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INTRODUCTION

These notes on QuantumMechanics (QM) are not original but are based on material

I took and adapted from many books: Landau, Messiah, Sakurai, Cohen-Tannoudji,

etc. and in large part from the handwritten notes of my colleague GianCarlo Ghirardi

who taught this course for many many years before retiring. Differently from many

other books, these notes contain 34 problems with their detailed worked-out solutions.

I will present in class at least 10 extra problems with solutions of which I will provide

copy of my handwritten notes. Several other problems are left as homeworks and I

advise you to do them because they may end up being part of the final written exam.

All these problems are not original but taken from various sources: Landau, Lim,

D’Emilio and Picasso, et al. and some, very original ones, were generously provided

to me by GianCarlo Ghirardi.

My personal advice to the students of this course is to study first these notes (or

even better the original handwritten ones of Ghirardi) and only later on, if needed,

to turn to the books quoted above. This advice is given only in order to speed up the

preparation of the exam and avoid getting lost in the details and notation of many

different books, notation that I have tried to make uniform in these notes.

A second advice is to work out many more of the 50 problems presented and solved

in these notes. The solution of problems is what a physicist should learn to do in

every course and later on in his professional life. It is the only manner to really master

the theoretical aspects presented in class or learned from the book.

A third very important advice (but also very personal) is to waste no time, at
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this stage of your preparation, in wondering about the very “strange” behaviour of

quantum mechanics. This ”strange” behaviour ranges from interference effects, to the

tunnel effect, to the Schrödinger cat paradox, to the non-locality intrinsic in QM and

many other things. This “strange” behaviour is a consequence of a set of postulates

which are given at the beginning and that we will spell out in details. Once these

postulates are accepted, the “strange” behaviour of QM comes as a consequence. So

somehow I like to look at quantum mechanics as a mathematical theory with its own

postulates and consequences (theorems) and one should not wonder too much if the

consequences are rather “strange”. After all, the experiments confirm this ”strange”

behaviour. Remember that in physics only experiments are the ultimate test of a

theory and QM is the best tested theory around. The “strange” behavior is only due

to the fact that we, as human beings, are macroscopic objects and so we can develop

an intuition only about macroscopic phenomena and not about microscopic ones like

the things that happen, for example, in an atom and that are described in a strange

way by QM. I would like sometime to be transformed into an electron for just a day,

and I would like that not only because in that manner I would loose weight, but also

because for one day I would experience a different world and develop the intuition to

“understand” QM. Remember anyhow that the role of theoretical physics is not to

“understand” phenomena but to develop the equations which describe these physical

phenomena and that can predict new ones. In this respect the strange theory which

is QM has been an extremely successful one. So as an electron I would only be able to

develop an intuition for these strange phenomena but I would not be able to explain

them.

As I said I like to see QM as a mathematical theory with its own postulates and

theorems and corollaries of theorems and so on. In a mathematical theory the only

things that we can do are the following:
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1. to check that the postulates are not in contradiction with each other (and some-

times contradictions are subtle);

2. to check if the postulates are redundant, so that we may be able to find a smaller

set which is sufficient to explain all of QM phenomena;

3. to check if we can replace one postulate with a new one and still obtain a con-

sistent theory.This is somehow analog to what has been done in non-Euclidean

geometries where the fifth postulate of Euclid has been replaced by a new one

and all the others left the same. The new theory was consistent, had no con-

tradiction but it described a new world (a curved one instead of the flat one

described by the Euclidean geometry).This same thing could happen in QM

where, with some a new postulate replacing an old one, we may obtain a con-

sistent theory but which describes a different world;

4. to check if one or two of the postulates could be unified in a new postulate

with the same physical consequences we have tested so far and the potential to

explain new phenomena. This is the road followed, for example, by those who

modified the Schrödinger equation (for a review see ref [1]). With the postulate

of a new and different time evolution, they could replace both the postulate of

the Schrödinger time evolution and the one of collapse of the wave function (at

least for measurement of the position operator);

5. to check if the postulates of QM could be proved as theorems of a more basic

theory than QM.

These are the things that we, as theoreticians, should do instead of wondering about

the “strange” behaviour of QM. As experimentalists instead we should look for new

phenomena which QM could (or could not) explain.
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A deep unsolved problem that I personally feel is still open is the transition from

the microscopic to the macroscopic world and the interaction between the two. The

chair on which you are seated is made of hundred of trillions of billions of atoms and

so it should be possible in principle to describe it using QM because atoms behave

according to QM, but instead we are unable to describe the chair using QM. So

we use an “effective” theory which is classical mechanics (CM). I call it “effective”

because somehow it manages to describes hundred of trillions of billions of atoms in a

single stroke. People usually think that the transition from QM to CM is achieved by

sending the Planck constant to zero. This is not correct, not only because the Planck

constant has dimension but also because in this “semiclassical” limit we do not get

exactly CM but CM plus some “phases” which spoils the classical behaviour. The

same happens when, instead of the semiclassical limit, we take the limit of large N

(N being the number of atoms). So the problem of how to get CM from QM is still

open. Also the problem of how a macroscopic object (subject to the rules of CM)

interacts with a microscopic one (subject to the rules of QM) is still open and it is at

the basis of the so called “measurement problem” and of all the modern mesoscopic

physics phenomena discovered over the last 20 years. Attempts to correctly achieve

the transition from QM to CM have been done by many people. The two I know

better are summarized in ref.[2] and [3].

The solution of the problem of the transition and interaction between QM and CM

may shed some light not only on several of the “strange” features of QM and on

mesoscopic physics phenomena but also on CM itself. As we saw before, CM is only

an “effective” theory and not a “fundamental” one like QM. It could (in principle) be

obtained from QM by using some procedure and limit (but not the ones mentioned

above) like for example the one of considering as basic variables blocks of phase space

of dimension ≫ ~ and not points in phase-space. This may overthrow concepts like
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the one of “degrees of freedom” and similar ones which are considered well-established

and not questionable concepts of CM. In this procedure it will for sure emerge that

CM is not only an “effective theory” but also an “approximate” one . This may

lead to the conclusion that CM is not the correct theory to describe all macroscopic

phenomena. Actually there are some macroscopic phenomena that we are unable to

explain and which were discovered over the last 30 years. They are those astronomical

phenomena which need the introduction of theoretical concepts like “dark matter”

and “dark energy”. May it be that instead of all these “dark things” of which we have

not found any experimental evidence, the way out is that CM may have to be modified

(or improved in his “approximate” status) at those large scales? These improvements

can come from a more rigorous and less approximate derivation of CM from QM. All

this gives you an idea of the problems that we may be able to solve starting from a

better understanding of QM.

In this book you will not find any of these more advanced topics or others like

quantum relativistic equations, modifications to the Schrödinger equation, entangle-

ment, non-locality, quantum information, teleportation etc. which are left for more

advanced courses taught by my colleagues at the University of Trieste.

These notes are in this LATEX and Web form thanks to the hard work of Alessandro

Candolini and the financial support of the “Consorzio per lo sviluppo della fisica”

of Trieste University. I wish to warmly thank both Alessandro and the Consorzio

expecially his president prof. Ghirardi and its director prof. Mardirossian. I wish

also to thank in advance those colleagues and students who, reading these notes, will

indicate to me any misprints and conceptual or computational errors which for sure

are present in these notes.

These notes are dedicated to the memory of my dear friends Fabia and Paolo.
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Chapter 1

SCHRÖDINGER EQUATION. WRONSKIAN THEOREM.

1.1 The time-dependent Schrödinger equation: general properties

The time-dependent Schrödinger equation for the wave function ψ(x, t) of a quantum

particle of mass m moving in one dimension is

− ~2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t) = i~

∂ψ(x, t)

∂t
, (1.1)

where V (x) is the potential acting on the particle.

The main properties of this equation are

• if ψ(x, t) is a solution, then also all the functions of the form

ψϕ(x, t) = eiϕ ψ(x, t) (1.2)

are solutions of the same equation, provided that the phase ϕ does not depend

on x, t. This follows from the fact that Eqn. (1.1) is linear in ψ. The phase ϕ can

anyhow depend on such external parameters as a constant electric or magnetic

field.

• The set of all solutions of the form (1.2) is referred to as “ray”. We shall take

into account only one element for each ray, but it is important that, once you

have chosen the phase, you do not change the phase when you sum two states.
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Example 1.1. Let us suppose to choose the phase α for the state ψ1 and the

phase β for another state ψ2, thus the sum of the two states is

ψ = ψ1 e
iα+ψ2 e

iβ .

If now we change the phase of ψ1 for an amount γ and the phase of ψ2 for an

amount δ, the sum would become

ψ̃ = ψ1 e
iα eiγ +ψ2 e

iβ eiδ

Clearly, ψ and ψ̃ do not belong to the same ray, since in general

ψ̃ 6= ψ ei∆ ,

where ∆ is a phase. Thus, the sum of two states is a state while the sum of two

rays may not be a ray,

• Thus, you must sum states and not rays.

1.2 Solution of the time-dependent Schrödinger equation

We now turn to the problem of how to solve the time-dependent Schrödinger equa-

tion (1.1). Let us seek a solution of the form ∗

Ψ(x, t) = ψ(x)ϕ(t) . (1.3)

Inserting (1.3) in Eqn. (1.1) and dividing by Ψ(x, t) we obtain

1

ψ(x)

[
− ~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x)

]
= i~

1

ϕ(t)

dϕ(t)

dt
. (1.4)

∗ A general solution is just a linear combinations of them: Ψ̃(x, t) =
∑

iCiψi(x)ϕi(t).
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The left-hand side of Eqn. (1.4) depends only on x while the right-hand side depends

only on t. The only way out is that both sides be equal to a constant, say E:

i~
1

ϕ(t)

dϕ(t)

dt
= E , (1.5)

1

ψ(x)

[
− ~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x)

]
= E . (1.6)

The solution of Eqn. (1.5) is (up to a constant)

ϕ(t) = e−iEt/~ . (1.7)

and Eqn. (1.6) can be written as:

− ~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) . (1.8)

Eqn. (1.8) is the so-called stationary (or time-independent) Schrödinger equation.

Few remarks:

• In the above derivation, special care must be taken in dealing with the zeros of

ψ(x) and ϕ(t), however it is possible to prove that they do not lead to problems.

• Total, and not partial, derivatives have been used in writing Eqn. (1.4) since ψ

and ϕ depend only on x and t respectively.

1.2.1 Properties of the solution

1. Since ψ(x) is related to the probability density ρ(x) of finding the particle in x

via the relation [Born interpretation of the ψ(x)]

ρ(x) = |ψ(x)|2 , (1.9)

we must require that ψ be normalized:

∫ +∞

−∞
ρ(x) dx = 1 =

∫ +∞

−∞
|ψ(x)|2 dx ,

thus ψ(x) must be square-integrable: ψ ∈ L2.
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2. Moreover ψ(x) must be finite for all x, otherwise if ψ(x) were infinite at some

point x0 then also the probability density would become infinite at that point

x0.

3. ψ(x) must be single-valued because from it we will derive observable results;

4. ψ(x) and its derivative will be chosen to be continuos at least away from sin-

gularities of the potential. This choice is ”compatible” with the physical in-

terpretation of the wave-function and its derivative. ”Compatible” means that

the continuity of the wave-function shall imply the continuity of the probability

density which is a reasonable physical condition. Analogously for the derivative

of the wave-function:its continuity is ”compatible” with the continuity of the

probability current defined below. A more mathematical argument is the follow-

ing based on the fact that the derivability of a function implies the continuity

of the same. In the Schroedinger equation we have the second derivative of the

wave-function and, if this does exists, it implies that the first derivative exists

and is a continuos function. This last in turn, as it is a derivative, it implies that

the wave-function itself is continuos. So this is the reason why the wave-function

and its derivative must be continuos, at least for regular potential.

Before concluding this section, we should recall the continuity equation which in the

one-dimensional case reads

∂ρ(x, t)

∂t
= −∂J(x, t)

∂x
,

where the probability density ρ(x, t) and the probability current J(x, t) are given re-

spectively by

ρ(x, t) = |Ψ(x, t)|2 = Ψ(x, t)Ψ∗(x, t) ,

J(x, t) =
i~

2m

[
−Ψ∗(x, t)

∂Ψ(x, t)

∂x
+Ψ(x, t)

∂Ψ∗(x, t)

∂x

]
.
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V (x)

x

E

x′ x′′

Fig. 1.1. The potential V (x) used in the qualitative analysis of the stationary Schrödinger
equation and the energy E chosen for the analysis.

1.3 Discrete energy levels

We would like to understand in this section if the Schrödinger equation (1.8) can

have discrete energy solutions like several experimental evidences seem to indicate for

atoms and other systems.

1.3.1 Qualitative analysis

The stationary Schrödinger equation (1.8) can be rewritten as

d2ψ(x)

dx2
=

2m

~2
[V (x)−E]ψ(x) . (1.10)

Since it is a second-order linear differential equation, the values of ψ(x) and its first-

order derivative at some initial point x = a must be provided in order to solve the

equation, i.e.:

ψ(a) = ψa ,
dψ(x)

dx

∣∣∣∣
x=a

= ψ′
a .

Let us consider a potential V (x) like the one plotted in Fig. 1.1. Between x′ and

x′′ we have V (x) − E < 0. If we choose x′ < a < x′′ and we suppose ψ(a) > 0, then

it follows from Eqn. (1.10) that

d2ψ(x)

dx2

∣∣∣∣
x=a

< 0 ,
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ψ(x)

xx′ x′′a

ψa

Fig. 1.2. Three attempts to find an acceptable solution to the time-independent
Schrödinger equation.

and ψ(x) remains concave downwards up to x′′ (see Fig.1.2). After the point x′′

the wave function goes into a region where V (x) − E > 0, thus it becomes concave

upwards. In this case, the wave function diverges towards +∞, as shown in Fig. 1.2

(solid line).

Another possibility is to decrease the slope of the wave function after x′′. In this

way ψ intersects the x-axis and it becomes negative. Beyond the point of intersection

we have

d2ψ(x)

dx2
< 0 ,

thus the wave function becomes concave downwards and again it diverges, this time

towards −∞, see Fig. 1.2 (dashed line).

A third possibility occurs when the slope of the wave function after x′′ is such that

ψ decreases very slowly so that it remains concave upwards, it does not intersect the

x-axis and tends to zero asymptotically. This solution has a behavior at least at +∞
that allows it to be normalizable. See Fig. 1.2.
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1.3.2 Quantitative analysis and Wronskian theorem

Let us write the stationary Schrödinger equation

d2ψ(x)

dx2
=

2m

~2
[V (x)− E]ψ(x)

in the following way
d2z(x)

dx2
+ [Ẽ − U(x)]z(x) = 0 , (1.11)

where

Ẽ ≡ 2m

~2
E , U(x) ≡ 2m

~2
V (x) , z(x) ≡ ψ(x) .

Let us take U(x) continuous and bounded from below.

Given two arbitrary solutions z1(x) and z2(x) of Eqn. (1.11) corresponding to two

different energies, we can define the following object, which is called the Wronskian:

W (z1, z2) ≡ z1z
′
2 − z2z

′
1 , (1.12)

where z′1 = dz1/ dx and z′2 = dz2/ dx. If, at a certain point x = a, the Wron-

skian (1.12) is zero, then

z1(a)z
′
2(a)− z2(a)z

′
1(a) = 0 ,

that is,
z′2(a)

z2(a)
=
z′1(a)

z1(a)
,

which means that the logarithmic derivatives∗ of the two solutions are the same at

that point.

Theorem 1.1 (Wronskian theorem). If z1(x) and z2(x) are solutions of the following

equations

z′′1 (x) + F1(x)z1(x) = 0 , (1.13a)

z′′2 (x) + F2(x)z2(x) = 0 , (1.13b)

∗ The logarithmic derivative of z(x) is d
dx log z(x).
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where F1(x) and F2(x) are generic functions, then it is possible to prove that the

variation of the associated Wronskian W (z1, z2) in some interval (a, b) is given by

W (z1, z2)

∣∣∣∣
b

a

=

∫ b

a

[F1(x)− F2(x)] z1(x)z2(x) dx . (1.14)

Proof. If we multiply Eqn. (1.13a) by z2 and Eqn. (1.13b) by z1 and take the difference

of the two, we obtain

z2z
′′
1 − z1z

′′
2︸ ︷︷ ︸

−W ′(z1,z2)

+(F1 − F2)z1z2 = 0 . (1.15)

The first term is, modulo a sign, nothing but the derivative of the WronskianW (z1, z2)

with respect to x, as you can see by direct differentiation of Eqn. (1.12):

W ′(z1, z2) = z1z
′′
2 − z2z

′′
1 .

Integrating Eqn. (1.15) in x between a and b yields just Eqn. (1.14).

Corollary 1.1.1. If Eqs. (1.13) correspond to the stationary Schrödinger equa-

tion (1.11) for two different energies Ẽ1 and Ẽ2 respectively, then F1(x) = Ẽ1−U(x),

F2(x) = Ẽ2 − U(x) and Eqn. (1.14) becomes

W (z1, z2)

∣∣∣∣
b

a

= (Ẽ1 − Ẽ2)

∫ b

a

z1(x)z2(x) dx . (1.16)

Corollary 1.1.2. If the two solutions z1 and z2 are associated with the same energy

Ẽ1 = Ẽ2, then we get from Eqn. (1.16)

W (z1, z2)

∣∣∣∣
x=a

=W (z1, z2)

∣∣∣∣
x=b

,

so

W (z1, z2) = const ,

i.e., the Wronskian is independent of x since the interval (a, b) is arbitrary.

Corollary 1.1.3. If z(x, Ẽ) is a solution of Eqn. (1.11) and if its logarithmic deriva-

tive, i.e.:

F (x, Ẽ) =
z′(x, Ẽ)

z(x, Ẽ)
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at the point x = a has a fixed value fa which is independent of Ẽ, i.e.:

F (a, Ẽ) = fa , for all Ẽ ,

then F (x, Ẽ) is a monotonic function of Ẽ, increasing if x < a and decreasing if x > a.

This is because the derivative of F with respect to Ẽ is given by (see proof below)

∂F (x, Ẽ)

∂Ẽ
= − 1

z2(x, Ẽ)

∫ x

a

z2(ξ, Ẽ) dξ . (1.17)

and from Eqn. (1.17) we see that the derivative is negative if x > a and positive if

x < a.

Proof. Let us consider the following boundary conditions:

z(a, Ẽ) = za , z′(a, Ẽ) = z′a ,

and replace Ẽ with Ẽ + δẼ. There will be two nearby solutions z and z + δz which

correspond to the values Ẽ and Ẽ + δẼ and satisfy the same boundary conditions.

According to Corollary 1.1.1, at first order in δ we obtain

W (z, z + δz)

∣∣∣∣
b

a

= −δẼ
∫ b

a

z2(x) dx . (1.18)

At the point x = a, the Wronskian is zero: W (z, z+δz)|x=a = 0. This is so because the

two solutions satisfy the same boundary conditions, since za and z′a are independent

of Ẽ. For all other values of x in the interval (a, b) we have

W (z, z + δz) = zδz′ − z′δz = z2δ

(
z′

z

)
= z2δF .

Thus, Eqn. (1.18) becomes

z2δF

∣∣∣∣
x=b

= −δẼ
∫ b

a

z2(x) dx ,

that is,
δF

δẼ

∣∣∣∣
x=b

= − 1

z2(b)

∫ b

a

z2(x) dx .

from which it follows that F is a monotonic function of Ẽ, increasing or decreasing

for b < a or b > a respectively.
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U(x)

x

U (+)

U (−)

Fig. 1.3. Potential U(x) and its asymptotic behavior at ±∞.

Let us now take a potential U(x) such as the one plotted in Fig. 1.3, with U (−) >

U (+).

First case. We consider Ẽ > U (−). In this case, Ẽ − U(x) is positive at the two

extrema and constant, Eqn. (1.11) becomes at +∞

z′′ + [Ẽ − U (+)]︸ ︷︷ ︸
k

z = 0 ,

that is,

z′′ = −kz , k ≡ Ẽ − U (+) > 0 ,

and the asymptotic behavior of z at +∞ is

z ∼ ei
√
kx for x → +∞ . (1.19a)

At −∞, Eqn. (1.11) becomes

z′′ + [Ẽ − U (−)]︸ ︷︷ ︸
k̃

z = 0 ,

that is,

z′′ = −k̃z , k̃ ≡ Ẽ − U (−) > 0 ,

and the solution is

z ∼ ei
√
k̃x for x→ −∞ . (1.19b)
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Solutions (1.19) are bounded and oscillating and they can be fitted continuously with

each other. So there is no constraint on the energy. Every value of energy is allowed

and the spectrum is continuous.

Remark. Oscillating solutions are allowed, even if — strictly speaking — they are not

truly normalizable. They are normalizable in a generalized sense (theory of distribu-

tions). In fact, the scalar product of two plane waves eikx and eik
′x is

∫ +∞

−∞
eikx e−ik

′x dx ∼ δ(k − k′) .

On the RHS we do not have the usual Kronecker delta but the Dirac delta (a distribu-

tion) of which we will give details later on. The space of square-integrable functions L2

must be enlarged in order to include also those functions which are square-integrable

in the distributional sense. If we call this space L̃2, it is possible to prove that L2 is

dense in L̃2, that is to say, each element in L̃2 has a “nearby” element in L2.

Second case. Let us now consider U (−) > Ẽ > U (+). In this case, Ẽ−U is negative

for x→ −∞ so Eqn. (1.11) becomes

z′′ = −kz , k ≡ Ẽ − U (−) < 0 ,

and the asymptotic behavior of z at −∞ is given by

z ∼ e
√

|k|x for x→ −∞ , (1.20a)

which tends to zero for x→ −∞ and therefore can be accepted. At +∞, in Eqn. (1.11)

we have instead

z′′ = −k′z , k′ ≡ Ẽ − U (+) > 0 ,

and the solution is

z ∼ ei
√
k′x for x → +∞ , (1.20b)

which is an oscillating function. Again it is possible to match the two solutions (1.20)

and therefore also in this case there are no constrains on the energy and the spectrum

is continuous.
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Third case. We consider U (−) > U (+) > Ẽ. Eqn. (1.11) becomes at both extrema

z′′ = −k±z , k± ≡ Ẽ − U± < 0 ,

and the asymptotic solutions are

z ∼ e∓
√

|k±|x for x→ ±∞ , (1.21)

In this case, the solutions are bounded and damped at both extrema. Now we have to

fit them in order to guarantee the continuity of z(x) and of its first-order derivative.

Let us consider the logarithmic derivatives of the two solutions, and indicate them

with F+(x, Ẽ) and F−(x, Ẽ). They will be equal to each other at a certain point

x = a. This is so because both z and z′ satisfy certain boundary conditions at the

point x = a, and since z− and z+ converge to the same solution z, both z− and z+

must satisfy the same boundary conditions in a. Now F+ is valid for x > a and

according to Corollary 1.1.3 it is a monotonic decreasing function of Ẽ, while F− is

valid for x < a and is a monotonic increasing function of Ẽ. Now F+ and F− must be

equal in x = a and this can happen only for some particular values Ẽn of Ẽ. This is

the proof that in the present case only certain values of Ẽ are allowed. These values

are fixed and isolated and the spectrum is discrete.

1.4 The Dirac delta

In this section we will provide some introductory details on the Dirac delta that we

mentioned before. Let us recall the main properties of the Dirac’s δ-function.

A function is a map between, for example, the space of real numbers R and R, or

between the space of complex numbers C and C, or between C and R. A functional

is a map between a space of functions and the space of real or complex numbers:

F [f(x)] → R .
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Example 1.2 (functionals). • The action

S =

∫ t1

t0

L(q(t), q̇(t), t) dt

associates to a function q(t) the real number S obtained by evaluating the

integral above.

• The Dirac’s delta function δ(x) is defined via the relation

∫ +∞

−∞
δ(x− x0)f(x) dx = f(x0) , (1.22)

that is, the Dirac delta associates to the function f(x) the number f(x0).

Eqn. (1.22) suggests that it is possible to “represent” the Dirac delta distribution

as the limit of a suitable sequence of functions. For example, if we choose x0 = 0 we

have that the action of the Dirac delta in Eqn. (1.22), namely

∫ +∞

−∞
δ(x)f(x) dx = f(0) ,

is the same as the one achieved by the following operation:

δ(x) ∼ lim
l→∞

l√
π
e−l

2x2 ,

which must be understood as performed under an integral:

∫ +∞

−∞
δ(x)f(x) dx = lim

l→∞

∫ +∞

−∞

l√
π
e−l

2x2 f(x) dx .

(Prove the latter equation as an homework.)

Note that the set of all functions fl(x) = l/
√
π exp(−l2x2) as we send l to ∞ is

infinite. These functions are Gaussians and the area below them is equal to one. (See

Fig. 1.4.)
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0
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2
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n
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Fig. 1.4. Representations of the Dirac delta δ(x).

Other representations of the Dirac delta are given by

1

lπ

sin2 lx

x2
,

1

lπ

1

x2 + 1
l2

,
1

π

sin lx

x
.

(See Fig. 1.4.)

The Dirac delta δ(x− y) is “somehow” the generalization to the continuous case of

the Kronecker delta δij , the latter being defined for discrete indexes i, j as

δij =




1 if i = j

0 if i 6= j

By definition, Kronecker delta acts on a vector f i as

f i =
∑

j

δijf
j .

Now, if the indexes i, j become continuous, the various f j become functions fx or

f(x) and the sum becomes an integral over x, that is

f(y) =

∫
δ(x− y)f(x) dx .
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1.5 Harmonic oscillator and Hermite polynomials

Find the spectrum and the wave functions of the stationary Schrödinger equation for

an harmonic oscillator with potential V (x) = 1
2
kx2.

The stationary Schrödinger equation is

− ~2

2m

d2ψ(x)

dx2
+

1

2
kx2ψ(x) = Eψ(x) .

First, let us change variables :

ξ ≡ αx , α ≡
(
mk

~2

)1/4

.

The Schrödinger equation in the new variable ξ reads

d2ψ(x(ξ))

dξ2
+ (λ− ξ2)ψ = 0 , (1.23)

where

λ ≡ 2E

~

(m
k

)1/2
=

2E

~ωc
, ωc =

(
k

m

)1/2

. (1.24)

It is easy to prove that for ξ → +∞ the function

ψ(ξ) = ξn e−ξ
2/2

satisfies Eqn. (1.23) with λ = 0. To prove this fact, let us calculate the first and

second order derivatives of ψ(ξ):

dψ(ξ)

dξ
= nξn−1 e−ξ

2/2 −ξn+1 e−ξ
2/2 ,

d2ψ(ξ)

dξ2
= [n(n− 1)ξn−2 − nξn − (n+ 1)ξn + ξn+2] e−ξ

2/2 .

For ξ → ∞, the second-order derivative behaves like

d2ψ(ξ)

dξ2
∼ ξn+2 e−ξ

2/2 ,

and for λ = 0 Eqn. (1.23) is asymptotically fullfilled, as you can verify by direct

substition:
d2ψ(ξ)

dξ2
− ξ2ψ(ξ)

ξ→∞∼ ξn+2 e−ξ
2/2 −ξ2ξn e−ξ2/2 = 0 .
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Now, we try to find a complete (i.e., not only asymptotic) solution of Eqn. (1.23)

of the form

ψ(ξ) = H(ξ) e−ξ
2/2 , (1.25)

where H(ξ) is a polynomial in ξ. Inserting Eqn. (1.25) into Eqn. (1.23) yields the

following equation for the polynomial H(ξ):

d2H(ξ)

dξ2
− 2ξ

dH(ξ)

dξ
+ (λ− 1)H(ξ) = 0 . (1.26)

Now, let us make the following ansatz for H(ξ):

H(ξ) = ξs
[
a0 + a1ξ + a2ξ

2 + . . .
]
, (1.27)

with a0 6= 0 and s ≥ 0. By substituting into Eqn. (1.26) and by equating to zero all

the coefficients of the various powers of ξ, we get

s(s− 1)a0 = 0 ,

(s+ 1)sa1 = 0 ,

(s+ 2)(s+ 1)a2 − (2s+ 1− λ)a0 = 0 ,

(s+ 3)(s+ 2)a3 − (2s+ 3− λ)a1 = 0 ,

...

(s+ ν + 2)(s+ ν + 1)aν+2 − (2s+ 2ν + 1− λ)aν = 0 ,

(1.28)

where ν is an integer number. Since a0 6= 0, we get from the first equation that

s = 0 or s = 1 .

The second equation gives

s = 0 or a1 = 0 ,

or both of them. The third equation gives a2 as a function of a0 and the fourth

equation gives a3 as a function of a1. In general, from ν = 3, the ν–th equation gives

aν−1 as a function of aν−3.
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According to problems presented at the end of this chapter, the wave functions

ψ(x) for one dimensional system cannot be degenerate for bound states and moreover

— since the potential is even V (x) = V (−x) — they will be either even or odd, that

is,

ψ(x) = ±ψ(−x) .

Now, let us consider separately the two cases s = 0 and s = 1 that solve the first

equation in (1.28)

s = 0 : The first equation in (1.28) is satisfied and also the second is fulfilled without

having to choose a1 = 0. However, in this way the parity would not be defined,

since we would have both the zeroth power with a0 and the first power with a1.

Instead, if we choose a1 = 0, the second equation in (1.28) is still satisfied and

we get the even polynomials.

s = 1 : In this case, we get the odd polynomials since

ξs[a0 + a1ξ + . . .] = ξ[a0 + a1ξ + . . .] ,

and a1 must be zero in order to satisfy the second equation in (1.28).

In (1.28) there will be a finite or an infinite number of terms depending on how we

choose s and λ. If the series did not stop, then the ratio of the coefficients aν+2/aν

would become for large ν

aν+2

aν

ν→∞→ 2s+ 2ν + 1− λ

(s+ ν + 2)(s+ ν + 1)
∼ 2

ν
, (1.29)

but these coefficients are just the same of the expansion of

ξn e2ξ
2

, (1.30)

this means that ψ(ξ) = Hn(ξ) e
−ξ2/2 would become ξn e2ξ

2−ξ2/2 = ξn e3/2ξ
2
which is

not normalizable.
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Let us check that the coefficients of the series expansion of (1.30) goes as in

Eqn. (1.29). The ν–th term of the series expansion of (1.30) is

ξn(ξ22)m
1

m!

and the (ν − 1)–th is

ξn(ξ22)m−1 1

(m− 1)!
,

thus the coefficients are 2ν/ν! and 2ν−1/(ν − 1)! respectively and their ratio is 2/ν as

in Eqn. (1.29).

Thus, in order to have normalizable wave functions the series (1.28) must stop, that

is we must have polynomials with a finite number of terms. From Eqs. (1.28) we see

that this happens if

λ = 2s+ 2ν + 1 .

In fact, in this way aν+2 is zero and the following coefficients obtained from aν+2 will

be zero too. Now, let us call s + ν = n, which is an integer number. The above

relation becomes

λ = 2n+ 1 .

By replacing λ with E via Eqn. (1.24) we get

En =

(
n+

1

2

)
~ωc . (1.31)

These are the discrete energy levels. The lowest energy occurs for n = 0 and it is

given by

E0 =
1

2
~ωc ,

which is called the zero-point energy.

Since ν is finite, Hn will be polynomials and not series. In particular,

H0(ξ) = 1 ,

H1(ξ) = 2ξ ,

H2(ξ) = 4ξ2 − 2 , . . .
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These polynomials satisfy the equation

H ′′
n(ξ)− 2ξH ′

n(ξ) + 2nHn(ξ) = 0 .

and they are referred to as “Hermite polynomials”.

We want to stress the fact that also in the case of the harmonic oscillator the

discreteness of the energy spectrum comes from the normalization requirement of the

wave functions.

1.6 Schrödinger equation for multidimensional problems

Until now, we have dealt exclusively with one-dimensional problems. Now, we turn

to the two- and three-dimensional ones. We will focus on those problems where

the potential is separable, which in the three-dimensional case and using Cartesian

coordinates means

V (x, y, z) = V1(x) + V2(y) + V3(z) . (1.32)

It may happen that a potential is not separable in Cartesian coordinates, but it

is separable in another set of coordinates, for example in cylindrical or spherical

coordinates. This means that using for example spherical coordinates, we have

V (r, ϑ, ϕ) = V1(r) + V2(ϑ) + V3(ϕ) .

In which set of coordinates the potential is separable depends on the symmetries of

the system. For the time being, we will consider potentials which are separable in

Cartesian coordinates. In this case, the stationary Schrödinger equation reads
[
− ~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ V1(x) + V2(y) + V3(z)

]
ψ(x, y, z) = Eψ(x, y, z) .

We look for solutions of the form∗

ψ(x, y, z) = ψ1(x)ψ2(y)ψ3(z) .

∗ We use this ansatz because a general solutions is a linear combination of them: ψ̃(x, y, z) =

Ci,j,kψi(x)ψj(y)ψk(z).
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Inserting this into the Schrödinger equation we obtain

− ~2

2m

d2ψ1(x)

dx2
ψ2(y)ψ3(z) + V1(x)ψ1(x)ψ2(y)ψ3(z) +

− ~2

2m

d2ψ2(y)

dy2
ψ1(x)ψ3(z) + V2(y)ψ1(x)ψ2(y)ψ3(z) +

− ~2

2m

d2ψ3(z)

dz2
ψ1(x)ψ2(y) + V3(z)ψ1(x)ψ2(y)ψ3(z) = Eψ1(x)ψ2(y)ψ3(z) .

by dividing both sides by ψ1(x)ψ2(y)ψ3(z) we get

[
− ~

2

2m

d2ψ1(x)

dx2
+ V1(x)ψ1(x)

]
1

ψ1(x)
+

[
− ~2

2m

d2ψ2(y)

dy2
+ V2(y)ψ2(y)

]
1

ψ2(y)
+

[
− ~2

2m

d2ψ3(z)

dz2
+ V3(z)ψ3(z)

]
1

ψ3(z)
= E .

Note that each of the three terms on the left-hand side is a function of a different

variable: the first is a function of x, the second of y and the third of z. In order to

have the sum equal to a constant, namely E, each term must be a constant:

[
− ~2

2m

d2ψ1(x)

dx2
+ V1(x)ψ1(x)

]
1

ψ1(x)
= E1 ,

[
− ~2

2m

d2ψ2(y)

dy2
+ V2(y)ψ2(y)

]
1

ψ2(y)
= E2 ,

[
− ~2

2m

d2ψ3(z)

dz2
+ V3(z)ψ3(z)

]
1

ψ3(z)
= E3 ,

with E1 + E2 + E3 = E. The initial problem of solving the three-dimensional

Schrödinger equation is thus reduced to solving the following three Schrödinger equa-

tions in one dimension:

− ~2

2m

d2ψ1(x)

dx2
+ V1(x)ψ1(x) = E1ψ1(x) ,

− ~2

2m

d2ψ2(y)

dy2
+ V2(y)ψ2(y) = E2ψ2(y) ,

− ~
2

2m

d2ψ3(z)

dz2
+ V3(z)ψ3(z) = E3ψ3(z) .
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The three solutions are associated with energy eigenvalues E1, E2 and E3 such that

E1 + E2 + E3 = E .

It may happen that by adding three different eigenvalues E ′
1, E

′
2 and E ′

3 we obtain

the same energy E:

E ′
1 + E ′

2 + E ′
3 = E .

The three wave functions corresponding to the eigenvalues E ′
1, E

′
2 and E ′

3 — which

we shall denote with ψ′
1(x), ψ

′
2(y) and ψ

′
3(z) — in general will be different from those

associated with E1, E2 and E3 — say, ψ1(x), ψ2(y) and ψ3(z). This means that the

global wave functions

ψE(x, y, z) = ψ1(x)ψ2(y)ψ3(z)

and

ψ′
E(x, y, z) = ψ′

1(x)ψ
′
2(y)ψ

′
3(z)

have the same energy E but they are two different functions. In this case, we speak

of degeneracy, i.e., there are different wave functions associated to the same energy.

Now, we want to give an example of a potential which is separable in spherical

coordinates but not in Cartesian coordinates. We define the spherical coordinates in

the usual way:

x = r sinϑ cosϕ , 0 < r <∞ , (1.33a)

y = r sinϑ sinϕ , 0 ≤ ϑ ≤ π , (1.33b)

z = r cosϑ , 0 ≤ ϕ < 2π . (1.33c)

Let us consider the following potential

V (r, ϑ, ϕ) = kr2 + l2 tanϑ+ s2 sin2 ϕ . (1.34)

Of course, it is separable in spherical coordinates, since it can be written in the form

V (r, ϑ, ϕ) = V1(r) + V2(ϑ) + V3(ϕ) ,
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where

V1(r) = kr2 , V2(ϑ) = l2 tanϑ , V3(ϕ) = s2 sin2 ϕ .

By inverting∗ Eqs. (1.33) and inserting into Eqn. (1.34) we get

Ṽ (x, y, z) = k(x2 + y2 + z2) + l2
√
x2 + y2

z
+ s2

y2

x2 + y2
,

which is not separable as a sum Ṽ1(x) + Ṽ2(y) + Ṽ3(x).

1.7 Central potentials

With the word “central potentials” we mean those potentials which, once they are

written in polar coordinates, depend only on r, that is

V (x, y, z) = U(r) .

It is not difficult to prove that the Laplacian in spherical coordinates reads

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin ϑ

∂

∂ϑ

(
sin ϑ

∂

∂ϑ

)
+

1

r2 sin2 ϑ

∂2

∂ϕ2
.

It should be noted that the transformation from the Cartesian coordinates to the

spherical coordinates is not one-to-one along the z-axis (in fact, ϑ can be both 0 or π

and ϕ can take any value). The Laplacian reflects this fact via the presence of singu-

larities in ϑ = 0, ϑ = π and r = 0. Thus, the solution of the stationary Schrödinger

equation can have spurious singularities in those points due to the singularities of the

Laplacian in spherical coordinates.

Using the expression for the Laplacian in spherical coordinates, the stationary

Schrödinger equation for a central potential U(r) becomes

− ~2

2m

[
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)

+
1

r2
1

sin2 ϑ

∂2

∂ϕ2

]
ψ̃(r, ϑ, ϕ) + U(r)ψ̃(r, ϑ, ϕ) = Eψ̃(r, ϑ, ϕ) . (1.35)

∗ In the points where it is possible.
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We seek solutions of the form

ψ̃(r, ϑ, ϕ) = R(r)Y (ϑ, ϕ) .

Inserting this into Eqn. (1.35) and multiplying by r2/(RY ), we get:

1

R(r)

d

dr

(
r2
dR(r)

dr

)
+

2m

~2
[E − U(r)]r2 =

−
[

1

Y sin ϑ

∂

∂ϑ

(
sin ϑ

∂Y

∂ϑ

)
+

1

Y sin2 ϑ

∂2Y

∂ϕ2

]
.

Note that the left-hand side depends only on r while the right-hand side is a function

only of ϑ and ϕ. For the two sides to be equal to each other it must be that they

both equal a constant, which we indicate with λ. This leads to:

1

R

d

dr

(
r2
dR

dr

)
+

2m

~2
[E − U(r)]r2 = λ , (1.36a)

1

Y sinϑ

∂

∂ϑ

(
sin ϑ

∂Y

∂ϑ

)
+

1

Y sin2 ϑ

∂2Y

∂ϕ2
= −λ . (1.36b)

Eqn. (1.36b) is basically related to the quantization of angular momentum and it

will be treated in chapter 5. Instead, the solution of Eqn. (1.36a) can be already

worked out at this point. Let us rewrite R(r) = χ(r)/r, where χ(r) is a new function.

Inserting this “parametrization” of R(r) into Eqn. (1.36a) we get

− ~2

2m

d2χ(r)

dr2
+

[
U(r) +

λ~2

2mr2

]
χ(r) = Eχ(r) . (1.37)

This is nothing but the Schrödinger equation for a particle moving in a “effective”

potential given by the sum of the original potential U(r) plus the “centrifugal” term

λ~2

2mr2
. We shall see in Chapter 9 that the centrifugal potential is linked to the angular

momentum and it is non-zero only when the angular momentum does not vanish. In

fact, it is possible to prove that this term represents the rotational kinetic energy.

In the case of the hydrogen atom, U(r) is given by

U(r) = −e
2

r
,
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or, if we consider one electron spinning around a nucleus of charge Ze, it is

U(r) = −Ze
2

r
.

The radial equation (1.37) becomes

− ~2

2m

1

r2
d

dr

(
r2
dR

dr

)
− Ze2

r
R +

λ~2

2mr2
R = ER ,

where m is not the mass of electron, but its reduced mass

m =
memN

me +mN
,

where me is the actual mass of the electron and mN is the mass of the nucleus. Since

me ≪ mN , we have m ≈ me.

Let us introduce the following new variables

ρ ≡ αr , α2 ≡ 8m |E|
~2

, δ =
Ze2

~

(
m

2 |E|

)1/2

.

The radial equation above is then transformed into the following one:

1

ρ2
d

dρ

(
ρ2

dR(r(ρ))

dρ

)
+

[
δ

ρ
− 1

4
− λ

ρ2

]
R = 0 .

This is a differential equation which is well-known, and we shall solve it in chapter 9

after having obtained the value of λ in chapter 5 via the quantization of the angular

momentum.

1.8 Problems and Solutions

Problem 1.1. Show that the following wave function

ψ(x, t) = A exp

[
−
√
Cm

2~
x2 − i

2

√
C

m
t

]
,

is a solution of the Schrödinger equation (1.1) for an harmonic oscillator with

potential

V (x) =
1

2
Cx2 .
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Calculate the probability density associated with this wave function and compare

the result with the classical probability of finding the particle in a interval dx.

Solution. First, we must evaluate the derivatives of ψ:

∂ψ(x, t)

∂t
= − i

2

√
C

m
ψ(x, t) ,

∂ψ(x, t)

∂x
= −

√
Cm

~
xψ(x, t) ,

∂2ψ(x, t)

∂x2
= −

√
Cm

~
ψ(x, t) +

Cm

~2
x2ψ(x, t) .

Replacing these expressions in the Schrödinger equation (1.1) we get

~
2

2m

√
Cm

~
ψ(x, t) − ~

2

2m

Cm

~2
x2ψ(x, t) +

1

2
Cx2ψ(x, t) = i~

(
− i

2

)√
C

m
ψ(x, t) ,

from which it follows

~

2

√
C

m
ψ(x, t) − 1

2
Cx2ψ(x, t) +

1

2
Cx2ψ(x, t) =

~

2

√
C

m
ψ(x, t) ,

which is identically satisfied.

Accordingly to the Born interpretation of the wave function, the quantum probability

density ρ(x, t) of finding the particle in x at the time t is given by

ρ(x, t) = |ψ(x, t)|2 = A2 exp

[
−
√
Cm

~
x2

]
,

which does not depend on t; this is a common feature of all the wave functions corresponding

to fixed values of the energy. ρ(x) is plotted in Fig. 1.5(b).

Let us now evaluate the classical probability P (x) dx of finding the particle in a small

interval dx centered at x. This probability will be proportional to the time taken by the

particle to cross dx, thus it is inversely proportional to the velocity of the particle in x:

P (x) =
B2

v(x)
,

where B is a constant. At a given energy E we have

E =
1

2
mv2 +

1

2
Cx2 ,
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V (x)

x
−

√

2E
C

+
√

2E
C

0

E

(a)

|ψ(x)|2

x
−

√

2E
C

+
√

2E
C

0

(b)

P (x)

x0−
√

2E
C

+
√

2E
C

(c)

Fig. 1.5. Comparison between (c) classical and (b) quantum probability densities for an
harmonic oscillator whose potential is shown in (a).
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thus

v(x) =

√
2

m

√
E − 1

2
Cx2 ,

and

P (x) =
B2

√
2
m

√
E − 1

2Cx
2
.

P (x) is plotted in Fig. 1.5(c).

Note that the probability of finding the particle at the origin x = 0 is minimum in

the classical case, while it is maximum in the quantum case. The classical particle has its

maximum velocity at x = 0 and therefore goes rapidly through the origin and the probability

of finding the particle there is minimum. In the quantum case instead the situation is just

the opposite and the particle is more likely to be found at the origin. Note however that

there is a non-null quantum probability of finding the particle also outside the extrema of

the oscillation range. The difference between the classical and quantum case decreases at

higher energies. At low energies, quantum effects becomes dominant.

⋆ ⋆ ⋆

Problem 1.2. Show that in a one-dimensional problem the energy spectrum of

bound states is always non-degenerate. By degeneracy we mean that there are

two or more linearly independent solutions associated to the same energy value.

Solution. Let us prove this fact ab absurdo and suppose the opposite is true. Let ψ1(x)

and ψ2(x) be two linearly independent solutions corresponding to the same energy E:

ψ′′
1 (x) +

2m

~2
[E − V (x)]ψ1(x) = 0 , ψ′′

2 (x) +
2m

~2
[E − V (x)]ψ2(x) = 0 .

Dividing the former by ψ1 and the latter by ψ2 (and staying away from their zeros) we get

ψ′′
1 (x)

ψ1(x)
=

2m

~2
[−E + V (x)] ,

ψ′′
2 (x)

ψ2(x)
=

2m

~2
[−E + V (x)] ,

which implies that
ψ′′
1(x)

ψ1(x)
=
ψ′′
2 (x)

ψ2(x)
=

2m

~2
[−E + V (x)] ,
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and from the first equality it follows that

ψ′′
1ψ2 − ψ′′

2ψ1 = (ψ′
1ψ2)

′ − (ψ′
2ψ1)

′ = 0 .

By integrating the previous equation we get

ψ′
1ψ2 − ψ′

2ψ1 = const.

This equation must hold for all x and since the wave function of a bound state must be

zero at ∞, the constant appearing on the right-hand side of this equation must also be zero,

which implies

ψ′
1

ψ1
=
ψ′
2

ψ2
.

By integrating, we get

logψ1 = logψ2 + logC ,

which leads to

ψ1 = Cψ2 .

Therefore, the two states are linearly dependent. This in contradiction with the hypothesis

and it implies that there is no degeneracy.

⋆ ⋆ ⋆

Problem 1.3. Show that the first derivatives of the stationary wave functions

are continuous even if the potential V (x) has a finite discontinuity.

Solution. Suppose the discontinuity is at the point x0. Let us consider an interval (x0 −
ε, x0 + ε) and replace V (x) in such interval with a potential V1(x) linearly interpolating

between V (x0 − ε) and V (x0 + ε). In this way, we obtain a continuous potential whose

solutions satisfy the stationary Schrödinger equation

d2ψ1(x)

dx2
+

2m

~2
[E − V1(x)]ψ1(x) = 0 .
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By integrating this equation in the interval (x0 − ε, x0 + ε) we get
∫ x0+ε

x0−ε

d2ψ1(x)

dx2
dx =

2m

~2

∫ x0+ε

x0−ε
[V1(x)− E]ψ1(x) dx ,

from which it follows

dψ1(x)

dx

∣∣∣∣
x=x0+ε

− dψ1(x)

dx

∣∣∣∣
x=x0−ε

=
2m

~2

∫ x0+ε

x0−ε
[V1(x)− E]ψ1(x) dx . (1.38)

In the limit ε → 0, we have V1(x) → V (x) and ψ1(x) → ψ(x). Since the integrand on the

right-hand side is finite, it remains finite also in the limit ε → 0. Let us recall now the

mean-value theorem, which states that
∫ b

a
f(x) dx = f̄ [b− a] ,

where f̄ is the mean value of the function f(x) over the interval (a, b). If f̄ remains finite

and (b − a) → 0 then also the integral of f(x) must vanish. This is exactly what happens

in the case of Eqn. (1.38), since the integrand is finite. Thus,

lim
ε→0

{
dψ(x)

dx

∣∣∣∣
x=x0+ε

− dψ(x)

dx

∣∣∣∣
x=x0−ε

}
= 0 ,

that is,
dψ(x)

dx

∣∣∣∣
x=x0−0

=
dψ(x)

dx

∣∣∣∣
x=x0+0

,

and therefore the derivatives are continuous.

⋆ ⋆ ⋆

Remark. If the potential V (x) of the previous problem had an ∞ discontinuity, then

it would have been impossible to apply the mean value theorem. In such cases, the

derivative ψ′ could have a finite gap. We will see an example in the next problems.

Problem 1.4. The potential energy of a system is

U(x) = Ũ(x) + αδ(x− x0) ,

where Ũ(x) is a bounded function. Which is the behavior of the solution of the

Schrödinger equation ψ(x) and its derivative near the point x0?
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Solution. The Schrödinger equation reads

− ~
2

2m

d2ψ(x)

dx2
+ [Ũ(x) + αδ(x− x0)]ψ(x) = Eψ(x) . (1.39)

ψ(x) must be continuous because of its probabilistic meaning. Let us investigate if also the

derivative remain continuous. By integrating Eqn. (1.39) between x0 − ε and x0 + ε with

ε > 0 and by sending ε→ 0 we obtain

− ~
2

2m

∫ x0+ε

x0−ε

d2ψ(x)

dx2
dx = −

∫ x0+ε

x0−ε
[Ũ(x) + αδ(x − x0)− E]ψ(x) dx ,

from which it follows

− ~
2

2m

[
dψ(x)

dx

∣∣∣∣
x=x0+ε

− dψ(x)

dx

∣∣∣∣
x=x0−ε

]
= −αψ(x0)−

∫ x0+ε

x0−ε
[Ũ(x)− E]ψ(x) dx .

If ψ(x) is continuous and Ũ(x) is bounded we can use the mean-value theorem, so in the

limit ε→ 0 the integral on the right-hand side of the previous equation vanishes and we get

lim
ε→0

− ~
2

2m

[
dψ(x)

dx

∣∣∣∣
x=x0+ε

− dψ(x)

dx

∣∣∣∣
x=x0−ε

]
= −αψ(x0) ,

that is,
dψ(x)

dx

∣∣∣∣
x=x0+0

− dψ(x)

dx

∣∣∣∣
x=x0−0

=
2mα

~2
ψ(x0) . (1.40)

This means that the derivative is discontinuous at the point x0. Remember the result proved

in Problem (1.3): for potentials with a finite gap the derivative of ψ(x) must be continuous.

In this case however the Dirac delta has in x0 an infinite jump, so the result of Problem (1.3)

cannot hold and in fact the derivative is discontinuous.

⋆ ⋆ ⋆

Problem 1.5. Find the energy levels and the wave functions of the bound states

of a particle in a potential U(x) = −αδ(x), with α > 0.

Solution. The Schrödinger equation is

− ~
2

2m

d2ψ(x)

dx2
− αδ(x)ψ(x) = Eψ(x) .
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For x 6= 0, this is nothing but the usual equation of a free particle:

− ~
2

2m

d2ψ(x)

dx2
= Eψ(x) .

The solutions of the equation above are easily found to be exponentials, however here we

consider bound states so we must require that the solutions go to zero at ±∞, thus the only

allowed solutions take the form

ψ(x) =





A e−kx if x > 0

B ekx if x < 0

,

where k is related to E. The relation between k and E can be found by inserting the solution

ψ(x) into the Schrödinger equation of the free particle; we get

− ~
2

2m
A(k2) e−kx = EA e−kx ,

from which it follows

E = −~
2k2

2m
.

E is negative (bound state) and k has not yet been determined. Now, let us determine A

and B. By using Eqn. (1.40), the jump in the derivative of ψ(x) is given by

dψ(x)

dx

∣∣∣∣
x=x0+0

− dψ(x)

dx

∣∣∣∣
x=x0−0

=
2m(−α)

~2
ψ(x0) .

[Note that in problem 1.4 we have αδ(x − x0) while here we have −αδ(x).] Hence,

A(−k) e−k·0−kB ek·0 = −2mα

~2
A .

In the right-side of the latter equation we could have used B as well. In fact, because of the

continuity condition, we would get A = B. Therefore,

A(−k)− kA = −2mα

~2
A ,

that is,

k =
mα

~2
.
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This implies that there is only one value of k which corresponds to a bound state of our

problem, its energy is given by

E = − ~
2

2m
k2 = − ~

2

2m

m2α2

~4
= −mα

2

2~2
.

A is found by requiring ψ(x) to be normalized:
∫
|ψ(x)|2 dx = 1. The normalized wave

function corresponding to the only bound state is given by ψ(x) =
√
k e−k|x|. (Prove the

latter result as an homework.)

⋆ ⋆ ⋆

Problem 1.6. Prove that under an even potential V (x) = V (−x) the eigen-

functions solution of the stationary Schrödinger equation for bound states are

even or odd, but in any case they always have well-defined parity.

Solution. Let us start with
[
− ~

2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x) .

Now, we prove that also ψ(−x) is a solution of the same equation with the same value of

energy E. Replacing x with −x in the equation above yields
[
− ~

2

2m

d2

dx2
+ V (−x)

]
ψ(−x) = Eψ(−x) ,

and exploiting the fact that V (x) = V (−x) we get
[
− ~

2

2m

d2

dx2
+ V (x)

]
ψ(−x) = Eψ(−x) ,

This proves that both ψ(x) and ψ(−x) are solutions of the Schrödinger equation with the

same energy E.

Now, suppose ψ(x) and ψ(−x) are bound states belonging to the discrete spectrum. From

Problem (1.2) we already know that in this case there cannot be degeneracy, hence ψ(x)

and ψ(−x) must be linearly dependent:

ψ(x) = Cψ(−x) .
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Normalizing ∫ +∞

−∞
|ψ(x)|2 dx = 1 ,

we get

|C|2
∫ +∞

−∞
|ψ(−x)|2 dx = 1 ,

and thus |C|2 = 1. From this it follows that (apart from a phase) C = ±1 and therefore

ψ(x) = ±ψ(−x), that is the wave functions are even or odd. This result holds for the

discrete spectrum. For the continuous part of the spectrum there can be degeneracy and so

it is not always true that ψ(x) = Cψ(−x) and the energy eigenfunctions may have parity

that it is not well-defined.

⋆ ⋆ ⋆

Problem 1.7. A two-dimensional harmonic oscillator has Hamiltonian given by

H =
p2x
2M

+
1

2
kx2 +

p2y
2M

+
1

2
ky2 . (1.41)

Study the spectrum and calculate the degeneracy.

Solution. The two-dimensional stationary Schrödinger equation reads in this case

[
− ~

2

2M

∂2

∂x2
− ~

2

2M

∂2

∂y2
+

1

2
kx2 +

1

2
ky2
]
ψ(x, y) = Eψ(x, y) . (1.42)

Since the potential is separable, we can look for solutions of the form

ψ(x, y) = ψ1(x)ψ2(y) .

So Eqn. (1.42) becomes equivalent to the following two equations:

(
− ~

2

2M

d2

dx2
+

1

2
kx2
)
ψ1(x) = E1ψ1(x) ,

(
− ~

2

2M

d2

dy2
+

1

2
ky2
)
ψ2(y) = E2ψ2(y) ,
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with E1 + E2 = E. E1 and E2 are given by the solution of the one-dimensional harmonic

oscillator, that is,

E1 =

(
n+

1

2

)
~ωc , E2 =

(
m+

1

2

)
~ωc ,

where ωc = (k/M)1/2 and n,m are (non-negative) integer numbers labeling the eigenvalues.

The total energy is

E = E1 + E2 = (n+m+ 1)~ωc = (N + 1)~ωc ,

where N = n +m is any non-negative integer number. The corresponding wave functions

are

ψN (x, y) = ψ1,n(x)ψ2,m(y) ,

where we have denoted with ψ1,n(x) the eigenfunctions corresponding to the eigenvalue

E1,n = (n + 1/2)~ωc and with ψ2,m(y) the eigenfunctions with eigenvalue E2,m = (m +

1/2)~ωc, N = n+m. It is clear that there are many different values of n and m such that

n +m = N with N fixed and whose corresponding wave functions have the same energy.

For example, we can choose n′ = n− 1 and m′ = m+ 1 and clearly we get the same N :

N = n+m = n′ +m′ ,

and in the same way we can choose n′′ = n − 2 and m′′ = m + 2. Associated to these

different n, m there are different total wave functions ψ(x, y):

ψ′
N (x, y) = ψ1,n−1(x)ψ2,m+1(y) ,

ψ′′
N (x, y) = ψ1,n−2(x)ψ2,m+2(y) .

Therefore, there is degeneracy. Consider N = 0. In this case, the only allowed combination

of n,m is

n = 0 , m = 0 ,

since N must be non-negative, so there is only one solution in this case, namely

ψ0(x, y) = ψ1,0(x)ψ2,0(y) .
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The energy of this level is E0 = ~ωc and there is not degeneracy. Let us consider now

N = 1. In this case, there are two allowed combinations of n,m, namely

n = 1 , m = 0 and n = 0 , m = 1 .

The two corresponding total wave functions are

ψ1(x, y) = ψ1,1(x)ψ2,0(y) ,

ψ′
1(x, y) = ψ1,0(x)ψ2,1(y) .

⋆ ⋆ ⋆

Problem 1.8. Calculate the spectrum and the eigenfunctions of a two dimen-

sional infinite well potential of sides a and b:

V (x, y) =




0 if 0 < x < a , 0 < y < b ;

+∞ otherwise .

Solution. The Schrödinger equation in the range 0 < x < a and 0 < y < b is

− ~
2

2m

(
∂2

∂x2
+

∂2

∂y2

)
ψ(x, y) = Eψ(x, y) ,

and since we have infinite wells, so that the particle cannot escape, the boundary conditions

are

ψ(0, y) = ψ(a, y) = 0 , ψ(x, 0) = ψ(x, b) = 0 .

The potential is separable, hence we seek solutions of the form

ψ(x, y) = ψ1(x)ψ2(y) .

Following the general procedure outlined in this section, it is easy to prove that the functions
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ψ1(x) and ψ2(x) must satisfy the following equations:

− ~
2

2m

d2ψ1(x)

dx2
= E1ψ1(x) , (1.43a)

− ~
2

2m

d2ψ2(y)

dy2
= E2ψ2(y) , (1.43b)

(1.43c)

with E1 +E2 = E. Using the following boundary conditions

ψ1(0) = ψ1(a) = 0 , ψ2(0) = ψ2(b) = 0 ,

the boundary conditions for ψ(x, y) are automatically satisfied. Therefore, the solutions of

Eqs. (1.43) are those of two one-dimensional infinite wells, one in the x-direction and the

other in the y-direction:





ψ1,n(x) =
√

2
a sin

nπx
a

E
(n)
1 = ~2

2m

(
nπ
a

)2 ,





ψ2,m(y) =
√

2
b sin

mπy
b

E
(m)
2 = ~2

2m

(
mπ
b

)2 ,

where n,m are integer numbers, n,m > 0. Thus, the total eigenfunctions of the two-

dimensional infinite well potential are given by

ψn,m(x, y) =

√
2

a

√
2

b
sin

nπx

a
sin

mπy

b
,

and the corresponding energies are

En,m =
~
2

2m

[(π
a

)2
n2 +

(π
b

)2
m2

]
.

⋆ ⋆ ⋆



Chapter 2

AN INTRODUCTION TO HILBERT SPACES FOR
PHYSICISTS

2.1 Basic definitions

Definition 2.1 (Hilbert space). An Hilbert space is a linear space endowed with a

scalar product and such that it is complete and separable.

Let us now clarify the meaning of the various terms.

2.1.1 Linear space

A set S is a “linear space” over a numerical field N if

1. for all pair of elements ψ, ϕ of S it is possible to assign one and only one

well-defined element χ in S, called the “sum” of ψ and ϕ and denoted with

χ = ψ + ϕ;

2. for all pair a ∈ N and ψ ∈ S it is possible to assign one and only one element

in S called “product” of ψ by a and denoted with aψ.

The above operations must satisfy the following properties:

ψ + ϕ = ϕ+ ψ , a(bϕ) = (ab)ϕ ,

(ϕ+ ψ) + χ = ϕ+ (ψ + χ) , 1 · ϕ = ϕ ,

a(ϕ+ ψ) = aϕ + aψ , 0 · ϕ = 0 · ψ = ω ,

(a + b)ψ = aψ + bψ ,
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where ω ∈ S is referred to as the “null” element of S. ω has the following properties:

∀ϕ ∈ S , ϕ+ ω = ϕ ,

and it is unique. Moreover,

aω = ω .

Definition 2.2 (linear independence). The elements ϕ1, ϕ2, . . . , ϕn ∈ S are said to

be “linearly independent” if the equation

a1ϕ1 + a2ϕ2 + . . .+ anϕn = ω

implies a1 = a2 = . . . = an = 0.

Definition 2.3 (dimension). A linear space S is said to have “finite dimension” n if

it is always possible to find n linearly independent elements in S but it is impossible

to find n + 1 linearly independent elements. If there are arbitrarily many linearly

independent vectors the linear space is said to be infinite-dimensional.

2.1.2 Scalar product

Definition 2.4. A “scalar product” is a mapping S×S into C, denoted with (ϕ, ψ),

satisfying the following properties:

1. (ϕ, aψ1 + bψ2) = a(ϕ, ψ1) + b(ϕ, ψ2);

2. (ϕ, ψ) = (ψ, ϕ)∗;

3. (ϕ, ϕ) ≥ 0 and (ϕ, ϕ) = 0 if and only if ϕ = ω.

From these properties, one can easily prove that

(aϕ1 + bϕ2, ψ) = a∗(ϕ1, ψ) + b∗(ϕ2, ψ) .
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The norm of ψ is defined as

‖ψ‖ ≡
√

(ψ, ψ) .

The distance between two elements ϕ, ψ ∈ S is given by

dϕ,ψ ≡ ‖ϕ− ψ‖ ,

and it is possible to prove that

1. ‖ϕ‖ ≥ 0;

2. ‖aϕ‖ = |a| ‖ϕ‖;

3. ‖ϕ+ ψ‖ ≤ ‖ϕ‖+ ‖ψ‖ (triangle inequality).

Theorem 2.1 (Schwarz inequality).

|(ϕ, ψ)| ≤ ‖ϕ‖ ‖ψ‖ .

Definition 2.5 (Orthogonality). Two vectors ψ and ϕ in an Hilbert space are said

to be “orthogonal” if (ψ, ϕ) = 0.

2.1.3 Sequences and convergence

In this section, we collect some basic definitions.

Definition 2.6. A sequence ϕ1, ϕ2, . . . , ϕn, . . . of elements of S is said to converge

to an element ϕ if the numerical sequence ‖ϕ1 − ϕ‖ , . . . , ‖ϕn − ϕ‖ , . . . converges to

zero.

Definition 2.7. A set is called closed if it contains all its limit points.

Definition 2.8. A set U is said to be dense in S if U together with all its limit

points is equal to S.
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Theorem 2.2 (Cauchy convergence criterion). A sequence ϕ1, ϕ2, . . . , ϕn . . . satisfies

the Cauchy criterion if for each ε > 0, there exists an integerN such that ‖ϕm − ϕn‖ ≤
ε for all n,m ≥ N . This is a necessary condition for the convergence of a sequence .

Definition 2.9 (completeness). A set S is said to be complete if all Cauchy se-

quences in S do converge to an element of S.

Definition 2.10 (separability). A set S is said to be separable if for any ϕ ∈ S and

ε > 0 there exists a ϕn, of a countable sequence, such that ‖ϕ− ϕn‖ < ε. (Here, n

depends on both ε and ϕ.)

For example, the real line R is a separable set since the rational numbers are dense

in R and there are countably many rational numbers.

Example 2.1. Consider the space C0(0, 1) of all continuous functions f(t), 0 ≤
t ≤ 1, with the norm given by

‖f‖2 =
∫ 1

0

|f(t)|2 dt .

We shall prove that this space is not complete.

Let us consider the sequence of functions fn(t) defined as

fn(t) =





0 if 0 ≤ t ≤ 1
2
− 1

n

1 if 1
2
+ 1

n
≤ t ≤ 1

linear in t if 1
2
− 1

n
< t < 1

2
+ 1

n

.

It is easy to prove that the discontinuous function

f(t) =




0 if 0 ≤ t ≤ 1

2

1 if 1
2
< t ≤ 1

satisfies the relation

lim
n→∞

∫ 1

0

|fn(t)− f(t)|2 dt = 0 .
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Thus, the sequence fn(t) being convergent is also a Cauchy sequence, but it does

not converge to a continuous functions, that is, to an element in C0(0, 1), therefore
C0(0, 1) is not complete and cannot be an Hilbert space.

Before considering specific examples of Hilbert spaces, we need some other defini-

tion.

2.1.4 Orthonormal systems

Definition 2.11. A sequence {ϕn} ∈ S is said to be orthonormal if

(ϕm, ϕn) = δm,n ,

for any two elements ϕn and ϕm in the sequence.

Definition 2.12. An orthonormal set {ϕn} ∈ S is said to be a complete orthonor-

mal system if there exists no ϕ 6= ω orthogonal to every element of the sequence,

i.e.,

(ϕ, ϕk) = 0 ∀k ⇒ ϕ = ω .

For example, in the three-dimensional Euclidean space the set of unit vectors along

the x- and y-directions is not a complete orthonormal set, even if it is an orthonormal

one.

Definition 2.13. Let U be a set of elements of an Hilbert space. The set of all

the linear combinations of the vectors in U is again a linear space, called the linear

variety spanned by U . If we add all its limit points, we obtain a closed linear variety

that contains U , which we shall denote with [U ]: this is the closed linear variety

spanned by U .

Theorem 2.3. In an n-dimensional Hilbert space, every orthonormal set has a num-

ber of elements less than or equal to n. It is a complete orthonormal system only if

it has n elements.
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Theorem 2.4. In a infinite-dimensional Hilbert space, every orthonormal set has a

finite or countably infinite number of elements. If it is a complete orthonormal system

then it must have countably infinite many elements.

It should be emphasized that the converse is not generally true: it may happen that

a orthonormal set with an infinite number of elements is not a complete orthonormal

system. In fact , it is sufficient to remove one element from a complete set in order

to get a non-complete one which has infinite elements.

Let {ϕk} be an orthonormal set. Given an element ϕ, we define the coefficients

ak = (ϕk, ϕ) ,

and build the series
∑

k

akϕk = χ .

This series is always convergent in an Hilbert space, moreover χ− ϕ is orthogonal to

each ϕk and if the set is complete this means that χ− ϕ = ω.

Theorem 2.5. Let {ϕn} be an orthonormal set. It is complete if and only if one of

the following three conditions is satisfied:

1. for any ϕ ∈ S,

ϕ =
∑

k

akϕk ,

where ak = (ϕk, ϕ);

2. the closed linear variety spanned by {ϕk} is equal to S;

3. for any pair of elements ϕ, ψ ∈ S,

(ϕ, ψ) =
∑

k

(ϕ, ϕk)(ϕk, ψ) .
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2.2 Examples of Hilbert spaces

2.2.1 The space l2(∞)

l2(∞) is the linear space having as elements all the sequences of complex numbers

{ak} such that
∑n

k=1 |ak|
2 converges as n→ +∞.

The basic operations in l2(∞) are defined as follows. Let a = {ak}, b = {bk} and

c = {ck} in l2(∞) and α, β ∈ C (i.e. they belong to the complex numbers).

1. We define

αa = {αak} , a+ b = {ak + bk} .

2. The scalar product is defined as

(a, b) =
∑

k

a∗kbk .

Note that it satisfies all the properties to be actually a scalar product over l2(∞)

since

(a, b) = (b, a)∗ ,

(a, αb+ βc) = α(a, b) + β(a, c) ,

and (a, a) is a positive real number and it is zero only if a = (0, 0, 0, . . .).

It is possible to prove that l2(∞) is complete and separable.

Theorem 2.6. Every infinite-dimensional Hilbert space is isomorphic to l2(∞).

2.2.2 The space L2

L2 is the space of the square-integrable complex-valued functions ψ of k real variables

(q1, . . . , qk), i.e.,

∫ +∞

−∞
· · ·
∫ +∞

−∞
|ψ(q1, . . . , qk)|2 dq1 · · ·dqk <∞ .
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The basic operations in L2 are defined as follows. Given any two functions f and

g in L2 and a complex number α we define αf to be the function αf(q1, . . . , qk) and

f + g to be the function f(q1, . . . , qk) + g(q1, . . . , qk). It is possible to prove that αf

and f + g defined in such way actually belong to L2. The case for αf is trivial, let us

consider the case of f + g.

We have to prove that
∫
· · ·
∫
|f + g|2 dq1 · · ·dqk < ∞. For simplicity, we shall

denote the integration element as dq = dq1 · · ·dqk. We have:

∫
|f + g|2 dq =

∫
|f |2 dq +

∫
|g|2 dq +

∫
2ℜf ∗g dq .

Since

2ℜf ∗g ≤ 2 |f | |g| ,

it follows

|f + g|2 ≤ |f |2 + |g|2 + 2 |f | |g| = (|f |+ |g|)2 .

Moreover, as

(|f | − |g|)2 ≥ 0 ,

it also true that

|f |2 + |g|2 ≥ 2 |f | |g| .

Hence,

|f + g|2 ≤ |f |2 + |g|2 + |f |2 + |g|2 = 2 |f |2 + 2 |g|2 ,

and since both
∫
|f |2 dq and

∫
|g|2 dq are <∞ also

∫
|f + g|2 dq <∞.

The L2 scalar product is defined as

(f, g) =

∫
f ∗(q1, . . . , qk)g(q1, . . . , qk) dq1 . . .dqk

The properties of the scalar product are all satisfied except the one which says that

(f, f) = 0 implies f = 0. In fact, (f, f) = 0 means
∫
|f |2 dq = 0 and this does

not imply that f = 0, it is sufficient that |f | 6= 0 over a set of zero measure (dq).
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Therefore, we consider equivalent two functions which differ on a subset having zero

measure. The null element of our Hilbert space is given by the (equivalent class of)

the functions that are zero almost everywhere.

Theorem 2.7. L2 is infinite-dimensional.

Proof. Let O1, . . . , On be n non-overlapping subsets having Lebesgue measure greater

than zero, but finite. Let f1(q1, . . . , qk) take value 1 in O1 and zero elsewhere. Since
∫
|f1|2 dq is equal to the measure of O1, which for hypotesis is finite, f1 belongs to

L2. In the same way we can define the functions f2, . . . , fn and these n functions

are linearly independent. Since the construction holds for an arbitrary large n, this

means that for all n it is possible to specify n linearly independent functions in L2,

thus L2 is infinite dimensional.

von Neumann in his book “Mathematical Foundations of Quantum Mechanics” has

shown that L2 is complete and separable.

2.3 Operators in Hilbert spaces

We start with a more general setting: we consider operators between generic spaces,

that is, mappings from a set R into another set R′. We shall denote the mapping

with T̂ and write

ϕ′ = T̂ ϕ ,

where ϕ ∈ R and ϕ′ ∈ R′. The set R on which T̂ acts is called the domain of T̂

and the set R′ obtained from R via T̂ is the range. Sometimes, it may be useful

to denote the domain of an operator T̂ using the notation DT instead of R, and the

range using the notation RT instead of R′. Hereafter, we shall deal with operators

over linear spaces. First of all, let us recall some basic definitions.

Sum of two operators. The sum of two operators T̂1 and T̂2 is the operator T̂1+T̂2

defined as the operator T̂3 which, once applied to ϕ, gives the state T̂1ϕ+ T̂2ϕ.
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The latter is nothing but the state obtained as the sum of the two vectors T̂1ϕ

and T̂2ϕ: the sum of these two vectors is a well-defined vector, since we are in

a linear space. It is easy to see that the domain of T̂3 is DT3 = DT1 ∩DT2 .

Inverse of an operator. If the operator T̂ maps different vectors into different vec-

tors,

ϕ′ = T̂ ϕ ,

it is possible to define the inverse T̂−1 of T̂ as

ϕ = T̂−1ϕ′ .

Note that DT−1 = RT and RT−1 = DT .

Additive operators. The additive operators are those for which the following prop-

erty holds:

T̂ (ϕ+ ψ) = T̂ ϕ+ T̂ ψ ,

for all ϕ, ψ ∈ DT .

Homogeneous operators. if for all a ∈ C and for all ψ ∈ DT we have

T̂ (aψ) = aT̂ψ ,

then the operator is said to be homogeneous. If instead

T̂ (aψ) = a∗T̂ψ ,

then the operator is said to be anti-homogeneous.

Linear operators. The linear operators are those which are both additive and ho-

mogeneous. Those which are instead additive and anti-homogeneous are called

anti-linear.
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Theorem 2.8. The domain and the range of a linear (or anti-linear) operator are

linear spaces.

Theorem 2.9. Necessary and sufficient condition for a linear (or anti-linear) operator

T̂ to be invertible is that T̂ ϕ = ω implies ϕ = ω.

We introduce the notion of continuity for an operator.

Definition 2.14. An operator T̂ is said to be continuous at ψ0 ∈ S if for each ε > 0

there exists a δε such that for all ψ̃ satisfying

‖ψ̃ − ψ0‖ ≤ δε

it follows that ‖T̂ ψ̃ − T̂ ψ0‖ < ε.

Related to the notion of continuity is the notion of boundeness.

Definition 2.15. An operator T̂ is said to be bounded in a subset U ⊂ S if there

exists a real number R such that for all ϕ ∈ U

‖T̂ ϕ‖ < R ‖ϕ‖ .

Definition 2.16. Two operators, indicated by T̂ and T̂ †, are said to be adjoint of

each other if they have the same domain and in this domain

(T̂ ϕ, ψ) = (ϕ, T̂ †ψ) , (2.1)

for all ϕ, ψ.

Eqn. (2.1) implies also that (prove the following as an homework ):

(ϕ, T̂ψ) = (T̂ †ϕ, ψ) .

You can prove also that

(T̂ †)† = T̂ , (aT̂ )† = a∗T̂ † , (T̂1T̂2)
† = T̂ †

2 T̂
†
1 .

(Do this last one as an homework.)
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Definition 2.17. If T̂ = T̂ †, the operator is said to be Hermitian.

Definition 2.18. An operator Û is said to be unitary if

Û Û † = Û †Û = 11 ,

As a consequence of the previous definition, it follows

Û † = Û−1 .

Thus, unitary operators are invertible.

Theorem 2.10. An operator is unitary if and only if it is defined everywhere and

norm-preserving.

Let us see only one part of the proof, namely, if an operator is unitary then it

preserves the norms:

(Ûϕ, Ûψ) = (ϕ, Û †Ûψ) = (ϕ, ψ) .

Theorem 2.11. If T̂ is Hermitian and Û is unitary, then also Û T̂ Û−1 ≡ T̂ ′ is Her-

mitian.

2.3.1 Projection operators

Let N be any subset of some Hilbert space H and consider the set of all the elements

of H which are orthogonal to all the elements of N . This is a closed linear subset

which we shall denote with H − N .

Theorem 2.12. Let N be a closed linear subset of an Hilbert space H . Then each

ϕ ∈ H can be decomposed in one and only one way as the sum ϕ = ψ + χ of two

vectors ψ ∈ N and χ ∈ H − N . ψ is called the projection of ϕ in N .

Definition 2.19. Let N be a closed linear subset in an Hilbert space H . The

operator P̂N (defined everywhere in H ) which assigns to each ϕ ∈ H its projection
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in N (as defined by the previous theorem) is called the projection operator of N .

Using the notation employed in the statement of the previous theorem,

P̂N ϕ = ψ .

Theorem 2.13. It is possible to prove that P̂N is linear, Hermitian and idempotent

(that is, P̂ 2
N

= P̂N ).

Theorem 2.14. An operator P̂ defined everywhere is a projection operator if and

only if it is linear, Hermitian and idempotent. The closed linear subset N on which

P̂ is the projector is the one spanned by all the vectors ψN such that P̂ψN = ψN .

Theorem 2.15. Let P̂ be a projector. It is possible to prove the following identities:

‖P̂ϕ‖2 = (P̂ϕ, ϕ) , ‖P̂ϕ‖ ≤ ‖ϕ‖ , ‖P̂ϕ− P̂ψ‖ = ‖P̂ (ϕ− ψ)‖ ≤ ‖ϕ− ψ‖ ,

and moreover

P̂H −N = 11− P̂N .

Homework 2.1. Let P̂ and Q̂ be projector operators on the two linear varietys M

and N , respectively. Prove that P̂ Q̂ is a projector operator if and only if P̂ and Q̂

commutes among themselves and show that in that case P̂ Q̂ project on the variety

M ∩ N .

Homework 2.2. If P̂1, P̂2, P̂3, . . . , P̂N are projector operators, prove that P̂1+ P̂2+

P̂3 + . . .+ P̂N is a projector operator if and only if P̂iP̂j = δi,jP̂i.

2.4 The eigenvalue problem

A key role in quantum mechanics is played by the eigenvalue problem, that means to

solve the equation

Ĥψr = hrψr , (2.2)
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where Ĥ is a given linear∗ operator, hr is a real or complex number known as eigen-

value and ψr is any non-zero† element belonging to the Hilbert space and which is

referred to as eigenvector or eigenstate corresponding to hr. The name eigen-

function is also used having in mind a concrete realization of the Hilbert space as a

space of functions, which is often the case in quantum mechanics. The set of all the

eigenvalues hr is the so-called spectrum of Ĥ .

Theorem 2.16. • The discrete spectrum of a linear, Hermitian operator is made

of a finite or countably infinite set of real numbers.

• Eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. First, we prove the fact that the eigenvalues of a (linear) Hermitian operator

are real. Since Ĥ is Hermitian,

(Ĥψr, ψr) = (ψr, Ĥψr) .

Since ψr is eigenvector of Ĥ with eigenvalue hr, the previous equation reads

(hrψr, ψr) = (ψr, hrψr) ,

that is,

h∗r(ψr, ψr) = hr(ψr, ψr) .

Therefore, h∗r = hr, which means that hr is real.

∗ The eigenvalue problem can be stated without problem also for non-Hermitian operators, however

in the following we are mainly concerned with Hermitian ones, since this is the case relevant for

quantum mechanics.

† Of course, Eqn. (2.2) would hold trivially for any real or complex number hr if ψr was the null

vector of the Hilbert space. Moreover, if ψr is any solution of Eqn. (2.2) it is easily shown that

αψr is a solution too, for any real or complex number α. So, it is sufficient to consider normalized

solutions: ‖ψr‖ = 1. However, for the continuous spectrum (see later) normalization must be

interpreted in the sense of distributions.
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Let us consider two different eigenvectors ψr and ψs corresponding to different

eigenvalues hr and hs, respectively: we have

(Ĥψr, ψs) = (ψr, Ĥψs) ,

(hrψr, ψs) = (ψr, hsψs) ,

h∗r(ψr, ψs) = hs(ψr, ψs) . (2.3)

From Eqn. (2.3) and using the fact that hr is real, we get

(hr − hs)(ψr, ψs) = 0 .

Since hr 6= hs, we obtain

(ψr, ψs) = 0 ,

that is, ψr and ψs are orthogonal and thus also linear independent.

In the case of continuous spectrum, the Hilbert space must be enlarged to include

“improper” eigenstates which formally satisfy Eqn. (2.2) but that strictly speaking do

not belong to the Hilbert space and that are normalized in the generalized sense of the

Dirac-delta that we mentioned in the previous chapter. We have already encountered

such situation discussing plane wave function solutions of the free particle Hamilto-

nian. The reader should realize at this point that the stationary Schrödinger equation

is nothing but an eigenvalue problem for the Hamiltonian differential operator in the

Hilbert space L2 of the square-integrable wave functions.

We now introduce the concept of degeneracy of an eigenvalue. When two or more

linearly independent eigenvectors ψr, ψ̃r, . . . correspond to the same eigenvalue hr,

Ĥψr = hrψr and Ĥψ̃r = hrψ̃r ,

we say that hr is a degenerate eigenvalue. Any linear combination of ψr, ψ̃r, . . . is an
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eigenvector with the same eigenvalue hr:

Ĥ(αψr + βψ̃r) = αĤψr + βĤψ̃r

= αhrψr + βhrψ̃r

= hr(αψr + βψ̃r) .

That is, for any given eigenvalue hr all linear independent eigenvectors correspond-

ing to hr form a (closed) linear eigenvariety. For any eigenvariety one can extract

two or more (depending on the dimension of the eigenvariety) mutually orthogonal

eigenvectors that span the whole variety.

The set of all discrete and continuous eigenvectors, ψk, ψλ, is said to be complete

if for any ϕ ∈ H

ϕ =
∑

k

(ψk, ϕ)ψk +

∫
dλ(ψλ, ϕ)ψλ , (2.4)

and for any pair ϕ, χ ∈ H

(ϕ, χ) =
∑

k

(ϕ, ψk)(ψk, χ) +

∫
dλ(ϕ, ψλ)(ψλ, χ) . (2.5)

(Here, H denotes the Hilbert space.)

Hermitian operators whose spectrum is complete in the sense specified above are

called hypermaximal operator. In the following, we shall assume that all the Her-

mitian operators are hypermaximal.

Remark. There are eigenvalues and eigenvectors also for non-Hermitian operators.

Theorem 2.17. If ψi is eigenvector of the operator Â with eigenvalue ai:

Âψi = aiψi ,

then

Ânψi = ani ψi ,

for every positive integer n.
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Theorem 2.18. If Â is a linear Hermitian operator, the equation Ânψ = 0 is equiv-

alent to Âψ = 0.

Theorem 2.19. Let

F (Ĥ) = Ĥn + a1Ĥ
n−1 + . . .+ an = 0

be the lowest-degree equation satisfied by the linear Hermitian operator Ĥ . Then

• the roots of F (x) = 0 are never degenerate;

• the roots of F (x) = 0 are the only eigenvalues of Ĥ;

• the set of eigenvectors of Ĥ is complete.

The equation F (Ĥ) = 0 is called the secular equation.

2.5 Functions of one operator

We will specify here what we mean by a function F (Ĥ) of an operator Ĥ.

Let us suppose that Ĥ is a hyper-maximal Hermitian operator acting on an Hilbert

space H . We define F (Ĥ) in terms of functions of the eigenvalues of Ĥ , namely,

F (Ĥ) is the operator which has the same eigenvectors ψr of Ĥ and F (hr) are the

corresponding eigenvalues, i.e.,

Ĥψr = hrψr and F (Ĥ)ψr = F (hr)ψr .

It is not even necessary for F to be defined over all x, it is sufficient that F is defined

for the set of points x = hr.

If Ĥ is hypermaximal, F (Ĥ) is well-defined for all vectors ψ: from Eqn. (2.4), i.e.,

ψ =
∑

r

αrψr +

∫
αλψλ dλ ,
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it follows

F (Ĥ)ψ =
∑

r

αrF (hr)ψr +

∫
αλF (hλ)ψλ dλ .

For this state to be well-defined, it must belong to the Hilbert space. For example, if

the Hilbert space is H = L2, one must have

∑
|F (hr)αr|2 +

∫
|αλF (hλ)|2 dλ <∞ .

The adjoint of F (Ĥ) is indicated by F †(Ĥ) and it is such that

(ϕ, F (Ĥ)ψ) = (F †(Ĥ)ϕ, ψ) .

It is easy to prove that

F †(Ĥ)ψr = F ∗(hr)ψr .

2.6 Commutativity and compatibility

If ψ is eigenvector of both Â and B̂, then [Â, B̂]ψ = 0. In fact, from

Âψ = aψ and B̂ψ = bψ

one gets

[Â, B̂]ψ = ÂB̂ψ − B̂Âψ = Â(bψ)− B̂(aψ)

= bÂψ − aB̂ψ = baψ − abψ = 0 .

Theorem 2.20. Two hyper-maximal Hermitian operators share a complete set of

eigenvectors if and only if they commute.

Proof. Let us suppose that there is no degeneracy. Suppose [Â, B̂] = 0. Let {ϕbn}
be a complete set of eigenstates of B̂ and ψa be an eigenvector of Â corresponding to

the eigenvalue a, i.e.,

Âψa = aψa .
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Let us expand ψa on the eigenvectors ϕbn:
∗

ψa =
∑

bn

cbna ϕbn . (2.6)

Since

Âψa = aψa ⇒
(
Â− a

)
ψa = 0 ,

it follows from Eqn. (2.6) that

∑

bn

(Â− a)cbna ϕbn = 0 . (2.7)

Now, we shall prove that the state

ψ̃ ≡ (Â− a)cbna ϕbn

is an eigenvector of B̂ with eigenvalue bn:

B̂ψ̃ = B̂
[
(Â− a)cbna ϕbn

]
= (Â− a)B̂cbna ϕbn = (Â− a)cbna bnϕbn

= bn

[
(Â− a)cbna ϕbn

]
= bnψ̃

It is possible to prove that eigenvectors belonging to different eigenvalues are lin-

early independent (prove this fact as homework) thus Eqn. (2.7) (which is a linear

combination of eigenvectors of B̂) leads to

(Â− a)cbna ϕbn = 0

and hence

Â
(
cbna ϕbn

)
= a

(
cbna ϕbn

)
,

that is, cbna ϕbn are eigenvectors of Â with eigenvalue a, but we already know they are

also eigenvectors of B̂ with eigenvalue bn, therefore the various cbna ϕbn are simultane-

ously eigenvectors of both Â and B̂. Eqn. (2.6) is the expansion of one eigenstate of

∗ For simplicity, we are assuming that B̂ does not have a continuous spectrum, otherwise Eqn. (2.6)

must be replaced by the more general Eqn. (2.4).
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Â on the eigenstates of B̂. Since the set of eigenstates of Â is complete, any ψ ∈ H

can be written as

ψ =
∑

an

canψ ψan

but the eigenstates ψan can be expanded in terms of the eigenstates of B̂, therefore

we can conclude that ψ can be expanded in common eigenstates of Â and B̂.

For a proof of the converse, let {ϕn} be the complete set of common eigenstates of

Â and B̂. Clearly,

[Â, B̂]ϕn = 0 , (2.8)

because we have

[Â, B̂]ϕn = (ÂB̂ − B̂Â)ϕn = Â(bnϕn)− B̂(anϕn)

= bnanϕn − anbnϕn = 0 .

Now, let ψ be any vector in the Hilbert space. We can expand ψ over the basis of ϕn

ψ =
∑

n

cnϕn ,

From this formula and using the previous result (2.8) we find immediately [Â, B̂]ψ = 0,

thus Â and B̂ commute because ψ is any element of the Hilbert space.

2.7 Complete set of commuting operators

The main result of the last section, namely the theorem on simultaneous diagonal-

lizability of two commuting Hermitian operators, has been obtained assuming no

degeneracy.

Now, let us suppose there are two linearly independent eigenstates ϕr and ϕ̃r cor-

responding to the same (degenerate) eigenvalue ar of Â. Clearly, the eigenvalue ar

is not sufficient to uniquely characterize its eigenvectors. Let B̂ be an hypermaximal

Hermitian operator commuting with Â. In the eigenvariety associated with the eigen-

value ar, we look for eigenvectors of B̂. Such eigenstates are linear combinations of
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ϕr and ϕ̃r, and we shall denote them with ψr and ψ̃r. Suppose that they correspond

to two different eigenvalues br and b̃r of B̂, respectively. Then, we can say that the

two eigenstates ψr and ψ̃r are uniquely specified by a pair of different eigenvalues:

ψr → (ar, br) , ψ̃r → (ar, b̃r) .

If this is actually the case, the degeneracy is removed. Otherwise, we can iterate the

procedure and look for a third operator Ĉ which commutes both with Â and B̂. We

look for linear combinations of ψr and ψ̃r, say χr and χ̃r, that are also eigenstates

of Ĉ. In general, we repeat the procedure until all degeneracies have been lifted. If

the eigenvalues of Ĉ associated to χr and χ̃r are different, say, cr, c̃r, then the triples

(ar, br, cr) and (ar, br, c̃r) are different and characterize uniquely χr and χ̃r. If this is

the case, Â, B̂ and Ĉ are said to form a complete set of commuting operators.

Definition 2.20. A set of mutually commuting hypermaximal operators is said to

be complete when specifying the eigenvalues with respect to all the operators, we

can determine uniquely a common eigenvector.

Theorem 2.21. Let {Â, B̂, Ĉ, . . .} be a complete set of commuting hypermaximal op-

erators. Any other hyper-maximal operator F̂ which commutes with all the operators

in this set must be a function of Â, B̂, Ĉ, . . .

Definition 2.21. A subspace S in the domain of an operator Â is called invariant

if by applying Â to any of the elements in S we get a new state which belongs to S

too. Therefore, the image of an invariant subspace S is again within S.

Definition 2.22. A set of operators is said to be irreducible if they have no common

invariant subspace.

Theorem 2.22. If a set of operators Â, B̂ . . . is irreducible, then any operator which

commutes with all of them is a multiple of the identity.
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2.8 Dirac notation

We summarize briefly how to translate the notation used so far in the Dirac notation.

• |ψ〉 = ket. They represent vectors in the Hilbert space.

• 〈ψ| = bra. They represent the space of linear mappings ψ(|ϕ〉) that associate

to every state |ϕ〉 a corresponding complex number given by the scalar product

(ψ, ϕ).

• scalar product: (ψ, ϕ) → 〈ψ|ϕ〉;

• eigenvalue problem:

Ĥψr = hrψr → Ĥ |ψr〉 = hr |ψr〉 ;

• superposition of states:

|ψ〉 = α |ψ1〉+ β |ψ2〉 , |ψ〉 =
∫ ξ2

ξ1

f(ξ) |ξ〉dξ ;

• Theorem. The object Ô ≡ |u〉 〈v| acts as a linear operator.

Proof. Let us apply Ô to a state |ψ〉:

Ô |ψ〉 = |u〉 〈v|ψ〉 .

Now, 〈v|ψ〉 is nothing but a number that multiplies the state |u〉, thus Ô |ψ〉
has produced a state. Let us now prove how it acts on a linear superposition of

states:

Ô [α |ψ〉+ β |ϕ〉] = |u〉 〈v| [α |ψ〉+ β |ϕ〉]

= α |u〉 〈v|ψ〉+ β |u〉 〈v|ϕ〉

= αÔ |ψ〉+ βÔ |ϕ〉 ,

so this proves that Ô = |u〉 〈v| is a linear operator.
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• Dual space: Given a ket |ψ〉, the corresponding bra 〈ψ| is defined as that linear

map for which

〈ψ|ψ〉 = ‖ψ‖2 .

• Operators: Let us suppose that acting with an operator Â on a state |ϕ〉 we
get the state |ϕ′〉 ≡ Â |ϕ〉. The scalar product of this state with another state

|ψ〉 is

〈ψ|ϕ′〉 = 〈ψ|
(
Â |ϕ〉

)
;

to indicate this scalar product we introduce the notation 〈ψ|Âϕ〉.

• Adjoint: The adjoint Â† of an operator Â is defined by

〈Â†ψ|ϕ〉 = 〈ψ|Âϕ〉 ,

where we have used the notation previously introduced. From this relation, it

is clear that Â acts on the space of kets, while Â† acts on the space of bras, i.e.,

if

|ψ′〉 = Â |ψ〉 ,

then

〈ψ| Â† = 〈ψ′| .

2.9 Spectral decomposition

Theorem 2.23. For a hypermaximal Hermitian operator Ĥ having spectrum hn and

corresponding eigenstates |hn〉 the following spectral decomposition formula holds:

Ĥ =

∞∑

n=1

hn |hn〉 〈hn| . (2.9)

In other words, Ĥ is the sum of the projector operators |hn〉 〈hn| multiplied by the

corresponding eigenvalues hn.
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For operators having also a continuous spectrum |ξh〉, Eqn. (2.9) must be general-

ized as

Ĥ =
∞∑

n=1

hn |hn〉 〈hn|+
∫ ξh2

ξh1

ξh |ξh〉 〈ξh| dξh . (2.10)

Proof. We restrict ourselves to the case (2.9) and we assume no degeneracy.

Since Ĥ is hyper-maximal, its eigenstates form a complete basis for the Hilbert

space. Therefore, any state |ψ〉 in the Hilbert space can be expanded in the following

way

|ψ〉 =
∞∑

n

cn |hn〉 . (2.11)

The operator identity (2.9) must be understood in the sense that if we apply the

operator Ĥ to some state |ψ〉 the result Ĥ |ψ〉 is just the same state we would obtain

applying the right-hand side of Eqn. (2.9), i.e.:

Ĥ |ψ〉 =
(
∑

n

hn |hn〉 〈hn|
)
|ψ〉 . (2.12)

Let us prove this formula. By inserting the expansion formula (2.11) in the left-hand

side of Eqn. (2.12) we get

Ĥ |ψ〉 = Ĥ

(
∑

n

cn |hn〉
)

=
∑

n

cnĤ |hn〉 =
∑

n

cnhn |hn〉 ,

while the right-hand side of Eqn. (2.12) is nothing but
(
∑

n

hn |hn〉 〈hn|
)
|ψ〉 =

∑

n

hn |hn〉 〈hn|ψ〉 .

Our goal would be met if we were able to prove that the expansion coefficients in

Eqn. (2.11) are actually given by cn = 〈hn|ψ〉. This result on cn can be easily derived

directly by means of Eqn. (2.11):

〈hi|ψ〉 =
∑

n

cn 〈hi|hn〉︸ ︷︷ ︸
δn,i

= ci ,

hence cn = 〈hn|ψ〉. This completes the proof.
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Here is a summary of some important identities encountered in this chapter. First

of all, remember the important Eqn. (2.4), i.e.:

ϕ =
∑

k

(ψk, ϕ)ψk +

∫
dλ(ψλ, ϕ)ψλ .

We can write it using the Dirac notation as follows:

|ϕ〉 =
∑

k

〈ψk|ϕ〉 |ψk〉+
∫

dλ 〈ψλ|ϕ〉 |ψλ〉 ,

or

|ϕ〉 =
∑

k

|ψk〉 〈ψk|ϕ〉+
∫

dλ |ψλ〉 〈ψλ|ϕ〉 .

This is possible because 〈ψk|ϕ〉 is a number. Since the above expression must hold

for every state |ϕ〉 in the Hilbert space, it is usually written as an operator identity

by dropping |ϕ〉 in every term:

11 =
∑

k

|ψk〉 〈ψk|+
∫

dλ |ψλ〉 〈ψλ| , (2.13)

where 11 is the identity operator. Eqn. (2.13) is referred to as decomposition or

resolution of the identity. It means that applying the left-hand side to a state |ϕ〉
we get the same result as if we apply the right-hand side to the same state.

Let us now turn to the spectral decomposition, Eqn. (2.10):

Ĥ =
∞∑

n=1

hn |hn〉 〈hn|+
∫ ξh2

ξh1

dξh |ξh〉 〈ξh| ξh . (2.14)

It is then easy to generalize this to a generic function F (Ĥ) of the operator Ĥ as :

F (Ĥ) =

∞∑

n=1

F (hn) |hn〉 〈hn|+
∫ ξh2

ξh1

F (ξh) |ξh〉 〈ξh| dξh . (2.15)

2.10 Tensor Product

The tensor product, usually indicated with the symbol ⊗, is an operation which

can be applied to any couple of vector-spaces even infinite-dimensional ones like the
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Hilbert spaces. Before giving more mathematical details let us illustrate the case

with a physical example. Let us consider a system made of two particles 1 and 2

and take for each particle a particular wave function: Ψ(r1) and Ψ̃(r2). The product

Ψ(r1)Ψ̃(r2) represents a wave function of the combined system. Of course it is not the

most general wave function for the combined system. This will be a Φ(r1, r2) which

is not in general factorized into two parts like the wave function above. It will be

in general a linear combination of factorized wave functions . In fact let us look at

Φ(r1, r2) as a wave function of particle 1, then it can be expanded on a basis of wave

functions of particle 1 as:

Φ(r1, r2) =
∑

CiΨi(r1). (2.16)

Clearly the coefficients Ci must be functions of r2, i.e.:

Φ(r1, r2) =
∑

Ci(r2)Ψi(r1)

and we can interpret the Ci(r2) as wave functions of r2 multiplied by some coefficients

ai like:

Ci(r2) = aiΨ̃i(r2)

and the relation (2.16) becomes:

Φ(r1, r2) =
∑

i

aiΨ̃i(r2)Ψi(r1). (2.17)

So we can say that the space of wave functions of the combined system is formed

by the linear combinations of products of wave functions of particle 1 and of wave

functions of particle 2. If the Hilbert space of particle 1 is indicated with H (1) and

the one of particle 2 with H (2), the Hilbert space of the combined system of the two

particles ,whose wave functions we have built in the example above, is defined as the

tensor product of the two separate Hilbert spaces and indicated as:

H ≡ H
(1) ⊗ H

(2) (2.18)

The states in Eqn. (2.17) can be indicated also in the following way:
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Φ(r1, r2) =
∑

aiΨ̃i(r2)⊗Ψi(r1)

The observables associated to particle 1 will be indicated with the symbol Ô(1) and

those associated to particle 2 as Ô(2). If Ô(1) acts on Ψ(r1) as follows:

Ô(1)Ψ(r1) = Ψ′(r1)

then on the tensor product it will act as follows:

Ô(1)(Ψ(r1)Ψ̃(r2)) = Ψ′(r1)Ψ̃(r2). (2.19)

Similarly an observable Ô(2) acting on particle 2 as :

Ô(2)Ψ(r2) = Ψ′(r2)

will act on the tensor product space as

Ô(2)(Ψ(r1)Ψ̃(r2)) = Ψ(r1)Ψ̃
′(r2) (2.20)

An equivalent manner to indicate this procedure is the following: an operator Ô(1)

acting on the Hilbert space H1 get extended, in the tensor product space H ≡
H1 ⊗ H2, into the following operator:

Ô(1) =⇒ Ô(1) ⊗ 11

where 11 is the identity operator acting on the Hilbert space of particle 2. The

notation above summarize the operation indicated in Eqn. (2.19) where the state

Ψ̃(r2) is left intact.

The same procedure we follow for an operator Ô(2) acting on the states of particle

2. In the tensor product space this operator get extended as follows:

Ô(2) =⇒ 11⊗ Ô(2)
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In general the operators acting in the Hilbert space tensor product of the two, will

have the form

Ô(r1, r2) ≡
∑

αiÂi(r1)⊗ B̂i(r2)

and will act on a generic state belonging to the tensor product space:

Ψ̃(r1, r2) =
∑

CjΦj(r1)⊗Ψj(r2)

in the following manner:

Ô(r1, r2)Ψ̃(r1, r2) =
∑

i,j

αiCjÂi(r1)Φj(r1)⊗ B̂i(r2)Ψj(r2) (2.21)

One last remark: as r̂1 and r̂2 refer to different particle, they commute. The same

happens for the operator Âi(r1) and B̂i(r2)

2.11 Problems and Solutions

Problem 2.1. Prove that

(|u〉 〈v|)† = |v〉 〈u| .

Solution. Let Ô ≡ |u〉 〈v|. We know that

|ψ̃〉 = Ô |ψ〉 ⇒ 〈ψ| Ô† = 〈ψ̃| .

Let us now investigate if it possible from

(|u〉 〈v|)† |ψ〉 ≡ |ψ̃〉 , (2.22)

to prove that:

(|v〉 〈u|) |ψ〉 = |ψ̃〉 . (2.23)
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We know that Eqn. (2.22) is equivalent to

〈ψ̃| = 〈ψ| (|u〉 〈v|)

= 〈ψ|u〉 〈v| ,

i.e., 〈ψ̃| = a 〈v| with a = 〈ψ|u〉. Now, taking the dual we get (see the proof afterwards)

|ψ̃〉 = a∗ |v〉 , (2.24)

i.e.,

|ψ̃〉 = (〈ψ|u〉)∗ |v〉 = 〈u|ψ〉 |v〉 .

〈u|ψ〉 is a number, and we can equivalently put it in the following form:

|ψ̃〉 = |v〉 (〈u|ψ〉) = (|v〉 〈u|) |ψ〉 ,

which is exactly Eqn. (2.23).

Let us now prove Eqn. (2.24). Remember the definition of the dual: consider

〈ψ̃|ψ̃〉 = ‖ψ̃‖2 ,

if

〈ψ̃| = 〈v| a ,

then we get

〈ψ̃|ψ̃〉 = ‖ |v〉 ‖2 ‖a‖2 .

This holds if |ψ̃〉 = a∗ |v〉, because in this way we have

〈ψ̃|ψ̃〉 = aa∗ 〈v|v〉 = ‖a‖2 ‖ |v〉 ‖2 .

⋆ ⋆ ⋆

Problem 2.2. Prove that the operator

P̂ψ = |ψ〉 〈ψ|

with 〈ψ|ψ〉 = 1 is a projection operator.
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Solution. It is necessary to prove the following facts.

1. P̂ψ is linear (we have already done this before)

2. P̂ψ is Hermitian, i.e., P̂ †
ψ = P̂ψ. Prove this as homework. You have to construct the

adjoint P̂ †
ψ.

3. P̂ψ is idempotent, i.e., P̂ 2
ψ = P̂ψ. We have

P̂ 2
ψ = (|ψ〉 〈ψ|) (|ψ〉 〈ψ|) = |ψ〉 〈ψ|ψ〉︸ ︷︷ ︸

1

〈ψ| = |ψ〉 〈ψ| = P̂ψ .

⋆ ⋆ ⋆

Problem 2.3. Prove that, in the Hilbert space L2 of the square-integrable func-

tions on x, the operator i∂/∂x is Hermitian.

Solution. L2 is endowed with the scalar product defined for any two square-integrable

functions f(x) and g(x) of one variable x as

〈f |g〉 =
∫ +∞

−∞
f∗(x)g(x) dx .

An operator Ô is Hermitian if Ô† = Ô where Ô† is defined via the relation

〈Ô†f |g〉 = 〈f |Ôg〉 ,

therefore for an Hermitian operator Ô we have

〈Ôf |g〉 = 〈f |Ôg〉 .

Let us consider Ô = i∂/∂x. The above relation becomes
∫ +∞

−∞

(
i
∂f

∂x

)∗
g(x) dx

?
=

∫ +∞

−∞
f∗(x)i

∂g

∂x
dx .

We prove that this equality actually holds by integrating by parts the integral on the left-

hand side. We have

−i
∫ +∞

−∞

∂f∗

∂x
g(x) dx = −i f∗(x)g(x)|+∞

−∞︸ ︷︷ ︸
0

+

∫ +∞

−∞
f∗(x)i

∂g

∂x
dx
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The surface term vanishes since both f∗ and g must go to zero at ±∞ for f, g to belong to

L2 (otherwise, they would not be square-integrable). This proves that the equality above

holds, thus i∂/∂x is Hermitian.

⋆ ⋆ ⋆





Chapter 3

POSTULATES OF QUANTUM MECHANICS

First let us recall the postulates of classical mechanics.

Postulate 1. The initial state of a system is given by a point (q0, p0) in phase space.

The states of the system at any later time are also points in phase space.

Postulate 2. The time evolution is given by Hamilton’s equations of motion:

q̇ = {q,H}P.B. , ṗ = {p,H}P.B. .

where {·, ·}P.B. denotes the Poisson brackets.

Postulate 3. The observables (e.g., energy, position, angular momentum, etc.) are

real functions F (q, p) defined on the phase space. The measured quantities are

the values of F on the points of the trajectory.

In quantum mechanics the above three postulates are replaced by the following ones:

Postulate 1. The initial state of a quantum system is an element |ψ〉 of an Hilbert

space. The states obtained by time evolution are also elements of the Hilbert

space.

Postulate 2. The time evolution of a state of a quantum system (in absence of any

measurement process) is given by the time-dependent Schrödinger equation:

i~
∂ |ψ〉
∂t

= Ĥ |ψ〉 ,

where Ĥ is an operator, called Hamiltonian or Schrödinger operator, which we

shall soon define.
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Postulate 3. The observables of a quantum system are hyper-maximal Hermitian

operators defined on the Hilbert space of the states of the system. The outcomes

of a measurement of an observable are the eigenvalues of the corresponding

Hermitian operator (which, since the operator is Hermitian, are real).

In quantum mechanics however beside these three postulates it is necessary to intro-

duce also some additional ones.

Postulate 4. A system is prepared by measuring a complete set of commuting oper-

ators.

As we have already seen, a complete set of commuting Hermitian operators deter-

mines uniquely a complete set of common eigenvectors, each one completely char-

acterized by its eigenvalues. For instance, let us suppose that the complete set is

(Â, B̂, Ĉ, . . . , M̂). The common eigenstates are obtained by diagonalizing simultane-

ously Â, B̂, Ĉ, . . . , M̂ , that is, we have something like




Â | 〉 = a1 | 〉
B̂ | 〉 = b3 | 〉
Ĉ | 〉 = c5 | 〉

...

M̂ | 〉 = m15 | 〉

where the numbers 1, 3, 5, . . . are just to say that we have more than one eigenvalue and

we select one particular eigenvalue among all of them. Since the set is complete the

correspondence between the eigenstate | 〉 and the set of numbers (a1, b3, c5, . . . , m15)

is one-to-one, we can use the set of eigenvalues to label the state | 〉, in particular we

shall use the notation:

|a1, b3, c5, . . . , m15〉

Measuring the observables Â, . . . , M̂ we obtain, according to the postulate 3, a string

of numbers like (ai, bj , ck, . . . , ml), this string is in one-to-one correspondence with an
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eigenstate

| 〉 ↔ (ai, bj , ck, . . . , ml)

thus obtaining this string of eigenvalues from a measure is equivalent to obtaining a

state. This is the way the initial state is actually prepared, that is, by measuring a

complete set of commuting operators.

Postulate 5 (probability). The next question is the following one: since in general

an observable Ô has many different eigenvalues o1, o2, . . . , on, . . . what is the

outcome of a measurement of the observable Ô? Actually, in quantum mechanics

one must speak about the probability of getting oi in a measurement of Ô. Let

us suppose the system has been prepared in the state |ψ0〉 at the time t = 0 and

let this state evolve until the time t is reached. At the time t the state of the

system is |ψ〉. Since Ô is an observable (that is, an hypermaximal Hermitian

operator) the set of all its eigenstates {|oi〉} is a complete set of orthonormal

states on which one can expand |ψ〉:

|ψ〉 =
∑

i

ci |oi〉 .

Let us suppose that both |ψ〉 and the states |oi〉 are normalized and that the

eigenvalues oi are not degenerate. Then, the probability of finding oi in a mea-

surement of Ô is

Poi = |ci|2 . (3.1)

This procedure is possible if Ô is a complete set of commuting operators by

itself. Otherwise, there is degeneracy . In this case we must look for Hermitian

operators different than Ô which commute each other and with Ô and that form

a complete set of commuting operators. The expansion formula for |ψ〉 becomes

in this case

|ψ〉 =
∑

i,r

ci,r |oi, r〉 ,
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where the index r labels the degeneracy. In this case the probability of finding

oi in a measurement of Ô becomes

Poi =
∑

r

|ci,r|2 . (3.2)

Postulate 6 (Measurement postulate). Let us suppose we prepare a system in the

state |ψ〉 and perform a measurement of an observable Ô. Let us also suppose

that we get the eigenvalue oi. If immediately after we perform another mea-

surement of Ô we get oi again with probability 1. This means that immediately

after the first measurement the original state |ψ〉 has become |oi〉:

|ψ〉 measurement of Ô−−−−−−−−−−→ |oi〉 measurement of Ô−−−−−−−−−−→ |oi〉 .

In other words, the state |ψ̃〉 in which the wave function has collapsed, that is,

|ψ〉 measurement of Ô−−−−−−−−−−→ |ψ̃〉

has no components in the directions other than that of |oi〉.

If, instead of performing the second measurement immediately after the first

one, in which we got oi, we wait until the time t is reached then the probability

of finding oi again is in fact different from 1, but it is the same we would obtain

by evolving the state |oi〉 from the first measurement to the time t using the

Schrödinger equation:

|ψ〉 measurement of Ô−−−−−−−−−−→ |oi〉 measurement of Ô−−−−−−−−−−→ |oi,t〉 .

It should be noted this postulate implies there exist in quantum mechanics two dif-

ferent ways in which states transform: the (reversible) time evolution given by the

time-dependent Schrödinger equation and the (irreversible) wave packet reduction

associated to any measurements process.
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Let us now put forward a technical remark regarding the measurement postulate

in the case in which the measured observable Ô does not form a complete set of

commuting Hermitian observables by itself and degeneracy occurs. Let oi be the

outcome of a measurement of Ô. A whole set of eigenstates |oi, r〉 are now associated

to the eigenvalue oi, being r the index which labels the degeneracy. The question

is: in which of the various |oi, r〉 should the state collapse immediately after the

measurement? We know the various |oi, r〉 span an eigenvariety. The state in which

|ψ〉 collapses is the “projection” of |ψ〉 on this eigenvariety, and we shall denote this

state with |ψ̃〉oi. By denoting with P̂i the projection operator on the eigenvariety

spanned by |oi, r〉, the measurement process can be represented schematically in the

following way:

|ψ〉
measurement of Ô
with outcome oi−−−−−−−−−−→ |ψ̃〉oi =

P̂i |ψ〉
‖P̂i |ψ〉 ‖

.

3.1 Dirac’s correspondence rules

These rules, to some extent, allow us to build most of the observables in quantum

mechanics starting from their classical analogous.

Postulate 7. 1. In classical mechanics, observables are functions of q and p, for

example O1(q, p) and O2(q, p). The corresponding quantum observables

are obtained∗ from the classical ones by replacing p, q with the associated

quantum position and momentum operators q̂, p̂ (defined in the following)

O1(q, p) → Ô1(q̂, p̂) ,

O2(q, p) → Ô2(q̂, p̂) .

2. Further, the Poisson brackets go into the commutator divided by i~:

{O1(q, p), O2(q, p)}P.B. →
1

i~
[Ô1(q̂, p̂), Ô2(q̂, p̂)] .

∗ Excluding certain “ambiguities” in the ordering, see remark 2 on the next page.
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For example,

{q, p}P.B. = 1 → 1

i~
[q̂, p̂] = 1 .

So, we have

[q̂, p̂] = i~ . (3.3)

These are called Heisenberg commutation rules.

Now, let us discuss the limits of this correspondence principle.

1. There exist quantum observables having no classical analogous, such as spin,

isospin, and so. In this case the correspondence principle does not work.

2. Since q̂ and p̂ do not commute at the quantum level, ambiguities may arise due

to the fact that more than one quantum Hermitian operator can be associated

to the same classical observable by changing the ordering in which the various q̂

and p̂ terms are considered. To clarify this point, let us consider for example the

observable O1 = pq. We can write this expression equivalently at the classical

level as O1 = qp or O1 = (qp + pq)/2. According to the correspondence rule,

the associated quantum observables are

qp→ q̂p̂ = Ô1

qp+ pq

2
→ q̂p̂+ p̂q̂

2
=

˜̂
O1

pq → p̂q̂ =
˜̃
Ô1

It is easy to prove that Ô1 6= ˜̂
O1 6=

˜̂̃
O1. For example,

Ô1 = q̂p̂ = p̂q̂ + [q̂, p̂] =
˜̂̃
O1 + i~ .

This means that, in constructing the quantum observables using the correspon-

dence principle starting from the classical observables, we must be aware of the
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fact that there exist quantum observables with no classical analogous and, for

those having classical analogous, we must prescribe the ordering of q̂ and p̂.

The latter ambiguity is referred to as ordering ambiguity.

3.2 More on the postulates of quantum mechanics

There is a further postulate called “spin-statistics” which we will present in chapter 8.

In this section we shall comment on the postulates of quantum mechanics introduced

in the previous sections and we shall try to understand them more deeply.

3.2.1 Expectation values

We have seen from postulate 3 that the outcomes of a measurement are probabilistic

and not deterministic: one can only calculate the probability that by measuring an

observable Ô the outcome will be an eigenvalue oi. Accordingly to the postulate 3

the probability is given by the following rule: if the system is in the state |ψ〉, first of
all you have to expand |ψ〉 on the basis of the eigenstates of Ô (resolving degeneracy

if any)

|ψ〉 =
∑

i

ci |oi〉 , ci = 〈oi|ψ〉 ,

then the probability of finding oi performing a measurement of Ô on the state |ψ〉 is

Pi = |ci|2 .

(Do not confuse this Pi with the projector operator P̂i introduced in the last section.)

Thus, one can only speak about “mean value” Ô of an observable Ô on a quantum

state |ψ〉:

Ô =
∑

i

Pioi =
∑

i

|ci|2 oi .
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It is not difficult to prove that the mean value can also be obtained using the following

expression :∗

Ô = 〈ψ|Ô|ψ〉 . (3.4)

In fact, as the |oi〉 are a complete set, we can write

∑

i

|oi〉 〈oi| = 1 ,

and using this we get:

Ô = 〈ψ|Ô|ψ〉 = 〈ψ| Ô
(
∑

i

|oi〉 〈oi|
)
|ψ〉 =

∑

i

〈ψ|Ô|oi〉 〈oi|ψ〉 =
∑

i

〈ψ|oi|oi〉 〈oi|ψ〉

=
∑

i

oi 〈ψ|oi〉 〈oi|ψ〉 =
∑

i

oi | 〈oi|ψ〉 |2 =
∑

i

oi |ci|2 .

3.2.2 Compatibility of observables and measurements.

Let us consider two commuting hyper-maximal Hermitian operators Â and B̂:

[Â, B̂] = 0 .

In literature it is usually found the statement that these two observables can be

measured simultaneously, and are said to be mutually compatible. This means the

following thing: let us suppose we measure Â and find the eigenvalue a1. Immediately

after, say at the time ε/2 where ε is a strictly positive real number as small as we

want, we measure B̂ and we find say b2. At a time ε/2 after the measurement of B̂

we perform a measurement of Â again and we find a1 with probability 1 because of

postulate 3. The reason why we consider “small” times ε is that we do not want the

state to change “too much” during the time evolution.

To understand how this concept of “compatibility” of two observables is linked

to the postulates of quantum mechanics, we consider now the case in which the

∗ The formula is also correct in the case of degeneracy and when observables have continuous

spectrum.
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eigenvalue a1 above shows degeneracy and thus there exists a whole eigenvariety of

eigenstates associated to a1. After the measurement of Â, the state |ψ〉 of the system
immediately before the measurement of B̂ collapses into |ψ̃〉a1 , i.e. the projection of

|ψ〉 on the eigenvariety associated to a1. For the postulates of quantum mechanics, if

after a “small” time ε/2 we measured Â again we would find again a1. After a further

identical time interval let us perform a measurement of B̂. Since Â and B̂ commutes,

from the theorems on theory of Hilbert spaces we know Â and B̂ share at least one

complete set of eigenstates. This means there must be at least one eigenstate of B̂ in

the eigenvariety associated to a1. Let us suppose that there are two such eigenstates.

If we find b2 in the measurement of B̂, |ψ̃〉a1 will collapse in the state |a1, b2〉. It is

now clear that if, after a time ε/2, we measure Â again, since the system is in the

state |a1, b2〉 we will obtain a1 again.

Therefore, we can say that a measurement of B̂ has not changed the result of a

measurement of Â: we get a1 at the time t = 0 and at the time ε we get a1 again. It

is said also that a measurement of B̂ does not disturb Â. That is, we can measure

simultaneously Â and B̂. This is the meaning of compatibility of two observables.

3.2.3 Incompatible observables

We know that two non-commuting observables cannot share a complete set of eigen-

states. They can have a set of eigenstates in common, but this set cannot be complete.

For example, q̂ and p̂ do not commute: [q̂, p̂] = i~, and it is easy to show that

these two observables have no eigenstate in common. In fact, if there were one such

common eigenstate, say |v〉, then we would get

[q̂, p̂] |v〉 = q̂p̂ |v〉 − p̂q̂ |v〉 = q̂pv |v〉 − p̂qv |v〉

= pvq̂ |v〉 − qvp̂ |v〉 = pvqv |v〉 − qvpv |v〉 = 0 ,

while from [q̂, p̂] = i~ we would get [q̂, p̂] |v〉 = i~ |v〉 6= 0.
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Two non-commuting operators Â and B̂, [Â, B̂] = Ĉ 6= 0, can have in general one

eigenstate in common but it is easy to prove that this eigenstate must be an eigenstate

of Ĉ with eigenvalue zero. In the case of q̂ and p̂, i~ does not admit zero as eigenvalue.

Let us return to our discussion about measurements of incompatible observables.

Let us expand the state |q0〉 (in which our system has collapsed after a measurement

of q̂) on the basis of the eigenstates of p̂:

|q0〉 =
∑

p

C(q0, p) |p〉 . (3.5)

Here the summation notation has been used, however the reader should keep in mind

that p̂ has a continuous spectrum and the summation must be replaced actually

by an integration over the continuous variable p. Since q̂ and p̂ have no common

eigenstates, C(q0, p) are always different from 1 for any p. After a time ε/2 we

perform a measurement of p̂ and let us suppose to find p0. After a second amount of

time ε/2 we measure again q̂. The outcome is not q0 with probability 1 as in case of

the previous section when the two measured observables were compatible. What we

have to do is to expand |p0〉 on the eigenstates of the position operator

|p0〉 =
∑

q

C̃(q, p0) |q〉

where C̃(q, p0) are different from 1 for any q. So in general there is a non-zero

probability Pq = |C̃(q, p0)|
2
of finding a value q, and thus the outcome of the second

measurement of q̂ is not necessarily q0.

The conclusion is that in the case of two non-commuting observables, the measure-

ment of one observable “disturbs” the second observable. Consequently, the mea-

surement postulate must be restated in the following way: after a “small” time ε the

system is still in q0 if and only if no measurement process has been done in between

of a quantum observable which does not commute with the first.
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3.3 Heisenberg uncertainty principle

Besides the probabilistic aspects of measurements, there are also correlations among

them if they satisfy proper commutation relations. We will analyze here the most

famous case. Let Â and B̂ be two non-commuting hyper-maximal Hermitian operators

such that their commutator satisfy the relation

[Â, B̂] = iĈ , (3.6)

where Ĉ is an Hermitian operator. Moreover we require that the states obtained by

applying these operators to the original states belong to the same original Hilbert

space.

Given the average value of the observable Â with respect to the state |ψ〉

〈Â〉 = 〈ψ|Â|ψ〉

and the mean square

∆Â =

√
〈[Â− 〈Â〉]2〉

it is possible to prove that

∆Â∆B̂ ≥ 1

2
| 〈Ĉ〉 | . (3.7)

In particular, in the case in which Â = q̂ and B̂ = p̂ we have Ĉ = ~ and the previous

relation becomes

∆q̂∆p̂ ≥ 1

2
~ .

This is Heisenberg uncertainty principle.

We now give a proof of Eqn. (3.7). We start by evaluating (∆Â)2. Let us diagonalize

Â:

Â |ak〉 = ak |ak〉 .

Being Â hyper-maximal, we can expand any |ψ〉 on the basis of the eigenstates of Â

according to the usual expansion formula:

|ψ〉 =
∑

k

ck |ak〉 , ck = 〈ak|ψ〉 .
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By inserting the latter in the expression for (∆Â)2 we get

(∆Â)2 = 〈ψ|[Â− 〈Â〉]2|ψ〉

=
∑

j,k

c∗kcj 〈ak|[Â− 〈Â〉]2|aj〉

=
∑

j,k

c∗kcj

(
ak − 〈Â〉

)(
aj − 〈Â〉

)
〈ak|aj〉︸ ︷︷ ︸

δj
k

=
∑

k

|ck|2
(
ak − 〈Â〉

)2
.

Since |ck|2 is nothing but the probability of finding ak in a measurement of Â, the

last formula is nothing but the usual formula of the standard deviation.

By multiplying
(
∆Â
)2

by
(
∆B̂

)2
we get

(∆Â)2(∆B̂)2 = 〈ψ|[Â− 〈Â〉]2|ψ〉 〈ψ|[B̂ − 〈B̂〉]2|ψ〉

= ‖(Â− 〈Â〉) |ψ〉 ‖2 ‖(B̂ − 〈B̂〉) |ψ〉 ‖2 (3.8)

since both Â and B̂ are Hermitian and since 〈Â〉 and 〈B̂〉 are real. Let us introduce

the new operators

Ã ≡ Â− 〈Â〉 , B̃ ≡ B̂ − 〈B̂〉 .

Then Eqn. (3.8) can be rewritten as

(∆Â)2(∆B̂)2 = ‖Ã |ψ〉 ‖2 ‖B̃ |ψ〉 ‖2 .

Using the Schwarz inequality on the vectors Ã |ψ〉 and B̃ |ψ〉 we get

∥∥∥
(
Â− 〈Â〉

)
|ψ〉
∥∥∥
∥∥∥
(
B̂ − 〈B̂〉

)
|ψ〉
∥∥∥ ≥

∣∣∣
〈
ψ
∣∣∣
(
Â− 〈Â〉

)(
B̂ − 〈B̂〉

) ∣∣∣ψ
〉∣∣∣ ,

from which it follows

∆Â∆B̂ ≥
∣∣∣
〈
ψ
∣∣∣
(
Â− 〈Â〉

)(
B̂ − 〈B̂〉

) ∣∣∣ψ
〉∣∣∣ , (3.9)

The modulus of a complex number is always bigger than the modulus of its imaginary

part, thus on the right-hand side of Eqn. (3.9) we can take the imaginary part and
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perform the following steps:

∆Â∆B̂ ≥
∣∣∣∣
1

2i

[
〈ψ|(Â− 〈Â〉)(B̂ − 〈B̂〉)|ψ〉 − 〈ψ|(Â− 〈Â〉)(B̂ − 〈B̂〉)|ψ〉∗

]∣∣∣∣

=

∣∣∣∣
1

2i

[
〈ψ|(Â− 〈Â〉)(B̂ − 〈B̂〉)|ψ〉 − 〈ψ|(B̂ − 〈B̂〉)(Â− 〈Â〉)|ψ〉

]∣∣∣∣

=

∣∣∣∣
1

2i
〈ψ|[(Â− 〈Â〉), (B̂ − 〈B̂〉)]|ψ〉

∣∣∣∣

=
1

2
| 〈Ĉ〉 | .

∆Â∆B̂ = 0 only if 〈ψ|[Â, B̂]|ψ〉 = 0, that is when | 〈Ĉ〉 | = 0.

3.4 Position and momentum representations

Let us start from the commutation relation

[q̂, p̂] = i~ , (3.10)

and ask ourselves if there exists a complete set of eigenstates common to both oper-

ators: 



q̂ |q, p〉 = q |q, p〉
p̂ |q, p〉 = p |q, p〉

If there were such |q, p〉, it would be possible to expand any state |ψ〉 as

|ψ〉 =
∫

dq dp C(q, p) |q, p〉 ,

Now, applying the commutatator [q̂, p̂] to |ψ〉 using the expansion formula above

would yield

[q̂, p̂] |ψ〉 =
∫
qpC(q, p) |q, p〉 dq dp−

∫
pq C(q, p) |q, p〉 dq dp = 0 ,

while we know by Eqn. (3.10) that

[q̂, p̂] |ψ〉 = i~ |ψ〉 6= 0 .
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Thus, as a consequence of the commutation relation (3.10) there cannot be such

common eigenstate |q, p〉.
Another question: is it possible to represent q̂ and p̂ operators by means of finite-

dimensional matrices? If it were possible then, by taking the trace of Eqn. (3.10), we

would get :

Tr[q̂, p̂] = Tr(q̂p̂)− Tr(p̂q̂) = Tr(q̂p̂)− Tr(q̂p̂) = 0 ,

where the two main properties of the trace, namely linearity and cycliccity, were used.

But using the right-hand side of Eqn. (3.10) we get directly

Tr[q̂, p̂] = Tr i~ = i~N ,

being N the dimension of the matrix. For the commutation relation (3.10) to hold,

it is thus not possible to represent q̂ and p̂ by means of finite-dimensional matrices.

Now, since q̂ is Hermitian under the usual scalar product (that is, the L2 scalar

product 〈ψ|ϕ〉 =
∫
ψ∗(q)ϕ(q) dq, being ψ(q) and ϕ(q) two square-integrable complex

function of q) we can diagonalize it and get a complete orthonormal basis

q̂ |q〉 = q |q〉 .

We remark that here ”complete” means

∫
|q〉 〈q| dq = 11 ,

where 11 denotes here the identity operator. The above relation is nothing but the

usual resolution of the identity formula for the Hermitian operator q̂.

Let us consider a state |ψ〉 and let us expand it on the basis of the eigenstates of

|q〉:
|ψ〉 =

∫
|q〉 〈q|ψ〉 dq .

The expansion coefficients are 〈q|ψ〉. The latter can be interpreted as a function of q

〈q|ψ〉 = ψ(q) .
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which is the wave function associated to the state |ψ〉 in the position representation,

also known as q representation.

The operator q̂ acts on a state |ψ〉 in the following way:

q̂ |ψ〉 = q̂

∫
|q〉 〈q|ψ〉︸ ︷︷ ︸

ψ(q)

dq =

∫
q̂ |q〉ψ(q) dq =

∫
qψ(q) |q〉dq .

therefore

〈q′|q̂|ψ〉 =
∫
qψ(q) 〈q′|q〉 dq .

The left-hand side above is simply

〈q′|q̂|ψ〉 = q′ 〈q′|ψ〉 = q′ψ(q′) ,

and this should be equal to
∫
qψ(q) 〈q′|q〉 dq. This fact tells us that 〈q′|q〉 must behave

like a Dirac’s delta function δ(q − q′), so that

∫
qψ(q) 〈q′|q〉︸ ︷︷ ︸

δ(q−q′)

dq =

∫
qψ(q)δ(q − q′) dq = q′ψ(q′) .

Hence, the eigenstates |q〉 belong to a generalized Hilbert space and are normalized

in the distributional sense of the Dirac’s delta function.

Let us turn to the momentum operator p̂. It is often said that commutation rela-

tion (3.10) implies p̂ can be realized as∗

p̂ = −i~ d

dq
.

In fact, if we apply the commutation relation (3.10) to ψ(q) and we use this represen-

tation for p̂ as a differential operator, Eqn. (3.10) is actually fulfilled. Let us check

this fact:

[q̂, p̂]ψ(q) = −i~
(
q
dψ(q)

dq
− dqψ(q)

dq

)
= i~ψ(q) .

∗ Total derivative was used having in mind the one-dimensional case; in multi-dimensional case

partial derivatives must be used in writing the representation above.
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Let us now work out the matrix elements of p̂ in the position representation. First,

the matrix elements of the commutator [q̂, p̂] are evaluated between any two position

eigenstates |q〉 and 〈q′|:

〈q′|[q̂, p̂]|q〉 = 〈q′|q̂p̂|q〉 − 〈q′|p̂q̂|q〉 = (q′ − q) 〈q′|p̂|q〉 .

Next, Eqn. (3.10) is used to get

〈q′|[q̂, p̂]|q〉 = 〈q′|i~|q〉 = i~ 〈q′|q〉 = i~δ(q − q′) .

By matching the two previous expressions we are led to

(q′ − q) 〈q′|p̂|q〉 = i~δ(q − q′) . (3.11)

In other words, 〈q′|p̂|q〉 is something that, multiplied by q′ − q, behaves under inte-

gration with respect to q′ as a delta function δ(q − q′), that is

∫
(q′ − q) 〈q′|p̂|q〉 dq′ = i~

∫
δ(q − q′) dq′ .

The latter equation is fulfilled if

〈q′|p̂|q〉 = −i~ d

dq′
δ(q − q′) .

In fact, integrating by parts yields

∫
(q′ − q)

(
−i~ d

dq′

)
δ(q − q′) dq′ = i~

∫ (
d

dq′
(q′ − q)

)
δ(q − q′) dq′ +

(q′ − q)(−i~)δ(q − q′)
∣∣∣
+∞

−∞

=

∫
i~δ(q − q′) dq′ .

Strictly speaking instead of p̂ = −i~ d/ dq one should more properly say that the

representation of p̂ in the basis of position eigenstates |q〉 is given by the matrix

elements

〈q′|p̂|q〉 = −i~ d

dq′
δ(q − q′) .
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From this equation it is easy to find how p̂ acts on a state |ψ〉 in the position repre-

sentation:

〈q′|p̂|ψ〉 = 〈q′| p̂
∫

|q〉 〈q|ψ〉 dq

=

∫
(−i~)

(
d

dq′
δ(q − q′)

)
ψ(q) dq

= −i~ d

dq′

∫
δ(q − q′)ψ(q) dq

= −i~dψ(q
′)

dq′
.

This clarifies the meaning of the statement that p̂ acts on ψ(q) as −i~ d/ dq.

Momentum representation

Instead of diagonalizing q̂, we now turn to the problem of diagonalizing p̂, which

we shall prove in an exercise to be Hermitian and thus to have a complete basis of

eigenstates:

p̂ |p′〉 = p′ |p′〉 ,
∫

|p′〉 〈p′| dp′ = 11 ,

where 11 denotes as usual the identity operator.

We are interested in how the momentum eigenstates |p〉 are represented in the basis

of position eigenstates |q〉, that is, what are the matrix elements 〈q|p〉. We have

〈q′|p̂|p′〉 = p′ 〈q′|p′〉 ,

and by inserting the resolution of the identity formula
∫
|q〉 〈q| dq = 1 (completeness

of position eigenstates) in the left-hand side above we get

〈q′|p̂|p′〉 =
∫

〈q′|p̂|q〉 〈q|p′〉 dq = p′ 〈q′|p′〉 .

By using the representation of p̂ derived previously, the equation above can be rewrit-

ten as

−i~
∫

d

dq′
δ(q − q′) 〈q|p′〉 dq = p′ 〈q′|p′〉 .
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The derivative with respect to q′ does not affect the integration with respect to q and

thus it can be brought outside the integration,

−i~
∫

d

dq′
δ(q − q′) 〈q|p′〉 dq = −i~ d

dq′

∫
δ(q − q′) 〈q|p′〉 dq = −i~ d

dq′
〈q′|p′〉 ,

yielding the following differential equation for the matrix elements 〈q′|p′〉:

−i~ d

dq′
〈q′|p′〉 = p′ 〈q′|p′〉

whose solution is

〈q′|p′〉 = C(p′) e
i
~
q′p′ ,

where C(p′) is a function to be determined. We do that by requiring

〈q′|q〉 = δ(q − q′) .

Because of the completeness of momentum eigenstates we have

〈q′|q〉 =
∫

〈q′|p〉 〈p|q〉 dp =
∫

|C(p)|2 e i
~
(q′−q)p dp

and this should be equal to δ(q′ − q); by recalling the integral representation of the

Dirac’s delta

δ(q − q′) =
1

2π

∫
eip(q

′−q) dp .

we get

|C(p)| = 1√
2π~

,

and thus

〈q|p〉 = 1√
2π~

e
i
~
qp .

Homework 3.1. Prove that 〈p′|p′′〉 = δ(p′ − p′′).

Let us now check that ∫
|p〉 〈p| dp = 11 . (3.12)
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Let us sandwich the above relation between 〈q′| and |q〉 and we get:

∫
dp 〈q′|p〉 〈p|q〉 = 〈q′|11|q〉 = δ(q − q′) .

The left-hand side can be rewritten as

∫
dp

1√
2π~

e
i
~
q′p 1√

2π~
e−

i
~
qp =

1

2π~

∫
dp e

i
~
p(q′−q)

=
1

2π

∫
d
(p
~

)
ei(

p
~
)(q−q′)

= δ(q − q′) ,

and this proves Eqn. (3.12).

Fourier transform

It is possible to prove that the position and the momentum representations of a given

abstract state |ψ〉 are one the Fourier transformed of the other respectively.

By using the completeness of the momentum eigenstates we can expand |ψ〉 in the

usual way

|ψ〉 =
∫

|p〉 〈p|ψ〉 dp ,

where 〈p|ψ〉 can be viewed as a function of p, the so-called momentum-space wave

function

ψ̃(p) ≡ 〈p|ψ〉 .

The position-space wave function had already been defined as

ψ(q) = 〈q|ψ〉 .

By using the resolution of the identity and by applying the formula for the matrix

elements 〈q|p〉 found in the previous section, we get

ψ(q) = 〈q|ψ〉 =

∫
〈q|p〉 〈p|ψ〉 dp

=
1√
2π~

∫
e

i
~
qp ψ̃(p) dp .
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Setting ~ = 1 yields

ψ(q) =
1√
2π

∫
eiqp ψ̃(p) dp ,

which is exactly the Fourier transform. Of course, if ~ is not set to one, the correct

formula is the one given before.

Let us now look for the momentum representation of the position operator q̂. We

note that in the momentum representation p̂ is represented as a multiplicative oper-

ator, i.e.:

p̂ |p〉 = p |p〉 .

Let us consider the commutation relation (3.10) as usual. The matrix element of the

commutator between two momentum eigenstates 〈p| and |p′〉 is

〈p|[q̂, p̂]|p′〉 = 〈p|q̂p̂|p′〉 − 〈p|p̂q̂|p′〉 = (p′ − p) 〈p|q̂|p′〉 .

Because of the commutator relation, this is also equal to

〈p|[q̂, p̂]|p′〉 = 〈p|i~|p′〉 = i~ 〈p|p′〉 = i~δ(p′ − p) ,

thus

〈p|q̂|p′〉 = i~
d

dp
δ(p′ − p) ,

which means that the operator q̂ acts as +i~ d
dp

in the momentum representation.

3.5 Time-dependent Schrödinger equation: formal solution and time-

evolution operator

The time-dependent Schrödinger equation is (formally)

i~
d |ψ(t)〉

dt
= Ĥ |ψ(t)〉 . (3.13)
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The formal solution is given by∗

|ψ(t)〉 = e−
i
~
Ĥt |ψ(0)〉 . (3.14)

The operator-valued exponential function is understood here in the sense we have

used to define a function of an operator, namely, by its action on the eigenstates of

the original operator:

e−
i
~
Ĥt |En〉 = e−

i
~
Ent

︸ ︷︷ ︸
This is the exponential of a number

|En〉

Using this in (3.14) we immediately get (3.13). Another definition of the exponential

of an operator is the following one:

e−
i
~
Ĥt =

∞∑

n=0

(
−iĤt

~

)n
1

n!
.

Note that this is not a Taylor expandion but a converging series for all value of t.

Using this expression we can now prove that the solution (3.14) formally satisfies the

time-dependent Schrödinger equation. In fact, inserting the (3.14) into the left-hand

side of Eqn. (3.13) yields

i~
d

dt

[ ∞∑

n=0

(
−iĤt

~

)n
1

n!

]
|ψ(0)〉 = i~

∞∑

n=1

1

n!

(
−iĤt
~

)n−1

n

(
−iĤ
~

)
|ψ(0)〉

= i~

∞∑

n=1

1

(n− 1)!

(
−iĤt
~

)n−1(
−iĤ
~

)
|ψ(0)〉

=
∞∑

n=1

i

(n− 1)!

(
t

~

)n−1

(−iĤ)n |ψ(0)〉

=
∞∑

n=0

i

n!

(
t

~

)n
(−iĤ)n+1 |ψ(0)〉 , (3.15)

∗ This holds for time-independent Hamiltonian operators. Hamiltonian operators which depend

explicitly on time may occur, for example, when dealing with time-varying electric or magnetic

fields. We shall return on this when we shall discuss the interaction picture and the time-dependent

perturbation theory.
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while introducing the solution into the right-hand side of the equation yields

Ĥ

∞∑

n=0

(
−iĤt

~

)n
1

n!
|ψ(0)〉 =

∞∑

n=0

(
t

~

)n
i

n!
(−iĤ)n+1 |ψ(0)〉 ,

which is equal to (3.15).

Now we turn to the problem of how the formal solution (3.14) can be practically

used to find |ψ(t)〉 once |ψ(0)〉 is known. Since the Hamiltonian Ĥ is an Hermitian

operator, its eigenstates |En〉,

Ĥ |En〉 = En |En〉 ,

form a complete orthornormal set and can be used to expand any given |ψ(0)〉 ac-

cording to the formula

|ψ(0)〉 =
∑

n

cn |En〉 , cn = 〈En|ψ(0)〉 .

Now, we apply Eqn. (3.14):

|ψ(t)〉 = e−
i
~
Ĥt
∑

n

cn |En〉

=
∑

n

cn e
− i

~
Ĥt |En〉

=
∑

n

cn e
− i

~
Ent |En〉

=
∑

n

cn(t) |En〉

where

cn(t) = cn e
− i

~
Ent = 〈En|ψ(0)〉 e−

i
~
Ent .

So, the probability of finding En by performing an energy measurement at the time

t is given by

PEn
(t) = |cn(t)|2 .

However, it is easily seen that

|cn(t)|2 = c∗n(t)cn(t) = c∗n e
+ i

~
Ent e−

i
~
Ent

︸ ︷︷ ︸
=1

cn = |cn|2 .
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This means the probability above does not change with time.

Another important concept is the so-called time-evolution operator Û(t) defined by

Û(t) = e−
i
~
Ĥt .

Since Ĥ is Hermitian, Û(t) is unitary:

Û †(t) = e
i
~
Ĥt = Û−1(t) .

In fact,

Û †(t)Û(t) = e
i
~
Ĥt e−

i
~
Ĥt = 11 ,

being 11 the identity operator.

3.6 Density Matrix

One of the postulate of Quantum Mechanics tells us that to prepare a system we need

a complete set of commuting observables. The string of eigenvalues, each associated

to a different observables, will uniquely characterize the state of the system. What

about if we do not have a complete set of observables or if we have many many

particles and we cannot perform measurements on all of them because they are too

many. In both cases we will have some probabilities p1, p2, · · ·pm · · · that the particle
is in one the normalized states 〈1| , 〈2| · · · 〈m| · · · . If we now ask which is the average

value of an observable Ô , as a result we will get:

〈Ô〉 =
∑

i

pi 〈i| Ô |i〉 (3.16)

This statistical mixture can be obtained by introducing what is called the density

operator or matrix, defined as:

ρ̂ ≡
∑

i

pi |i〉 〈i| (3.17)
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where the 〈i| are normalized states but not necessarily orthogonal to each other, and

the pi are probabilities that sum up to one, so:

pi ≥ 0 ,
∑

i

pi = 1

The average value defined in Eqn.(3.16) can then be written as

〈Ô〉 = Tr(ρ̂ Ô) (3.18)

This is easy to prove, in fact from

Tr(ρ̂ Ô) =
∑

i

piTr(|i〉 〈i| Ô) (3.19)

in order to get (3.18) we have just to show that:

Tr(|i〉 〈i| Ô) = 〈i| Ô |i〉

This can be proved easily considering that |i〉 〈i| ≡ P̂i is a projection operator, so

P̂ 2
i = P̂i. If we then use the cyclic property of the trace we have:

Tr |i〉 〈i| Ô = TrP̂ 2
i Ô = TrP̂iÔP̂i

The last expression can be written as

Tr |i〉 〈i| Ô |i〉 〈i| = 〈i| Ô |i〉Tr |i〉 〈i| = 〈i| Ô |i〉 TrP̂i.

We know that

TrP̂i = Tr |i〉 〈i| = 〈i|i〉 = 1

The last step comes from the fact that the trace operation is the sum of the diagonal

elements of an operator, so:

Tr |i〉 〈i| =
∑

j

〈j|i〉 〈i|j〉 = 〈i|i〉 〈i|i〉 = 〈i|i〉
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where we have choosen a basis of orthogonal vectors 〈j| of which 〈i| is just one of

them. We could choose this basis because the trace in invariant under a unitary

change of basis:

TrÔ = TrUÔU † = TrU †UÔ = TrU−1UÔ = TrÔ

Another property of the density operator can be obtained if we choose in Eqn.(3.18)

Ô = 11. We get:

Trρ̂ = 1

The density matrix will help us not only in getting average values but also in

getting probability distributions. For example if P̂D is the projector operator upon

the subspace spanned by the eigenvectors of Ô located in a certain domain D of the

spectrum of Ô, then the probability PD that the measurement of Ô belongs to D is

PD =
∑

m

pm 〈m| P̂D |m〉 = Tr(ρ̂P̂D) (3.20)

In particular, using Eqn.(3.20), the probability of finding the system in the quantum

state represented by the Hilbert state element |χ〉 is given by

Pχ = Tr(ρ̂ |χ〉 〈χ|) = 〈χ| ρ̂ |χ〉

So, given ρ̂, we can calculate all average values and statistical distributions of mea-

surements of observables.

In general one needs to introduce a density matrix ρ̂ when the system cannot be

specified by a single state |Ψ〉. If this instead this were the case, then ρ̂ would be:

ρ̂ = |Ψ〉 〈Ψ|

and, if Ψ was normalized, we would have

ρ̂2 = ρ̂ (3.21)
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These kinds of density matrices are called pure. In this case we could use the state

itself 〈Ψ| instead of the density matrix.

In general anyhow the ρ̂ is not pure and does not have the form above but the

following one:

ρ̂ =
∑

pi |i〉 〈i| (3.22)

and as a consequence

ρ̂2 6= ρ̂.

In this case we say that the density matrix is a mixed one because it gives a statistical

mixture which cannot be specified by a single state.

We can say that the density matrix is a unifying formalism to treat both systems

that can be specified by a single state and those which are statistical mixture of many

states.

Several properties of the density matrix are of relevance and we will list them here.

From the fact that the pi are positive probabilities which sum up to one: pi ≥ 0

and
∑

i pi = 1, we can easily derive that p2i ≤ 1 and from this we can prove that:

ρ̂2 ≤ 1

Other properties of ρ̂ are the following: first it is hermitian (because the pi are real)

ρ̂† = ρ̂,

second, because the probabilities sum up to one and the states are normalized, its

trace is one:

Trρ̂ = 1

and third it is a positive semidefinite operator:

〈Ψ| ρ̂ |Ψ〉 ≥ 0 (3.23)
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This last property can be easily proved using Eqn. (3.22). In fact using that

expression we have 〈Ψ| ρ̂ |Ψ〉 = ∑
i pi| < ψ|i > |2 and from the fact that the pi ≥ 0

and | < ψ|i > |2 ≥ 0 we get Eqn.(3.23).

Let us now attack the problem of whether a physical system is specified by one and

only one density matrix or not. For the states we know that there is not a one to

one correspondence: any state up to a global phase specify the same physical system.

This ambiguity on the states is not transferred to the density matrix, in fact :

ρ̂ =
∑

i

pi |i〉 〈i| −→
∑

i

pie
iαi |i〉 〈i| e−iαi =

∑

i

pi |i〉 〈i| .

Anyhow the ρ̂ has a lot of other freedoms. It is possible, for example, to prove that

the set of states |i〉 and |m〉 generate the same density matrix if (and only if) they

are transformed into each other by a unitary matrix Ui,m:

|i〉 =
∑

m

Ui,m |m〉

The number of states |i〉 and |m〉 must be the same and normalized. We will leave

the proof of this theorem as an homework. Basically it will turn out that:

ρ̂ =
∑

i

pi |i〉 〈i| =
∑

m

qm |m〉 〈m|

where the qm are defined by:

√
pi |i〉 =

∑

m

Uim
√
qm |m〉

3.6.1 Time Evolution of the Density Matrix

As the density matrix is built out of kets and bras, the time evolution is obtained by

making the time-evolution of these components.

Suppose
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ρ̂(0) =
∑

pi |i〉 〈i|

then

ρ̂(t) =
∑

pi |i, t〉 〈i, t| =
∑

i

piÛ(t) |i〉 〈i| Û †(t) = Û(t)ρ̂(0)Û †(t) (3.24)

We have seen previously in this chapter the expression of the operator of time

evolution Û(t) which is:

Û(t) = e−i
Ĥ
~
t

and so Eqn.(3.24) becomes:

ρ̂(t) = e−i
Ĥ
~
tρ̂(0)ei

Ĥ
~
t.

Taking the derivative with respect to t of the expression above we get the equation

of motion of ρ̂:

∂ρ̂

∂t
=
i

~
[ρ̂, Ĥ]

which is called von Neumann equation and is the quantum analogue of the Liouville

equation.

3.7 Problems and Solutions

Problem 3.1. By using the derivation of the uncertainty relation presented in

this chapter , look for the states of minimal uncertainty which satisfy

∆q̂∆p̂ =
1

2
~ . (3.25)



3.7. Problems and Solutions 97

Solution. The equality holds when the following two conditions, encountered in the vari-

ous steps of the Heisenberg uncertainty theorem, are both satisfied:

1. the Schwarz inequality becomes an equality. This is true if and only if the two vectors

in the inequality are proportional to each other:

[Â− 〈Â〉] |ψ〉 = k[B̂ − 〈B〉] |ψ〉 ,

with some constant k.

2. the complex number in the right-hand side of Eqn. (3.9) is purely imaginary:

〈ψ|(Â − 〈Â〉)(B̂ − 〈B̂〉)|ψ〉 = iγ ,

with γ a real constant.

Thus,

k∗ 〈ψ|(B̂ − 〈B̂〉)(B̂ − 〈B̂〉)|ψ〉︸ ︷︷ ︸
‖(B̂−〈B̂〉)|ψ〉‖2

= iγ .

This means k must be purely imaginary: k = iε, with ε real. This is due to the fact that the

expectation value on the left-hand side above is real: in fact, it is nothing but the square of

the norm ‖(B̂ − 〈B̂〉) |ψ〉 ‖. So we have

(
Â− 〈Â〉

)
|ψ〉 = iε

(
B̂ − 〈B̂〉

)
|ψ〉 .

Now, we choose Â = q̂ and B̂ = p̂ = −i~ d
dq and we image that |ψ〉 is already realized on q

as a wave function ψ(q) in the L2 space. The previous equation becomes

[q̂ − 〈q̂〉]ψ(q) = iε

[
−i~ d

dq
− 〈p̂〉

]
ψ(q) ,

that is,

ε~
dψ(q)

dq
+ [〈q̂〉 − iε 〈p̂〉]ψ(q)− qψ(q) = 0 ,

from which it follows

dψ

ψ
=
q + iε 〈p̂〉 − 〈q̂〉

ε~
dq ,
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which can be integrated to yield

logψ =
1

ε~

[
q2

2
+ (iε 〈p̂〉 − 〈q̂〉)q

]
+ const.

Finally, by taking the exponential of both sides we get

ψ(q) = A exp

[
q2

2ε~
− 〈q̂〉
ε~
q +

i 〈p̂〉
~
q

]

= A exp

[
(q − 〈q̂〉)2

2ε~
+ i

〈p̂〉
~
q − 〈q̂〉2

2ε~

]
.

A can be found by normalizing the wave function. Of course, ε should be less than zero in

order ψ to be normalizable. The result is

ψ(q) = 4

√
2

~ |επ| exp
[−(q − 〈q̂〉)2

2 |ε| ~ + i
〈p̂〉
~
q

]
. (3.26)

⋆ ⋆ ⋆

Problem 3.2. Determine the momentum probability distribution of the energy

eigenstates of an harmonic oscillator whose mass and frequency are m and ω

respectively.

Solution. The Hamiltonian is

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 , (3.27)

and the energy eigenfunctions in the position representation are

ψn(x) =
(mω
π~

) 1
2 1

2n/2
√
n!

e−
mωx2

2~ Hn

(
x

√
mω

~

)
, (3.28)

where

Hn(ξ) = (−1)n eξ
2 dn e−ξ

2

dξn

are the Hermite polynomials.
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Of course, we could Fourier transform ψn(x) to obtain the momentum-space wave function

ψ̃(p) whose square modulus is nothing but the desired probability density function. However,

it seems easier to write Ĥ in the momentum representation:

Ĥp =
p2

2m
− ~

2

2
mω2 d2

dp2
.

The eigenvalue problem for the operator Ĥp reads

(
−~

2

2
mω2 d2

dp2
+

p2

2m

)
ψ̃n(p) = Enψ̃n(p) ,

which can be written as

d2ψ̃n(p)

dp2
+

2

~2mω2

(
En −

p2

2m

)
ψ̃n(p) = 0 . (3.29)

The position-space stationary Schrödinger equation had the form

d2ψn(x)

dx2
+

2m

~2

(
En −

1

2
mω2x2

)
ψn(x) = 0 . (3.30)

By performing the replacement

p√
mω~

with x

√
mω

~

Eqn. (3.29) formally becomes equivalent to Eqn. (3.30) whose solution are Eqn. (3.28). By

the same substitution into Eqn. (3.28), and properly normalizing, we get:

ψ̃n(p) =
1√

2nn!
√
πmω~

e−
p2

2mω~ Hn

(
p√
mω~

)
.

⋆ ⋆ ⋆

Problem 3.3. Let

Ĥ =
p̂2

2m
+ V (q̂)

be the Hamiltonian of a one-dimensional quantum system having discrete spec-

trum with eigenstates |n〉 and eigenvalues En. By using the commutation relation
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Eqn. (3.10) between position coordinate q̂ and momentum p̂, prove the following

relation:
∑

n

(En −E0) |〈n|q̂|0〉|2 =
~2

2m
,

where |0〉 and E0 are the ground state and its corresponding eigenvalue respec-

tively.

Solution. By direct evaluation we have

[Ĥ, q̂] =
1

2m
[p̂2, q̂] = − i~

m
p̂ ,

hence
[
[Ĥ, q̂], q̂

]
= − i~

m
[p̂, q̂] = −~

2

m
,

from which it follows
〈
n
∣∣∣
[
[Ĥ, q̂], q̂

] ∣∣∣n
〉
= −~

2

m
. (3.31)

The left-hand side in the latter expression is also equal to

〈
n
∣∣∣
[
[Ĥ, q̂], q̂

] ∣∣∣n
〉
= 〈n|Ĥq̂2 − 2q̂Ĥ q̂ + q̂2Ĥ|n〉

= 2En 〈n|q̂2|n〉 − 2 〈n|q̂Ĥ q̂|n〉

=
∑

m

2En 〈n|q̂|m〉 〈m|q̂|n〉 −
∑

m,l

2 〈n|q̂|m〉 〈m|Ĥ |l〉 〈l|q̂|n〉

=
∑

m

2En |〈n|q̂|m〉|2 −
∑

m,l

2 〈n|q̂|m〉Emδl,m 〈l|q̂|n〉

=
∑

m

{
2En |〈n|q̂|m〉|2 − 2Em |〈n|q̂|m〉|2

}

= 2
∑

m

(En − Em) |〈n|q̂|m〉|2 .

By taking n = 0 and comparing with the right-hand side of Eqn. (3.31) we get

∑

m

(Em − E0) |〈m|q̂|0〉|2 = ~
2

2m
.
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⋆ ⋆ ⋆

Problem 3.4. Let f̂ be an Hermitian operator having a discrete spectrum with

N different eigenvalues. Prove that f̂N can be expressed as a linear combination

of the operators 1, f̂ , . . . , f̂N−1.

Solution. We define the following operator:

Ĝ ≡
N∏

i=1

(
f̂ − fi

)

= (f̂ − f1)(f̂ − f2) · · · (f̂ − fN ) .

Let f̂ be hypermaximal, so that its eigenstates |fi〉 form a complete orthonormal basis and

any state |ψ〉 can be expanded as

|ψ〉 =
∑

k

ak |fk〉 , ak = 〈fk|ψ〉 .

Now, let us apply Ĝ to |ψ〉:

Ĝ |ψ〉 =
[
(f̂ − f1)(f̂ − f2) · · · (f̂ − fN)

]( N∑

k=1

ak |fk〉
)
.

We note that

Ĝ |ψ〉 =
[
(f̂ − f1)(f̂ − f2) · · · (f̂ − fN)

](
aN |fN 〉+

N−1∑

k=1

ak |fk〉
)

=
[
(f̂ − f1)(f̂ − f2) · · · (f̂ − fN)

]
aN |fN 〉+

[
(f̂ − f1)(f̂ − f2) · · · (f̂ − fN)

](N−1∑

k=1

ak |fk〉
)

=
[
(f̂ − f1)(f̂ − f2) · · · (f̂ − fN)

](N−1∑

k=1

ak |fk〉
)
.

This is so because

(f̂ − fN )aN |fN 〉 = aN f̂ |fN 〉 − aNfN |fN 〉 = 0.
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By considering the next terms in the sum, we get by induction

Ĝ |ψ〉 = 0 ,

that is, Ĝ = 0 (Ĝ is the null operator). Thus,

Ĝ = 0 = f̂N −
N∑

i=1

fif̂
N−1 +

1

2

∑

i,j

fifj f̂
N−2 + · · ·+ (−1)N

N∏

i=1

fi ,

and as a consequence

f̂N =

N∑

i=1

fif̂
N−1 +

1

2

∑

i,k

fifkf̂
N−2 + · · · + (−1)N

N∏

i=1

fi .

⋆ ⋆ ⋆

Problem 3.5. A particle of mass m moves in a infinite potential well of width

a. At the time t = 0 the particle was prepared in the state given by the wave

function

ψ(x, t = 0) = A sin3 πx

a
. (3.32)

The questions are:

1. Find the wave function ψ(x, t) at any later time t > 0.

2. Find the time T at which the particle turns back to its initial state.

Solution. We recall the energy levels of the one-dimensional infinite potential well are

En =
~
2π2(n+ 1)2

2ma2
, n = 0, 1, 2, . . .

The corresponding normalized wave eigenfunctions are

ψn(x) = 〈x|En〉 =
√

2

a
sin

π(n+ 1)x

a
.



3.7. Problems and Solutions 103

As we have just seen, the state |ψ(t)〉 at any later time is found by applying the unitary

time-evolution operator Û(t) = exp(−iĤt/~) to the initial state |ψ(0)〉. For this proce-

dure to work properly we have to determine the expansion coefficients cn of |ψ(0)〉 on the

Hamiltonian eigenstates |En〉 whose wave function 〈x|En〉 is given above:

|ψ(0)〉 =
∑

n

cn |En〉 , cn = 〈En|ψ(0)〉 .

Inserting the identity
∫
|x〉 〈x|dx = 1 yields

cn = 〈En|ψ(0)〉 =
∫

〈En|x〉︸ ︷︷ ︸
ψ∗
n(x)

〈x|ψ(0)〉︸ ︷︷ ︸
ψ(x,t=0)

dx .

The integral involved in the calculation of cn must in principle be solved for each n:

cn =

√
2

a
A

∫ a

0
sin

π(n+ 1)x

a
sin3

πx

a
dx .

There is however a faster way to get the correct result, that is, we can manipulate directly

the initial wave function Eqn. (3.32) in order to identify the components. We can write

ψ(x, t = 0) = A sin3
πx

a

= A sin
πx

a

[
1− cos2

πx

a

]

= A sin
πx

a
−A

1

2

[
1 + cos

2πx

a

]
sin

πx

a

=
A

2
sin

πx

a
− A

2
sin

πx

a
cos

2πx

a

=
A

2
sin

πx

a
− A

4

[
sin

3πx

a
− sin

πx

a

]

=
3

4
A sin

πx

a
− 1

4
A sin

3πx

a

The trigonometric identity

cos p sin q =
1

2
[sin(p+ q)− sin(p− q)]

has been used in the last steps above. In this way we get the initial state as a sum of 〈x|E0〉
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and 〈x|E2〉. So, the time evolution is given by

ψ(x, t) = e−
i
~
Ĥt ψ(x, t = 0)

= e−
i
~
Ĥt

∞∑

n=0

cnψn(x) cn =

∫ a

0
ψ∗
n(x)ψ(x, t = 0) dx ,

=

∞∑

n=0

cn e
− i

~
Ent ψn(x)

= c0 e
− i

~
E0t ψ0(x) + c2 e

− i
~
E2t ψ2(x) ;

where, c0 =
3
4A
√

a
2 and c2 = −1

4A
√

a
2 . The final result is

ψ(x, t) =
A

4

√
2

a

[
3 sin

πx

a
exp

(
−i ~π

2t

2ma2

)
− sin

3πx

a
exp

(
−9i

~π2t

2ma2

)]
,

which can also be written as

ψ(x, t) =
A

4

√
2

a
exp

(
−i ~π

2t

2ma2

)[
3 sin

πx

a
− exp

(
−i4~π

2t

ma2

)
sin

3πx

a

]
.

For the wave function ψ(x, T ) at a later time T > 0 to be equal to ψ(x, t = 0) the

following condition must hold:

exp

(
−i~π

2T

2ma2

)
= exp

(
−4i

~π2T

ma2

)
= 1 ,

that is

~π2T

2ma2
= n(2π) , 4

~π2T

ma2
= 8n(2π) ,

for some integer n. By taking n = 1 (we find the smallest period T )

~π24Tmin

ma2
= 16π ,

from which it follows

Tmin =
16πma2

4~π2
=

4ma2

~π
.

⋆ ⋆ ⋆
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Problem 3.6. The state of a free particle at initial time t = 0 is given by the

following Gaussian wave function:

ψ(x, t = 0) = A exp

(
− x2

2a2
+
imv0x

~

)
.

Calculate the wave function ψ(x, t) at the time t and also the expectation value

and the mean square deviation of the position operator x̂, that is, 〈ψ(t)|x̂|ψ(t)〉
and 〈ψ(t)|∆x̂2|ψ(t)〉 respectively.

Solution. We need to recall the following Gaussian integrals:
∫ ∞

0
exp

(
−ax2

)
dx =

1

2

√
π

a
,

∫ +∞

−∞
exp

(
−ax2 + bx

)
dx =

√
π

a
exp− b2

4a
,

∫ ∞

0
exp

(
−ax2

)
x2k dx =

1× 3× · · · × (2k − 1)

2k+1

√
π

a2k+1
,

∫ ∞

0
exp

(
−ax2

)
x2k+1 dx =

k!

2ak+1
,

∫ +∞

−∞
dx1 · · ·

∫ +∞

−∞
dxN exp

(
−
∑

aijxjxi

)
= π

N
2 [detAij]

−1/2 .

The Hamiltonian of a free particle is

Ĥ =
p̂2

2m
,

its eigenstates are

Ĥ |±p〉 = p2

2m
|±p〉 ,

thus Ĥ does not form a complete set since we still have the degeneracy |±p〉. For this

reason, we shall use instead the eigenstates of p̂:

p̂ |p〉 = p |p〉 .

We expand the initial state |ψ(0)〉 on the basis of the momentum eigenstates:

|ψ(0)〉 =
∫
C(p) |p〉 dp , C(p) = 〈p|ψ(0)〉 .
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It should be noted that we know how the momentum eigenstates do evolve in time under

the free Hamiltonian. C(p′) is given by

〈p′|ψ(0)〉 =
∫

〈p′|x〉 〈x|ψ(0)〉dx

=

∫
1√
2π~

e−
ip′x
~ ψ(x, 0) dx

=
A√
2π~

∫
exp

[
− x2

2a2
+ i

mv0x

~
− i

p′x
~

]
dx .

The latter is a Gaussian integral, which can be evaluated exactly to yield:

C(p) = aA exp

[
− 1

2~
(mv0a− pa)2

]
.

By applying the time-evolution operator, we get

ψ(x, t) = e−
i
~
Ĥt ψ(x, t = 0)

= e−
i
~
Ĥt

∫
C(p)ϕp(x)︸ ︷︷ ︸

〈x|p〉

dp

=
aA√
2π~

∫
exp

[
− ip2t

2m~
+ i

px

~
− a2

2~2
(mv0 − p)2

]
dp

= A

[
1 +

i~t

ma2

]− 1
2

exp

{[
−ma2~2(x− v0t) + ~

3x2t+ ia4m2v0~(2x− v0t)
]

×
[
2m(a4~2 +

t2~2

m2
)

]−1}

A is determined by normalizing the wave function:
∫
|ψ(x, t)|2 dx = 1. The reason for

which we require ψ(x, t) to be normalized is that we are interested in finding mean values

and mean square deviations, thus the wave function must be normalized. We have

|ψ(x, t)|2 = A2

√
1 + ~2t2

m2a4

exp


− (x− v0t)

2

a2
(
1 + t2~2

m2a4

)


 .

By imposing
∫
|ψ(x, t)|2 dx = 1 one finds

A2 = (πa2)−
1
2 .

The expectation value of the position operator x̂ on the evolved state |ψ(t)〉 is

〈ψ(t)|x̂|ψ(t)〉 =
∫
x |ψ(x, t)|2 dx .
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Again, this is nothing but a Gaussian integral which can be calculate explicitly. The result is

v0t. It should be noted at this point that the quantum expectation value obey the classical

laws of motion. This is a more general result which we shall encounter again later: the

so-called “Ehrenfest theorem”.

The mean square deviation of the position operator x̂ on the evolved state |ψ(t)〉 can be

calculated in the same manner using the formulas for the Gaussian integrals and the result

is
a2

2

(
1 +

t2~2

m2a4

)
.

Note that at t = 0 the mean square deviation is a/
√
2 while for any other t > 0 the mean

square deviation is greater than the initial value. This spreading of the wave function is a

typical quantum effect.

⋆ ⋆ ⋆





Chapter 4

HARMONIC OSCILLATOR IN OPERATORIAL FORM.

4.1 Harmonic Oscillator in Operatorial Form.

The Hamiltonian operator of the one-dimensional quantum harmonic oscillator is

given by

Ĥ =
1

2m
p̂2 +

1

2
mω2q̂2 . (4.1)

Let us recall that the position and momentum operators satisfy the commutation

relation

[q̂, p̂] = i~ .

To simplify the notations, let us introduce the following operators:

̂̃H ≡ Ĥ

~ω

and

Q̂ ≡
(mω

~

) 1
2
q̂ ,

P̂ ≡
(

1

m~ω

) 1
2

p̂ ,

so that

̂̃H =
1

2

(
P̂ 2 + Q̂2

)
,

with

[Q̂, P̂ ] = i .
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Let us also define the following other operators:

â ≡ 1

2

√
2
(
Q̂+ iP̂

)
,

â† ≡ 1

2

√
2
(
Q̂− iP̂

)
.

A direct computation shows that :

[â, â†] = 1

and

̂̃H =
1

2

(
ââ† + â†â

)
.

By introducing the operator

N̂ ≡ â†â ,

we can rewrite the operator ̂̃H as

ˆ̃H = N̂ +
1

2
. (4.2)

It is easy to work out the commutation rules of â and â† with N̂ :

N̂ â = â
(
N̂ − 1

)
, (4.3)

N̂ â† = â†
(
N̂ + 1

)
. (4.4)

We are now in a position to prove the following theorem.

THEOREM:

If

N̂ |ν〉 = ν |ν〉 ,

i.e., if |ν〉 is an eigenvector of N̂ with corresponding eigenvalue ν, then:

a) ν ≥ 0;

b) if ν = 0, then â |ν〉 = 0;

c) if ν 6= 0, then â |ν〉 is a non-zero vector whose norm is given by ν 〈ν|ν〉 and which
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is an eigenvector of N̂ with eigenvalue ν− 1; â† |ν〉 is a state which is always different

from zero (even if ν = 0) and its norm is given by

(ν + 1) 〈ν|ν〉 .

Morewover it is an eigenvector of N̂ with eigenvalue ν + 1.

proof:

By hypothesis,

N̂ |ν〉 = ν |ν〉 ,

with 〈ν|ν〉 > 0. So,

〈ν|N̂ |ν〉 = 〈ν|â†â|ν〉 = ‖â |ν〉‖2 = ν 〈ν|ν〉 . (4.5)

and
∥∥â† |ν〉

∥∥2 = 〈ν|ââ†|ν〉 = 〈ν|N̂ + 1|ν〉 = (ν + 1) 〈ν|ν〉 . (4.6)

Now, by definition all the vectors in the Hilbert space have non-negative norms and

the only vector having zero norm is the null vector. From Eqn. (4.5) we get that,

since ‖â |ν〉 ‖2 is the norm of a state, it is a positive number as well as 〈ν|ν〉, so we

have ν ≥ 0. This proves proposition a).

If ν = 0, then ‖â |ν〉 ‖ = 0, and consequently â |ν〉 = 0, which proves proposition b).

If ν 6= 0, then â |ν〉 is a vector with non-zero norm given in (4.5). Using Eqn. (4.3)

we get

N̂ â |ν〉 = â
(
N̂ − 1

)
|ν〉 = (ν − 1) â |ν〉 .

This proves part of point c). From (4.6) we get the norm of â† |ν〉. Since ν ≥ 0 the

minimum value of this norm is 1 · 〈ν|ν〉 when ν = 0, and even this is a norm different

from zero. Now let us take into account Eqn. (4.4):

N̂ â† |ν〉 = â†
(
N̂ + 1

)
|ν〉 = (ν + 1) â† |ν〉 .

This relation tells us that â† |ν〉 is eigenvector of N̂ with eigenvalue ν + 1. This

completes the proof of the theorem. Via repeated applications of the operator â on
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the eigenvector |ν〉 we get that the states :

â |ν〉 , â2 |ν〉 , . . . , âp |ν〉 ,

are eigenvectors of N̂ with eigenvalues

ν − 1 , ν − 2 , . . . , ν − p .

From proposition a) of the previous theorem, these eigenvalues must be positive or

zero, so there must exists a certain positive integer p for which we have ν − p = 0,

i.e., ν = p. Therefore, we get the important result that the generic eigenvalue ν is

zero or a positive integer because p is integer. If ν − p were not zero but the smallest

non-integer positive number , then we would always be able to construct the state

â |ν − p〉 which would be an eigenvector of N̂ with eigenvalue (ν−p−1) , whose norm

would be proportional to ν − p− 1 and negative, but this cannot happen in a Hilbert

space. This proves that the eigenvalues ν are given by all the (non-negative) integers.

From this and Eqn.(4.2) we get that, calling by n a positive integer, the energy

levels of the original Hamiltonian are:

En = (n +
1

2
)~ω

Now, N̂ is a Hermitian operator, so its eigenvectors |0〉, |1〉, . . . , |n〉, . . . , make up a

basis for the Hilbert space. There are no degeneracies and they make up a complete

set. From the relation

〈ν|â†â|ν〉 = ‖â |ν〉‖2 = ν 〈ν|ν〉 ,

we get that â |ν〉 is normalized if ν = 1 and 〈ν|ν〉 = 1. Then, from

〈ν|ââ†|ν〉 = 〈ν|N̂ + 1|ν〉 = (ν + 1) 〈ν|ν〉 ,

we get that
∥∥â† |1〉

∥∥2 = 2 〈1|1〉 = 2
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so

∥∥â† |1〉
∥∥ =

√
2 .

But we already know that â† |1〉 ∝ |2〉 and if we suppose that all the states are

normalized, i.e., 〈2|2〉 = 1, then the correct proportionality factor is such that:

â† |1〉 =
√
2 |2〉 ,

and in general we shall have

â† |n〉 = (n+ 1)1/2 |n+ 1〉 .

Analogously, we can determine the normalization coefficient in the relation â |n〉 ∝
|n− 1〉. If |n〉 is normalized then

〈n|â†â|n〉 = ‖â |n〉‖2 = n 〈n|n〉 = n ,

and so

‖â |n〉‖ =
√
n , â |0〉 = 0 .

We can conclude that the vectors

|n〉 = (n!)−
1
2 â†

n |0〉 ,

are eigenstates of N̂ :

N̂ |n〉 = n |n〉 ,

and they make an orthonormal basis:

〈n|n′〉 = δn,n′ .
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To check the orthogonality, let us consider for example 〈1|2〉:

〈1|2〉 =
1√
2
〈0|ââ†â†|0〉

=
1√
2
〈0|
(
â†â+ 1

)
â†|0〉

=
1√
2
〈0|â†ââ†|0〉+ 1√

2
〈0|â†|0〉

=
1√
2
〈0|â†ââ†|0〉

=
1√
2
〈0|â†

(
1− â†â

)
|0〉

=
1√
2
〈0|â†|0〉 − 1√

2
〈0|â†â†â|0〉 = 0 .

The same can be easily proved for all states labelled by different integers.

The fact the states are labelled by positive integer agrees with the result we got

in chapter 1) where we solved explicitly the Schroedinger equation associated to the

harmonic oscillator and did not use operator methods like we did here. The wave-

functions we obtained in chapter 1) are nothing else and the x-representation of the

states |n〉,i.e:
φosc.n (x) = 〈x|n〉
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ANGULAR MOMENTUM QUANTIZATION

In classical mechanics the angular momentum of a particle is defined as

L = x× p ,

where the symbol “×” indicates the vector product. In components, we get

Lx = ypz − zpy , Ly = zpx − xpz , Lz = xpy − ypx .

By using the correspondence rules, the three components of the angular momentum

operator in quantum mechanics are:

L̂x = ŷp̂z − ẑp̂y = −i~
(
y
∂

∂z
− z

∂

∂y

)
,

L̂y = ẑp̂x − x̂p̂z= −i~
(
z
∂

∂x
− x

∂

∂z

)
,

L̂z = x̂p̂y − ŷp̂x= −i~
(
x
∂

∂y
− y

∂

∂x

)
.

We know that observables in quantum mechanics must be Hermitian operators. Are

L̂x, L̂y and L̂z actually Hermitian? It is easy to check that in fact they are.

By using the fundamental commutation rules among position and momentum ob-

servables, namely,

[x̂i, p̂j ] = i~δi,j ,

one can immediately calculate the corresponding commutation rules among the vari-
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ous components of the angular momentum operator, for example

[L̂x, L̂y] = [ŷp̂z − ẑp̂y, ẑp̂x − x̂p̂z]

= [ŷp̂z, ẑp̂x − x̂p̂z]− [ẑp̂y, ẑp̂x − x̂p̂z]

= ŷ[p̂z, ẑ]p̂x − [ẑp̂y, (−x̂p̂z)]

= −i~ŷp̂x + x̂[ẑ, p̂z]p̂y

= i~ (x̂p̂y − ŷp̂x)

= i~L̂z .

The other commutators are:

[L̂z, L̂x] = i~L̂y , [L̂y, L̂z] = i~L̂x .

There is a compact notation to write these formulas, namely,

[L̂i, L̂j ] = i~εijkL̂k , (5.1)

where εijk is the totally-antisymmetric tensor whose value is





1 if even permutation of : x, y, z

0 if two indices are repeated

−1 otherwise

Note that this result is the one obtained, via the correspondence principle, from the

classical case where the Poisson brackets between the components of the angular

momentum satisfy the relation

{Li, Lj} = εijkLk . (5.2)

Homework 5.1. A) Check Eqn. (5.2). B) Find the commutator between L̂i and q̂j ,

where the latter are the position variables.
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5.1 Spectrum of the angular momentum operators

In this section we look for the spectrum of the angular momentum operators. We

shall see that the spectrum of the angular momentum is discrete in contrast with the

classical case. All the results of this section actually relies only on the commutation

rules (5.1) and thus they apply to every triplet of operators whose algebra satisfies

Eqn. (5.1). To emphasize this fact, we shall replace the notation L̂x, L̂y and L̂z with

the more general Ĵi where i stands for x, y or z, or more generally i = 1, 2, 3. The

commutation relations read

[Ĵi, Ĵj] = i~εijkĴk . (5.3)

The angular momentum is not the only operator satisfying this algebra: also spin,

isotopic spin, etc. do obey the same commutation rules.

It should be noted at this point that the three operators Ĵi do not commute with

each other. Therefore, we cannot diagonalize two components simultaneously. But it

is easy to check that the following two operators do commute: Ĵz and Ĵ
2 = Ĵ2

x+Ĵ
2
y+Ĵ

2
z .

In fact,

[Ĵz, Ĵ
2] = [Ĵz, Ĵ

2
x + Ĵ2

y + Ĵ2
z ]

= [Ĵz, Ĵ
2
x ] + [Ĵz, Ĵ

2
y ] + [Jz, Ĵ

2
z ]︸ ︷︷ ︸

=0

= [Ĵz, Ĵx]Ĵx + Ĵx[Ĵz, Ĵx] + [Ĵz, Ĵy]Ĵy + Ĵy[Ĵz, Ĵy]

= i~
(
ĴyĴx + ĴxĴy − ĴxĴy − ĴyĴx

)

= 0 .

In the same way it is also possible to prove that

[Ĵx, Ĵ
2] = 0 , [Ĵy, Ĵ

2] = 0 .

Since Ĵz and Ĵ
2 are hermitian and commute, they can be diagonalized simultaneously
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and their common eigenstates can be chosen to be orthogonal:




Ĵ2 |λ,m〉 = ~2λ |λ,m〉
Ĵz |λ,m〉 = ~ m |λ,m〉

(5.4)

The eigenvalues ~2λ and ~m have been written in this form in order for λ and m to

be dimensionless, since Ĵ2 and Ĵz have dimensions of ~2 and ~ respectively. |λ,m〉
denotes the (normalized) common eigenstate. For the time being, no restriction is

required for λ and m; of course, they must be real numbers since Ĵ2 and Ĵz are

Hermitian and thus their eigenvalues are real numbers.

The next step is to introduce the two auxiliary operators

Ĵ(+) ≡ Ĵx + iĴy , Ĵ(−) ≡ Ĵx − iĴy .

These two operators are one the Hermitian conjugate of the other:

Ĵ†
(+) = Ĵ(−) , Ĵ†

(−) = Ĵ(+) .

Moreover, it is easy to prove that the following relations hold:

[Ĵz, Ĵ(+)] = ~Ĵ(+) , (5.5a)

[Ĵz, Ĵ(−)] = −~Ĵ(−) , (5.5b)

[Ĵ(+), Ĵ(−)] = 2~Ĵz , (5.5c)

as well as the following ones

Ĵ(+)Ĵ(−) = Ĵ†
(−)Ĵ(−) = Ĵ2 − Ĵz(Ĵz − ~) , (5.6a)

Ĵ(−)Ĵ(+) = Ĵ†
(+)Ĵ(+) = Ĵ2 − Ĵz(Ĵz + ~) . (5.6b)

Homework 5.2. Check Eqs. (5.5)–(5.6).

Let us now apply Eqn. (5.6a) on a given eigenstate |λ,m〉 satisfying the eigenvalue

condition (5.4):

Ĵ(+)Ĵ(−) |λ,m〉 = (Ĵ2 − Ĵ2
z + ~Ĵz) |λ,m〉 = ~

2[λ−m(m− 1)] |λ,m〉 . (5.7a)
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Analogously, applying Eqn. (5.6b) on |λ,m〉 yields:

Ĵ(−)Ĵ(+) |λ,m〉 = (Ĵ2 − Ĵ2
z − ~Ĵz) |λ,m〉 = ~

2[λ−m(m+ 1)] |λ,m〉 . (5.7b)

Applying instead Eqs. (5.5) on |λ,m〉 yields:

ĴzĴ(+) |λ,m〉 = (Ĵ(+)Ĵz + ~Ĵ(+)) |λ,m〉 = ~(m+ 1)Ĵ(+) |λ,m〉 , (5.8a)

ĴzĴ(−) |λ,m〉 = (Ĵ(−)Ĵz − ~Ĵ(−)) |λ,m〉 = ~(m− 1)Ĵ(−) |λ,m〉 . (5.8b)

Together, these relations tell us that if |λ,m〉 is eigenstate of Ĵz with eigenvalue m,

then Ĵ(+) |λ,m〉 and Ĵ(−) |λ,m〉 are eigenstates of Ĵz too with eigenvalues ~(m + 1)

and ~(m − 1) respectively. However, in deriving this conclusion the following fact

should be stressed. Let us consider the norms of Ĵ(+) |λ,m〉 and Ĵ(−) |λ,m〉; these can
be calculated directly by taking the scalar product of Eqs. (5.7) above with 〈λ,m|.
Assuming as usual that |λ,m〉 is correctly normalized, the result is

∥∥∥Ĵ(+) |λ,m〉
∥∥∥
2

= ~
2[λ−m(m+ 1)] , (5.9a)

∥∥∥Ĵ(−) |λ,m〉
∥∥∥
2

= ~
2[λ−m(m− 1)] . (5.9b)

Homework 5.3. Prove Eqs. (5.9).

Clearly, the terms on the right-hand sides of Eqs. (5.9) above must be non-negative

real numbers. In fact, by definition the norm of a vector is a non-negative real number,

moreover here we are considering the square of a norm. This imposes a constraint on

the values that λ and m can take. To explain this point, let us generalize Eqs. (5.7)-

(5.9) to the case in which Ĵ(+) or Ĵ(−) are applied multiple times on |λ,m〉. By

induction, one can prove that the following relations hold:

Ĵz

(
Ĵp(+) |λ,m〉

)
= ~(m+ p)

(
Ĵp(+) |λ,m〉

)
, (5.10a)

Ĵz

(
Ĵq(−) |λ,m〉

)
= ~(m− q)

(
Ĵq(−) |λ,m〉

)
, (5.10b)
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where p, q = 1, 2, . . . are the number of times the operators Ĵ(+) and Ĵ(−) respectively

have been applied on |λ,m〉. Each time Ĵ(+) (respectively, Ĵ(−)) is applied on |λ,m〉
the corresponding eigenvalue of Ĵz increases or decreases respectively of one unit.

Let us now fix a particular value of m, say m0. By applying many times the

operators Ĵ(+) and Ĵ(−) on |λ,m0〉 one can generate the whole series of eigenstates of

the type |λ,m〉:

. . . , Ĵ2
(−) |λ,m0〉 , Ĵ(−) |λ,m0〉 , |λ,m0〉 , Ĵ(+) |λ,m0〉 , Ĵ2

(+) |λ,m0〉 , . . .

Of course, in general neither Ĵp(+) |λ,m0〉 nor Ĵq(−) |λ,m0〉 is guaranteed to be correctly

normalized even assuming that |λ,m0〉 is normalized. In fact, we have seen that

the contrary happens in the case p = 1, see Eqs. (5.9). The associated normalized

eigenstates are indicated as:

. . . , |λ,m0 − 2〉 , |λ,m0 − 1〉 , |λ,m0〉 , |λ,m0 + 1〉 , |λ,m0 + 2〉 , . . .

and the corresponding eigenvalues for Ĵz are given by

. . . , ~(m0 − 2), ~(m0 − 1), ~m0, ~(m0 + 1), ~(m0 + 2), . . .

The chain must stop in both directions. Let us now explain why. Eqs. (5.7) can be

generalized as follows:

Ĵ(+)Ĵ(−)

(
Ĵq(−) |λ,m0〉

)
= ~

2[λ− (m0 − q)(m0 − q − 1)]
(
Ĵq(−) |λ,m0〉

)
,

Ĵ(−)Ĵ(+)

(
Ĵp(+) |λ,m0〉

)
= ~

2[λ− (m0 + p)(m0 + p+ 1)]
(
Ĵp(+) |λ,m0〉

)
,

and Eqs. (5.9) become

∥∥∥Ĵ(+) |λ,m0 + p〉
∥∥∥
2

= 〈λ,m0 + p| Ĵ(−)Ĵ(+) |λ,m0 + p〉

= ~
2[λ− (m0 + p)(m0 + p+ 1)] , (5.11a)

∥∥∥Ĵ(−) |λ,m0 − q〉
∥∥∥
2

= 〈λ,m− q| Ĵ(+)Ĵ(−) |λ,m0 − q〉

= ~
2[λ− (m0 − q)(m0 − q − 1)] , (5.11b)
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or, stated in another way,
∥∥∥Ĵp+1

(+) |λ,m0〉
∥∥∥
2

= ~
2[λ− (m0 + p)(m0 + p+ 1)]

∥∥∥Ĵp(+) |λ,m0〉
∥∥∥
2

,
∥∥∥Ĵq+1

(−) |λ,m0〉
∥∥∥
2

= ~
2[λ− (m0 − q)(m0 − q − 1)]

∥∥∥Ĵq(−) |λ,m0〉
∥∥∥
2

.

Homework 5.4. Verify Eqs. (5.10)–(5.11).

Since the (square of) the norm of a vector in a Hilbert space must be (by definition)

a non-negative real quantity, both quantities appearing on the right-hand side of

Eqs. (5.11)

λ− (m0 + p)(m0 + p+ 1) and λ− (m0 − q)(m0 − q − 1) (5.12)

must be non-negative. Remember that p and q are integer because they indicates the

number of times we apply the Ĵ(+) and Ĵ(−). Moreover, both p and q can be made

arbitrary large since we can apply Ĵ(+) or Ĵ(−) on |λ,m0〉 as many times as we want,

and therefore for any given λ and m0 it is always possible to choose two positive

integer numbers p and q large enough to let these quantities in (5.12) to become

negative. The only way out is to admit the existence of two (non-negative) integer

numbers q0 and p0 such that the chain stops, that is,

Ĵp0(+) |λ,m0〉 6= 0 , Ĵp0+1
(+) |λ,m0〉 = 0 ,

Ĵq0(−) |λ,m0〉 6= 0 , Ĵq0+1
(−) |λ,m0〉 = 0 .

This implies that

Ĵ(−)Ĵ(+)

(
Ĵp0(+) |λ,m0〉

)
= Ĵ(−)

(
Ĵp0+1
(+) |λ,m0〉

)
= 0 ,

Ĵ(+)Ĵ(−)

(
Ĵq0(−) |λ,m0〉

)
= Ĵ(+)

(
Ĵq0+1
(−) |λ,m0〉

)
= 0 ,

from which it follows that at some point the expression in (5.12) must become zero,

i.e.:

λ = (m0 + p0)(m0 + p0 + 1) , (5.13a)

λ = (m0 − q0)(m0 − q0 − 1) . (5.13b)
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As the left-hand sides are equal, we get that:

(m0 + p0)(m0 + p0 + 1) = (m0 − q0)(m0 − q0 − 1) .

Performing the calculation, this relation leads to

m2
0 +m0p0 +m0p0 + p20 +m0 + p0 = m2

0 + q20 − 2m0q0 −m0 + q0 ,

and thus

m0 =
q0 − p0

2
,

where q0 and p0 are by construction two non-negative integer numbers. From here we

get that m0 must be either integer or half-integer. Now, if you define

j ≡ q0 + p0
2

,

we get from one of the Eqs. (5.13) that

λ = j(j + 1) .

This means the eigenvalues of Ĵ2 are of the form j(j + 1)~2, where j = (q0 + p0)/2

is an integer or half-integer: j = 0, 1/2, 1, 3/2, . . . Note also that for a given j the

smallest eigenvalue of Ĵz is given by mmin~, where

mmin = m0 − q0 =

(
q0 − p0

2

)
− q0 = −j ,

and analogously the largest eigenvalue of Ĵz is mmax~, where

mmax = m0 + p0 =

(
q0 − p0

2

)
+ p0 = j .

Therefore, the eigenvalues of Ĵz are of the form m~ where

m = −j,−j + 1,−j + 2, . . . , j − 2, j − 1, j︸ ︷︷ ︸
(2j+1) terms.

.

The fact that m and j can take only this discrete set of values is known as angular

momentum quantization.
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From now on we shall denote the eigenstates of Ĵ2 and Ĵz with |j,m〉:

Ĵ2 |j,m〉 = ~
2j(j + 1) |j,m〉 ,

Ĵz |j,m〉 = ~m |j,m〉 .

Once j is fixed (do remember that j must be integer or half-integer) the set of all

2j+1 eigenstates |j,m〉 , where m = −j,−j +1, . . . , j− 1, j, makes up what is called

a multiplet with fixed j. We can move within the multiplet leaving unchanged the

eigenvalue of Ĵ2 and changing only the eigenvalue of Ĵz one unit at a time (in units of

~) by using the operators Ĵ(+) and Ĵ(−). For example, we can start from |j, j〉 (with
the highest eigenvalue m = j of Ĵz) and move downwards by applying recursively Ĵ(−)

until the eigenstate |j,−j〉 is reached. Basically , we can construct the general state

|j,m〉 as
|j,m〉 = c̃

(−)
j,mĴ

j−m
(−) |j, j〉 .

The coefficient c̃
(−)
j,m accounts for the normalization. We can also start from |j,−j〉

and move upwards through successive applications of Ĵ(+):

|j,m〉 = c̃
(+)
j,mĴ

j+m
(+) |j,−j〉 .

Let us evaluate the coefficients c̃
(−)
j,m and c̃

(+)
j,m. The simplest case is

Ĵ(−) |j,m〉 = c
(−)
j,m |j,m− 1〉 , Ĵ(+) |j,m〉 = c

(+)
j,m |j,m+ 1〉 .

We have already calculated the norm of Ĵ(+) |j,m〉 and Ĵ(−) |j,m〉. By using Eqs. (5.9),

and making the choice of having real and positive coefficients, we find

c
(−)
j,m = ~

√
(j +m)(j −m+ 1) ,

c
(+)
j,m = ~

√
(j −m)(j +m+ 1) .

where we have made the choice for the coefficients c
(±)
j,m to be real and positive. This

choice will be crucial to determine the relative phases among states of the same
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multiplets. Thus,

Ĵ(−) |j,m〉 = ~
√
(j +m)(j −m+ 1) |j,m− 1〉 , (5.14a)

Ĵ(+) |j,m〉 = ~

√
(j −m)(j +m+ 1) |j,m+ 1〉 . (5.14b)

By iterating the same procedure, we get the general formulas

|j,m〉 = 1

~j−m
1√
(2j)!

√
(j +m)!

(j −m)!
Ĵ j−m(−) |j, j〉 , (5.15a)

|j,m〉 = 1

~j+m

1√
(2j)!

√
(j −m)!

(j +m)!
Ĵ j+m(+) |j,−j〉 . (5.15b)

Homework 5.5. Prove Eqs. (5.15).

From Eqs. (5.14) we can derive the matrix elements

〈j,m′|Ĵ(−)|j,m〉 = ~
√
(j +m)(j −m+ 1)δm′,m−1 , (5.16a)

〈j,m′|Ĵ(+)|j,m〉 = ~
√
(j −m)(j +m+ 1)δm′,m+1 . (5.16b)

So the matrix elements of Ĵ(−) and Ĵ(+) are different from zero only for the elements

next to the main diagonal. From the matrix elements of Ĵ(−) and Ĵ(+) it is possible

to calculate also the matrix elements of Ĵx and Ĵy since

Ĵx =
1

2
(Ĵ(+) + Ĵ(−)) , Ĵy =

1

2i
(Ĵ(+) − Ĵ(−)) .

The matrix elements of Ĵz can be easily calculated, because Ĵz is diagonal in the

representation of its eigenstates:

〈j,m′|Ĵz|j,m〉 = ~mδm,m′ .

The explicit matrix representations of Ĵx, Ĵy and Ĵz are for j = 1/2:

Ĵx =
~

2


0 1

1 0


 , Ĵy =

~

2


0 −i
i 0


 , Ĵz =

~

2


1 0

0 −1


 ;
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for j = 1:

Ĵx =
~√
2




0 1 0

1 0 1

0 1 0


 , Ĵy =

~√
2




0 −i 0

i 0 −i
0 i 0


 , Ĵz = ~




1 0 0

0 0 0

0 0 −1


 ;

for j = 3/2:

Ĵx =
~

2




0
√
3 0 0

√
3 0 2 0

0 2 0
√
3

0 0
√
3 0




, Ĵy =
~

2




0 −i
√
3 0 0

i
√
3 0 −2i 0

0 2i 0 −i
√
3

0 0 i
√
3 0




,

and

Ĵz =
~

2




3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3




.

5.2 Spherical Harmonics

We now come back to the specific case of orbital angular momentum. We shall employ

the notation L̂ instead of Ĵ when referring to the orbital angular momentum, and j

will be replaced by l. In the last section we have said that j is integer or half-integer.

As we shall discuss in this section, l and therefore m must be integer numbers for the

orbital angular momentum.

The first step is to look for a representation of the abstract eigenstates |l, m〉 of

L̂2 and L̂z. This is somewhat analogous to the case in which the eigenstates of the

Hamiltonian Ĥ , say |E〉, were represented on the basis of the position eigenstates:

〈x|E〉 = ψE(x). In that case, ψE(x) were the eigenfunctions of the Schrödinger oper-

ator in the position representation, and were found to be square integrable functions

of the spatial coordinate x. Here we shall do the same thing with the eigenstates
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x

y

z

(x;y;z)

’

# r

Fig. 5.1. Polar coordinates.

|l, m〉 but the basis is not that of the Cartesian coordinates |x, y, z〉 but that of the

polar coordinates |r, ϑ, ϕ〉:

〈r, ϑ, ϕ|l, m〉 = Yl,m(ϑ, ϕ) .

As we shall see, Yl,m are functions not depending explicitly on r and are usually

indicated with the symbol Yl,m; they are referred to as spherical harmonics. The

next goal is to calculate these functions.

First of all, we recall the usual relation between Cartesian and polar coordinates

(see Fig. 5.1)

x = r cosϕ sinϑ , (5.17a)

y = r sinϕ sinϑ , (5.17b)

z = r cos ϑ . (5.17c)

The three components of the angular momentum can also be rewritten in terms of

polar coordinates. For example, the z-component of the angular momentum reads

L̂z = −i~
(
x
∂

∂y
− y

∂

∂x

)
;
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x and y can be replaced directly by using Eqs. (5.17) while the derivatives ∂/∂x and

∂/∂y can be rewritten in polar coordinates by using the chain rule of differentiation:

∂

∂x
=
∂ϑ

∂x

∂

∂ϑ
+
∂ϕ

∂x

∂

∂ϕ
+
∂r

∂x

∂

∂r
,

and analogously for the other derivatives. In this way one finds

L̂x = i~

(
sinϕ

∂

∂ϑ
+ cotϑ cosϕ

∂

∂ϕ

)
,

L̂y = i~

(
− cosϕ

∂

∂ϑ
+ cotϑ sinϕ

∂

∂ϕ

)
,

L̂z = −i~ ∂

∂ϕ
.

Homework 5.6. Derive the expressions above for the components of the orbital

angular momentum in polar coordinates.

In the representation of |r, ϑ, ϕ〉 the eigenvalue problem L̂z |l, m〉 = m~ |l, m〉 be-

comes

−i~ ∂

∂ϕ︸ ︷︷ ︸
L̂z

Yl,m(ϑ, ϕ) = m~Yl,m(ϑ, ϕ) . (5.18)

Homework 5.7. Try to derive Eqn. (5.18). Bring in mind that the resolution of the

identity formula in polar coordinates reads

1 =

∫
|ϑ, ϕ〉 〈ϑ, ϕ| sinϑ dϑ dϕ .

The latter relation follows from the form of the integration volume
∫

dx dy dz =

∫
r2 dr

∫
sinϑ dϑ dϕ .

The solution of the eigenvalue problem (5.18) is given by

Yl,m(ϑ, ϕ) =
eimϕ√
2π

Θm
l (ϑ) , (5.19)

where Θm
l (ϑ) is a function to be determined which depends only on ϑ while the whole

dependence on ϕ is included in the factor eimϕ. We have put a factor 1/
√
2π as we

did for the normalization of plane wave functions.
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In order to determine the function Θm
l (ϑ) we need to express the operators L̂(+)

and L̂(−) in polar coordinates:

L̂(±) = L̂x ± iL̂y = ~ e±iϕ
(
± ∂

∂ϑ
+ i cotϑ

∂

∂ϕ

)
. (5.20)

We recall from the previous section that

L̂(+) |l, l〉 = 0 ,

which now becomes

L̂(+)Yl,l(ϑ, ϕ) = 0 ,

and using Eqn. (5.19) (
d

dϑ
− l

cos ϑ

sin ϑ

)
Θl
l(ϑ) = 0 ,

we get
d

dϑ

(
1

sinl ϑ
Θl
l(ϑ)

)
= 0 .

Its solution is given by

Θl
l(ϑ) = k sinl ϑ .

The value of k is fixed by requiring Θl
l(ϑ) to be normalized to 1:

∫ π

0

|Θl
l(ϑ)|

2
sinϑ dϑ = 1 .

The result is

Θl
l(ϑ) = (−1)l

√
(2l + 1)!

2

1

2ll!
sinl ϑ .

By repeatedly using Eqn. (5.20) we can obtain a general expression for Θm
l (ϑ):

Θm
l (ϑ) =

1

~l−m
1√
2l!

√
(l +m)!

(l −m)!
L̂l−m(−) Θ

l
l(ϑ) .

The final result is

Yl,m(ϑ, ϕ) = (−1)l
√

2l + 1

4π

√
(l +m)!

(l −m)!
eimϕ sin−m ϑ

dl−m

d(cos ϑ)l−m
(sin ϑ)2l . (5.21)
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Remark: sometimes Yl,m(ϑ, ϕ) are denoted as Y m
l (ϑ, ϕ). The spherical harmonics

can be written in a more compact way in terms of associated Legendre functions

Pm
l (cosϑ).

The abstract states |l, m〉 form a complete orthonormal basis as they are eigenstates

of the Hermitian operators L̂2 and L̂z

L̂2 |l, m〉 = ~
2l(l + 1) |l, m〉

L̂z |l, m〉 = ~m |l, m〉 .

Thus also their representation (spherical harmonics) makes up a basis on which we

can expand every function of ϑ and ϕ, i.e.:

ψ(ϑ, ϕ) =
∑

l,m

cl,mYl,m(ϑ, ϕ) .

For a given l we know that

〈l, m|l, m′〉 = δm,m′ ,

and this relation turns into
∫ 2π

0

dϕ

∫ π

0

dϑ sinϑY ∗
l,m(ϑ, ϕ)Yl,m′(ϑ, ϕ) = δm,m′

or more generally
∫ 2π

0

dϕ

∫ π

0

dϑ sinϑY ∗
l,m(ϑ, ϕ)Yl′,m′(ϑ, ϕ) = δm,m′δl,l′ .

Let us now consider in some detail the case of a plane wave exp(ik · r) in three

dimensions and find its expansion on spherical harmonics. As k · r is a scalar product,

it is invariant under rotations and there is no loss of generality if we restrict ourselves

to the case in which the vector k lies along the z-axis:

eik·r = eikr cosϑ .

Expanding on spherical harmonics yields an expression of the form

eikr cosϑ =
∑

l,m

cl,m(r)Yl,m(ϑ, ϕ) .
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In general, the expansion coefficients cl,m depend on r. In the case of plane waves,

the left-hand side in the previous equation does not depend on ϕ, that implies that

the expansion can be rewritten in terms of Θl,m(ϑ) only, that is,

eikr cosϑ =
∑

l,m

c̃l,m(r)Θl,m(ϑ) .

The coefficients of the expansion depend on l only and can be written in terms of the

so-called spherical Bessel functions Jl:

c̃l,m(r) ∝ Jl(kr) .

As exp(ikr cosϑ) depends on ϑ via cosϑ, the Θl,m(ϑ) which depend on ϑ via cosϑ are

only those having m = 0, therefore

eikr cosϑ =
∑

l

cl(kr)Θl,0(ϑ) , cl(kr) ∝ Jl(kr) .

This is the spherical harmonics expansion of the plane wave.

5.3 Addition of angular momenta

Let us now consider two systems with given angular momenta and we want to find

the angular momentum of the composite system. The results of this section are not

restricted to the case of orbital angular momentum L̂i but to any operator Ĵi satisfying

the algebra (5.3).

It should be stressed that here we are not dealing with the problem of having to

sum two numbers, instead we have to sum two operators. For the i-components this

reads

Ĵ
(T )
i = Ĵ

(1)
i + Ĵ

(2)
i .

Hereafter T denotes the total system (1 + 2) and the labels (1) and (2) indicates the

two systems.
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Being an operator, Ĵ (T ) has its own spectrum of eigenvalues. What we shall prove

in this section is that the possible eigenvalues of (Ĵ (T ))2 are given by one among the

set of values

|j(1) − j(2)| , . . . , (j(1) + j(2)) ,

where j(1) and j(2) are the eigenvalues of (Ĵ (1))2 and (Ĵ (2))2 respectively, that is

(Ĵ (1))2 | 〉 = j(1)(j(1) + 1)~2 | 〉 .

and an analogous relation holds for (Ĵ (2))2 and (Ĵ (T ))2.

(1) and (2) refer to two different systems, so the angular momentum components

of the first system do commute with each component of the second system:

[Ĵ
(1)
i , Ĵ

(2)
j ] = 0 .

From this relation it is easy to prove that the following four operators commute with

each other:

(Ĵ (1))2, (Ĵ (2))2, Ĵ (1)
z , Ĵ (2)

z , (5.22)

and the same is true also for the following set of four operators

(Ĵ (1))2, (Ĵ (2))2, (Ĵ (T ))2, Ĵ (T )
z . (5.23)

Homework 5.8. Prove that the operators (5.23) commute with each other.

Let us diagonalize simultaneously the set (5.22). The eigenvalue problem reads

(Ĵ (1))2 |j(1), j(2), m(1), m(2)〉 = ~
2j(1)(j(1) + 1) |j(1), j(2), m(1), m(2)〉 ,

(Ĵ (2))2 |j(1), j(2), m(1), m(2)〉 = ~
2j(2)(j(2) + 1) |j(1), j(2), m(1), m(2)〉 ,

Ĵ (1)
z |j(1), j(2), m(1), m(2)〉 = ~m(1) |j(1), j(2), m(1), m(2)〉 ,

Ĵ (2)
z |j(1), j(2), m(1), m(2)〉 = ~m(2) |j(1), j(2), m(1), m(2)〉 .
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If instead we diagonalize the second set of operators, namely the set (5.23), we get

(Ĵ (1))2 |j(1), j(2), J (T ),M (T )〉 = ~
2j(1)(j(1) + 1) |j(1), j(2), J (T ),M (T )〉 ,

(Ĵ (2))2 |j(1), j(2), J (T ),M (T )〉 = ~
2j(2)(j(2) + 1) |j(1), j(2), J (T ),M (T )〉 ,

(Ĵ (T ))2 |j(1), j(2), J (T ),M (T )〉 = ~
2J (T )(J (T ) + 1) |j(1), j(2), J (T ),M (T )〉 ,

Ĵ (T )
z |j(1), j(2), J (T ),M (T )〉 = ~M (T ) |j(1), j(2), J (T ),M (T )〉

The space of the states |j(1), j(2), m(1), m(2)〉 has dimension

(2j(2) + 1)(2j(1) + 1)

once j(1) and j(2) have been fixed. Now, it is easy to prove (homework) that (Ĵ (1))2

and (Ĵ (2))2 commute with Ĵ
(T )
i (the components of the total angular momentum

operator Ĵ (T )). Therefore we can look for the eigenstates of (Ĵ (T ))2 and Ĵ
(T )
z among

the eigenstates of (Ĵ (1))2 and (Ĵ (2))2 at fixed j(1) and j(2). This is because (Ĵ (T ))2 and

Ĵ
(T )
z are made up of Ĵ

(T )
i .

In order to simplify the notation we will denote the common eigenstates of (Ĵ (1))2

and (Ĵ (2))2 at fixed j(1) and j(2) with |m(1), m(2)〉, i.e. the states |j(1), j(2), m(1), m(2)〉
will be denoted by |m(1), m(2)〉 once j(1) and j(2) have been fixed. Similarly , the states

|j(1), j(2), J (T ),M (T )〉 will be indicated by |J (T ),M (T )〉.
Let us try to write |J (T ),M (T )〉 in the basis of |m(1), m(2)〉. In this way we shall

obtain the possible values of J (T ) and M (T ) once j(1) and j(2) are fixed. The solution

of this problem is based on the following two observations, namely

1. Every vector |m(1), m(2)〉 is an eigenstate of Ĵ
(T )
z with corresponding eigenvalue

M (T ) = m(1) +m(2) ,

that is

Ĵ (T )
z |m(1), m(2)〉 = ~(m(1) +m(2)) |m(1), m(2)〉 .

This is because

Ĵ (T )
z = Ĵ (1)

z + Ĵ (2)
z .
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2. For every value of J (T ) there are various M (T ) and therefore there is a certain

number, say N(J (T )), of vectors in the space of |m(1), m(2)〉. Every set contains

all the eigenvalues M (T ) from −J (T ) to J (T ).

We shall instead denote with n(M (T )) the number of states |m(1), m(2)〉 which

have the same M (T ).

It is easy to prove that the relation among n(M (T )) and N(J (T )) is

n(M (T )) =
∑

J(T )≥|M (T )|

N(J (T )) , (5.24)

because if J (T ) is larger than M (T ) then surely it has some (M ′)(T ) which is equal to

M (T ), (M ′)(T ) being in the range from −J (T ) to J (T ).

From Eqn. (5.24) it follows that

N(J (T )) = n(J (T ))− n(J (T ) + 1) . (5.25)

In fact, n(J (T )) and n(J (T ) + 1) differ only for one term, namely that of J (T ).

From Eqn. (5.25) one sees that in order to determine N(J (T )) it is sufficient to

determine n(M (T )). Now, n(M (T )) is the number of pairs (m(1), m(2)) such that

M (T ) = m(1) +m(2) .

To find this number one can employ a diagram like the one plotted in Fig. 5.2 for the

special case j(1) = 7/2 and j(2) = 2. n(M (T )) is the number of pairs (m(1), m(2)) in

that plot that are situated along the line of equationM (T ) = m(1)+m(2). If j(1) > j(2)

we get from Fig. 5.2

n(M (T )) =





0 if |M (T )| > j(1) + j(2)

j(1) + j(2) + 1−M (T ) if j(1) + j(2) ≥ |M (T )| ≥ |j(1) − j(2)|
2j(2) + 1 if |j(1) − j(2)| ≥M (T ) ≥ 0

If we put these numbers into Eqn. (5.25) we obtain

N(J (T )) = 1
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m(1)

m(2)

−j(1) − j(2)

j(1) + j(2)

Fig. 5.2. Addition of angular momenta. The bullets display all the pairs (m(1),m(2))
for j(1) = 7/2 and j(2) = 2. Remember that the only allowed values of m(1) and
m(2) given j(1) and j(2) are m(1,2) = −j(1,2),−j(1,2) + 1, . . . , j(1,2) − 1, j(1,2) thus m(1) =
−7/2,−5/2, . . . , 5/2, 7/2 and m(2) = −2,−1, 0, 1, 2. The lines correspond to M (T ) =
m(1)+m(2). For example, the red line in figure is the line of the pairs (m(1),m(2)) such that
M (T ) = −j(1) − j(2) + 3. To count the number of pairs n(M (T )) you have simply to count
how many pairs are situated along the line corresponding to M (T ).

for

J (T ) = (j(1) + j(2)), (j(1) + j(2) − 1), . . . , |j(1) − j(2)| ,

otherwise for all the other eigenvalues we get N(J (T )) = 0.

Remark. These are the eigenstates at j(1) and j(2) fixed.

From the previous considerations we obtain the following :

Theorem 5.1. In the (2j(1) + 1)(2j(2) + 1)-dimensional space spanned by

|j(1), j(2), m(1), m(2)〉

with j(1) and j(2) fixed, the possible values of the total angular momentum J (T ) are

J (T ) = (j(1) + j(2)), (j(1) + j(2) − 1), . . . , |j(1) − j(2)| .

and to each of the possible values of J (T ) it is associated one and only one multiplet

of eigenstates |J (T ),M (T )〉 of the total angular momentum.
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5.4 Clebsh-Gordon Coefficients

In the last section dealing with the sum of angular momenta, we have made use of

two basis: the |j1, j2, J,M〉 and |j1, j2, m1, m2〉. We did not insert any other label

into these kets because we made the hypothesis that ĵ21, ĵ
2
2, Ĵ

2, M̂ form a complete

set of observables and the same for the operators associated to the other ket. If this

were not so, we would have had to introduce a further label, which we will indicate

with the symbol ”α”, to indicate the eigenvalues of a set of operators to be added to

the previous ones to make them a complete set . The states would be indicated as:

|α, j1, j2, J,M〉 , and |α, j1, j2, m1, m2〉.
In order to define the states |α, j1, j2, J,M〉 unambiguously we will assume them

to have norm one and we will adopt an appropriate convention for its phase. In the

Hilbert space H (α, j1, j2) the states |α, j1, j2, J,M〉 and |α, j1, j2, m1, m2〉 form two

orthonormal basis and we can pass from one to the other by a unitary transformation:

|α, j1, j2, J,M〉 =
∑

m1,m2

|α, j1, j2, m1, m2〉 〈α, j1, j2, m1, m2|α, j1, j2, m1, m2〉 .

It is possible to prove that the coefficients of the transformation, i.e:

〈α, j1, j2, m1, m2|α, j1, j2, m1, m2〉

are independent of α. We know in fact that in the Hilbert space H (α, j1, j2) the

operator Ĵ2 and Ĵz are represented by matrices which are independent of α . In fact

indicating 〈α, j1, j2, J,M | with the shortened symbol 〈α, J,M |, we know that:

〈α, J,M | Ĵz |α′, J ′,M ′〉 =Mδα,α′δJ,J ′δM,M ′

and

〈α, J,M | Ĵ± |α′, J ′,M ′〉 =
√
J(J ± 1)−MM ′δα,α′δJ,J ′δM,M ′±1.

The same will happen for the matrices representing ĵ1 and ĵ2. As a consequence also

the components of the eigenvectors of Ĵ2 and Ĵz , i.e 〈α, j1, j2, m1, m2|α, j1.j2, J,M〉
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, will be independent of ”α”. So we can say that these transition coefficients have

a pure geometrical interpretation depending only on the angular momenta and their

orientation and not upon the physical nature of the dynamical variables labelled by

α. These coefficients are called Clebsh-Gordon (C.G) coefficients and will be written

without the label α, as 〈j1, j2, m1, m2|j1.j2, J,M〉. Taking account of this fact the

expansion of the state |α, j1, j2, J,M〉 can then be written as::

|α, j1, j2, J,M〉 =
∑

m1,m2

|α, j1, j2, m1, m2〉 〈j1, j2, m1, m2|j1.j2, J,M〉 .

In order to completely determine the C.G. coefficients, we should fix the phases of

the vectors 〈α, j1, j2, J,M |. For a fixed J the relative phases of the 2J associated

states have been fixed via the choice of taking real and positive the coefficients of

Eqn.(5-14a,b). Once this is done the 〈α, j1, j2, J,M | have only the freedom of a phase

which can change with J . We fix this phase by requiring that, whatever∗ is J , the

components of 〈α, j1, j2, J, J | along 〈α, j1, j2, J, J − j1| be real and positive i.e:

〈j1, j2, J, J − j1|JJ〉 ≥ 0.

Many properties of the C.G coefficients follow directly from their definition and

the requirements above for the phases. To get all of the C.G coefficients we have just

to use the recursion relations (5-14-a,b) and the orthonormality relation between the

states. It is then easy to find several symmetry properties of the C.G coefficients which

greatly facilitates their calculation and tabulation as was done by Racah. For more

details the reader should study sect.27 of chapter XIII and appendix C of Messiah.

5.5 Problems and Solutions

∗ J can go from |j1 − j2| to j1 + j2
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Problem 5.1. Let us consider two weakly interacting systems whose states are

specified by the quantum numbers

(l(1), m(1)) , (l(2), m(2))

of the angular momentum and of its projection along the z-axis. Calculate the

possible values of the total angular momentum L̂(T ) and the mean values of L̂
(T )
i

and (L̂(T ))2 on the corresponding eigenstates.

Solution. Note that here not only l(1) and l(2) but also m(1) and m(2) are fixed. It is

possible to prove that

max
{
|l(1) − l(2)| , |m(1) +m(2)|

}
≤ L(T ) ≤ l(1) + l(2) . (5.26)

The upper limit comes obviously from the theory of addition of angular momenta developed

in the previous section. In fact, we have seen that

|l(1) − l(2)| ≤ L(T ) ≤ l(1) + l(2) .

The lower limit however is different. Why? We know that

−L(T ) ≤M (T ) ≤ L(T )

andM (T ) = m(1)+m(2). Thus in our present case if |m(1) +m(2)| is higher than |l(1) − l(2)|,
we must stop at |m(1) +m(2)|.

Of course, since 1 and 2 are two different systems, the angular momentum components

of the first system do commute with each component of the second one:

[L̂
(1)
i , L̂

(2)
j ] = 0 .

It is also possible to prove that

¯̂
L(1)
x =

¯̂
L(2)
x = 0 =

¯̂
L(1)
y =

¯̂
L(2)
y .
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We have

¯̂
L(T )
x =

¯̂
L(1)
x +

¯̂
L(2)
x = 0 ,

¯̂
L(T )
y =

¯̂
L(1)
y +

¯̂
L(2)
y = 0 ,

¯̂
L(T )
z =

¯̂
L(1)
z +

¯̂
L(2)
z = (m(1) +m(2))~. .

(Prove this as homework.)

Let us now consider (L̂(T ))2:

(L̂(T ))2 =
(
L̂(1) + L̂(2)

)2
= (L̂(1))2 + (L̂(2))2 + 2L̂(1) · L̂(2) .

We know that

(L̂(1))2 = ~
2l(1)(l(1) + 1) , (L̂(2))2 = ~

2l(2)(l(2) + 1) .

We have only to calculate

2L̂(1) · L̂(2) = 2L̂
(1)
x L̂

(2)
x + 2L̂

(1)
y L̂

(2)
y + 2L̂

(1)
z L̂

(2)
z .

Remember that the states on which we are calculating the mean values are

|l(1),m(1), l(2),m(2)〉 = |l(1),m(1)〉 ⊗ |l(2),m(2)〉 ,

where the symbol ⊗ stay for tensor product and an operative definition has been given in

chapter 3, thus for example:

L̂
(1)
x L̂

(2)
x =

(
〈l(1),m(1)| ⊗ 〈l(2),m(2)|

)
L̂(1)
x L̂(2)

x

(
|l(2),m(2)〉 ⊗ |l(1),m(1)〉

)

= 〈l(1),m(1)|L̂(1)
x |l(1),m(1)〉 〈l(2),m(2)|L̂(2)

x l(2),m(2)〉

= L̂
(1)
x L̂

(2)
x = 0 .

In the same way

L̂
(1)
y L̂

(2)
y = L̂

(1)
y L̂

(2)
y = 0 , L̂

(1)
z L̂

(2)
z = L̂

(1)
z L̂

(2)
z = ~

2m(1)m(2) .

Thus,

(L̂(T ))2 = ~
2
[
l(1)(l(1) + 1) + l(2)(l(2) + 1) + 2m(1)m(2)

]
. (5.27)
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⋆ ⋆ ⋆

Problem 5.2. In the same setting of the previous problem, calculate the proba-

bilities of the various values of the angular momentum, assuming m(1) = l(1) and

m(2) = l(2) − 1.

Solution. By looking at Eqn.(5.26), the range of possible values of L̂(T ) is:

max
{
|l(1) − l(2)| , |m(1) +m(2)|

}
≤ L(T ) ≤ l(1) + l(2) .

In the special case in which m(1) = l(1) and m(2) = l(2) − 1,

max
{
|l(1) − l(2)| , |m(1) +m(2)|

}
= max

{
|l(1) − l(2)| , |l(1) + l(2) − 1|

}

and so the range becomes

l(1) + l(2) − 1 ≤ L(T ) ≤ l(1) + l(2) .

This relation tells that there are only two possible values of L(T ), namely

l(1) + l(2) , l(1) + l(2) − 1 .

If we denote by P (L(T )) the probability of finding L(T ) in a measurement, then

P (l(1) + l(2)) + P (l(1) + l(2) − 1) = 1 .

and the mean value (L̂(T ))2 can be written (in units of ~)

(L̂(T ))2 =
∑

L(T )

L(T )(L(T ) + 1)P (L(T ))

= (l(1) + l(2))(l(1) + l(2) + 1)P (l(1) + l(2)) +

(l(1) + l(2) − 1)(l(1) + l(2))
[
1− P (l(1) + l(2))

]

︸ ︷︷ ︸
=P (l(1)+l(2)−1)

. (5.28)

From Eqn. (5.27) with m(1) = l(1) and m(2) = l(2) − 1 we get

(L̂(T ))2 = l(1)(l(1) + 1) + l(2)(l(2) + 1) + 2l(1)(l(2) − 1) ,



140 Chapter 5. Angular momentum quantization

comparison between this expression and Eqn. (5.28) yields

P (l(1) + l(2)) =
l(2)

l(1) + l(2)
, P (l(1) + l(2) − 1) =

l(1)

l(1) + l(2)
.

⋆ ⋆ ⋆

Problem 5.3. Prove that, starting from the commutation relation

[L̂i, Ô] = 0 ,

between the angular momentum operators L̂i and an Hermitian operator Ô, it

is possible to deduce that the matrix elements

〈L,M |Ô|L,M ′〉

are different from zero only if M =M ′ and they are independent of M .

Solution. Let us start from the commutation relation

L̂zÔ − ÔL̂z = 0 .

By applying it to the eigenstate |M〉 we get

L̂zÔ |M〉 = ÔL̂z |M〉 =MÔ |M〉 ,

and this tells us that Ô |M〉 is eigenstate of L̂z with eigenvalue M . Thus,

〈M ′|ÔM 〉 ∝ 〈M ′|M〉 = δM ′,M ,

which is the first part of what we have to prove.

Let us now prove the second part. Since every L̂i commutes with Ô, L̂(+) commutes with

Ô too:

L̂(+)Ô = ÔL̂(+) ,
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and by taking the matrix elements of L̂(+)Ô between 〈M + 1| and |M〉 we get

〈M + 1|L̂(+)Ô|M 〉 = 〈M + 1|ÔL̂(+)|M 〉 .

We know that L̂(+) acts on |M〉 in the following way:

L̂(+) |M〉 =
√

(L−M)(L+M + 1) |M + 1〉 .

It is also easy to prove that

〈M + 1| L̂(+) =
√

(L−M)(L+M + 1) 〈M | .

Hence,

√
(L−M)(L+M + 1) 〈M |Ô|M〉 = 〈M + 1|Ô|M + 1〉

√
(L−M)(L+M + 1)

which implies

〈M |Ô|M〉 = 〈M + 1|Ô|M + 1〉 ,

This proves that the expectation values of Ô are independent of M .

⋆ ⋆ ⋆

Problem 5.4. Find the eigenstates of the total angular momentum of two sys-

tems whose angular momenta are L(1) = 2 and L(2) = 1. How many states are

there? How many of them have M (T ) = 0?

Solution. For the rules of addition of angular momenta, L(T ) can take only the following

values:

|L(1) − L(2)| , . . . , L(1) + L(2) .

In our case, L(1) = 2, L(2) = 1 thus |L(1) − L(2)| = 1 and L(1) + L(2) = 3, therefore

L(T ) =





3 or

2 or

1
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Associated to each value of L(T ) are the corresponding values of M (T ), for example for

L(T ) = 3 the possible values of M (T ) are

M (T ) = −3,−2,−1, 0, 1, 2, 3 .

Therefore, the states |L(T ),M (T )〉 with L(T ) = 3 are

|3, 3〉 , |3, 2〉 , |3, 1〉 , |3, 0〉 , |3,−1〉 , |3,−2〉 , |3,−3〉 .

There are seven states |L(T ),M (T )〉 with L(T ) = 3. For L(T ) = 2 the possible states are

|2, 2〉 , |2,−1〉 , |2, 0〉 , |2,−1〉 , |2,−2〉 ,

there are five such states. Finally, there are three states with L(T ) = 1, namely

|1, 1〉 , |1, 0〉 , |1,−1〉 .

There is a total of 7 + 5 + 3 = 15 states, three of which have M (T ) = 0: |3, 0〉, |2, 0〉 and

|1, 0〉.

⋆ ⋆ ⋆
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SYMMETRIES IN QUANTUM MECHANICS

6.1 Rotations, symmetries, unitary transformations and degeneracy

In quantum mechanics the basic quantities are the probabilities:

P = 〈ψ|ψ〉 .

If now we change the states |ψ〉 via a unitary transformation Û :

Û |ψ〉 = |ψ′〉 ,

it is easy to prove that the probabilities are left unchanged. In fact,

P ′ = 〈ψ′|ψ′〉 = 〈ψ|Û †Û |ψ〉 = 〈ψ|Û−1Û |ψ〉 = 〈ψ|ψ〉 = P .

Therefore, the probabilities do not change under unitary transformations of states.

What happens to the mean values of an observable? Let us consider the expectation

value of an observable Ô on a state |ψ〉, it is given by

Ō = 〈ψ|Ô|ψ〉 .

Now, let |ψ〉 be transformed according to an unitary transformation Û : |ψ′〉 = Û |ψ〉.
In order the mean value to be the same, Ô must be transformed according to

Ô′ = Û ÔÛ † .

In fact, in this way one gets

〈ψ′|Ô′|ψ′〉 = 〈ψ|Û †Û ÔÛ †Û |ψ〉 = 〈ψ|Ô|ψ〉 .
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So by performing a unitary transformation we have to change both the states and the

operators.

Somehow unitary transformations play in quantum mechanics the role that in clas-

sical mechanics is played by canonical transformations.

Let us now turn back to rotations. In classical mechanics, angular momentum is

the generator of the rotations, in the sense that any observable O transforms under

a rotation of an angle ∆ϕ around the z-axis according to the following rule:

O′ = O +∆ϕ {Lz, O}P.B. , (6.1)

as long as ∆ϕ can be considered small enough.(P.B) stays for Poisson Brackets. If we

now look at infinitesimal time translations, these are generated by Ĥ and accordingly

we have

O′ = O +∆t {H,O}P.B. .

By using the correspondence rule, we may infer the transformation in quantum me-

chanics:

Ô′ = Ô +∆t
[Ĥ, Ô]

i~
.

We also know that for finite transformations the time-evolution operator is given by

Ut = e−
i
~
Ĥt . (6.2)

In the same way, for the infinitesimal rotation given by Eqn. (6.1) the quantum

analogous becomes:

Ô′ = Ô +∆ϕ
[L̂z, Ô]

i~
. (6.3)

For a finite rotation we should get the analogous of Eqn. (6.2), namely

Ûϕ = e−
i
~
L̂zϕ .

This means that under finite rotations the states should transform according to

|ψ′〉 = Ûϕ |ψ〉 ,
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while observables Ô transform in the following way:

Ô′ = ÛϕÔÛ
†
ϕ = e−

i
~
L̂zϕ Ô e

i
~
L̂zϕ .

Let us now see if from this, for small angles, we get (6.3). Let us start from

Ô′ = e−
i
~
∆ϕL̂z Ô e

i
~
∆ϕL̂z ,

by expanding the exponentials we get

Ô′ =

[
1− i

~
∆ϕL̂z + . . .

]
Ô

[
1 +

i

~
∆ϕL̂z + . . .

]

= Ô +
i

~
∆ϕ[Ô, L̂z] +O(∆ϕ2)

= Ô +
∆ϕ

i~
[L̂z, Ô] +O(∆ϕ2)

which is nothing but Eqn. (6.3).

If [L̂z, Ô] = 0, then Ô′ = Ô, i.e., the observable Ô is invariant under rotations.

Let us now try to derive explictely that Ûϕ = e−iϕL̂z/~ generates a finite rotation

around the z-axis.

For an infinitesimal rotation we have:

|ψ′〉 = Û∆ϕ |ψ〉 = e−
i
~
∆ϕL̂z |ψ〉 .

Taking the derivative of |ψ′〉 with respect to ϕ, we get:

d |ψ′〉
dϕ

= − i

~
L̂z |ψ′〉 .

If we perform explicitly a traslation of an infinitesimal angle ε on ϕ then ψ(r, ϑ, ϕ)

goes into ψ′(r, ϑ, ϕ+ ε), hence

ψ′(r, ϑ, ϕ+ ε) = ψ(r, ϑ, ϕ) + ε
d

dϕ
ψ(r, ϑ, ϕ)

= ψ(r, ϑ, ϕ)− iε

~
L̂zψ(r, ϑ, ϕ) + . . .
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and since ε is “small” we can write

|ψ′〉 = e−
i
~
εL̂z |ψ〉 .

To get a finite rotation, we have to multiply many infinitesimal rotations:

e−
i
~
ε1L̂z e−

i
~
ε2L̂z · · · (6.4)

By applying the Baker-Hausdorff formula

eÂ eB̂ = eH(Â,B̂) ,

where

H(Â, B̂) = Â+ B̂ +
1

2
[Â, B̂] + . . .

and the dots denote commutators of commutators, we get from Eqn. (6.4)

e−
i
~
(ε1+ε2+...)L̂z , (6.5)

because the various L̂z commute among themselves. Eqn. (6.5) means that even for

finite rotations the generator is given by Û(ϕ) = e−iϕL̂z/~ that is what we wanted to

prove.

So far we have dealt with rotations around the z-axis. What’s about generic rota-

tions? It is well-known from analytic mechanics that any rotation can be written as a

rotation of some angle α around a direction specified by a unit vector n. Thus, three

angles are needed in order to specify a generic rotation: the two that specify n and

the rotation angle α. The unitary operators associated to such rotations are given by

Û(α,n) = e−
i
~
αn·L̂ , (6.6)

where n · L̂ = nxL̂x + nyL̂y + nzL̂z. Eqn. (6.6) reduces to the previous formula for

the case of rotations about the z-axis.

Remark : The statement we made at the beginning of this section that mean values

are left unchanged under unitary transformations, is always true except in the case
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of the time evolution generated by e−iĤt/~. Under this transformation, mean values

change in time. We will see later that in this case states and observables must be

treated on a different ground (Schrödinger and Heisenberg picture).

6.2 Symmetries, generators and degeneracy

In classical mechanics, a symmetry is a transformation which leaves the equation of

motion invariant. It is easy to prove that at the Hamiltonian level this implies the

existence of a quantity Q(q, p) having null Poisson brackets with the Hamiltonian:

{Q(q, p), H}P.B. = 0 .

If Q(q, p) does not depend explicitly on time, then

dQ(q, p)

dt
=
∂Q

∂q

∂q

∂t
+
∂Q

∂p

∂p

∂t
=
∂Q

∂q

∂H

∂p
− ∂Q

∂p

∂H

∂q
= {Q,H}P.B. .

If {Q,H}P.B. = 0 then dQ/ dt = 0, i.e., Q is a conserved quantity (Noether theorem).

By using the corrispondence principle,

{·, ·}P.B. →
1

i~
[·, ·] ,

we get

{Q,H}P.B. →
1

i~
[Q̂, Ĥ] ,

and from {Q,H}P.B. = 0 we obtain [Q̂, Ĥ] = 0. This means that at the quantum

level a symmetry is signaled by the presence of a charge Q̂ which commutes with the

Hamiltonian.

Q̂ is referred to as “charge” or also as “generator” of a symmetry. The first name

comes from the analogy with electromagnetism, where gauge invariance, namely,

Aµ → Aµ + ∂µε(x) ,

leads to the conservation of charge. The second name comes from the fact that the

transformation

δq = {q, Q}P.B.ε ,

δp = {p,Q}P.B.ε ,
(6.7)
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generates a symmetry of the equation of motion. Here, ε is an infinitesimal parameter,

When ε does not depends on time, we speak of “global” symmetry, otherwise we speak

of “local” or gauge transformation.

Homework 6.1. Prove that if {Q,H}P.B. = 0 then the equation of motion are left

unchanged in form, i.e., Q generates a symmetry.

From the correspondence principle, it may seem that if a charge is conserved at

the classical level then it is conserved also at quantum level. Actually, this is not

always the case, at least when considering systems having infinitely many degrees of

freedom, such as fields. In such cases quantum effects may break the symmetry. The

two most studied examples of such effects are the spontaneous symmetry breaking

and the anomalies, the former being related for example to the Higgs mechanism

while the latter is responsible for the π0 → 2γ decay and it also implies that there

must be as many quarks as leptons.

Let us now turn to investigate what are the first consequences of the presence of

a symmetry in quantum mechanics. The first consequence is degeneracy. Let us

suppose we know the eigenstates of the Hamiltonian Ĥ :

Ĥ |En〉 = En |En〉 .

For simplicity, we are assuming the eigenstates to be discrete. We have learned that

if Ĥ has a symmetry, then there must be a charge Q̂ which commutes with it:

[Q̂, Ĥ] = 0 .

Now, it is easy to prove that the state

|Ẽn〉 ≡ Q̂ |En〉

is again an eigenstate of Ĥ with the same eigenvalue of |En〉, namely En, thus we
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have degeneracy. The proof goes as follows. From [Q̂, Ĥ] = 0 we get

[Q̂, Ĥ ] |En〉 = 0

Q̂Ĥ |En〉 − ĤQ̂ |En〉 = 0

Q̂En |En〉 − Ĥ |Ẽn〉 = 0

EnQ̂ |En〉 − Ĥ |Ẽn〉 = 0

En |Ẽn〉 − Ĥ |Ẽn〉 = 0 ,

from which it follows

Ĥ |Ẽn〉 = En |Ẽn〉 .

If now we consider the unitary operator Û associated to Q̂, i.e.,

Û(α) = e−
i
~
Q̂α ,

where α is the parameter of the symmetry, we can construct a whole family of states

Û(α) |En〉 = |Ẽn, α〉 ,

and they are all degenerate with |En〉, i.e.:

Ĥ |Ẽn, α〉 = Ĥ e−
i
~
Q̂α |En〉 = e−

i
~
Q̂α Ĥ |En〉 = e−

i
~
Q̂αEn |En〉

= En e
− i

~
Q̂α |En〉 = En |Ẽn, α〉 .

Remark : not every degeneracy is due to symmetries. There are also accidental de-

generacies.

6.3 Brief introduction to Lie groups.

The set of unitary operators Û(α,n) = e−
i
~
αn·L̂ which implement the generic rotations

on the Hilbert space form a structure which in mathematics is called a group. A group

G is a set of elements g ∈ G on which an internal operation is defined (let us indicated

it with ∗) such that:

g ∗ g′ = g′′ ∈ G
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Moreover in G there must exist an identity element, ”e”, such that:

e ∗ g = g ∗ e = g

and finally, given any element g there must exist in G the inverse of g, indicated by

g−1 such that:

g ∗ g−1 = g−1 ∗ g = e.

Some groups are a set on which the concept of continuity can be defined and this,

together with few other properties, make what are called the Lie groups. For these

it is always possible to find what are called the generators Ôi of the group. They are

such that every element U of the group can be written as :

U = ei
∑

i αiÔi

where the αi are a set of continuos parameters which are as many as the group gen-

erators Ôi. The group structure of U induces the following algebra on the generators:

[Ôi, Ôj] = Ck
i,jÔk

where [·, ·] is the commutator and the Ck
i,j are constants called structure constants. The

above commutation relation defines what is called a Lie-algebra among the generators.

For the rotation group the analogue of this algebra are the commutators among the

angular momentum operators. Given an abstract Lie algebra we can build the Lie-

group but then we have to decide on which space it acts. The explicit realization of

the algebra and the group elements on this space is called a ”representation” of the

group and of the algebra. For example for the rotation group and algebra we have

seen in the previous chapter that the spaces on which it can act are vector spaces of

dimension 2J + 1 with J integer or half-integer. So we can say that each value of J

labels a representation.

This is just a brief introduction to the concept of groups. More will be studied in

advanced courses next year.
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6.4 Scalar and Tensor Operators

From now on we shall concentrate con the rotation group.

There are observables which are invariant under rotation like for example:

R̂2 ≡ x̂2 + ŷ2 + ẑ2

These operators are called scalars and we will indicate them with Ŝ. From the invari-

ance of Ŝ under U = e−
i
~
αn·Ĵ , i.e:

Ŝ = UŜU †

we get that Ŝ commutes with the generators Ĵ :

[Ŝ, Ĵ ] = 0. (6.8)

In an exercise in chapter 5) we proved that, from the commutation relation (6.8),

we can derive that:

〈J,M | Ŝ |J ′,M ′〉 = δJ,J ′δM,M ′S(J) (6.9)

where S(J) is a quantity which depends on J but not on M . Eqn.(6.9) tells us also

that the state Ŝ |J ′,M ′〉 is still a state with quantum numbers (J ′,M ′), i.e Ŝ does not

change the quantum numbers of the state to which it is applied. We can generalize

the concept of scalar operator to vector and tensor operators. They are defined by

the manner they transform under rotation. A vector operator V̂ is defined as:

UV̂iU
† =

3∑

J=1

RijV̂J

where Rij are the same three by three rotation matrix we would obtain if we apply

a rotation to (x, y, z). If we take two vector operators V̂ and Ŵ , we can build the

following object with 9 components:

V̂iŴj (6.10)
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plus all their linear combinations. Their transformation properties would be

(V̂iŴj)
′

= RikRjs(V̂kŴs).

This is a particular tensor. We see that it is an object with multi-index and each of

them transform linearly, in our case with the matrix R. Among the tensors we will

pay particular attention to the irreducible ones. These are defined as follows: let us

suppose the space of our tensors has dimension N . If there is a subset of this space

of dimension M < N such that any rotation brings every element of this subset into

elements of the same subset, then we say that the tensor space is reducible, in the

opposite case we say that it is irreducible. When it is reducible we can represents our

tensor in the subspace M . For example the tensor we have built in Eqn.(6.10) is not

irreducible. Its 9-dimensional space contains irreducible subspaces of dimension 1,3

and 5. They are respectively the space of the scalar product:
∑

i V̂iŴi that under

rotation is left unchanged and it is a 1-dimensional space, the 3-dimensional space

associated to the the vector product:V̂ ∧ Ŵ =
∑
ǫijkVjWk which is a vector and so

under rotation goes into a vector, and the 5-dimensional space associated to J = 2.

The dimensions of all these spaces is always 2J + 1 with J integer or half-integer. In

general, it is easy to prove that, if the (2J +1) operators T̂
(J)
M with −J ≤M ≤ J are

the standard components of an irreducible J-th order tensor operator T̂ (J), then they

transform under rotation according to the law:

UT̂
(J)
M U−1 =

∑

M ′

T̂
(J)
M ′ R

(J)
M ′M (6.11)

where R
(J)
M ′M are the matrices of rotation for the states in the J representation.

This means that these matrix elements are the same as those which enter the trans-

formation:

U |J,M〉 =
∑

M ′

|J,M ′〉R(J)
M ′M (6.12)

Using Eqn.(6.12) and (6.11) it is easy to prove that the operators T̂
(J)
M have the
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following commutation relations with the generators Ĵ±, Ĵz

[Ĵ±, T̂
(J)
M ] =

√
J(J + 1)−M(M ± 1)T̂

(J)
M±1 (6.13)

and

[Ĵz, T̂
(J)
M ] =MT̂

(J)
M (6.14)

6.5 Wigner-Eckart Theorem

What we shall do in this section is to give the general form of the matrix elements

of irreducible tensor operators. Somehow this is the analogue of what we did in

Eqn. (6.9) for scalar operators. For convenience of notation in this section we will

indicate the irreducible tensors with the notation: T̂
(K)
q which means we are in the

(K) representation and take the q element. Let us now indicate with

〈J ′, K,M ′, q|JM〉 (6.15)

the Clebsh-Gordon coefficients which in the full notation we would write as:

〈J ′, K,M ′, q|J ′, K, J,M〉 (6.16)

where J ′ and K are the analogue of j(1) and j(2) used in the previous chapter and

M ′ and q are the analogue of m(1) and m(2). Let us also make the assumption that

Ĵ2, Jz are not a complete set of operators and that, in order to specify uniquely the

states, we need some extra quantum numbers which we will indicate with α. It is

then possible to prove the following relation:

〈α, J,M | T̂ (K)
q |α′, J ′.M ′〉 = 1√

(2J + 1)
〈α, J| |T (K)| |α′, J ′〉 · 〈J ′, K,M ′, q|J,M〉

(6.17)

The quantity that we have simbolically indicated with 〈α, J| |T (K)| |α′, J ′〉 is called

reduced matrix elements and it is a number which depends only on (J, J ′, α, α′, K)

but not on (M,M ′, q). We will not calculate it explicitly except for vector operators.

The other term on the RHS of Eqn.(6.17) is a Clebsh Gordon coefficient.
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Eqn. (6.17) is called Wigner-Eckart theorem and for a detailed derivation we refer

the reader to capt.XIII of Messiah. We will prove it later on for vector operators only.

What instead we will do now is to derive some consequences of this theorem. One

of these result is a selection rule which tells us that the matrix elements of T̂
(K)
q are

different from zero only if:

q =M −M ′ (6.18)

and

|J − J ′| ≤ K ≤ (J + J ′) (6.19)

This is so because on the R.H.S of Eqn. (6.17) we have a Clebsh-Gordon coefficient

which is different from zero only if the relations (6.18) and (6.19) are satisfied. Let

us apply all of this to a vector-operator V̂ . It is called vector operator because, as

we explained in previous section, under the rotation generators Ĵ it transform like a

vector which means it has the following commutation relations with Ĵ :

[Ĵx, V̂x] = 0, [Ĵx, V̂y] = i~V̂z, [Ĵx, V̂z] = −i~V̂y (6.20)

and cyclically with the other components of Ĵ . We can also build the V̂± and Ĵ± and

derive from (6.20) the following set of commutation relations:

[Ĵx, V̂±] = ∓~V̂z, [Ĵy, V̂±] = −i~V̂z, [Jz, V±] = ±~V̂± (6.21)

and

[Ĵ+, V̂+] = 0, [Ĵ+, V̂−] = 2~V̂z, [Ĵ−, V̂+] = −2~V̂z, [Ĵ−, V̂−] = 0 (6.22)

Let us now calculate the matrix elements of V̂z between 〈J,M | and |J ′,M ′〉, i.e.:

〈J ′M ′| V̂z |J,M〉 (6.23)

We will see that a lot of these elements will be zero. For example it is easy to prove

that if M 6= M ′ the matrix elements above are zero. The proof goes as follows: we

know from the commutation relations above that [V̂z, Ĵz] = 0 and if we sandwich it
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among the states we get: 〈J ′,M ′| [V̂z, Ĵz] |J,M〉 = 0. Applying Ĵz on the states on

the left and on the right we get:

〈J ′,M ′| [V̂z, Ĵz] |J,M〉 = ~(M −M ′) 〈J ′M ′| V̂z |J,M〉 = 0

Now if we choose M 6=M ′ we get that the relation above is satisfied only if:

〈J ′M ′| V̂z |J,M〉 = 0.

Another easy thing to prove is that the matrix elements: 〈J,M | V± |J,M ′〉 are different
from zero if and only if M ′ = M ± 1. This goes as follows. Let us sandwich the

commutation relation [Ĵz, V̂±] = ±~V̂± among states of different M, and we get

〈J,M | V̂± |J,M ′〉 = ±1

~
〈JM | [Ĵz, V̂±] |J,M ′〉

If we apply, in the term on the RHS, the operator Ĵz on the bra and the ket, we get

that the equality above becomes:

±(M ∓ 1−M ′) 〈J,M | V̂± |J,M ′〉 = 0

As a consequence, if M 6=M ′ ± 1, we get that it must be:

〈J,M | V̂± |J,M ′〉 = 0

We will now prove the important result that the matrix elements of V̂ are propor-

tional to the matrix elements of Ĵ . Let us remember from (6.22) that Ĵ+ and V̂+

commutes so their matrix elements between any state are zero. Let us in particular

sandwich it between 〈J,M + 2| and |J,M〉 and we get:

〈J,M + 2| Ĵ+V̂+ |J,M〉 = 〈J,M + 2| V̂+Ĵ+ |J,M〉 .

Let us now insert a completeness
∑

|J ′,M ′〉 〈J ′M ′| = 1 between the operators Ĵ+

and V̂+ above. Because of the manner the operator Ĵ+ acts on the states, the only



156 Chapter 6. Symmetries in Quantum Mechanics

elements different from zero which survive ,after we have inserted the completeness,

produce the following relation:

〈J,M + 2| Ĵ+ |J,M + 1〉 〈J,M + 1| V̂+ |J,M〉 = 〈J,M + 2| V̂+ |J,M + 1〉 〈J,M + 1| Ĵ+ |J,M〉

which is equivalent to :

〈J,M + 1| V̂+ |J,M〉
〈J,M + 1| Ĵ+ |J,M〉

=
〈J,M + 2| V̂+ |J,M + 1〉
〈J,M + 2| Ĵ+ |J,M + 1〉

This holds for all −J ≤M ≤ J so we can say that from the relation above we get:

〈J,M + 1| V̂+ |J,M〉 = α(J) 〈J,M + 1| Ĵ+ |JM〉 (6.24)

where α(J) is a proportionality constant independent of M but which could, in prin-

ciple, depends on J . As the RHS above is different from zero only if the bra is

〈J,M + 1|, we can generalize Eqn.(6.24) as follows:

〈J,M ′| V̂+ |J,M〉 = α(J) 〈J,M ′| Ĵ+ |JM〉 (6.25)

It is easy to prove that this proportionality can be extended to all the components

of V̂ with the same proportinality factor α(J). Let us prove this for the z-component.

We start from the commutation relation:

[Ĵ−, V̂+] = −2~V̂z (6.26)

and let us sandwich both sides between 〈J,M | and |J,M〉. Acting with the Ĵ− which

is inside (6.26) on the bra and the ket on which we have sandwiched the above

commutator, we obtain for the LHS of (6.26):

~
√
J(J + 1)−M(M + 1) 〈J,M + 1| V̂+ |J,M〉−~

√
J(J + 1)−M(M − 1) 〈J.M | V̂+ |J,M − 1〉

This last expression, once we use (6.25) in it, becomes:

α~{
√
J(J + 1)−M(M + 1) 〈J,M + 1| Ĵ+ |J,M〉−

√
J(J + 1)−M(M − 1) 〈J,M | Ĵ+ |J,M − 1〉}
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This expression can be easily worked out and we get that it is equal to −2~αM

which can be written as 2α(J) 〈J,M | Ĵz |J,M〉 . So, going now back to (6.26), we can

conclude that:

〈JM | V̂z |JM〉 = α(J) 〈J,M | Ĵz |J,M〉

which is what we wanted to prove. In a similar manner we can prove the same

proportionality for all the other components of V̂ . This is basically the Wigner-

Eckart theorem for vector operators.





Chapter 7

SPIN

In the quantization of angular momentum, or better, of the operators Ĵi satisfying

the same algebra of angular momentum operators, namely

[Ĵi, Ĵj] = i~εijkĴk ,

we proved that we can get only integer or half-integer values. Now, we are interested in

trying to check if the half-integer cases can be associated to some physical phenomena.

Of course, half-integer values cannot be related to orbital angular momentum. In fact,

suppose we perform a rotation about z on some wave function ψ(ϕ). We know the

unitary operator corresponding to this rotation is given by

Û(α) = e−
i
~
L̂zα ,

being α the angle of rotation. Now, suppose we select ψ(ϕ) as an eigenstate of L̂z

with eigenvalue ~/2, i.e.,

L̂zψ 1
2
(ϕ) =

1

2
~ψ 1

2
(ϕ) ,

and let us performe a rotation on ψ 1
2
of an angle of 2π:

Û(2π)ψ 1
2
(ϕ)

︸ ︷︷ ︸
ψ 1

2
(ϕ+2π)

= e−
i
~
L̂z2π ψ 1

2
(ϕ)

= e−
i
~
2π 1

2
~ ψ 1

2
(ϕ)

= −ψ 1
2
(ϕ) .

We expect to come back to the same state instead this does not happen. There are

two possible ways of overcome this difficulty: either ψ 1
2
(ϕ) cannot be an eigenstate
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Fig. 7.1. Illustration of the Stern-Gerlach experiment.

of L̂z or L̂z is not the operator of rotation. Both are absurd conclusions. Thus there

must be a different interpretation of the half-integer eigenvalues.

In 1922 Stern and Gerlach performed a well-known experiment in which a beam

of atoms having only one valence electron was sent through a strongly inhomogeneus

magnetic field like in Fig. 7.1. What did Stern and Gerlach find? The beam splitted

into two beams!

Such results had been already explained within the framework of Bohr model by

Uhlenbeck and Goudsmit by assuming that the electron carries an intrinsic angular

momentum, called spin, whose components can take only the values ±~/2 and to

which it corresponds an intrinsic magnetic moment ±~

2
e

m0c
.

A quantity which is used to measure magnetic moments is the so-called “Bohr

magneton” µ0, defined by

µ0 ≡
e~

2m0c
. (7.1)

When a charged particle (with charge e) rotates with (orbital) angular momentum

m~ then its magnetic moment due to the orbital angular momentum is mµ0 = µ. We

will return on this issue when we will talk about the Zeeman effect.

If we measure the angular momentum in units of ~ and the magnetic moment in

units of the Bohr magneton then the ratio

µ/µ0

Lz/~
= g ,

is called “gyromagnetic ratio” and is equal to 1. On the contrary, for the spin it
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comes out that this ratio is 2. This is called “anomalous gyromagnetic ratio” and it

is explained by the Dirac relativistic equation.

The interaction Hamiltonian between a magnetic moment and a magnetic field is

HI = µ ·B . (7.2)

Thus, if the magnetic moment is generated by a rotation of a charge, the Hamiltonian

is

HI = µ ·B ,

while in the case in which the magnetic moment is due to spin we get

HI = 2µ ·B .

In describing the spin we used at the beginning the expression “intrinsic angular

momentum” but this is misleading. The electron seems to be a point-like particle

at the present energy (7 TeV) and so the picture of something rotating on itself is

not appropriate (at least at the present energy). What is more appropriate to say is

that the electrons and many other particles behave as small magnets endowed with a

magnetic moment which at the quantum level becomes a set of three operators with

the same algebra of the one of the angular momentum. But this does not imply that

this quantum number is a sort of “angular momentum”.

Other quantum observables that you will encounter in particle physics, like the

isotopic spin etc., have the same algebra as angular momentum but have nothing to

do with it.

7.1 Quantum description of particles carrying spin

Since spin is not a space-time property of a particle, how can we realize the wave

function of a particle with spin?

We have seen that the algebra associated to spin is

[ŝi, ŝj] = i~εijkŝk , (7.3)
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sz can only take the values ±~/2 the number of states in the multiplet is 2l + 1 = 2.

This means the matrices ŝi are two-by-two matrices. Two-by-two matrices satisfying

the algebra (7.3) have been worked out in section 5.1 and take the form

ŝi =
~

2
σ̂i , (7.4)

where σ̂i are the so-called Pauli matrices whose form is

σ̂x =


0 1

1 0


 , σ̂y =


0 −i
i 0


 , σ̂z =


1 0

0 −1


 .

Their form can be obtained via simple arguments as follows. ŝz must have eigenvalues

±~/2, therefore σ̂z must have eigenvalues ±1 as it is clear from Eqn. (7.4). Since z

is an arbitrary direction, and we could choose the x and y directions instead of z,

then also σ̂x and σ̂y must have eigenvalues ±1 . If this is so, their squares have only

eigenvalues equal to 1 and thus they must be the identity matrix:

σ̂2
x = σ̂2

y = σ̂2
z = 11 =


1 0

0 1


 . (7.5)

Now, consider the commutation rule

σ̂yσ̂z − σ̂zσ̂y = 2iσ̂x .

We multiply this expression by σ̂z from the right and we make use of Eqn. (7.5):

σ̂y − σ̂zσ̂yσ̂z = 2iσ̂xσ̂z .

If we multiply instead from the left we get

σ̂zσ̂yσ̂z − σ̂y = 2iσ̂zσ̂x .

By summing the two previous expressions, it follows

2i (σ̂xσ̂z + σ̂zσ̂x) = 0 ,
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i.e.,

{σ̂x, σ̂z} = 0 ,

where {·, ·} denotes the anti-commutator. In the same way it is possible to prove that

in general:

{σ̂i, σ̂j} = δi,j11 .

Using this formula and the commuation rules

[σ̂i, σ̂j ] = 2iεijkσ̂k ,

it is not difficult to prove that

σ̂rσ̂s = δr,s11 + iεrskσ̂k ,

where, in the last term on the R.H.S, summation over k is understood.

Now, we choose the representation in which σ̂z is diagonal and we keep in mind

that its eigenvalues are ±1. Thus,

σ̂z =


1 0

0 −1


 ⇒ ŝz =




~

2
0

0 −~

2


 .

In order to obtain σ̂x in this representation, we write σ̂x in the form

σ̂x =


a b

c d


 .

From the anti-commutation rules we must have:

σ̂xσ̂z = −σ̂zσ̂x ,

so, using σ̂z = ( 1 0
0 −1 ), we get a = d = 0 and finally, from σ̂2

x = 11, we obtain bc = 1.

In fact,

a b

c d




1 0

0 −1


 =


a −b
c −d


 = −


1 0

0 −1




a b

c d


 =


−a −b

c d


 ,
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from which it follows a = d = 0, and from σ̂2
x = 11 we get


0 b

c 0




0 b

c 0


 =


bc 0

0 bc


 =


1 0

0 1


 ⇒ bc = 1 .

Since these matrices must be Hermitian, c∗ = b and choosing b = 1 we get:

σ̂x =


0 1

1 0


 .

In the same way it is possible to prove that

σ̂y =


0 −i
i 0


 .

7.2 Pauli equation

If for a particle also spin has to be taken into account, then the Hilbert space of the

particle becomes the tensor product of two Hilbert spaces, namely, the Hilbert space

of wave functions ψ(r) and the bidimensional Hilbert space of the spin degrees of

freedom Hspin
(2) :

H = H(r)⊗Hspin
(2) .

Thus,

ψ =


ψ

+(x, y, z, t)

ψ−(x, y, z, t)


 .

Sometimes, another notation is used to denote this state, namely, ψ(x, y, z, t;w),

where w is the spin quantum number. Note that ψ can be written as

ψ =


ψ

+

0


+


 0

ψ−


 ,

where

σ̂z


ψ

+

0


 =


1 0

0 −1




ψ

+

0


 =


ψ

+

0


 ,
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i.e.,
(
ψ+

0

)
is eigenstate of σ̂z with eigenvalue +1. In the same way one proves that

(
0
ψ−

)
is eigenstate of σ̂z with eigenvalue −1:

σ̂z


 0

ψ−


 =


1 0

0 −1




 0

ψ−


 = −


 0

ψ−


 .

So, ψ+(x, y, z) is a state of the electron such that we have a probability 1 of find-

ing +~/2 in a measurement of ŝz. Therefore, |ψ+(x, y, z)|2 is the probability den-

sity of finding the particle in (x, y, z) with component +~/2 of spin along z, while

|ψ−(x, y, z)|2 is the probability density to localize the particle at (x, y, z) and with

−~/2 component of the spin along z.

The Hamiltonian of a particle with charge −e and intrinsic magnetic moment µ

within an electromagnetic field generated by the scalar potential V (x, y, z) and the

vector potential A(x, y, z) is given by

H =
1

2m

(
p− e

c
A
)2

− eV
︸ ︷︷ ︸

H0

+B · µs , (7.6a)

where µs = µ0σ and so we have already taken account of the anomalous gyromagnetic

ratio. H0 is found by applying the minimal coupling prescription. H can be rewritten

in terms of Pauli matrices as follows:

H = H0 + µ0B · σ , (7.6b)

where µ0 is the Bohr magneton.

The Schrödinger equation for system with spin is called Pauli equation:

i~
∂ψ

∂t
= Ĥψ , (7.7)

where ψ =
(
ψ+

ψ−

)
, with the normalization condition:

∫

V

(
|ψ+|2 + |ψ−|2

)
dV = 1 .
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Eqn. (7.7), rewritten in components, reads

Ĥ0


ψ+

ψ−


+ µ0B · σ


ψ+

ψ−


 = i~

∂

∂t


ψ+

ψ−


 .

Moreover we have

B · σ = Bxσ̂x +Byσ̂y +Bzσ̂z =


 Bz Bx − iBy

Bx + iBy −Bz


 ,

and by inserting this in the Pauli equation we get

Ĥ0ψ+ + µ0Bzψ+ + µ0(Bx − iBy)ψ− = i~
∂ψ+

∂t
,

Ĥ0ψ− + µ0(Bx + iBy)ψ+ − µ0Bzψ− = i~
∂ψ−
∂t

.

Let us assume that the magnetic field is uniform and let’s try to separate the spatial

part of the wave function from its spin part. We write

ψ = φ0(x, y, z)ϕ̃s , ϕ̃s =


a
b


 ,

where φ0(x, y, z) are solutions of the Schrödinger equation associated to Ĥ0. If we

solve the stationary Pauli equation using the ansatz

un(x, y, z;w) = u0n(x, y, z)ϕ̃s ,

where u0n are eigenfunctions of H0, the stationary Pauli equation splits into

Ĥ0u
0
n(x, y, z) = E0

nu
0
n(x, y, z) , (7.8a)

µ0B · σϕ̃s = E ′
sϕ̃s , (7.8b)

and the total energy is

En = E0
n + E ′

s .

By inserting the expression for ϕ̃s = ( ab ) Eqn. (7.8b) becomes

µ0Bza+ µ0(Bx − iBy)b = E ′
sa , (7.9a)

µ0(Bx + iBy)a− µ0Bzb = E ′
sb . (7.9b)
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The solutions a, b will be different from zero if the following determinant vanishes:

det

∣∣∣∣∣∣
µ0Bz −E ′

s µ0 (Bx − iBy)

µ0 (Bx + iBy) −µ0Bz − E ′
s

∣∣∣∣∣∣
= 0 ,

from which it follows

Es = ±µ0 |B| , |B| =
√
B2
x +B2

y +B2
z .

By substituting these values into Eqs. (7.9) we find, for Es = +µ0B, the eigenfunc-

tions:

ϕ̃1 =


a1
b1


 ,

where

a1 =

√
|B|+Bz

2 |B| eiα , b1 =

√
|B| −Bz

2 |B| e
i
(
α+arctan

By
Bx

)

,

and α is an arbitary real phase, while for Es = −µ0B we get

ϕ̃2 =


a2
b2


 ,

where

a2 =

√
|B| − Bz

2 |B| eiα , b2 = −
√

|B|+Bz

2 |B| e
i
(
α+arctan

By
Bx

)

.

In particular, if B = (0, 0, |B|), i.e.the magnetic field is along z, the solutions are

ϕ̃1 ∼


1

0


 , ϕ̃2 ∼


 0

−1


 .

The corresponding energies will be different: E ′
n = En ± µ0 |B|.

The total angular momentum of the system, if besides spin we have also the orbital

angular momentum, is one of the two following values: j = l ± 1
2
. More properly,

j characterizes the total magnetic moment, since spin is not actually an angular

momentum as we explained at the beginning.

Spin appears not only in the Stern-Gerlach experiment, but also it plays a role in

the explanation of the anomalous Zeeman effect, which will be presented after having

discussed the Hydrogen atom.
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7.3 Singlet and triplet

Consider two spin-1/2 particles. According to the rules of the sum of operators like

angular momentum, we know that the sum can take only the values 1 and 0. Let us

now look for the wave functions Ψs,sz of the total spin and its z-component.

The form of the wave functions ψ(1,0) and ψ(0,0) can be sought according to one of

the two following arguments:

1. Directly from the equation for the eigenfunctions of ŝ2 (square of total spin);

2. or by using the shift operators ŝ±.

We use method 1. As homework solve the exercise using the method 2.

The z-component for stot = 1 can be one of the following three values:

sz = −1, 0, 1 ,

while in the case stot = 0 the only possibility is sz = 0. Thus we have four states:

ψs,sz = ψ1,1, ψ1,0, ψ1,−1, ψ0,0 .

Let us now construct the explicit form of these wave functions. The single-particle

wave functions are 
1

0




(1)

and


0

1




(1)

,

and 
1

0




(2)

and


0

1




(2)

.

The wave-function ψ1,1 must then be of the form

ψ1,1 =


1

0




(1)

⊗


1

0




(2)

,
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where with ⊗ we indicate the tensor product. The total spin operator is

Ŝ(tot)
z = Ŝ(1)

z + Ŝ(2)
z

the operator Ŝ
(1)
z will act only on the first part of the tensor product above while Ŝ

(2)
z

will act only on the second part, and therefore, by putting ~ = 1, we get:

Ŝ(tot)
z ψ1,1 =

(
Ŝ(1)
z + Ŝ(2)

z

)




1

0




(1)

⊗


1

0




(2)




=



1

2


1

0




(1)

⊗


1

0




(2)

+
1

2


1

0




(1)

⊗


1

0




(2)




= 1





1

0




(1)

⊗


1

0




(2)




= 1ψ1,1 .

Since stot can only be zero or one, a wave function with sz = 1, like the one above,

can only belong to stot = 1.

In the same way on can easily construct the eigenstate ψ1,−1, which is

ψ1,−1 =


0

1




(1)

⊗


0

1




(2)

.

Let us now turn to the problem of constructing the state ψ0,0. As it has a total sz = 0,

by following the previous rules it is easy to see that such a state will be of the form:

ψ0,0 = α


1

0




(1)

⊗


0

1




(2)

+ β


0

1




(1)

⊗


1

0




(2)

. (7.10)

The coefficients α and β will be determined imposing that ψ0,0 satisfies also s
(tot) = 0,

i.e., (
Ŝ(tot)

)2
ψ0,0 = s(s+ 1)ψ0,0 = 0 ,
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from which it follows

〈ψ0,0|
(
Ŝ(tot)

)2
|ψ0,0〉 = 0 ,

and thus ∥∥∥Ŝ(tot)
x ψ0,0

∥∥∥
2

+
∥∥∥Ŝ(tot)

y ψ0,0

∥∥∥
2

+
∥∥∥Ŝ(tot)

z ψ0,0

∥∥∥
2

= 0 .

Since the three terms on the left-hand side are norms, the only way the previous

expression will be fulfilled is to require that each of the three terms be individually

equal to zero. For instance, let us evaluate

Ŝxψ0,0 =
1

2

[
σ̂(1)
x + σ̂(2)

x

]



α


1

0




(1)

⊗


0

1




(2)

+ β


0

1




(1)

⊗


1

0




(2)





.

By using σ̂x = ( 0 1
1 0 ) whose action is

0 1

1 0




1

0


 =


0

1


 ,


0 1

1 0




0

1


 =


1

0


 ,

we get

Ŝxψ0,0 =
1

2
(α+ β)






1

0




(1)

⊗


1

0




(2)

+


0

1




(1)

⊗


0

1




(2)





.

For this to be zero we must have α = −β. So, the normalized state ψ0,0 is given by

ψ0,0 =
1√
2






1

0




(1)

⊗


0

1




(2)

−


0

1




(1)

⊗


1

0




(2)





.

Finally, let us construct ψ1,0. Also ψ1,0 will be of the form (7.10) but it must

be orthogonal to ψ0,0 since, having different s, they belong to different eigenvalues

of (Ŝ(tot))2 and we know that eigenstates belonging to different eigenvalues of an

Hermitian operator are orthogonal. The only normalized state of the form (7.10) and

orthogonal to ψ0,0 is

ψ1,0 =
1√
2






1

0




(1)

⊗


0

1




(2)

+


0

1




(1)

⊗


1

0




(2)





.
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ψ0,0 is referred to as singlet and it is an anti-symmetric state with respect to an

interchange of the two particles, while ψ1,0 is referred to as triplet and it is symmetric

under the interchange of the two particles. They are called this way because s(tot) = 1

has three states while s(tot) = 0 has just one.

7.4 Explanation of the Stern-Gerlach experiment

An uniform magnetic field B produces a torque τ on a magnetic dipole µq, given by

τ = µq ×B ,

but it does not produce any force. In order to get a force on a magnetic dipole a

non-uniform magnetic field is needed. This is analogous to the case of an electric

dipole: if the electric field is uniform, both charges q and −q feel exactly the same

force (but opposite in direction) and so the net force acting on the dipole is zero. If

instead the field is non-uniform one of the two charges , being located in a different

position than the other, will experience a force different than the one acting on the

other and the net force on the dipole will be non-vanishing. In the case of an electric

dipole the force is

F = dz
∂E

∂z
,

where dz = e∆z is the electric dipole moment along z. (For simplicity, we are assuming

the electric field to vary only in the z-direction.)

A similar force also occurs in the case of a magnetic dipole in a non-uniform mag-

netic field:

F = µz
∂B

∂z
.

In the Stern-Gerlach experiment, electrons have a magnetic moment due to spin, and

this magnetic moment can only take two values ±µ0 because, taking account of the

anomalous gyromagnetic ratio, we have:

µ̂z = µ0σ̂z .
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The force acting on the electrons will then be

Fz = +µ0
∂B

∂z
or Fz = −µ0

∂B

∂z
,

according to the components of the spin we are considering. As the forces have oppo-

site directions, they will split the beam into two components. This is the explanation

of the Stern-Gerlach experiment.



Chapter 8

IDENTICAL PARTICLES

8.1 General considerations

In this chapter we will deal with systems having two or more identical particles.

In classical mechanics two particles are said to be identical if the Hamiltonian is

invariant under the interchange of the corresponding coordinates of the two particles

in the phase space, i.e.,

H(ϕ(1), ϕ(2)) = H(ϕ(2), ϕ(1)) .

Since in classical mechanics we can speak about trajectories (in phase space), two

identical particles can be distinguished when the initial points of their trajectories are

different. In fact, the trajectories (in the phase space) of two particles whose starting

points are different will never cross, so there is no ambiguity at all in identifying the

trajectory of one particle and the one of the other .

Things are different in quantum mechanics. Indeed, in quantum mechanics we are

not dealing with points and trajectories in phase space but with states in an Hilbert

space, and even if we prepare the initial states of the two particles at t = 0 localized

one very far away from the other, time-evolution will spread the spatial distribution

of such states and at some time in the future there will be some overlapping of the

two wave functions. In the region of overlapping we will not be able to say if the wave

function belongs to particle 1 or 2. So, the problem of identical particles must be

studied in a more complete way in quantum mechanics. We will see in this chapter

that such considerations will lead us to new interesting results.
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Following the general rules of quantum mechanics, let us prepare the system of two

particles by identifying a complete set of commuting operators. Let us denote the

operators of this set in the following way:

Ô1(ξ1, ξ2) , Ô2(ξ1, ξ2) , Ô3(ξ1, ξ2) , . . . , Ôn(ξ1, ξ2) , (8.1)

where ξ1 and ξ2 label variables corresponding to the particle 1 and 2, respectively.

Two particles are called identical if the set (8.1) is invariant under the exchange of

ξ1 and ξ2, i.e.,

Ô1(ξ1, ξ2) = Ô1(ξ2, ξ1) ,

Ô2(ξ1, ξ2) = Ô2(ξ2, ξ1) ,

Ô3(ξ1, ξ2) = Ô3(ξ2, ξ1) ,
...

Ôn(ξ1, ξ2) = Ôn(ξ2, ξ1) .

(8.2)

As a consequence, if the state of the two particles is prepared in the state ψ(ξ1, ξ2)

then the state prepared using the set of operators with ξ1 and ξ2 interchanged will be

ψ(ξ2, ξ1) and these two wave functions must be equivalent, i.e., they must be equal

up to a phase:

ψ(ξ1, ξ2) = eiα ψ(ξ2, ξ1) . (8.3)

If we interchange again the two particles we get

ψ(ξ1, ξ2) = eiα eiα ψ(ξ1, ξ2) ,

and thus e2iα = 1, so eiα = ±1. From this it follows

ψ(ξ1, ξ2) = ±ψ(ξ2, ξ1) , (8.4)

which means the wave functions corresponding to two identical particles must be

either symmetric or anti-symmetric under the exchange of the two particles.

Let us introduce an operator P̂ which exchanges the two particle, i.e which acts in

the following way on the wave function of two identical particles:

P̂ψ(ξ1, ξ2) = ψ(ξ2, ξ1) .
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It is clear that

P̂ 2 = I ,

thus the eigenvalues of P̂ are ±1. It is also easy to prove that P̂ = P̂ † = P̂−1 (work

it out as an homework). Let Ô be any observable, then the action of P̂ on Ô will be

P̂ †ÔP̂ = P̂−1ÔP̂ .

Clearly,

P̂ †Ô(ξ1, ξ2)P̂ = Ô(ξ2, ξ1) ,

and, since for identical particles Ô(ξ1, ξ2) = Ô(ξ2, ξ1), we get

P̂ †Ô(ξ1, ξ2)P̂ = Ô(ξ1, ξ2) ,

which is equivalent (after having multiplied by P̂ on the left) to:

Ô(ξ1, ξ2)P̂ = P̂ Ô(ξ1, ξ2) ,

i.e., P̂ commutes with the whole complete set of observables. Therefore, we have

two possibilities: either P̂ is a function of Ô1, Ô2, . . . , Ôn or the set is not complete.

For identical particles, the latter is what happens: for identical particles, P̂ must be

added to the initial set of operators in order to get a complete set.

When preparing the initial state, being P̂ now part of the complete set of observ-

ables, it must be diagonalized together with the other observables of the set. Since

its eigenvalues are ±1, we immediately get symmetric or anti-symmetric states. But

which states do we have to select?

The answer to the previous question is provided by quantum field theory through

a well-known theorem called spin-statistics theorem. Since we have not yet studied

quantum field theory, we take the content of that theorem as a new postulate for QM:
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Spin-statistics postulate: Identical particles of half-integer spin must have

anti-symmetric wave functions (fermions). Identical particles of integer spin must

have symmetric wave functions (bosons).

The basic ingredients of quantum field theory that enable us to prove such result

are:

1. Lorentz invariance;

2. locality of fields;

3. existence of a ground state for Ĥ.

What about a system made by one boson and one fermion? The spin-statistics pos-

tulate does not apply to this case since the two particles are no longer identical (one

of them is a boson, the other is a fermion).

8.2 Pauli exclusion principle

As a consequence of the spin-statistics postulate, two spin one-half particles never hap-

pen to be in the same state. In fact, if we denote with ψQ1 and ψQ2 the single-particle

states of the two particles, where Q1 and Q2 are the quantum numbers corresponding

to the single-particle wave functions of the first and the second particle respectively,

the anti-symmetric wave function of the total system of the two particles is

ψ̃(ξ1, ξ2) =
1√
2
[ψQ1(ξ1)ψQ2(ξ2)− ψQ1(ξ2)ψQ2(ξ1)] . (8.5)

If the states of the two particles were the same, i.e., if Q1 = Q2 (same quantum

numbers), we would get

ψ̃(ξ1, ξ2) =
1√
2
[ψQ1(ξ1)ψQ1(ξ2)− ψQ1(ξ2)ψQ1(ξ1)] = 0 ,
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therefore the probability to find the two particles in the same state vanishes. This

result is known as Pauli exclusion principle, and it explains various things con-

cerning atomic systems. For example, for each atomic level we can have no more

than two electrons, one having sz = 1
2
and the other with sz = −1

2
, where sz is the

spin z-component. If we had a third electron, this would have to occupy the next

atomic level. It is as if the third electron felt a repulsive force from the core of the

previous two electrons. The Pauli’s exclusion principle is responsible for much of the

periodic table of elements. Another consequence of the Pauli exclusion principle is

the so-called exchange energy, discussed in the next section.

8.3 Exchange interaction

Even if no spin-dependent potential were included into the Schrödinger equation of

two identical fermions, the effect of spin would appear in the energy of some levels

via the Pauli’s exclusion principle. Indeed, such effect is measurable.

Let us consider two spin-half particles interacting through a central potential U(|r1−
r2|), where r1 denotes the vector position of the first particle and r2 that of the

second one. The total wave-function (in both spin and spatial variables) must be

anti-symmetric, because of the spin-statistics postulate. For s(tot) = 0 (singlet) we

already know, from the previous chapter, that the spin part of the wave-function is

anti-symmetric so the spatial (i.e., orbital) wave-function must be symmetric:

φs=0 =
1√
2
[φ1(r1)φ2(r2) + φ1(r2)φ2(r1)] , (8.6)

while for s = 1 the spin part is symmetric and so the orbital part must be anti-

symmetric:

φs=1 =
1√
2
[φ1(r1)φ2(r2)− φ1(r2)φ2(r1)] . (8.7)
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Now, let us calculate the mean value of the potential energy of these two states:

∫
[φ∗
s=0U(r1 − r2)φs=0] d

3r1 d
3r2 = A+ J ,

∫
[φ∗
s=1U(r1 − r2)φs=1] d

3r1 d
3r2 = A− J ,

where

A =

∫
U |φ1(r1)|2 |φ2(r2)|2 d3r1 d

3r2 ,

and

J =

∫
Uφ1(r1)φ

∗
1(r2)φ2(r2)φ

∗
2(r1) d

3r1 d
3r2 .

The latter integral is referred to as exchange energy.

The previous result shows that the singlet and triplet states have different (mean)

potential energies. This effect is only due to the spin-statistics postulate, and it is an

effect which has been measured.

8.4 Slater’s determinant

If we are dealing with N identical spin one-half particles instead of only two, how

can we construct the most general anti-symmetric wave-function? The answer is the

following:

ψ(ξ1, ξ2, . . . , ξN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψQ1(ξ1) ψQ1(ξ2) · · · ψQ1(ξN)

ψQ2(ξ1) ψQ2(ξ2) · · · ψQ2(ξN)
...

...
. . .

...

ψQN
(ξ1) ψQN

(ξ2) · · · ψQN
(ξN)

∣∣∣∣∣∣∣∣∣∣∣∣

, (8.8)

where we must find at least N different combinations Q1, Q2, . . . .QN of single-particle

quantum numbers in order to have N different single-particle wave-functions. If we

cannot find such N different quantum numbers, ψ(ξ1, ξ2, . . . , ξN) is obviously zero.

The wave-function above is known as ”Slater” determinant.
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8.5 Entangled states

Let us suppose we have two particles 1 and 2 and the corresponding Hilbert spaces

H1 and H2. The states of the system of the two particles belong to the tensor product

of the two one-particle Hilbert spaces:

H(tot) = H1 ⊗H2 .

Some wave-functions belonging to this Hilbert space will be of the form:

ψ̃(tot)(1, 2) = ψ1 ⊗ ψ2

but not all of them. In fact in the Hilbert space H(tot) we can also take linear

combinations of such wave-functions such as:

˜̃
ψ(tot)(1, 2) = αψ1 ⊗ ψ2 + βψ̃1 ⊗ ψ̃2 .

In general this is not be the tensor product of two states belonging to the Hilbert

spaces H1 and H2, i.e., in general

˜̃
ψ(tot)(1, 2) = αψ1 ⊗ ψ2 + βψ̃1 ⊗ ψ̃2 6= Φ(1)⊗ Φ(2) .

If it is not the product , then the state of the two particles is referred to as an entangled

state.

Looking at the state above, we see that we are not able to answer the question

in which state is one of the two particles: particle 1 could be in ψ1 or in ψ̃1 and

analogously for particle 2. The entangled states are one of the ”most peculiar feature”

of Quantum Mechanics, as Schrödinger pointed out in 1935. They are at the origin

of the many non-local features of Quantum Mechanics.





Chapter 9

HYDROGEN ATOM

We have already encountered the hydrogen atom studying central potentials in

section 1.7. In that occasion, we have approached the Schrödinger equation by using

the method of the separation of variables. The result was that the wave function in

spherical coordinates could be written in the form

ψ̃(r, ϑ, ϕ) = R(r)Y (ϑ, ϕ) . (9.1)

The radial function R(r) and the angular function Y (ϑ, ϕ) satisfy the differential

equations

1

R

d

dr

(
r2
dR

dr

)
+

2m

~2
[E − U(r)] r2 = λ , (9.2a)

1

Y sinϑ

∂

∂ϑ

(
sinϑ

∂Y

∂ϑ

)
+

1

Y sin2 ϑ

∂2Y

∂ϕ2
= −λ , (9.2b)

where λ is some arbitrary constant. The latter equation above now looks familiar,

in fact by writing the angular momentum operator L̂2 = L̂2
x + L̂2

y + L̂2
z in spherical

coordinates we get

L̂2 = −~
2

[
1

sin ϑ

∂

∂ϑ

(
sin ϑ

∂

∂ϑ

)
+

1

sin2 ϑ

∂2

∂ϕ2

]
, (9.3)

and Eqn. (9.2b) can be rewritten as

1

sin ϑ

∂

∂ϑ

(
sinϑ

∂Y (ϑ, ϕ)

∂ϑ

)
+

1

sin2 ϑ

∂2Y (ϑ, ϕ)

∂ϕ2
= −λY (ϑ, ϕ) ,

i.e., as

L̂2Y (ϑ, ϕ) = λ~2Y (ϑ, ϕ) .
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This means that Y (ϑ, ϕ) are nothing more that the eigenfunctions of L̂2 and we

already know from the general theory of angular momentum that their eigenvalues

are of the form l(l + 1), therefore

λ = l(l + 1) ,

and the functions Y (ϑ, ϕ) are the spherical harmonics Ylm(ϑ, ϕ).

Inserting the value above for λ, Eqn. (9.2a) becomes

1

R(r)

d

dr

(
r2
dR(r)

dr

)
+

2m

~2
[E − U(r)] r2 = l(l + 1) .

If we parametrize R(r) as

R(r) =
χ(r)

r
,

the χ(r) satisfies the equation:

− ~2

2m

d2χ(r)

dr2
+

[
U(r) +

l(l + 1)~2

2mr2

]
χ(r) = Eχ(r) . (9.4)

Note that this looks like a one-dimensional Schrödinger equation in the coordinate r

for a potential given by U(r) plus a centrifugal term l(l+1)~2

2mr2
.

The original Hamiltonian of our system, having a potential which depends only on

r, is invariant under rotations and thus commutes with both L̂2 and L̂z . It is therefore

possible to diagonalize simultaneously each of these three operators, Ĥ , L̂2, L̂z:




Ĥψ = Eψ ,

L̂2ψ = [l(l + 1)]~2ψ ,

L̂zψ = m~ψ .

(9.5)

ψ can then be labelled by the three numbers: (E, l,m). The last two equations in (9.5)

are those having as solution the spherical harmonics Ylm(ϑ, ϕ).

Let us now turn back to the radial equation, i.e., Eqn. (9.4). The wave function

normalization condition reads

∫ +∞

0

drr2
∫ π

0

dϑ sinϑ

∫ 2π

0

dϕ
∣∣∣ψ̃(r, ϑ, ϕ)

∣∣∣
2

<∞ .
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which, once the wave function is written in the factorized form

ψ̃(r, ϑ, ϕ) = R(r)Y (ϑ, ϕ) ,

and taking into account the normalization of the spherical harmonics, yields

∫ ∞

0

drr2 |R(r)|2 <∞ .

Let us remember that we wrote R(r) = χ(r)
r
, so from the above relation we get

∫ ∞

0

dr (χ(r))2 <∞ ,

and we also gather that χ(r) must go to zero as r → 0 at least as fast as r:

χ(r)
r→0→ O(r) .

Using χ(r) we can say that solving our problem is like solving the one-dimensional

problem of a particle which feels the potential

Ueff(r) = U(r) +
l(l + 1)~2

2mr2
,

for r > 0 while for r < 0 the potential is that of an infinite potential well, because we

are requiring χ(r) to be zero at r = 0.

We now choose the radial equation to be the one of the electron in a hydrogen

atoms which feels the Coulomb potential given by

U(r) =
−e2
r

, (9.6)

or in general to be the one of an electron spinning around a nucleus of charge Ze:

U(r) =
−Ze2
r

. (9.7)

The radial equation in R(r) becomes

− ~2

2m

1

r2
d

dr

(
r2
dR

dr

)
− Ze2R

r
+
l(l + 1)~2

2mr2
R = ER . (9.8)
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m is not the mass of the electron but its reduced mass:

m =
memN

me +mN
≈ me .

Now we shall introduce the following dimensionless expressions ρ :

ρ ≡ αr , where α2 ≡ 8m |E|
~2

,

and let us denote with λ̃ the following quantity:

λ̃ ≡ 2mZe2

α~2
≡ Ze2

~

(
m

2 |E|

)1/2

.

The radial equation becomes

1

ρ2
d

dρ

(
ρ2

dR

dρ

)
+

[
λ̃

ρ
− 1

4
− l(l + 1)

ρ2

]
R = 0 . (9.9)

It is easy to prove that for sufficiently large ρ, an R(ρ) of the form R(ρ) ∼ ρn e±
1
2
ρ

satisfies the above equation. In fact, the kinetic term splits into three parts:

[
Aρn−1 +Bρn + Cρn−2

]
e±

1
2
ρ (9.10)

and the same happens for the potential term, thus it is always possible to determine

λ and l in such a way to make the kinetic and potential part equal and opposite to

each other. Since we are assuming R(ρ) → 0 for r → ∞ in order to have properly

normalized wave functions, ∫ ∞

0

drr2R2(r) <∞ ,

the solution with the plus sign in (9.10) cannot be taken. Therefore, we will seek for

an exact solution of the form

R(ρ) = F (ρ) e−
1
2
ρ ,

where F (ρ) is a polynomial of finite order in ρ.
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The equation for R(ρ) becomes one for F (ρ):

F ′′(ρ) +

(
2

ρ
− 1

)
F ′(ρ) +

[
λ̃− 1

ρ
− l(l + 1)

ρ2

]
F (ρ) = 0 . (9.11)

Let us choose F (ρ) of the form

F (ρ) = ρs
[
a0 + a1ρ+ a2ρ

2 + . . .
]

︸ ︷︷ ︸
L(ρ)

,

with a0 6= 0 and s ≥ 0. The condition s ≥ 0 is needed for R(ρ) to be finite for ρ = 0.

The equation for the expression L(ρ) becomes

ρ2L′′ + ρ [2(s+ 1)− ρ]L′ +
[
ρ(λ̃− s− 1) + s(s+ 1)− l(l + 1)

]
L = 0 . (9.12)

If ρ = 0, Eqn. (9.12) turns out to be simply:

[s(s+ 1)− l(l + 1)]L = 0 . (9.13)

L was given by

L(ρ) = a0 + a1ρ+ a2ρ
2 + . . . .

With a0 6= 0 we get L(0) = a0 6= 0, and as a consequence Eqn. (9.13) implies

s(s+ 1)− l(l + 1) = 0 which has the following two solutions:

s = l , s = −(l + 1) .

However, the latter, namely s = −(l + 1), is not acceptable since R(ρ) would diverge

for ρ→ 0:

R(ρ) = ρ−(l+1)
[
a0 + a1ρ+ a2ρ

2 + . . .
]
e−

1
2
ρ ρ→0→ ∞ .

So, the only acceptable solution is s = l and the equation for L(ρ), [Eqn. (9.12)],

becomes

ρ2L′′ + ρ [2(l + 1)− ρ]L′ + ρ(λ̃− l − 1)L = 0 .
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By inserting the expression for L(ρ) = a0 + a1ρ + a2ρ
2 + . . . one gets the following

recursive relation among the coefficients of L(ρ):

aν+1 =
ν + l + 1− λ̃

(ν + 1)(ν + 2l + 2)
aν . (9.14)

If the series did not stop, its asymptotic behavior would be

aν+1

aν
∼ 1

ν + 1
∼ 1

ν
,

which is exactly the kind of behavior which we would have got from a solution of the

form ρn eρ, as it can be easily verified by expanding the exponential:

ρn eρ = ρn
∞∑

ν=0

ρν
1

ν!
;

in fact in this case the coefficients would be

aν+1 =
1

(ν + 1)!
, and aν =

1

ν!
.

So their ratio is
aν+1

aν
∼ 1

ν + 1
∼ 1

ν
,

i.e., of the type found above. But we have already said that a behavior ρn eρ would

result in a radial solution R(ρ) which diverges for ρ→ ∞. Thus, the only way out is

that the series expansion of L(ρ) terminates. This must happen in order for the wave

function not to diverge.

By using the recursive equation (9.14) one has that aν+1 = 0 (and the same for all

successive coefficients) when

λ̃ = ν + l + 1 ,

From now on we shall indicate ν with n′ since it is an integer and the series terminate

at the (n′ + 1)th power. Thus the above relation reads

λ̃ = n′ + l + 1 .
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n′ is referred to as radial quantum number for it is the highest power of the series

representation of L(ρ) and thus of the radial wave function. The equation above tells

us that also λ̃ is an integer number, and we shall denote it with n:

n = n′ + l + 1 .

n is called total quantum number.

Let us now recall the definition of λ̃, namely

λ̃ =
Ze2

~

(
m

2 |E|

)1/2

,

since λ̃ = n we get

n =
Ze2

~

(
m

2 |E|

)1/2

,

and by inverting we get the following expression for the energy levels

En = − |En| = −mZ
2e4

2~2

1

n2
, n ≥ 1 . (9.15)

The rule here is that free electrons are at zero energy and bound states have negative

energies. (We shall explain later the reason for n ≥ 1.)

Notice that we have obtained the behavior En ∼ 1/n2 which is the same behavior

experimentalists had discovered. The constant

RH ≡ mZ2e4

2~2

is called Rydberg’s constant, after the name of the experimentalist who first observed

the 1/n2 behavior. Quantum mechanics has been capable of deriving this constant in

terms of more basic quantities.

Let us now look at the wave functions. The radial solution R(r) with energy

eigenvalue En carries both a label n and a label l since l enters Eqn. (9.9). So we

shall denote the R with Rnl(r). However, energy levels do not depend on l and

this means there is degeneracy. The total wave functions contain also the spherical

harmonics Ylm(ϑ, ϕ) and so there is a dependence also on the quantum number m:

ψ̃nlm(r, ϑ, ϕ) = Rnl(r)Ylm(ϑ, ϕ) ,
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Besides l, the energy levels do not depend on m, i.e., we get a further degeneracy.

The polynomials L(ρ), solutions of Eqn. (9.12), are called Laguerre polynomials.

Their general expression is:

L2l+1
n+l (ρ) =

n−l−1∑

k=0

(−1)k+2l+1 [(n+ l)!]2ρk

(n− l − 1− k)!(2l + 1 + k)!k!
.

In terms of these polynomials the radial wave function Rln(ρ) can be written as

Rln(ρ) = e−
1
2
ρ ρlL2l+1

n+l (ρ)cn,l ,

where cn,l are proper normalization coefficients.

Let us now turn back to the expression for the energy levels and let us define the

quantity

a0 ≡
~2

me2
.

The energy levels can then be written as:

En = − Z2e2

2a0n2
.

Let us remember that n = n′ + l + 1 and that n′ is a non-negative integer (the

maximum degree of the polynomial L(ρ)). Since l can be equal to zero at its lowest

value, it follows that n ≥ 1. In particular, the first levels are

E1 = −Z
2e2

2a0
, E2 = −Z

2e2

8a0
, E3 = −Z

2e2

18a0
. . .

Notice that their separation becomes smaller and smaller as they get closer to zero.

If we take the hydrogen atom (Z = 1) and we consider the first energy level n = 1,

l = 0, m = 0, we can then calculate the probability density and see where it reaches

its maximum:

max 〈ψ̃n=1,l=0,m=0|ψ̃n=1,l=0,m=0〉 .

It is in r = a0. So a0 has a specific physical meaning: it is the position at which it is

highest the probability of finding the electron and it is called Bohr radius.
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9.1 Degeneracy of the energy levels

As we said, the energy levels depend only on n, while the eigenfunctions ψ̃ depend also

on l and m, thus there is degeneracy. Let us determine this degeneracy. Remember

that n = n′ + l + 1, where n′ is positive. Once n is fixed, we can change both n′ and

l in a way that does not affect the values of n. In particular, since n′ ≥ 0, l can vary

from 0 to n− 1, i.e., these are all the values l can take once n is fixed. Moreover, for

every value of l there are correspondingly 2l + 1 allowed values of m. Therefore, the

total number of states sharing the same value of n is

n−1∑

l=0

(2l + 1) =
2n(n− 1)

2
+ n = n2 .

This is the total degeneracy.

The degeneracy in m is due to rotational invariance along z (or about any generic

axis) and it is thus a common feature of all central potentials U(r). On the contrary,

degeneracy on l is typical of the Coulomb potential 1/r. If you consider a valence

electron in an atom with many electrons, the potential energy is only approximately

of the Coulomb form due to the mutual repulsion forces among the electrons, and the

degeneracy in l is no longer present.

This degeneracy in l is due to an extra symmetry present in the 1/r potential. It is

a symmetry whose associated conserved charge is the Runge-Lenz vector. This vector

is the one joining the focus of an ellipse with its perihelion. Using this extra conserved

quantity Pauli gave a solution of the Hydrogen atom entirely in terms of operators in

the same period during which Schrödinger was working out its solution.

9.2 Form of the eigenfunctions

Let us now discuss the structure of the energy levels as usually given in chemistry

and how to translate it in the language of physicists.

The K shell is defined as the one with n = 1, and therefore l = 0 and m = 0. So,
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there is only one eigenstate (it is referred to as 1s state, where 1 stays for n = 1 and

s for l = 0). Its eigenfunction is given by

un=1,l=0,m=0 =
1√
π

(
Z

a0

)3/2

exp

(
−Z r

a0

)
.

There can be two electrons with this radial wave function, one with spin up and the

other with spin down.

The L shell is defined as the one having n = 2, so l can assume two different values,

namely l = 0 and l = 1. Therefore we have two kind of states: the state 2s (n = 2

and l = 0) whose eigenfunction is

un=2,l=0,m=0 =
1

4
√
2π

(
Z

a0

)3/2(
2− Z

a0
r

)
exp

(
−Zr

2a0

)
,

with two electrons with opposite spin, and the states 2p (n = 2, l = 1), with m =

−1, 0, 1 and correspondingly we have three different eigenfunctions

un=2,l=1,m=−1 =
1

8
√
π

(
Z

a0

)3/2
Z

a0
r exp

(
−Zr

2a0

)
sin ϑ exp (−iϕ) ,

un=2,l=1,m=0 =
1

4
√
2π

(
Z

a0

)3/2
Z

a0
r exp

(
−Zr

2a0

)
cosϑ ,

un=2,l=1,m=1 =
1

8
√
π

(
Z

a0

)3/2
Z

a0
r exp

(
−Zr

2a0

)
sin ϑ exp (iϕ) ,

Thus the L shell can carry eight electrons.

9.3 Zeeman effect

Let us now see how to remove the degeneracies:

• the degeneracy in l is removed by perturbing the original Coulomb potential in

such a way that we move from U(r) = 1/r to Ũ(r) = 1/r + F (r) where F (r) is

any polynomial in r or 1/r.

• the degeneracy in m is removed by switching on a magnetic field. For example,

the p levels (with l = 1) split themselves into three levels with different m and

different energies. This is called Zeeman effect.
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Let us try to explain the Zeeman effect. We know that if there is a magnetic field

described through a vector potential A(x, y, z) the Hamiltonian becomes

H =
1

2m0

(
p− e

c
A
)2

.

This is the so-called “minimal coupling scheme”. At the quantum level we get

Ĥ =
1

2m0

[
−i~ ∂

∂q
− e

c
A(q̂)

]2
=

1

2m0

[
p̂− e

c
A(q̂)

]2
.

Let us recall that p̂, being an operator, does not commute with A and thus the above

expression becomes

[
p̂− e

c
A(q̂)

]2
= p̂2 − e

c
p̂ · Â− e

c
Â · p̂ +

e2

c2
Â2 .

Moreover, since p̂ = −i~ ∂
∂q
, we have

p ·A−A · p = [p,A] = −i~∇ ·A .

Thus,

Ĥ =
p̂2

2m0

− e

m0c
Â · p̂+ i~

e

2m0c
∇ ·A+

e2

2m0c2
A2 .

Let us suppose we have a constant magnetic field along z:

B = ∇×A = |B| ẑ .

A possible choice of the vector potential A that produces such magnetic field is the

following one:

Ax = −1

2
By , Ay =

1

2
Bx , Az = 0 . (9.16)

Notice that, with this choice, ∇ ·A = 0 and the Hamiltonian in particular becomes

Ĥ =
p̂2

2m0
+

e

m0c
Â · p̂+

e2

2m0c2
A2 .

Now, by inserting Eqs. (9.16) into the right-hand side above we get

Ĥ =
p̂2

2m0
+

eB

2m0c
(x̂p̂y − ŷp̂x) +

e2

2m0c2
A2 .
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The latter term is order of 1
c2

and we shall neglect it. The Hamiltonian becomes

Ĥ =
p̂2

2m0

+
e

2m0c
B · L̂z .

where L̂z is the z component of the angular momentum.

We can also add a central potential (like in the case of the Hydrogen atom):

Ĥ =
p̂2

2m0
+ U(r)

︸ ︷︷ ︸
Ĥr

+
e

2m0c
B · L̂z

︸ ︷︷ ︸
ĤB

. (9.17)

This Hamiltonian does commute with both L̂z and L̂2. Moreover, it commutes also

with Ĥr alone,

Ĥr =
p̂2

2m0
+ U(r) ,

which represents the Hamiltonian of the system when the magnetic field is turned off.

So, we are allowed to diagonalize simultaneously the four operators Ĥ = Ĥr + ĤB,

Ĥr, L̂z and L̂
2. We get

Ĥrψn,l,m = En,lψn,l,m , (9.18)

(in the particular case of the Coulomb potential En,l does not depend on l). We

diagonalize in this base ĤB:

ĤBψn,l,m = Ẽn,l,mψn,l,m
eB

2m0c
L̂zψn,l,m =

eB

2m0c
~mψn,l,m , (9.19)

that is,

Ẽn,l,m =
eB~

2m0c
m = mµ0B , µ0 =

e~

2m0c
, (9.20)

where µ0 is the Bohr’s magneton. By combining Eqs. (9.18)–(9.20) we get

Ĥψn,l,m = (En,l +mµ0B)ψn,l,m ,

thus the new energy levels are

E ′
n,l,m = En,l +mµ0B .
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En

m

En,m

+µ0gBz
−µ0gBz

En,m±

Fig. 9.1.

and they change with m. This effect is known as Zeeman effect.

Indeed, since the electron carries spin (and hence an intrinsic magnetic moment) if

we switch on a magnetic field the Hamiltonian will be no longer given by Eqn. (9.17),

but by

Ĥ = Ĥr +mµ0Bz + 2µsBz , (9.21)

where µs = µ0sz and sz = ±1
2
~. The factor two in front of the last term in Eqn. (9.21)

is the gyromagnetic ratio of the electron. By diagonalizing Eqn. (9.21) one finds that

the energy levels split according to the scheme in Fig. 9.1. This effect is called

anomalous Zeeman effect.

Homework 9.1. Diagonalize Eqn. (9.21).

9.4 Landau Levels Problem

Look for the eigenfunctions and the energy levels of a charged particle in a constant

magnetic field along z. Choose the following vector potential:

Ax = 0 , Ay = Bx , Az = 0 . (9.22)
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Let’s start by checking that Eqn. (9.22) gives the correct (i.e., constant) magnetic

field:

Bx =
∂Az
∂y

− ∂Ay
∂z

= 0 ,

By =
∂Ax
∂z

− ∂Az
∂x

= 0 ,

Bz =
∂Ay
∂x

− ∂Ax
∂y

= B .

The Hamiltonian is built according to the minimal coupling rule:

Ĥ =
1

2m

[
p̂2x +

(
p̂y −

e

c
Bx̂
)2

+ p̂2z

]
,

The three operators Ĥ , p̂y and p̂z do commute among themselves since Ĥ does not

contain ŷ and ẑ. On the contrary, Ĥ does not commute with p̂x since x̂ appears in

the expression of Ĥ.

So, we are allowed to diagonalize simultaneously Ĥ, p̂y and p̂z. Let us begin with

p̂y and p̂z: we have

p̂yψ(x, y, z) = pyψ(x, y, z) ,

i.e.,

−i~ ∂
∂y
ψ(x, y, z) = pyψ(x, y, z) ,

whose solution is

ψpy(x, y, z) = eipyy/~ ψ̃(x, z) , (9.23)

with eventually a normalization factor 1/
√
2π~ in front of the right-hand side and

ψ̃(x, z) a function to be determined.

Remark. py is a number in Eqn. (9.23), in fact it is the eigenvalue of p̂y. For this

reason we have labelled the wave function with py.

Now, we use Eqn. (9.23) in diagonalizing p̂z:

p̂zψpy(x, y, z) = pzψpy(x, y, z) ,
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i.e.,

−i~ ∂
∂z

[
eipyy/~ ψ̃(x, z)

]
= pz e

ipyy/~ ψ̃(x, z) ,

which yields

−i~ ∂
∂z
ψ̃(x, z) = pzψ̃(x, z) ,

whose solution is

ψ̃pz(x, z) = eipzz/~ ψ(x) ,

with ψ(x) a function to be determined plus eventually a normalization constant

1/
√
2π~. Thus,

ψpy,pz(x, y, z) = eipyy/~ eipzz/~ ψ(x) .

Now, we use this expression to diagonalize Ĥ :

ĤψE,py,pz(x, y, z) = EψE,py,pz(x, y, z) ,

which is nothing but

1

2m

[
p̂2x +

(
p̂y −

e

c
Bx̂
)2

+ p̂2z

]
eipyy/~ eipzz/~ ψ(x) = E eipyy/~ eipzz/~ ψ(x) .

This equation becomes the following one:

1

2m

[
p̂2x +

(
py −

e

c
Bx̂
)2

+ p2z

]
ψE(x) = EψE(x) . (9.24)

Note that in the equation above py and pz are no longer operators, but numbers,

while we are still using p̂x as operator. We have labelled ψ(x) with the corresponding

energy eigenvalue E since the solutions of Eqn. (9.24) depend on E. Let us rewrite

Eqn. (9.24) in the following way:

− ~2

2m
ψ′′
E(x) +

1

2m

(
py −

e

c
Bx
)2
ψE(x) =

(
E − p2z

2m

)
ψE(x) .

Let us introduce the following quantity

ET ≡ E − p2z
2m

,
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where T means transverse. ET is the total energy in the xy-plane. Now, we change

variables and we replace x with

x′ ≡ py −
eB

c
x .

The derivatives also change according to the chain rule:

d2ψ

dx2
=

∣∣∣∣−
eB

c

∣∣∣∣
2

d2ψ

d(x′)2
.

Eqn. (9.24) thus becomes

− ~2

2m

∣∣∣∣−
eB

c

∣∣∣∣
2

ψ′′
E(x

′) +
1

2m
(x′)2ψE(x

′) = ETψE(x
′) .

By dividing it by | − eB/c|2 we obtain

− ~2

2m
ψ′′
E(x

′) +
1

2m

∣∣∣− c

eB

∣∣∣
2

(x′)2ψE(x
′) =

∣∣∣− c

eB

∣∣∣
2

ETψE(x
′) . (9.25)

Let us now recall the form of the Hamiltonian of an harmonic oscillator:

Ĥ = − ~2

2m

∂2

∂x2
+

1

2
mω2x2 .

If we compare this with the left-hand side of Eqn. (9.25) we recognize that Eqn. (9.25)

is formally the equation of an harmonic oscillator if we identify

mω2 =
1

m

∣∣∣ c
eB

∣∣∣
2

,

hence

ω =
c

eBm
, (9.26)

where we have chosen the positive solution for obvious reasons. So, Eqn. (9.25) is the

equation of a quantum harmonic oscillator with frequency given by Eqn. (9.26). The

right-hand side of Eqn. (9.25) tells us that the “energy” of this harmonic oscillator is
∣∣ c
eB

∣∣2ET , and knowing the expression for the energy levels of the harmonic oscillator

we get ∣∣∣ c
eB

∣∣∣
2

ET =

(
n+

1

2

)
~ω ,
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where ω is given by Eqn. (9.26). By substituting the expression for ET , we get

c2

e2B2

(
E − p2z

2m

)
=

(
n+

1

2

)
~ω ,

and therefore

En =
e~B

mc

(
n+

1

2

)
+

p2z
2m

, (9.27)

where we labelled the energy eigenvalues with the integer index n = 0, 1, . . . since n

appears on the right-hand side, however they are not discretized energy levels since

pz is continuous. The corresponding energy eigenfunctions are

ψE,py,pz(x
′, y, z) =

1

2π~
exp

[
i

~
(pyy + pzz)

]
ψn(x

′) , (9.28)

where ψn are the energy eigenfunctions of the one-dimensional quantum harmonic os-

cillator. Note that while the energy eigenfunctions do depend on py, the energy eigen-

values do not. This means there is degeneracy, and in particular an ∞-degeneracy

since py is a continuous variable. These states are called Landau levels. They are

localized in x (in fact, in x are Gaussian functions multiplied by Hermite polynomials)

but delocalized in y and z where they are simply plane waves.

9.5 Review Problems and Solutions

Problem 9.1. Let’s consider a quantum-mechanical system whose Hamiltonian

has two eigenvalues E+ = ~ω and E− = −~ω with corresponding (normalized)

eigenstates |+〉 and |−〉. The system is prepared at the time t = 0 in the state

|ψ0〉 =
1

2
|+〉+

√
3

4
|−〉 . (9.29)

Consider also an observable Ô with two eigenvalues a and b and corresponding

eigenstates

|a〉 = 1√
2
(|+〉+ |−〉) , |b〉 = 1√

2
(|+〉 − |−〉) , (9.30)

respectively. Consider the two following situations.
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1. Let the system evolve from t = 0 to t = 2τ and calculate the probability

of finding the value a if a measurement of Ô is performed on the system at

t = 2τ .

2. Alternatively, evolve the system until the time t = τ is reached, then perform

a measurement of Ô without reading the outcome (such kind of measure-

ments are called non-selective ones), then let the system evolve again until

time 2τ and calculate the probability to obtain a if a measurement of Ô is

performed at the time t = 2τ .

Compare the two cases.

Solution. We work in the basis in which the Hamiltonian Ĥ is diagonal, namely

Ĥ =


~ω 0

0 −~ω


 ,

or in an equivalent manner

Ĥ = ~ω |+〉 〈+| − ~ω |−〉 〈−| .

The time-evolution of the state |ψ0〉 from t = 0 to t = 2τ is given by:

|ψ(2τ)〉 = e−
i
~
Ĥ2τ |ψ0〉

= e−
i
~
Ĥ2τ

[
1

2
|+〉+

√
3

4
|−〉
]

=
1

2
|+〉 e−2iωτ +

√
3

4
e2iωτ |−〉 .

Now we look for the probability of finding a if a measurement of Ô is performed on the

state |ψ(2τ)〉. According to the basic rules of quantum mechanics, such probability is given
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by

P (Ô = a|2τ) = |〈a|ψ(2τ)〉|2

=

∣∣∣∣∣
1√
2
(〈+|+ 〈−|)

(
1

2
|+〉 e−2iωτ +

√
3

4
|−〉 e2iωτ

)∣∣∣∣∣

2

=
1

2

[
1 +

√
3

4
cos (4ωτ)

]
. (9.31)

The notation P (Ô = a|2τ) denotes the probability of finding the value a for the observable

Ô at the time t = 2τ . We will use a similar notation also for the other probabilities which

we shall calculate in the following.

Now, let us consider the second case. In this case, the system evolves until time t = τ ,

then at t = τ a measurement of Ô is performed on the system but we do not read the

resulting outcome. Since we do not know what the result of this measurement is, we need

to calculate the probabilities of finding both results. The time-evolution of |ψ0〉 from t = 0

to t = τ is

|ψ(τ)〉 = 1

2
|+〉 e−iωτ +

√
3

4
eiωτ |−〉 .

Now, the probability of finding a in a measurement of Ô at t = τ is

P (Ô = a|τ) = |〈a|ψ(τ)〉|2 = 1

2

(
1 +

√
3

4
cos 2ωτ

)
.

But we can also have b as possible outcome of the measurement, which implies that after

the measurement the state |ψ(τ)〉 would have collapsed into the eigenstate |b〉, that is

|b〉 = 1√
2
[|+〉 − |−〉] .

The probability of finding b is

P (Ô = b|τ) = |〈b|ψ(τ)〉|2

=

∣∣∣∣∣
1√
2
(|+〉 − |−〉)

(
1

2
|+〉 e−iωτ +

√
3

4
|−〉 eiωτ

)∣∣∣∣∣

2

=
1

2

(
1−

√
3

4
cos 2ωτ

)
.



200 Chapter 9. Hydrogen atom

Now, suppose we have performed a measurement of Ô and we have obtained a, then the

state would become

|a〉 = 1√
2
(|+〉+ |−〉) ,

and this will then evolve from t = τ to t = 2τ . At t = 2τ the state will be:

|a, 2τ 〉 = e−iĤτ/~ |a〉 = 1√
2

(
e−iωτ |+〉+ eiωτ |−〉

)
.

If instead b had been obtained at t = τ , the time evolution from t = τ to t = 2τ will lead

at t = 2τ to the state

|b, 2τ 〉 = e−iĤτ/~ |b〉 = 1√
2

(
e−iωτ |+〉 − eiωτ |−〉

)
.

Now, we have all the informations needed to calculate the probability of finding a at the

time t = 2τ . We shall denote this probability with P̃ (Ô = a|2τ). Considering the whole

process, this composite probability is given by the sum of products of simpler probabilities

and it has the following expression:

P̃ (Ô = a|2τ) = P (Ô = a|τ) |〈a|a, 2τ 〉|2 + P (Ô = b|τ) |〈a|b, 2τ 〉|2 .

Since

|〈a|b, 2τ 〉|2 =
∣∣∣∣
1√
2
(〈+|+ 〈−|) 1√

2

(
e−iωτ |+〉 − eiωτ |−〉

)∣∣∣∣
2

= sin2 ωτ ,

and

|〈a|a, 2τ 〉|2 =
∣∣∣∣
1√
2
(〈+|+ 〈−|) 1√

2

(
e−iωτ |+〉+ eiωτ |−〉

)∣∣∣∣
2

= cos2 ωτ ,

we get

P̃ (Ô = a|2τ) = 1

2
+

1

2

√
3

4
cos2 2ωτ .

Note that this result is different from that of the previous case given by Eqn. (9.31). This

means that a measurement done at t = τ can affect the future results even if we do not read

its outcomes.

⋆ ⋆ ⋆
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Problem 9.2. A particle which is rotating with uniform velocity in the xy-plane

around a fixed point is prepared in the state

ψ(ϕ) =
2√
2π

cos2 ϕ .

1. Find the possible outcomes of a measurement of M̂z and the corresponding

probabilities.

2. Calculate the mean value of M̂z.

3. Find the possible outcomes of a measurement of the square of M̂z, i.e., of

M̂2
z , and the corresponding probabilities.

4. Calculate the mean value of M̂2
z .

5. Calculate the mean square deviation.

Solution. First of all, we diagonalize M̂z in order to get its spectrum and so the possible

outcomes of a measurement of M̂z. We will use ~ = 1. We have

M̂z = −i d

dϕ
,

and thus the eigenvalue problem for M̂z reads

−i d

dϕ
ψm(ϕ) = mψm(ϕ) ,

whose solutions are

ψm(ϕ) = A eimϕ ,

and in order ψm to be single-valued we must have ψm(0) = ψm(2π) and thus m must be

integer:

m = ±0,±1,±2 . . .

A is found by imposing that ψm is properly normalized:

‖ψm‖2 = A2

∫ 2π

0
eimϕ e−imϕ dϕ = A2

∫ 2π

0
dϕ = 2πA2 = 1 ,
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therefore A = 1/
√
2π. The eigenfunctions are thus

ψ0 =
1√
2π

,

ψ1 =
1√
2π

eiϕ ,

ψ−1 =
1√
2π

e−iϕ , (9.32)

ψ2 =
1√
2π

ei2ϕ ,

ψ−2 =
1√
2π

e−i2ϕ . . .

The initial state is

ψ(ϕ) =
2√
2π

cos2 ϕ .

Since we have to compute probabilities we have to check that this state is actually normal-

ized. Indeed, it is not normalized:

‖ψ‖2 =
∫ 2π

0
ψ∗(ϕ)ψ(ϕ) dϕ =

3

2
,

hence the normalized initial states is given by

ψ(ϕ) =

√
2

3

2√
2π

cos2 ϕ =

√
4

3π
cos2 ϕ .

In order to obtain the possible outcomes of a measurement of M̂z and their correspond-

ing probabilities on the state ψ(ϕ) we need to expand the state ψ(ϕ) on the basis of the

eigenfunctions of M̂z given in Eqn. (9.32), i.e.:

ψ(ϕ) =

±∞∑

m=±0

cmψm(ϕ) ,

where cm = 〈ψm(ϕ)|ψ(ϕ)〉. In this case, there is an easier way to get the result without

having to calculate all these scalar products. In fact, it is sufficient to rewrite the expression

for the initial state in the following way:

ψ(ϕ) =

√
2

3

2√
2π

cos2 ϕ

=

√
2

3

2√
2π

(
1 + cos 2ϕ

2

)

=

√
2

3

1√
2π︸ ︷︷ ︸
ψ0

+
1√
6

1√
2π

e2iϕ

︸ ︷︷ ︸
ψ2

+
1√
6

1√
2π

e−2iϕ

︸ ︷︷ ︸
ψ−2

.
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Since our state contains only ψ0, ψ2 and ψ−2 the only possible outcomes of a measurement

of M̂z are m = 0, m = ±2. The corresponding probabilities, i.e., |cm|2, can be read directly

from the above expression of ψ(ϕ) and in particular they are given by

P0 =

∣∣∣∣∣

√
2

3

∣∣∣∣∣

2

=
2

3
, P2 =

∣∣∣∣∣

√
1√
6

∣∣∣∣∣

2

=
1

6
, P−2 =

∣∣∣∣∣

√
1√
6

∣∣∣∣∣

2

=
1

6
.

The sum of these probabilities is

P0 + P2 + P−2 = 1 ,

as it should be.

The mean value of M̂z is

〈M̂z〉 =
∑

m

mPm = 0× 2

3
+ 2× 1

6
+ (−2)× 1

6
= 0 .

The possible outcomes of a measurement of M̂2
z are its eigenvalues and since for M̂z they

were 0, 2,−2, for M̂2
z we will have 0, 4, 4:

M̂2
zϕ0 = 0 ,

M̂2
zϕ2 = 4ϕ2 ,

M̂2
zϕ−2 = M̂zM̂zϕ−2 = −2M̂zϕ−2 = +4ϕ−2 .

Thus, the possible outcomes are only 0 and 4. The corresponding probabilities will be given

by

P0 =

∣∣∣∣∣

√
2

3

∣∣∣∣∣

2

=
2

3
, P4 = P2 + P−2 =

∣∣∣∣
1√
6

∣∣∣∣
2

+

∣∣∣∣
1√
6

∣∣∣∣
2

=
1

3
.

The mean value of M̂2
z is

〈M̂2
z 〉 =

∑

m

m2Pm = 0 + 4× 1

3
=

4

3
.

The mean square deviation is

∆Mz =

√
〈M̂2

z 〉 − 〈M̂z〉
2
,

and since 〈Mz〉 = 0 we get

∆Mz =

√
4

3
=

2√
3
.
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⋆ ⋆ ⋆

Problem 9.3. The state of a quantum particle is given by

ψ(x) = C exp

[
i

~
p0x

]
φ(x) ,

with φ(x) real. Calculate the probability that a measurement of the momentum

gives 3p0 as outcome.

Solution. First of all, ψ(x) needs to be normalized:

‖ψ‖2 =
∫ +∞

−∞
ψ∗(x)ψ(x) dx = 1 =

∫ +∞

−∞
|C|2 |φ|2 dx ,

hence

|C|2 =
{∫ +∞

−∞
|φ(x)|2 dx

}−1

.

Next we expand ψ(x) on the basis of the eigenstates of the momentum operator p̂, which

are given by plane waves 1√
2π~

eipx/~:

ψ(x) =

∫ +∞

−∞
c̃(p)

eipx/~√
2π~

dp ,

and |c̃(p)|2 = P (p) is the probability density of finding p as outcome of a measurement of

p̂. Multiplying by e−ip
′x/~ /

√
2π~ and integrating with respect to x we get

∫ +∞

−∞
ψ(x)

e−ip
′x/~

√
2π~

dx =
1

2π~

∫ +∞

−∞
c̃(p) ei(p−p

′)x/~ dp dx

=

∫ +∞

−∞
c̃(p)δ

(
p− p′

)
dp

= c̃(p′) .

In the former manipulations, we have made use of the relation

1

2π

∫ +∞

−∞
ei(k−k

′)x dx = δ(k − k′) .
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We have found therefore that

c̃(p′) =
∫ +∞

−∞
ψ(x)

e−i
p′x
~

√
2π~

dx

=

∫ +∞

−∞
Cφ(x)

ei
p0x
~

√
2π~

e−i
p′x
~ dx

=
1√
2π~

∫
Cφ(x) ei

(p0−p′)x

~ dx .

Now, if we want the probability of finding 3p0 in measuring p̂ we have simply to put p′ = 3p0

in the above relation:

c̃(3p0) =
1√
2π~

∫ +∞

−∞
Cφ(x) e−i2

p0x
~ dx ,

thus (since φ(x) is real)

P (3p0) = |c̃(3p0)|2 =
1

2π~
|C|2

∫ +∞

−∞
φ(x) e−2i

p0x
~ dx

∫ +∞

−∞
φ⋆(x′) e+2i

p0x
′

~ dx′

=
1

2π~
|C|2

∫
φ(x)φ⋆(x′) ei2

p0(x
′
−x)

~ dxdx′ ,

where

|C|2 = 1∫ +∞
−∞ |φ(x)|2 dx

.

⋆ ⋆ ⋆

Problem 9.4 (spin-orbit). In atoms with many electrons there might be inter-

action between the intrinsic magnetic moment of the electrons and the magnetic

field created by their motion. This effect is called spin-orbit interaction, and

in particular it might become important for the electrons in the most external

shells. The interaction Hamiltonian is

Ĥ = gL̂ · ŝ ,

where L is the angular momentum operator, s is the spin of the electron and g

is a coupling which can have dimensions and it is not the gyromagnetic ratio.
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Suppose that an electron is in the p state (i.e., l = 1) find the eigenvalues of

Ĥ and their degeneracies.

Solution. Let us define the operator

Ĵ = L̂+ ŝ ,

from which it follows

Ĵ2 = L̂2 + ŝ2 + L̂ · ŝ+ ŝ · L̂ = L̂2 + ŝ2 + 2L̂ · ŝ .

We get this expression because L̂ and ŝ commute with each other because they refer to

different quantities. From the expression above we obtain

L̂ · ŝ =
Ĵ2 − L̂2 − ŝ2

2
,

and thus

Ĥ =
g

2

[
Ĵ2 − L̂2 − ŝ2

]
.

Let us now show that Ĥ commutes with Ĵ2, Ĵz, L̂
2, ŝ2. Let us begin with Ĵ2. We need to

prove that Ĵ2 commutes with L̂2 and ŝ2. Remember that

Ĵ2 = L̂2 + ŝ2 + 2L̂ · ŝ .

Clearly, L̂2 commutes with L̂2 itself, moreover it surely commutes with ŝ2 since they are

different degrees of freedom. Finally, L̂2 commutes with 2L̂ · ŝ because the latter is a scalar

under rotations which are generated by the L̂i. So, L̂2 commutes with Ĵ2. The same is

true for ŝ2. In fact ŝ2 commutes with L̂2 because they refer to different degrees of freedom,

of course it commutes with ŝ2 and finally it commutes also with 2L̂ · ŝ. The last follows

from the fact that we may choose L̂ along z and thus L̂ · ŝ ∼ ŝz and ŝz commutes with ŝ2.

Now, let us consider Ĵz. Recall that Ĵz = L̂z + ŝz and L̂z and ŝs commute with L̂2 and

ŝ2 and also with L̂ · ŝ because again we can choose L̂ along z and L̂zŝz commutes with L̂z
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and ŝz. Therefore, since Ĵ
2, Ĵz, L̂

2, ŝ2 commutes with each other, we can diagonalize them

simultaneously: 



Ĵ2 |j,m, l, s〉 = ~
2j(j + 1) |j,m, l, s〉

Ĵz |j,m, l, s〉 = ~m |j,m, l, s〉
L̂2 |j,m, l, s〉 = ~

2l(l + 1) |j,m, l, s〉
ŝ2 |j,m, l, s〉 = ~

2s(s+ 1) |j,m, l, s〉

. (9.33)

We know that l = 1 and s = 1/2, so

|l − s| = 1

2
≤ j ≤ 3

2
= l + s ,

that is, we can have j = 1/2 or j = 3/2. Now, we diagonalize Ĥ in the basis of Eqn. (9.33)

because all these operators commute with Ĥ:

Ĥ |j,m, l, s〉 = g

2

[
Ĵ2 − L̂2 − ŝ2

]
|j,m, l, s〉

= ~
2 g

2
[j(j + 1)− l(l + 1)− s(s+ 1)] |j,m, l, s〉 .

Inserting l = 1 and s = 1/2 we get

Ĥ |j,m, 1, 1/2〉 = ~
2g

2

[
j(j + 1)− 2− 3

4

]
|j,m, 1, 1/2〉

=
~
2g

2

[
j(j + 1)− 11

4

]
|j,m, 1, 1/2〉 ,

therefore the energy is

Ej,1,1/2 =
g~2

2

[
j(j + 1)− 11

4

]
,

that is, it depends on j, l and s in general but not on m and thus m signals a degeneracy.

If we choose j = 3/2, we get:

E3/2,1,1/2 =
g~2

2

[
3

2

5

2
− 11

4

]
=
g~2

2
.

There are 2j+1 = 23
2 +1 = 4 eigenstates associated with this energy and in particular they

have the following form:

|3/2, 3/2, 1, 1/2〉
|3/2, 1/2, 1, 1/2〉
|3/2,−1/2, 1, 1/2〉
|3/2,−3/2, 1, 1/2〉





⇒ E3/2,1,1/2 .
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The other value of the energy is obtained by taking j = 1/2 and it is given by

E1/2,1,1/2 =
g~2

2

[
1

2

3

2
− 11

4

]
= −g~2 ,

the degeneracy is 2j + 1 = 21
2 + 1 = 2 and the associated eigenstates are

|1/2, 1/2, 1, 1/2〉
|1/2,−1/2, 1, 1/2〉



 ⇒ E1/2,1,1/2 .

⋆ ⋆ ⋆

Problem 9.5. At the time t = 0 an harmonic oscillator is prepared in the state

|ψ0〉 =
(
2â† + 1

)
|0〉 ,

where â and â† are defined in the following way

â =

√
mω

2~
x̂+ i

1√
2mω~

p̂ ,

â† =

√
mω

2~
x̂− i

1√
2mω~

p̂ .

Calculate the mean values of position and momentum operators as functions of

time.

Solution. Let us recall that the Hamiltonian has the form

Ĥ = ~ω

(
â†â+

1

2

)
,

and our initial state is

|ψ0〉 = 2 |1〉 + |0〉 ,

where |1〉 = â† |0〉. Its norm is

〈ψ0|ψ0〉 = (〈0| + 〈1| 2) (2 |1〉 + |0〉) = 5 ,
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thus the normalized state is

|ψ0〉 =
1√
5
[2 |1〉 + |0〉] .

The evolution in time gives

|ψ〉t = e−iĤt/~
1√
5
[2 |1〉 + |0〉]

=
1√
5
2 e−iE1t/~ |1〉+ 1√

5
e−iE0t/~ |0〉 .

Since

En =

(
n+

1

2

)
~ω ,

the state at the time t can be written as

|ψ〉t =
2√
5
e−i

3
2
tω |1〉+ 1√

5
e−iωt/2 |0〉 .

The mean values of x̂ and p̂ can be computed by inverting the expressions of â and â† in

terms of x̂ and p̂, i.e.,

x̂ =

√
~

2mω

(
â† + â

)
,

p̂ = i

√
~mω

2

(
â† − â

)
,

thus

X(t) = 〈ψ(t)|x̂|ψ(t)〉 =
[

2√
5
ei

3
2
tω 〈1|+ 1√

5
ei

1
2
tω 〈0|

][√
~

2mω

(
â+ â†

)]

×
[

2√
5
e−i

3
2
tω |1〉 + 1√

5
e−i

1
2
tω |0〉

]
,

and since

â |n〉 =
√
n |n− 1〉 , â† |n〉 =

√
n+ 1 |n+ 1〉 ,

the previous expression becomes

X(t) =

√
~

2mω

[
2√
5
ei

3
2
tω 〈1| + 1√

5
ei

1
2
tω 〈0|

]

×
[

2√
5
e−i

3
2
tω |0〉 + 2

√
2√
5

e−i
3
2
tω |2〉+ 1√

5
e−i

1
2
tω |1〉

]

=

√
~

2mω

[
2

5
ei

2
2
tω +

2

5
e−i

2
2
tω

]

=
4

5

√
~

2mω
cosωt .
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In the same way one can find

P (t) = 〈ψ(t)|p̂|ψ(t)〉 = 2

5

√
2~mω sinωt .

Now, we consider the mean value of the energy:

〈ψ(t)|Ĥ |ψ(t)〉 =

[
2√
5
ei

3
2
tω 〈1| + 1√

5
ei

1
2
tω 〈0|

] [
~ω

(
N̂ +

1

2

)]

×
[

2√
5
e−i

3
2
tω |1〉 + 1√

5
e−i

1
2
tω |0〉

]

=

[
2√
5
ei

3
2
tω 〈1| + 1√

5
ei

1
2
tω 〈0|

]

×
[(

1 +
1

2

)
2√
5
e−i

3
2
tω |1〉+ 1

2

1√
5
e−i

1
2
tω |0〉

]

= ~ω

[
2√
5

3

�2
�2√
5
+

1√
5

1√
5

1

2

]

=
~ω

5

[
6 +

1

2

]
=

13

10
~ω .

⋆ ⋆ ⋆

Problem 9.6. Consider two particles of spin one-half. Show that the following

operator associated with the two particles

Ŝ12 =

[
3

(
σ̂(1) · r̂

) (
σ̂(2) · r̂

)

r2
− σ̂(1) · σ̂(2)

]
, (9.34)

can be written as

Ŝ12 = 2

[
3
(ŝ · r̂)2
r2

− (ŝ)2
]
,

where

ŝ =
1

2

(
σ̂(1) + σ̂2

)
,

and the labels 1 and 2 refer to particles 1 or 2.
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Solution. Let us begin with the relation

(ŝ · r̂)2 =
1

4

[
σ̂(1) · r̂ + σ̂(2) · r̂

]2

=
1

4

[(
σ̂(1) · r̂

)2
+
(
σ̂(2) · r̂

)2
+ 2

(
σ̂(1) · r̂

) (
σ̂(2) · r̂

)]
,

where

(σ̂ · r̂)2 = σ̂2xx
2 + σ̂2yy

2 + σ̂2zz
2 .

Since σ̂2x = σ̂2y = σ̂2z = 11, we have that

(σ̂ · r̂)2 = r211 .

Using this relation we get

(ŝ · r̂)2 =
1

4

[
2r211+ 2

(
σ̂(1) · r̂

) (
σ̂(2) · r̂

)]

=
1

2

[
r211+

(
σ̂(1) · r̂

) (
σ̂(2) · r̂

)]
,

or equivalently

2 (ŝ · r̂)2 − r211 =
(
σ̂(1) · r̂

) (
σ̂(2) · r̂

)
.

Using the L.H.S of the above expression in (9.34), we get

Ŝ12 =

[
3
2 (ŝ · r̂)2 − r211

r2
− σ̂(1) · σ̂(2)

]

= 6
(ŝ · r̂)2
r2

− 311 − σ̂(1) · σ̂(2) .

Let us now consider the last term on the right-hand side. Remember that

ŝ =
1

2

(
σ̂(1) + σ̂(2)

)
,

thus

(ŝ)2 =
1

4

[
σ̂2
(1) + σ̂2

(2) + 2σ̂(1) · σ̂(2)

]

=
1

4

[
(3 + 3)11 + 2σ̂(1) · σ̂(2)

]

=
3

2
11+

1

2
σ̂(1) · σ̂(2) ,



212 Chapter 9. Hydrogen atom

where we have used the fact that

σ̂2
(1) = σ̂2(1),x + σ̂2(1),y + σ̂2(1),z = 11+ 11+ 11 = 311 .

Therefore,

σ̂(1) · σ̂(2) = 2 (ŝ)2 − 311 ,

and so for Ŝ12 we get

Ŝ12 = 6
(ŝ · r̂)2
r2

− 311 + 311 − 2 (ŝ)2 = 6
(ŝ · r̂)2
r2

− 2 (ŝ)2 ,

which is the expression we wanted to derive.

⋆ ⋆ ⋆

Problem 9.7. Three Hermitian operators Â, B̂ and Ĉ satisfy the following com-

mutation rules:

[Â, Ĉ] = 0 = [B̂, Ĉ] , [Â, B̂] 6= 0 .

Prove that one of the eigenvalues of Ĉ must necessarily be degenerate.

Solution. Let ψc be an eigenstate of Ĉ with eigenvalue c. We apply [Â, Ĉ] = 0 to ψc:

[Â, Ĉ]ψc = 0 ,

thus

ÂĈψc − ĈÂψc = c
(
Âψc

)
− Ĉ

(
Âψc

)
= 0 ,

which means that Âψc is another eigenstate of Ĉ with the same eigenvalue c of ψc. If we

assume that c is not degenerate then Âψc must be proportional to ψc:

Âψc = aψc .

Notice that in this way ψc turns out to be eigenstate of Â with eigenvalue a. The same

argument can be applied to [B̂, Ĉ]ψc = 0, yielding

B̂ψc = bψc ,
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where b is the proportionality constant but also the eigenvalue.

Now, we use the fact that [Â, B̂] 6= 0. We apply this commutator to the state ψc and we

get

[Â, B̂]ψc = ÂB̂ψc − B̂Âψc = abψc − abψc = 0 .

Since {ψc} form a complete set, this result holds for arbitrary states ψ. This contradicts

the fact that [Â, B̂]ψ 6= 0. So we have to give up the hypothesis that ψc is not degenerate.

It has to be given up at least for one of the eigenstates of Ĉ.

⋆ ⋆ ⋆

Problem 9.8. Consider a particle moving on a circle with radius 1 and angle

ϕ. Its angular momentum is P̂ϕ = −i~ d
dϕ

. Since the commutator is [ϕ̂, P̂ϕ] = i~,

do we have

∆ϕ∆Pϕ ≥ ~

2
, (9.35)

or not? Actually the range of ϕ is 2π, so the square variation must be smaller

than 2π, i.e.: ∆ϕ ≤ 2π, and if Eqn. (9.35) were true we expect that it would

be impossible to build a packet having ∆Pϕ arbitrary small, since such request

would imply ∆ϕ = ∞. Comment on this.

Solution. By definition,

(
∆Âψ

)2
= 〈ψ|(Â − 〈Â〉)2|ψ〉 ,

where the label ψ on ∆Âψ is to remember that the square deviation is calculated with

respect to the state ψ. If ψ is an eigenstate of Â,

Âψa = aψa ,
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it is easy to show that ∆Âψa
= 0, in fact we have (assuming ψa is normalized) :

〈ψa|(Â− 〈Â〉)2|ψa〉 = 〈ψa|(Â− 〈ψa|Â|ψa〉)2|ψa〉

= 〈ψa|[Â2 + (〈ψa|Âψa〉)2 − 2Â 〈ψa|Â|ψa〉]|ψa〉

= 〈ψa|Â2 + a2 − 2Âa|ψa〉

= 〈ψa|a2 + a2 − 2a2|ψa〉 = 0 .

So for example the states ψ =
exp imϕ

~√
2π~

have ∆P̂ϕ = 0. Consider the operator

Ĥ = − ~
2

2m

d2

dϕ2
, 0 ≤ ϕ ≤ 2π ,

and let us study its self-adjointness:

〈ψ1|Ĥψ2〉 = 〈Ĥψ1|ψ2〉 −
~
2

2m

[
ψ∗
1ψ

′
2 − (ψ∗

1)
′ψ2

]2π
0

. (9.36)

Ĥ is Hermitian if the surface term is zero. There is a compact way to rewrite the surface

term by introducing the following notation:

Ψ(1) ≡


ψ1

ψ′
1


 , Ψ(2) ≡


ψ2

ψ′
2


 .

So,

ψ∗
1ψ

′
2 − (ψ∗

1)
′ψ2 = Ψ†

(1)


 0 1

−1 0


Ψ(2) ,

and as a consequence the surface term in Eqn. (9.36) can be written as

− ~
2

2m


Ψ†

(1)
(2π)


 0 1

−1 0


Ψ(2)(2π)−Ψ†

(1)
(0)


 0 1

−1 0


Ψ(2)(0)


 .

In order for this term to vanish, let us suppose that

Ψ1,2(2π) = ÂΨ1,2(0) , (9.37)

where Â is a 2 × 2 matrix, because Ψ1,2 are 2- vectors. By inserting (9.37) in the surface

term we get that it is zero if:

Â†


 0 1

−1 0


 Â =


 0 1

−1 0


 . (9.38)
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The matrices which satisfy this relation are

Â = e[iα+σ̂2β] , σ̂2 =


 0 i

−i 0


 , (9.39)

where α and β are real numbers.

So, Ĥ is Hermitian on a space of wave functions which are labelled by two parameters

α and β. They are called self-adjoint extensions of Ĥ because it is a space larger than the

space of periodic functions.

If we take β = 0, the eigenfunctions of Ĥ are

ψ(α)
n (ϕ) =

1√
2π

exp
{
i
( α
2π

+ n
)
ϕ
}
, (9.40)

and their corresponding eigenvalues are

En =
~
2

2m

( α
2π

+ n
)2

.

ψ
(α)
n (ϕ) satisfy Eqn. (9.37) with Â given by Eqn. (9.39). In fact, Eqn. (9.37) and Eqn. (9.39)

with β = 0 are

Ψ1(2π) = eiαΨ1(0) ,

Ψ2(2π) = eiαΨ2(0) .

Of course, these functions are not periodic, but only the eigenfunctions of L̂z must be

periodic.

So, we can say that the domain of self-adjointness of Ĥ is C2(0, 2π) with

ψ(2π) = eiα ψ(0) . (9.41)

Let us now apply the operator ϕ̂ to ψ(ϕ):

ϕ̂ψ(ϕ) = ψ̃(ϕ) .

This ψ̃ does no longer fulfill Eqn. (9.41). In fact, we have

ψ̃(2π) = 2πψ(2π) ,

ψ̃(0) = 0 · ψ(0) = 0 ,
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and so it is not true that ψ̃(2π) = eiα ψ̃(0). This means that the operator ϕ̂ pushes ψ outside

the domain of self-adjointness of Ĥ, which is our Hilbert space. A crucial ingredient in the

proof of the Heisenberg uncertainty principle is that ψ̃(ϕ) must belong to the same Hilbert

space we started from. As a consequence of this, what we can say is that the uncertainty

principle does not hold anymore for the operators ϕ̂ and P̂ϕ. This is the reason of the

contradiction we have found. Since the uncertainty principle is not valid, we can construct

a state with a perfectly well-defined value of P̂ϕ, ψ(ϕ) = eipϕϕ/~ /
√
2π, even if ∆ϕ < 2π.

Note that all this goes through also in the case of periodic eigenfunctions.

⋆ ⋆ ⋆

Problem 9.9. Prove that the expectation value of the force on the stationary

states of the Schrödinger equation is always zero.

Solution. What we have to prove is that

〈ψE |F̂ |ψE〉 = 0 , (9.42)

with

ĤψE = EψE .

Using F̂ = ˙̂p and the correspondence rule

ṗ = {p,H}P.B. ⇒ ˙̂p =
1

i~
[p̂, Ĥ] ,

Eqn. (9.42) becomes

〈
ψE

∣∣∣∣
1

i~
[p̂, Ĥ]

∣∣∣∣ψE
〉

=
1

i~

〈
ψE

∣∣∣
(
p̂Ĥ − Ĥp̂

) ∣∣∣ψE
〉

=
E

i~
{〈ψE |p̂|ψE〉 − 〈ψE |p̂|ψE〉}

= 0 .

⋆ ⋆ ⋆
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TIME-INDEPENDENT PERTURBATION THEORY

There is a small number of potentials which are exactly solvable in quantum me-

chanics. Because of this fact, people have developed techniques to solve other poten-

tials at least in an approximate way.

These techniques basically belong to two separate classes: perturbative techniques

and non-perturbative ones. Here, we will deal with the first ones.

Let us suppose that the Hamiltonian Ĥ of our system can be splitted into two

parts, say Ĥ0 and gV̂ , as follows:

Ĥ = Ĥ0 + gV̂ , (10.1)

where we are assuming to know exactly the eigenvalues and the eigenstates of Ĥ0,

which is not necessarily the free Hamiltonian. For the time being, let us assume that

the spectrum of Ĥ0 is a purely discrete one:

Ĥ0 |E(0)
n 〉 = E(0)

n |E(0)
n 〉 . (10.2)

Furthermore, let us assume that

〈gV̂ 〉
〈Ĥ0〉

≪ 1 , (10.3)

where 〈·〉 denotes the mean value with respect to arbitrary states.

Condition Eqn. (10.3) is sometimes expressed in a qualitative fashion by saying

that g (the coupling) is somehow “small” and thus the perturbation gV̂ with respect

to Ĥ0 is small.
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A more precise way of saying that the perturbation is small is the following one:

〈E(0)
n |gV̂ |E(0)

n 〉
En+1 −En

≪ 1 ,

that is to say, the shift on the energy levels E
(0)
n due to the perturbation gV̂ is smaller

than the difference between the energy of the n-th level and the next level.

10.1 Non-degenerate case

In this section we deal with the case in which the energy levels of the unperturbed

Hamiltonian Ĥ0 are non degenerate. The cases in which there is degeneracy will be

covered in a later section.

Our task is to find an approximate expression of the energy levels En and their

corresponding eigenstates |En〉 of the complete Hamiltonian Ĥ :

Ĥ |En〉 = En |En〉 . (10.4)

Obviously, we want to require that, if we switch off the perturbation, then the energy

levels get into those of the unperturbed Hamiltonian Ĥ0, i.e.,

lim
g→0

En = E(0)
n , lim

g→0
|En〉 = |E(0)

n 〉 .

We assume that the exact values of En and |En〉 can be written as a series in g,

since g is small. That is to say,

En = E(0)
n + gε1 + g2ε2 + . . .+ gmεm + . . . , (10.5)

|En〉 = |E(0)
n 〉+ g |1〉+ g2 |2〉+ . . .+ gm |m〉+ . . . , (10.6)

where the quantities ε1, ε2, . . . and the states |1〉, |2〉, . . . are to be determined.

We impose

〈En|E(0)
n 〉 = 1 . (10.7)
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We will see in a while that it is always possible to meet such requirement even if the

eigenstates |E(0)
n 〉 are normalized, i.e.,

〈E(0)
n |E(0)

n 〉 = 1 . (10.8)

In fact, taking into account Eqn. (10.6), the latter requirement is fulfilled if

〈E(0)
n |1〉 = 0 , 〈E(0)

n |2〉 = 0 , . . . , 〈E(0)
n |m〉 = 0 , . . . (10.9)

Using Eqs. (10.5)–(10.6) into Eqn. (10.4) we get
[
Ĥ0 + gV̂

] (
|E(0)

n 〉+ g |1〉+ g2 |2〉+ . . .
)

=
[
E(0)
n + gε1 + g2ε2 + . . .

] (
|E(0)

n 〉+ g |1〉+ g2 |2〉+ . . .
)
,

By equating terms with the same power of g on the left and right hand side in the

previous expression we get the system of equations:
(
Ĥ0 − E

(0)
n

)
|E(0)

n 〉 = 0 ,
(
Ĥ0 −E

(0)
n

)
|1〉+

(
V̂ − ε1

)
|E(0)

n 〉 = 0 ,
(
Ĥ0 − E

(0)
n

)
|2〉+

(
V̂ − ε1

)
|1〉 − ε2 |E(0)

n 〉 = 0 , . . .

(10.10)

The reason for equating terms sharing the same power of g is that g is a small but

otherwise arbitrary parameter.

Now we will see how it is possible to choose the states |m〉 in such a way to satisfy

Eqn. (10.9) and thus Eqn. (10.7) to be fulfilled. The state |En〉 solution of

Ĥ |En〉 = En |En〉 , (10.11)

is defined up to a constant k:

|En〉′ ≡ k |En〉 ,

in fact |En〉′ is also a solution of Eqn. (10.11). We define the value of k in such a way

that taking the limit g → 0 we recover the results of the unperturbed Hamiltonian,

i.e.,

lim
g→0

k |En〉 = |E(0)
n 〉 .
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But this is not sufficient, in addition we need also to define the components of |En〉.
The only state we know is |E(0)

n 〉 so we require

〈En|E(0)
n 〉 = 1 ,

this is not in contraddiction with the assumption

〈E(0)
n |E(0)

n 〉 = 1 ,

since we have already seen in Eqn. (10.9) that it is sufficient to ensure that the states

|1〉 , |2〉 , . . . , |m〉 , . . . are orthogonal to |E(0)
n 〉.

Is it possible to require such thing? Yes it is, in fact from Eqs. (10.10) we notice

that we can add to each state |1〉, |2〉, . . . , another state proportional to |E(0)
n 〉 and

we get again Eqs. (10.10). Let us define

|1′〉 ≡ |1〉+ k |E(0)
n 〉 , (10.12)

and insert |1′〉 in the second equation of Eqs. (10.10):

(
Ĥ0 −E(0)

n

)
|1′〉+

(
V̂ − ε1

)
|E(0)

n 〉 = 0 .

Inserting the expression of |1′〉 yields
(
Ĥ0 − E(0)

n

)
|1〉+ k

(
Ĥ0 − E(0)

n

)
|E(0)

n 〉
︸ ︷︷ ︸

0

+
(
V̂ − ε1

)
|E(0)

n 〉 = 0 ,

hence (
Ĥ0 −E(0)

n

)
|1〉+

(
V̂ − ε1

)
|E(0)

n 〉 = 0 .

Therefore, we can say that solutions of Eqn. (10.10) are defined up to a constant

proportional to |E(0)
n 〉. The same reasoning applies to |2〉 and to the other states.

We can use this freedom to impose

〈E(0)
n |m′〉 = 0 ⇔ 〈E(0)

n |m〉+ k 〈E(0)
n |E(0)

n 〉︸ ︷︷ ︸
1

= 0 ,
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i.e., it is sufficient to choose

k = −〈E(0)
n |m〉 . (10.13)

This choice of k produces a state |m′〉 orthogonal to 〈E(0)
n |. Of course, k changes with

|m〉 so it would be better to put a label on k:

km = −〈E(0)
n |m〉 .

Now, let us come back to Eqn. (10.10) and let us try to determine ε1, ε2, . . . and

the states |1〉 , |2〉 , . . .

10.1.1 First order corrections

Let us suppose we know only the state |E(0)
n 〉 and its energy E

(0)
n .

Consider the second equation in Eqs. (10.10) and braket with 〈E(0)
n |:

〈E(0)
n |Ĥ0 − E(0)

n |1〉+ 〈E(0)
n |V̂ − ε1|E(0)

n 〉 = 0 ,

so

〈E(0)
n |E(0)

n −E(0)
n |1〉︸ ︷︷ ︸

0

+ 〈E(0)
n |V̂ |E(0)

n 〉 − ε1 〈E(0)
n |E(0)

n 〉︸ ︷︷ ︸
1

= 0 ,

and thus

ε1 = 〈E(0)
n |V̂ |E(0)

n 〉 . (10.14)

This is the first-order perturbative correction to the energy and it is a function only

of known things, namely, V̂ and |E(0)
n 〉.

10.1.2 Second order corrections

Consider the third equation in Eqs. (10.10) and bracket it with respect to 〈E(0)
n |:

〈E(0)
n |Ĥ0 −E(0)

n |2〉+ 〈E(0)
n |V̂ − ε1|1〉 − ε2 〈E(0)

n |E(0)
n 〉︸ ︷︷ ︸

1

= 0 ,

so

〈E(0)
n |E(0)

n − E(0)
n︸ ︷︷ ︸

0

|2〉+ 〈E(0)
n |V̂ |1〉 − ε1 〈E(0)

n |1〉︸ ︷︷ ︸
0

−ε2 = 0 ,
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from which it follows that

ε2 = 〈E(0)
n |V̂ |1〉 . (10.15)

In the same way (do this as an homework) it is possible to prove that

εi = 〈E(0)
n |V̂ |i− 1〉 . (10.16)

A key point in the derivation above is the fact that the states |m〉 can be chosen

orthogonal to 〈E(0)
n |.

From Eqs. (10.15)–(10.16) we notice that ε2 can be determined once we know |1〉
and, more generally, in order to calculate the correction εm we should know the state

|m− 1〉 and so forth.

10.1.3 Correction to the states

To build the state |1〉 we should determine its components along a given orthogo-

nal basis. As a basis we consider the one made by the eigenstates of Ĥ0, namely,

|E(0)
1 〉 , |E(0)

2 〉 , . . . , |E(0)
i 〉 , . . .. Thus, we should build

〈E(0)
i |1〉 ,

with i 6= n since, from Eqn. (10.9), we know that 〈E(0)
n |1〉 = 0.

Leu us start from Eqn. (10.10) and project along 〈E(0)
i |. From the first equation

we get

〈E(0)
i |Ĥ0 − E(0)

n |E(0)
n 〉 = 0 ,

thus

〈E(0)
i |E(0)

i −E(0)
n |E(0)

n 〉 =
(
E

(0)
i −E(0)

n

)
〈E(0)

i |E(0)
n 〉︸ ︷︷ ︸

0

= 0 ,

thus the first equation is trivially fulfilled; It happens that 〈E(0)
i |E(0)

n 〉 = 0 because

the basis of the eigenstates of Ĥ0 is an orthonormal one.

Now, we consider the second equation in Eqn. (10.10) and bracket it with 〈E0
i |

〈E(0)
i |Ĥ0 −E(0)

n |1〉+ 〈E(0)
i |V̂ − ε1|E(0)

n 〉 = 0 ,
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thus

〈E(0)
i |1〉

(
E

(0)
i − E(0)

n

)
= −〈E(0)

i |V̂ − ε1|E(0)
n 〉 ,

therefore

〈E(0)
i |1〉 = 〈E(0)

i |(V̂ − ε1)|E(0)
n 〉

E
(0)
n − E

(0)
i

.

This equation gives the components of the state |1〉 on the basis of |E(0)
i 〉 and it

requires only things which are known , namely, 〈E(0)
i |, 〈E(0)

n |, V̂ and ε1, which has

been already determined through Eqn. (10.14) without having to know anything about

|1〉.
Now we start from the third equation in Eqs. (10.10) and we bracket with 〈E(0)

i |:

〈E(0)
i |Ĥ0 −E(0)

n |2〉+ 〈E(0)
i |V̂ − ε1|1〉 − ε2 〈E(0)

i |E(0)
n 〉︸ ︷︷ ︸

0

= 0 ,

thus (
E

(0)
i − E(0)

n

)
〈E(0)

i |2〉 = −〈E(0)
i |V̂ − ε1|1〉 ,

and therefore

〈E(0)
i |2〉 = 〈E(0)

i |(V̂ − ε1)|1〉
E

(0)
n − E

(0)
i

. (10.17)

Eqn. (10.17) gives the components of |2〉 in the basis of the eigenstates |E(0)
i 〉 in terms

of given quantities on the right-hand side, namely, once again ε1, V̂ , |E(0)
i 〉 and |1〉

which has been already determined in the previous section without needing to know

|2〉.
The procedure seems to be a recursive one. In fact, the general formula for the

state |l〉 is

〈E(0)
i |l〉 = 1

E
(0)
n − E

(0)
i

[
〈E(0)

i |V̂ − ε1|l − 1〉 − ε2 〈E(0)
i |l − 2〉

− . . .− εl−1 〈E(0)
i |1〉

]
,

(10.18)

with i 6= n.

Homework 10.1. Prove Eqn. (10.18).
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From Eqn. (10.18) it follows that |l〉 is completely determined from quantities which

are already known, namely, ε1, . . . , εl−1 and |1〉 , . . . , |l − 1〉. Thus, it is a recursive

procedure.

At this point, it should be emphasized that the string of states |1〉, |2〉, . . . , |l〉,
. . . depends on which state |E(0)

n 〉 we are considering. Therefore, it would have been

better to write Eqn. (10.6) in the form

|En〉 = |E(0)
n 〉+ g |1〉n + g2 |2〉n + . . . gm |m〉n + . . . ,

where the label |·〉n on the states |1〉, |2〉, . . . denotes that these states are different if

we use different |E(0)
n 〉.

From Eqn. (10.18) it follows that the states |l〉 depend on which energy level E
(0)
n

and which state |E(0)
n 〉 we are dealing with. In fact, E

(0)
n appear on the right-hand

side of Eqn. (10.18).

Eqn. (10.18) can be written in a more elegant way by introducing suitable projec-

tors.

10.1.4 Projection operators in perturbation theory

Let us introduce the operator

Q̂0 ≡ 11− |E(0)
n 〉 〈E(0)

n | =
∑

i 6=n
|E(0)

i 〉 〈E(0)
i | . (10.19)

The last result follows from the completeness of the eigenstates of Ĥ0:

∑

j

|E(0)
j 〉 〈E(0)

j | = 11 .

We can also introduce the following operator:

ˆ̃Q0 ≡ Q̂0
1

E
(0)
n − Ĥ0

Q̂0 . (10.20)

It is not difficult to prove, using Eqn. (10.19), that

ˆ̃Q0 =
∑

i 6=n

|E(0)
i 〉 〈E(0)

i |
E

(0)
n −E

(0)
i

. (10.21)
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Using ˆ̃Q0 we can write Eqn. (10.18) as

|l〉 = ˆ̃Q0

[(
V̂ − ε1

)
|l − 1〉 − ε2 |l − 2〉 − . . .− εl−1 |1〉

]
. (10.22)

Eqn. (10.22) tells us that from |E(0)
n 〉 and ε1 we get |1〉, from |1〉 we get ε2, then from

|1〉 and ε2 we get |2〉, from |2〉 we get ε3, and so.

Furthermore, notice that

ˆ̃Q0 |E(0)
n 〉 = 0 , (10.23)

with n 6= i. This follows from Eqn. (10.21) e from the fact that 〈E(0)
n |E(0)

i 〉 = δi,n.

Notice that also ˆ̃Q0 should carry a label n since the right-hand side of Eqn. (10.21)

contains E
(0)
n , thus there are as many ˆ̃Q0 and strings of states |1〉, |2〉, . . . , as E(0)

n .

Homework 10.2. Prove Eqn. (10.21).

Homework 10.3. Prove Eqn. (10.22).

10.1.5 Summary of formulas for first-order perturbation theory

Let us recall Eqn.(10.14):

ε1 = 〈E(0)
n |V̂ |E(0)

n 〉 ,

and also Eqn. (10.5)

En = E(0)
n + ε1g +O(g2)

= 〈E(0)
n |Ĥ0|E(0)

n 〉+ g 〈E(0)
n |V̂ |E(0)

n 〉+O(g2)

= 〈E(0)
n |(Ĥ0 + gV̂ )|E(0)

n 〉+O(g2)

En = 〈E(0)
n |Ĥ|E(0)

n 〉+O(g2) .

Therefore, the energy at the first order in g is nothing but Ĥ (the complete Hamilto-

nian) evaluated on the unperturbed state |E(0)
n 〉.

From the formula in Eqs. (10.6) we get

|En〉 = |E(0)
n 〉+ g |1〉+O(g2) ,
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where

|1〉 = ˆ̃Q0

(
V̂ − ε1

)
|E(0)

n 〉 ,

and since ˆ̃Q0 |E(0)
n 〉 = 0 we get

|1〉 = ˆ̃Q0V̂ |E(0)
n 〉 ,

thus

|En〉 = |E(0)
n 〉+ g |1〉+O(g2)

=
(
1 + g ˆ̃QV̂

)
|E(0)

n 〉+O(g2) .

It is also possible to check that

〈En|En〉 = 1 +O(g2) , 〈En|E(0)
n 〉 = 1 .

Another remark: Eqn. (10.18) can be simplified as follows:

〈E(0)
i |1〉 = 〈E(0)

i |V̂ |E(0)
n 〉 − ε1 〈E(0)

i |E(0)
n 〉

E
(0)
n − E

(0)
i

,

and from 〈E(0)
i |E(0)

n 〉 = 0 for n 6= i we obtain

〈E(0)
i |1〉 = 〈E(0)

i |V̂ |E(0)
n 〉

E
(0)
n − E

(0)
i

,

i.e., the components of |1〉 on 〈E(0)
i | are given (modulo the denominator E

(0)
n −E

(0)
i )

from the off-diagonal matrix elements of V̂ .

10.2 Perturbation theory: degenerate case

We will now treat the case in which the states are degenerate. For completeness, let

us rewrite some of the previous equations. We are interested in solving

Ĥ = Ĥ(0) + gV̂ , (10.24)
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and E
(0)
1 , E

(0)
2 , E

(0)
3 , . . . , E

(0)
m , . . . are the energy levels of the unperturbed Hamiltonian

Ĥ(0) which are exactly known.

Let’s now suppose, differently from the previous section, that these energy levels

are degenerate:

Ĥ(0) |E(0)
n , α〉 = E(0)

n |E(0)
n , α〉 , (10.25)

where α is the set of quantum numbers which are necessary to label the degeneracy, or

if you wish, the quantum numbers associated with a set of operators which together

with Ĥ(0) form a complete set.

Like for the non-degenerate case, we require that

lim
g→0

En = E(0)
n , (10.26)

where En is the eigenvalue of Ĥ .

Furthermore, we assume an expansion to be of the form




En = E
(0)
n + gε1 + g2ε2 + . . .+ gmεm + . . .

|En〉 = |E(0)
n 〉+ g |1〉+ g2 |2〉+ . . .+ gm |m〉+ . . .

, (10.27)

Inserting Eqs. (10.27) into the stationary Schrödinger equation

Ĥ |En〉 = En |En〉 ,

we get, as before, the string of equations




(
Ĥ(0) −E(0)

n

)
|E(0)

n 〉 = 0 ,
[
Ĥ(0) −E(0)

n

]
|1〉+

(
V̂ − ε1

)
|E(0)

n 〉 = 0 ,
[
Ĥ(0) − E(0)

n

]
|2〉+

(
V̂ − ε1

)
|1〉 − ε2 |E(0)

n 〉 = 0

...

(10.28)

Again, we impose

〈En|E(0)
n 〉 = 1 ,

and we get from the second equation of (10.27) that

〈1|E(0)
n 〉 = 〈2|E(0)

n 〉 = . . . = 〈m|E(0)
n 〉 = . . . = 0 .
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Ĥ

|En〉En

|Ẽn〉 Ẽn

| ˜̃En〉
˜̃
En

Ĥ(0)

g → 0

E
(0)
n



















|E
(0)
n , 1〉

|E
(0)
n , 2〉

...

|E
(0)
n , l〉



















Fig. 10.1. Schematic description

Let us suppose that the eigenvalue E
(0)
n of the unperturbed Hamiltonian Ĥ(0) is l

times degenerate, i.e.,

|E(0)
n , α〉 (10.29)

where α takes l different values. These vectors span a space which we shall denote

with ξ
(0)
n . Let us denote with P̂ (0) the projector onto this space.

We have already required, see Eqn. (10.26), that the eigenvalue En of Ĥ goes to

E
(0)
n of Ĥ(0) as g → 0, but it may happen that there is more than one eigenvalue

of Ĥ which go to E
(0)
n , see Fig. 10.1. In other words, there may be more than one

eigenvalue En, Ẽn,
˜̃En of Ĥ which go to E

(0)
n for g → 0 and the corresponding states

|En〉, |Ẽn〉, | ˜̃En〉 go into different vectors of the l-dimensional space of eigenstates

associated with E
(0)
n .

It may also happen that these states

|En〉 , |Ẽn〉 , | ˜̃En〉

are degenerate too, with degeneracy ln, l̃n,
˜̃ln respectively. We require (and this is

true if the perturbation does not make Ĥ too different from Ĥ(0)) that the sum of the

degeracy of |En〉, |Ẽn〉, | ˜̃En〉, namely ln + l̃n +
˜̃ln, is equal to the degeneracy of E

(0)
n ,
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namely l, i.e:

ln + l̃n +
˜̃ln = l .

Let us denote with ξ1, ξ2, ξ3 the subspaces of En with degeneracies ln, l̃n,
˜̃ln respec-

tively, so :

lim
g→0

(ξ1 + ξ2 + ξ3) = ξ(0)n ,

where ξ
(0)
n is the subspace spanned by the eigenstates |E(0)

n , α〉. The projector P̂ onto

ξ1 + ξ2 + ξ3 for g → 0 will go into the projector P̂ (0) (which was defined previously):

lim
g→0

P̂ξ1 + P̂ξ2 + P̂ξ3 = P̂ (0) .

Let us now move back to the equation of the unperturbed Hamiltonian:

(
Ĥ(0) −E(0)

)
|E(0), β〉 = 0 ,

where we have removed, for the moment, the label n of the energy level. |E(0), β〉
is a linear combination of the degenerate states |E(0)

n , α〉 of Eqn. (10.29). The only

requirement is that this state belongs to the subspace ξ(0), i.e.,

P̂ (0) |E(0), β〉 = |E(0), β〉 .

Now, consider Eqs. (10.28). The second equation is

(
Ĥ(0) −E(0)

)
|1〉+

(
V̂ − ε1

)
|E(0)

n 〉 = 0 ,

where |E(0)
n 〉 is one generic state which belongs to ξ(0). By projecting this equation

onto ξ(0) we get

P̂ (0)
(
Ĥ(0) −E(0)

)
|1〉+ P̂ (0)

(
V̂ − ε1

)
|E(0)

n 〉 = 0 ,

i.e.,

P̂ (0)Ĥ(0) |1〉 −E(0) P̂ (0) |1〉︸ ︷︷ ︸
0

+P̂ (0)V̂ |E(0)
n 〉 − ε1 P̂

(0) |E(0)
n 〉︸ ︷︷ ︸

|E(0)
n 〉

= 0 ,
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and hence

P̂ (0)Ĥ(0) |1〉+ P̂ (0)V̂ |E(0)
n 〉 − ε1 |E(0)

n 〉 = 0 . (10.30)

P̂ (0) is the projector onto the subspace labelled by the states |E(0)
n , αi〉, i.e.:

P̂ (0) =
∑

i

|E(0)
n , αi〉 〈E(0)

n , αi| .

If now we put this expession into Eqn. (10.30) we get

∑

i

|E(0)
n , αi〉 〈E(0)

n , αi|Ĥ(0)|1〉+ P̂ (0)V̂ P̂ (0) |E(0)
n 〉 = ε1 |E(0)

n 〉 ,

so

E(0)
n

∑

i

|E(0)
n , αi〉 〈E(0)

n , αi|1〉+ P̂ (0)V̂ P̂ (0) |E(0)
n 〉 = ε1 |E(0)

n 〉 ,

therefore we end up in

(
P̂ (0)V̂ P̂ (0)

)
|E(0)

n 〉 = ε1 |E(0)
n 〉 . (10.31)

The latter is an eigenvalue equation. It is basically the diagonalization of the operator

V̂ in the space ξ(0), since it is there that we have projected V̂ via the projector

P̂ (0). Moreover, the eigenstates are of the type |E(0)
n 〉, i.e., linear combinations (to be

determined) of the states |E(0)
n , αi〉.

Now, remember that

P̂ (0) =
∑

αi

|E(0), αi〉 〈E(0), αi| ,

and that we can always choose |E(0), αi〉 to be mutually orthogonal. Eqn. (10.31)

then becomes

∑

αi

∑

αj

|E(0), αi〉 〈E(0), αi|︸ ︷︷ ︸
P̂ (0)

V̂ |E(0), αj〉 〈E(0), αj |E(0)
n 〉 = ε1 |E(0)

n 〉 .

If we bracket from the left with 〈E(0), βk| we get

∑

j

〈E(0), βk|V̂ |E(0), αj〉 〈E(0), αj |E(0)
n 〉 = ε1 〈E(0), βk|E(0)

n 〉 ,
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which can be written as

∑

j

Vβk,αj
ψ(0)
αj

= ε1ψ
(0)
βk
, (10.32)

where

Vβk,αj
= 〈E(0), βk|V̂ |E(0), αj〉 ,

and

ψ(0)
αj

= 〈E(0), αj|E(0)
n 〉 .

The ε1 are determined by Eqn. (10.31) or equivalently by Eqn. (10.32).

From Eqn. (10.32), we see that ε1 are eigenvalues of the matrix Vβk,αj
. In the

non-degenerate case, we had only one eigenvalue:

ε1 = 〈E(0)
n |V̂ |E(0)

n 〉 .

Now instead we have many of them, since we have to diagonalize a matrix Vβk,αj
of

dimension l × l. If the various ε1 are all different one from the other, we will have

exactly l of them and the corresponding energy levels will be





E1 = E0 + gε1(1)

E2 = E0 + gε2(1)
...

El = E0 + gεl(1) ,

(10.33)

where the index (1) denotes that we are dealing with the first-order perturbative

correction, and we have l different corrections since Eqn. (10.32) has l different eigen-

values (as we have assumed). From Eqn. (10.33), if εj(1) are all different, one says that

the perturbation has completely removed the degeneracy. In fact, one goes from one

value for the energy E(0) to l different values E1, E2, . . . , El.
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V (x)

xaa
2

0

V0

Fig. 10.2. Infinite well with a perturbation

10.3 Problems and Solutions

Problem 10.1. For a particle in an infinite-well potential of width a, i.e., 0 <

x < a, find the first-order perturbative shift of the energy levels under the action

of a piecewise linear perturbation potential as plotted in the figure (10.2).

Solution. It is not difficult to show that the analytic form of this potential is

V (x) =
V0
a

(a− |2x− a|) , (10.34)

where V0/a will be the “small” parameter. The exactly solvable system, i.e., Ĥ0 in Eqn. (10.1),

is the infinite potential well between 0 and a. Its energy levels and eigenfunctions are

E(0)
n =

~
2π2 (n+ 1)2

2ma2
, (10.35a)

ψ(0)
n (x) =

√
2

a
sin

π (n+ 1) x

a
, (10.35b)

where n =0,1,2,. . . By using Eqn. (10.14), which gives the energy correction at first order in

perturbation theory

ε(1)n = 〈ψ(0)
n |V̂ |ψ(0)

n 〉 ,
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and using Eqs. (10.34)–(10.35) we get

ε(1)n =

∫ a

0
dx

{√
2

a
sin

π(n+ 1)x

a

[
V0
a

(a− |2x− a|)
]√

2

a
sin

π (n+ 1) x

a

}

=
2

a

V0
a

∫ a

0
sin2

(
π (n+ 1) x

a

)
{a− |2x− a|}dx

=
2V0
a2

∫ a

0
a sin2

(
π (n+ 1) x

a

)
dx− 2V0

a2

∫ a

0
|2x− a| sin2

(
π (n+ 1) x

a

)
dx

=
2V0
a

∫ a

0
sin2

π (n+ 1) x

a
dx− 2V0

a2

∫ a/2

0
(a− 2x) sin2

(
π (n+ 1) x

a

)
dx

− 2V0
a2

∫ a

a/2
(2x− a) sin2

(
π (n+ 1) x

a

)
dx .

The first integral above is evaluated by means of the duplication formula

2V0
a

∫ a

0

1− cos 2π(n+1)x
a

2
dx ,

for the second one we use the identity

∫
x sin2 x =

∫
x

(
1− cos 2x

2

)
=

∫
x

2
−
∫
x

2
cos 2x ,

where the latter is evaluated by parts. The result is

ε(1)n = V0

{
1

2
+

1 + (−1)n

π2 (n+ 1)2

}
.

⋆ ⋆ ⋆

FURTHER PROBLEMS WILL BE PROVIDED IN HANDWRITTEN

FORM BY THE TEACHER





Chapter 11

SCHRÖDINGER, HEISENBERG AND INTERACTION

PICTURES

11.1 Schrödinger and Heisenberg pictures

We have seen that the mean values of an observable Ô do not change under an unitary

transformation Û which changes the basis of the system:

Ô → Ô′ = Û ÔÛ † , (11.1)

where states change as

|ψ〉 → |ψ′〉 = Û |ψ〉
〈ψ| → 〈ψ′| = 〈ψ| Û † .

(11.2)

In this way, we have

〈ψ|Ô|ψ〉 = 〈ψ|Û †ÛÔÛ †Û |ψ〉 = 〈ψ′|Ô′|ψ′〉 . (11.3)

The usual picture of time evolution which we have used so far is an exception to

this rule. It is the one in which the states evolve in time as:

|ψ(t)〉 = e−iĤt/~ |ψ(0)〉 ,

according to the Schrödinger equation and the observables instead do not change in

time. This should be considered as a further postulate of quantum mechanics. If for

the observable x̂ we want to compute the mean value at time t we do the following:

〈ψ(t)|x̂|ψ(t)〉 = x̂(t) . (11.4)

That means we take x̂ as given and use the states at time t. This is called Schrödinger

picture.
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As we said in the previous chapters, we will not apply the rules (11.1) to the unitary

transformation Û(t) representing time evolution. If we had applied rules (11.1)–(11.2)

we would have got the analogous of Eqn. (11.3) and thus

x̂(t) = x̂(0) .

This does not make any sense, since it would tell us that the mean position does not

change in time, as if the system had not evolved in time.

We shall denote quantities in the Schrödinger picture with the label S, for example,

|ψS(t)〉 means that this is a state in the Schrödinger picture where the states, but not

the observables, evolve in time.

It may seem unnatural to let the states evolve in time while letting the observables

unchanged. Let us ask ourselves if it is possible to use a different picture in which the

observables evolve in time but in such a way that we get the same mean value of the

Schrödinger picture, namely Eqn. (11.4), which have been confirmed by experiments.

Such different picture does in fact exist, and it is called Heisenberg picture. The

states in the Heisenberg picture will be denoted by |ψH(t)〉. Such states are obtained

from those in the Schrödinger picture via a unitary transformation of this type:

|ψH(t)〉 = Ŝ† |ψS(t)〉 , (11.5)

where

Ŝ† = eiĤt/~ .

Recall that

|ψS(t)〉 = e−i
Ht
~ |ψS(0)〉 ,

by inserting this expression into Eqn. (11.5) we obtain

|ψH(t)〉 = Ŝ† |ψS(t)〉 = eiĤt/~ |ψS(t)〉 = eiĤt/~ e−iĤt/~ |ψS(0)〉 = |ψS(0)〉 . (11.6)

Therefore, the states in the Heisenberg picture at any time t are equal to the states

in the Schrödinger picture at the initial time t = 0.
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Notice that on the left-hand side of Eqn. (11.6) ” t ”appears but it does not on

the right-hand side, which means that in fact also on the left-hand side there is no

effective dependence on time. Thus, also if we change t on the left nothing changes:

|ψH(t′)〉 = |ψH(t)〉 = |ψH(0)〉 = |ψS(0)〉 .

As Ŝ† is a unitary operator we have to apply the general rules for transforming,

besides the states, also the observables as outlined at the beginning of this section.

Therefore, the change from an observable ÔS in the Schrödinger picture to the same

one ÔH in the Heisenberg picture is

ÔH = Ŝ†ÔSŜ = eiĤt/~ ÔS e
−iĤt/~ . (11.7)

In this way, it is clear that, even if ÔS does not depend explicitly on time, ÔH is

time-dependent, and for this reason we shall denote it with ÔH(t).

11.1.1 Time evolution of ÔH(t)

Let’s try to understand how ÔH(t) evolves in time. By taking the time-derivative, we

obtain:

dÔH(t)

dt
=

d

dt

[
eiĤt/~ ÔS e

−iĤt/~
]
=

d

dt

[
eiĤt/~

]
ÔS e

−iĤt/~ +eiĤt/~ ÔS
d

dt

[
e−iĤt/~

]

=
i

~
Ĥ eiĤt/~ ÔS e

−iĤt/~
︸ ︷︷ ︸

ÔH (t)

+eiĤt/~ ÔS

(
− i

~
Ĥ

)
e−iĤt/~

=
i

~
ĤÔH(t) + eiĤt/~ ÔS e

−iĤt/~
︸ ︷︷ ︸

ÔH(t)

(
− i

~
Ĥ

)

=
i

~
ĤÔH(t)−

i

~
ÔH(t)Ĥ =

i

~
[Ĥ, ÔH(t)] ,

hence

dÔH(t)

dt
=
i

~
[Ĥ, ÔH(t)] . (11.8)
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Notice that this is exactly the same equation we would get by using the correspondence

principle to the classical equations of motion

dO

dt
= {O,H}P.B. = −{H,O}P.B. , (11.9)

The corrispondence rules say that

{·, ·}P.B. −→
1

i~
[·, ·] ,

so by applying these to Eqn. (11.9) we exactly get Eqn. (11.8).

Among all operators, only one is the same in both Schrödinger and Heisenberg

pictures, and this is the Hamiltonian operator Ĥ. In fact,

ĤH(t) = eiĤt/~ ĤS e
−iĤt/~ = eiĤt/~ e−iĤt/~ ĤS = ĤS .

These two different pictures reflect the different approaches Schrödinger and Heisen-

berg used to develop Quantum Mechanics. Heisenberg was using all the time the

analogies with classical mechanics and so he made heavy use of the correspondence

principle, while Schrödinger had postulated his equation and was calculating every-

thing using that. Only afterwards they realized their approaches were giving the same

physical results.

Now, we shall prove that the expectation value of the observables are the same in

the Schrödinger and Heisenberg pictures, like Eqn. (11.4). The expectation value of

an observable ÔH in the Heisenberg picture is

〈ψH(t)|ÔH(t)|ψH(t)〉 = 〈ψS(t)| e−iĤt/~︸ ︷︷ ︸
〈ψH (t)|

eiĤt/~ ÔS e
−iĤt/~

︸ ︷︷ ︸
ÔH (t)

eiĤt/~ |ψS(t)〉︸ ︷︷ ︸
|ψH(t)〉

= 〈ψS(t)|ÔS|ψS(t)〉 .

Expectation values are the quantities that experimentalists measure in their experi-

ments, so it is very important that they do not depend on the particular picture we

use to describe time-evolution.
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Since the expectation values are those measured by experimentalists, it is also

important to understand how these expectation values evolve in time. This is inves-

tigated in the following section.

11.1.2 Time evolution of the average values.

Let us consider an observable Ô and let us calculate its expectation value working in

the Schrödinger picture:

Ô(t) = 〈ψ(t)|Ô|ψ(t)〉 .

Taking the time derivative we get

d

dt
Ô(t) =

d

dt

[
〈ψ(t)|Ô|ψ(t)〉

]

=
d 〈ψ(t)|

dt
Ô |ψ(t)〉+ 〈ψ(t)| Ôd |ψ(t)〉

dt
. (11.10)

Remember that, using the time-dependent Schrödinger equation,

i~
d |ψ(t)〉

dt
= Ĥ |ψ(t)〉 ,

which can also be written as:

d |ψ(t)〉
dt

= − i

~
Ĥ |ψ(t)〉 , (11.11)

and whose dual is

d

dt
〈ψ(t)| = 〈ψ(t)| Ĥ i

~
. (11.12)

So we get from Eqn. (11.10) that

d

dt
Ô(t) =

i

~
〈ψ(t)|ĤÔ|ψ(t)〉 − i

~
〈ψ(t)|ÔĤ|ψ(t)〉

=
i

~
〈ψ(t)|[Ĥ, Ô]|ψ(t)〉

=
i

~
[Ĥ, Ô] (11.13)
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This is the equation of motion of the expectation values. Notice that, in general, on

the right-hand side of Eqn. (11.13) it is not possible to factorize the mean value on

each term of the commutator, i.e.,

[Ĥ, Ô] 6= [Ĥ, Ô] . (11.14)

Homework 11.1. Explain why in general Eqn. (11.14) does hold.

11.1.3 Constants of motion

Let us suppose that Ô commutes with Ĥ :

[Ô, Ĥ] = 0 .

Then, the right-hand side of Eqn. (11.13) is zero and so

dÔ(t)

dt
= 0 , (11.15)

which means that the mean value does not change in time. In this case, Ô is said to

be a constant of motion.

If Ô is a constant of motion, then it is possible to prove that its eigenvalues do not

depend on time. Let us start from Eqn. (11.15) and in particular we consider the

expectation value with respect to an eigenstate |ψn〉 of Ô:

Ô |ψn〉 = on |ψn〉 .

The time derivative of the mean value of Ô with respect to the eigenstate |ψn〉 is

easily evaluated to be

dÔ

dt

∣∣∣∣∣
ψn

=
d

dt

[
〈ψn(t)|Ô|ψn(t)〉

]

=
d

dt

[
〈ψn(0)| eiĤt/~ Ô e−iĤt/~ |ψn(0)〉

]
,
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which must be zero according to Eqn. (11.15). Ô commutes with Ĥ , thus it is possible

to interchange Ô with e−iĤt/~ in the previous expression to obtain

dÔ(t)

dt

∣∣∣∣∣
ψn

=
d

dt

[
〈ψn(0)| eiĤt/~ e−iĤt/~ Ô|ψn(0)〉

]
=

d

dt

[
〈ψn(0)|Ô|ψn(0)〉

]

=
d

dt
[〈ψn(0)|on|ψn(0)〉] =

d

dt
[on 〈ψn(0)|ψn(0)〉]

=
don
dt

= 0 ,

and this proves also the result that the eigenvalues of observable which are constants

of motion do not depend on time.

11.1.4 Evolution equation of q̂ and p̂ and Ehrenfest equation

Let us consider the position and momentum operators in the Heisenberg picture: q̂H

and p̂H . Their time evolution is obtained by use of Eqn. (11.8), i.e.,

dq̂H
dt

=
i

~
[Ĥ, q̂H ] ,

dp̂H
dt

=
i

~
[Ĥ, p̂H ] , (11.16)

These are the Heisenberg equations, and are the quantum analogous of the Hamilton

equations.

Let us now consider the expectation values of Eqn. (11.16):

d

dt
〈q̂H〉 =

i

~
〈[Ĥ, q̂H ]〉 ,

d

dt
〈p̂H〉 =

i

~
〈[Ĥ, p̂H ]〉 . (11.17)

These are called Ehrenfest equations.

Some remarks are needed here. Let us suppose that

Ĥ =
p̂2

2m
+ V (q̂) ,

then Eqs. (11.17) becomes

d

dt
〈q̂H〉 =

〈
p̂H
m

〉
,

d

dt
〈p̂H〉 = −

〈
∂V

∂q
(q̂)

〉
. (11.18)
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It is important to stress that these equations do not tell us that the average values obey

classical mechanics. In fact in the second of equations. (11.18) we are not allowed to

replace
〈
∂V
∂q

(q̂)
〉
with ∂V (〈q̂〉)

∂〈q̂〉 . If it were possible, then Eqs. (11.18) would be identical,

in form, to the classical equations of motion:

d

dt
q̂H =

p̂H
m

,
d

dt
p̂H = −∂V (q̂)

∂q̂
. (11.19)

But it is not so, since 〈
∂V

∂q

〉
6= ∂V (q̂)

∂q̂
. (11.20)

Why? It is sufficient to consider, for example, a potential such as

V (q̂) = q̂3 ,

to show that 〈
∂V

∂q

〉
=
〈
3q̂2
〉
,

∂V (q̂)

∂q̂
= 3q̂

2
. (11.21)

These two expressions are not the same, in fact their difference is given by

3q̂2 − 3q̂
2
= 3

[
q̂2 − q̂

2
]
= 3 (∆q)2 ,

i.e., it is equal to the mean square displacement.

Homework 11.2. For an arbitrary potential V (q̂), calculate the difference

〈
∂V

∂q̂

〉
− ∂V (〈q̂〉)

∂ 〈q̂〉 ,

the result should be expressed in terms of 1) higher-order derivatives of V , 2) the

mean square displacement and 3) higher-order moments (generalization of the mean

square displacement).

11.2 Interaction picture

This is an intermediate picture, in the sense that the time-dependence of the states

is only partially moved on to the observables.
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Let us split the Hamiltonian in the Schrödinger picture into two parts: the free

part Ĥ
(0)
S (more generally, Ĥ

(0)
S is the exactly-solvable part of the Hamiltonian) and

the interacting part V̂S (i.e., the perturbative part):

ĤS = Ĥ
(0)
S + V̂S . (11.22)

Next, we introduce the following unitary operator:

Ŝ†
0 = eiĤ

(0)
S
t/~ .

By acting with this operator, we define a new picture (the interaction picture, thus

the label I) according to the following rules:

|ψI(t)〉 = Ŝ†
0 |ψS(t)〉 = eiĤ

(0)
S
t/~ |ψS(t)〉

ÔI(t) = Ŝ†
0ÔSŜ0 = eiĤ

(0)
S
t/~ ÔS e

−iĤ(0)
S
t/~ .

First of all, notice that the mean values do not change in the new picture, as it should

be:

〈ψI |ÔI |ψI〉 = 〈ψS|Ŝ0Ŝ
†
0ÔSŜ0Ŝ

†
0|ψS〉

= 〈ψS|ÔS|ψS〉 .

Notice that ÔI(t) depends on time, while ÔS does not, and also |ψI〉 depends on time,

but in a way different from that of |ψS〉. Let us see how.

Let us derive the evolution equation for |ψI(t)〉. Our starting point is

|ψI(t)〉 = eiĤ
(0)
S
t/~ |ψS(t)〉 .

Taking the time-derivative of both sides yields

d |ψI(t)〉
dt

=
i

~
Ĥ

(0)
S eiĤ

(0)
S
t/~ |ψS(t)〉︸ ︷︷ ︸
|ψI(t)〉

+eiĤ
(0)
S
t/~ d |ψS(t)〉

dt

=
i

~
Ĥ

(0)
S |ψI(t)〉 −

i

~
eiĤ

(0)
S
t/~
[
Ĥ

(0)
S + V̂S

]
|ψS(t)〉 = − i

~
eiĤ

(0)
S
t/~ V̂S |ψS(t)〉

= − i

~
eiĤ

(0)
S
t/~ V̂S e

−iĤ(0)
S
t/~

︸ ︷︷ ︸
V̂I(t)

eiĤ
(0)
S
t/~ |ψS(t)〉︸ ︷︷ ︸
|ψI(t)〉

,
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thus

i~
d |ψI(t)〉

dt
= V̂I |ψI(t)〉 . (11.23)

This is the analogous of the Schrödinger equation but in the interaction picture.

From this equation we discover why this picture is called interaction picture, namely

because the role of the Hamiltonian is played here by the interaction V̂I . This picture

is particularly suitable for doing time-dependent perturbation theory, as we will see.

11.2.1 Evolution of the operators in the interaction picture

Our starting point is

ÔI(t) = eiĤ
(0)
S
t/~ ÔS e

−iĤ(0)
S
t/~ .

Taking the time-derivative of both sides, we get

dÔI(t)

dt
=
i

~
Ĥ

(0)
S eiĤ

(0)
S
t/~ ÔS e

−iĤ(0)
S
t/~

︸ ︷︷ ︸
ÔI(t)

− i

~
eiĤ

(0)
S
t/~ ÔS e

−iĤ(0)
S
t/~

︸ ︷︷ ︸
ÔI(t)

Ĥ
(0)
S

=
i

~
Ĥ

(0)
S ÔI −

i

~
ÔIĤ

(0)
S

=
i

~
[Ĥ

(0)
S , ÔI ] (11.24)

In the interaction picture, Ĥ
(0)
S becomes

Ĥ
(0)
I = eiĤ

(0)
S
t/~ Ĥ

(0)
S e−iĤ

(0)
S
t/~ = Ĥ

(0)
S eiĤ

(0)
S
t/~ e−iĤ

(0)
S
t/~ = Ĥ

(0)
S .

Therefore, Ĥ
(0)
I is the same as Ĥ

(0)
S . Substituting this result into Eqn. (11.24) yields

dÔI

dt
=
i

~
[Ĥ

(0)
I , ÔI ] . (11.25)

Therefore, in the interaction picture the evolution of the states is ruled by V̂ while

the evolution of the observables is ruled by Ĥ(0).
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TIME-DEPENDENT PERTURBATION THEORY

12.1 General derivation

This is a perturbative technique to obtain solutions of the ordinary Schrödinger equa-

tion

i~
d |ψS(t)〉

dt
= Ĥ |ψS(t)〉 . (12.1)

In the previous sections, we dealt with stationary perturbation theory, i.e., our goal

was to find approximated solutions of the stationary Schrödinger equation

Ĥ |ψn〉 = En |ψn〉 . (12.2)

Solving Eqn. (12.1) in an approximated way means we have to find an approximated

form for the evolution operator

Û(t, t0) = e−iĤ(t−t0)/~ . (12.3)

By taking the time-derivative of both sides with respect to t we get

i~
dÛ(t, t0)

dt
= ĤÛ(t, t0) . (12.4)

The standard initial condition which has to be fulfilled by the solution of this equation

is

Û(t0, t0) = 11 .

Now, consider the interaction picture. Working in the Schrödinger picture, we write

down the Hamiltonian in the following way:

Ĥ = Ĥ
(0)
S + V̂S ,
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where Ĥ
(0)
S is an Hamiltonian which we are able to solve exactly. V̂S is an extra

interaction in Schrödinger picture which can eventually depend explicitly on time.

We have already seen that the states in the interaction picture are found from those

in the Schrödinger picture in the following way:

|ψI(t)〉 = eiĤ
(0)
S
t/~ |ψS(t)〉 = Ŝ†

0(t) |ψS(t)〉 , (12.5)

while operators are found according to

ÔI = eiĤ
(0)
S
t/~ ÔS e

−iĤ(0)
S
t/~ = Ŝ†

0(t)ÔSŜ0(t) , (12.6)

where

Ŝ0(t) = e−iĤ
(0)
S
t/~ .

We have already seen that the states in the interaction picture evolve in time

according to

i~
d |ψI(t)〉

dt
= V̂I |ψI(t)〉 , (12.7)

where

V̂I = eiĤ
(0)
S
t/~ V̂S e

−iĤ(0)
S
t/~ .

Operators evolve as
dÔI

dt
=

1

i~
[ÔI , Ĥ

(0)
I ] . (12.8)

Notice that Ĥ
(0)
S and Ĥ

(0)
I are the same. In fact,

Ĥ
(0)
I = eiĤ

(0)
S
t/~ Ĥ

(0)
S e−iĤ

(0)
S
t/~ = Ĥ

(0)
S eiĤ

(0)
S
t/~ e−iĤ

(0)
S
t/~ = Ĥ

(0)
S .

Let us now write down the evolution operator Û in the interaction picture. We have

ÛI(t) = Ŝ†
0(t)Û(t)Ŝ0(t) . (12.9)

By taking the time-derivative of both sides we can check that ÛI(t) does not satisfy

the usual equation of motion of the operators in the interaction picture, namely

i~
d

dt
ÛI(t) = V̂I(t)ÛI(t) . (12.10)



12.1. General derivation 247

In fact, we get

dÛI(t)

dt
=

dŜ†
0(t)

dt
Û(t)Ŝ0(t) + Ŝ†

0(t)
dÛ(t)

dt
Ŝ0(t) + Ŝ†

0(t)Û(t)
dŜ0(t)

dt

= − 1

i~
Ŝ†
0Ĥ

(0)Û Ŝ0 + Ŝ†
0

1

i~
Ĥ(t)Û(t)Ŝ0(t) + Ŝ†

0Û(t)
1

i~
Ĥ(0)Ŝ0

= − 1

i~
Ŝ†
0Ĥ

(0)Û Ŝ0 +
1

i~
Ŝ†
0

(
Ĥ(0) + V̂

)
Û(t)Ŝ0(t) + Ŝ†

0Û(t)
1

i~
Ĥ(0)Ŝ0

= − 1

i~�
�����

Ŝ†
0Ĥ

(0)Û Ŝ0 +
1

i~�
�����

Ŝ†
0Ĥ

(0)Û Ŝ0 +
1

i~
Ŝ†
0V̂ Û Ŝ0 +

1

i~
Ŝ†
0Û(t)Ĥ

(0)Ŝ0

=
1

i~
Ŝ†
0V̂ Ŝ0︸ ︷︷ ︸
V̂I

Ŝ†
0Û Ŝ0︸ ︷︷ ︸
ÛI

+
1

i~
Ŝ†
0Û Ŝ0︸ ︷︷ ︸
ÛI

Ŝ†
0Ĥ

(0)Ŝ0︸ ︷︷ ︸
Ĥ

(0)
I

=
1

i~
V̂IÛI +

1

i~
ÛIĤ

(0)
I .

We can see that in the expression above there is an extra term ÛIĤ
(0)
I /i~ which does

not appear in Eqn. (12.10).

Consider instead the following operator

Û ′
I(t) ≡ Ŝ†

0Û(t) . (12.11)

Let us derive the evolution equation for this operator in the interaction picture. By

taking the time-derivative of both sides of Eqn. (12.11) we get

dÛ ′
I(t)

dt
=

dŜ†
0

dt
Û(t) + Ŝ†

0

dÛ(t)

dt
= − 1

i~
Ŝ†
0Ĥ0Û(t) + Ŝ†

0

1

i~
ĤÛ

= − 1

i~
Ŝ†
0Ĥ0Û(t) +

1

i~
Ŝ†
0

(
Ĥ0 + V̂

)
Û = −

������1

i~
Ŝ†
0Ĥ0Û +

������1

i~
Ŝ†
0Ĥ0Û +

1

i~
Ŝ†
0V̂ Û

=
1

i~
Ŝ†
0V̂ Û =

1

i~
Ŝ†
0V̂ Ŝ0Ŝ

†
0Û =

1

i~
V̂IÛ

′
I(t) .

Thus, the evolution is
dÛ ′

I(t)

dt
=

1

i~
V̂IÛ

′
I(t) . (12.12)

This equation tells us that it is Û ′
I the operator which run the evolution of the states

|ψI(t)〉. In fact,

dÛ ′
I(t)

dt
|ψI(0)〉 =

1

i~
V̂IÛ

′
I(t) |ψI(0)〉

d

dt

[
Û ′
I(t) |ψI(0)〉

]
=

1

i~
V̂I

[
Û ′
I(t) |ψI(0)〉

]
(12.13)
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By comparing Eqn. (12.13) to Eqn. (12.7), it is clear that we can identify

|ψI(t)〉 = Û ′
I(t) |ψI(0)〉 . (12.14)

Eqn. (12.12) can be integrated to find

Û ′
I(t, t0) = 11− i

~

∫ t

t0

V̂I(τ)Û
′
I(τ, t0) dτ . (12.15)

Taking the derivative of Eqn. (12.15) yields Eqn. (12.12). Eqn. (12.15) is called

integral equation, and it can be solved iteratively. We get

Û ′
I(t, t0) = 11 + (i~)−1

∫ t

t0

V̂I(τ)︸ ︷︷ ︸
(1)

dτ

+ (i~)−2

∫ t

t0

dτ

∫ τ

t0

dτ ′ V̂I(τ)V̂I(τ
′)︸ ︷︷ ︸

(2)

Û ′
I(τ

′, t0) . (12.16)

From this new expression of Û ′
I we see that we have a term with one power of V̂I [the

term (1) in Eqn. (12.16)] and another term with two powers of V̂I [the term (2) in

Eqn. (12.16)]. If we think at V̂I as a quantity proportional to some “small” parameter

g, i.e.,

V̂I = g ˆ̃V ,

then Eqn. (12.16) contains successive powers of g until the second one. By iterat-

ing again the procedure, i.e., by inserting again Û ′
I(τ

′, t0) on the right-hand side of

Eqn. (12.16) and using the expression of Û ′
I(t, t0) given by that equation (see the

left-hand side), we get

Û ′
I(t, t0) = 11 +

∞∑

n=1

Ûn
I (t, t0) , (12.17)

where

Ûn
I (t, t0) = (i~)−n

∫
dτn dτn−1 · · ·dτ1

[
V̂I(τn) · · · V̂I(τ1)

]
,

with t > τn > τn−1 > . . . > τ1 > t0. All the integrals are computed between t0

and the corresponding τi. Notice that in these integrals it appears only V̂I , i.e., the
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interaction part. Furthermore, if V̂I is proportional to g, Eqn. (12.17) is practically

an expansion on g, and thus it is a perturbative series.

Let us remember that we are interested in Û(t) and not Û ′
I . To obtain the former,

we can simply use Eqn. (12.11) which can also be written as Û(t) = Ŝ0Û
′
I .

By using Eqn. (12.17) and the relation among Û(t) and Û ′
I(t) mentioned above and

the definition of V̂I , we get

Û(t, t0) = Û (0)(t, t0) +
∞∑

n=1

ˆ̃Un(t, t0) , (12.18)

where

ˆ̃Un(t, t0) = (i~)−n
∫

dτn dτn−1 · · ·dτ1 Ŝ(0)(t, τn)V̂ (τn)Ŝ
(0)(τn, τn−1)

· · · Ŝ(0)(τ2, τ1)V̂ (τ1)Ŝ
(0)(τ1, t0) . (12.19)

Here we have indicated with Ŝ(0) what previously we wrote as Ŝ0 and also notice

that V̂I has been turned into V̂ via the associated transformations. Note that the

whole expression in Eqn.(12.19) above depends only on V and Ŝ(0) but calculated at

different instants and in different intervals of time.

Now, let us come back to the original unperturbed Hamiltonian Ĥ(0) which can be

solved exactly. Suppose that Ĥ(0) has a discrete set of eigenvalues




Ĥ(0) |a〉 = E
(0)
a |a〉

Ĥ(0) |b〉 = E
(0)
b |b〉

...

Ĥ(0) |k〉 = E
(0)
k |k〉

...

(12.20)

Now, let us define the following two quantities:

ωk,l ≡
1

~

(
E

(0)
k − E

(0)
l

)
,

Vk,l ≡ 〈k|V̂ (t)|l〉 .
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ωk,l is referred to as “Bohr frequency”. Assume that at the time t0 the system is in

the state |a〉. We want to compute the probability that at time t the system can be

found in the state |b〉, i.e.,

Pa→b =
∣∣∣〈b|Û(t, t0)|a〉

∣∣∣
2

.

If the perturbation were zero, i.e., V̂ = 0, then we would have

Û(t, t0) = e−iĤ
(0)(t−t0)/~

and the probability would be

Pa→b =
∣∣∣
〈
b
∣∣∣ e−iĤ(0)(t−t0)/~

∣∣∣ a
〉∣∣∣

2

=
∣∣∣e−iE

(0)
a (t−t0)/~ 〈b|a〉

∣∣∣
2

= 0 ,

since 〈b|a〉 = 0. If V̂ 6= 0, we can use Eqn. (12.18) and we obtain

〈b|Û(t, t0)|a〉 =
∞∑

n=1

〈b| ˆ̃Un|a〉 .

The first terms in this expression are:

〈b| ˆ̃U (1)|a〉 = −i~−1

∫ t

t0

dτ

[
e−iE

(0)
b

(t−τ)/~
︸ ︷︷ ︸

Ŝ(0)(t,τ)

Vb,a(τ) e
−iE(0)

a (τ−t0)/~
]

〈b| ˆ̃U (2)|a〉 = (i~)−2
∑

k

∫ t

t0

dτ

∫ τ

t0

dτ ′
[
e−iE

(0)
b

(t−τ)/~ Vb,k(τ) e
−iE(0)

k
(τ−τ ′)/~

× Vk,a(τ
′) e−iE

(0)
a (τ ′−t0)~

]

〈b| ˆ̃U (3)|a〉 = (i~)−3
∑

k

∑

l

∫ t

t0

dτ

∫ τ

t0

dτ ′
∫ τ ′

t0

dτ ′′
[
e−iE

(0)
b

(t−τ)/~ Vb,k(τ)

× e−iE
(0)
k

(τ−τ ′)/~ Vk,l(τ
′) e−iE

(0)
l

(τ ′−τ ′′)/~

× Vl,a(τ
′′) e−iE

(0)
a (τ ′′−t0)/~

]
.

and so on. In order to obtain the various exponential terms in the expressions above

we have made use of the states 〈b| and |a〉 and the completeness relations
∑

k in

between.
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a

bV̂ (τ)

t0

t

(a) 〈b|Û (1)|a〉

a
k

V̂ (τ ′)

bV̂ (τ)

t0

t

(b) 〈b|Û (2)|a〉

ak

V̂ (τ ′′)

l
V̂ (τ ′) b

V̂ (τ)

t0

t

(c) 〈b|Û (3)|a〉

Fig. 12.1. Feynman diagrams

The matrix elements 〈b|Û (1)|a〉, 〈b|Û2|a〉, etc., have a graphical representation which

is given in Fig. 12.1.

The intermediate states |k〉, |l〉 are called virtual (and we sum over these states)

while |a〉 and |b〉 are named physical states.

Notice that the perturbation seems to occur at the time τ but we integrate all over

the τ in between t0 and t, and analogously for τ ′.

If in the expansion above we stop at the n-th order, we get

Pa→b ≈
∣∣∣〈b| ˆ̃U (1)|a〉+ 〈b| ˆ̃U (2)|a〉+ . . .+ 〈b| ˆ̃U (n)|a〉

∣∣∣
2

.

Thus at the first order we have

P
(1)
a→b =

∣∣∣〈b| ˆ̃U (1)|a〉
∣∣∣
2

= ~
−2

∣∣∣∣
∫ t

t0

eiωb,aτ Vb,a(τ) dτ

∣∣∣∣
2

. (12.21)

In the integral above there should be also an extra term e−iE
(0)
b
t eiE

(0)
a t. This is a

phase which does not depend on τ and it can be pushed outside the integral since the

integral is done with respect to τ . Next we have to take the modulus of this phase

but and its modulus is one.That is the reason why we neglected it.

Homework 12.1. Prove that P
(1)
a→b = P

(1)
b→a. This relation does not hold for higher

perturbative orders.
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ω-2π
t

2π
t

-4π
t

4π
t

-6π
t

6π
t

0

t2

2π
t

2(1−cos ωt)
ω2

Fig. 12.2. Plot of f(t, ω).

If V̂ does not depend on τ , it can be extracted from the integral and we get

P
(1)
a→b ≈ |Vb,a|2 f(t, ωb,a)/~2 , (12.22)

where

f(t, ω) ≡
∣∣∣∣
∫ t

0

eiωτ dτ

∣∣∣∣
2

=
2 (1− cosωt)

ω2
. (12.23)

The plot of f(t, ω) as a function of ω is given in Fig. 12.2. The function has a narrow

maximum at ω = 0 with width 2π/t, furthermore

∫ +∞

−∞
f(t, ω) dω = 2πt . (12.24)

Homework 12.2. Prove Eqn. (12.24).

As t→ ∞, the width 2π/t goes to zero and the value of the maximum at t = 0 goes

to ∞. Thus the plot of f(t, ω) becomes like a Dirac’s delta, and in order to reproduce

Eqn. (12.24) we must have

f(t, ω)
t→∞∼ 2πtδ(ω) .

By considering Eqn. (12.22), it can be seen that in order to obtain the transition

probability we have to compute the square modulus of 〈b|V̂ |a〉 weighted by f(t, ωb,a),

the latter being peaked around ωa,b = 0 and with 2π/t as width. As a consequence,
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the transition is more likely to occur between states whose energy is near that of |a〉
(because the maximum of f(t, ωb,a) is at ωa,b = 0) and in an energy band given by

δE0 ≈ 2π~/t .

So we can conclude that the pertubation leaves the energy unchanged within a bound

of ≈ 2π~/t.

12.1.1 Structure of f(t, ωb,a)

If ωb,a = 0, i.e., if the state |b〉 has the same energy of |a〉, the perturbation preserves

the energy and f(t, ω = 0) ∼ t2, which means the longer is the time t the larger will

be the probability of having a transition.

If ωb,a 6= 0, then f(t, ω) as a function of t is an oscillating function between 0 and

4/ω2
b,a with period 2π/ωb,a, see Eqn. (12.23). So, Pa→b will oscillate with the same

period [see, Eqn. (12.22)] around 2 |Vb,a|2 /(E0,b−E0,a)
2. The factor of two comes from

ω2 of the denominator of [1 − cosωt]. For small values of t with respect to 2π/ωb,a,

the behavior of (1− cosωt) is like t2.

12.1.2 Transition to nearby states

In this section we consider transitions to a set of nearby states.

Of course, so far we have considered only the case of a discrete spectrum, but noth-

ing changes if we suppose that some states are surrounded by a continuous spectrum.

Furthermore, let us suppose such states to be normalized according to

〈b|b′〉 = 1

n(b)
δ(b− b′) , (12.25)

where n(b) is a positive real-valued function of b, and b is some parameter used to

label the states. The case n(b) = 1 gives the usual normalization condition

〈b|b′〉 = δ(b− b′) .
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The projector onto a domain B is

P̂B =

∫
|b〉 〈b|n(b) db , (12.26)

Homework 12.3. Show that the term n(b) must be present in Eqn. (12.26) in order

for P̂B to fulfil the relation

P̂BP̂B = P̂B ,

which must hold because P̂B is a projector.

Let E(b) be the energy of the state |b〉. By changing the integration variable in

Eqn. (12.26) from b to E(b) we get

P̂B =

∫

B(E)

|b〉 〈b| ρb(E) dE , (12.27)

where

ρb(E) = n(b)
db

dE
.

ρb(E) is the density of states |b〉 at energy E, i.e., the number of states |b〉 per unit
of energy.

The transition probability from |a〉 to one of the states belonging to B is

Pa→B =
∣∣∣P̂BÛ(t, 0) |a〉

∣∣∣
2

,

where Û(t, 0) is the time-evolution operator from time 0 to time t, and P̂B is the

projector onto B. Thus,

Pa→B =
〈
a
∣∣∣ Û †(t, 0)P̂ †

B

∣∣∣ P̂BÛ(t, 0)
∣∣∣ a
〉
= 〈a|Û †(t, 0)P̂BÛ(t, 0)|a〉 , (12.28)

the latter equality follows from

P̂ †
B = P̂B , P̂BP̂B = P̂B .

Let us remember that P̂B =
∫
B(E)

|b〉 〈b| ρb(E) dE, hence

Pa→B =

∫

B(E)

Pa→bρb(E) dE ,
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where

Pa→b =
∣∣∣〈b|Û(t, 0)|a〉

∣∣∣
2

.

Now, for Pa→b we use Eqn. (12.22) calculated at first order in perturbation theory:

Pa→B ≈ 1

~2

∫

B(E)

|Vb,a|2 ρb(E)f(t, ωb,a) dE , (12.29)

where Vb,a depends on E via the parameter b.

Example

The frequency of oscillation in ω of the function f is 2π
t

as can be easily seen by

plotting f versus ω. Let us consider the transition to the levels b contained in the

energy interval (E1 − ε
2
, E1 +

ε
2
), and suppose ε to be small enough that both Vb,a

and ρb are constant in the interval. As a consequence we can pull them outside the

integration in Eqn. (12.29).

Let us assume t to be sufficiently large to satisfy: t≫ 2π~
ε

or

ε≫ 2π~

t
. (12.30)

So the relation above indicates that ε is much bigger than the frequency of oscilla-

tion of f as a function of ω (if we put ~ = 1). Let us turn to the integral :

Pa→B ≈ 1

~2
|Vb,a|2 ρb

∫

B(E)

f(t, ωb,a) dE . (12.31)

There are two possible cases:

1. that the maximum of f at ωb,a = 0 lies outside the integration domain . In

this case, f inside the integral can be replaced by its mean value on several

oscillations in ω. Remember the expression of f :

f(t, ω) =
2(1− cosωt)

ω2
.
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E1 −
ε
2

E1 + ε
2E1

Ea

B

Fig. 12.3.

By taking the average of cosωt over many complete oscillations we get zero,

thus the average of f is 2/ω2. Hence,

Pa→B ≈ 2ερb(E1)
|Va,b|2

(E1 − Ea)
2 , (12.32)

where E1 is the center of the interval

EB =

(
E1 −

1

2
ε, E1 +

1

2
ε

)
.

2. that the maximum of f lies within the domain of integration, see Fig. 12.3. In

this case, the leading contribution to the integral comes from the peak of f and

only a small error results from taking the integral between −∞ and +∞. We

know that ∫ +∞

−∞
f(t, ω) dω = 2πt ,

so

Pa→B ≈ 2π~−1 |Vb,a(Ea)|2 ρb(Ea)t . (12.33)

In this case, Ea ≈ Eb since Ea − Eb = ωa,b and ω ≈ 0 is the peak of f .

12.1.3 Transition probability per unit of time and Fermi’s golden rule

The transition probability per unit of time is defined by

P̃a→B =
dPa→B

dt
.
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Consider the two previous cases. In the first case, this quantity is zero because the

transition probability is time-independent, Eqn. (12.32). These are the transitions

which do not preserve the energy.

In the second case by taking the derivative with respect to t of Eqn. (12.33) we get

P̃a→B =
2π

~
|Vb,a|2 ρb , (12.34)

these are the transitions which preserve the energy of the states because ωba = 0 is

inside the integral we performed before. Eqn. (12.34) is called Fermi’s golden rule.

ρb is the density of states whose energy is equal to that of the initial state, since

everything is concentrated at the peak of f .

If we consider (12.30), i.e.,
t

2π
≫ ~

ε
, (12.35)

t must be very long in order for Eqn. (12.34) to be valid. But, on the other end, we

have used the perturbation theory at the first order and so it must be Pa→B ≪ 1,

i.e.,

Pa→B = P̃(1)
a→Bt≪ 1 . (12.36)

So we conclude that indeed t cannot be too large.





Chapter 13

PATH INTEGRAL APPROACH TO QUANTUM
MECHANICS

13.1 General derivation

This approach to quantum mechanics was presented by R. F. Feynman in his Ph.D.

thesis of 1942. It was later published (1948) in Rev. Mod. Phys. with the title

“Space-time approach to non-relativistic Quantum Mechanics”.

Feynman wanted somehow a formulation in which “space-time” played a role and

not just the Hilbert space, like in the traditional approach to quantum mechanics.

His approach is very intuitive and helped in “visualizing” many quantum mechanical

phenomena and in developing various techniques, like the Feynman diagrams, non-

perturbative methods (~ → 0, N → ∞), etc. Somehow, Dirac had got close to the

Feynman formulation of quantum mechanics in a paper in which he asked himself

which is the role of the Lagrangian in quantum mechanics.

Let us first review the concept of action which everybody has learned in classical

mechanics. Its definition is

S[x(t)] =

∫ (x1,t1)

(x0,t0)

L(x(t), ẋ(t)) dt , (13.1)

where x(t) is any trajectory between (x0, t0) and (x1, t1), not necessarily the classical

one, and L is the Lagrangian of the system. The action S[x(t)] is what in mathemat-

ical terms is known as a functional. Remember that a functional is a map between a

space of functions x(t) and a set of numbers (the real or complex numbers, or similar

structures). From Eqn. (13.1) one sees that S[x(t)] is a functional because, once we
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xcl(t)

x(t)

x̃(t)

˜̃x(t)

˜̃̃
x(t)

(x0, t0)

(x1, t1)

Fig. 13.1.

insert the function x(t) on the right-hand side of Eqn. (13.1) (and perform the inte-

gration) we get a real number which is the value of the action on that trajectory. If

we change the trajectory, we get a different number. A functional is indicated with

square brackets, S[x(t)], differently than a function whose argument is indicated with

round brackets: f(x). A function is a map between the set of numbers (real, complex,

or similar) to another set of numbers (real, complex, etc.). So, if we restrict to the

real numbers

Function: R → R ,

Functional: [functions] → R .

Given these definitions, let us now see what is the path integral formulation of

quantum-mechanics given by Feynman.

We know that in quantum mechanics a central element is the transition kernel to

go from (x0, t0) to (x1, t1) which is defined as

K(x1, t1|x0, t0) ≡ 〈x1| e−i
Ĥ(t1−t0)

~ |x0〉 . (13.2)

What Feynman proved is the following formula:

K(x1, t1|x0, t0) =
∫ (x1,t1)

(x0,t0)

D [x(t)] e
i
~
S[x(t)] , (13.3)
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where, on the right-hand side of Eqn. (13.3), the symbol
∫ (x1,t1)

(x0,t0)
D [x(t)] stays for a

functional integration which “roughly” means the sum over all trajectories between

(x0, t0) and (x1, t1).

So, in Eqn. (13.3) we insert a trajectory in e
i
~
S[x(t)], calculate this quantity and

“sum” it to the same expression with a different trajectory inserted and so on for all

trajectories between (x0, t0) and (x1, t1). This is the reason why this method is called

path-integral. Note that all trajectories enter Eqn. (13.3) and not just the classical

one.

We shall give a rigorous derivation of Eqn. (13.3) but for the moment let us try

to understand a “more physical” reason why trajectories enter the expression of the

quantum transition kernel.

Let us recall the double slit experiment, see Fig. 13.2. In Fig. 13.2(a) both slits A

and B are open while in the other two figures only one is open. We know that the

probabilities PAB, PA, PB satisfy the inequality

PAB 6= PA + PB ,

while for the probability amplitudes ψAB, ψA, ψB we have

ψAB = ψA + ψB . (13.4)

Let us now put more screens with different openings, like in Fig. 13.3. Let us suppose

we close the slits 1B, 2A, 2C, 2D,3A, 3B and let us call the associated wave function

as

ψ[
1A
2B
3C

]

where we have indicated on the wave-functions which slits are open. For example for

the wave-function above only the slits 1A, 2B and 3C are open as shown in Fig. 13.3.

We can “associate” this amplitude with the path that join the slits 1A, 2B , 3C.

Let us also remember that Eqn. (13.4) can be generalized to any set of screens with
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A

B

Screen

Source

(a)

A

B

Screen

Source

(b)

A

B

Screen

Source

(c)

A

B

Screen

Source

(d)

Fig. 13.2. (a) The probability PAB with both slits open. (b) The probability PA obtained
keeping open the slit A (c) The probability PB obtained keeping open the slit B (d) The
probability PA + PB . We see that PAB 6= PA + PB .

Screen

Source
1A

1B

2A

2B

2C

2D

3A

3B

3C

Fig. 13.3. More screens with different openings.
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any set of open and closed slits, so:

ψ(all slits open) =
∑

i

ψi(some slits closed) . (13.5)

In turn the amplitudes on the right-hand side of Eqn. (13.5) can be written as the

sum of all the amplitudes which have some of the remaining slits closed. The basic

blocks of all these amplitudes will be those which have only one slit open per screen

and to these we can associate a path running through the open slits. So Eqn. (13.5)

can be formally written as

ψ =
∑

(paths)

ψ(path) , (13.6)

where we have substituted the labels on the wave functions with the paths which join

the open-slits on the various screens. Using this trick Feynman had the following

idea: the open space between a source and a screen can be thought as if it were filled

by an infinite set of screens each with an infinite set of slits. So now if we want the

transition amplitudes from x0 to x1, i.e., ψx0,x1 we could write it as

ψx0,x1 =
∑

(paths)

ψ(path) , (13.7)

where the “(paths)” are the labels of the amplitude associated to a configuration of

screens with only one slit open through which the path passes. Of course, the paths

will be all possible paths between x0 and x1 because the screens have infinite slits. Let

us stress that the paths in Eqn. (13.6) and (13.7) are nothing else than a “symbol”

to indicate a set of slits open.

This somehow gives a physical intuition of why paths—even if they are only sym-

bols or labels—enter the transition amplitudes. Of course, one cannot say that the

particles follow one path or the other because, to check that, one should do a set

of measurements along the whole path while in the transition 〈x0, t0|x1, t1〉 the only

measurements are made at x0 and x1. What we can say from Eqn. (13.3) is that,

if we do measurements only at x0 and x1 then the transition amplitude is the sum
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of transition amplitudes each one associated to a different path between x0 and x1.If

instead we do a set of infinte measures on all points of a path to find out if the

particle follows that particular path, then the interference effect, between the various

amplitudes entering the path-integral, will be destroyed.

Let us now give a rigorous derivation of Eqn. (13.3). For small time intervals it was

first done by Dirac in 1932, for arbitrary time interval it was derived by Feynman in

1942 in his Ph.D. thesis.

Before proceeding in the derivation let us review some formula regarding the expo-

nential of operators. If Â and B̂ are two operators, then eÂ eB̂ is not equal to eÂ+B̂

in general, like it would happen if Â and B̂ were numbers. The general formula was

derived by Baker and Hausdorff and is

eÂ eB̂ = eH(Â,B̂) , (13.8)

where

H(Â, B̂) = Â + B̂ +
1

2
[Â, B̂] +

1

12

[
Â, [Â, B̂]

]
+

1

12

[
B̂, [B̂, Â]

]
+ . . . (13.9)

if Â and B̂ commutes then H(Â, B̂) = Â + B̂ like in the case of c-numbers.

Let us now go back to physics and calculate the transition kernel which is defined

as

K(x, t|x0, 0) ≡ 〈x| e− i
~
tĤ |x0〉 , (13.10)

where Ĥ is the Hamiltonian of the system∗ If we divide the interval of time t in N

sub-intervals we can write, using the Baker-Hausdorff formula, the following equality

exp

[
− i

~
tĤ

]
=

{
exp

[
− it

~N
Ĥ

]}N
. (13.11)

This is so because the operators tĤ/N commute among themselves in the Baker-

Hausdorff formula.

∗ Note that this is not the transition amplitude which would be 〈xt|x00〉 = 〈x| e i

~
tĤ |x0〉.
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Let us now remember that the Hamiltonian Ĥ is the sum of two parts Ĥ = Â+ B̂,

which do not commute because Â = p̂2/2m and B̂ = V̂ (x̂). So, using again the

Baker-Hausdorff formula we can write

exp

[
− i

~

t

N
Ĥ

]
= exp

[
− i

~

t

N

(
Â+ B̂

)]

= exp

[
− i

~

t

N
B̂

]
exp

[
− i

~

t

N
Â

]
+O

((
t

N

)2
)
, (13.12)

where the terms O((t/N)2) are those that come from the commutators of tÂ/N and

tB̂/N present in Eqn. (13.9). Of course, if we take the limit N → ∞ those terms are

negligible with respect to the first. So combining Eqn. (13.12) with Eqn. (13.11) we

can write 〈
x
∣∣∣ e− i

~
tĤ
∣∣∣ x0
〉
= lim

N→∞

〈
x

∣∣∣∣
[
e−

it
~N

B̂ e−
it
~N

Â
]N ∣∣∣∣ x0

〉
(13.13)

Let us now write all terms of the operator

[
exp

(
−itB̂
~N

)
exp

(
− it

~N
Â

)]N
,

and so Eqn. (13.13) reads

〈
x
∣∣∣
[
e−

it
~N

B̂ e−
it
~N

Â
]
×
[
e−

it
~N

B̂ e−
it
~N

Â
]
× · · · ×

[
e−

it
~N

B̂ e−
it
~N

Â
]

︸ ︷︷ ︸
N times

∣∣∣x0
〉
. (13.14)

Next let us divide the interval from x0 to x in N intervals labelled by the points

x1, x2 · · ·xN−1 and corresponding to the N intervals of time. Let us now insert in

Eqn. (13.14) after the first square bracket a completeness of the form
∫
dxN−1 |xN−1〉 〈xN−1|,

where xN−1 is the point before x in Fig. 13.4, and we continue by inserting the com-

pleteness
∫
dxN−2 |xN−2〉 〈xN−2| after the second square bracket in Eqn. (13.14) and

so on. What we get is that Eqn. (13.13) can be written as

〈x| e− i
~
tĤ |x0〉 = lim

N→∞

∫
dxN−1 · · ·dx1

{〈
x
∣∣∣ e− it

~N
B̂ e−

it
~N

Â
∣∣∣xN−1

〉

×
〈
xN−1

∣∣∣ e− it
~N

B̂ e−
it
~N

Â
∣∣∣xN−2

〉
× · · · ×

〈
x1

∣∣∣ e− it
~N

B̂ e−
it
~N

Â
∣∣∣ x0
〉}

. (13.15)
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x0

t0

x1

t1

x2

t2

· · ·

...

xN−1

tN−1

x

t

Fig. 13.4. The discretized approximation of the path integral

All this can be put in the compact form

〈x| e− i
~
tĤ |x0〉 = lim

N→∞

∫ N∏

j=1

Qj,j−1

N−1∏

j=1

dxj ,

where Qj,j−1 is

Qj,j−1 ≡
〈
xj

∣∣∣ e− it
~N

B̂ e−
it
~N

Â
∣∣∣ xj−1

〉
.

In the expression above we can apply B̂ = V̂ (x̂) to the state 〈xj| and get

Qj,j−1 = e−
it
~N

V (xj)
〈
xj

∣∣∣ e− it
~N

Â
∣∣∣ xj−1

〉
. (13.16)

The operator Â is instead p̂2/2m so we cannot apply it directly to the state |xj−1〉.
What we will do is to insert a completeness

∫
|p〉 〈p| dp = 11 before the state |xj−1〉 in

Eqn. (13.16). We get in this way

〈
xj

∣∣∣ e− it
~N

Â
∣∣∣ xj−1

〉
=

∫ 〈
xj

∣∣∣∣ e
− it

~N
p̂2

2m

∣∣∣∣ p
〉
〈p|xj−1〉 dp (13.17)

Remembering that

〈p|x〉 = 1√
2π~

e−
i
~
px ,

and applying p̂2 on |p〉 we get from Eqn. (13.17) the following expression

〈
xj

∣∣∣ e− it
~N

Â
∣∣∣ xj−1

〉
=

√
1

2π~

∫
e
− i

~

{
t
N

p2

2m
−p(xj−xj−1)

}

dp
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which, by performing the integration in p, becomes

〈
xj

∣∣∣ e− it
~N

Â
∣∣∣ xj−1

〉
=

[
m

2πi~ t
N

] 1
2

e
im
2~

N
t
(xj−xj−1)

2

. (13.18)

Inserting this in Eqn. (13.16) and next in Eqn. (13.15) we get

K(x, t|x0, 0) = lim
N→∞

( m

2πi~ε

)N
2

∫
e

i
~

∑N
j=1{m

2ε
(xj−xj−1)

2−εV (xj)}
N−1∏

j=1

dxj , (13.19)

where ε = t/N . Let us note two things:

1. In the exponential of Eqn. (13.19) we have the discretized form of the action.

In fact,

∫
L dt ⇒

∑

j

L(xj , ẋj)ε

=
∑

j

{m
2
ẋ2j − V (xj)

}
ε

=
∑

j

{
m
(xj − xj−1)

2

2ε2
ε− V (xj)ε

}

=
∑

j

{
m
(xj − xj−1)

2

2ε
− V (xj)ε

}
.

2. If we look at Fig. 13.4 we see that a trajectory in the discretized form is the

broken line we have drawn between x0 and x. If we keep x0 and x fixed and

move the intermediate points (x1, t1), (x2, t2), . . . , (xN−1, tN−1), we get all pos-

sible trajectories between x0 and x. This is exactly what is achieved by the

integrations over xj , j = 1, 2, . . . , N − 1 in Eqn. (13.19). So the sum over all

trajectories indicated by the functional integration
∫
D [x(t)] in Eqn. (13.3) is

actually realized by the measure of integration contained in Eqn. (13.19), i.e.,

∫
D [x(t)] = lim

N→∞

( m

2πi~ε

)N
2

∫ N−1∏

j=1

dxj .
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So we can conclude that Eqn. (13.19) is nothing else than the discretized form of the

expression (13.3) and that the functional integral can be reduced to an infinite set

of standard Lebesque integrals.

The path-integral not only brings to light the role of the non-classical trajectories

in quantum mechanics but also the role of the action in quantum mechanics. In fact

the action had played a role in classical mechanics but never in quantum mechanics.

This idea was the one which triggered in 1932 the work of Dirac.

The last thing we want to bring to the attention of the reader is which are the

paths which contribute most in the path-integral. We shall show that are the paths

which are continuous but nowhere-differentiable.

The proof goes as follows. If we look at the kinetic piece in Eqn. (13.19) we see

that in the limit of ε → 0 we must have that (xj − xj−1)
2/ε remains finite otherwise

the exponent would not make sense. This means

(xj − xj−1)
2

ε
→ finite ,

i.e.,

(xj − xj−1)
2 ∼ ε , (∆x)2 ∼ ∆t . (13.20)

From Eqn. (13.20) we notice two things:

1. When ∆t→ 0 we have ∆x → 0, which means that the paths are continuous;

2. the velocities ∆x/∆t goes as 1/∆x because, using Eqn. (13.20) , we have:

∆x

∆t
∼ ∆x

(∆x)2
=

1

∆x
,

so when ∆x → 0 the velocity has a singularity. As this happens at every point

it means the path is non-differentiable.

The paths which are differentiable, i.e.:

∆x

∆t
→ finite
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i.e., ∆x ∼ ∆t have a kinetic piece in the action which goes as follows:

(∆x)2

∆t
∼ (∆t)2

∆t
∼ ∆t→ 0 .

So in the continuum ∆t→ 0 these kinetic pieces go as e0. These are constants that can

be factorized out of the path-integral and we can get rid of them in the normalization.

So these paths do not give any phase which may interphere with the other paths and

create typical quantum mechanical effects.

The non-differentiable paths are a typical indicator of quantum mechanical effects.

In classical mechanics the paths are smooth instead. More details and examples on

the path-integrals can be found in the many books on the subject.

13.2 Time dependent perturbation theory via path integrals and proto-

Feynman’s diagrams

In this section we will derive the time-dependent perturbative expansion for the time-

evolution kernel via path-integrals, without using the interaction picture.

We have seen that the transition Kernel between x = xa and x = xb from time ta

to time tb has the following path integral expression∗ :

KV (b, a) =

∫ b

a

D [x(t)] exp

{
i

~

[∫ tb

ta

(
mẋ2

2
− V (x, t)

)
dt

]}
. (13.21)

If we suppose that the potential is small or better that
∫ tb
ta
V (x, t) dt is small with

respect to ~, then we can expand the integrand as follows:

exp

[
− i

~

∫ tb

ta

V (x, t) dt

]
= 1− i

~

∫ tb

ta

V (x, t) dt

+
1

2!

(
i

~

)2 [∫ tb

ta

V (x, t) dt

]2
+ . . . (13.22)

∗ If we want to get the transition amplitude and not the transition kernel, we should just put a

minus sign in front of the Lagrangian.
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Of course,
∫ tb
ta
V (x, t) dt is a functional, so the statement that

∫ tb
ta
V (x, t) dt should be

“small” with respect to ~ needs to be better clarified but we will leave this clarification

for more advanced courses.

Using the above expansion, we can rewrite KV (b, a) in the following way:

KV (b, a) = K(0)(b, a) +K(1)(b, a) +K(2)(b, a) . . . , (13.23)

where

K(0)(b, a) =

∫ b

a

D [x(t)]

[
exp

(
i

~

∫ tb

ta

mẋ2

2
dt

)]
,

K(1)(b, a) = − i

~

∫
D [x(t)]

{(∫ tb

ta

V (x(s), s) ds

)
exp

[
i

~

∫ tb

ta

mẋ2

2
dt

]}
,

K(2)(b, a) = − 1

2~2

∫
D [x(t)]

{[∫ tb

ta

V (x(s), s) ds

] [∫ tb

ta

V (x(s′), s′) ds′
]

× exp

[
i

~

∫ tb

ta

mẋ2

2
dt

]}

Let us now proceed to evaluate the various terms. K(0)(b, a) is the free particle

transition kernel. K(1)(b, a) can instead be written as

K(1)(b, a) = − i

~

∫ tb

ta

F (s) ds , (13.24)

where

F (s) =

∫ b

a

D [x(t)]V (x(s), s) exp

(
i

~

∫ tb

ta

mẋ2

2
dt

)
. (13.25)

Basically, F (s) is the path-integral of the free particle but with inserted at t = s

the potential. So the time-evolution before t = s is the one of the free particle, at

t = s it gets “perturbed” by V (x(s), s), afterwards it is again the evolution of the free

particle. The picture that we can associate to Eqn. (13.25) is the one in Fig. 13.5.

There, we have supposed that the point reached at time s is xc. In Eqn. (13.25) we

are effectively integrating over xc and as a consequence F (s) can be written in the

following manner:

F (tc) =

∫ +∞

−∞
K(0)(b, c)V (xc, tc)K

(0)(c, a) dxc .
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t

x
xa xbxc
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tb

s

Fig. 13.5. Schematic representation of F (s).

Using this, K(1)(b, a) can be represented as

K(1)(b, a) = − i

~

∫ tb

ta

∫ +∞

−∞
K(0)(b, c)V (xc, tc)K

(0)(c, a) dxc dtc . (13.26)

The pictures that can be drawn associated to the perturbation series of Eqn. (13.23)

are, in analogy to that in Fig. 13.5, the ones in Fig. 13.6. These are proto-Feynman

diagrams in a potential theory.

We shall now derive an integral equation for KV (b, a). Using Eqn. (13.26) and

the analog for higher orders we get easily the following expression (where
∫
dτc =

∫
dxc dtc):

KV (b, a) = K(0)(b, a)− i

~

∫
K(0)(b, c)V (xc, tc)K

(0)(c, a) dτc

+

(
− i

~

)2 ∫ ∫
K(0)(b, c)V (xc, tc)K

(0)(c, d)V (xd, td)K
(0)(d, a) dτc dτd

+ · · · , (13.27)

which can also be written as

KV (b, a) = K(0)(b, a)− i

~

∫
K(0)(b, c)V (xc, tc)

×
[
K(0)(c, a)− i

~

∫
K(0)(c, d)V (xd, td)K

(0)(d, a) dτd + . . .

]
dτc + . . . (13.28)
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Fig. 13.6. Schematic representation of series expansion Eqn. (13.23).

If we look at Eqn. (13.28) and in particular at the quantity inside the square brackets,

we notice that Eqn. (13.28) can be re-written as

KV (b, a) = K(0)(b, a)− i

~

∫
K(0)(b, c)V (xc, tc)KV (c, a) dτc . (13.29)

This is an integral equation for KV . It is completely equivalent to the differential

Schrödinger equation: is basically the integral version of it
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SEMICLASSICAL (WKB) QUANTUM MECHANICS

This chapter is mostly based on the Bachelor Thesis of Taracchini Andrea, Univer-

sity of Trieste.

14.1 Introduction

The wave function ψ(x, t) of a physical system is a complex-valued quantity and so

it can be written in general as

ψ(x, t) = A(x, t) e
i
~
S(x,t) , (14.1)

where A(x, t) and S(x, t) are real-valued functions. The presence of the factor ~ at

exponent is just a convention and in this manner S acquires the dimension of an

action.

Let us now calculate various expressions entering the Schroedinger equation:

∇2ψ(x, t) = ∇2
[
A(x, t) e

i
~
S(x,t)

]

=

{
∇2A(x, t) + 2

i

~
∇A(x, t) · ∇S(x, t) +

i

~
A(x, t)∇2S(x, t)

− 1

~2
A(x, t) [∇S(x, t)]2

}
e

i
~
S(x,t) ,

∂ψ(x, t)

∂t
=

∂

∂t

[
A(x, t) e

i
~
S(x,t)

]

=

{
∂A(x, t)

∂t
+
i

~
A(x, t)

∂S(x, t)

∂t

}
e

i
~
S(x,t) .

Inserting Eqn. (14.1) into the time-dependent Schrödinger equation

i~
∂ψ(x, t)

∂t
=

[
− ~2

2m
∇2 + V (x, t)

]
ψ(x, t) , (14.2)
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we get

i~
∂A(x, t)

∂t
− A(x, t)

∂S(x, t)

∂t
= − ~2

2m
∇2A(x, t)− i~

m
∇A(x, t) · ∇S(x, t)

− i~

2m
A(x, t)∇2S(x, t) +

1

2m
A(x, t) [∇S(x, t)]2 + V (x, t)A(x, t). (14.3)

Equating the real and imaginary parts we get the two equations

∂S(x, t)

∂t
+

1

2m
[∇S(x, t)]2 + V (x, t) =

~2

2m

∇2A(x, t)

A(x, t)
, (14.4)

m
∂A(x, t)

∂t
+∇A(x, t) · ∇S(x, t) +

1

2
A(x, t)∇2S(x, t) = 0 . (14.5)

Eqn. (14.5) is nothing but the continuity equation for the probability associated to

the Schrödinger equation:
∂ρ

∂t
+∇ · j = 0 . (14.6)

In fact, defining the probability ρ and the corresponding current j as

ρ = |ψ(x, t)|2 = [A(x, t)]2 , (14.7)

j = ℜ
[
ψ∗(x, t)

~

im
∇ψ(x, t)

]
= [A(x, t)]2

∇S(x, t)

m
, (14.8)

Eqn. (14.5) becomes
∂ρ

∂t
+∇ · j = 0 .

Let us now turn to Eqn. (14.4). This equation is similar to an equation of classical

mechanics known as Hamilton-Jacobi equation, which is

∂S0(x, t)

∂t
+

[∇S0(x, t)]
2

2m
+ V (x, t) = 0 . (14.9)

Notice that Eqn. (14.4) for S(x, t) reduces to the Hamilton-Jacobi equation in the

limit ~ → 0.

People sometimes say that the Schrödinger equation is the quantum correction

to the Hamilton-Jacobi, but this statement is not correct because the Schrödinger

equation involves both A(x, t) and S(x, t) while the Hamilton-Jacobi involves only S.

We have chosen to put the sub index ”0” in the solution S0 of the Hamilton-Jacobi

equation, since it is the solution at order zero in ~2 of Eqn. (14.4).
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14.2 Review of the Hamilton-Jacobi formalism of classical mechanics

Let us briefly review the Hamilton-Jacobi formalism of classical mechanics. The

Hamiltonian description of a system with f degrees of freedom involves f configura-

tional variables q1, . . . , qf and their conjugated momenta p1, . . . , pf . The dynamics is

governed by the Hamilton equations of motions, which can be written as∗

q̇k = {qk, H}P.B. , (14.10)

ṗk = {pk, H}P.B. , (14.11)

k = 1, . . . , f , where H is the Hamiltonian.

An important feature of the Hamiltonian formalism is that it allows transformations

on the phase space of the system

Qk = Qk(q1, . . . , qf , p1, . . . , pf , t) , (14.12)

Pk = Pk(q1, . . . , qf , p1, . . . , pf , t) , (14.13)

which mix the q’s and p’s yet preserve the Hamiltonian form of the equations of

motion, i.e., the equations of motion have the same form also with respect to the

new set of transformed variables. Such transformations are referred to as canonical

transformations.

For a transformation to be a canonical the fundamental condition (called symplectic

condition) that must be satisfied is

MJM
T = J , (14.14)

∗ Here, we have used the Poisson brackets, defined as

{F,G}P.B. =

f∑

k=1

(
∂F

∂qk

∂G

∂pk
− ∂F

∂pk

∂G

∂qk

)
,

for arbitrary differentiable functions F and G defined on the phase space of the system.
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where M is the Jacobian of the transformation, i.e.:

M =
∂ (Q1, . . . , Qf , P1, . . . , Pf)

∂ (q1, . . . , qf , p1, . . . , pf)
=




∂Q1

∂q1
· · · ∂Qf

∂q1

∂P1

∂q1
· · · ∂Pf

∂q1
...

. . .
...

...
. . .

...

∂Q1

∂q
f

· · · ∂Qf

∂q
f

∂P1

∂q
f

· · · ∂Pf

∂q
f

∂Q1

∂p1
· · · ∂Qf

∂p1

∂P1

∂p1
· · · ∂Pf

∂p1
...

. . .
...

...
. . .

...

∂Q1

∂p
f

· · · ∂Qf

∂p
f

∂P1

∂p
f

· · · ∂Pf

∂p
f




,

and J is called Poisson matrix:

J =


 0 11

−11 0


 ,

which is written in an f × f blocks form.

The well-known variational principle tells that the solutions of Eqs. (14.10)–(14.11)

satisfy the variational equation

δ

∫ t2

t1

L(q1, . . . , qf , q̇1, . . . , q̇f , t) dt

= δ

∫ t2

t1

[
f∑

k=1

q̇kpk −H(q1, . . . , qf , p1, . . . , pf , t)

]
dt = 0 .

(14.15)

An analogous expression is valid for the new phase-space variables, i.e.,

δ

∫ t2

t1

[
f∑

k=1

Q̇kPk −K(Q1, . . . , Qf , P1, . . . , Pf , t)

]
dt = 0 , (14.16)

where we have denoted with K the Hamiltonian with respect to the new set of vari-

ables. In order for Eqs. (14.15) and (14.16) to describe the same system, the two

integrands must differ at most by the total derivative of a function F (q,P , t). F is

called the generating function of the canonical transformation. Because of this total
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derivative we get:

∂F (q,P , t)

∂qk
= pk , (14.17)

∂F (q,P , t)

∂Pk
= Qk , (14.18)

∂F (q,P , t)

∂t
+H(q,p, t) = K(Q,P , t) . (14.19)

By properly choosing the canonical transformation, it is possible to obtain a trans-

formation such that K(Q1, . . . , Qf , P1, . . . , Pf) = 0, i.e., the Hamiltonian in the new

coordinates is simply zero. In this case, the new coordinates evolve according to

Q̇k = {Qk, K}P.B. = 0 ,

Ṗk = {Pk, K}P.B. = 0 ,

i.e., the new variables are constants of motion.

According to Eqn. (14.19), a canonical transformation of this type is generated by

an F (q,P , t) that satisfies

∂F (q,P , t)

∂t
+H(q,p, t) = 0 . (14.20)

If in this equation we rewrite everything as a function of only (q,P , t) , by using

Eqn. (14.17), we get∗

∂F (q,P , t)

∂t
+H

(
q,
∂F (q,P , t)

∂q
, t

)
= 0 . (14.21)

This is exactly the Hamilton-Jacobi equation: it is a non-linear partial differential

equation for the generating function F (q,P , t). Using Hamilton variational methods

(with variations also of the time at the extremes) it is possible to prove that the

Hamilton-Jacobi equation is satisfied by the classical action function

F (q,P , t) = Scl(q,P , t) =

∫ t

t1

L (qcl(t
′), q̇cl(t

′), t′) dt′ , (14.22)

∗ Here and in the following with the symbol ∂/∂q (i.e., partial derivative with respect to a vector)

we mean the gradient with respect to that vector, i.e., ∂/∂q = ∇q.
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where qcl(t
′) are the solutions of the equations of motion with boundary conditions





qcl(t1) = q

Pcl(t1) = P
.

Remark. Scl(q,P , t) should not be confused with the action functional, it is instead

a function since we have already plugged in a particular trajectory.

Let us consider for simplicity the case of a point-like particle of mass m moving

in a time-independent potential V (x). We can write its Lagrangian in cartesian

coordinates as

L =
1

2
mẋ2 − V (x) , (14.23)

so we get

p =
∂L
∂q̇

= mq̇ =
∂Scl

∂q
= ∇Scl , (14.24)

and therefore the Hamilton-Jacobi equation becomes simply

∂Scl

∂t
+

[∇Scl]
2

2m
+ V = 0 . (14.25)

14.3 WKB method

14.3.1 General considerations

Let us turn back to Quantum Mechanics and let us consider the one-dimensional

stationary Schrödinger equation

d2ψ(x)

dx2
+

2m

~2
[E − V (x)]ψ(x) = 0 . (14.26)

Remember that if V (x) = const. = V and E > V , Eqn. (14.26) has solutions of the

form

ψ(x) = A e±ikx , k =

√
2m

~2
(E − V ) .

They are oscillating wave functions with constant amplitude A and constant wave-

length λ = 2π/k.
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Now, let us assume that V (x) varies “slowly” as a function of the position x with

respect to λ. Then, it seems resonable to assume that the wave function is still an

oscillating one but with slowly-varying position-dependent amplitude and wavelength.

Analogously, if V (x) = const. = V but with E < V , then the solutions of

Eqn. (14.26) take the form

ψ(x) = A e±κx , κ =

√
2m

~2
(V − E) ,

i.e., a pure exponential. Note that the κ above is different than the k of the previous

formula. Again, if the potential V (x) varies “slowly” as a function of x with respect

to 1/κ, then we may assume that the wave function solution is still of exponential

type but with A and k slowly dependent on x.

It should already be clear that our considerations will give a reasonable approxi-

mation only within certain regions of the domain of ψ(x). (We will be more precise

later on.) In fact, at the points where E = V both λ and 1/κ diverge to +∞ and it

does no longer make sense to assume V (x) to be a slowly varying function of x on

the scale of λ in the neighbor of such points. Such points are called turning points,

since classically those are the points at which the particle changes the direction of its

motion. The mathematical treatment of the solution in a neighbor of these points

is rather cumbersome and we will invite the interested reader to study it in more

advanced books.

14.3.2 WKB solutions and their validity

Let us come back to the stationary Schrödinger equation and write ψ(x) as

ψ(x) = A(x) e
i
~
S(x) , (14.27)

where A and S are time-independent real-valued functions. Plugging Eqn. (14.27)

into the stationary Schrödinger equation and equating real and imaginary parts we
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get two coupled equations for A and S which are

(S ′(x))
2 − 2m[E − V (x)] = ~

2A
′′(x)

A(x)
, (14.28)

2A′(x)S ′(x) + A(x)S ′′(x) = 0 , (14.29)

where the prime denotes the derivative with respect to x, i.e., S ′(x) = dS(x)/ dx,

etc.

From Eqn. (14.29) by integration we get immediately that:

A(x) =
const

(S ′)
1
2

. (14.30)

Substituting back into Eqn. (14.28) we obtain

(S ′)2 = 2m(E − V ) + ~
2

[
3

4

(
S ′′

S ′

)2

− 1

2

S ′′′

S ′

]
. (14.31)

This equation is rigorously equivalent to the Schrödinger equation we started from,

Eqn. (14.26).

So far, no approximation has been made. The WKB approximation is basically an

expansion of S in powers of ~2, i.e.,

S = S0 + ~
2S1 + . . . . (14.32)

Of course, we shall keep only the lowest order terms in ~2. The reason why the

expansion Eqn. (14.32) has been done in ~2 and not simply in ~ is that in Eqn. (14.31)

~2 (and not ~ itself) makes its appearance.

At this point we can rewrite Eqn. (14.27) as

ψ(x) = A e
i
~
S = A e

i
~
(S0+~2S1+...) . (14.33)

Inserting the Eqn. (14.32) into (14.31) and looking only at the zero-th order in ~2 we

get

(S ′
0)

2
= 2m(E − V ) . (14.34)
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Using the following definitions

λ(x) =
1

k(x)
=

~√
2m[E − V (x)]

, for E > V (x) , (14.35)

ℓ(x) =
1

κ(x)
=

~√
2m[V (x)− E]

, for E < V (x) , (14.36)

Eqn. (14.34) becomes

S ′
0(x) = ± ~

λ(x)
= ±~k(x) , for E > V (x) , (14.37)

S ′
0(x) = ±i ~

ℓ(x)
= ±i~κ(x) , for E < V (x) . (14.38)

So the WKB solutions have the form

ψ(x) ≈ A e
i
~
S0 , (14.39)

which using Eqn. (14.30) becomes

ψ(x) ≈ ψWKB(x) =
C√
k(x)

e±i
∫
k(x) dx , for E > V (x) , (14.40)

ψ(x) ≈ ψWKB(x) =
C√
κ(x)

e±
∫
κ(x) dx , for E < V (x) . (14.41)

The general approximate solutions will be a linear combinations of the two above

(with the plus and the minus sign). It is interesting to observe that, in the classically

allowed region (i.e., for E > V ), we have that

ρ = |ψ(x)|2 ≈ |C|2
k(x)

∝ 1

p(x)
, (14.42)

This equation shows that the probability to find the particle at the point x is inversely

proportional to its linear momentum p(x), i.e., to its velocity, exactly as in Classical

Mechanics.

When one uses approximation methods, it is always necessary to specify mathe-

matically the limits of applicability of the method. To state that the WKB works well

for slowly varying potentials is not a mathematical precise statement. If we want to
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be more precise, let us note from Eqn. (14.33) that the corrections of order ~2 brings

into the WKB solutions only a further phase factor ei~S1 . This factor can be neglected

only if ~S1 ≪ 1. At this point it is enough to insert the expansion Eqn. (14.32) into

Eqn. (14.31) and equate the terms of order ~2. For example, for E > V we find after

some simple calculations

~S ′
1(x) = ±

[
1

4
λ′′(x)− 1

8

[λ′(x)]
2

λ(x)

]
, (14.43)

and integrating both sides of this expression we get

~S1 = ±
[
1

4
λ′(x)− 1

8

∫
[λ′(x)]

2

λ(x)
dx

]
. (14.44)

The criterion for the WKB approximation, i.e., ~S1 ≪ 1, becomes then:

λ′(x) ≪ 1 , for E > V (x) .

In the same way it is possible to show that the criterion is

ℓ′(x) ≪ 1 , for E < V (x) .

If we make explicit the dependence from the potential we get the validity condition

|m~V ′(x)|
|2m [E − V (x)]|

3
2

≪ 1 . (14.45)

Eqn. (14.45) is a more precise characterization of the statement that the potential

must be slowly varying with x.

14.3.3 Connection formulae

At the turning points where E = V (x) the quantities previously defined, namely, λ(x)

and ℓ(x), diverge and the approximations used before are not valid anymore.
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Let us suppose that E ≷ V (x) for x ≷ a. If the WKB approximation can be used

everywhere except in a neighbor of the turning point x = a, then

ψWKB(x) =
A√
κ(x)

e−
∫ a

x
κ(x′) dx′ +

B√
κ(x)

e+
∫ a

x
κ(x′) dx′ , for x > a , (14.46)

ψWKB(x) =
C√
k(x)

e−i
∫ a
x
k(x′) dx′ +

D√
k(x)

e+i
∫ a
a
k(x′) dx′ , for x < a . (14.47)

The problem now is to find out how the coefficients C and D can be related to A and

B. If we manage to do that via some abstract reasoning, we can bypass the problem of

finding the exact WKB solution in the neighbor of the turning points where the WKB

solution fails. We will only report here the “connection formulae” which connects the

“oscillating WKB solutions” to the “exponentialy decaying WKB solutions” and let

the interested reader study their derivation in more advanced books:

A√
κ(x)

e−
∫ a
x
κ(x′) dx′ +

B√
κ(x)

e+
∫ a
x
κ(x′) dx′ ↔

↔ 2A√
k(x)

cos

[∫ x

a

k(x′) dx′ − π

4

]
− B√

k(x)
sin

[∫ x

a

k(x′) dx′ − π

4

]
. (14.48)

Clearly, the oscillating solutions are valid for x ≪ a while the exponential solutions

are valid for x≫ a. Analogous formulae hold when V (x) ≶ E for x ≶ a.

14.4 α decay

The WKB belongs to the class of so called non-perturbative approximation methods.

As we have already seen, the basic idea is to consider ~ “small”, while the perturbative

coupling of the potential can be any value, even not small. Other non-perturbative

methods are the variational method and the adiabatic method, which we shall not

discuss here. Since non-perturbative methods do not require the coupling constant

to be small, they are the obvious choice when the interactions are “strong”, as it

happens for instance in nuclear physics.

In this section, we shall see an application of the WKB method in that sector of

physics. In particular we shall study the α decay of the nuclei. A nucleus of radius
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V (x)

xa b

V0

E

Region I Region II Region III

Fig. 14.1. Model of potential barrier in the α decay of the nuclei.

a and charge Z can be roughly represented by a potential well of depth V0. (See

Fig. 14.1.) For x > a, the potential is of Coulomb type and goes to zero for x → ∞.

Let us suppose that inside the nucleus there is a small bunch of matter, i.e., α particles

with charge z, and energy E > 0. Let us indicate with x = b the point at which the

Coulomb potential is equal to the energy, i.e.,

zZe2

4πε0b
= E .

Our goal is to evaluate the probability amplitude that the α particle escapes the nu-

cleus. We have to build a solution of the Schrödinger equation which in the region III

behaves as a wave (transmitted wave). In that region, using the WKB approximation

the solution has the form

ψIII(x) ∼
C√
k(x)

exp

[
±i
∫
k(x) dx

]
. (14.49)

To simplify the calculations, let us choose a wave which propagates in the direction

of positive x. Let us insert a phase of π/4 (ψ’s are defined up to an overall phase)
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and C is given by choosing the integration range, so we obtain:

ψIII(x) =
1√
k(x)

exp

[
i

∫ x

b

k(x′) dx′ + i
π

4

]

=
1√
k(x)

[
cos

(∫ x

b

k(x′) dx′ +
π

4

)
+ i sin

(∫ x

b

k(x′) dx′ +
π

4

)]
. (14.50)

Now, we make use of the connection formulae in order to determine ψ in the region II.

We extend only the sin function, since the cos function would give a exponentially

increasing function which would be not normalizable. We have

ψII(x) =
−i√
κ(x)

exp

[∫ b

x

κ(x′) dx′
]

=
−i√
κ(x)

exp

[∫ b

a

κ(x′) dx′
]
exp

[
−
∫ x

a

κ(x′) dx′
]

(14.51)

Defining

γ =

∫ b

a

κ(x) dx =

∫ b

a

√
2m

~2
[V (x)−E] dx , (14.52)

Eqn. (14.51) becomes

ψII(x) = − i√
κ(x)

eγ exp

[
−
∫ x

a

κ(x′) dx′
]
. (14.53)

In region I, the solution of the Schrödinger equation is always an oscillating function.

To make the calculations easier, and indicating as usual k0 =
√

2m (E − V0)/~, we

can write

ψI(x) = A sin [k0(x− a) + ϕ] =
A

2i

{
ei[k0(x−a)+ϕ] − e−i[k0(x−a)+ϕ]

}
, (14.54)

where the constants A and ϕ are determined by imposing the continuity of the wave

function and of its first-order derivative in x = a. In particular, we find that





k0 cotϕ = −κ(a)
A sinϕ = − i√

κ(a)
eγ

.

As we want to study the tunnel effect through the potential barrier, we need to

calculate the transmission coefficient T , given by the ratio between the transmitted
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probability current J tr
III which reaches region III and the incident current J inc

I coming

from region I, i.e.,

T =
J tr
III

J inc
I

.

In order to calculate J inc
I let is note that ψI is the sum of an incident and a reflected

wave. Let us remember that in one dimension the probability current is

J = ℜ
[
ψ†(x)

p̂

m
ψ(x)

]
= ℜ

[
ψ†(x)

~

im

d

dx
ψ(x)

]
.

It is easy to prove that

J inc
I =

1

4
|A|2 ~k0

m
and J tr

III =
~

m
.

Thus

T = 4

√
(Va −E)(E − V0)

Va − V0
e−2γ ,

which means that

T ∝ exp

[
−2

~

∫ b

a

√
2m [V (x)−E] dx

]
.

This one is the famous Gamow formula.

The reader may ask why we have used the WKB approximation. The reason is that

we could not solve exactly the Schrödinger equation associated with the potential

drawn in the previous figure. At the same time there was no small perturbative

parameter associated with the potential which would allow us to use perturbative

methods. Moreover, we had potentials which (especially the Coulomb potential felt

outside the nucleus) were changing slowly on the scale of the wavelength involved, so

it was the ideal ground to implement the WKB method.



Chapter 15

INTRODUCTION TO SCATTERING

15.1 introduction

The material for this chapter will be provided by the teacher via handwritten notes.





Chapter 16

THE SCHRÖDINGER FIELD AND SECOND

QUANTIZATION

This chapter is taken from the Bachelor Thesis of Serafin Francesco, University of

Trieste.

One of the main difference between Classical Mechanics (CM) and Quantum Me-

chanics (QM) is in the way a physical system is described. In QM we have the

well-known postulate:

Postulate: In QM the state of a system is described by an element of a Hilbert

Space: H.

When the elements of H (indicated with | 〉 in the Dirac notation) are represented

on a basis they can take different forms: for example in the representation on the

eigenstates of the position operator (r̂) , they are given by square integrable functions

mapping points of Rn into C (or even Cm):

H
∗ ×H ∋ 〈r |ψ(t)〉 ≡ ψ(r, t) : R

n × R → C
m.

In what follows we will use for simplicity the position representation and so, besides

the states, also the operators (p̂, r̂, V̂ , ecc.) will be given in that basis.

We know that the state of a quantum system in a potential V (r) evolves in time

according to the Schrödinger equation:

[
− ~2

2m
∇2 + V (r)

]
ψ(r, t) = i~

∂

∂t
ψ(r, t) (16.1)
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Notice that ψ(r, t), being a function, can be interpreted as a field , and we can ask

ourselves if the evolution equation (16.1) can be derived via a variational principle

from some appropriate field-Lagrangian. As ψ(t, x) is a complex field, it is equivalent

to two real and independent fields: ℜeψ and ℑmψ. Equivalently we can describe the

system using the field and its complex coniugate:



ψ = ℜeψ + iℑmψ

ψ∗ = ℜeψ − iℑmψ.

We shall assume that ψ and ψ∗ go to zero at infinity. It is easy to see that in the free

case the field Lagrangian, density L = L(ψ, ψ∗), which reproduces the Schrödinger

equation for the fields ψ and ψ∗ is:

L = ψ∗
(
i~
∂

∂t
+

~2

2m
∇2

)
ψ . (16.2)

To get the Schrödinger equation for a particle in a a potential V , one just need to

add to the previous Lagrangian the term: V ψψ∗ = ψ∗V ψ.

Let us now check that the Euler−Lagrange field equation derived from the La-

grangian above is the (16.1). From the literature ∗ we know that the Euler−Lagrange

equations for the fields ηρ (with ”ρ” labelling the set of fields if they are more than

one) involve also its space-time derivative indicated as ηρ,ν (with ”ν” labelling the

space-time index) and these equations have the form:

d

dxν
∂L
∂ηρ,ν

− ∂L
∂ηρ

= 0 . (16.3)

The Schrödinger fields are just two ( ψ and ψ∗), and so we have ρ = 1, 2. Doing the

variation with respect to the field associated to ρ = 2, i.e ψ∗, for the free case we get

:
d

dxν
∂L
∂ψ∗

,ν

− ∂L
∂ψ∗ = 0−

(
i~
∂

∂t
+

~2

2m
∇2

)
ψ = 0 (16.4)

∗ The students who do not know this should study the very first chapters on fields equations

contained in many books like, for example, Goldstein or Landau’s book.
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In this manner we have eproduced (16.1).

To build the Hamiltonian density H associated to L, we have to build the momenta

associated to ψ and ψ∗. A standard convention is to indicate with π∗ the momentum

coniugated to ψ and with π the momentum coniugated to ψ∗:

π =
∂L
∂ψ∗

,ν

= 0 π∗ =
∂L
∂ψ,ν

= i~ψ∗ .

Using all this the Hamiltonian density turns out to be :

H ≡ (π∗, π)· ∂
∂t

(
ψ

ψ∗

)
−L = i~ψ∗∂ψ

∂t
−i~ψ∗∂ψ

∂t
−ψ∗ ~

2

2m
∇2ψ = ψ∗

(
− ~2

2m
∇2

)
ψ .

(16.5)

If we integrate the expression above, the free Hamiltonian is :

H =

∫

Q
H d3r =

∫

Q
ψ∗
(
− ~2

2m
∇2

)
ψ d3r . (16.6)

Note that this expression coincides with the definition, in standard QM, of the ex-

pectation value of the kinetic operator T̂ on the state ψ, which in the bra and ket

notation of Dirac can be written as:

〈T̂ 〉 = 〈ψ| T̂ |ψ〉 . (16.7)

Inserting the decomposition of the identity 11 in position space on the left and on the

right of the operator T̂ , we get the position picture representation of this expectation

value:

〈T̂ 〉 =
∫

Q

∫

Q′

〈ψ | x′〉 〈x′| T̂ |x〉 〈x |ψ〉 d3x d3x′ =
∫

Q
ψ∗(x)

(
− ~2

2m
∇2

)
ψ(x) d3x.

(16.8)

This is exactly the expression (16.6).

In the most general case in which the potential is not zero, the lagrangian (16.2)

becomes:

L = ψ∗
(
i~
∂

∂t
−H

)
ψ . (16.9)
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Now let us concentrate on the Schrödinger equation for a free system and on the

interpretation of the wave function as a field. Fields are now, like in the electromag-

netic case, our degrees of freedom but up to now we have not quantized these fields

ψ(x, t), but only the operators x̂ and p̂. Because of this, we can say that (16.2) is the

equation of motion of a classical field. To work in analogy with the electromagnetic

field, we can say that the Schrödinger equation corresponds to the Maxwell equations

and the ψ(x, t) corresponds to the electromagnetic field.

Let us take the Schrödinger equation for a free system and let us indicate with φ+
n

the eigenfunctions associated to the positive eigenvalues E0
n:

− ~2

2m
∇2φ+

n = E0
nφ

+
n . (16.10)

In this way we get the numerable set {φ+
n } which is a basis of the Hilbert space

where the eq. (16.10) is defined. A generic state ψ ∈ H can be written as a linear

combinations of the states above because they make up a basis. The states φn can

be represented on the position eigenstates. Moreover imposing periodic boundary

conditions and supposing we work in a finite space of volume V, they become:

φ+
n (r, t) =

(
1

V

) 1
2

ei(pn·r−E0
nt) (16.11)

where pn = 2π(V )−1/3(nx, ny, nz) and E
0
n = p2n/(2m). Remember that the ortogonal-

ity relation
∫
V
φ∗
iφj dr = δi,j holds. So a generic state ψ can be written as:

ψ(r, t) =
∑

n

anφ
+
n (r, t) (16.12)

where the expansion coefficients an are complex numbers. Using the expansion above

for the ψ and inserting it into the Hamiltonian (16.6), we get:

H =

∫

Q⊂R3

(∑

n

a∗nφ
∗
n

)[
− ~2

2m
∇2

](∑

k

akφk

)
d3x =

∫

Q

(∑

n

a∗nφ
∗
n

)(∑

k

ak

[
− ~2

2m
∇2

]
φk

)
d3x =

∫

Q

(∑

n

a∗nφ
∗
n

)(∑

k

akE
0
kφk

)
d3x =

=
∑

n

∑

k

E0
ka

∗
nak

∫

Q
φ∗
nφk d

3x =
∑

n

∑

k

E0
ka

∗
nakδn,k =

∑

n

E0
na

∗
nan (16.13)
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We can interpret this final relation by saying that the energy of the generic field ψ, is

a combination of the energies of the single eigenstates of Ĥ , and each of them is taken

with a weight related to the coefficients an of the projections of ψ on the eigenstates

φn.

Next thing we want to do is quantize the field that describes the system, that

means we must promote the field ψ(x) to be an operator. This procedure is called

second quantization. We can prove that what we obtain is equivalent to the first

quantization of a system described by our Hamiltionian but containing an arbitrary

number of particles, this is a so called “many body” system.

The rest of the chapter is organized as follows: In section 1.1 we attack the “many

body” problem by building the wave function of the system Ψ(r1, ..., rN , t) and the

associated evolution equation. Next we perform a change of basis in order to write

the over-all Hamiltonian as a function of some creation and annihilation operators:

â† e â.

In 1.2 we show that the Hamiltonian derived in section 1.1 is formally equivalent

to the one built using the second quantization procedure. As we said earlier this

procedure turn the field ψ into an operator (ψ → ψ̂), and turn the Hamiltonian into

the following operator:
ˆ̂
H ≡

∫
ψ̂†(x)H(x)ψ̂(x) dx.

The second quantization is widely used as the only correct technique to treat quan-

tum relativistic fields. This is a sector of physics where we always have to handle from

the beginning a many body system. In fact for example a photon, with its natural

creation of the many particle-antiparticle pairs from the vacuum along its motion , is

automatically a many body system.
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16.1 The “many body” problem.

Let us consider a system of N identical particles interacting via a two body potential

V (ri, rj). In first quantization the associated Hamiltonian has the following form:

Ĥ(1st) =

N∑

i=1

T̂i +
1

2

N∑

i 6=j=1

V̂ (ri, rj) . (16.14)

The wave function, in position representation, which describes the system and its

associated Schrödinger equation are:

Ψ(r1, ..., rN , t) ≡ Ψ({r}N , t) (16.15)

i~
∂

∂t
Ψ({r}N , t) = H(1st)Ψ({r}N , t) . (16.16)

Ψ can be build from the isingle particle, time independent states, which we shall

indicate with ϕ(E)(ri) for the i−particle. We choose these states which obey the

stationary Shrödinger eq.: Hϕ(E)(ri) = i~∂tϕ(E)(ri) because they make up a basis

and have a clear physical meaning. As the particles are identical ones they all have

the same spectrum. Taking all of this into account we can then expand the many-body

wave function as:

Ψ({r}N , t) =
∑

Ei

C(E1, ...., EN , t)ϕE1(r1) · .... · ϕEN
(rN) , (16.17)

where the sum over Ei indicates the sum over all the energies of all single particles.

We have confined the time-dependence into the coefficients C.

Let us insert the expansion (16.17) in (16.16), and multiply the equation for the

complex coniugate of a fixed state: ϕE∗
1
(r1) · .... ·ϕE∗

N
(rN). Next let us integrate what

we get over {r}N . In this way we get an equation for the coefficients C associated to

a particular choice of the energies E∗
1 , ...., E

∗
N . We will call this equation as “equation

for the coefficients’ ’. Let us note that for a particular choice of the set of energies,

many different products of states ϕE∗
1
(r1) · .... ·ϕE∗

N
(rN) may corresponds to that set of

energies, i.e. there may be degeneracies on that set of energies. To solve this problem
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let us define the so called occupation number n∗
i as the number of single-particle

states which happens to have energy E∗
i .

At this point let us notice that it is possible to order, inside the coefficients, the

energies which are equal to each other without having to change signs (this is possible

at least for bosoni) and pass from a sum over the energies to a sum over the occupation

numbers :
∑

Ei

→
∑

(n∗
1 ,....,n

∗
x)

(16.18)

where we have indicated with nx (x 6= N) , the last occupation number which is

different from zero. We can also imagine to do a sum over an infinitly long strings of

occupation numbers (n∗
1, .....;n

∗
∞), where all numbers are zero after the l’x−position.

This trick allows us to remove the constraint of having a finite number of particles

and so we can treat arbitrary large systems. Let us now define some new coefficients

which are related to the C of (16.17) as :

C̄(n∗
1, ...., n

∗
x, t) ≡ C(E∗

1 , ...., E
∗
N , t) = C( E∗

1︸︷︷︸
n∗
1

, ..., E∗
x︸︷︷︸

n∗
x

, ..., E∗
N , t). (16.19)

We can re-write the C̄ as :

C̄(n∗
1, ...., n

∗
x, t) ≡

(
N !

n∗
1! · .... · n∗

x!

) 1
2

f(n∗
1, ...., n

∗
x, t) . (16.20)

In the last step we have introduced some abstract functions f related to the C(E∗
1 , ...., E

∗
N , t).

In this manner we can re-write the total wave function Ψ in a new basis as:

Ψ({r}N , t) =
∑

(n∗
1 ,....,n

∗
x)

f(n∗
1, ...., n

∗
x, t) · Φ(n∗

1 ,....,n
∗
x)({r}N) (16.21)

where

Φ(n∗
1 ,....,n

∗
x)({r}N) ≡

∑

Ei ⇐⇒ (n∗
1,....,n

∗
x)

(
n∗
1! · .... · n∗

x!

N !

) 1
2

ϕE1(r1) · .... · ϕEN
(rN) . (16.22)

The sum is done over all energies which are compatible with a given string of occu-

pation numbers (n∗
1, ...., n

∗
x). It is for this reason that we put on Φ a label given by a
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string of occupation numbers. The states Φ are in fact in a one to one correspondence

with the states |n∗
1, ...., n

∗
x〉 which belong to what is called a Fock space which will be

defined later on.

Let us remember that the C used in (16.17) have to obey what we called the

“equation for the coefficients’, and as a consequence also f(n∗
1, ...., n

∗
x, t) of equation

(16.21) must obey a similar equation modulo some factors in front. In order to be

able to use the dependence of f on the occupation numbers, we need to have only sum

over the energies. The sum over the numbers of particles in the Hamiltonian (16.14)

can be turned into a different sum as:

N∑

i=1

→
∑

Ei

ni ≡
∑

i

ni (16.23)

This replacement is very easy for the kinetic term T̂ while in the case of V̂ we have to

impose the constraint i 6= j which is present when we do the sum over the particles

number and we have to find an analog one when we sum over the energies. This new

constraint is derived via the following reasoning : if E∗
i 6= E∗

j , then the condition is

automatically satisfied and the occupation are simply n∗
i ed n

∗
j . If instead the energies

are the same for two different particles, i.e. E∗
i = E∗

j , in that case we have to count

only once the particles labelled by different indices but that occupy that same energy

level. This means that we have to group together in couples, without repetition, the

number of particles at energy E∗
i i.e, :

(
n∗
i

2

)
= n∗

i (n
∗
i − 1) . (16.24)

To unify the two cases E∗
i = E∗

j e E∗
i 6= E∗

j , we can write:

N∑

i 6=j
−→

∑

Ei

∑

Ej

n∗
i (n

∗
j − δij) ≡

∑

i

∑

j

n∗
i (n

∗
j − δij) , (16.25)

where the sums are over all admissible energies. The final equation for the coefficients
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f is:

i~
∂

∂t
f(n∗

1, ...., n
∗
x, t) =

∑

i

〈i|T̂ |i〉n∗
i f(n

∗
i )+

∑

i 6=j
〈i|T̂ |j〉 (n∗

i )
1
2 (n∗

j+1)
1
2f(n∗

i −1, n∗
j+1)

+
1

2

∑

i=j

∑

k

∑

l

〈ii|V̂ |kl〉 (n∗
i )

1
2 (n∗

i − 1)
1
2 (n∗

k + 1)
1
2 (n∗

l + 1)
1
2f(n∗

i − 2, n∗
k + 1, n∗

l + 1)

+
1

2

∑

i 6=j

∑

k

∑

l

〈ij|V̂ |kl〉 (n∗
i )

1
2 (n∗

j)
1
2 (n∗

k +1)
1
2 (n∗

l +1)
1
2f(n∗

i − 1, n∗
j − 1, n∗

k+1, n∗
l +1)

+ remaining terms for which k 6= l 6= (i o j). (16.26)

The compact notation used for f(n∗
i + 1), indicates that all n∗

j , with j from 1 to

x, are the same as in the f(n∗
1, ...., n

∗
x, t) which appears on the L.H.S of eq. (16.26)

except the l’i−term which is turned into the (n∗
i + 1).

The crucial point embodied in (16.22) is that we have passed from the basis of the

energy eigenstates, (i.e. a sum over the energies), to an occupation number basis (i.e.

a sum over (n∗
1, ...., n

∗
x)). It is possible to show that actually these are the position

picture representation of the abstract states which make up what is called the Fock

space. So we can write the total wave function Ψ as a linear combinations of states

of the Fock space as :

|Ψ(t)〉 =
∑

(n1,....,nx)

f(n1, ...., nx, t) |n1, ...., nx〉 (16.27)

In order to derive (16.27) from (16.21) we just have to write ϕEi
(ri) = 〈ri|Ei〉 and

check that the coefficients of the change of basis |E1, ...., EN 〉 → |n1, ...., nx〉 are the

same as in (16.22).

Let us now see how we can write the Hamiltonian in this new basis. Let us apply

i~ ∂
∂t

to both sides of (16.27), and note that on the R.H.S the only dependence on time

is in the factors f , and so we can use the equation (16.26). Doing this and working

out the calculations in details, we can notice that it is possible to reconstruct on the

R.H.S the abstract state |Ψ(t)〉 with the new Hamiltonian applied on it. This one is

basically all the R.H.S of (16.26) where each coefficient f is multiplied by the same
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ket |n1, ...., nx〉. Next we operate a change of variables ni − 1 ≡ n′
i etc. and we get

coefficients f(n1, ...., nx) which are all equal and we get kets whose occupation numbers

corresponds exactly to the factors of the type (n′
i)

1
2 by which they are multiplied

example: f(n′
1, ...., n

′
x) · (n′

i + 1)
1
2 |n′

1, ..., n
′
i−1, (n

′
i + 1), n′

i+1....〉 (16.28)

Let us remember that in the Fock space we can define creation and annihilation

operators â† e â, which raises or lower of one unit the occupation numbers of the

particle state on which they act. Their properties are:

â†i |...ni...〉 = (ni + 1)
1
2 |...ni + 1...〉

âi |...ni...〉 = (ni)
1
2 |...ni − 1...〉

and they derive from the well-known commuation relations.

As the new Hamiltonian contains terms of the form (16.28), we can rewrite it as a

function of the operators â† e â, and obtain the final form of the Hamiltonian for the

many body problem in the Fock space. It turns out to be:

Ĥ(many body) ≡
∑

i,j

â†i 〈i|T̂ |j〉 âj +
∑

i,j,k,l

â†i â
†
j 〈ij|V̂ |kl〉 âkâl . (16.29)

Note that the matrix elements 〈i|T̂ |j〉 and 〈ij|V̂ |kl〉 are complex numbers and the

only operators are â† and â.

The Schrödinger equation for the many body problem, re-written in the Fock space,

is equivalent to the eq. eq:Schrodmany where we started from, i.e:

i~
∂

∂t
|Ψ(t)〉E = Ĥ(1st) |Ψ(t)〉E ⇐⇒ i~

∂

∂t
|Ψ(t)〉n = Ĥ(many body) |Ψ(t)〉n (16.30)

where with the symbols |Ψ(t)〉E and |Ψ(t)〉n we had indicated the ket |Ψ(t)〉 in the two

different basis, respectively in the energy eigenstates and in the Fock space one. In

this last space the only information we need regarding the state |Ψ(t)〉n is its ground

state necause all the other states are obtained by applying the â† and â operators.
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16.2 Second Quantization

Second Quantization is basically a quick recipe to build an Hamiltonian equivalent

to the Ĥ(many body) presented in the previous section. For semplicity we will use the

position representation. The prescriptions of that recipe are:

- Build the field operator which is defined at every point in space as:

ψ̂({r}N) ≡
∑

i

ϕi(ri)âi (16.31)

where the ϕi(ri) are the single particle eigenstate of energy Ei (see the previous

sections).

- Build the Hamiltonian
ˆ̂
H of second quantization as:

ˆ̂
H ≡

∑

i,j

〈i|Ĥ(1st)|j〉 â†i âj =
∫
ψ̂†({r}N)H(1st)({r}N)ψ̂({r}N) d{r}N (16.32)

Remember that H(1st)({r}N) is a complex number.

In general, the second quantization rule modifies any operator not only the Hamilto-

nian and it does that using the analog of the (16.32).

The physical meaning of (16.32) is the following: let us suppose we take as |i〉, |j〉
two eigenstate of Ĥ(1st). Doing 〈i|Ĥ(1st)|j〉 we get something proportional to δji and

so only a sum over one index is left over:

ˆ̂
H ≡

∑

i

〈i|Ĥ1st |j〉 â†i âi =
∑

i

Ei(r)n̂i. (16.33)

So the operator
ˆ̂
H somehow counts how many particles are in the i−state in the

point {r}N and it associates to it the corresponding energy Ei. As a consequence

this Hamiltonian represents the total energy of a system with an arbitrary number of

particles.
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Via this Hamiltonian
ˆ̂
H the evolution of the abstract state

|Ψ(t)〉n ≡∑(n1,...,nx)
f(n1, ..., nx, t) |n1, ..., nx〉 is given again by the Schroedinger equa-

tion:

i~
∂

∂t
|Ψ(t)〉n =

ˆ̂
H |Ψ(t)〉n =

∫
ψ̂†({r}N)H1st({r}N)ψ̂({r}N) d{r}N |Ψ(t)〉n .

(16.34)

Let us now prove the equivalence between the two formulations: the many body and

the second quantization one. This proof will throw light also on the definition (16.31).

In eq. (16.29) let us insert some completness relation in position space between the

first quantization operators T̂ and V̂ in order to represent everything in position

space and let us use the definition 〈ri|i〉 = ϕi(ri). Moreover let us use the fact that

〈r|T̂ |r′〉 = T (r)δ(r− r′). By doing so, we get:

Ĥ(many body) =

∫
dr

[∑

i

ϕi(ri)â
†
i

]
T (r)

[∑

i

ϕj(rj)âj

]

+

∫ [∑

i

ϕi(ri)â
†
i

][∑

j

ϕj(rj)â
†
j

]
V (ri, rj)

[∑

k

ϕk(rk)âk

][∑

l

ϕl(rl)âl

]
dr dr′

≡
∫
ψ̂†(r)T (r)ψ̂(r) dr+

∫
ψ̂†(r)ψ̂†(r′)V (r, r′)ψ̂(r′)ψ̂(r) dr dr′ ≡ ˆ̂

H . (16.35)

This is what we wanted to show. So beside the relation (16.30), we also have:

i~
∂

∂t
|Ψ(t)〉n = Ĥ(many body) |Ψ(t)〉n ⇐⇒ i~

∂

∂t
|Ψ(t)〉n =

ˆ̂
H |Ψ(t)〉n (16.36)

16.3 Summary

We can say that we have obtained the Hamiltonian of second quantization following

two different roads:

- From the ”many body” problem in first quantization, via the change of basis

|E1, ...., EN〉 → |n1, ...., nx〉, we have built the Hamiltonian (16.29) as a function

of the creation and annihilation operators. As we showed in (16.35), it is then

sufficient one more manipulation to get
ˆ̂
H .
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- Following the recipe of second quantization, we build the field operator ψ̂ and

with this the Hamiltonmian
ˆ̂
H .

From the proof of the equivalence betyween Ĥ(many body) and
ˆ̂
H , we gather that the

introduction of the field operator ψ̂ and the machinery of second quantization seems

to be, at least, a useful and quick tool to get the correct Hamiltonian for a many-body

system. Beside quickness a further advantage brought in by second quantization is

that we are not bounded anymore to treat systems with a finite number of particles.

The same approach of second quantization used here for bosons can also be in-

troduced for fermions. With the handling of fermions in second quantization an

important result that will pop up, via the comparison with bosons, is the so called

spin-statistics theorem that in first quantization had to be taken as a postulate . We

will not present this theorem here and advice the students to read more complete

presentations in proper textbooks. Besides this important result, new physical ideas

brought to light by second quantization will appear when we treat relativistic systems

and they are the phenomena of pair creation, vacuum polarization etc..


