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More about this document 
Summary: 

Neutron movement is modelled herein as a diffusion process.  Mono-energetic neutrons are used 
for illustration purposes.  Analytical solutions of the neutron distribution are sought for some 
simple cases involving fixed sources. 
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1 Introduction 
 
1.1 Overview 
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Figure 1 Course Map 

• We will consider one speed diffusion 
• This is a simple model that illustrates many concepts without too many complications. 
• Will represent neutrons of energy range 10-3 to 107 eV by one speed! 
• Itinerary: 

- Derivation of balance equation 
- Fick’s law and its limitations 
- B.C. 
- Analytical solutions for non-multiplying media 
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1.1 Learning Outcomes 
 
The goal of this chapter is for the student to understand: 

 
• physical process of diffusion of neutrons 
 
• limitations of diffusion 

 
• the neutron balance equation 

 
• analytical solutions to the one speed neutron diffusion equation 

 
• boundary condition rationale 
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2 Why Diffusion 
 
Movement of neutrons is similar to movement of gas particles.  Transport theory provides the 
general transport equation or the Boltzmann equation.  This is good material for graduate courses 
and as a means of providing a unified approach from which the many approximations can be 
derived.  However, much practical reactor design work is done using a simplification called 
diffusion theory.  Once the general principles have been covered, the many ideas can be unified. 
 It turns out that it is better to go from the particular to the general rather than from the general to 
the particular when learning this material; it doesn’t strain the mind as much as it is much more 
conclusive to obtaining a feel for the subject.  
 
One velocity (i.e. speed) neutrons are considered for the moment. 
 

3 Interaction Rates and Neutron Flux 
 
Interaction rate = I Σt for beam of mono-energetic neutrons of intensity I neutrons/cm2 – sec hitting a 
target of cross section, Σt. 
 
Since neutrons do not interact with one another, if there is more than one beam, the interaction 
rate is 
 
(IA + IB + IC …)  Σt  interactions/cm3 - sec 

 
 IB 
 
 
 IA 
 
 
 
 
 
 IC 
 

Figure 2 Superposition of interactions 
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Interactions in a nuclear reactor occur in a similar manner.  The neutrons can move in any 
direction.  We define the neutron density function: 
 

 
       

    
n(r , ω) generalized angular vector 

generalized space coordinate (vector) 
 
n(r, T) = # of neutrons/cm3 at r whose velocity vector 
lies within the differential solid angle, d Ω about the 
direction T. 
and                                                  

 n( ) = n ( , ) d Ω4π∫r r ω
 
Thus, a differential beam of intensity d I (r, T) is: 

N
utron speed

v  d 
ne

d I( , ) = n ( , ) Ωr ω r ω  

 
 
 

r 

T 

dΩ 

We define the interaction rate dF (r, T): 
 

Figure 3 Differential beam 

dF (  , ) = Σ  dI (  , )tr ω r ω  

 
 F( ) = dF(  , )  = Σ  v n (  , ) dΩ 4πt∴ ∫ ∫r r ω r ωω  

 
 
 

= v Σ  n ( )t r

F( ) = Σ   ( )t φr r  

Where the neutron flux, φ = nv as previously defined.  This can easily be generalized to include 
energy dependence as follows: 
 
N(r, E, T) d E d Ω = # of neutrons/cm3 with energy (E, E + dE) moving in a solid angle, d Ω, 
about T. 
 
Hence: 

n( , E) dE = n( , E, ) d d E 4π Ω∫r r ω  
and 

n( ) = n( , E, ) d d Eo 4π
∞ Ω∫ ∫r r ω  

and 
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F( , E)dE =  (E)n( , E)v(E)dEtΣr r  

        = number of interactions occurring per cm3 per sec at  
r in the energy interval dE. 

        =  (E) (  , E)dEt φΣ r  

Finally, 
          F( ) =  (E) (  , E)dE o t

∞Σ∫r rφ  

 
Thus knowing the material properties, Σt, and the neutron flux, φ, as a function of space and 
energy, we can calculate the interaction rate throughout the reactor. 
 
We can similarly arrive at interaction rates for scattering, etc. 
 

F (r) =   (E) ( , E)dE     , etc.oS S φ∞ Σ∫ r  

 
Note:  φ, neutron flux, is a scalar; whereas, most fluxes (ie. heat flux) are vectors. 
 
φ is not the flow of neutrons.  There may be no flow of neutrons, yet many interactions may 
occur.  The neutrons move in a random fashion and hence may not flow.  φ is more closely 
related to densities.  Just as mass and heat flow when there is a density difference in space, 
neutrons will exhibit a net flow when there are spatial differences in density.  Hence we can have 
a flux of neutron flux! 
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4 Neutron Current Density 
 
This flux of neutron flux is called the current density. 

≡J  neutron current density (vector quantity) 
 
We can redefine the intensity of neutrons in the vector sense: 

N
true velocity (vector)

d ( , ) = n( , ) dΩI r ω r ω v  

 
n( , ) d    4π≡ Ω∫J r ω v ⇐        Physical significance = net motion or flux 

v

xθ

Figure 4 Neutron current 

 
Jx = x component = n( , )v cos θ d4π x Ω∫ r ω  

 = number of neutrons passing through the end of the cylinder in the x direction. 
 
In general Jn =   = flow of neutrons in direction normal to n.   J ni
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5 Equation of Continuity 
 
Rate of change of neutron density = production rate –  absorption rate – leakage rate 
 

Rate of change of neutron density = n( , t)d , where  is the volume
t ∀

∂
∀ ∀

∂ ∫ r  

 
Production rate = S( ,t) d ,  where S is the source distribution function

∀
∀∫ r  

 
Absorption rate =  ( ) ( ,t)da∀

Σ ∀∫ r rφ

 
Leakage rate = 

A
( , t)  dA, where  is the current and A is the surface area bounding ∀∫ J r n Ji  

 n = normal to area A. 
Thus,  

 
A

n( ,t) d  = S( ,t) d  Σ ( ) ( ,t)d ( ,t) dAat ∀ ∀ ∀

∂
∀ ∀− ∀−

∂ ∫ ∫ ∫ ∫r r r r J r iφ n  

But Gauss’ Divergence theorem says: 

A
( , t)  dA =   (  , t)d

∀
∇ ∀∫ ∫J r n J ri i  

Thus, by dropping the integral over ∀ : 
1 ( , t) n( ,t) = s( ,t)  Σ ( ) ( ,t) ( ,t)av t t
∂ ∂

≡ − −∇
∂ ∂

r r r r r Jiφ rφ    (5.1) 

 
This is the Equation of Continuity.  It is very important to reactor theory. 
 
We will show that D − ∇J � φ .  Thus we have that ( ,t) + D ( ,t)−∇ ∇ ∇J r ri � i φ  
 

For steady state,  = 0
t
∂
∂

,   ( ) + ( )  ( ) - s(r) = 0a φ∇ ΣJ r r ri  

 
For space independence:    ∇ J = 0, etc.: 

 
dn(t)  = s(t) Σ (t)adt

φ∴ −  

 
Note: Delayed precursors are neglected for the time being but are easily incorporated. 
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6 Fick’s Law 
 
We apply Fick’s Law (from diffusion in liquids, gases, etc.) to the neutrons in order to supply a 
relationship between J and known quantities. 

6.1 Derivation 
 
Fick’s Law was developed under the following assumptions: 
 

1. The medium is infinite; 
2. The medium is uniform, ie.  ( );Σ ≠ Σ r  
3. There are no neutron sources in the medium; 

 

4. Scattering is isotropic in the laboratory coordinate system; 
 

5. The neutron flux is a slowly varying position of position; 
 

6. The neutron flux is not a position of time. 
 
These assumptions can be restrictive, but we shall see that they can be relaxed to some extent.  
Let’s consider the components of J in a Cartesian coordinate system: 

z

y

x

z

y

scattered neutrons

FicksLaw.fla

r

dAz

θ

Φ

θ

d     (solid angle)Ω

 
Figure 5 Scattered neutrons 

We consider the number of neutrons being scatter through the origin in the x-y plane from d∀  at 
at r.  These neutrons must have been scattered since we have assumed no sources. ∀
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The number of collisions/sec at r is: 
        slowly varying 

Σ  ( ) ( )d  = Σ  ( )ds sφ φ∀ ∀r r r  
 

assumed space independence 
Since the scattering is isotropic: 

 
Zcos θ dA dΣ  ( )s 24 r

∀rφ
π

 neutrons/sec 

Head towards dAz from d∀  at r 
 

But some are removed en route ( .  (Note: As usual, we assume no buildup factor.) 
-Σ rte )

 

Thus   
cos  dA-Σtr ( )(e ) ds 24 r

ZΣ
θ

φ
π

∀r  pass through the area dAz. 

If we write: d  r   (= (r S2  Sin θ dr dθ d∀ = Φ in θ d )  rd θ  dr)Φ i i  

z

y

x
FicksLaw2.fla

r

θ

Φ

θ

dΦ

d

∀d

Figure 6 Fick's Law shell integration 
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We can integrate to get the total flow: 
 
 total flow downward through 
 

2 π/2Z

Z Z0 0  = 0

Σ dA -Σ r -s t e (r)cos sin dr d  d   J  d
4π

∞

Φ= =
Φ =∫ ∫ ∫r

π

θ
φ θ θ θ A  

 
Since φ (r) is a slowly varying function of space: 

( ) =  + x + y + zo x yo oo z
φ φ φφ φ  ∂ ∂ ∂   

    ∂ ∂ ∂    
r  

 
and      x = r Sin  Cos ,  y = r Sin  Sin , z = r Cosθ θ θΦ Φ  
 

Thus:                              
Σ  Σs o sJ   +  Z 24Σ z6Σ ot t

∂ − =  ∂ 

φ φ  

Similarly: 
Σ  Σs o sJ     Z 24Σ z6Σ ot t

φ φ∂ + = −  ∂ 
 

Thus: 
ΣaJ J J    Z Z Z 2 z3Σ otnet flow

∂ + −= − = −  ∂ ��	�

φ  

net flow 
Generalizing: 

� Σsi J + j J  + k J    x y z 2 z3Σ ot

∂ = = −  ∂ 
J � � φ  

In words:  The current density J is proportional to the negative of the gradient of the neutron flux 
(n, v). 

We define 
2

ΣsD  
3Σ

t

=  , thus = D  φ− ∇J  

     = diffusion coefficient 
 
The physical interpretation is similar to fluxes of gases.  The neutrons exhibit a net flow in the 
direction of least density.  This is a natural consequence of greater collision densities at positions 
of greater neutron densities. 
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6.2 Validity of Fick’s Law 
 
We re-evaluate each assumption in turn: 
 
1. Infinite medium.  This assumption was necessary to allow integration over all space but 

flux contributions are negligible beyond a few mean free paths due to the factor,   

Thus as long as we are at least a few mean free paths from the reactor extremities, all is 
okay.  Corrections can be made at the reactor surfaces as shown later in this chapter.   

-Σ rte .

 
2. Uniform medium.  A non-uniform medium (  requires a re-evaluation of the 

derivation of Fick’s Law.  Now the interaction rate, Σ

Σ  = Σ  ( ))s s r

S φ, is a function of space due to both 
φ and Σ variations in space.  Detailed calculations show, however, that the extra current (ie. 
scattering) contributions caused by a locally larger ΣS are exactly cancelled by larger 

attenuations ((e
-Σ r -(Σ + Σ )rt s a= e ) iff (if and only if) or /s a s t∑ >> ∑ ∑ ∑  = constant. 

It should be noted however that ΣS (r) can lead to large values of ( )∂
∂

r
r
φ  which violates 

assumption (e). 

 
3. Sources.  As per assumption (a), we can get away with sources as long as they are more 

than a few mean free paths away. 
 
4. Isotropic scattering. Anisotropic scattering can be corrected for by detailed 

considerations of transport theory in which D is re-evaluated: 
 

Σ  + Σ /DΣ 1 + 3DΣ  µD t as s ln  
2 Σ 1 + 3DΣ  µ Σ   Σ /Da st a

 
  =
 −
 

 

Where 
µ cosθ≡   (average of the scattering angle in the lab system) 

       2
3A

=  

Expanding the equation in D, above: 
1D = 

3Σ  (1  µ)(1  4Σ /5Σ +...) t a− − t
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= 1
3Σ  (1  µ)t −

 for Σa /Σt <<1 

λ tr D = 
3

∴  as previously defined in the supplemental material at the end of the chapter 

on Basic Definitions and Perspectives 
 

5. Slowly varying flux.  Further expansions of ϕ are necessary to account for large variations 
in φ (r).  It can be shown that 2nd order terms cancel and that third order terms are not 

important beyond a few mean paths.   Therefore, provided 
2d

(r)2d

φ

r
 is small over a few 

mean free paths, all is okay.  Large variations in φ occur when Σa is large (compared to 
ΣS).  

6. Time - dependent flux.  The time it takes a slow neutron to traverse 3 mean free paths ( in 
cm.) is 

5
5

3 3x1cmst 1
v 2x10 cm / s

−.5x10 s.
λ

∆ ∼ ∼ ∼  

If is changed at 10%/s (a high rate), then  

 6x t 0.1 t 1.5x10 .
t

−∆φ ∆φ φ
= ∆ ∆ =

φ ∆
∼  

This is a very small fractional change of flux amplitude in the time it takes a neutron to 
move a significant physical distance. 
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7 Question:  What about the Conservation of Momentum and 
Energy? 

 
Question:   
 
This neutron balance equation: 

n( , t) s(r , t) Σ (F)  ( , t)at
φ∂

= −
∂
r r +  D( )  ( , t)φ∇ r ri  

Is similar to the conservation of mass in fluids: 
ρ S   ρv
t

∂
= −∇

∂
i  

Why do we not also consider the conservation of momentum and energy? 
 
Solution: 
 
Conservation of momentum and energy is used on a neutron-nucleus interaction level.  Recoils, 
etc. lead to cross sections, which are input into the neutron balance equation.  Compare this to 
fluid mechanics.  The neutrons don’t interact with each other but fluid particles do.  Hence the 
fluid mass, energy, and momentum equations are tightly linked.  The neutrons affect each other 
only via temperature changes, etc., brought about by fissioning, whereas, fluid particles shear off 
each other and with the walls.  This is a fundamental difference. 
 
In short: 
 

1. Because of treatment of Σ as effective area of interaction 
 

2. Too complicated. 
 

3. Neutrons do not interact with each other! 

E:\TEACH\EP4D3\text\3-diffusion\diffusion-r1.doc  2004-08-17 



Reactor Physics: The Diffusion of Neutrons 16  

8 The Diffusion Equation 
 
We return now to the neutron balance equation: 

n( ,t) = s( ,t)  Σ ( ) ( ,t)  ( ,t)at
∂

− φ −∇
∂

r r r r J ri    (8.1) 

and substitute 
= D ( ,t)− ∇φJ r  

to give 

n( ,t) = s( ,t)  Σ ( ) ( ,t)+ D ( ,t)at
∂

− φ ∇ ∇φ
∂

r r r r ri  

If D = constant w.r.t. r then (using n v = φ) 
2

a
1  ( , t) = S( ,t)  Σ ( ) ( , t) + D ( ,t)
v t

∂
φ − φ ∇

∂
r r r r φ r ←Neutron diffusion equation 

For steady state 1  ( ,t) = 0
v t

∂
φ

∂
r .  This steady state diffusion equations is also known as the 

“scalar Helmholtz equation”.  If s (r) = 0 as well, it is sometimes called the “buckling equation” 
in analogy to the equation governing the buckling of beams in strength of materials.  It is also 
known as the “wave equation” in analogy to vibrating strings, etc. 
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9 Boundary Conditions for the Steady State Diffusion Equation 
 
For this type of equation the following applies: 
 
On the boundaries of a region in which φ satisfies the differential equation, either φ, or the 
normal derivative of φ, or a linear combination of the two must be specified.  Both φ and its 
normal derivative cannot be specified independently. 
 

9.1 Boundary Conditions at Surfaces 
 
One type of boundary condition occurs at surfaces, ie., interfaces between dense and sparse 
media recall that Fick’s Law (and hence Diffusion Theory) is not valid near a surface.  Therefore 
special consideration must be given. 
 
We assume a boundary 
condition at the surface of the 
form 

Reactor Vacuum

distanced

φ

diffusion theory

transport theory

dφ/dn=slope=-φ/d

Boundary1.fla

 
1 d 1  = 

dn d
φ

−
φ

 

 
where d = extrapolated length 

and d
dn
φ = normal derivative at 

the surface.  Note that this 
equation satisfies the above 
condition regarding boundary 
condition forms. 

 

Figure 7 Extrapolated length 

Imposing this B.C. on a non re-entrant surface (one in which neutrons cannot re-enter once they 
have left the medium) gives: 
 
d = 0.71 λtr for planar surfaces 
 
from transport theory.  It can be shown that this B.C. gives an accurate value of φ for interior 
points but not near or at the surface. 
 

E:\TEACH\EP4D3\text\3-diffusion\diffusion-r1.doc  2004-08-17 
In view of the fact that φ = 0 at the extrapolated length and since d << system dimensions in 



Reactor Physics: The Diffusion of Neutrons 18  
practical situations, the above B.C. is replaced with little error by: 
 
The solution to the diffusion equation vanishes at the extrapolation distance beyond the edge of a 
free surface. 
 
The assumptions inherent in the above should be carefully noted. 

Since D = diffusion coefficient = 
λ tr
3

 and D ~ 1 cm,  

 d = .71 λ  ~.71  3 ~ 2 cm << reactor size (meters)tr∴ ×  

 
  (surface)  0∴ φ ≈  

 

9.2 Boundary Conditions at an Interface 
 
At an interface, there is no accumulation of neutrons.  Therefore: 

 
(JA)n = (JB)n where n=normal direction 

 
ie.  the neutron current in region A = that of B 
 
Also, n (r, t, …) and φ (r, t, …) are continuous across the interface. 
 

9.3 Other Conditions 
 
Physical requirements: 
 

1. A negative or imaginary flux has no meaning.  Hence:  the solution to the 
diffusion equation must be real, non-negative and single valued in those regions 
where the equation applies.  

 
2. φ  ≠ ∞ except for singular points of source distributions.  These two constraints 

serve to eliminate extraneous functions from the solution. 
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9.4 Summary of Boundary Conditions 
 

1. φ = φ 
at an interface 

2. J = J 
 

3. φ defined 
 at a surface 

4. J = defined 
 

5. φ finite 
 

6. φ > 0 and real 
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10 Elementary Solutions of the Steady State Diffusion Equation 
 
We have previously shown the Steady State Diffusion Equation to be 
 

20  S( )  Σ ( )  ( )+D ( )a= − φ ∇ φr r r r  

 

Defining D2 2L  =   [cm ];   L diffusion length
Σa

≡ ≡  

 12  = 2 DL

S
∇ φ− φ −      (10.1) 

10.1 Infinite Planar Source 
δ(x) = 0,  x  0≠  

Source, S neutrons/m2-s
x

φ

PlanarInfinite1.fla

 
 
 

b

a
δ (x) dx = 1,  a < 0 < b

= 0 otherwise
∫  

 
 

 
 
 
 

 

Figure 8 Flux distribution for a planar source 

Equation (10.1) reduces to: 
2d (x) 1 S (x)= 2 2 Ddx L

φ (x)δ
− φ −    (10.2) 

and for x ≠ 0 
2d (x) (x) = 02 2dx L

φ φ
−     (10.3) 
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Consider the planar source (as shown in figure 9) 

N0
current from either end

lim  J(x) =
→x

-x/L x/L(x) = A e  + C eφ

-x/L (x) = A e , x > 0

S  
2

    

 (10.4) 

PillBox.fla

x x

JJ

 
 
The solution to Equation (10.3) has the following form: 
 

    (10.5) 

 
For x > 0, C = 0, otherwise φ is non-finite as x → ∞ 
 

    (10.6) ∴ φ

Figure 9 Current "pill box" 

From Fick’s Law d DA DA-x/LJ  = D  = + e  =  = 0 dx L L 20 0

φ
−

S  

SL A = 
2D

∴  

SL -x/L (x) =  e          x > 0
2D

∴ φ     (10.7) 

 
 

Similarly for x < 0, giving 
- x /LSL(x) =  e

2D
φ .  Recall that this not valid at or near x = 0. 

 
This solution should make physical sense to you.  The flux decays exponentially away from the 
source as it is absorbed by the medium.  This agrees with the beam absorption laws that we have 
previously derived. 
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10.2 Point Source in an Infinite Medium 
 
For a point source, it is appropriate to work in spherical 
coordinates: 

surface area = 4πr2

r

Sδ(r)

Source1.fla

2
2 2
1 d d 1r

dr drr L
φ
− φ = δS (r)  (10.8) 

where the source, S, is at r = 0.     

 

 Figure 10 Point source 

Now 
24 r J(r) S (r) Sπ = δ =  

 2
r 0

Slim r J(r)
4δ →

∴ =
π

 (10.9) 

We define a change of variable 

 
2

2 2
ω 1ω=r - ω=0

r L
∂

φ⇒
∂

 (10.10) 

and, therefore, as before: 
  -r/L r / L=Ae Ceω +
or 

 
-r/L r/Le e=A +C   and  C=0 as before.
r r

φ  

Now, 

 r / L
2

d 1 1J=-D DA e
dx rL r

−φ  = + 
 

 

 2 r / L 0 / L
r 0

r 0

r Sr J DA 1 e DAe DA
L 4

− −
=

=

 ∴ = + = = =  π 
 

 r / LS SA= ,   = e
4πD 4 Dr

−∴ ∴ φ
π

 

Note: In the above two cases, as in most reactor cases, the flux, φ, is proportional to the source 
strength, S. 
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10.3 Systems with a Free Surface 
 

Reactor

Source, S neutrons/m2-s

extrapolated 
length

a/2

φ

PlanarFinite1.fla

a/2

Figure 11 Planar source in a finite slab 

 
Consider an infinite slab of thickness a-2d, where d=0.71 λtr, hence φ(±a/2) = 0.  The governing 
1 speed neutron diffusion equation in steady state is  

2d (x) 1 S (x)= 2 2 Ddx L

φ (x)δ
− φ −  

We try a solution of the form: 
-x/L x/L(x) = A e  + C eφ  

For x>0, 

 

( )

( )

a / L a / La
2

a / L

x / L (x a) / L

0 Ae Ce

C Ae

A e e

− +

−

− + −

φ = = +

∴ = −

∴φ = −

 

As before 

 

x / L (x a / L)
x 0

a / L

d S DAJ D e e
dx 2 L

DA 1 e
L

− −
=

−

φ  = − = = + + 

 = + 
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 ( )1a / L x / L (x a) / LSL 1 e e e
2D

−− − − ∴φ = + −   
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From symmetry, we conclude 

( )
( )

( )

1 x / L ( x a) / La / LSL 1 e e e
2D

sinh a 2 x / 2LSL
2D cosh a / 2L

− − −− ∴φ = + − 

 − =
 

We could have started with 
  A cosh(x / L) Csinh(x / L)φ = +
to get the same answer. 
 
Lamarsh suggests using hyperbolic trial solutions for finite media and exponentials for infinite 
media for the following reasons: 
 

1. Sinh x has a zero – good for finite media 
2. at x =  ∞  - good for infinite media xe− → 0
3. sinh x and cosh x  →∞   at x = ∞ - bad for infinite media 
4. cosh x is an even function – good for symmetry. 

 
When working with distributed sources, solutions usually are: 

1. Cosine, sine for Cartesian coordinates 
2. Bessel for cylindrical geometry. 

 

Math aside:  

 

x / L (x a )L a / 2L x / L (x a ) / L

a / L a / 2L a / 2L

(a 2x) / 2L (a 2x) / 2L

e e e (e e )
1 e e e
e e sinh[(a 2x) / 2L)]

2cosh(a / 2L) cosh(a / 2L)

− − − −

− −

− −

− −
=

+ −
− − −

= =
 

 

 
x x x xe e e esinh x , cosh x

2 2

− −− +
= =  
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10.4 Multi-region Problems 
 
Consider the infinite slab of the previous medium surrounded by a second medium of infinite 
thickness. 

Region 1

Source, S neutrons/m2-s

Region 2 Region 2

physical
interface

physical
interface

a/2

φ

Planar2Region1.fla

a/2

We have: 

 

2
1 a

1 22 2
1

2
2 a

2 22 2
2

d 1 0 for x , x 0
dx L

d 1 0 for x
dx L

φ
− φ = ≠

φ
− φ =

≺

;
 

Boundary conditions 
 
1. 2  finite as xφ = →∞  

2.  
x 0

Slim J(x)  (source condition, normalization)
2→

=  

3.  ( ) ( )1 2a / 2 a / 2  continuity of flux at the interfaceφ ± = φ ±

4. 1 2
1 2

x a / 2 x a / 2

d dD D  continuity of current at the interface
dx dx=± =±

φ φ
=  

 
We try: 

  
2 2

1 1 1 1
x / L x / L

2 2 2

(x) A cosh(x / L ) C sinh(x / L )

(x) A e C e−

φ = +

φ = +

1

Thus we have 4 unknowns and 4 boundary conditions. 
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Immediately:  C2=0 from B.C. (1) above. 
From (2): 

 
1 1 1 1x / L x / L x / L x / L

1 1 1 1 1
1

1 10 x 0 x 0

S d D A e e D C e eJ(0) D
2 dx L 2 L 2

− −

= =

  φ − +
= = − = − −


   
      

 

 
1

1
1

SLC
2D

∴ = −  

 
From B.C. (3) 

 2a / 2L1
1 2

1 1 1

a SL aA cosh sinh A e
2L 2D 2L

−− + =  

From B.C. (4) 

 2a / 2L1 1 2 2

1 1 1 2

D A a S a D Asinh cosh e
L 2L 2 2L L

−− + =  

2 equations in 
2 unknowns 
 
Solve for A1 
and A2 

Solving gives: 

 1 1 2 1 2 1 1
1

1 2 1 1 1 2 1

SL D L cosh(a / 2L ) D L sinh(a / 2L )A
2D D L cosh(a / 2L ) D L sinh(a / 2L )

+
=

+
 

 
1a / 2L

1 2
2

2 1 1 1 2 1

SL L eA
2 D L cosh(a / 2L ) D L sinh(a / 2L )

=
+

 

Therefore, we know φ1 and φ2 . 
 
Notes: 

1. φ1 and φ2   are proportional to S. 
2. It can be shown that φ is continuous at ±a/2 and that dφ/dx is not 

continuous but D dφ/dx is.  This results from the boundary 
conditions imposed.  Only if D1=D2 is continuous. 
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11 Diffusion Length 
 
We have shown that, for a point source of neutrons, S at r =  0, 

 
r / LSe( ) , where L is the characteristic length for fall off of 

4 rD

−
φ =

π
r φ  

The number of neutrons absorbed between r and  r+dr is: 

 

r / L
2a

a

r / L r / La
2

SedN (r)dV 4 r dr
D4 r
SSe rdr re dr

D L

−

− −

∑
= ∑ φ = π

π
∑

= =
 

Thus the probability of interaction (absorption) is  

 r / L
2

dN rp(r)dr e dr
S L

−= =  

 r / L n ax
2 n0 0 0
r np(r)dr e dr 1  (recall that x e dx )

L a
∞ ∞ ∞− −

+1
!

∴ = = =∫ ∫ ∫  

ie, all the neutrons are absorbed eventually. 
 
The second moment of is defined: 

 
2 r / L

2 2
20

r rer d
L

−∞
= =∫ r 6L  

Thus 
2 21L r

6
=  

neutron
emitted

interaction

neutron 
absorbed

r

DiffusionLength1.fla

That is, the diffusion length 
 average of the 

square of crow-flight distance of the 
neutron. 

2
aL D / (1/ 6)= ∑ = x

 
L2 is often called the diffusion area. 
 

We define 2 1L
6

≡

a∑

2r . For the 

approximation of diffusion theory 
as well. 2L D /≡

 
 

Figure 12 Diffusion Length 
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