with respect to the real parameters aq, g, . .. o,. Suppose that the minimum of /' on A, is
denoted by m,. Clearly A; C Ay C Az ...C A and therefore m; > my > my...'% Thus, in
the so-called Ritz Method, we minimize F' over a subset A, to find an approximate minimizer;
moreover, increasing the value of p improves the approximation in the sense of the preceding

footnote.

Example: Consider an elastic bar of length L. and modulus E that is fixed at both ends and
carries a distributed axial load b(x). A displacement field u(x) must satisfy the boundary

conditions u(0) = (L) = 0 and the associated potential energy is

L 1 L
F{u} = / u')?dx —/ bu dz.
0

We now use the Ritz method to find an approximate displacement field that minimizes
F'. Consider the sequence of functions vy, vy, v3, ... where

pIT
Up = Sin —;

L
observe that v,(0) = v,(L) = 0 for all intergers p. Consider the function

. pTx
E ay sm—

for any integer n > 1 and evaluate
R L 1 L
F(ag,ag,...0p) = F{u,} = / §E(u;)2da§ — / bu,, dx.
0 0

Since

2 cos — cos —dx =

/L pr g 0 for p+#gq,
B L L

L for p=gq,
it follows that

L n 22
1
/0 (ul)?d :/ (E % co p7rx> (E aqL COS@>dQJ:§ E ozj,p7T
1 p=1

Therefore
n L
~ 1 p?m? PTT
Flay,as,...ap) = Flu zg -FE o? — b sin — dx 7.129
( 1, 2, n) { n} o <4 p L P/O L ( )
107 the sequence ¢, ¢, . .. is complete, and the functional F{¢} is continuous in the appropriate norm,

then one can show that lim m, = m.
p—00



7.12. WORKED EXAMPLES. 187

To minimize F (a1, @z, ...a,) with respect to a, we set OF /Ocy, = 0. This leads to

L, .
prT
fo b sin B2 dx

E'p

252
2L

a, = for p=1,2,...n. (7.130)

Therefore by substituting (7.130) into (7.129) we find that the n-term Ritz approximation
of the energy is
p?m? fOL b sin Z* dx

1
_;ZEQZZ’ 7 where «, = Y

272
2L

Y

and the corresponding approximate displacement field is given by

L, .
Jo b sin 22 dx

0
E B

n
Uy = E O[p Sin T where O[p == 2.2
p:l 2L
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7.12 Worked Examples.

Ezample 7.N: Counsider two given points (x1,h1) and (zg, he), with hy > hs, that are to be joined by a
smooth wire. The wire is permited to have any shape, provided that it does not enter into the interior of the

circular region (z — x0)? + (y — y0)?> < R%. A bead is released from rest from the point (z1,h;) and slides
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i
(@1, h1)
| — )
| /ﬂ ?:1:2, hg)
o9 :
0 ml mzﬁ v

Figure 7.23: A curve y = ¢(z) joining (21, h1) to (w2, he) which is disallowed from entering the forbidden
region (z — z0)? + (¢(z) — yo)? < R2.

along the wire (without friction) due to gravity. For what shape of wire is the time of travel from (z1, h1) to
(22, ho) least?

Here the wire may not enter into the interior of the prescribed circular region . Therefore in considering
different wires that connect (x1,h1) to (x2,h2), we may only consider those that lie entirely outside this
region:

(z —20)* + (6(x) — v0)* > R?, 1 < < T (i)

The travel time of the bead is again given by (7.1) and the test functions must satisfy the same requirements
as in the first example except that, in addition, they must be such satisfy the (inequality) constraint (i). Our

task is to minimize T{¢} over the set A; subject to the constratint (i).

Ezxample 7.N: Buckling: Consider a beam whose centerline occupies the interval y = 0,0 < z < L, in an
undeformed configuration. A compressive force P is applied at = L and the beam adopts a buckled shape
described by y = ¢(z). Figure NNN shows the centerline of the beam in both the undeformed and deformed
configurations. The beam is fixed by a pin at x = 0; the end x = L is also pinned but is permitted to move

along the xz-axis. The prescribed geometric boundary conditions on the deflected shape of the beam are thus

By geometry, the curvature k(z) of a curve y = ¢(x) is given by

¥'(z)
1+ (6 @)

From elasticity theory we know that the bending energy per unit length of a beam is (1/2)M«x and that

k(z) =

the bending moment M is related to the curvature kK by M = EIx where ET is the bending stiffness of the
beam. Thus the bending energy associated with a differential element of the beam is (1/2) EIx? ds where ds
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M P
%

O

Figure 7.24: An elastic beam in undeformed (lower figure) and buckled (upper figure) configurations.

is arc length along the deformed beam. Thus the total bending energy in the beam is

k1
/ —EIk*(x) ds
0 2
where the arc length s is related to the coordinate x by the geometric relation

ds = /14 (¢'(2))? dz.

Thus the total bending energy of the beam is

L 1 (¢//)2
/o P gy

Next we need to account for the potential energy associated with the compressive force P on the beam.
Since the change in length of a differential element is ds — dx, the amount by which the right hand end of
the beam moves leftwards is

_(/OLds - /Ode) - —(/OLmdm - L).

Thus the potential energy associated with the applied force P is
L
—P</ VIF (@) da — L).
0

Therefore the total potential energy of the system is
coan [T (¢")? . 5
o{r.b.¢ ¢V = | “EI—2 ) gp_ P( 1+ (& 71>dz.
The Euler equation, which for such a functional has the general form

C;L;(fw) - %(ﬂ/ﬂ) + fo =0,
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simplifies in the present case since f does not depend explicitly on ¢. The last term above therefore drops out
and the resulting equation can be integrated once immediately. This eventually leads to the Euler equation

d (;5/1 (b/ P ¢,/ 2 _,
da <[1+(¢>’)2]5/2> RPN (EI/? o [[1+<¢'>2]3/2] ) -

where c¢ is a constant of integration, and the natural boundary conditions are

§"(0) = (L) = 0.

Ezxample 7.N: Linearize BVP in buckling problem above. Also, approximate the energy and derive Euler
equation associated with it.

Ezample 7.N: u(z,t) where 0 <z < L, 0 <t < T Functional

T L
_ 1o, 1,
F{u}—/o /0 (2ut 2u$)daﬁdt

Euler equation (Wave equation)

Ugp — Ugz = 0.

Example 7.N: Physical example? Functional

Tt Lo 1 55
F{u} = - QUi ~ (iugg + gmu ) dxdt
Euler equation (Klein-Gordon equation)

Ut — Ugpy + m2u = 0.

Example 7.N: Null lagrangian

Ezxample 7.2: Soap Film Problem. Consider two circular wires, each of radius R, that are placed coaxially, a
distance H apart. The planes defined by the two circles are parallel to each other and perpendicular to their
common axis. This arrangement of wires is dipped into a soapy bath and taken out. Determine the shape of
the soap film that forms.

We shall assume that the soap film adopts the shape with minimum surface energy, which implies that we

are to find the shape with minimum surface area. Suppose that the film spans across the two circular wires.
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Y.

By symmetry, the surface must coincide with the surface of revolution of some curve y = ¢(x),—H < x < H.

By geometry, the surface area of this film is

H
Area{¢} = 277/¢(:c)ds =27 /7H o(z)v/1+ (¢)%dx,

where we have used the fact that ds = /1 + (¢’)?dz, and this is to be minimized subject to the requirements
o(—H) = ¢(H) = R and
o(xz) >0 for —H<z<H.

In order to determine the shape that minimizes the surface area we calculate its first variation dArea

and set it equal to zero. This gives the Euler equation

da) ¢ | _ N2 —
d:z:{ 1+(¢/)2} 1+(¢) 0

which we can write as
¢¢/ i ¢¢/ _ ¢¢/ — O
VIH(@)? A V14 (¢)?

2
d o’ d B
i (i)~ aor=o

@2 =(2) -

where ¢ is a constant. Integrating again and using the boundary conditions ¢(H) = ¢(—H) = R, leads to

or

This can be integrated to give

¢(x) = ccosh (E) (i)

Cc

where c is to be determined from the algebraic equation

R
h—=—. ii
cosh — p (i)



192 CHAPTER 7. CALCULUS OF VARIATIONS

10 -

C=p, p> pu

=

C=p&p < p

0.5 1 1.5 2 2.5 s
Figure 7.25: Intersection of the curve described by ¢ = cosh ¢ with the straight line ¢ = .

Given H and R, if this equation can be solved for ¢, then the minimizing shape is given by (i) with this value

(or values) of c.

To examine the solvability of (ii) set £ = H/c and = R/H and then this equation can be written as

cosh& = ué.

As seen from Figure 7.25, the graph ¢ = cosh ¢ intersects the straight line ¢ = pé twice if p > p,; once if
1 = p; and there is no intersection if u < p.. Here p, =~ 1.50888 is found by solving the pair of algebraic
equations cosh & = p.&, sinh & = p, where the latter equation reflects the tangency of the two curves at the

contact point in this limiting case.

Thus in summary, if R < u.H there is no shape of the soap film that extremizes the surface area; if
R = u, H there is a unique shape of the soap film given by (i) that extremizes the surface area; if R > . H
there are two shapes of the soap film given by (i) that extremize the surface area (and further analysis
investigating the stability of these configurations is needed in order to determine the physically realized

shape).

Remark: In order to understand what happens when R < p.H consider the following heuristic argument.
There are three possible configurations of the soap film to consider: one, the film bridges across from one
circular wire to the other but it does not form on the flat faces of the two circular wires themselves (which
is the case analyzed above); two, the film forms on each circular wire but does not bridge the two wires;
and three, the film does both of the above. We can immediately discard the third case since it involves more
surface area than either of the first two cases. Consider the first possibility: the soap film spans across the
two circular wires and, as an approximation, suppose that it forms a circular cylinder of radius R and length
2H. In this case the area of the soap film is 2rR(2H ). In the second case, the soap film covers only the two
end regions formed by the circular wires and so the area of the soap film is 2 x mR2. Since 4rRH < 27 R? for
2H < R, and 47RH > 27 R? for 2H > R, this suggests that the soap film will span across the two circular
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wires if R > 2H, whereas the soap will not span across the two circular wires if R < 2H (and would instead
cover only the two circular ends).

Ezxample 7.4: Minimum Drag Problem. Consider a space-craft whose shape is to be designed such that the
drag on it is a minimum. The outer surface of the space-craft is composed of two segments as shown in
Figure 7.26: the inner portion (z = 0 with 0 < y < h; in the figure) is a flat circular disk shaped nose of
radius h1, and the outer portion is obtained by rigidly rotating the curve y = ¢(x), 0 < z < 1, about the
z-axis. We are told that ¢(0) = hy, ¢(1) = hg with the value of hy being given; the value of h; however is
not prescribed and is to be chosen along with the function ¢(z) such that the drag is minimized.

dA = 2mods
p ~ (V cos )>

»T

Figure 7.26: The shape of the space craft with minimum drag is generated by rotating the curve y = ¢(z)
about the z-axis. The space craft moves at a speed V' in the —z-direction.

According to the most elementary model of drag (due to Newton), the pressure at some point on a surface
is proportional to the square of the normal speed of that point. Thus if the space craft has speed V relative to
the surrounding medium, the pressure on the body at some generic point is proportional to (V cosf)? where
0 is the angle shown in Figure 7.26; this acts on a differential area dA = 2myds = 27w¢ds. The horizontal
component of this force is therefore obtained by integrating dF cos@ = (V cos0)? x (27¢ds) x cos § over the
entire body. Thus the drag D is given, in suitable units, by
o(¢')?

[1+(¢)?]
where we have used the fact that ds = dx\/1+ (¢’)2 and cos8 = ¢'/1/1 + (¢')3.

To optimize this we calculate the first variation of D, remembering that both the function ¢ and the

1
D:wh§+2w/ dz,
0

parameter h; can be varied. Thus we are led to

1 ﬂ 1 3(¢/)2 3 2(¢/)4
2wh16hy -l-27'l"/0 [1 n (¢/)2]5¢ dxr + 27‘1’[} ¢ |:1 T (¢/)2 [1 + (¢/)2]2

L) @) B+ (¢))] 5
2mhy6hy +27T/0 Wéqﬁ dr + 27T/0 [ 0+ (@) }&b dx.

5D } 8¢’ dx,
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Integrating the last term by parts and recalling that d¢(1) = 0 and d¢(0) = dh; (since the value of ¢(1) is
prescribed but the value of ¢(0) = hy is not) we are led to

1 1
_ (¢')° B d [¢(¢)*(3+(¢)?) _ 2m9(¢")* 3+ (¢)%)
oD =antusiy +2x [ omdods —on [ AR soda - BEELEELER]  m
The arbitrariness of §¢ and dh; now yield
d [¢(¢)°(3+ (¢)?) @)  _
| “Tr ) - T B 0<es<t .
@?6+@P|
L C L L P
The differential equation in (i); and the natural boundary condition (i)2 can be readily reduced to
d @)\ _
dx([1+(¢’)2]2)_0 for 0<x <1, (i)
¢'(0) = 1.
The differential equation (ii) tells us that
3
[]-ji(?;?)z]z =C for O<x< 1, (111)

where c; is a constant. Together with the given boundary conditions, we are therefore to solve the differential
equation (iii) subject to the conditions

¢(0) =h1, ¢(1)=ha, ¢'(0)=1, (iv)
in order to find the shape ¢(z) and the parameter hy.
Since ¢(0) = h; and ¢'(0) = 1 this shows that ¢; = hy /4.

It is most convenient to write the solution of (iii) with ¢; = hy/4 parametrically by setting ¢ = £. This
leads to

6 = M(eratre),
O
4 \4

1> 5 > 52,
g4 72 +log§) + ca,

where ¢y is a constant of integration and £ is the parameter. On physical grounds we expect that the slope ¢’
will decrease with increasing = and so we have supposed that £ decreases as = increases; thus as = increases
from 0 to 1 we have supposed that £ decreases from & to & (where we know that & = ¢'(0) = 1). Since
¢ = ¢ =1 when z = 0 the preceding equation gives co = —Th;/16. Thus

6 = Mt raeve),
3

= (et o),

1>¢&>&. (V)
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The boundary condition ¢ = hy,¢’ = 1 at * = 0 has already been satisfied. The boundary condition
¢ =hy,x =1 at £ = & requires that

hy = %(553+2£51+£2)7

_ hl 3 —4 —92 7 (Vi)
I = X(z@ +& ‘Hogfz—z)’

which are two equations for determining hs and &. Dividing the first of (vi) by the second yields a single

equation for &5:
7 3 .
€5 — hatylog & + thﬁg + 265 — hol + & — th =0. (vii)
If this can be solved for &3, then either equation in (vi) gives the value of h; and (v) then provides a parametric

description of the optimal shape. For example if we take ho = 1 then the root of (vii) is & = 0.521703 and
then hy =~ 0.350943.

Ezxample 7.5: Consider the variational problem where we are asked to minimize the functional

1
F{¢} = ; f(¢,¢")dx

over some admissible set of functions A. Note that this is a special case of the standard problem where the
function f(z, ¢, ') is not explicitly dependent on z. In the present case f depends on z only through ¢(z)

and ¢'(x).
The Euler equation is given, as usual, by

if — fo=0 for 0<ax<1

dz’? o '
Multiplying this by ¢’ gives

d

d)/%fd - ¢/f¢ =0 for 0<ax<l,
which can be written equivalently as
d / /1 d 1/

Since this simplifies to

%[Wﬂb’_ﬂ:o for 0<ax<1,

it follows that in this special case the Euler equation can be integrated once to have the simplified form
@' for — [ = constant for 0<z<l1.

Remark: We could have taken advantage of this in, for example, the preceding problem.

Example 7.6: Elastic bar. The following problem arises when examining the equilibrium state of a one-

dimensional bar composed of a nonlinearly elastic material. An equilibrium state of the bar is characterized
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by a displacement field u(x) and the material of which the bar is composed is characterized by a potential
W (u). It is convenient to denote the derivative of W by o,

so that then o(z) = &(u/(x)) represents the stress at the point = in the bar. The bar has unit cross-sectional
area and occupies the interval 0 < z < L in a reference configuration. The end x = 0 of the bar is fixed, so
that u(0) = 0, a prescribed force P is applied at the end x = L, and a distributed force per unit length b(z)
is applied along the length of the bar.

An admissible displacement field is required to be continuous on [0, L], piecewise continuously differen-
tiable on [0, L] and to conform to the boundary condition «(0) = 0. The total potential energy associated

with any admissible displacement field is

L L
Vi) = / W' (2))de — / b@)u(z)dzr — Pu(l),
0 0
which can be written in the conventional form

L
V{u} = /0 flx,u,w/)dz  where f(z,u,u) =W (W) — bu— Pu.

The actual displacement field minimizes the potential energy V' over the admissible set, and so the three

basic ingredients of the theory can now be derived as follows:
i. At any point x at which the displacement field is smooth, the Euler equation
d (ofy_of _
dz \ Ou' ou

d/\/ / _
de(u)+b_O7

which can be written in terms of stress as

takes the explicit form

d

ii. The displacement field u(z) satisfies the prescribed boundary condition v = 0 at = 0. The natural

boundary condition at the right hand end is given, according to equation (7.50) in Section 7.5.1, by
fuw =0 at =1,

which in the present case reduces to

—

olx)=W'(u'(z)=P at z=1L.

iii. Finally, suppose that v’ has a jump discontinuity at some location = s. Then the first Weirstrass-
Erdmann corner condition (7.88) requires that df/9u’ be continuous at x = s, i.e. that the stress
o(x) must be continuous at x = s:

U| = U‘I:S+. (i)

rT=8—
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The second Weirstrass-Erdmann corner condition (7.89) requires that f —«/'0f/0u’ be continuous at

x = s, i.e. that the quantity W — «’o must be continuous at = = s:

W —d'o = W—4do (ii)

r=5— r=s+

Remark: The generalization of the quantity W — u/c to 3-dimensions in known as the Eshelby tensor.

()
W (W)
a v
0 | ,3 v : i >
u'(s—) u'(s+) 0
(@) (b)

Figure 7.27: (a) A nonmonotonic (rising-falling-rising) stress response function &(u’) and (b) the corre-

sponding nonconvex energy W (u').

In order to illustrate how a discontinuity in u’ can arise in an elastic bar, observe first that according
to the first Weirstrass-Erdmann condition (i), the stress o on either side of x = s has to be continuous.
Thus if the function &(u’) is monotonically increasing, then it follows that 0 = (') has a unique solution
u’ corresponding to a given o, and so ' must also be continuous at x = s. On the other hand if &(u')
is a nonmonotonic function as, for example, shown in Figure 7.27(a), then more than one value of w’' can
correspond to the same value of o, and so in such a case, even though o(z) is continuous at « = s it is possible
for v/ to be discontinuous, i.e. for u'(s—) # u'(s+), as shown in the figure. The energy function /V[7(u’) sketched
in Figure 7.27(b) corresponds to the stress function o(u’) shown in Figure 7.27(a). In particular, the values
of v’ at which & has a local maximum and local minimum, correspond to inflection points of the energy

function W(u’) since W = 0 when &’ = 0.

The second Weirstrass-Erdmann condition (ii) tells us that the stress o at the discontinuity has to have

a special value. To see this we write out (ii) explicitly as

o~ —~

W' (s+)) —u'(s+)o = W(u'(s—) —u/(s—)o

and then use o(u') = /W’(u’) to express it in the form

u’(s+)
//( . o(v)dv =o[u/(s+) —u'(s—)]. (iii)
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This implies that the value of o must be such that the area under the stress response curve in Figure 7.27(a)
from u'(s—) to u'(s+) must equal the area of the rectangle which has the same base and has height o; or

equivalently that the two shaded areas in Figure 7.27(a) must be equal.

Ezxample 7.7 Non-smooth extremal. Find a curve that extremizes

1
Fig} = / f(x, d(2), ¢ (2))d,

that begins from (0,a), and ends at (1,b) after contacting a given curve y = g(x).

Remark: By identifying the curve y = g(x) with the surface of a mirror and specializing the functional F to

the travel time of light, one can thus derive the law of reflection for light.

Ezxample 7.8: Inequality Constraint. Find a curve that extremizes

that is prohibited from entering the interior of the circle

(z —a/2)* +y* = b*.

Ezample 7.9: An example to caution against simple-minded discretization. (Due to John Ball). Let

Flu} = [ (@) = (0 (@) e

for all functions such that u(0) = 0,u(1) = 1. Clearly F{u} > 0. Moreover F{a} = 0 for u(z) = x'/3.
Therefore the minimizer of F{u} is @(x) = x/3.

Discretize the interval [0, 1] into N segments, and take a piecewise linear test function that is linear on
each segment. Calculate the functional F' at this test function, next minimize it at fixed IV, and finally take

its limit as N tends to infinity. What do you get? (You will get an answer but not the correct one.)

To anticipate this difficulty in a different way, consider a 2 element discretization, and take the continuous

test function
cx for 0<zx<h,
ui(x) = (i)

a(x) for h<z<l.

Calculate F{u} for this function. Take limit as h — 0 and observe that F{u} does not go to zero (i.e. to

Fiay).
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Ezxample 7.10: Legendre necessary condition for a local minimum: Let

1
Fle} = [ flaosend'+e)de
0
for all functions n(x) with 7(0) = n(1) = 0. Show that
1
F"(0) = / {Foom® +2f o5’ + foro (')} da.
0
Suppose that F”(0) > 0 for all admissible functions 7. Show that it is necessary that

fos (2, 0(x),¢'(x)) >0  for 0<z<1.

Example 7.11: Bending of a thin plate. Consider a thin rectangular plate of dimensions a x b that occupies
the region A = {(z,y) | 0 < 2 < a, 0 < y < b} of the z,y-plane. A distributed pressure loading p(z,y)
is applied on the planar face of the plate in the z-direction, and the resulting deflection of the plate in the
z-direction is denoted by w(x,y). The edges x = 0 and y = 0 of the plate are clamped, which implies the
geometric restrictions that the plate cannot deflect nor rotate along these edges:

0
w =0, 2y on z=0,0<y<b,
ox .
Jw (i)
w=0 —=0 on y=0, 0<2x<a;
Ay

the edge y = b is hinged, which means that its deflection must be zero but there is no geometric restriction
on the slope:
w =0, on y=b, 0<z<a; (ii)

and finally the edge x = a is free in the sense that the deflection and the slope are not geometrically restricted

in any way.

The potential energy of the plate and loading associated with an admissible deflection field, i.e. a function

w(z,y) that obeys (i) and (i) is given by

D Pw  Pw\’ 0w *w Pw \’
o{w} = B} /A l(w + 8y2) —2(1-v) (W@yQ - (axay) dxdy —/A pw drdy. (i)

where D and v are constants. The actual deflection of the plate is given by the minimizer of ®. We are asked

to derive the Euler equation and the natural boundary conditions to be satisfied by minimizing w.

Answer: The Euler equation is

0*w O*w O*w P
-y 2 42— 2 0 b i
Ozt + 0x20y>? - Ozt D SE<G USyY<D, (iv)

and the natural boundary conditions are

2 2
%—i—u%z& on y=b, 0<z<aq; (v)
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and 0? 0? 3 o3
w w w w

I/a—y2 93 0, on x=a, 0<y<b; (vi)

Example 7.12: Consider the functional

oy = [ [(@2 =1+ s, o0) =o01) 0. ()

and determine a minimizing sequence ¢1, ¢a, @3, ... such that F{¢;} approaches its infimum as k — oo. If

the minimizing sequence itself converges to ¢, show that F/{¢.} is not the infimum of F.

Remark: Note that this functional is non-negative. If the functional takes the value zero, then, since its
integrand is the sum of two non-negative terms, each of those terms must vanish individually. Thus we must
have ¢/(x) = £1 and ¢(x) = 0 on the interval 0 < 2 < 1. These cannot be both satisfied by a regular

function.

Eol e

¢r(z) = —nh o) =—2+(n+1)

M /\

h nh (n+1)h

Figure 7.28: Sawtooth function ¢ (z) with k local maxima and linear segments of slope =+1.

Let ¢ (x) be the piecewise linear saw-tooth function with k-local maxima as shown in Figure 7.28; the
slope of each linear segment is +1. Note that the base h = 1/k and the height is h/2. Thus as k increases
there are more and more teeth, each of which has a smaller base and smaller height. Observe that the first
term in the integrand of (i) vanishes identically for any k; the second term, which equals the area under the
square of ¢y approaches zero as k — oco. Thus the family of saw-teeth functions is a minimizing sequence
of (i). However, note that since ¢x(z) — 0 at each fixed = as k — oo the limiting function to which this

sequence converges, i.e. ¢(z) = 0, is not a minimizer of (i).



