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1 Introduction

These lectures were presented at the CERN-CLAF school imnfgiaé, Argentina in Feb. 27th-
March 12th. The audience was composed to a large extent gresiin experimental High Energy
Physics with an important minority of theorists. In neaiythours it is quite difficult to give a
reasonable introduction to a subject as vast as Quantumh Hedory. For this reason the lectures
were intended to provide a review of those parts of the stiltyebe used later by other lectur-
ers. Although a cursory acquaitance with th subject of Quarftield Theory is helpful, the only
requirement to follow the lectures it is a working knowledgeQuantum Mechanics and Special
Relativity.

The guiding principle in choosing the topics presentedrfapaserve as introductions to later
courses) was to present some basic aspects of the theopréisant conceptual subtleties. Those
topics one often is uncomfortable with after a first intratiturc to the subject. Among them we have
selected:

- The need to introduce quantum fields, with the great conigléxis implies.

- Quantization of gauge theories and the role of topologyuantum phenomena. We have in-
cluded a brief study of the Aharonov-Bohm effect and Dir&@xplanation of the quantization
of the electric charge in terms of magnetic monopoles.

Quantum aspects of global and gauge symmetries and tlesiKing.
Anomalies.
The physical idea behind the process of renormalizatiaquahtum field theories.

- Some more specialized topics, like the creation of partiyl classical fields and the very
basics of supersymmetry.

These notes have been written following closely the origprasentation, with numerous
clarifications. Sometimes the treatment given to some sthfes been extended, in particular the
discussion of the Casimir effect and particle creation lassical backgrounds. Since no group
theory was assumed, we have included an Appendix with awesi¢he basics concepts.

By lack of space and purpose, few proofs have been includstedd, very often we illustrate
a concept or property by describing a physical situationre/hiearises. Full details and proofs
can be found in the many textbooks in the subject, and inqdati in the ones provided in the
bibliography [1-9]. Specially modern presentations, veiych in the spirit of these lectures, can
be found in references [4,5,9]. We should nevertheless wWernmeader that we have been a bit
cavalier about references. Our aim has been to provide yna@gtiot exhaustive) list of reference
for further reading. We apologize to those authors who fastepresented.

Acknowlegments.It is a great pleasure to thank the organizers of the schabiraparticular
Teresa Dova for the opportunity to present this materiad, fan the wonderful atmosphere they
created throughout the school. The work of M.A.V.-M. hasrbpartially supported by Spanish
Science Ministry Grants FPA2002-02037, FPA2005-04823Bd2003-02121.
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1.1 A note about notation

Before starting it is convenient to review the notation us€drough these notes we will be using
the metric = diag (1; 1; 1; 1). Derivatives with respect to the four-vector (ct; =) will
be denoted by the shorthand

@ 1@

= - Zi.x 1.1

¢ @x c@t t (1.1)

As usual space-time indices will be labelled by Greek lstler; ;::: = 0;1;2;3) while Latin
indices will be used for spatial directiong {; ::: = 1;2;3). In many expressions we will use the

notation = (1; %) where *are the Pauli matrices
1 01 . 2 0 i . 3 1 0 .
= 5 = Lo = 1 (1.2)

Sometimes we use of the Feynman'’s slash notatien a . Finally, unless stated otherwise, we
work in natural units = c= 1.

2 Why do we need Quantum Field Theory after all?

In spite of the impressive success of Quantum Mechanics $erdeng atomic physics, it was
immediately clear after its formulation that its relativésextension was not free of difficulties.
These problems were clear already to Schrodinger, whaayfiess for a wave equation of a free
relativistic particle was the Klein-Gordon equation

2
@@—t2 r’+ m? (t;x) = O: (2.1)

This equation follows directly from the relativistic “maskell” identityE 2 = p? + m ? using the
correspondence principle

p ! ¥ (2.2)
Plane wave solutions to the wave equation (2.1) are realdtlied
. o p—
Gr)=e P* = BEWP = with E= I pZ+ m?: (2.3)

In order to have a complete basis of functions, one must decplane wave with botA > 0 and
E < 0. Thisimplies that given the conserved current

@ @ ; (2.4)
its time-component i§° = E and therefore does not define a positive-definite probgliénsity.
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Energy

Fig. 1: Spectrum of the Klein-Gordon wave equation

A complete, properly normalized, continuous basis of sohg of the Klein-Gordon equation
(2.1) labelled by the momentugican be defined as

1 Qe
f (t;X) — ___e ilptt Ip x;
° G 21,
£, (tx) —p—l glet % (2.5)

p \“r (2 )2 o1 . '

P
Given the inner product
Z

h1j.i=1 &’x 1@02 @)12

the states (2.5) form an orthonormal basis

hfy, i = (S g);
hf ,f pi = (S %; (2.6)
hfy f i = O: (2.7)

The wave functions, (t;x) describes states with momentyrand energy given by, =
p?+ m2. On the other hand, the statgs ,i not only have a negative scalar product but they
actually correspond to negative energy states

P
Rof o x) = pl+m?f ,(ix): (2.8)
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Therefore the energy spectrum of the theory satisfies> m and is unbounded from below (see
Fig. 1). Although in a case of a free theory the absence of argtatate is not necessarily a fatal
problem, once the theory is coupled to the electromagnetid this is the source of all kinds of
disasters, since nothing can prevent the decay of any staenission of electromagnetic radiation.

The problem of the instability of the “first-quantized” riastic wave equation can be heuris-
tically tackled in the case of spifiparticles, described by the Dirac equation

i&+ ~ F m  (Gx)=0; (2.9)
where~ and are4 4 matrices
i o it 01
B it o ' 10 7 (2.10)

with *the Pauli matrices, and the wave functiort;x) has four components. The wave equation
(2.9) can be thought of as a kind of “square root” of the Kl&iardon equation (2.1), since the latter
can be obtained as

Yy 2
i—+4+ ~ 7 m i—+4+ ~ F m ;) =

et et e

2

r‘+ m? (=) :(2.11)

An analysis of Eg. (2.9) along the lines of the one presenbmve for the Klein-Gordon
equation leads again to the existence of negative enertgsséad a spectrum unbounded from
below as in Fig. 1. Dirac, however, solved the instabilitpidem by pointing out that now the
particles are fermions and therefore they are subject téi'$anclusion principle. Hence, each
state in the spectrum can be occupied by at most one pasgictbe states with = m can be made
stable if we assume thatl the negative energy states are filled.

If Dirac’s idea restores the stability of the spectrum byadticing a stable vacuum where all
negative energy states are occupied, the so-called Diegadtsdso leads directly to the conclusion
that a single-particle interpretation of the Dirac equati® not possible. Indeed, a photon with
enough energye( > 2m ) can excite one of the electrons filling the negative enetgtes, leaving
behind a “hole” in the Dirac see (see Fig. 2). This hole bebasa particle with equal mass
and opposite charge that is interpreted as a positron, $e ih@o escape to the conclusion that
interactions will produce pairs particle-antiparticle ofithe vacuum.

In spite of the success of the heuristic interpretation afatige energy states in the Dirac
equation this is not the end of the story. In 1929 Oskar Kléimbled into an apparent paradox
when trying to describe the scattering of a relativisticeten by a square potential using Dirac’s
wave equation [10] (for pedagogical reviews see [11, 12})order to capture the essence of the
problem without entering into unnecessary complicationmlestudy Klein’s paradox in the con-
text of the Klein-Gordon equation.

Let us consider a square potential with height- 0 of the type showed in Fig. 3. A solution
to the wave equation in regions | and Il is given by

I(t;X) — e 1Et+1p1x+ Re iE t 1p1x;

i1 (Gx) = Te BHE; (2.12)
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Fig. 2: Creation of a particle-antiparticle pair in the @irgee picture
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Fig. 3: lllustration of the Klein paradox.



where the mass-shell condition implies that

pP— P
;= EZ2 w5  p= € %)? m: (2.13)

The constant® andT are computed by matching the two solutions across the boynda 0.
The conditions ; (t;0) = 1 ¢;0) and@, : (0) = @, 11 (t;0) imply that

2
P R=P1 B

P+ Pt P

At first sight one would expect a behavior similar to the oneoemtered in the nonrelativistic
case. If the kinetic energy is bigger tham both a transmitted and reflected wave are expected,
whereas when the kinetic energy is smaller tligrone only expect to find a reflected wave, the
transmitted wave being exponentially damped within a distaof a Compton wavelength inside
the barrier.

Indeed this is what happensiaf m > . In this case botlp, andp, are real and we have a
partly reflected, and a partly transmitted wave. InthesamgilE m < yande m <V 2m
thenp, is imaginary and there is total reflection.

However, in the case when > 2m andthe energyisintheranyg 2m <E m < ya
completely different situation arises. In this case onesfiliéht botho, andp, are real and therefore
the incoming wave function is partially reflected and pdistimansmitted across the barrier. This is
a shocking result, since it implies that there is a nonvangshrobability of finding the particle at
any point across the barrier with negative kinetic enegy (m vy < 0)! This weird result is
known as Klein’s paradox.

As with the negative energy states, the Klein paradox re$idm our insistence in giving a
single-particle interpretation to the relativistic wawmétion. Actually, a multiparticle analysis of
the paradox [11] shows that what happens wien m > %  2m is that the reflection of the
incoming particle by the barrier is accompanied by the aveatf pairs particle-antiparticle out of
the energy of the barrier (notice that for this to happenriéduired that7, > 2m , the threshold for
the creation of a particle-antiparticle pair).

Actually, this particle creation can be understood by negj¢hat the sudden potential step in
Fig 3 localizes the incoming particle with massn distances smaller than its Compton wavelength
=, This can be seen by replacing the square potential by anotieevhere the potential varies
smoothly from0to v, > 2m in distances scales larger thasam . This case was worked out by
Sauter shortly after Klein pointed out the paradox [13]. ldesidered a situation where the regions
with v = 0andv = v, are connected by a region of lengtlwith a linear potential’ (x) = ¥,
Whend > 2 he found that the transmission coefficient is exponentaiialf.

The creation of particles is impossible to avoid whenever toies to locate a particle of mass
m within its Compton wavelength. Indeed, from Heisenbergeutainty relation we find that if
x =, the fluctuations in the momentum will be of ordgr m and fluctuations in the energy
of order

T=

(2.14)

E m (2.15)

LIn section (8.1) we will see how, in the case of the Dirac fithis exponential behavior can be associated with the
creation of electron-positron pairs due to a constant etefield (Schwinger effect).
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Fig. 4: Two region 1, R , that are causally disconnected.

can be expected. Therefore, in a relativistic theory, thetdlations of the energy are enough to
allow the creation of particles out of the vacuum. In the cafsa spin-% particle, the Dirac sea
picture shows clearly how, when the energy fluctuations &@derm , electrons from the Dirac
sea can be excited to positive energy states, thus creddicigan-positron pairs.

It is possible to see how the multiparticle interpretat®forced upon us by relativistic invari-
ance. In non-relativistic Quantum Mechanics observahiesepresented by self-adjoint operator
that in the Heisenberg picture depend on time. Thereforesurements are localized in time but
are global in space. The situation is radically differentha relativistic case. Because no signal
can propagate faster than the speed of light, measuremavestd be localized both in time and
space. Causality demands then that two measurementoautien causally-disconnected regions
of space-time cannot interfere with each other. In mathe@laerms this means that i, and
O, are the observables associated with two measurementgbxtal two causally-disconnected
regionsr ;, R , (see Fig. 4), they satisfy

Or,i0r,1= 0; if &, x)°< o0 forallx;2Ri,x,2Ry: (2.16)

Hence, in a relativistic theory, the basic operators in teésehberg picture must depend on
the space-time positian . Unlike the case in non-relativistic quantum mechanicsg kige position
= IS notan observable, but just a label, similarly to the case of im@dinary quantum mechanics.
Causality is then imposed microscopically by requiring

D ®);0 )= 0; if & yf< O: (2.17)

A smeared operata ; over a space-tirge regian can then be defined as

Or = d'x0 &) fr &) (2.18)



wherefy (k) is the characteristic function associated vith

1 x2 R

B&= 5 szr

(2.19)
Eq. (2.16) follows now from the microcausality conditionX(2).

Therefore, relativistic invariance forces the introdantof quantum fields. It is only when
we insist in keeping a single-particle interpretation tvat crash against causality violations. To
illustrate the point, let us consider a single particle wawrection (t;x) that initially is localized
in the positionx = 0

0;x) =  &): (2.20)

Evolving this wave function using the Hamiltoniain = r? + m 2 we find that the wave func-
tion can be written as

P Sk . P
Gx)=e it r2+4m? x) = eJk x th2+m2: (221)

@)

Integrating over the angular variables, the wave functemmfee recast in the form
Z 1

ks K mZ
(%) = kdk e*Fleg * KHmT, (2.22)

2 2%y
The resulting integral can be evaluated using the compl@gration contouc shown in Fig. 5.
The result is that, for any> 0, one finds that (t;x) € 0for anyx=. If we insist in interpreting the

wave function (t;x) as the probability density of finding the particle at the tomazx in the timet
we find that the probability leaks out of the light cone, thisdating causality.

3 From classical to quantum fields

We have learned how the consistency of quantum mechanitsspécial relativity forces us to
abandon the single-particle interpretation of the wavetion. Instead we have to consider quantum
fields whose elementary excitations are associated witicjgastates, as we will see below.

In any scattering experiment, the only information avdédb us is the set of quantum number
associated with the set of free particles in the initial andlfstates. Ignoring for the moment other
guantum numbers like spin and flavor, one-particle statekéelled by the three-momentunand
span the single-particle Hilbert spaiee

Pi2 H; pPpi= e P: (3.1)

The states pig form a basis ofi ; and therefore satisfy the closure relation
Z

&’p pitpi= 1 (3.2)
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Fig. 5: Complex contouc for the computation of the integral in Eq. (2.22).

The group of spatial rotations acts unitarily on the staggs This means that for every rotation
R 2 SO (3) there is a unitary operatar R ) such that

UR)Pi= Rpi (3.3)

whereR p represents the action of the rotation on the ve&ioR p)* = Rijkj. Using a spectral

decomposition, the momentum operai®rcan be written as
Z

B'=  &’ppip'tp] (3.4)

With the help of Eq. (3.3) it is straightforward to check thla@ momentum operator transforms as
a vector under rotations:
Z

UR) 'P'UR)= dpR 'pip'lR 'pj= RLP; (3.5)

where we have used that the integration measure is invanatdr SQ3).

Since, as we argued above, we are forced to deal with muitfgastates, it is convenient to
introduce creation-annihilation operators associated asingle-particle state of momentgm

BE);a’e)]= @ B; BE)aEd)l= B @);a’ @)1= 0; (3.6)

such that the statgi is created out of the Fock space vacutim(normalized such thaitopi= 1)
by the action of a creation operatst (o)

Pi= a’ @) P a@)Pi= 0 8p: (3.7)
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Covariance under spatial rotations is all we need if we a@eré@sted in a nonrelativistic theory.
However in a relativistic quantum field theory we must presemore that S@), actually we
need the expressions to be covariant under the full Pe@ngatp 1SQ1;3) consisting in spatial
rotations, boosts and space-time translations. Thereilorerder to build the Fock space of the
theory we need two key ingredients: first an invariant nornaéibn for the states, since we want a
normalized state in one reference frame to be normalizedyirother inertial frame. And secondly
a relativistic invariant integration measure in momentypace, so the spectral decomposition of
operators is covariant under the full Poincaré group.

Let us begin with the invariant measure. Given an invariantfionf () of the four-momen-
tump of a particle of mass: with positive energy® > 0, there is an integration measure which
is invariant under proper Lorentz transformatidns

z
d4
(2—‘;4 e) 6 m) E)rfe) (3.8)
where (x) represent the Heaviside step function. The integration gvean be easily done using
the -function identity
X 1
f &)= , . & ); 3.9
w3 T (3:9)

xi= zeros of £

which in our case implies that

1 p— 1 p——
¢ mH)=-— p° p2+m?2 + — p’+ p2+m? (3.10)
2p° 2p°
The second term in the previous expression correspondtasstéth negative energy and therefore
does not contribute to the integral. We can write then

z z
d'p 5 0 &p 1 P ——
Hence, the relativistic invariant measure is given by
Z
dp 1 . p—
Wz—lp W|th !p pZ + mz: (312)

Once we have an invariant measure the next step is to find ariamt normalization for the
states. We work with a basiSpig of eigenstates of the four-momentum operafor

POpi= !, Ppi; Bipi= pipi: (3.13)

Since the stategi are eigenstates of the three-momentum operator we canssxjprem in terms
of the non-relativistic stategi that we introduced in Eq. (3.1)

pi= N (p)Pi (3.14)

2The factors of are introduced for later convenience.
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with N (o) a normalization to be determined now. The statggg form a complete basis, so they
should satisfy the Lorentz invariant closure relation

@) 6 m’) ) pikpi=1 (3.15)

At the same time, this closure relation can be expresseqlg Ej. (3.14), in terms of the nonrela-
tivistic basis of statespigas

dp 1
Si @) 8 ) @) pipi= I;ﬁpj“ ©)F pitos (3.16)

Using now Eq. (3.4) for the nonrelativistic states, expi@s$3.15) follows provided

NeEf= 2 ) @ly: (3.17)

Taking the overall phase in Eq. (3.14) so tNatp) is real, we define the Lorentz invariant states
as

Njw

Pi= @ )2 2!, Pi; (3.18)

and given the normalization gfi we find the normalization of the relativistic states to be
Pi= 2 PRy & B: (3.19)

Although not obvious at first sight, the previous normal@ais Lorentz invariant. Although
it is not difficult to show this in general, here we consider simpler case of 1+1 dimensions where
the two componentg’;p*) of the on-shell momentum can be parametrized in terms of glesin
hyperbolic angle as

p’=m cosh ; p'=m sihh : (3.20)
Now, the combinatiorz! , @& p° can be written as
2!, & PY=2m cosh (@ sihh m sinh% =2 ( %; (3.21)

where we have made use of the property (3.9) of tHenction. Lorentz transformations inh+ 1
dimensions are labelled by a parametez R and act on the momentum by shifting the hyperbolic
angle ! + . However Eq. (3.21) is invariant under a common shift @nd ° so the whole
expression is obviously invariant under Lorentz transfations.

To summarize what we did so far, we have succeed in constguatLorentz covariant basis
of states for the one-particle Hilbert spage. The generators of the Poincaré group act on the
statespi of the basis as

P pi=p Pi; U()pi=3j pi Jpi with 2 SO (1;3): (3.22)
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This is compatible with the Lorentz invariance of the norzeation that we have checked above
o=t () U ()p%=hpjpY: (3.23)

OnH ; the operato®® admits the following spectral representation

P = — pip hpj: (3.24)
P
Using (3.23) and the fact that the measure is invariant ubdemntz transformation, one can easily
show that®® transform covariantly under S@; 3)
Z
3
1
U() ®Uu()= d—p3—j 'pip h 'pj= B : (3.25)
@ P2,

A set of covariant creation-annihilation operators can bestructed now in terms of the
operatorsa (p), a* () introduced above

3P — P ——
® 2 F 2lap); o) @ ¥ 28" (3.26)
with the Lorentz invariant commutation relations
[ ®); Y% = @ Pel) © B);
[ ) ©9] = [Ye); Y%= o: (3.27)

Particle states are created by acting with any number otioreaperators (o) on the Poincaré
invariant vacuum statédi satisfying

nPi= 1; P Pi= 0; U ()Pi= Pi; 8 2 SO 1;3): (3.28)
A general one-particle statgi 2 H ; can be then written as
Z
.. dp 1 Y s
fi= C )37'pf ©) 7 )P (3.29)

while an-particle statefi2 H, " can be expressed as

‘o Fp: 1
Fi= 2y f@iiiie) Vo) s ¥ (o) Pic (3.30)
=1 R

That this states are Lorentz invariant can be checked byingtihat from the definition of the
creation-annihilation operators follows the transforiomat

U() @Uu()¥= (p) (3.31)

and the corresponding one for creation operators.

As we have argued above, the very fact that measurementddéeciocalized implies the
necessity of introducing quantum fields. Here we will coasithe simplest case of a scalar quantum
field (x) satisfying the following properties:

14



- Hermiticity.
V)= (x): (3.32)

- Microcausality. Since measurements cannot interfere with each other whéormed in
causally disconnected points of space-time, the commubhtavo fields have to vanish out-
side the relative ligth-cone

[ ®); @)1= 0; & yf<o: (3.33)
- Translation invariance.
e 2 ke ® = & a): (3.34)
- Lorentz invariance.
U()Y ®Uu()= ( 'x): (3.35)

- Linearity. To simplify matters we will also assume thatx) is linear in the creation-
annihilation operators (), Y ()

Z
dp 1
)= T £Eix) @)+ gEix) ) (3.36)
@ P2,
Since (x) should be hermitian we are forced to takée;x) = g(;x). Moreover, (x)

satisfies the equations of motion of a free scalar figddg + m?) )= 0, only if £ (o;x)
is a complete basis of solutions of the Klein-Gordon equrtithese considerations leads to
the expansion

Fp 1

(X): (2 )32_' e ilpttip = (p)+ ej_!pt ip = y(p) . (337)
P

Given the expansion of the scalar field in terms of the creadionihilation operators it can be
checked that (x) and@. (x) satisfy the equal-time canonical commutation relations

[ G206 Gy)]=1 & v) (3.38)
The general commutatdr x); (y)]lcan be also computed to be
[ ®); &)]=1& x): (3.39)

The function & vy)is given by
Z

: _ d’p 1 it O+ ip & D)
ix y) = C )32—!pe
a .
- 5 F)’4 e) @ mHnEhe P & H; (3.40)
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where" (x) is defined as
" (x) x) ( %)= : (3.41)

Using the last expression in Eq. (3.40) it is easy to show that x°) vanishes whex
andx’are space-like separated. Indeedxif :f)? < 0there is always a reference frame in which
both events are simultaneous, and sinic&  x° is Lorentz invariant we can compute it in this
reference frame. In this case= t°and the exponential in the second line of (3.40) does notrikpe
onp’. Therefore, the integration ovef gives

zZ . zZ . ) .

e’ € m) @ ") @ L)+
1 1 2!, AR

- . (3.42)

"©') B+ )

So we have concluded that(x  x° = 0if & )2 < 0, as required by microcausality. Notice
that the situation is completely different whern )2 0, since in this case the exponential
depends op° and the integration over this component of the momentum doesganish.

3.1 Canonical quantization

So far we have contented ourselves with requiring a numbanopferties to the quantum scalar field:
existence of asymptotic states, locality, microcausalitg relativistic invariance. With these only
ingredients we have managed to go quite far. The previousisanbe obtained using canonical
guantization. One starts with a classical free scalar fie&bity in Hamiltonian formalism and

obtains the quantum theory by replacing Poisson bracketetmnutators. Since this quantization
procedure is based on the use of the canonical formalisnghadiives time a privileged role, it

is important to check at the end of the calculation that tiseillteng quantum theory is Lorentz

invariant. In the following we will briefly overview the can@al quantization of the Klein-Gordon

scalar field.

The starting point is the action functional x)]which, in the case of a free real scalar field
of masam is given by
Z A

S[ x)] d'xL( ;@ )= d'x @ @ m? ? (3.43)

NI

The equations of motion are obtained, as usual, from therfEalgrange equations

L L
Q @ e _ 0 =) @@ +m?) = 0: (3.44)

(3.45)



In the Hamiltonian formalism the physical system is destibot in terms of the generalized coor-
dinates and their time derivatives but in terms of the gdizexé coordinates and their canonically
conjugated momenta. This is achieved by a Legendre tranafan after which the dynamics of
the system is determined by the Hamiltonian function

+ & P+m? (3.46)
The equations of motion can be written in terms of the Poisaokets. Given two functional

A[; 1 B[ ; lofthe canonical variables

Z Z

Al; 1= d&xA(; ); Bl; 1= &xB(; ): (3.47)

Their Poisson bracket is defined by

fA;Bg Px ——— —— ; (3.48)
where— denotes the functional derivative defined as

A QA @A

— 3.49
@ ¢ eE@ ) ( )
Then, the canonically conjugated fields satisfy the folluywequal time Poisson brackets
f Gx); Gx9 = £ Gx); Gx)g= 0;
£ Gx); GxOg = @& A (3.50)

Canonical quantization proceeds now by replacing clakfétds with operators and Poisson
brackets with commutators according to the rule

if ;o g 'Ll (3.51)

In the case of the scalar field, a general solution of the figlshdons (3.44) can be obtained by
working with the Fourier transform

@e +m? ®=0 =) ( B+m%)ep) = 0; (3.52)
whose general solution can be writter§ as
Z
a . .
W = o) 6 W) @) e e
dp 1 ilptip x ilpt P ox
- ppa BRI e e (3.53)

3In momentum space, the general solution to this equatidh@s = £ @) & m?), with £ (o) a completely
general function ob . The solution in position space is obtained by inverse Feoudransform.
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and we have required (x) to be real. The conjugate momentum is

Z
i &p
2 @ )3

(X)= (p)e ilpttp 2y (P) eilpt P = . (354)

Now (x)and (x) are promoted to operators by replacing the functios, ¢) by the
corresponding operators

) ! bE) ) ! YE): (3.55)

Moreover, demandind (;x); ©x%]1= i & ) forces the operators (¢), b ()? to have
the commutation relations found in Eq. (3.27). Therefoeythre identified as a set of creation-
annihilation operators creating states with well-definedmantume out of the vacuumpi. In the
canonical quantization formalism the concept of partigpears as a result of the quantization of a
classical field.

Knowing the expressions &% andb in terms of the creation-annihilation operators we can
proceed to evaluate the Hamiltonian operator. After a stngplculation one arrives to the expres-
sion

g 1
= Jdp !',b'EbeE+ > e 0 (3.56)

The first term has a simple physical interpretation sibtg)b ¢o) is the number operator of par-
ticles with momentunp. The second divergent term can be eliminated if we definechdnmal-
ordered Hamiltoniare? :with the vacuum energy subtracted

vA

#: P nPPi= IPp!,b'E)beE) (3.57)

It is interesting to try to make sense of the divergent terfagn (3.56). This term have two
sources of divergence. One is associated with the deltaifumevaluated at zero coming from the
fact that we are working in a infinite volume. It can be reguaked for large but finite volume by
replacing ©) V. Hence, itis of infrared origin. The second one comes froenibegration of
!, atlarge values of the momentum and it is then an ultraviol@rdence. The infrared divergence
can be regularized by considering the scalar field to bediumna box of finite volumev . In this
case the vacuum energy is

X
Eve HOBPPi= ot (3.58)

P

Written in this way the interpretation of the vacuum enesgstraightforward. A free scalar quantum
field can be seen as a infinite collection of harmonic oscitiaper unit volume, each one labelled
by p. Even if those oscillators are not excited, they contribatihe vacuum energy with their zero-
point energy, given by ! ,. This vacuum contribution to the energy add up to infinityreifeve
work at finite volume, since even then there are modes wititrar» high momentum contributing
to the sump; = 2+, with L; the sides of the box of volumeé andn; an integer. Hence, this

Ll ! - - -
divergence is of ultraviolet origin.
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Conducting plates

Fig. 6: lllustration of the Casimir effect. In regions | andhe spetrum of modes of the momentum is
continuous, while in the space between the plates (regjanigl quantized in units of;.

3.2 The Casimir effect

The presence of a vacuum energy is not characteristic ofcdarsfield. It is also present in other
cases, in particular in quantum electrodynamics. Althooiggamight be tempted to discarding this
infinite contribution to the energy of the vacuum as unphalsit has observable consequences. In
1948 Hendrik Casimir pointed out [14] that although a forimaivergent vacuum energy would
not be observable, any variation in this energy would be [E&for comprehensive reviews).

To show this he devised the following experiment. Consideoaple of infinite, perfectly
conducting plates placed parallel to each other at a dista(gee Fig. 6). Because the conducting
plates fix the boundary condition of the vacuum modes of theteimagnetic field these are discrete
in between the plates (region II), while outside there is mtiooious spectrum of modes (regions
| and IIl). In order to calculate the force between the platescan take the vacuum energy of
the electromagnetic field as given by the contribution of sealar fields corresponding to the two
polarizations of the photon. Therefore we can use the faxmdérived above.

A naive calculation of the vacuum energy in this system gavdivergent result. This infinity
can be removed, however, by substracting the vacuum energgsponding to the situation where
the plates are removed

E (d)reg = E vac E @ dac (359)

This substraction cancels the contribution of the modesidetthe plates. Because of the bound-
ary conditions imposed by the plates the momentum of the sipdgpendicular to the plates are
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quantized according to, = “-, with n a non-negative integer. If we consider that the size of the
plates is much larger than their separatibwe can take the momenta parallel to the plateas
continuous. Fon > 0 we have two polarizations for each vacuum mode of the eleagnetic

field, each contributing lik§ 2 + p2 to the vacuum energy. On the other hand, wher 0the

corresponding modes of the field are effectively (2+1)-disienal and therefore there is only one
polarization. Keeping this in mind, we can write

2 Z 2 3 r
E@. = s OPxloiog BT L, 0n 7
reg 2 )Zzpkj ey .2 =% g
2 _
&Fp 1
2sd — P 3.60
o pad (3.60)

wheres is the area of the plates. The factors of 2 take into accountwi propagating degrees
of freedom of the electromagnetic field, as discussed aboverder to ensure the convergence of
integrals and infinite sums we can introduce an exponerdialging factot

1 2 d’p % 7 dpx 1rp2+ @ )Zr n 2
E d = Z°g ? L by 34 "+ g - BT Ug 2,
( )reg 2 (2 )Ze B J o (2 )2e pk d
Z . z C—
dp? d Px L pltpl 2 2
sd RO + 3.61
2 z 7S B + 05 (3.61)
where is an ultraviolet cutoff. It is now straightforward to seatiif we define the function
1 %0 1q2xzr x 2 1721 Pip
F )= — ydye =~ ¥V 5) v+ — = — dze =z (3.62)
2 0 d 4 XT)Z
the regularized vacuum energy can be written as
1 X 21 ’
E @wq =S 5F 0) + F @) dxF (x) (3.63)
n=1 0
This expression can be evaluated using the Euler-MacL&omnula [17]
X %1 1 1
F () d&xF ®) = <-FO+F @)+ -F°0) FO]
. 0 2 12
1 (1] Qo
— 1 F 1o .64
o Fa) 01+ (3.64)
Since for our functiorr 1 ) = F°1 )= F®@Q ) = 0andF°(0) = 0, the value ofE d),q iS

determined by @ (0). Computing this term and removing the ultraviolet cutoffl 1 we find
the result

S s

E @)pg = %F(m(O) = g (3.65)

4Actually, one could introduce any cutoff functianp? + pZ) going to zero fast enough @s, p, ! 1 . The result
is independent of the particular function used in the calborh.
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Then, the force per unit area between the plates is given by

Peasme= S 7° (3.66)

The minus sign shows that the force between the plates acate. This is the so-called Casimir
effect. It was experimentally measured in 1958 by Sparnaéj/gnd since then the Casimir effect
has been checked with better and better precission in ayaifisituations [15].

4 Theories and Lagrangians

Up to this point we have used a scalar field to illustrate oscwssion of the quantization procedure.
However, nature is richer than that and it is necessary teidenother fields with more complicated
behavior under Lorentz transformations. Before consigeather fields we pause and study the
properties of the Lorentz group.

4.1 Representations of the Lorentz group

In four dimensions the Lorentz group has six generatorsed bf them correspond to the generators
of the group of rotations in three dimensions SO(3). In teainthe generators; of the group a
finite rotation of angle with respect to an axis determined by a unitary veetcan be written as

0 1
J1

RE'’')=e"®; Jg=0 g, A ;. (4.1)
J3

The other three generators of the Lorentz group are asedaiath boost®! ; along the three spatial
directions. A boost with rapidity along a directions is given by

0 1
M,
B@; )=e*®¥; M=eM,A ;. (4.2)
M ;
These six generators satisfy the algebra
Ui; 3] = 1pdk;
UM ] = 15xMy; (4.3)
MM 4] = 1Tk s

The first line corresponds to the commutation relations of33Qvhile the second one implies that
the generators of the boosts transform like a vector undations.

At first sight, to find representations of the algebra (4.3)imseem difficult. The problem is
greatly simplified if we consider the following combinatiohthe generators

1
Jk = 5 (Jk ij): (44)



Representation| Type of field
0;0) Scalar
=;0) Right-handed spinor
©0;3) Left-handed spinor
Zi2) Vector
1;0) Selfdual antisymmetric 2-tensor
0;1) Anti-selfdual antisymmetric 2-tensor

Table 1: Representations of the Lorentz group

Using (4.3) it is easy to prove that the new generamrsatisfy the algebra

[Ji ;Jj ] = iiijk 7
0: (4.5)

[
"+
<
I

Then the Lorentz algebra (4.3) is actually equivalent todmoies of the algebra ¢fu 2) SO (3).
Therefore the irreducible representations of the Lorerdmg can be obtained from the well-known
representations of SU(2). Since the latter ones are labklighe spins = k + 2;k (with k 2 N),
any representation of the Lorentz algebra can be identiffegspbcifying (s, ;s ), the spins of the
representations of the two copies of SU(2) that made up tiebed (4.3).

To get familiar with this way of labelling the representasoof the Lorentz group we study
some particular examples. Let us start with the simplest@ngs ) = (0;0). This state is a singlet
underJ; and therefore also under rotations and boosts. Therefoteawea scalar.

The next interesting cases a@;O) and © ;%). They correspond respectively to a right-
handed and a left-handed Weyl spinor. Their properties bv@lstudied in more detail below. In
the case of(; ;3 ), since from Eq. (4.4) we see that= J; + J, the rules of addition of angular
momentum tell us that there are two states, one of them trangig as a vector and another one as
a scalar under three-dimensional rotations. Actually, eendetailed analysis shows that the singlet
state corresponds to the time component of a vector anddhesstombine to form a vector under
the Lorentz group.

There are also more “exotic” representations. For examglean consider thel;0) and
(0;1) representations corresponding respectively to a selfaudlan anti-selfdual rank-two anti-
symmetric tensor. In Table 1 we summarize the previous dsou.

To conclude our discussion of the representations of theritargroup we notice that under a
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parity transformation the generators of SO(1,3) transfasm
P:J ! J; P :M; ! M; (4.6)

thismeans that :J, ! J and therefore a representatiof ;s,) is transformed into(s; ; s; ).
This means that, for example, a vect@r;3 ) is invariant under parity, whereas a left-handed Weyl
spinor (%;0) transforms into a right-handed on@;%) and vice versa.

4.2 Spinors

Weyl spinors. Let us go back to the two spinor representations of the Largriup, namely( ;0)
and 0 ;% ). These representations can be explicitly constructedyubmPauli matrices as

1 .
Jg o= =% J, =0 for  (¢;0);
2
1,
o= 0; =3 " for — ©0;3): (4.7)

We denote bya a complex two-component object that transforms in the ssprations = 2 of
Jt. Ifwe define = @; *) we can construct the following vector quantities

ul Luy; u’ u (4.8)

Notice that sinceg; )Y = J, the hermitian conjugated fieldg are in the(0;=) and ¢ ;0) respec-
tively.
To construct a free Lagrangian for the fields we have to look for quadratic combinations
of the fields that are Lorentz scalars. If we also demand iamee under global phase rotations
u ! du (4.9)
we are left with just one possibility up to a sign

Lyen=" @ ~ % u =i Qu: (4.10)

This is the Weyl Lagrangian. In order to grasp the physicamigy of the spinora we write the
equations of motion

@ ~ & u =0: (4.11)
Multiplying this equation on the left by@, ~ & and applying the algebraic properties of the
Pauli matrices we conclude that satisfies the massless Klein-Gordon equation
@e u =0; (4.12)
whose solutions are:
u ®)=u ke * % with k%= %3 (4.13)



Plugging these solutions back into the equations of motdohl() we find

X3 k¥ ~u = 0; (4.14)
which implies
~ K
u, =1;
X3
u - R 1: (4.15)
X3

Since the spin operator is definedsas Z~, the previous expressions give the chirality of the states
with wave functionu , i.e. the projection of spin along the momentum of the pkrtid herefore
we conclude thati, is a Weyl spinor of positive helicity = 2, while u has negative helicity

= 2. This agrees with our assertion that the representatje) corresponds to a right-handed
Weyl fermion (positive chirality) wherea®;2) is a left-handed Weyl fermion (negative chirality).
For example, in the Standard Model neutrinos are left-hdhdeyl spinors and therefore transform
in the representatio; 3 ) of the Lorentz group.

Nevertheless, it is possible that we were too restrictiveanstructing the Weyl Lagrangian
(4.10). There we constructed the invariants from the veloiiomears (4.8) corresponding to the
product representations

Giz)= ;00  ©0z) and ¢;3)= ©0;3) £;0): (4.16)

2 2
In particular our insistence in demanding the Lagrangidmetmvariant under the global symmetry
u ! e'u rules outthe scalar term that appears in the product repsmms
2;0)  £;0)= @;0)  ©0;0); 0Z) ©Z)= 0;1)  (0;0): (4.17)
The singlet representations corresponds to the antisyrimeembinations
au? u” ; (4.18)

where _, is the antisymmetric symbol, = ,, = 1.

At first sight it might seem that the term (4.18) vanishes igatly because of the antisym-
metry of the -symbol. However we should keep in mind that the spin-dtatiseorem (more on
this later) demands that fields with half-integer spin havedtisfy the Fermi-Dirac statistics and
therefore satisfy anticommutation relations, whereasigielf integer spin follow the statistic of
Bose-Einstein and, as a consequence, quantization redPacgson brackets by commutators. This
implies that the components of the Weyl fermiansare anticommuting Grassmann fields

wu® + uPu® = 0: (4.19)

It is important to realize that, strictly speaking, fermsofne., objects that satisfy the Fermi-Dirac
statistics) do not exist classically. The reason is thay gaisfy the Pauli exclusion principle and
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therefore each quantum state can be occupied, at most, heronien. Therefore the naive defini-
tion of the classical limit as a limit of large occupation noens cannot be applied. Fermion field
do not really make sense classically.

Since the combination (4.18) does not vanish and we canrcabst new Lagrangian

Lyon= ' @u + %m L0t + hec. (4.20)
This mass term, called of Majorana type, is allowed if we dowarry about breaking the global
U(1) symmetryu ! e'u . Thisis not the case, for example, of charged chiral fersisince the
Majorana mass violates the conservation of electric chargay other gauge U(1) charge. In the
Standard Model, however, there is no such a problem if weduice Majorana masses for right-
handed neutrinos, since they are singlet under all standartl gauge groups. Such a term will
break, however, the global U(1) lepton number charge becthesoperator,, 2 2 changes the
lepton number by two units

Dirac spinors. We have seen that parity interchanges the representagigns and (0;3),
i.e. it changes right-handed with left-handed fermions

P :u ' u: (4.21)

An obvious way to build a parity invariant theory is to introx a pair or Weyl fermions, andu, .
Actually, these two fields can be combined in a single fourygonent spinor
U,

= (4.22)

u

transforming in the reducible representatiéno)  03).

Since now we have both, andu simultaneously at our disposal the equations of motion
foru ,i @ u = 0can be modified, while keeping them linear, to

9
i,@u =mu =
- i @ =mn 01 (4.23)

. ; 1 0
i @u =mu,;
These equations of motion can be derived from the Lagrardgasity

Lowme=17 0 0 & m¥ oo (4.24)

To simplify the notation it is useful to define the Diraematrices as
= (4.25)

and the Dirac conjugate spinor

- y 0 _ vy

(4.26)



Now the Lagrangian (4.24) can be written in the more compaon f
Lpie= @@ @ m) = (4.27)
The associated equations of motion give the Dirac equaB®) (vith the identifications
o io oy i, (4.28)
In addition, the -matrices defined in (4.25) satisfy the Clifford algebra
f ; g=2 : (4.29)

In D dimensions this algebra admits representations of diroeizsi . WhenD is even the Dirac
fermions transform in a reducible representation of the Lorentz groln the case of interest,
D = 4thisis easy to prove by defining the matrix

5_ 4012 3_ :(L) 01 . (4.30)

We see that ® anticommutes with all other-matrices. This implies that
[° 1=0; with = [ ; I (4.31)

Because of Schur's lemma (see Appendix) this implies tratepresentation of the Lorentz group
provided by s reducible into subspaces spanned by the eigenvectorswith the same eigen-
value. If we define the projectors = 2 (1 °) these subspaces correspond to

Uy . _ 0 .
P, = 0o 7 P = u ; (4.32)

which are precisely the Weyl spinors introduced before.

Our next task is to quantize the Dirac Lagrangian. This walldone along the lines used for
the Klein-Gordon field, starting with a general solution he Dirac equation and introducing the
corresponding set of creation-annihilation operatorseré&fore we start by looking for a complete
basis of solutions to the Dirac equation. In the case of tatasfield the elements of the basis were
labelled by their four-momentuna . Now, however, we have more degrees of freedom since we
are dealing with a spinor which means that we have to add &tieds. Looking back at Eq. (4.15)
we can define the helicity operator for a Dirac spinor as

1 K

= —~

1 0
- (4.33)
2 K3 0 1

Hence, each element of the basis of functions is labelledsoipur-momentunkx and the corre-
sponding eigenvalue of the helicity operator. For positive energy solutions Wert propose the
ansatz

uk;se * % s ; (4.34)
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whereu k;s) ( =

1;:::;4) is a four-component spinor. Substituting in the Dirac d¢tumawe
obtain

G m)uk;s)= 0:

(4.35)
In the same way, for negative energy solutions we have
& 1
vk;s)e* ¥ s = 5; (4.36)
wherev ;s) has to satisfy
&+ m)vk;s)= 0: (4.37)
Multiplying Egs. (4.35) and (4.37) on the left respectivbly & m ) we find that the momentum
is on the mass shelt? = m 2.
A detailed analysis shows that the functiang; s), v k; s) satisfy the properties
uu = 2m ; v = 2m ;
u u= 2k ; v v= 2k ; (4.38)
X X
uua = G+m) ; vV = & m)

s=

N[

Then, a general solution to the Dirac equation includingto® and annihilation operators can be
written as:

b ;%) =

£k 1 X b o Lo 1
e pal, u®;s)BR;s)e HE M v ;) & ®js)et T 1
<k 1

s=

(4.39)

2

The operator® ®;s),B ®) respectively create and annihilate a spiparticle (for example,
an electron) out of the vacuum with moment&rand helicitys. Because we are dealing with

half-integer spin fields, the spin-statistics theoremdsrcanonical anticommutation relations for
which means that the creation-annihilation operatorsfatie algebra

fb ®;s)ib ®%s)g = K KO o

fb K;s);b ®R%s)g = £ ®;s);b ®%s)g= O: (4.40)
In the case ot &;s), d ®;s) we have a set of creation-annihilation operators for thescor

sponding antiparticles (for example positrons). This eaclif we notice that¥ k;s) can be seen

as the annihilation operator of a negative energy state eDiinac equation with wave function
v, ®;s). As we saw, in the Dirac sea picture this corresponds to thation of an antiparticle out

5To simplify notation, and since there is no risk of confusiae drop from now on the hat to indicate operators.

27



of the vacuum (see Fig. 2). The creation-annihilation ojpesafor antiparticles also satisfy the
fermionic algebra

fd ®;s);d ®%sdg = Kk kK9 oo
fd ®;s);d ®%s)g = f& ®;s);d ®%sHg= 0: (4.41)

All other anticommutators between &;s), ¥ ®;s) andd ®;s), & ®;s) vanish.
The Hamiltonian operator for the Dirac field is
x 2 h i
P = Pk W E®;s)b ®;s) hd K;s)d K;s) : (4.42)

_ o1
5= 3

At this point we realize again of the necessity of quantizimg theory using anticommutators in-
stead of commutators. Had we use canonical commutatiotioieta the second term inside the
integral in (4.42) would give the number operatBr®;s)d &;s) with a minus sign in front. As a
consequence the Hamiltonian would be unbounded from behalwmae would be facing again the
instability of the theory already noticed in the context@tivistic quantum mechanics. However,
because of thanticommutatiomelations (4.41), the Hamiltonian (4.42) takes the form
X Z h i
P = Fk L ®is)b K;s)+ L F ®;s)d K;s) 4 D) : (4.43)

— 1
5= 2

As with the scalar field, we find a divergent vacuum energyrdaution due to the zero-point energy
of the infinite number of harmonic oscillators. Unlike theeiI-Gordon field, the vacuum energy
is negative. In section 8.2 we will see that in certain typéhebries called supersymmetric, where
the number of bosonic and fermionic degrees of freedom isdinee, there is a cancellation of the
vacuum energy. The divergent contribution can be removatiéypormal order prescription
x & h i
= Pk 1P K;s)b K;s)+ ! & ®;s)d K&;s) : (4.44)

— 1
5= 2

Finally, let us mention that using the Dirac equation it isyet prove that there is a conserved
four-current given by

j = ; @3 =o: (4.45)
As we will explain further in sec. 5 this current is assodiate the invariance of the Dirac La-
grangian under the global phase shift! &' . In electrodynamics the associated conserved
charge
z
Q=e dx7 (4.46)

is identified with the electric charge.
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4.3 Gauge fields

In classical electrodynamics the basic quantities are lgwtree and magnetic fields, B. These
can be expressed in terms of the scalar and vector poteéntial)

R
et’
B = ¥ K: (4.47)

E = bl

From these equations it follows that there is an ambiguithédefinition of the potentials given by
the gauge transformations

) ! EGx)+ ;C t;x); Egx)! BEx)+ & @©x): (4.48)

Classically (" ;&) are seen as only a convenient way to solve the Maxwell equatlmut without
physical relevance.

The equations of electrodynamics can be recast in a mdygitestentz invariant form using
the four-vector gauge potential = (' ;&) and the antisymmetric rank-two tenser: = @ A
@ A . Maxwell's equations become

@QF = 35
er = 0 (4.49)
where the four-curreny = ( ;4) contains the charge density and the electric current. The fie

strength tensor and the Maxwell equations are invariant under gauge tramsftions (4.48),
which in covariant form read

A ' A +Q (4.50)

Finally, the equations of motion of charged particles avewgj in covariant form, by

d
Mo =& u; (4.51)
d
whereeis the charge of the particle and ( ) its four-velocity as a function of the proper time.

The physical role of the vector potential becomes mandast in Quantum Mechanics. Us-
ing the prescription of minimal substitutign ! p &, the Schrodinger equation describing a
particle with charge: moving in an electromagnetic field is

R, = — F i® +e (4.52)

Because of the explicit dependence on the electromagrainials’ andz, this equation seems
to change under the gauge transformations (4.48). This)isigdlly acceptable only if the ambi-
guity does not affect the probability density given hyt; =) j2. Therefore, a gauge transformation
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of the electromagnetic potential should amount to a chamgjesi (unobservable) phase of the wave
function. This is indeed what happens: the Schrodingeaigpui (4.52) is invariant under the gauge
transformations (4.48) provided the phase of the wave fonds transformed at the same time
according to

Gx) ! e B & (). (4.53)

Aharonov-Bohm effect. This interplay between gauge transformations and the phfabe
wave function give rise to surprising phenomena. The firgtleawe of the role played by the
electromagnetic potentials at the quantum level was poiotd by Yakir Aharonov and David
Bohm [18]. Let us consider a double slit experiment as showiig. 7, where we have placed a
shielded solenoid just behind the first screen. Althoughriagnetic field is confined to the interior
of the solenoid, the vector potential is nonvanishing alsside. Of course the value af outside
the solenoid is a pure gauge, i2. & = 0, however because the region outside the solenoid is not
simply connected the vector potential cannot be gaugedrtoeagerywhere. If we denote by ”
and . the wave functions for each of the two electron beams in tiserate of the solenoid, the
total wave function once the magnetic field is switched onkmmritten as

R R
e K dx e K dx
- e :E)+ele2 2()-
R h H 1
e ®oax 0 e & dx 0
= g .+ e 5 (4.54)

where ; and , are two curves surrounding the solenoid from differentsidad is any closed
loop surrounding it. Therefore the relative phase betwhkertwo beams gets an extra term depend-
ing on the value of the vector potential outside the soleasid

I

U=exp & A& dx: (4.55)

Because of the change in the relative phase of the electroe Wactions, the presence of the
vector potential becomes observable even if the electronsad feel the magnetic field. If we
perform the double-slit experiment when the magnetic fiefdde the solenoid is switched off we
will observe the usual interference pattern on the secorekac However if now the magnetic field
is switched on, because of the phase (4.54), a change intdréeirence pattern will appear. This is
the Aharonov-Bohm effect.

The first question that comes up is what happens with gaugeiamce. Since we said that
& can be changed by a gauge transformation it seems that thérgsnterference patters might
depend on the gauge used. Actually, the phase (4.55) is independent of the gauge although,
unlike other gauge-invariant quantities likeand®, is nonlocal. Notice that, since A = 0
outside the solenoid, the value ©fdoes not change under continuous deformations of the closed
curve , so long as it does not cross the solenoid.

The Dirac monopole. It is very easy to check that the vacuum Maxwell equationsaream
invariant under the transformation

E B ! éE® B); 2 D;2 1 (4.56)
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Fig. 7: lllustration of an interference experiment to shbe Aharonov-Bohm effects represent the solenoid
in whose interior the magnetic field is confined.

which, in particular, for = - interchanges the electric and the magnetic fiells: 8,8 ! E.
This duality symmetry is however broken in the presence ettac sources. Nevertheless the
Maxwell equations can be “completed” by introducing sosrfm the magnetic field ,, ;4. ) in
such a way that the duality (4.56) is restored when supplésddyy the transformation

in ! & din); 4 o3 v éd #: (4.57)
Again for = =2the electric and magnetic sources get interchanged.
In 1931 Dirac [19] studied the possibility of finding solut® of the completed Maxwell
eguation with a magnetic monopoles of chasgee. solutions to
¥ B=g ®): (4.58)

Away from the position of the monopole B = 0 and the magnetic field can be still derived
locally from a vector potentiak according tos = # A&. However, the vector potential cannot
be regular everywhere since otherwise Gauss law would infyalyythe magnetic flux threading a
closed surface around the monopole should vanish, contiagl(4.58).

We look now for solutions to Eq. (4.58). Working in sphericabrdinates we find

B,= —; B, =B = 0: (4.59)
®7

Away from the position of the monopole& ¢ 0) the magnetic field can be derived from the vector
potential

A, = —tan-—; A,=A =0: (4.60)



Dirac string

Fig. 8: The Dirac monopole.

As expected we find that this vector potential is actuallygslar around the half-line = (see
Fig. 8). This singular line starting at the position of themapole is called the Dirac string and
its position changes with a change of gauge but cannot bénglied by any gauge transformation.
Physically we can see it as an infinitely thin solenoid confinda magnetic flux entering into the
magnetic monopole from infinity that equals the outgoing nedig flux from the monopole.

Since the position of the Dirac string depends on the gaugserhit seems that the presence
of monopoles introduces an ambiguity. This would be ratemge, since Maxwell equations
are gauge invariant also in the presence of magnetic souf¢tessolution to this apparent riddle
lies in the fact that the Dirac string does not pose any ctersty problem as far as it does not
produce any physical effect, i.e. if its presence turns oude undetectable. From our discussion
of the Aharonov-Bohm effect we know that the wave functiorlodirged particles pick up a phase
(4.55) when surrounding a region where magnetic flux is cedfifior example the solenoid in the
Aharonov-Bohm experiment). As explained above, the Ditdog associated with the monopole
can be seen as a infinitely thin solenoid. Therefore the Bidag will be unobservable if the phase
picked up by the wave function of a charged patrticle is equalite. A simple calculation shows
that this happens if

e®9=1 =) eg=2 n withn2 z: (4.61)

Interestingly, this discussion leads to the conclusion tie presence of a single magnetic mono-
poles somewhere in the Universe implies for consistencytiatization of the electric charge in
units of%, whereg the magnetic charge of the monopole.
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Quantization of the electromagnetic field.We now proceed to the quantization of the elec-
tromagnetic field in the absence of sources 0, 4= 0. In this case the Maxwell equations (4.49)
can be derived from the Lagrangian density

1 2 2 .,
Ly axwen = 4F F = 5 E B : (4.62)
Although in general the procedure to quantize the Maxwetjrhagian is not very different from
the one used for the Klein-Gordon or the Dirac field, here wednte deal with a new ingredient:
gauge invariance. Unlike the cases studied so far, herehbp fielda is not unambiguously
defined because the action and the equations of motion aesitise to the gauge transformations
A ! A + @ " Afirst consequence of this symmetry is that the theory hespdysical degrees
of freedom than one would expect from the fact that we aremgalith a vector field.

The way to tackle the problem of gauge invariance is to fix tieedom in choosing the
electromagnetic potential before quantization. This cardbne in several ways, for example by
imposing the Lorentz gauge fixing condition

@A = 0: (4.63)

Notice that this condition does not fix completely the gaugedom since Eq. (4.63) is left invariant
by gauge transformations satisfyigge " = 0. One of the advantages, however, of the Lorentz
gauge is that it is covariant and therefore does not pose amyeit to the Lorentz invariance of the
guantum theory. Besides, applying it to the Maxwell equa@ice = 0 one finds

0=@@eA @@A )=Q@@A ; (4.64)

which means that since satisfies the massless Klein-Gordon equation the photergquantum
of the electromagnetic field, has zero mass.

Once gauge invariance is fixed is expanded in a complete basis of solutions to (4.64) and
the canonical commutation relations are imposed

h i

Z
X Pk 1 e o
®; BE; e THE A ® ) B E; )T T ¥ (4.65)

® o) = k1
(i) e P 2%3

= 1

where = 1 represent the helicity of the photon, andk; ) are solutions to the equations of
motion with well defined momentum an helicity. Because 088} the polarization vectors have to
be orthogonal ta

k ® )=k ;) =0: (4.66)
The canonical commutation relations imply that

B®; RS 91 = i &8 k9 o
B®; ;BR%: 91 = B'®; RYERY% 91= 0: (4.67)
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Thereforea ®; ),B’ &; )form aset of creation-annihilation operators for photoite momentum
¥ and helicity .

Behind the simple construction presented above there anender of subleties related with
gauge invariance. In particular the gauge freedom seentrtalunce states in the Hilbert space with
negative probability. A careful analysis shows that whemggainvariance if properly handled these
spurious states decouple from physical states and canrbaated. The details can be found in
standard textbooks [1-9].

Coupling gauge fields to matter.Once we know how to quantize the electromagnetic field
we consider theories containing electrically chargedigad, for example electrons. To couple
the Dirac Lagrangian to electromagnetism we use as guidingiple what we learned about the
Schrodinger equation for a charged particle. There we batthe gauge ambiguity of the electro-
magnetic potential is compensated with a U(1) phase shifterwave function. In the case of the
Dirac equation we know that the Lagrangian is invariant unde e*" , with " a constant. How-
ever this invariance is broken as soon as one identifigigh the gauge transformation parameter of
the electromagnetic field which depends on the position.

Looking at the Dirac Lagrangian (4.27) it is easy to see thairder to promote the global
U(1) symmetry into a local one, | &="® | it suffices to replace the ordinary derivatigeby a
covariant one® satisfying

D &°'® =g"®p (4.68)
This covariant derivative can be constructed in terms ofjligge potentiad as
D =@ ieA : (4.69)

The Lagrangian of a spig-field coupled to electromagnetism is written as

1 —

invariant under the gauge transformations
S A ! A+R"EK): (4.71)

Unlike the theories we have seen so far, the Lagrangian)d&4xribe an interacting theory.
By plugging (4.69) into the Lagrangian we find that the intéin between fermions and photons
to be

Lt = e (4.72)

As advertised above, in the Dirac theory the electric curi@m-vector is given by = e

The quantization of interacting field theories poses newleras that we did not meet in the
case of the free theories. In particular in most cases it igossible to solve the theory exactly.
When this happens the physical observables have to be cethppuperturbation theory in powers
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of the coupling constant. An added problem appears when gtngpquantum corrections to the
classical result, since in that case the computation ofrebbtes are plagued with infinities that
should be taken care of. We will go back to this problem inisect.

Nonabelian gauge theoriesQuantum electrodynamics (QED) is the simplest example of a
gauge theory coupled to matter based in the abelian gaugasignof local U(1) phase rotations.
However, it is possible also to construct gauge theoriesdaga nonabelian groups. Actually, our
knowledge of the strong and weak interactions is based amsef such nonabelian generalizations
of QED.

Let us consider a gauge grogpwith generatorsr®, a = 1;:::;din G satisfying the Lie
algebr§
[[2;TP]= if*™T°: (4.73)

A gauge field taking values on the Lie algebrasafan be introduced 22T 2 which transforms
under a gauge transformations as

l ;a a
A ! —vueu '+uavu Yy U =g "®, (4.74)
ig

whereg is the coupling constant. The associated field strengthfisetbas
F? =@ A% Q@A® gf™APAc°: (4.75)

Notice that this definition of the& # reduces to the one used in QED in the abelian case when
£ = 0. In general, however, unlike the case of QED the field stierghot gauge invariant. In
terms off = F@ T2ittransforms as

F ' UF U ': (4.76)

The coupling of matter to a nonabelian gauge field is done tigdcing again a covariant
derivative. For a field in a representation@f

''U (4.77)
the covariant derivative is given by
D =@ igA®T® : (4.78)

With the help of this we can write a generic Lagrangian for aaielian gauge field coupled to
scalars and spinors as
1 _ - _
L= JF*F *+iB +D D Mi( )+ isMa()]  V(): (4.79)
In order to keep the theory renormalizable we have to restric( ) andM , ( ) to be at most linear
in  whereass ( ) have to be at most of quartic order. The Lagrangian of thedat@hModel is of
the form (4.79).

6Some basics facts about Lie groups have been summarizedendlix A.
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4.4 Understanding gauge symmetry

In classical mechanics the use of the Hamiltonian formasitarts with the replacement of general-
ized velocities by momenta

QL
pi =) @ = g @p): (4.80)
cle:]
Most of the times there is no problem in inverting the relasip; = p; (g;g). However in some
systems these relations might not be invertible and resatiumber of constraints of the type

f. @p) = 0; a= 1;::5;Nq: (4.81)

These systems are called degenerate or constrained [20, 21]

The presence of constraints of the type (4.81) makes theulatian of the Hamiltonian for-
malism more involved. The first problem is related to the ajulty in defining the Hamiltonian,
since the addition of any linear combination of the conetsatdo not modify its value. Secondly,
one has to make sure that the constraints are consistenth&ithme evolution in the system. In the
language of Poisson brackets this means that further eomtsthave to be imposed in the form

ff.,;Hg  0: (4.82)

Following [20] we use the symbol to indicate a “weak” equality that holds when the constsaint
f. @@;p) = 0 are satisfied. Notice however that since the computatiorn@fRoisson brackets
involves derivatives, the constraints can be used only #fie bracket is computed. In principle
the conditions (4.82) can give rise to a new set of consBajnt;p) = 0, b= 1;:::;N,. Again
these constraints have to be consistent with time evolwmhwe have to repeat the procedure.
Eventually this finishes when a set of constraints is fouladl do not require any further constraint
to be preserved by the time evolution

Once we find all the constraints of a degenerate system wedarrike so-called first class
constraints . (@;p) = 0,a= 1;:::;M , which are those whose Poisson bracket vanishes weakly

f a7 197 CGare ¢ 0: (483)

The constraints that do not satisfy this condition, callecosid class constraints, can be eliminated
by modifying the Poisson bracket [20]. Then the total Haomian of the theory is defined by

¥
Hr=pg L+ © .: (4.84)

a=1

What has all this to do with gauge invariance? The intergsdimswer is that for a singular
system the first class constraints generate gauge transformations. Indeed, because g

In principle it is also possible that the procedure finishesause some kind of inconsistent identity is found. In
this case the system itself is inconsistent as it is the cébelve Lagrangian. @;q) = o
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0 £ ,;H gthe transformations
g ! gt " Ofa; .9;

pi ! Bt "a (OfPi; 9 (4.85)

a

leave invariant the state of the system. This ambiguity@utdscription of the system in terms of the
generalized coordinates and momenta can be traced baok égjttations of motion in Lagrangian
language. Writing them in the form

Q%L @%L QL

—q= ——gt+ —; 4.86
@g@@qg;qj @gd,@qqu (e ( )

we find that order to determine the accelerations in termeepbsitions and velocities the matrix
@gf@L% has to be invertible. However, the existence of constrgh&l) precisely implies that the
determinant of this matrix vanishes and therefore the tinodugion is not uniquely determined in

terms of the initial conditions.

Let us apply this to Maxwell electrodynamics described keylthgrangian
z

1
L= 3 &cF F (4.87)

The generalized momentum conjugatetois given by

L

= =r°: (4.88)
@A )
In particular for the time component we find the constraih& 0. The Hamiltonian is given by
A A 1
H= &x[ QA L= J&x 5 E?+B? + °QAy+ AF E : (4.89)

Requiring the consistency of the constraifit= 0 we find a second constraint
f%5Hg @ °+% E=0: (4.90)

Together with the first constraint = 0this one implies Gauss’ la# E = 0. These two constrains
have vanishing Poisson bracket and therefore they are ltust.cTherefore the total Hamiltonian is
given by
Z h i
Hr=H+ J&x ;&) %+ ,&®F E ; (4.91)

where we have absorbed, in the definition of the arbitrary functions, x) and , (x). Actually,
we can fix part of the ambiguity taking, = 0. Notice that, because, has been included in the

37



multipliers, fixing ; amounts to fixing the value af, and therefore it is equivalent to taking a
temporal gauge. In this case the Hamiltonian is
Z

1
Hy = d’x 5 E?+B? +"x)F E (4.92)

and we are left just with Gauss’ law as the only constraintingyshe canonical commutation
relations

fA; Gx)E s GxOg= 5 & ) (4.93)
we find that the remaining gauge transformations are gestelat Gauss’ law
z
A= fA;; Ex"EF Eg= @™ (4.94)

while leavinga , invariant, so for consistency with the general gauge t@nsdtions the function

" x) should be independent of time. Notice that the const&int = 0 can be implemented by
demanding® A& = 0which reduces the three degrees of freedom ¢d the two physical degrees
of freedom of the photon.

So much for the classical analysis. In the quantum theorgémstraintt £ = 0 has to be
imposed on the physical statgshysi. This is done by defining the following unitary operator on
the Hilbert space

Z

UM exp i Ix"e@)F E : (4.95)

By definition, physical states should not change when a gaagsformations is performed. This
is implemented by requiring that the operato¢") acts trivially on a physical state

U (") Physi= Pphysi =) (¥ E)jphysi= 0: (4.96)

In the presence of charge densitythe condition that physical states are annihilated by Gdas
changestar E ) Physi= 0.

The role of gauge transformations in the quantum theoryrgileminating in understanding
the real role of gauge invariance [22]. As we have learneg gkistence of a gauge symmetry in a
theory reflects a degree of redundancy in the descriptiomygs$ipal states in terms of the degrees
of freedom appearing in the Lagrangian. In Classical Meidsafor example, the state of a system
is usually determined by the value of the canonical cootdmay;p;). We know, however, that
this is not the case for constrained Hamiltonian systemseviie transformations generated by the
first class constraints change the valueiadndp; withoug changing the physical state. In the case
of Maxwell theory for every physical configuration deteremirby the gauge invariant quantities
B there is an infinite number of possible values of the vectaemqttal that are related by gauge
transformationsa = @ "

In the quantum theory this means that the Hilbert space o$iphl/states is defined as the
result of identifying all states related by the operato¢') with any gauge functior' x) into a
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(@) (b)

Fig. 9: Compactification of the real line (a) into the circemences* (b) by adding the point at infinity.

single physical statephysi. In other words, each physical state corresponds to a whoblée af
states that are transformed among themselves by gaugétraations.

This explains the necessity of gauge fixing. In order to avbaredundancy in the states a
further condition can be given that selects one single stateach orbit. In the case of Maxwell
electrodynamics the conditiors, = 0, # & = 0 selects a value of the gauge potential among all
possible ones giving the same value for the electric and etagields.

Since states have to be identified by gauge transformati@ntopology of the gauge group
plays an important physical role. To illustrate the poettus first deal with a toy model of a U(1)
gauge theory in 1+1 dimensions. Later we will be more gendrathe Hamiltonian formalism
gauge transformationse) are functions defined or with values on the gauge group U(1)

g:R ! U@): (4.97)

We assume thaf (x) is regular at infinity. In this case we can add to the real #&nthe point at
infinity to compactify it into the circumferencg' (see Fig. 9). Once this is dorgx) are functions
defined ons* with values oru (1) = s' that can be parametrized as

g:st ! U@L); gx)=¢& %; (4.98)

withx 2 D;2 1]

Becauses' does have a nontrivial topology,x) can be divided into topological sectors.
These sectors are labelled by an integer numherz and are defined by

@)= ©+2 n: (4.99)

Geometricallyn gives the number of times that the spatidl winds around thes! defining the
gauge group U(1). This winding number can be written in a nsogghisticated way as

T
gx) 'dgx)=2 n ; (4.100)

sl

where the integral is along the spatidi.
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In R> a similar situation happens with the gauge grfo8p/(2). If we demandy ¢z) 2 SU(2)
to be regular at infinityxj! 1 we can compactifi * into a three-dimensional sphesé, exactly
as we did in 1+1 dimensions. On the other hand, the funcfi@n can be written as

g)= a®®)1+ ax) ~ (4.101)

and the conditiong; x)¥g (x) = 1, detg = 1 implies that @°)? + a® = 1. Therefore SU(2) is a
three-dimensional sphere agdk) defines a function

g:s® ! g (4.102)

As it was the case in 1+1 dimensions here the gauge trandfomsa (x) are also divided into
topological sectors labelled this time by the winding numbe

Z
1

24 2

n= &Fx 5wTr g ‘€9 g ‘@9 g ‘&g 2 Z: (4.103)

In the two cases analyzed we find that due to the nontriviablooyy of the gauge group
manifold the gauge transformations are divided into déifeisectors labelled by an integerGauge
transformations with different values afcannot be smoothly deformed into each other. The sector
with n = 0 corresponds to those gauge transformations that can beciahwith the identity.

Now we can be a bit more formal. Let us consider a gauge theo8¢1 dimensions with
gauge groufs and let us denote by the set of all gauge transformatioas= fg :5° ! Gg. At
the same time we defing, as the set of transformations @that can be smoothly deformed into
the identity. Our theory will have topological sectors if

G=Go 6 1: (4.104)

In the case of the electromagnetism we have seen that Gausaninihilates physical states. For a
nonabelian theory the analysis is similar and leads to thdition
z

U(p)Pphysi exp i &x *@®)F E* Pphysi= physi; (4.105)

whereg, &) = & “®7° js in the connected component of the identity The important point
to realize here is that only the elements@fcan be written as exponentials of the infinitesimal
generators. Since this generators annihilate the phystiatéds this implies that (g,) physi =
Physionly wheng, 2 G,.

What happens then with the other topological sectorsg af G=G, there is still a unitary
operatoru (g) that realizes gauge transformations on the Hilbert spatieedheory. However since
gis not in the connected component of the identity, it canot/kitten as the exponential of Gauss’
law. Still gauge invariance is preservedifig) only changes the overall global phase of the physical
states. For example, ¢ is a gauge transformation with winding numbes 1

U (g1) Physi= &' physi: (4.106)

8Although we present for simplicity only the case of SU(2inir arguments apply to any simple group.
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It is easy to convince oneself that all transformations withding numbem = 1 have the same
value of modulo2 . This can be shown by noticing thatdfe) has winding numben = 1 then

g &) ! has opposite winding number= 1. Since the winding number is additive, given two
transformationsy,, g, with winding number 1g, *g, has winding number = 0. This implies that

Physi= U (g, 'g;) physi= U @)U (&) Physi= e''? * physi (4.107)

and we conclude that = , mod2 . Once we know this it is straightforward to conclude that a
gauge transformatioq, ) with winding numbemn has the following action on physical states

U (@) Physi= e Pphysi; n2z: (4.108)

To find a physical interpretation of this result we are goimdpbk for similar things in other
physical situations. One of then is borrowed from condemsatier physics and refers to the quan-
tum states of electrons in the periodic potential produgetthe ion lattice in a solid. For simplicity
we discuss the one-dimensional case where the minima ofotieafal are separated by a distance
a. When the barrier between consecutive degenerate vacughi€hough we can neglect tunnel-
ing between different vacua and consider the ground stateof the potential near the minimum
located atx = na (n 2 z) as possible vacua of the theory. This vacuum state is, henveot
invariant under lattice translations

P nai= jn + 1)ai: (4.109)

However, it is possible to define a new vacuum state
X .
*i= e *Maqai; (4.110)

n2z

which undere=® transforms by a global phase
X
P xi= e *Ayn + 1)ai= *ki: (4.111)

n2z

This ground state is labelled by the momenta@nd corresponds to the Bloch wave function.

This looks very much the same as what we found for nonabebagetheories. The vacuum
state labelled by plays a role similar to the Bloch wave function for the pdi@mpotential with
the identification of with the momentunk. To make this analogy more precise let us write the
Hamiltonian for nonabelian gauge theories

Z Z

1
=3 dPx ~, s+ B, B, = dx E, E.+ B, B, ; (4.112)

NI

where we have used the expression of the canonical momgatad we assume that the Gauss’ law
constraintis satisfied. Looking at this Hamiltonian we aatetipret the first term within the brackets
as the kinetic energy = 2~. sand the second term as the potential energy :B. B..

Sincev 0 we can identify the vacua of the theory as thwder whichv = 0, modulo gauge
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transformations. This happens wherereis a pure gauge. However, since we know that the gauge
transformations are labelled by the winding number we cae ha infinite number of vacua which
cannot be continuously connected with one another usiwigltgauge transformations. Taking a
representative gauge transformatigrex) in the sector with winding number, these vacua will be
associated with the gauge potentials

1
R = o ®) g, &); (4.113)

modulo topologically trivial gauge transformations. Téfere the theory is characterized by an
infinite number of vacuani labelled by the winding number. These vacua are not gaugeiamt.
Indeed, a gauge transformation with= 1 will change the winding number of the vacua in one unit

U(@)hi= h+ 1li: (4.114)
Nevertheless a gauge invariant vacuum can be defined as

ji= e ™ fi; with 2 R (4.115)

satisfying
U)j i= & 7 i: (4.116)

We have concluded that the nontrivial topology of the gauge g have very important phys-
ical consequences for the quantum theory. In particulanpies an ambiguity in the definition of
the vacuum. Actually, this can also be seen in a Lagrangialysis. In constructing the Lagrangian
for the nonabelian version of Maxwell theory we only consithe termr 2 F 2 However this is
not the only Lorentz and gauge invariant term that contaisstwo derivatives. We can write the
more general Lagrangian

L = <-F?fF *2 F*E % 4.117
BT ( )
wherer? is the dual of the field strength defined by
1
- F (4.118)

The extratermin (4.117), proportionalio® B 2, is actually a total derivative and does not change
the equations of motion or the quantum perturbation thelgrertheless it has several important
physical consequences. One of them is that it violates baxitye and the combination of charge
conjugation and paritg P . This means that since strong interactions are describachioypabelian
gauge theory with group SU(3) there is an extra sourcemiviolation which puts a strong bound
on the value of . One of the consequences of a term like (4.117) in the QCDdragan is a
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nonvanishing electric dipole moment for the neutron [23]eTact that this is not observed impose
a very strong bound on the value of theparameter

j j< 10 ° (4.119)

From a theoretical point of view it is still to be fully undéssd why either vanishes or has a very
small value.

Finally, the -vacuum structure of gauge theories that we found in the Hanmn formalism
can be also obtained using path integral techniques forrhdgeangian (4.117). The second term
in Eq. (4.117) gives then a contribution that depends on theling number of the corresponding
gauge configuration.

5 Symmetries
5.1 Noether's theorem

In Classical Mechanics and Classical Field Theory therdséc result that relates symmetries and
conserved charges. This is called Noether’s theorem atekdtzat for each continuous symmetry
of the system there is conserved current. In its simplestimerin Classical Mechanics it can be

easily proved. Let us consider a Lagrangiaiy ;) which is invariant under a transformation

gt ! L ) labelled by a parameter. This means that. g’ = L (g;q without using the

equations of motioh If 1 we can consider an infinitesimal variation of the coordisat ()
and the invariance of the Lagrangian implies
QL QL @L  d@L d @L
0= L@jg)=— g+ — g= — —— T+ — — g 5.1
@im) i “T g ¥ &g aeg T w eg & (5.1)

When ¢ is applied on a solution to the equations of motion the tersidiethe square brackets
vanishes and we conclude that there is a conserved quantity
. L
o-0 with o <& g (5.2)
(cle:]
Notice that in this derivation it is crucial that the symnyatepends on a continuous parameter since
otherwise the infinitesimal variation of the Lagrangian op £5.1) does not make sense.

In Classical Field Theory a similar result holds. Let us ¢desfor simplicity a theory of
a single field ). We say that the variations depending on a continuous parameteare a
symmetry of the theory if, without using the equations of imof the Lagrangian density changes
by
L=@K : (5.3)

If this happens then the action remains invariant and so d@tjuations of motion. Working out
now the variation of. under  we find
QL L L L L
= @ + C @ ¢ + e @ ¢
eE ) Q@ e@ ) @ e@ )

9The following result can be also derived a more general titna where the Lagrangian changes by a total time
derivative.

Q K (5.4)
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If () is a solutionto the equations of motion the last terms disapy and we find that there is a
conserved current

. QL
@J =0 with g = K : 5.5
e@ ) (53)
Actually a conserved current implies the existence of agdar
Z
Q Ex J° ;%) (5.6)
which is conserved

© Z Z

- - Px@J° (tx) = Ex QI ) = 0; (5.7)

provided the fields vanish at infinity fast enough. Moreoteeg, conserved charge is a Lorentz
scalar. After canonical quantization the chagelefined by Eq. (5.6) is promoted to an operator
that generates the symmetry on the fields

= i[ ;O (5.8)
As an example we can consider a scalar field) which under a coordinate transformation
x ! xchanges as’x% = (x). In particular performing a space-time translation = x + a
we have
°x) ®)= a@ +0@&) =) = a@ : (5.9)

Since the Lagrangian density is also a scalar quantitygrisiorms under translations as
L= a@L: (5.10)
Therefore the corresponding conserved charge is

oL
T = @ +al T 511
ee ) @ . ®-11)

where we introduced the energy-momentum tensor

QL
T = L: 5.12
@@ )@ (5.12)

We find that associated with the invariance of the theory wapect to space-time translations
there are four conserved currents definedrby with = 0;:::;3, each one associated with the
translation along a space-time direction. These four atsrrm a rank-two tensor under Lorentz
transformations satisfying

@T = 0: (5.13)
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The associated conserved charges are given by
z

P = &xT° (5.14)

and correspond to the total energy-momentum content of ¢ha d¢onfiguration. Therefore the
energy density of the field is given kby°° while T° is the momentum density. In the quantum
theory thep are the generators of space-time translations.

Another example of a symmetry related with a physicallyvah conserved charge is the
global phase invariance of the Dirac Lagrangian (4.27), e' . Forsmall this corresponds to

variations =i = i which by Noether’s theorem result in the conserved charge
3= @ § = O: (5.15)
Thus implying the existence of a conserved charge
A Z
0= &x ° = IxY (5.16)

In physics there are several instances of global U(1) symesdhat act as phase shifts on spinors.
This is the case, for example, of the baryon and lepton nueteservation in the Standard Model.
A more familiar case is the U(1) local symmetry associateith wlectromagnetism. Notice that
although in this case we are dealing with a local symmetry! e ), the invariance of the
Lagrangian holds in particular for global transformatiamsl therefore there is a conserved current
j =e .InEq. (4.72) we saw that the spinor is coupled to the photdd firecisely through
this current. Its time component is the electric charge itens while the spatial components are
the current density vectar

This analysis can be carried over also to nonabelian ungiatyal symmetries acting as
i ! Uj_j g7 Uu¥u =1 (517)

and leaving invariant the Dirac Lagrangian when we haverséfermions. If we write the matrix
U in terms of the hermitian group generatarsas

U=exp @ .T?; (T =1T%; (5.18)

we find the conserved current

= T3 4 @3j =o0: (5.19)

i+ij

This is the case, for example of the approximate flavor symesein hadron physics. The simplest
example is the isospin symmetry that mixes the quar&add

u | u . .

q ' M q M 2 SU (@2): (5.20)
Since the proton is a bound state of two quatksnd one quarki while the neutron is made out
of one quarka and two quarksy, this isospin symmetry reduces at low energies to the wehkn
isospin transformations of nuclear physics that mixesgefind neutrons.
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5.2 Symmetries in the quantum theory

We have seen that in canonical quantization the conservagiesp @ associated to symmetries
by Noether’s theorem are operators implementing the symmnagtthe quantum level. Since the
charges are conserved they must commute with the Hamittonia

R%H 1= 0: (5.21)

There are several possibilities in the quantum mechareedization of a symmetry:

Wigner-Weyl realization. In this case the ground state of the thedryis invariant under the
symmetry. Since the symmetry is generatecbBsythis means that

U()Pi &:27Pi= Pi =) Q*Pi= 0: (5.22)

At the same time the fields of the theory have to transformraieg to some irreducible represen-
tation of the group generated by thé. From Eq. (5.8) it is easy to prove that

U()U() "=Us5() 55 (5.23)

whereU;; ( ) is an element of the representation in which the fieldransforms. If we consider
now the quantum state associated with the operator

Jji= iPi (5.24)

we find that because of the invariance of the vacuum (5.22}tidesii transform in the same
representation as;

U()J=U() U () 'U()Pi=Uy() 3Pi= Uy ( )i (5.25)

Therefore the spectrum of the theory is classified in mudtgbf the symmetry group. In addition,
since H ;U ( )] = 0 all states in the same multiplet have the same energy. If weider one-
particle states, then going to the rest frame we concludeathatates in the same multiplet have
exactly the same mass.

Nambu-Goldstone realization. In our previous discussion the result that the spectrum of
the theory is classified according to multiplets of the synmngroup depended crucially on the
invariance of the ground state. However this condition ismandatory and one can relax it to
consider theories where the vacuum state is not left inwalg the symmetry

e 2" Pis Pi =) Q*Pi6 0: (5.26)

In this case it is also said that the symmetry is spontangdusken by the vacuum.
To illustrate the consequences of (5.26) we consider thepleof a number scalar fields'
(i= 1;:::;N) whose dynamics is governed by the Lagrangian
1.
=@t v (5.27)
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where we assume that ( ) is bounded from below. This theory is globally invariant endhe
transformations

ri_ a(Ta)i-’j' (5.28)

Jj 14

withT?,a= 1;:::;2N @ 1) the generators of the group R0).
To analyze the structure of vacua of the theory we consthecHamiltonian
z
3 1 i1 1~ i i
H = dXE +§r’ r’+V(’) (529)

and look for the minimum of

1, .
V()= d’x 5f'lf'l+v<'): (5.30)

Since we are interested in finding constant field configunatio © = © to preserve translational
invariance, the vacua of the potential’ ) coincides with the vacua of (" ). Therefore the minima
of the potential correspond to the vacuum expectation glue

, X \Y
o A vV @ 1) = 0; ¢ = 0: (5.31)

@,l Ii=hl

i

We divide the generators® of SO ) into two groups: Those denoted By ( = 1;:::;h)
that satisfy

®@ )i i= o: (5.32)

This means that the vacuum configuratign'i is left invariant by the transformation generated
by H . For this reason we call themmbroken generatorsNotice that the commutator of two
unbroken generators also annihilates the vacuum expactalue,H ;H b 7i= 0. Therefore
the generatorsH gform a subalgebra of the algebra of the generators oR§OThe subgroup of
the symmetry group generated by them is realized a la Widvessl.

The remaining generators®, with A = 1;:::;2N 1)  h, by definition do not preserve
the vacuum expectation value of the field

® *)in 'i6 O: (5.33)

These will be called théroken generators Next we prove a very important result concerning
the broken generators known as the Goldstone theorem: ¢brgenerator broken by the vacuum
expectation value there is a massless excitation.

The mass matrix of the excitations around the vacutiid is determined by the quadratic
part of the potential. Since we assumed that’ i) = 0 and we are expanding around a minimum,

OFor simplicity we consider that the minimawf( ) occur at zero potential.
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the first term in the expansion of the potential’ ) around the vacuum expectation values is given
by
Q*v

@7 i@’ 3 I

V()= ' wHe? wip+o ¢ nwiy (5.34)

and the mass matrix is:

N 2 Q*v

1] @ri@rj -

(5.35)

In order to avoid a cumbersome notation we do not show exiglittie dependence of the mass
matrix on the vacuum expectation valuesi.

To extract some information about the possible zero mod#seahass matrix, we write down
the conditions that follow from the invariance of the potahtinder '*= = (r=)i’ 7. Atfirst order
in @

VvV .
OV rayiriz o (5.36)

V(,)=a@!i J

Differentiating this expression with respect’td we arrive at

Qv
@I i@l k

Qv

@,icra)i= 0: (5.37)

)37+

Now we evaluate this expression in the vacutim= ' *i. Then the derivative in the second term
cancels while the second derivative in the first one givesrthss matrix. Hence we find

M 2 (T%)in 7i= 0: (5.38)

Now we can write this expression for both broken and unbragesrerators. For the unbroken ones,
since @ )ih' ’i= 0, we find a trivial identity0 = 0. On the other hand for the broken generators
we have

MZ ®®)3H Ji= 0: (5.39)

Since K *)3br ’i6 0this equation implies that the mass matrix has as many zedesnas broken
generators. Therefore we have proven Goldstone’s theassaciated with each broken symmetry
there is a massless mode in the theory. Here we have presealaskical proof of the theorem. In
the quantum theory the proof follows the same lines as themsented here but one has to consider
the effective action containing the effects of the quantwmextions to the classical Lagrangian.

As an example to illustrate this theorem, we consider a Siayd)iant scalar field theory with
a “mexican hat” potential

Viy=-— ~2 F°%. (5.40)



The vacua of the theory correspond to the configurationsfgatg h~i? = a®. In field space
this equation describes a two-dimensional sphere and edgtios is just a point in that sphere.
Geometrically it is easy to visualize that a given vacuundfiebnfiguration, i.e. a point in the
sphere, is preserved by SO(2) rotations around the axiedihere that passes through that point.
Hence the vacuum expectation value of the scalar field bitbaksymmetry according to

h~i: SO @) ! SO @): (5.41)

Since SO(3) has three generators and SO(2) only one we devihgenerators are broken and
therefore there are two massless Goldstone bosons. Phy#itsmassless modes can be thought
of as corresponding to excitations along the surface ofjthergh~i? = a2.

Once a minimum of the potential has been chosen we can preaeg@ntize the excitations
around it. Since the vacuum only leaves invariant a SO(2ysup of the original SO(3) symmetry
group it seems that the fact that we are expanding aroundiaylar vacuum expectation value of
the scalar field has resulted in a lost of symmetry. This isédwv@wnot the case. The full quantum
theory is symmetric under the whole symmetry group SO(3)s ®reflected in the fact that the
physical properties of the theory do not depend on the paatipoint of the sphere~i? = a? that
we have chosen. Different vacua are related by the full S&B)metry and therefore should give
the same physics.

It is very important to realize that given a theory with a vacudetermined by~ i all other
possible vacua of the theory are unaccessible in the infugiteme limit. This means that two
vacuum state®), i, 0,1 corresponding to different vacuum expectation values@tttalar field are
orthogonalho, ,i = 0 and cannot be connected by any local observalyte, h0,5§ )P ,i= 0.
Heuristically this can be understood by noticing that initifaite volume limit switching from one
vacuum into another one requires changing the vacuum eagp@tivalue of the field everywhere
in space at the same time, something that cannot be done Hgeatyperator. Notice that this is
radically different to our expectations based on the Quartechanics of a system with a finite
number of degrees of freedom.

In High Energy Physics the typical example of a Goldston@has the pion, associated with
the spontaneous breaking of the global chiral isospin2),  SU ), symmetry. This symmetry
acts independently in the left- and right-handed spinors as

Ur r |

4 My g Lro Miz 2 SU @)z (5.42)
L ;R

’
d-L R

Presumably since the quarks are confined at low energiesythimetry is spontaneously broken
down to the diagonal SU(2) acting in the same way on the leit right-handed components of
the spinors. Associated with this symmetry breaking theeGoldstone mode which is identified
as the pion. Notice, nevertheless, that the SU(2pU(2) would be an exact global symmetry of
the QCD Lagrangian only in the limit when the masses of thelquare zeran ,;m 4 ! 0. Since
these quarks have nonzero masses the chiral symmetry impptgximate and as a consequence
the corresponding Goldstone boson is not massless. Thdiyipiwns have masses, although they
are the lightest particle among the hadrons.
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Symmetry breaking appears also in many places in condenattdrmFor example, when a
solid crystallizes from a liquid the translational invar@z that is presentin the liquid phase is broken
to a discrete group of translations that represent the aradtice. This symmetry breaking has
Goldstone bosons associated which are identified with pimadich are the quantum excitation
modes of the vibrational degrees of freedom of the lattice.

The Higgs mechanismGauge symmetry seems to prevent a vector field from havingsa.ma
This is obvious once we realize that a term in the Lagrangi@n A A is incompatible with
gauge invariance.

However certain physical situations seem to require masa&etor fields. This happened for
example during the 1960s in the study of weak interactiornee Glashow model gave a common
description of both electromagnetic and weak interactioased on a gauge theory with group
SU(2) U(1) but, in order to reproduce Fermi’s four-fermion theofghe -decay it was necessary
that two of the vector fields involved would be massive. Alsacondensed matter physics massive
vector fields are required to describe certain systems, noiably in superconductivity.

The way out to this situation is found in the concept of spoeatais symmetry breaking dis-
cussed previously. The consistency of the quantum theapyines gauge invariance, but this in-
variance can be realized a la Nambu-Goldstone. When thieisase the full gauge symmetry is
not explicitly present in the effective action construcéedund the particular vacuum chosen by the
theory. This makes possible the existence of mass termsatayegfields without jeopardizing the
consistency of the full theory, which is still invariant werd¢he whole gauge group.

To illustrate the Higgs mechanism we study the simplest gt@nthe Abelian Higgs model:
a U(1) gauge field coupled to a self-interacting charged dexmgxalar field with Lagrangian

1
L= -F F +D D - 22, (5.43)
4 4

where the covariant derivative is given by Eq. (4.69). Thisory is invariant under the gauge
transformations

1oet® A ! A +@ () (5.44)

The minimum of the potential is defined by the equatiof= . We have a continuum of different
vacua labelled by the phase of the scalar field. None of thesgay however, is invariant under the
gauge symmetry

hi= efo 1 ghori® (5.45)

and therefore the symmetry is spontaneously broken Letudy stow the theory around one of
these vacua, for examplei = , by writing the field in terms of the excitations around this
particular vacuum

x) = +p1_§ &) e & (5.46)

Independently of whether we are expanding around a paatiacticuum for the scalar field we
should keep in mind that the whole Lagrangian is still gaugairiant under (5.44). This means that
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performing a gauge transformation with parametex) =  # (x) we can get rid of the phase in
Eq. (5.46). Substituting thenx) =+ pl—é x) in the Lagrangian we find

1 1 1
L = ~“FF +&2AR +-@ @ - 2z
4 2 2

3 2 ‘+ &€ AA +&A A 2 (5.47)
What are the excitation of the theory around the vacaut= ? First we find a massive real
scalar field (). The important point however is that the vector fieldnow has a mass given by

m?=2& ?: (5.48)

The remarkable thing about this way of giving a mass to theghis that at no point we have given
up gauge invariance. The symmetry is only hidden. Therafogaiantizing the theory we can still
enjoy all the advantages of having a gauge theory but at the §ane we have managed to generate
a mass for the gauge field.

It is surprising, however, that in the Lagrangian (5.47) werbt found any massless mode.
Since the vacuum chosen by the scalar field breakssthie generator of U(1) we would have
expected one masless particle from Goldstone’s theoremun@ierstand the fate of the missing
Goldstone boson we have to revisit the calculation leadingd. (5.47). Were we dealing with a
global U(1) theory, the Goldstone boson would corresporekiitation of the scalar field along the
valley of the potential and the pha#ex) would be the massless Goldstone boson. However we have
to keep in mind that in computing the Lagrangian we managegtoid of # (x) by shifting it into
A using a gauge transformation. Actually by identifying tlaige parameter with the Goldstone
excitation we have completely fixed the gauge and the Lagmar(§.47) does not have any gauge
symmetry left.

A massive vector field has three polarizations: two trarsvenek & 1) = Oplusa
longitudinal one~, ®) k. In gauging away the massless Goldstone basén we have trans-
formed it into the longitudinal polarization of the massweetor field. In the literature this is usually
expressed saying that the Goldstone mode is “eaten up” dgiigéudinal component of the gauge
field. It is important to realize that in spite of the fact thia¢ Lagrangian (5.47) looks pretty dif-
ferent from the one we started with we have not lost any degnééeedom. We started with the
two polarizations of the photon plus the two degrees of foeedssociated with the real and imag-
inary components of the complex scalar field. After symmbtgaking we end up with the three
polarizations of the massive vector field and the degreeseidiom of the real scalar fieldx).

We can also understand the Higgs mechanism in the light aofisaussion of gauge symme-
try in section 4.4. In the Higgs mechanism the invarianceneftheory under infinitesimal gauge
transformations is not explicitly broken, and this implteat Gauss’ law is satisfied quantum me-
chanically, E_physi = 0. The theory remains invariant under gauge transformationise
connected component of the identiy, the ones generated by Gauss’ law. This does not pose any
restriction on the possible breaking of the invariance efttieory with respect to transformations
that cannot be continuously deformed to the identity. Hend¢lee Higgs mechanism the invariance
under gauge transformation that are not in the connecteghaoemt of the identityz=G,, can be
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broken. Let us try to put it in more precise terms. As we ledrinesection 4.4, in the Hamiltonian
formulation of the theory finite energy gauge field configiamras tend to a pure gauge at spatial
infinity

E ®) !%g(x) T g&); ®j! 1 (5.49)
The set transformationg, x) 2 G, that tend to the identity at infinity are the ones generated by
Gauss’ law. However, one can also consider in general gaagsformationsy <) which, asxj!
1 , approach any other elemeft G. The quotient, G=G gives a copy of the gauge group
at infinity. There is no reason, however, why this group stiaalt be broken, and in general it is if
the gauge symmetry is spontaneously broken. Notice thaiighiot a threat to the consistency of
the theory. Properties like the decoupling of unphysicatest are guaranteed by the fact that Gauss’
law is satisfied quantum mechanically and are not affectettid¥preaking ofs; .

The Abelian Higgs model discussed here can be regarded gswottel of the Higgs mech-
anism responsible for giving mass to the andz° gauge bosons in the Standard Model. In
condensed matter physics the symmetry breaking descripelebnonrelativistic version of the
Abelian Higgs model can be used to characterize the onsesaperconducting phase in the BCS
theory, where the complex scalar fielés associated with the Cooper pairs. In this case the param-
eter 2 depends on the temperature. Above the critical temperature’ (T ) > 0and there is only
a symmetric vacuura i = 0. When, on the other hand, < T .then () < 0and symmetry
breaking takes place. The onset of a nonzero mass of therpl®#8) below the critical tem-
perature explains the Meissner effect: the magnetic fieddsat penetrate inside superconductors
beyond a distance of the order.

6 Anomalies

So far we did not worry too much about how classical symmetfe theory are carried over to the
guantum theory. We have implicitly assumed that classigalsetries are preserved in the process
of quantization, so they are also realized in the quantuimrihe

This assumption, however, is not necessarily justified enxaaise of certain symmetries like
scale invariance. To be more concrete, let us think of a jhemmtaining a single field with canonical
dimension . If there are no dimensionfull parameters in the Lagrangibe classical theory is
invariant under the conformal transformation

x 1ox; x) ! ( x): (6.1)

This is the case, for example, for a masslesstheory in four dimensions

1 4
L= — 14 4 S ; 62
2@ ¢ 4! 6.2)
where the scalar field has canonical dimensien 1. The Lagrangian density transforms as
L ! L (6.3)
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and the classical action remains invariant.

This classical invariance of the theory is however not preskin the process of quantization.
The reason lies in the necessity of making sense of diveeygméessions that arise when calculating
guantum corrections, as we will explain in section 7 in detdere it suffices to say that in order
to regularize the divergent expressions it is necessamttoduce a cutoff at a given energy scale.
This breaking of the invariance of the theory under confdtmaasformations is not recovered after
renormalization has been carried out, and as a result thewugoroperties of a theory like (6.2)
depend on the energy scale at which the physical procedsepltce. One of the consequences is
that the canonical dimension of the field also gets a cooect= 1+ ().

This is an example of aanomaly i.e. a symmetry of the classical theory that is not pre-
served upon quantization (for a review see [25]). It is int@or to avoid here the misconception
that anomalies appear due to a bad choice of the way a thexgutarized in the process of quan-
tization. When we talk about anomalies we mean a classicaistry thatcannotbe realized in
the quantum theory, no matter how smart we are in choosingethdarization procedure. This is
the case with the conformal anomaly that we have just digchigsdoes not matter in which way
we regularize our ’ * theory, the result is a quantum theory that breaks conformatiance.

6.1 Axial anomaly

Probably the best known examples of anomalies appear wheongder axial symmetries. If we
consider a theory of two Weyl spinots

L=ie = ,@u +m’ @u with = W (6.4)
u

the Lagrangian is invariant under two types of global U(anhsformations. In the first one both
helicities transform with the same phase, this \@atortransformation:

U@l), :u ! éu ; (6.5)
whereas in the second one, the axial), the signs of the phases are different for the two chiralitie

U@Q), :u ! e*u : (6.6)
Using Noether’s theorem, there are two conserved curramsctor current

J, = =u’ ,u, +u u =) @J, =0 (6.7)

J, = s =ul ,u U u =) @ J, = 0: (6.8)

The theory described by the Lagrangian (6.4) can be couplebet electromagnetic field.
The resulting classical theory is still invariant under ieetor and axial U(1) symmetries (6.5) and
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(6.6). Surprisingly, upon quantization it turns out thag ttonservation of the axial current (6.8) is
spoiled by quantum effects

€J, ~E B: (6.9)

To understand more clearly how this result comes about way ditst a simple model in
two dimensions that captures the relevant physics invoinwede four-dimensional case [26]. We
work in Minkowski space in two dimensions with coordinates;x*) t;x) and where the
spatial direction is compactified to a circté. In this setup we consider a fermion coupled to the
electromagnetic field. Notice that since we are living in thimensions the field strength only
has one independent component that corresponds to theielezd along the spatial direction,
F°  E (in two dimensions there are no magnetic fields!).

To write the Lagrangian for the spinor field we need to find agsentation of the algebra of

-matrices

f ; g=2 with = : (6.10)

In two dimensions the dimension of the representation of tineatrices i2%! = 2. Here take

0 1 ) 0 1
oie 0L 1oy2 o Lo (6.11)

This is a chiral representation since the matrixs diagonal!
5 = (6.12)

Writing the two-component spinor as

= W (6.13)

u

and defining as usual the projectars = % (1 s) we find that the components of are
respectively a right- and left-handed Weyl spinor in two dirsions.

Once we have a representation of thenatrices we can write the Dirac equation. Expressing
it in terms of the components of the Dirac spinor we find

@ @u =0; @+ @)u = O: (6.14)
The general solution to these equations can be immediatédlgwas
u, = u, &+ xb); u =u & ) (6.15)

Henceu are two wave packets moving along the spatial dimensiorectsely to the left u, )
and to the rightw ). Notice that according to our convention the left-movingis a right-handed
spinor (positive helicity) whereas the right-moving is a left-handed spinor (negative helicity).

"in any even number of dimensions is defined to satisfy the conditiong = 1 andf 5; g= 0:
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Fig. 10: Spectrum of the massless two-dimensional Dirad.fiel

If we want to interpret (6.14) as the wave equation for twaelnsional Weyl spinors we have
the following wave functions for free particles with wellfdeed momentunp = & ;p).

l . 0 1 .
W &% )= p—e B =) \ith p= E: (6.16)
L

As it is always the case with the Dirac equation we have botiitipe and negative energy solutions.
Foru,, sinceE = p, we see that the solutions with positive energy are thosk megative
momentump < 0, whereas the negative energy solutions are plane wavespwith0. For the
left-handed spinot the situation is reversed. Besides, since the spatialttbreis compact with
lengthL the momentunp is quantized according to

p= Tn; n2z: (6.17)

The spectrum of the theory is represented in Fig. 10.

Once we have the spectrum of the theory the next step is tanabi vacuum. As with the
Dirac equation in four dimensions we fill all the states vith 0 (Fig. 11). Exciting of a particle
in the Dirac see produces a positive energy fermion plusathal is interpreted as an antiparticle.
This gives us the clue on how to quantize the theory. In thaesion of the operatar in terms of
the modes (6.16) we associate positive energy states withitation operators whereas the states
with negative energy are associated with creation opexddothe corresponding antiparticle

X h i
u ()= a EW" )+ @)wE k) (6.18)

E>O0
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Fig. 11: Vacuum of the theory.

The operatoa & ) acting on the vacuurn; iannihilates a particle with positive energyand
momentum E. In the same way & ) creates out of the vacuum an antiparticle with positive
energyE and spatial momentum E. In the Dirac sea picture the operator® )Y is originally an
annihilation operator for a state of the sea with negativerggh E. As in the four-dimensional
case the problem of the negative energy states is solvediénprating annihilation operators for
negative energy states as creation operators for the pomdsg antiparticle with positive energy
(and vice versa). The operators appearing in the expans$ian a Eq. (6.18) satisfy the usual
algebra

fa €);aE%=fb E);V, €)%= ggo of (6.19)

where we have introduced the label °= . Also, a &), a’ &) anticommute witho » & 9),
v & 9.

The Lagrangian of the theory
L =i @+ @)u, + ' @ @)u (6.20)

is invariant under both U(%), Eq. (6.5), and U(%), Eq. (6.6). The associated Noether currents are
in this case

y y y
u,uy +uu u; U4 d u
J, = ; J, = : 6.21
v du, + u’u A du, UJu ( )
The associated conserved charges are given, for the vectent by
Z L
Qv =  dx' ulu, +u'u (6.22)

0
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and for the axial current
Z L
Qa = dx' u’u, du : (6.23)

0

Using the orthonormality relations for the modes’ )

Z

ax' v®’ (X)V(EO) ®)= ggo (6.24)

0

we find for the conserved charges:

X h i
Qy = al B)a, E) BER E)+a' E)a E) BE)D E€) ;
E>0 .
X h 1
Qa = al B)a, €E) ¥ EDL E) dE)a E)+P E)b €) : (6.25)

E>O0

We see thab ; counts the net number (particles minus antiparticles) sftpe helicity states plus
the net number of states with negative helicity. The axiargh, on the other hand, counts the
net number of positive helicity states minus the number gfatiee helicity ones. In the case of
the vector current we have subtracted a formally divergantium contribution to the charge (the
“charge of the Dirac sea”).

In the free theory there is of course no problem with the covagi®n of eitherg, or Q,,
since the occupation numbers do not change. What we wanudy & the effect of coupling the
theory to electric field. We work in the gauge , = 0. Instead of solving the problem exactly we
are going to simulate the electric field by adiabaticallyyuag in a long time , the vector potential
A, from zero value to E,. From our discussion in section 4.3 we know that the effedhef
electromagnetic coupling in the theory is a shift in the motam according to

p ! p e; (6.26)

wheree is the charge of the fermions. Since we assumed that thervaaotential varies adiabati-
cally, we can assume it to be approximately constant at eaeh t

Then, we have to understand what is the effect of (6.26) orvéloeum depicted in Fig.
(11). What we find is that the two branches move as shown in ElgQ) resulting in some of
the negative energy states of the branch acquiring positive energy while the same number of
the empty positive energy states of the other branchill become empty negative energy states.
Physically this means that the external electric fielcreates a number of particle-antiparticle pairs
out of the vacuum. Denoting hy ek the number of such pairs created by the electric field per
unit time, the final values of the charges ando , are

Oalo) = N 0+ (O N)=0;
Ov(o) = N 0 (O N)=2N: (6.27)



Fig. 12: Effect of the electric field.
Therefore we conclude that the coupling to the electric fiettluces a violation in the conservation
of the axial charge per unittime givenbg , k. This implies that
@ J, eE; (6.28)

where we have restoredto make clear that the violation in the conservation of thalaurrent is
a quantum effect. At the same time , = 0guarantees that the vector current remains conserved
also quantum mechanically, J, = 0.

We have just studied a two-dimensional example of the ABEt-Jackiw axial anomaly [27].
The heuristic analysis presented here can be made mors@itsctcomputing the quantity

C =1 J, ®)J, 0)]Pi= (6.29)

The anomaly is given then by ¢ . A careful calculation yields the numerical prefactor rmgs
in Eqg. (6.28) leading to the result

@J, =—"F ; (6.30)
With "L = W0 = .
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The existence of an anomaly in the axial symmetry that we hiagtrated in two dimensions
is present in all even dimensional of space-times. In pagrdn four dimensions the axial anomaly
itis given by

eZ

QJ, = e " F F : (6.31)
This result has very important consequences in the phy$issang interactions as we will see in

what follows

6.2 Chiral symmetry in QCD

Our knowledge of the physics of strong interactions is basethe theory of Quantum Chromo-
dynamics (QCD) [29]. This is a nonabelian gauge theory wahge group SU{(.) coupled to a
numberN . of quarks. These are spipparticlesg ** labelled by two quantum numbers: color
i= 1;:::;;N.and flavorf = 1;:::;N (. The interaction between them is mediated bynite 1
gauge bosons, the gluons, a = 1;:::;;N2 1. In the real worldN, = 3 and the number of
flavors is six, corresponding to the number of different ggaup (), down @), charm €), strange
(s), top © and bottom 1.

For the time being we are going to study a general theory of Q@D N . colors andN
flavors. Also, for reasons that will be clear later we are gaowork in the limit of vanishing quark
massesy ! 0. In this cases the Lagrangian is given by

1 X< h —f £ —f £ i
Locp = ZFaFa + Q. BQp + 0:BQy ; (6.32)
f=1

where the subscripts andRr indicate respectively left and right-handed spin@)zrgR P QF,
and the field strengtlh ® and the covariant derivativie are respectively defined in Egs. (4.75)
and (4.78). Apart from the gauge symmetry, this Lagranggal$so invariant under a global
UN¢), U(Ne)r acting on the flavor indices and defined by

f 8 f f

P 0
< 0 1 U )eroQ < Qp ! QO
U, = U g), = o (6.33)
: £ £ : roo £°
QR ! QR QR . fO(UR)ffOQR
with U, ;Uz 2 U®N¢). Actually, since Uf )=U(1) SU® ) this global symmetry group can be
writtenas SUf ¢),  SUW¢), U(1) U(1). The abelian subgroup U{1) U(1) can be now
decomposed into their vector U{land axial U(1) subgroups defined by the transformations

< of 1 éof <o ! éof
U@ - U@, : . (6.34)
" op ! €o0q "o ! etog
According to Noether’s theorem, associated with these twadian symmetries we have two con-
served currents:
e | X,
= Q QF; = Q sQf: (6.35)

f=1 f=1

59



The conserved charge associated with vector chayges actually the baryon number defined as
the number of quarks minus number of antiquarks.

The nonabelian part of the global symmetry group$({ SU@N¢)z can also be decom-
posed into its vector and axial subgroups, 8L,  SU(:), , defined by the following transfor-
mations of the quarks fields

8 P ; 8 P 0
2 0f 1 0 Up)eeQ 2 0f ! o Up)eroQ

SUWM ¢),, Y o . SUWN ), Sy e 1 . (6.36)
QR . fO(UL)ffOQR QR . fO(UR )ffOQR

Again, the application of Noether’s theorem shows the erist of the following nonabelian con-
served charges
I X =t I £0 I X —f I £
Jg Q (THeeQ”; Jy Q sTNeeQ” : (6.37)

£i£0=1 £5£0=1

To summarize, we have shown that the initial chiral symmetrthe QCD Lagrangian (6.32) can
be decomposed into its chiral and vector subgroups acaptdin

UN:), Um:), = SUWNe), SU@:), U@y U@): (6.38)

The question to address now is which part of the classicdlajleymmetry is preserved by the
guantum theory.

As argued in section 6.1, the conservation of the axial csi® andJ; can in principle be

spoiled due to the presence of an anomaly. In the case of $lmalaxial current, the relevant
guantity is the correlation function

2 3
s
C HOT T, %) Frouge &) Pange 0) Pi= (6.39)
=14 5
sym m etric
Here 1. is the nonabelian conserved current coupling to the gludah fie
X,
Fouge 0 aof; (6.40)
f=1

where, to avoid confusion with the generators of the glopairmetry we have denoted by the
generators of the gauge group $UJJ. The anomaly can be read now fragnc . If we impose
Bose symmetry with respect to the interchange of the twoangpgluons and gauge invariance of
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the whole expressiorg C = 0= @ Cc ,we find that the axial abelian global current has an
anomaly given b¥?

ﬂ"

5 2 FeF?® (6.41)

QR J, =
In the case of the nonabelian axial global symmetry®84){ the calculation of the anomaly
is made as above. The result, however, is quite differesedimthis case we conclude that the non-
abelian axial current; is not anomalous. This can be easily seen by noticing thateged with
the axial current vertex we have a generatérof SUWN ), whereas for the two gluon vertices we
have the generators of the gauge group Sti(.). Therefore, the triangle diagram is proportional
to the group-theoretic factor

2 3
g % trT" trf ?; Pg= 0 (6.42)
4 5

sym m etric

which vanishes because the generators ofi\SYére traceless.

From here we would conclude that the nonabelian axial symyn$I(N ), iS honanomalous.
However this is not the whole story since quarks are chargeticfes that also couple to photons.
Hence there is a second potential source of an anomaly cofrongthe the one-loop triangle
diagram couplings, to two photons

2 3
h i e
T J, ®) i, ®)i, 0) Pi= (6.43)
f=14 5
sym m etric
where, is the electromagnetic current
e
= *Q QF (6.44)
f=1

with ¢ the electric charge of the-th quark flavor. A calculation of the diagram in (6.43) shdtwes
existence of an Adler-Bell-Jackiw anomaly given by
2 3

N, !
@ J, = 1624 THesf®" F F (6.45)

f=1

12The normalization of the generatars of the global SU ) is given bytr T '17) = £ 7.
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whereF s the field strength of the electromagnetic field couplinghequarks. The only chance
for the anomaly to cancel is that the factor between bradketss equation be identically zero.

Before proceeding let us summarize the results found soBacause of the presence of
anomalies the axial part of the global chiral symmetry,6L)¢ and U(1), are not realized quantum
mechanically in general. We found that U(1} always affected by an anomaly. However, because
the right-hand side of the anomaly equation (6.41) is a ti¢alative, the anomalous character of
J, does not explain the absence of U(Ipultiplets in the hadron spectrum, since a new current
can be constructed which is conserved. In addition, thexistemce of candidates for a Goldstone
boson associated with the right quantum numbers indichtgdX(1), is not spontaneously broken
either, so it has be explicitly broken somehow. This is theated U(1)-problem which was solved
by 't Hooft [30], who showed how the contribution of quanturarisitions between vacua with
topologically nontrivial gauge field configurations (instans) results in an explicit breaking of this
symmetry.

Due to the dynamics of the SN() gauge theory the axial nonabelian symmetry is sponta-
neously broken due to the presence at low energies of a vaempattation value for the fermion

bilinearg "o ¢
D 0fPis 0 (No summation in!) : (6.46)

This nonvanishing vacuum expectation value for the qualikdar actually breaks chiral invari-
ance spontaneously to the vector subgroupnSU)(, so the only subgroup of the original global
symmetry that is realized by the full theory at low energy is

UN:), U@, ! SU@:), U@y : (6.47)

Associated with this breaking a Goldstone boson shouldappih the quantum numbers of the
broken nonabelian current. For example, in the case of Q@DQbldstone bosons associated
with the spontaneously symmetry breaking induced by thewacexpectation valugsiui, hddi
andh@d du)ihave been identified as the piofls . These bosons are not exactly massless
because of the nonvanishing mass ofil@dd quarks. Since the global chiral symmetry is already
slightly broken by mass terms in the Lagrangian, the assmti@oldstone bosons also have masses
although they are very light compared to the masses of otinohs.

In order to have a better physical understanding of the rblnomalies in the physics of
strong interactions we particularize now our analysis ef ¢hse of real QCD. Since theandd
guarks are much lighter than the other four flavors, QCD at émwrgies can be well described
by including only these two flavors and ignoring heavier ggarn this approximation, from our
previous discussion we know that the low energy global sytnné the theory is SU(2) U(1),
where now the vector group SU(2)s the well-known isospin symmetry. The axial U{1durrent
is anomalous due to Eqg. (6.41) with: = 2. In the case of the nonabelian axial symmetry SU(2)
taking into account tha, = 2eandg; = zeand that the three generators of SU(2) can be written
in terms of the Pauli matrices a$ = 2 * we find

X e

X X
(Tl)ffoéz (Tl)ffoéz 0; ('I‘B)ffcé: — (6.48)

2
6
f=u;d f=u;d f=u;d
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ThereforeJ, is anomalous.

Physically, the anomaly in the axial currle[ has an important consequence. In the quark
model, the wave function of the neutral piohis given in terms of those for theandd quark by

1
j0%i= p—E Juijai gipi (6.49)

The isospin quantum numbers ¢f°i are those of the generatar. Actually the analogy goes
further sinceg J; is the operator creating a piofi out of the vacuum

3% @J. Pi: (6.50)

This leads to the physical interpretation of the trianglagdam (6.43) withJZf as the one loop
contribution to the decay of a neutral pion into two photons

o 12 (6.51)

This is an interesting piece of physics. In 1967 Sutherlamdl #eltman [31] presented a
calculation, using current algebra techniques, accortbhnghich the decay of the pion into two
photons should be suppressed. This however contradioteeliberimental evidence that showed
the existence of such a decay. The way out to this paradoxpiased out in [27], is the axial
anomaly. What happens is that the current algebra analysitooks the ambiguities associated
with the regularization of divergences in Quantum Fielddiye A QED evaluation of the triangle
diagram leads to a divergent integral that has to be regeldisomehow. It is in this process that
the Adler-Bell-Jackiw axial anomaly appears resulting incavanishing value for the® ! 2
amplitudé?s.

The existence of anomalies associated with global curdwgs not necessarily mean diffi-
culties for the theory. On the contrary, as we saw in the chfeeaxial anomaly it is its existence
what allows for a solution of the Sutherland-Veltman paraaiod an explanation of the electromag-
netic decay of the pion. The situation, however, is veryeddht if we deal with local symmetries.
A quantum mechanical violation of gauge symmetry leads It&iatls of problems, from lack of
renormalizability to nondecoupling of negative norm statd his is because the presence of an
anomaly in the theory implies that the Gauss’ law constr&inte, = , cannot be consistently
implemented in the quantum theory. As a consequence sheateslassically are eliminated by the
gauge symmetry become propagating fields in the quantunmthtas spoiling the consistency of
the theory.

Anomalies in a gauge symmetry can be expected only in cliearies where left and right-
handed fermions transform in different representationthefgauge group. Physically, the most
interesting example of such theories is the electroweatoset the Standard Model where, for
example, left handed fermions transform as doublets undé2)Svhereas right-handed fermions
are singlets. On the other hand, QCD is free of gauge anosrsiliee both left- and right-handed
guarks transform in the fundamental representation of pU(3

13An early computation of the triangle diagram for the elegtagnetic decay of the pion was made by Steinberger
in [28].
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We consider the Lagrangian
1 X+ . . X — .
L= -F* F*+1i BEY T4 B (6.52)
4 i=1 =1
where the chiral fermions™* transform according to the representatiops of the gauge group
(a= 1;:::;din G). The covariant derivatives ‘ ' are then defined by

D) =@ 14 g% X I, (6.53)

i;

As for global symmetries, anomalies in the gauge symmefogapin the triangle diagram with one
axial and two vector gauge current vertices

2 3
O 1 ®3F «©F 0 ﬁi=§ % (6.54)
4 5
sym m etric
where gauge vector and axial curren}s, j; are given by
R R, D S
o= L i o
=1 =1
R . SN D S ,
5= - SEEEE (6.55)
=1 =1

Luckily, we do not have to compute the whole diagram in ordefind an anomaly cancellation
condition, it is enough if we calculate the overall groupdiretical factor. In the case of the diagram
in Eq. (6.54) for every fermion species running in the loap thctor is equal to

tr £ 09 (6.56)

a
i;

where the sign corresponds respectively to the generators of the repesamof the gauge group
for the left and right-handed fermions. Hence the anomatgebation condition reads

X+ X
tr f;+f§+;ic;+g tr jif?l.;jc;g:O: (6.57)

=1 =1

Knowing this we can proceed to check the anomaly cancetlatiothe Standard Model
SU(3) SU(2) U(1). Left handed fermions (both leptons and quarks) ti@nsfas doublets with
respect to the SU(2) factor whereas the right-handed coemnisrare singlets. The charge with
respect to the U(1) part, the hyperchames determined by the Gell-Mann-Nishijima formula

Q=Ts+Y; (6.58)
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whereQ is the electric charge of the corresponding particle and the eigenvalue with respect
to the third generator of the SU(2) group in the correspad@presentationT; = 2 ° for the
doublets and'; = 0for the singlets. For the first family of quarks, (@) and leptons4, .) we have
the following field content

guarks: q U, 2 d; 2
L;% 3 3
leptons: (: &; 1 (6.59)

where = 1;2;3labels the color quantum number and the subscript indithgagalue of the weak
hypercharger . Denoting the representations of SU(3%U(2) U(1) by @;n, )y, with n. andn,

the representations of SU(3) and SU(2) respectivelyvartle hypercharge, the matter content of
the Standard Model consists of a three family replicatiothefrepresentations:

left-handed fermions: 3;2)F @;2)".
(6.60)
right-handed fermions: (3;1)2 (3;1)R% @©;1)%

In computing the triangle diagram we have 10 possibilitiegahding on which factor of the gauge
group SU(3) SU(2) U(1) couples to each vertex:

SU(3y su(2y u(1)’
SU(3Y SU(2) SU2) U(1)

SU3Y U(1) SU(2) U(1f

SU(3) SU(2§

SU(3) SU(2) U(1)

SU(3) U(1y

It is easy to check that some of them do not give rise to an@wnakor example the anomaly for
the SU(3) case cancels because left and right-handed quarks tramsfahe same representation.
In the case of SU(2)the cancellation happens term by term because of the Patricemidentity
a b= aby 4uakc cthat|eads to
tr *f P °g =2@r %) ™= 0: (6.61)
However the hardest anomaly cancellation condition tegats the one with three U(1)’s. In this
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case the absence of anomalies within a single family is guieed by the nontrivial identity

3 3 3 3
XX . 1 1 2 1
Y, y>* =3 2 = +2 - 3 = 3 = ( 1
6 2 3 3

= + = 0: (6.62)

It is remarkable that the anomaly exactly cancels betwgens and quarks. Notice that this result
holds even if a right-handed sterile neutrino is added ssach a particle is a singlet under the whole
Standard Model gauge group and therefore does not corgribubhe triangle diagram. Therefore
we see how the matter content of the Standard Model condpirggsld a consistent quantum field

theory.

In all our discussion of anomalies we only considered themgation of one-loop diagrams.
It may happen that higher loop orders impose additional itimm$. Fortunately this is not so: the
Adler-Bardeen theorem [32] guarantees that the axial atyoomdy receives contributions from one
loop diagrams. Therefore, once anomalies are canceledgdilple) at one loop we know that there
will be no new conditions coming from higher-loop diagramperturbation theory.

The Adler-Bardeen theorem, however, only applies in pbdtion theory. It is nonetheless
possible that nonperturbative effects can result in thetyuna violation of a gauge symmetry. This
is precisely the case pointed out by Witten [33] with respgedhe SU(2) gauge symmetry of the
Standard Model. In this case the problem lies in the normtri@ipology of the gauge group SU(2).
The invariance of the theory with respect to gauge transditions which are not in the connected
component of the identity makes all correlation functiogea to zero. Only when the number of
left-handed SU(2) fermion doublets is even gauge invadalows for a nontrivial theory. It is
again remarkable that the family structure of the Standandéfimakes this anomaly to cancel

3 v + 1 ©

4 = 4 SU(2)-doublets (6.63)
L L

where the factor of 3 comes from the number of colors.

7 Renormalization
7.1 Removing infinities

From its very early stages, Quantum Field Theory was faced wiinities. They emerged in the
calculation of most physical quantities, such as the ctimedo the charge of the electron due to
the interactions with the radiation field. The way these jeaces where handled in the 1940s,
starting with Kramers, was physically very much in the smfithe Quantum Theory emphasis in
observable quantities: since the observed magnitude aigddyguantities (such as the charge of the
electron) is finite, this number should arise from the addibf a “bare” (unobservable) value and
the quantum corrections. The fact that both of these questitere divergent was not a problem
physically, since only its finite sum was an observable quianfo make thing mathematically
sound, the handling of infinities requires the introductidrsome regularization procedure which
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cuts the divergent integrals off at some momentum scaldorally speaking, the physical value of
an observable gysia1 IS given by

O physical = ]'Jml O (Jparet O () -1; (7.1)

where O () . represents the regularized quantum corrections.

To make this qualitative discussion more precise we comfhéecorrections to the elec-
tric charge in Quantum Electrodynamics. We consider thegs® of annihilation of an electron-

positron pair to create a muon-antimuon paie* ! * . To lowest order in the electric charge
ethe only diagram contributing is

H

However, the corrections at ordetto this result requires the calculation of seven more diagra

TS

In order to compute the renormalization of the charge we idenghe first diagram which
takes into account the first correction to the propagatonefvirtual photon interchanged between
the pairs due to vacuum polarization. We begin by evaluating

2 3




where the diagram between brackets is given by

Z 4
O @=2( wof( 1 Sk _Trkrmo) &rarmo) oo

@ )k mi+illk+qf mZ+i]

Physically this diagram includes the correction to the pggior due to the polarization of the vac-
uum, i.e. the creation of virtual electron-positron paiysioe propagating photon. The momentum
qis the total momentum of the electron-positron pair in therimediate channel.

It is instructive to look at this diagram from the point of wi@f perturbation theory in non-
relativistic Quantum Mechanics. In each vertex the intioacconsists of the annihilation (resp.
creation) of a photon and the creation (resp. annihilatidran electron-positron pair. This can be
implemented by the interaction Hamiltonian

Z

Hp=e dx A : (7.4)

All fields inside the integral can be expressed in terms ofctireesponding creation-annihilation
operators for photons, electrons and positrons. In QuamMathanics, the change in the wave
function at first order in the perturbation,,. is given by
X mH e jndb

j ;ini= 3§ ;Ing + —= o 7.5

j iini= j ;i3 g, 5 4 (7.5)
and similarly forj ;outi, where we have denoted symbolically by all the possible states of the
electron-positron pair. Since these states are orthogoral ini, j ;outi,, we find tordere?

X oh ;inHpchimH g %outd

+0 E): 7.6
€2 E)Eow B € (7.6)

h ;inj%outi= oh ;:nj%outiy +

n

Hence, we see that the diagram of Eq. (7.2) really corresptmdhe order? correction to the
photon propagatadt ;in7j %outi

AN ! oh ;Inj O;Qutj_o

| h ;inHpchinH 5] OrOUtl: (7.7)
. En B Box B

Once we understood the physical meaning of the Feynmanasiatyy be computed we pro-
ceed to its evaluation. In principle there is no problem impating the integral in Eq. (7.2) for
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nonzero values of the electron mass. However since hereevgaang to be mostly interested in
seeing how the divergence of the integral results in a stapendent renormalization of the electric
charge, we will setn . = 0. This is something safe to do, since in the case of this dagva are
not inducing new infrared divergences in taking the elette massless. Doing somematrices
gymnastics it is not complicated to show that the polarimatensor (g defined in Eq. (7.3) can
be written as

@= o ag  @*) (7.8)
with

A
(2)_4e2 d'k K*+k g _
T ey R ikt il
Although by naive power counting we could conclude thatghevious integral is quadratically
divergent, it can be seen that the quadratic divergencalacttancels leaving behind only a log-
arithmic one. In order to handle this divergent integral veeehto figure out some procedure to
render it finite. This can be done in several ways, but herehe®se to cut the integrals off at a
high energy scale, where new physics might be at work;j< . This gives the result
2 & I

@)’ D s og —  + finite terms (7.10)

(7.9)

If we would send the cutoff to infinity ! 1 the divergence blows up and something has to be
done about it.

If we want to make sense out of this, we have to go back to thsipalyquestion that led us
to compute Eq. (7.2). Our primordial motivation was to comnethe corrections to the annihilation
of two electrons into two muons. Including the correctiortite propagator of the virtual photon
we have

= +
e e
= Ve ue)4 7 v ou o+ (Ve ue)4 7 @’) v u
& e T -
- @ Ue) 17 1+ 5 s bg — v oou (7.11)
Now let us imagine that we are performingae" ! * with a center of mass energy From

the previous result we can identify the effective chargeneffiarticles at this energy scale ) as

v o u : (7.12)




This chargee ( ), is the quantity that is physically measurable in our experit. Now we can make
sense of the formally divergent result (7.11) by assumiagtthe charge appearing in the classical
Lagrangian of QED is just a “bare” value that depends on takesat which we cut off the theory,
e  e( hpar Inorder to reconcile (7.11) with the physical results £§.we must assume that the
dependence of the bare (unobservable) chartgg,... on the cutoff is determined by the identity
2 2

e( ¥=e()Z,. 1+ e(lz)ib;‘mbg — (7.13)
If we still insistin removing the cutoff, ! 1 we have to send the bare charge to zetQ ... ! 0
in such a way that the effective coupling has the finite vaiuergby the experiment at the energy
scale . Itis not a problem, however, that the bare charge is smiadlhfge values of the cutoff, since
the only measurable quantity is the effective charge thatanes finite. Therefore all observable
qguantities should be expressed in perturbation theory asnerpseries in the physical coupling
e( )? and not in the unphysical bare coupliag ) v.re.

7.2 The beta-function and asymptotic freedom

We can look at the previous discussion, an in particular EdqL3), from a different point of view.
In order to remove the ambiguities associated with infisitiee have been forced to introduce a
dependence of the coupling constant on the energy scaleieth wiprocess takes place. From the
expression of the physical coupling in terms of the baregd4r.13) we can actually eliminate
the cutoff , whose value after all should not affect the value of physjcantities. Taking into
account that we are working in perturbation theorgn)?, we can express the bare chaege) Z_
in terms ofe( )? as

2 2
e() g — +0 k() (7.14)

e()?=e() 1+ — >

This expression allow us to eliminate all dependence in titeftin the expression of the effective
charge at a scale by replacinge( ) .. in EQ. (7.13) by the one computed using (7.14) at a given
reference energy scalg

e( o)?
12 2

2

e( )¥=e( o) 1+ g — (7.15)

0

From this equation we can compute, at this order in pertighaheory, the effective value of

the coupling constant at a energyonce we know its value at some reference energy sgaltn
the case of the electron charge we can use as a reference 3tlwmpcattering at energies of the
order of the electron mass. * 05 MeV, at where the value of the electron charge is given by the
well known value

1

27 _ = .
etme) 137°

(7.16)

With this we can compute( )? at any other energy scale applying Eq. (7.15), for examptheat
electron mass = m. ’* 05MeV. However, in computing the electromagnetic couplingstant
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at any other scale we must take into account the fact that olfa@ged particles can run in the loop
in Egq. (7.11). Suppose, for example, that we want to caleula¢ fine structure constant at the
mass of thez °-boson = M, 92 GeV. Then we should include in Eq. (7.15) the effect of other
fermionic Standard Model fields with masses below. Doing this, we find*

Al ! #
m.)? X M 2
eM ;)= efmo)? 1+ 6122) { bg £ (7.17)

1

whereq is the charge in units of the electron charge of #ik fermionic species running in the
loop and we sum over all fermions with masses below the matseaf® boson. This expression
shows how the electromagnetic coupling grows with energyvéver, in order to compare with the
experimental value o& M ; )? it is not enough with including the effect of fermionic fie)dsnce
alsothew bosons can runinthe loop(;, < M ;). Taking this into account, as well as threshold
effects, the value of the electron charge at the sdglas found to be [34]

eM )" (7.18)

1289 °

This growing of the effective fine structure constant witlelgyy can be understood heuris-
tically by remembering that the effect of the polarizatidrttee vacuum shown in the diagram of
Eq. (7.2) amounts to the creation of a plethora of electrasitpon pairs around the location of the
charge. These virtual pairs behave as dipoles that, as ielecttic medium, tend to screen this
charge and decreasing its value at long distances (i.er lemexgies).

The variation of the coupling constant with energy is uguaticoded in Quantum Field The-
ory in thebeta functiordefined by
dg

= —: 7.1
@= 7 (7.19)

In the case of QED the beta function can be computed from Efj5)with the result

eB

(e)Q ED —

The fact that the coefficient of the leading term in the betacfion is positive 6i > 0 gives

us the overall behavior of the coupling as we change the séaje (7.20) means that, if we start
at an energy where the electric coupling is small enoughdoperturbative treatment to be valid,
the effective charge grows with the energy scale. This grgwveif the effective coupling constant
with energy means that QED is infrared safe, since the geative approximation gives better and
better results as we go to lower energies. Actually, bectheselectron is the lighter electrically

charged particle and has a finite nonvanishing mass thengmiithe fine structure constant stops

14n the first version of these notes the argument used to shewrtswing of the electromagnetic coupling constant
could have led to confusion to some readers. To avoid thisrpiad problem we include in the equation for the running
couplinge ( )? the contribution of all fermions with masses belmw, . We thank Lubos Motl for bringing this issue to
our attention.
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at the scalen . in the well-known valuel%. Would other charged fermions with masses betow
be present in Nature, the effective value of the fine strgctamstant in the interaction between
these particles would run further to lower values at ensrgedow the electron mass.

On the other hand if we increase the energy seal¢? grows until at some scale the coupling
is of order one and the perturbative approximation breaksndoln QED this is known as the
problem of the Landau pole but in fact it does not pose anysstihreat to the reliability of QED
perturbation theory: a simple calculation shows that therggnscale at which the theory would
become strongly coupled is; ..q.e ¢ 10?77 GeV. However, we know that QED does not live that
long! At much lower scales we expect electromagnetism toriieed with other interactions, and
even if this is not the case we will enter the uncharted tawriof quantum gravity at energies of the
order of10*° GeV.

So much for QED. The next question that one may ask at thi® ssaghether it is possible
to find quantum field theories with a behavior opposite to ti&@ED, i.e. such that they become
weakly coupled at high energies. This is not a purely acadguoestion. In the late 1960s a series of
deep-inelastic scattering experiments carried out at SkiA@ved that the quarks behave essentially
as free particles inside hadrons. The apparent problemhaaso theory was known at that time
that would become free at very short distances: the exanepleysQED seem to be followed by
all the theories that were studied. This posed a very sepoaislem for Quantum Field Theory
as a way to describe subnuclear physics, since it seemeitstipatdictive power was restricted to
electrodynamics but failed miserably when applied to dbstrong interactions.

Nevertheless, this critical time for Quantum Field Theamned out to be its finest hour. In
1973 David Gross and Frank Wilczek [35] and David Politzed] [Showed that nonabelian gauge
theories can actually display the required behavior. FeIQIED Lagrangian in Eq. (6.32) the beta
function is given by®

g 11 2
= —N. =N : 7.21
@) 162 3 SN« ( )
In particular, for real QCD. = 3, N¢ = 6) we have that () = 17%32 < 0. This means that

for a theory that is weakly coupled at an energy scaléhe coupling constant decreases as the
energy increases ! 1 . This explain the apparent freedom of quarks inside thedredrwhen
the quarks are very close together their effective colorgdnaend to zero. This phenomenon is
calledasymptotic freedom

Asymptotic free theories display a behavior that is opgositthat found above in QED. At
high energies their coupling constant approaches zeroaakeat low energies they become strongly
coupled (infrared slavery). This features are at the hddhnteosuccess of QCD as a theory of strong
interactions, since this is exactly the type of behavionfibin quarks: they are quasi-free particles
inside the hadrons but the interaction potential potebgalveen them increases at large distances.

Although asymptotic free theories can be handled in thewitiet, they become extremely
complicated in the infrared. In the case of QCD it is still ®ounderstood (at least analytically) how

15The expression of the beta function of QCD was also known ottt [37]. There are even earlier computations
in the russian literature [38].
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Fig. 13: Systems of spins in a two-dimensional square &ttic

the theory confines color charges and generates the speathguarons, as well as the breaking of
the chiral symmetry (6.46).

7.3 The renormalization group

In spite of its successes, the renormalization procedwsepted above can be seen as some kind
of prescription or recipe to get rid of the divergences in aeced way. This discomfort about
renormalization was expressed in occasions by compariniht “sweeping the infinities under
the rug”. However thanks to Ken Wilson to a large extent [3@] process of renormalization is
now understood in a very profound way as a procedure to imcate the effects of physics at high
energies by modifying the value of the parameters that appe¢le Lagrangian.

Statistical mechanics.Wilson’s ideas are both simple and profound and consistiikiinig
about Quantum Field Theory as the analog of a thermodyn&desaription of a statistical system.
To be more precise, let us consider an Ising spin system iraltmensional square lattice as the
one depicted in Fig 13. In terms of the spin variabies % whereilabels the lattice site, the
Hamiltonian of the system is given by

X
H= J sisy (7.22)
hijii

wherehi; ji indicates that the sum extends over nearest neighborg asdhe coupling constant
between neighboring spins (here we consider that there éxtaonal magnetic field). The starting
point to study the statistical mechanics of this systemagatrtition function defined as

7 = e "; (7.23)

fsig

where the sum is over all possible configurations of the spits = = is the inverse temperature.
For g > 0 the Ising model presents spontaneous magnetization belowi@al temperaturer.,
in any dimension higher than one. Away from this temperatareelations between spins decay
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Fig. 14: Decimation of the spin lattice. Each block in the epfattice is replaced by an effective spin
computed according to the rule (7.26). Notice also that the of the lattice spacing is doubled in the
process.

exponentially at large distances

43

hs;ssi e ; (7.24)

with k;;jthe distance between the spins located inik® and j-th sites of the lattice. This ex-
pression serves as a definition of the correlation lengtthich sets the characteristic length scale
at which spins can influence each other by their interactiomugh their nearest neighbors.

Suppose now that we are interested in a macroscopic desorgdtthis spin system. We can
capture the relevant physics by integrating out somehowhlgsics at short scales. A way in which
this can be done was proposed by Leo Kadanoff [40] and canisistividing our spin system in
spin-blocks like the ones showed in Fig 14. Now we can consamother spin system where each
spin-block of the original lattice is replaced by an effeetspin calculated according to some rule
from the spins contained in each blagk

fs; :12 B.g ! s (7.25)

For example we can define the effective spin associated ttibliocks , by taking the majority

rule with an additional prescription in case of a draw
|
1 X
s, = ~sgn si G (7.26)

2 .
i2Ba
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where we have used the sign functiein x) 3 with the additional definitiorgn (0) = 1. This
procedure is called decimation and leads to a hew spin systéna doubled lattice space.

The idea now is to rewrite the partition function (7.23) oimlyerms of the new effective spins
s.™. Then we start by splitting the sum over spin configurations iwo nested sums, one over the
spin blocks and a second one over the spins within each block

" ! #
X X X X
Z = e HBl- s, sign s e BBl (7.27)

a
fsg fs Vg fs2Bag i2Ba

The interesting point now is that the sum over spins insiad édock can be written as the expo-
nential of a new effective Hamiltonian depending only oneffective spinsg © . ]

w ! #
X @) : X H [si] H O ")
s, sign sy e = e =t (7.28)
fs2Bag i2Ba
The new Hamiltonian is of course more complicated
®»= gD % QML ..
H® = s; sy t+ it (7.29)

hi;ji

where the dots stand for other interaction terms betweeafthetive block spins. This new terms
appear because in the process of integrating out shorndestahysics we induce interactions be-
tween the new effective degrees of freedom. For examplentiegaiction between the spin block
variablesSi(l’ will in general not be restricted to nearest neighbors inrtée lattice. The impor-
tant point is that we have managed to rewrite the partitiorction solely in terms of this new
(renormalized) spin variables® interacting through a new Hamiltonian®

2= e HUBML (7.30)

£s Mg

Let us now think about the space of all possible Hamiltonfansur statistical system includ-
ing all kinds of possible couplings between the individyahs compatible with the symmetries of
the system. If denote by the decimation operation, our previous analysis showsrhdgfines a
map in this space of Hamiltonians

R :H ! H®Y: (7.31)

At the same time the operatian replaces a lattice with spacingby another one with double
spacing2a. As a consequence the correlation length in the new lattieasured in units of the
lattice spacing is divided by tw®, : ! 5.

Now we can iterate the operati@nan indefinite number of times. Eventually we might reach
a HamiltoniarH , that is not further modified by the operatian

g "roE® Y@ froanf g, (7.32)
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The fixed point Hamiltoniar , is scale invariantbecause it does not changerass performed.
Notice that because of this invariance the correlationtlend the system at the fixed point do not
change under . This fact is compatible with the transformation! s onlyif = oor = 1.
Here we will focus in the case of nontrivial fixed points witffinite correlation length.

The space of Hamiltonians can be parametrized by specifyiagvalues of the coupling
constants associated with all possible interaction teret&éen individual spins of the lattice. If
we denote by . [s;]these (possibly infinite) interaction terms, the most gaindamiltonian for the
spin system under study can be written as

®
H [Sl] = a0a [Si]; (733)

a=1

where , 2 R are the coupling constants for the corresponding opetaldrsse constants can be
thought of as coordinates in the space of all Hamiltonianser&fore the operatior defines a
transformation in the set of coupling constants

R:, ! . (7.34)

a

For example, in our case we started with a Hamiltonian in tvbigly one of the coupling constants
is different from zero (say; = J). As a result of the decimation J! & while some
of the originally vanishing coupling constants will take @anzero value. Of course, for the fixed
point Hamiltonian the coupling constants do not change utiaescale transformatiar.

Physically the transformatior integrates out short distance physics. The consequence for
physics at long distances is that we have to replace our amah by a new one with different
values for the coupling constants. That is, our ignorancthefdetails of the physics going on
at short distances result inranormalizationof the coupling constants of the Hamiltonian that
describes the long range physical processes. It is impdadasiress that althougk is sometimes
called a renormalization group transformation in fact thia misnomer. Transformations between
Hamiltonians defined by do not form a group: since these transformations proceedtbygrating
out degrees of freedom at short scales they cannot be idverte

In statistical mechanics fixed points under renormalizegyeup transformations with = 1
are associated with phase transitions. From our previ@aesigsion we can conclude that the space
of Hamiltonians is divided in regions corresponding to thsibs of attraction of the different fixed
points. We can ask ourselves now about the stability of tHieeel points. Suppose we have a
statistical system described by a fixed-point Hamiltorianand we perturb it by changing the
coupling constant associated with an interaction termThis is equivalent to replace , by the
perturbed Hamiltonian

H=H,+ o; (7.35)

where is the perturbation of the coupling constant corresponthirg (we can also consider per-
turbations in more than one coupling constant). At the same thinking of the .’s as coordinates
in the space of all Hamiltonians this corresponds to movlighgdy away from the position of the
fixed point.
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Fig. 15: Example of a renormalization group flow.

The question to decide now is in which direction the renormasibn group flow will take the
perturbed system. Working at first order in there are three possibilities:

— The renormalization group flow takes the system back to el fpoint. In this case the
corresponding interaction is calledirrelevant

— R takes the system away from the fixed point. If this is what leaggghe interaction is called
relevant

— ltis possible that the perturbation actually does not takesystem away from the fixed point
at first order in . In this case the interaction is said tofm@rginaland it is necessary to go
to higher orders in in order to decide whether the system moves to or away the fized,
or whether we have a family of fixed points.

Therefore we can picture the action of the renormalizatimug transformation as a flow in
the space of coupling constants. In Fig. 15 we have depictekample of such a flow in the case
of a system with two coupling constantsand . In this example we find two fixed points, one at
the origino and another atr for a finite value of the couplings. The arrows indicate threction
in which the renormalization group flow acts. The free thesttry, = , = 0is a stable fix point
since any perturbation ;; , > 0makes the theory flow back to the free theory at long distances
On the other hand, the fixed pointis stable with respect to certain type of perturbationsn@lie
line with incoming arrows) whereas for any other perturdyagithe system flows either to the free
theory at the origin or to a theory with infinite values for ttaiplings.

Quantum field theory. Let us see now how these ideas of the renormalization groply &p
Field Theory. Let us begin with a quantum field theory defingdhe Lagrangian

X
L[a]= LO[a]+ gioi[ a]; (736)

i

whereL,[ .]is the kinetic part of the Lagrangian arg are the coupling constants associated
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with the operator® ;[ .1 In order to make sense of the quantum theory we introducecdf ¢u
momenta . In principle we include all operators ; compatible with the symmetries of the theory.

In section 7.2 we saw how in the cases of QED and QCD, the vdltree@oupling constant
changed with the scale from its value at the scal/e can understand now this behavior along the
lines of the analysis presented above for the Ising modalelivould like to compute the effective
dynamics of the theory at an energy scale we only have to integrate out all physical models
with energies between the cutoffand the scale of interest This is analogous to what we did in
the Ising model by replacing the original spins by the blogks. In the case of field theory the
effective actions [ ,; ]atscale can be written in the language of functional integration as
Y
SiS18i 12 D eSlei ], (7.37)

<p<

Heres [ ,; 1is the action at the cutoff scale

7 ( . )

S[a; 1=  d'x Lolalt  @()0sla] (7.38)
and the functional integral in Eq. (7.37) is carried out oover the field modes with momenta in
the range < p < . The action resulting from integrating out the physics &t ititermediate
scales between and depends not on the original field variable but on some renormalized
field °. At the same time the couplings ( ) differ from their values at the cutoff scatg( ).
This is analogous to what we learned in the Ising model: bygrating out short distance physics
we ended up with a new Hamiltonian depending on renormakfiedtive spin variables and with
renormalized values for the coupling constants. Theratoeaesulting effective action at scale
can be written as

7 ( )

slo; 1= d'x Lol 21+ @()0s[2] = (7.39)
This Wilsonian interpretation of renormalization shedghtito what in section 7.1 might have
looked just a smart way to get rid of the infinities. The rumnof the coupling constant with
the energy scale can be understood now as a way of inconpgiatbd an effective action at scale
the effects of field excitations at higher energies

As in statistical mechanics we can also find quantum fieldrtasdhat are fixed points of
the renormalization group flow, i.e. whose coupling constalo not change with the scale. The
most trivial example of such theories are massless freetgomafield theories, but there are also
examples of four-dimensional interacting quantum fieldbthes which are scale invariant. Again
we can ask the question of what happens when a scale invénemty is perturbed with some
operator. In general the perturbed theory is not scaleigmbanymore but we may wonder whether
the perturbed theory flows at low energies towards or awajhthery at the fixed point.

In quantum field theory this can be decided by looking at tm®né&al dimensiorip ]of the
operatoio [ ,]used to perturb the theory at the fixed point. In four dimemsibe three possibilities
are defined by:
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— dp 1> 4: irrelevant perturbation. The running of the coupling danss takes the theory
back to the fixed point.

— dp ] < 4: relevant perturbation. At low energies the theory flows yafram the scale-
invariant theory.

— dp 1= 4: marginal deformation. The direction of the flow cannot beided only on dimen-
sional grounds.

As an example, let us consider first a massless fermion theentyrbed by a four-fermion
interaction term

_ 1 _
=T (7.40)

This is indeed a perturbation by an irrelevant operatogesin four-dimensiong 1= 2. Inter-
actions generated by the extra term are suppressed at logiensince typically their effects are
weighted by the dimensionless fact@%—, wherek is the energy scale of the process. This means
that as we try to capture the relevant physics at lower anél@mergies the effect of the pertur-
bation is weaker and weaker rendering in the infrared IEnit 0 again a free theory. Hence, the
irrelevant perturbation in (7.40) makes the theory flow bacthe fixed point.

On the other hand relevant operators dominate the physlosvanergies. This is the case,
for example, of a mass term. As we lower the energy the massrescmore important and once
the energy goes below the mass of the field its dynamics is letetypdominated by the mass term.
This is, for example, how Fermi’s theory of weak interaci@merges from the Standard Model at
energies below the mass of the boson

At energies below1 ;, = 80:4 GeV the dynamics of the * boson is dominated by its mass term
and therefore becomes nonpropagating, giving rise to feetafe four-fermion Fermi theory.

To summarize our discussion so far, we found that while eelewperators dominate the dy-
namics in the infrared, taking the theory away from the fixeohp irrelevant perturbations become
suppressed in the same limit. Finally we consider the etiotarginal operators. As an example
we take the interaction term in massless QEDs A . Takinginto accountthat ia= 4the
dimension of the electromagnetic potentialds ] = 1 the operatoo is a marginal perturbation.
In order to decide whether the fixed point theory

1
Lo= ZF F +iB (7.41)
is restored at low energies or not we need to study the pexdteory in more detail. This we have

done in section 7.1 where we learned that the effective aogiph QED decreases at low energies.
Then we conclude that the perturbed theory flows towards:ted fpoint in the infrared.
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As an example of a marginal operator with the opposite beinaweé can write the Lagrangian
fora SU{ ) gauge theoryl. = sF2F* ,as

1
L = 1 @ A°® Q@A° (@ A°“ QA% ) 4gf™AcAP@ AC
+ gffEeradepPacpd pc Lo+ Og; (7.42)

i.e. a marginal perturbation of the free theory described.pywhich is obviously a fixed point
under renormalization group transformations. Unlike thgecof QED we know that the full theory
is asymptotically free, so the coupling constant grows\watdaergies. This implies that the operator
0 4 becomes more and more important in the infrared and therétiertheory flows away the fixed
point in this limit.

It is very important to notice here that in the Wilsonian vidve cutoff is not necessarily
regarded as just some artifact to remove infinities but dlgthas a physical origin. For example in
the case of Fermi’s theory of-decay there is a natural cutoff= M ,; at which the theory has to
be replaced by the Standard Model. In the case of the Staiiaddl itself the cutoff can be taken
at Planck scale * 10'° GeV or the Grand Unification scale’ 10'® GeV, where new degrees
of freedom are expected to become relevant. The cutoff seéieepurpose of cloaking the range of
energies at which new physics has to be taken into account.

Provided that in the Wilsonian approach the quantum thesoayways defined with a physical
cutoff, there is no fundamental difference between renbralale and nonrenormalizable theories.
Actually, a renormalizable field theory, like the Standardddl, can generate nonrenormalizable
operators at low energies such as the effective four-fexrmteraction of Fermi’s theory. They
are not sources of any trouble if we are interested in theipbyd scales much below the cutoff,
E , since their contribution to the amplitudes will be suppegsby powers of-.

8 Special topics
8.1 Creation of particles by classical fields

Particle creation by a classical sourceln a free quantum field theory the total number of particles
contained in a given state of the field is a conserved quaiiiyexample, in the case of the quantum

scalar field studied in section 3 we have that the number tgrezammutes with the Hamiltonian
A
d’k

y . = -
oy | ® PP ;b]= 0: (8.1)

b

This means that any states with a well-defined number of gharéixcitations will preserve this
number at all times. The situation, however, changes asa®orieractions are introduced, since in
this case particles can be created and/or destroyed aslofethe dynamics.

Another case in which the number of particles might changfetie quantum theory is cou-
pled to a classical source. The archetypical example of ausituation is the Schwinger effect,
in which a classical strong electric field produces the aweatf electron-positron pairs out of the
vacuum. However, before plunging into this more involvedation we can illustrate the relevant
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physics involved in the creation of particles by classi@alrses with the help of the simplest ex-
ample: a free scalar field theory coupled to a classical eatesources (x). The action for such a
theory can be written as
z
s, 1 m 2
S= dx 28 ®e & — &+IK & ; (8.2)

whereJ (x) is a real function of the coordinates. Its identificationhmatclassical source is obvious
once we calculate the equations of motion

r‘+m? ®=J®&): (8.3)
Our plan is to quantize this theory but, unlike the case a®alyn section 3, now the presence of
the sourceT (x) makes the situation a bit more involved. The general saiutiothe equations of
motion can be written in terms of the retarded Green fundothe Klein-Gordon equation as

Z
&)= &)+ i d'xGr& DNIE); (8.4)
where , (x) is a general solution to the homogeneous equation and
Z z
dk i i Fk 1 e G
Gr (Gix) = —— =i ) ———— e MxFEx gkt x, 8.5
r G C k2 m? TS 85

with  (x) the Heaviside step function. The integration contour tduata the integral ovep
surrounds the poles af = I, from above. Sinc&y t;x) = 0 for £t < 0, the function , (x)
corresponds to the solution of the field equation at 1 , before the interaction with the external
source®

To make the argument simpler we assume th&) is switched on at= 0, and only last for
atime ,thatis

Jtx)=0 ift< 0oort> (8.6)

We are interested in a solution of (8.3) for times after theemal source has been switched off,
t> . Inthis case the expression (8.5) can be written in termiefburier mode$ (! ;%) of the
source as

h i

k1 — Lo
d F(1;K)e Y E 2 20 R) et K o2 (8.7)

Gx)= o)+ 1 W2—'k
On the other hand, the general solutionx) has been already computed in Eq. (3.53). Combining
this result with Eq. (8.7) we find the following expressiom foe late time general solution to the

Klein-Gordon equation in the presence of the source

Pk 1 i . .
t; — F( ;R etk =
(t;x) z )319—_2!k ®) + p—_2!k ('x:K) e
+ ®) pzl—_'@(!k;k) glixt ® x (8.8)
-k

®We could have taken instead the advanced propagatax) in which case , x) would correspond to the solution
to the equation at large times, after the interaction with).
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We should not forget that this is a solution valid for tintes , i.e. once the external source has
been disconnected. On the other hand,tfer 0 we find from Egs. (8.4) and (8.5) that the general
solution is given by Eq. (3.53).

Now we can proceed to quantize the theory. The conjugate miume x) = @ (x) can
be computed from Egs. (3.53) and (8.8). Imposing the caabagual time commutation relations
(3.50) we find that ®), Y ®) satisfy the creation-annihilation algebra (3.27). From gnevious
calculation we find that for >  the expansion of the operator) in terms of the creation-
annihilation operators ), Y &) can be obtained from the one fok 0 by the replacement

® ! F) k>+p21—_,$(!k;k>;
“k

Ryl YR YR) p;—T@(zk;m: (8.9)
“k

Actually, since® (!, ;%) is a c-number, the operatorsg), Y ®) satisfy the same algebra ask),
¥ &) and therefore can be interpreted as well as a set of creatiniiilation operators. This means
that we can define two vacuum states, 1, 9, i associated with both sets of operators

9
®)P i= 0=
8 k: (8.10)

®)P,i= 0’

For an observer at< 0, ®)and () are the natural set of creation-annihilation operators
in terms of which to expand the field operatotx). After the usual zero-point energy subtraction
the Hamiltonian is given by

Z

P = Pkl YR) ®) (8.11)

and the ground state of the spectrum for this observer isdcaum i At the same time, a
second observer at>  will also see a free scalar quantum field (the source has heiched
off at t = ) and consequently will expand in terms of the second set of creation-annihilation
operators ®), Y ®). Interms of this operators the Hamiltonian is written as

Z

PH = Skl YR) K): (8.12)

Then for this late-time observer the ground state of the Haman is the second vacuum stabe i.

In our analysis we have been working in the Heisenberg reptason, where states are time-
independent and the time dependence comes in the operBit@refore the states of the theory are
globally defined. Suppose now that the system is in the “iotugd statep i Anobserverat< 0
will find that there are no particles

b'’p i= 0: (8.13)
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However the late-time observer will find that the stgtei contains an average number of particles
given by
A

3 2
0 9P i= dk 1 (1R (8.14)

@ Y2ty

Moreover,{ iis no longer the ground state for the “out” observer. On th@rewy, this state have
a vacuum expectation value far ¢

n Pep i=

Z
1 &k 2
_ ] . .
> @7 TR e (8.15)

The key to understand what is going on here lies in the fadttbeexternal source breaks
the invariance of the theory under space-time translatitmshe particular case we have studied
here where7 (x) has support over a finite time intervalk t < , this implies that the vacuum is
not invariant under time translations, so observers agdifit times will make different choices of
vacuum that will not necessarily agree with each other. iBitear in our example. An observer in
t<  will choose the vacuum to be the lowest energy state of herilttaran, 9 i On the other
hand, the second observer at late times  will naturally choosef) i as the vacuum. However,
for this second observer, the st&te iis not the vacuum of his Hamiltonian, but actually an excited
state that is a superposition of states with well-definedbemof particles. In this sense it can be
said that the external source has the effect of creatingcfestout of the “in” vacuum. Besides,
this breaking of time translation invariance produces dation in the energy conservation as we
see from Eq. (8.15). Particles are actually created fronette¥gy pumped into the system by the
external source.

The Schwinger effect. A classical example of creation of particles by a externddl fieas
pointed out by Schwinger [41] and consists of the creatioelettron-positron pairs by a strong
electric field. In order to illustrate this effect we are gpto follow a heuristic argument based on
the Dirac sea picture and the WKB approximation.

In the absence of an electric field the vacuum state of a Sffield is constructed by filling
all the negative energy states as depicted in Fig. 2. Let usaomnect a constant electric field

E = Eyintherange < x < L created by a electrostatic potential
8
< 0 x< 0
Ve)= E& x) 0< x< L (8.16)
: EL x> L

After the field has been switched on, the Dirac sea looks tikeig. 16. In particular we find that

if EL. > 2m there are negative energy statexat 1. with the same energy as the positive energy
states in the regior < 0. Therefore it is possible for an electron filling a negatinergy state
with energy close to 2m to tunnel through the forbidden region into a positive epesgte. The
interpretation of such a process is the production of artrelegositron pair out of the electric field.

We can compute the rate at which such pairs are produced by thet WKB approximation.
Focusing for simplicity on an electron on top of the Fermiface neax = 1 with energyk o, the
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Fig. 16: Pair creation by a electric field in the Dirac seayiet

transmission coefficient in this approximation is giveA’by

Ll
722 o Pamer g #
TWKB = e}(p 2 dx m2 EO eE(}< 8)]2+p’r2
eLEEO m2+pT2
h i
= exp 515>T2+m2 ; (8.17)

wherep? § + p;. This gives the transition probability per unit time and peit cross section
dydz for an electron in the Dirac sea with transverse momergum@and energy .. To get the total
probability per unit time and per unit volume we have to inédg over all possible values pf and
Eo. Actually, in the case of the energy, because of the reldi&weere , and the coordinate at
which the particle penetrates into the barrier we can wfite= <£dx and the total probability per
unit time and per unit volume for the creation of a pair is giby

Z 2 2m2
ek d“pr - E2+m?2) Sy m 2

W =2 > z )2e R (8.18)

where the factor of accounts for the two polarizations of the electron.

Then production of electron-positron pairs is exponelytglppressed and it is only sizeable
for strong electric fields. To estimate its order of magnétitds useful to restore the powers of
and~in (8.18)

2m2
e’E m 233
W = me ~eE (819)
"Notice that the electron satisfy the relativistic dispensielationt = P p2+ m2+ v and therefore p? =

m? € V)?+ p?. Theintegration limits are set by those valuesaft whichp, = 0.
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The exponential suppression of the pair production disafgpehen the electric field reaches the
critical valuek . at which the exponent is of order one

m2c3,

~e

Ecrit 13 10°Van *: (8.20)
This is indeed a very strong field which is extremely diffidolproduce. A similar effect, however,
takes place also in a time-varying electric field [42] and¢ehie the hope that pair production could
be observed in the presence of the alternating electricfielduced by a laser.

The heuristic derivation that we followed here can be madeerpeecise in QED. There the
decay of the vacuum into electron-positron pairs can be coedofrom the imaginary part of the
effective action p ]in the presence of a classical gauge potential

iR ] —V\©+«N\©vvv+b“+:::
, 1
J@Fil .
ie

-~ bgdet 1 (8.21)

m

This determinant can be computed using the standard heatlkechniques. The probability of
pair production is proportional to the imaginary partiofr 1and gives

W o= e (8.22)

Our simple argument based on tunneling in the Dirac sea gaydtte leading term of Schwinger’s
result (8.22). The remaining terms can be also capturedeiMtB approximation by taking into
account the probability of production of several pairs, thee tunneling of more than one electron
through the batrrier.

Here we have illustrated the creation of particles by seasgital sources in Quantum Field
Theory using simple examples. Nevertheless, what we |danas important applications to the
study of quantum fields in curved backgrounds. In QuantunadHikeory in Minkowski space-time
the vacuum state is invariant under the Poincaré group laisdtbgether with the covariance of
the theory under Lorentz transformations, implies thainaitial observers agree on the number of
particles contained in a quantum state. The breaking of sweliance, as happened in the case of
coupling to a time-varying source analyzed above, imphes it is not possible anymore to define
a state which would be recognized as the vacuum by all observe

This is precisely the situation when fields are quantizedurmer] backgrounds. In particular,
if the background is time-dependent (as it happens in a clogioal setup or for a collapsing star)
different observers will identify different vacuum statéss a consequence what one observer call
the vacuum will be full of particles for a different observarhis is precisely what is behind the
phenomenon of Hawking radiation [43]. The emission of gt by a physical black hole formed
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from gravitational collapse of a star is the consequencéneffact that the vacuum state in the
asymptotic past contain particles for an observer in thengsgtic future. As a consequence, a
detector located far away from the black hole detects arstcgdhermal radiation with temperature
~c
Thawking = ——————— 8.23
fawkihng T g Gy kM (8.23)

whereM is the mass of the black holg,; is Newton’s constant and is Boltzmann’s constant.
There are several ways in which this results can be obtaiAedore heuristic way is perhaps to
think of this particle creation as resulting from quantumrteling of particles across the potential
barrier posed by gravity [44].

8.2 Supersymmetry

One of the things that we have learned in our journey arourdahdscape of Quantum Field
Theory is that our knowledge of the fundamental interagtionNature is based on the idea of
symmetry, and in particular gauge symmetry. The Lagrangidine Standard Model can be written
justincluding all possible renormalizable terms (i.e.hnnganonical dimension smaller o equal to 4)
compatible with the gauge symmetry SU(3pU(2) U(1) and Poincaré invariance. All attempts to
go beyond start with the question of how to extend the symasetif the Standard Model.

In a quantum field theoretical description of the interatiod elementary particles the basic
observable quantity to compute is the scattering anatrix giving the probability amplitude for
the scattering of a number of incoming particles with a gent@aomentum into some final products

A(n ! outy= hy;:::inPie %z outis (8.24)

An explicit symmetry of the theory has to be necessarily aragtny of thes-matrix. Hence it is
fair to ask what is the largest symmetry of thematrix.

Let us ask this question in the simple case of the scattefitwgooparticles with four-momenta
p1 andp, in thet=channel

We will make the usual assumptions regarding positivityhaf €nergy and analyticity. Invariance
of the theory under the Poincaré group implies that the aoga can only depend on the scattering
angle# through

t= @ p)¥=2m? p P=2m? EE + P ip Joos# : (8.25)

If there would be any extra bosonic symmetry of the theoryotild restrict the scattering angle to a
set of discrete values. In this case thenatrix cannot be analytic since it would vanish everywhere
except for the discrete values selected by the extra syrgmetr
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Actually, the only way to extend the symmetry of the theoryha@ut renouncing to the ana-
lyticity of the scattering amplitudes is to introduce “faomic” symmetries, i.e. symmetries whose
generators are anticommuting objects [45]. This meansithatldition to the generators of the
Poincaré grouff P ,M  and the ones for the internal gauge symmetdesve can introduce a
number of fermionic generators., 611 (I=1;:::550), Where§iI = @I)¥. The most general
algebra that these generators satisfy ishextended supersymmetry algebra [46]

£01;0,,9 = 2 P

£05;009 = 2"w277; (8.26)
£0.;0,9 =  2"7 ; (8.27)
wherez ™7 2 ¢ commute with any other generator and satisfies = z7!. Besides we have the

commutators that determine the Poincaré transformatibtise fermionic generators ., 0 . s

RI;P 1= R.iP 1=0;
1
DM 1 = S )05 (8.28)
_ 1 —
DaI;M ] = 5 (_ )a_ le;
where %= i% = w kand— = ( )% These identities simply mean thaf, 0,

transform respectively in th€ ;0) and (0;3) representations of the Lorentz group.

We know that the presence of a global symmetry in a theoryieaphat the spectrum can be
classified in multiplets with respect to that symmetry. Ila tase of supersymmetry start with the
case cas® = 1in which there is a single pair of supercharges 0 , satisfying the algebra

£0.;Q0,9=2 P ;  f0.;Qwg= f0,;0,g= 0: (8.29)

Notice that in thel = 1 case there is no possibility of having central charges.

We study now the representations of the supersymmetry@g@t29), starting with the mass-
less case. Given a statei satisfyingk? = 0, we can always find a reference frame where the
four-vectork takesthefornk = & ;0;0;E ). Since the theory is Lorentz covariant we can obtain
the representation of the supersymmetry algebra in thisdnahere the expressions are simpler. In
particular, the right-hand side of the first anticommutatdgq. (8.29) is given by

_ o 33 _ 0 0
2 P =2 P°)= 0o (8.30)

Therefore the algebra of supercharges in the masslessathsms to

£f0.;079 = £0:;039= 0;
£0,;0lg = A4E: (8.31)

¥The generatorst  are related with the ones for boost and rotations introdulcesction 4.1 bygt M %,
M = 2wy J& In this section we also use the “dotted spinor” notationyhich spinors in the(;;0) and (0;%)
representations of the Lorentz group are indicated respdcby undotted §;b; : : ) and dotted 4;%; : : ) indices.
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The commutatorQ ; ;0 7g = 0implies that the action af , on any state gives a zero-norm state of
the Hilbert spacep ; j ij= 0. If we want the theory to preserve unitarity we must eliménthiese
null states from the spectrum. This is equivalent to setting 0. On the other hand, in terms of
the second generatgr, we can define the operators

1 1
a= —Pp=0Q:; a’= p=07; (8.32)
2 E 2 E
which satisfy the algebra of a pair of fermionic creatiomifwiation operatorsfa;a’g = 1, a* =
@')? = 0. Starting with a vacuum statgj i= 0with helicity we can build the massless multiplet

J i; j+2i &7 i (8.33)

N =

Here we consider two important cases:

— Scalar multiplet: we take the vacuum state to have zergitelp* i so the multiplet consists
of a scalar and a helicity-state
Pt i; 21 AP (8.34)
However, this multiplet is not invariant under the CPT tfansiation which reverses the sign
of the helicity of the states. In order to have a CPT-invdrtaeory we have to add to this

multiplet its CPT-conjugate which can be obtain from a vanwstate with helicity = 2

i: (8.35)

N

P i J
Putting them together we can combine the two zero helicayestwith the two fermionic

ones into the degrees of freedom of a complex scalar field &kelyd(or Majorana) spinor.

— Vector multiplet: now we take the vacuum state to have hglic = 2, so the multiplet
contains also a massless state with helicity 1

i i a3t (8.36)
As with the scalar multiplet we add the CPT conjugated olethiinom a vacuum state with
helicity = 1
j 14 j 14; (8.37)

2
which together with (8.36) give the propagating states cduagg field and a spig-gaugino.

In both cases we see the trademark of supersymmetric tetiteenumber of bosonic and fermionic
states within a multiplet are the same.

In the case of extended supersymmetry we have to repeatekimps analysis for each su-
persymmetry charge. At the end, we havesets of fermionic creation-annihilation operators
fa';alg= ', @)* = @))* = 0. Let us work out the case of = 8 supersymmetry. Since
for several reasons we do not want to have states with helieger thare, we start with a vacuum
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statej 2iofhelicity = 2. The rest of the states of the supermultiplet are obtaineapipyying
the eight different creation operatagsto the vacuum:

8
=2: al::agj 24 g = 1 state
3 _ _ 8
=5 a}’l i3y j 21 . 8 states
8
=1: a4 :::33 21 g = 28 states
1 8
=-: aj ::alj 21 = 56 states
2 ' > 5
8
=0: g :::a, ] 21 i " 70 states (8.38)
8
= —: alaalj 2i = 56 states
2 1 2 3 3
8
= 1: 4daj 2i , = 28 states
3 8
= 5 a;j 2 .- 8 states
= 2: 3j 2i 1 state

Putting together the states with opposite helicity we firat the theory contains:

1 spin-2 fieldg (a graviton),
8 spin= gravitino fields *,
28 gauge fielda ™7/,

— 56 spin: fermions  #7% ],

— 70 scalars T7¥ L]

where by [1J:::] we have denoted that the indices are antisymmetrized. Wehsgeunlike the
massless multiplets af = 1 supersymmetry studied above, this multiplet is CPT invdrizy
itself. As in the case of the masslass = 1 multiplet, here we also find as many bosonic as

fermionic states:

bosons: 1+ 28+ 70+ 28+ 1= 128 states
fermions: 8+ 56+ 56+ 8= 128 states

Now we study briefly the case of massive representatidfisk? = M 2. Things become
simpler if we work in the rest frame where” = M and the spatial components of the momentum

vanish. Then, the supersymmetry algebra becomes:

£007;0 ;,g=24 _': (8.39)
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We proceed now in a similar way to the massless case by defimingperators

1 1 —
aI p:Q I H ay_I p:Q I . (8.40)
2M 2M

The multiplets are found by choosing a vacuum state with aidefpin. For example, far = 1
and taking a spin-0 vacuuri we find three states in the multiplet transforming irrediycibith
respect to the Lorentz group:

Pi; a’ Pi; "—a'a’ Pi; (8.41)

which, once transformed back from the rest frame, corregponhe physical states of two spin-0
bosons and one spihfermion. ForN -extended supersymmetry the corresponding multiplets can
be worked out in a similar way.

The equality between bosonic and fermionic degrees of tneeisd at the root of many of
the interesting properties of supersymmetric theories.eikample, in section 4 we computed the
divergent vacuum energy contributions for each real basonifermionic propagating degree of
freedom i4°

A

1
Eyac = 5 0) dple; (8.42)

where the sign corresponds respectively to bosons and fermions. Hence $opersymmet-
ric theory the vacuum energy contribution exactly cancesvben bosons and fermions. This
boson-fermion degeneracy is also responsible for supengtritc quantum field theories being less
divergent than nonsupersymmetric ones.

Appendix: A crash course in Group Theory

In this Appendix we summarize some basic facts about Gro@oiyh Given a groug a represen-
tation of G is a correspondence between the elements afhd the set of linear operators acting on
a vector spac¥ , such that for each element of the grayip G there is a linear operator (g)

D@:v !V (A.43)
satisfying the group operations
D @)D (@)=D @%); D@"=D @) Gi% 2 G: (A.44)

The representation (g) is irreducible if and only if the only operators : v | v commuting with
all the elements of the representatiorg) are the ones proportional to the identity

D @);Al= 0; 8g () A= 1; 2cC (A.45)

®For a boson, this can be read off Eq. (3.56). In the case ofif@snthe result of Eq. (4.44) gives the vacuum
energy contribution of the four real propagating degredssafdom of a Dirac spinor.
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More intuitively, we can say that a representation is irlie if there is no proper subspaice Vv
(i,e.U 6 v andu 6 ;)suchthab @Uu U for every elemeng 2 G.

Here we are specially interested in Lie groups whose elesremet labelled by a number of
continuous parameters. In mathematical terms this meaha ttie group is a manifold together
with an operatiorm M ! M that we will call multiplication that satisfies the assouwidy
propertyg; g 9= @@ A ogether with the existence of unigyl = 1g = g,for every
g2 M andinverseyg '= g 'g= 1.

The simplest example of a Lie group is SO(2), the group oftiata in the plane. Each
elementr ( ) is labelled by the rotation angle, with the multiplication acting a& ;)R ( ;) =
R ( 1+ ). Because the angleis defined only modula , the manifold of SO(2) is a circumference
St

One of the interesting properties of Lie groups is that inigim@orhood of the identity element

X (i

n!

D @) = exp[ 1.T?%] a 2t o, T 1T (A.46)

n=20

where , 2 C are a set of coordinates mf in a neighborhood of. Because of the general Baker-
Campbell-Haussdorf formula, the multiplication of two gpoelements is encoded in the value of
the commutator of two generators, that in general has time for

[T = TS (A.47)

where £2° 2 C are called the structure constants. The set of generatohstih@ commutator
operation form the Lie algebra associated with the Lie grddgnce, given a representation of the
Lie algebra of generators we can construct a representattitie group by exponentiation (at least
locally near the identity).

We illustrate these concept with some particular examples. SU(2) each group element
is labelled by three real number, i = 1;2;3. We have two basic representations: one is the
fundamental representation (or sgindefined by

(J=ez'; (A.48)

with *the Pauli matrices. The second one is the adjoint (or spiegdresentation which can be
written as

Di(y)=e "5 (A.49)
where
0 1 0 1 0 1
0 0 0 00 1 0 10
Jgt=@ 0 0 1A; J?=@ 00 0 A; Jg’=€ 1 0 0A: (A50)
0 10 10 0 0 00



Actually, 3* (i= 1;2;3) generate rotations around they andz axis respectively. Representations
of spinj2 N + 2 can be also constructed with dimension

din D 5(@) = 23+ 1: (A.51)

As a second example we consider SU(3). This group has two tasge-dimensional repre-
sentations denoted k8/and3 which in QCD are associated with the transformation of gsiakd
antiquarks under the color gauge symmetry SU(3). The elesyarthese representations can be
written as

a

D3(a)=eEi 2, Dg(a)=eEiag @= 1;:::;8); (A.52)
where , are the eight hermitian Gell-Mann matrices
0 1 0 1 0 1
010 0 i0 1 0 O
. = @ 1004, ,=0@ 1 0 02 ;=@ 0 1 0A;
0 0O 0O 0 O O 0 0
0 1 0 1 0 1
0 01 0 0 i 0 0O
. = @0 0 0A; s=@ 00 0A; =@ 00 12A; (AB3)
1 00 Oi 0 O 1 010
00 0 . £ 0 0 .
;= @00 iA; =@ 0 & 0 X:
0 i 0 0 0 &

Hence the generators of the representatibasd 3 are given by

1
T®(3) = 5 ai TQ3) = R (A.54)

NI

Irreducible representations can be classified in threepgroweal, complex and pseudoreal.

— Real representations: a representation is said to be thate is asymmetric matrixs which
acts as intertwiner between the generators and their caroplgugates

a

T = ST*S '; st =s: (A.55)

This is for example the case of the adjoint representatid@®ii{l) generated by the matrices
(A.50)

— Pseudoreal representations: are the ones for whiem@gymmetric matrix exists with the
property

T = ST % s = s: (A.56)

As an example we can mention the sgimepresentation of SU(2) generateddy".
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— Complex representations: finally, a representation isptexif the generators and their com-
plex conjugate are not related by a similarity transfororatiThis is for instance the case of
the two three-dimensional representatiérend3 of SU(3).

There are a number of invariants that can be constructediagso with an irreducible repre-
sentatiorr of a Lie groupG and that can be used to label such a representatia@, dre the gen-
erators in a certain representatirof the Lie algebra, it is easy to see that the matrix™,® T2T2
commutes with every generatog. Therefore, because of Schur’s lemma, it has to be propatdtio
to the identity®. This defines the Casimir invariaot R ) as

%‘{n G
TeTg = CoR)1: (A.57)

a=1

A second invarianT, R ) associated with a representat®rcan also be defined by the identity
TrIiTe = T, R) *: (A.58)

Actually, taking the trace in Eq. (A.57) and combining theuk with (A.58) we find that both
invariants are related by the identity

C,R)dinR = T, R)din G; (A.59)

with dim R the dimension of the representatirn

These two invariants appear frequently in quantum fieldrhealculations with nonabelian
gauge fields. For exampte, ® ) comes about as the coefficient of the one-loop calculatidhef
beta-function for a Yang-Mills theory with gauge graeipIn the case of SU(N), for the fundamental
representation, we find the values

NZ 1 1

C2 (fund) = oN H T2 (fund) = =y (A60)

N

whereas for the adjoint representation the results are
C,@d))=N; T, @dj) = N : (A.61)

A third invarianta R ) is specially important in the calculation of anomalies. Ascdssed
in section (6), the chiral anomaly in gauge theories is priopaal to the group-theoretical factor
Tr T2fT2;TSqg . This leads us to define R ) as

Tr T2fTY;TSg = A R); & (A.62)

whered®> is symmetric in its three indices and does not depend on firesentation. Therefore,
the cancellation of anomalies in a gauge theory with fermiwansformed in the representatien
of the gauge group is guaranteed if the corresponding awtki R ) vanishes.

20Schur's lemma states that a representation of a group duiciile if and only if all matrices commuting with every
element of the representation are proportional to the igent
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It is not difficult to prove thalh R ) = 0 if the representatior is either real or pseudoreal.
Indeed, if this is the case, then there is a matrigsymmetric or antisymmetric) that intertwins the
generatorg? and their complex conjugates, = STs *. Then, using the hermiticity of the
generators we can write

h i
Tr T2fIP;TSg = Tr TEETR;TSqg | = Tr TofTo;Teg (A.63)
Now, using (A.55) or (A.56) we have
i
Tr Tofl,;Teg = Tr STSS '£STPS 4;STSS 'g =  Tr TSETS;TSg ;  (A64)

which proves thatr TZfTP;TSg and therefor& R )= 0whenever the representation is real or
pseudoreal. Since the gauge anomaly in four dimension®optional toA R ) this means that
anomalies appear only when the fermions transform in a cexmgbresentation of the gauge group.
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