

Outline

- How small is small?
- What are we trying to learn?
- How we study particles?
- What does Brigitte do all day?

Élémentaire! Mon cher Watson.

Particle physicists seek to understand what are the fundamental building blocs of Nature and how they interact to make up our Universe.

10⁻⁷ m virus

virus de l'influenza

10⁻⁷ m virus

10⁻⁹ m

molecule

10⁻⁷ m virus

10⁻⁹ m molecule

10⁻¹⁰ m atom

10⁻¹⁴ m nucleus

10⁻¹⁵ m proton/neutron

<10⁻¹⁸ m

quarks

What is matter made of?

The ingredients of the Univers

Matter particles (6 quarks, 6 leptons)
Force carrier particles (4)

What are we trying to understand?

- Origin of mass
- No unified description of all forces including gravity
- What is the Dark matter of the Univers?

What are we trying to understand?

"What's the matter with antimatter?"

Matter behaves slightly differently than anti-matter (CP violation)

How do we study elementary particles?

Use a giant "microscope": a particle accelerator

How do we use a particle accelerator?

Instructions:

- 1) Fill accelerator with a large number of particles that travel in opposite directions.
- 2) Accelerate these particles to the highest possible energy.
- 3) Bring beams of particle traveling in opposite directions into collision.
- 4) Take "pictures" of what comes out of these collisions
- 5) Analyze billions of "pictures" to study how nature works.

Why does that work?

Particle collisions

During a collision, the kinetic energy of colliding particles is converted to mass to form new massive secondary particles. This is how we can create unstable massive particles and study their properties.

Particle Accelerators

Tevatron

- Location: Chicago, USA
- Size: 5 km circumference
- Operation: 1992-now
- proton-antiproton collisions
- Collision energy = 2 TeV
- # collisions / s = 3 MHz
- 99.999956% speed of light
- 60,000 turns / s

Large Hadron Collider (LHC)

- Location: Geneva, Switzerland
- Size: 27 km circumference
- Operation: 2007-future
- proton-proton collisions
- Collision energy = 14 TeV
- # collisions / s = 1 GHz
- 99.999991% speed of light
- 11,000 turns / s

How to "see" what happens in a collision?

We use a fancy camera that takes 3D pictures: particle detector

A "picture" of a collision

A "picture" of a collision

Particle Identification

Electron

Muon

Quark

Neutrino

Bottom quark

Putting it all together

Animation

Examples from my research

1- Detector construction/commissioning:

ATLAS trigger commissioning

2- Analysis of data

Top quark studies using the DZero experiment

The ATLAS Detector 25 m 46 m

Weight = 7000 Tons

ATLAS Trigger System

1 billion collisions per second

Trigger System

Dr Chris Potter

Marc-Andre Dufour

Dr Cibran Santamarina

200 "photos" per second

3.2 PB data / year (4.6 Million CD = 695 year of music)

Data Analysis

FERMILAB-PUB-06/475-E

Evidence for production of single top quarks and first direct measurement of $|V_{tb}|$

The D0 Collaboration presents first evidence for the production of single top quarks at the Fermilab Tevatron $p\bar{p}$ collider. Using a 0.9 fb⁻¹ dataset, we apply a multivariate analysis to separate signal from background and measure $\sigma(p\bar{p} \to tb + X, tqb + X) = 4.9 \pm 1.4$ pb. The probability to measure a cross section at this value or higher in the absence of signal is 0.035%, corresponding to a 3.4 standard deviation significance. We use the cross section measurement to directly determine the CKM matrix element that describes the Wtb coupling and find 0.68 < $|V_{tb}| \leq 1$ at 95% C.L. within the standard model.

PACS numbers: 14.65.Ha; 12.15.Ji; 13.85.Qk

First evidence for single top quark

Gustavo Kertzscher

Dr Chris Potter

Camille Belanger-Champagner

Recreating the Early Universe

13.7 billion years

NOW

1 billion years

Stars form

300,000 years

Atoms form

180 seconds

Nuclei form

10⁻¹⁰ seconds Protons/Neutrons form

 $1x10^{-12}$ s

10⁻³⁴ seconds?

Quarks differentiate

?? Before ??

LHC Tunnel

Centre Européen de Recherche Nucléaire

ATLAS International Collaboration

Alberta Carleton

McGill

Montréal Regina Simon Fraser Toronto TRIUMF

UBC

Victoria

York

1850 Physicists & engineers150 Universities & laboratories34 Countries

