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APOLOGIA

These are my lecture notes for Physics 430 and 431, written a number of years
ago. They are still a bit incomplete: Chapters 19 and 20 remain to be written, and
Chapter 23 is unfinished. Perhaps this year I will get around to it. It is likely that
there are still many misprints scattered here and there in the text, and I will be
grateful if these are brought to my attention.
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Chapter 1

The Classical State

In the first quarter of this century, it was discovered that the laws of motion formulated
by Galileo, Newton, Lagrange, Hamilton, Maxwell, and many others, were inadequate
to explain a wide range of phenomena involving electrons, atoms, and light. After a
great deal of effort, a new theory (together with a new law of motion) emerged in 1924.
That theory is known as quantum mechanics, and it is now the basic framework for
understanding atomic, nuclear, and subnuclear physics, as well as condensed-matter
(or ”solid-state”) physics. The laws of motion (due to Galileo, Newton,...) which
preceded quantum theory are referred to as classical mechanics.

Although classical mechanics is now regarded as only an approximation to quan-
tum mechanics, it is still true that much of the structure of the quantum theory is
inherited from the classical theory that it replaced. So we begin with a lightning
review of classical mechanics, whose formulation begins (but does not end!) with
Newton’s law F = ma.

1.1 Baseball, F = ma, and the Principle of Least
Action

Take a baseball and throw it straight up in the air. After a fraction of a second, or
perhaps a few seconds, the baseball will return to your hand. Denote the height of
the baseball, as a function of time, as x(t); this is the trajectory of the baseball. If
we make a plot of x as a function of t, then any trajectory has the form of a parabola
(in a uniform gravitational field, neglecting air resistance), and there are an infinite
number of possible trajectories. Which one of these trajectories the baseball actually
follows is determined by the momentum of the baseball at the moment it leaves your
hand.

However, if we require that the baseball returns to your hand exactly ∆t seconds
after leaving your hand, then there is only one trajectory that the ball can follow. For
a baseball moving in a uniform gravitational field it is a simple exercise to determine

7



8 CHAPTER 1. THE CLASSICAL STATE

this trajectory exactly, but we would like to develop a method which can be applied
to a particle moving in any potential field V (x). So let us begin with Newton’s law
F = ma, which is actually a second-order differential equation

m
d2x

dt2
= −

dV

dx
(1.1)

It is useful to reexpress this second-order equation as a pair of first-order equations

dx

dt
=

p

m
dp

dt
= −

dV

dx
(1.2)

where m is the mass and p is the momentum of the baseball. We want to find the
solution of these equations such that x(t0) = Xin and x(t0 + ∆t) = Xf , where Xin

and Xf are, respectively, the (initial) height of your hand when the baseball leaves
it, and the (final) height of your hand when you catch the ball.1

With the advent of the computer, it is often easier to solve equations of motion
numerically, rather than struggle to find an analytic solution which may or may not
exist (particularly when the equations are non-linear). Although the object of this
section is not really to develop numerical methods for solving problems in baseball,
we will, for the moment, proceed as though it were. To make the problem suitable
for a computer, divide the time interval ∆t into N smaller time intervals of duration
ε = ∆t/N , and denote, for n = 0, 1, ..., N ,

tn ≡ t0 + nε ,
xn = x(tn) , pn = p(tn) ,

x0 = Xin , xN = Xf

(1.3)

An approximation to a continuous trajectory x(t) is given by the set of points {xn}
connected by straight lines, as shown in Fig. [1.1]. We can likewise approximate
derivatives by finite differences, i.e.

(

dx

dt

)

t=tn

→
x(tn+1)− x(tn)

ε
=

xn+1 − xn

ε
(

dp

dt

)

t=tn

→
p(tn+1)− p(tn)

ε
=

pn+1 − pn

ε
(

d2x

dt2

)

t=tn

→
1

ε







(

dx

dt

)

t=tn

−
(

dx

dt

)

t=tn−1







→
1

ε

{

(xn+1 − xn)

ε
−

(xn − xn−1)

ε

}

(1.4)

1We will allow these positions to be different, in general, since you might move your hand to
another position while the ball is in flight.



1.1. BASEBALL, F = MA, AND THE PRINCIPLE OF LEAST ACTION 9

and integrals by sums
∫ t0+∆t

t0
dt f(t)→

N−1
∑

n=0

εf(tn) (1.5)

where f(t) is any function of time. As we know from elementary calculus, the right
hand side of (1.4) and (1.5) equals the left hand side in the limit that ε → 0, which
is also known as the continuum limit.

We can now approximate the laws of motion, by replacing time-derivatives in (1.2)
by the corresponding finite differences, and find

xn+1 = xn +
(

pn

m

)

ε

pn+1 = pn −
(

dV (xn)

dxn

)

ε (1.6)

These are iterative equations. Given position x and momentum p at time t = tn,
we can use (1.6) to find the position and momentum at time t = tn+1. The finite
difference approximation of course introduces a slight error; xn+1 and pn+1, computed
from xn and pn by (1.6) will differ from their exact values by an error of order ε2.
This error can be made negligible by taking ε sufficiently small.

It is then possible use the computer to find an approximation to the trajectory in
one of two ways: (i) the ”hit-or-miss” method; and (ii) the method of least action.

• The Hit-or-Miss Method

The equations of motion (1.2) require as input both an initial position, in this
case x0 = Xin, and an initial momentum p0 which is so far unspecified. The method
is to make a guess for the initial momentum p0 = P0, and then use (1.2) to solve for
x1, p1, x2, p2, and so on, until xN , pN . If xN ≈ Xf , then stop; the set {xn} is the
(approximate) trajectory. If not, make a different guess p0 = P ′

0, and solve again for
{xn, pn}. By trial and error, one can eventually converge on an initial choice for p0

such that xN ≈ Xf . For that choice of initial momentum, the corresponding set of
points {xn}, connected by straight-line segments, gives the approximate trajectory of
the baseball. This process is illustrated in Fig. [1.2].

• The Method of Least Action

Lets return to the 2nd-order form of Newton’s Laws, written in eq. (1.1). Again
using (1.4) to replace derivatives by finite differences, the equation F = ma at each
time tn becomes

m

ε

{

xn+1 − xn

ε
−

xn − xn−1

ε

}

= −
dV (xn)

dxn
(1.7)

The equations have to be solved for n = 1, 2, ..., N − 1, with x0 = Xin and xN = Xf

kept fixed. Now notice that eq. (1.7) can be written as a total derivative

d

dxn

{

1

2
m

(xn+1 − xn)2

ε
+

1

2
m

(xn − xn−1)2

ε
− εV (xn)

}

= 0 (1.8)
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so that F = ma can be interpreted as a condition that a certain function of xn should
be stationary. Let us therefore introduce a very important expression, crucial in both
classical and quantum physics, which is known as the ”action” of the trajectory.
The action is a function which depends on all the points {xn}, n = 0, 1, ..., N of the
trajectory, and in this case it is

S[{xi}] ≡
N−1
∑

n=0

[

1

2
m

(xn+1 − xn)2

ε
− εV (xn)

]

(1.9)

Then Newton’s Law F = ma can be restated as the condition that the action func-
tional S[{xi}] is stationary with respect to variation of any of the xi (except for the
endpoints x0 and xN , which are held fixed). In other words

d

dxk
S[{xi}] =

d

dxk

N−1
∑

n=0

[

1

2
m

(xn+1 − xn)2

ε
− εV (xn)

]

=
d

dxk

{

1

2
m

(xk+1 − xk)2

ε
+

1

2
m

(xk − xk−1)2

ε
− εV (xk)

}

= ε {−ma(tk) + F (tk)}
= 0 for k = 1, 2, ..., N − 1 (1.10)

This set of conditions is known as the Principle of Least Action. It is the principle
that the action S is stationary at any trajectory {xn} satisfying the equations of
motion F = ma, eq. (1.7), at every time {tn}.

The procedure for solving for the trajectory of a baseball by computer is to pro-
gram the computer to find the set of points {xn} which minimizes the quantity

Q =
∑

k

(

∂S

∂xk

)2

(1.11)

The minimum is obtained at Q = 0, where S is stationary. This set of points, joined
by straight-line segments, gives us the approximate trajectory of the baseball.

Problem: Do it on a computer by both methods.
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Problem: Dyre’s Dilemma2

In discussing the motion of the baseball, we have been ignoring a lot of details
about baseballs, such as the composition of the interior, the pattern of the stitching,
and the brand-name printed on the surface. Instead, the baseball has been treated
as though it were essentially a structureless point of mass m. It is necessary to
make idealizations like this in physics; the real world is otherwise too complicated to
describe. But sometimes an idealization misses something crucial. See if you can find
what goes wrong in the following argument, which tries to prove that a rolling wheel
(or, for that matter, a rolling baseball) can never come to rest through friction with
the ground.

”Proof”: As shown in Fig. [1.3], the forward momentum of a wheel in the positive
x-direction can only be eliminated by a force applied in the opposite direction. But
the only place this force could be applied by friction is the point where the wheel
touches the ground. And a force in the negative x-direction, applied at this point,
will have the effect of making the wheel spin faster! Therefore, the wheel will never
come to rest due to friction. QED.

Is this reasoning correct? Can you solve Dyre’s Dilemma?

2I owe this exercise to Dr. Jeppe Dyre, Roskilde University, Denmark.
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1.2 Euler-Lagrange and Hamilton’s Equations

In brief, the Euler-Lagrange equations are the second-order form of the equations of
motion (1.1), while Hamilton’s equations are the first-order form (1.2). In either form,
the equations of motion can be regarded as a consequence of the Principle of Least
Action. We will now re-write those equations in a very general way, which can be
applied to any mechanical system, including those which are much more complicated
than a baseball.

We begin by writing

S[{xi}] =
N−1
∑

n=0

εL[xn, ẋn] (1.12)

where

L[xn, ẋn] =
1

2
mẋ2

n − V (xn) (1.13)

and where

ẋn ≡
xn+1 − xn

ε
(1.14)

L[xn, ẋn] is known as the Lagrangian function. Then the principle of least action
requires that, for each k, 1 ≤ k ≤ N − 1,

0 =
d

dxk
S[{xi}] =

N−1
∑

n=0

ε
d

dxk
L[xn, ẋn]

= ε
∂

∂xk
L[xk, ẋk] +

N−1
∑

n=0

ε
∂L[xn, ẋn]

∂ẋn

dẋn

dxk
(1.15)

and, since

dẋn

dxk
=











1
ε n = k − 1

−1
ε n = k
0 otherwise

(1.16)

this becomes

∂

∂xk
L[xk, ẋk]−

1

ε

{

∂

∂ẋk
L[xk, ẋk]−

∂

∂ẋk−1
L[xk−1, ẋk−1]

}

= 0 (1.17)

Recalling that xn = x(tn), this last equation can be written
(

∂L[x, ẋ]

∂x

)

t=tn

−
1

ε

{(

∂L[x, ẋ]

∂ẋ

)

t=tn

−
(

∂L[x, ẋ]

∂ẋ

)

t=tn−ε

}

= 0 (1.18)

This is the Euler-Lagrange equation for the baseball. It becomes simpler when we
take the ε→ 0 limit (the ”continuum” limit). In that limit, we have

ẋn =
xn+1 − xn

ε
→ ẋ(t) =

dx

dt

S =
N−1
∑

n=1

εL[xn, ẋn] → S =
∫ t0+∆t

t0
dt L[x(t), ẋ(t)] (1.19)
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where the Lagrangian function for the baseball is

L[x(t), ẋ(t)] =
1

2
mẋ2(t)− V [x(t)] (1.20)

and the Euler-Lagrange equation, in the continuum limit, becomes

∂L

∂x(t)
−

d

dt

∂L

∂ẋ(t)
= 0 (1.21)

For the Lagrangian of the baseball, eq. (1.20), the relevant partial derivatives are

∂L

∂x(t)
= −

dV [x(t)]

dx(t)
∂L

∂ẋ(t)
= mẋ(t) (1.22)

which, when substituted into eq. (1.21) give

m
∂2x

∂t2
+

dV

dx
= 0 (1.23)

This is simply Newton’s law F = ma, in the second-order form of eq. (1.1).
We now want to rewrite the Euler-Lagrange equation in first-order form. Of

course, we already know the answer, which is eq. (1.2), but let us ”forget” this
answer for a moment, in order to introduce a very general method. The reason the
Euler-Lagrange equation is second-order in the time derivatives is that ∂L/∂ẋ is first-
order in the time derivative. So let us define the momentum corresponding to the
coordinate x to be

p ≡
∂L

∂ẋ
(1.24)

This gives p as a function of x and ẋ, but, alternatively, we can solve for ẋ as a
function of x and p, i.e.

ẋ = ẋ(x, p) (1.25)

Next, we introduce the Hamiltonian function

H [p, x] = pẋ(x, p)− L[x, ẋ(x, p)] (1.26)

Since ẋ is a function of x and p, H is also a function of x and p.
The reason for introducing the Hamiltonian is that its first derivatives with re-

spect to x and p have a remarkable property; namely, on a trajectory satisfying the
Euler-Lagrange equations, the x and p derivatives of H are proportional to the time-
derivatives of p and x. To see this, first differentiate the Hamiltonian with respect to
p,

∂H

∂p
= ẋ + p

∂ẋ(x, p)

∂p
−

∂L

∂ẋ

∂ẋ(p, x)

∂p
= ẋ (1.27)
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where we have applied (1.24). Next, differentiating H with respect to x,

∂H

∂x
= p

∂ẋ(x, p)

∂x
−

∂L

∂x
−

∂L

∂ẋ

∂ẋ(p, x)

∂x

= −
∂L

∂x
(1.28)

Using the Euler-Lagrange equation (1.21) (and this is where the equations of motion
enter), we find

∂H

∂x
= −

d

dt

∂L

∂ẋ

= −
dp

dt
(1.29)

Thus, with the help of the Hamiltonian function, we have rewritten the single 2nd
order Euler-Lagrange equation (1.21) as a pair of 1st order differential equations

dx

dt
=

∂H

∂p
dp

dt
= −

∂H

∂x
(1.30)

which are known as Hamilton’s Equations.
For a baseball, the Lagrangian is given by eq. (1.20), and therefore the momentum

is

p =
∂L

∂ẋ
= mẋ (1.31)

This is inverted to give

ẋ = ẋ(p, x) =
p

m
(1.32)

and the Hamiltonian is

H = pẋ(x, p)− L[x, ẋ(x, p)]

= p
p

m
−
[

1

2
m(

p

m
)2 − V (x)

]

=
p2

2m
+ V (x) (1.33)

Note that the Hamiltonian for the baseball is simply the kinetic energy plus the
potential energy; i.e. the Hamiltonian is an expression for the total energy of the
baseball. Substituting H into Hamilton’s equations, one finds

dx

dt
=

∂

∂p

[

p2

2m
+ V (x)

]

=
p

m

dp

dt
= −

∂

∂x

[

p2

2m
+ V (x)

]

= −
dV

dx
(1.34)

which is simply the first-order form of Newton’s Law (1.2).
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1.3 Classical Mechanics in a Nutshell

All the machinery of the Least Action Principle, the Lagrangian Function, and Hamil-
ton’s equations, is overkill in the case of a baseball. In that case, we knew the equation
of motion from the beginning. But for more involved dynamical systems, involving,
say, wheels, springs, levers, and pendulums, all coupled together in some complicated
way, the equations of motion are often far from obvious, and what is needed is some
systematic way to derive them.

For any mechanical system, the generalized coordinates {qi} are a set of vari-
ables needed to describe the configuration of the system at a given time. These could
be a set of cartesian coordinates of a number of different particles, or the angular
displacement of a pendulum, or the displacement of a spring from equilibrium, or all
of the above. The dynamics of the system, in terms of these coordinates, is given by a
Lagrangian function L, which depends on the generalized coordinates {qi} and their
first time-derivatives {q̇i}. Normally, in non-relativistic mechanics, we first specify

1. The Lagrangian

L[{qi q̇i}] = Kinetic Energy − Potential Energy (1.35)

One then defines

2. The Action
S =

∫

dt L[{qi}, {q̇i}] (1.36)

From the Least Action Principle, following a method similar to the one we used for
the baseball (see Problem 4), we derive

3. The Euler-Lagrange Equations

∂L

∂qi
−

d

dt

∂L

∂q̇i
= 0 (1.37)

These are the 2nd-order equations of motion. To go to 1st-order form, first define

4. The Generalized Momenta

pi ≡
∂L

∂q̇i
(1.38)

which can be inverted to give the time-derivatives q̇i of the generalized coordinates
in terms of the generalized coordinates and momenta

q̇i = q̇i[{qn, pn}] (1.39)

Viewing q̇ as a function of p and q, one then defines
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5. The Hamiltonian

H [{qi, pi}] ≡
∑

n

pnq̇n − L[{qi, q̇i}] (1.40)

Usually the Hamiltonian has the form

H [p, q] = Kinetic Energy + Potential Energy (1.41)

Finally, the equations of motion in 1st-order form are given by

6. Hamilton’s Equations

q̇i =
∂H

∂pi

ṗi = −
∂H

∂qi
(1.42)
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Example: The Plane Pendulum

Our pendulum is a mass m at the end of a weightless rigid rod of length l, which
pivots in a plane around the point P. The ”generalized coordinate”, which specifies
the position of the pendulum at any given time, is the angle θ (see Fig. [1.4]).

1. Lagrangian

L =
1

2
ml2θ̇2 − (V0 −mgl cos(θ)) (1.43)

where V0 is the gravitational potential at the height of point P , which the pendulum
reaches at θ = π/2. Since V0 is arbitrary, we will just set it to V0 = 0.

2. The Action

S =
∫ t1

t0
dt
[

1

2
ml2θ̇2 + mgl cos(θ)

]

(1.44)

3. Euler-Lagrange Equations
We have

∂L

∂θ
= −mgl sin(θ)

∂L

∂θ̇
= ml2θ̇ (1.45)

and therefore
ml2θ̈ + mgl sin(θ) = 0 (1.46)

is the Euler-Lagrange form of the equations of motion.

4. The Generalized Momentum

p =
∂L

∂θ̇
= ml2θ̇ (1.47)

5. The Hamiltonian
Insert

θ̇ =
p

ml2
(1.48)

into

H = pθ̇ −
[

1

2
ml2θ̇2 + mgl cos(θ)

]

(1.49)

to get

H =
1

2

p2

ml2
−mgl cos(θ) (1.50)
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6. Hamilton’s equations

θ̇ =
∂H

∂p
=

p

ml2

ṗ = −
∂H

∂θ
= −mgl sin(θ) (1.51)

which are easily seen to be equivalent to the Euler-Lagrange equations.

Problem - Two pointlike particles moving in three dimensions have masses m1 and
m2 respectively, and interact via a potential V ( %x1 − %x2). Find Hamilton’s equations
of motion for the particles.

Problem - Suppose, instead of a rigid rod, the mass of the plane pendulum is
connected to point P by a weightless spring. The potential energy of the spring is
1
2k(l− l0)2, where l is the length of the spring, and l0 is its length when not displaced
by an external force. Choosing l and θ as the generalized coordinates, find Hamilton’s
equations.

1.4 The Classical State

Prediction is rather important in physics, since the only reliable test of a scientific
theory is the ability, given the state of affairs at present, to predict the future.

Stated rather abstractly, the process of prediction works as follows: By a slight
disturbance known as a measurement, an object is assigned a mathematical repre-
sentation which we will call its physical state. The laws of motion are mathematical
rules by which, given a physical state at a particular time, one can deduce the phys-
ical state of the object at some later time. The later physical state is the prediction,
which can be checked by a subsequent measurement of the object (see Fig. [1.5]).

From the discussion so far, its easy to see that what is meant in classical physics
by the ”physical state” of a system is simply its set of generalized coordinates and
the generalized momenta {qa, pa}. These are supposed to be obtained, at some time
t0, by the measurement process. Given the physical state at some time t, the state
at t + ε is obtained by the rule:

qa(t + ε) = qa(t) + ε

(

∂H

∂pa

)

t

pa(t + ε) = pa(t)− ε

(

∂H

∂qa

)

t

(1.52)

In this way, the physical state at any later time can be obtained (in principle) to an
arbitrary degree of accuracy, by making the time-step ε sufficiently small (or else, if
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possible, by solving the equations of motion exactly). Note that the coordinates {qa}
alone are not enough to specify the physical state, because they are not sufficient to
predict the future. Information about the momenta {pa} is also required.

The space of all possible {qa, pa} is known as phase space. For a single particle
moving in three dimensions, there are three components of position and three compo-
nents of momentum, so the ”physical state” is specified by 6 numbers (x, y, z, px, py, pz),
which can be viewed as a point in 6-dimensional phase space. Likewise, the physical
state of a system of N particles consists of 3 coordinates for each particle (3N co-
ordinates in all), and 3 components of momentum for each particle (3N momentum
components in all), so the state is given by a set of 6N numbers, which can be viewed
as a single point in 6N -dimensional space.

As we will see in the next lectures, classical mechanics fails to predict correctly
the behavior of both light and matter at the atomic level, and is replaced by quantum
mechanics. But classical and quantum mechanics have a lot in common: they both
assign physical states to objects, and these physical states evolve according to 1st-
order differential equations. The difference lies mainly in the contrast between a
physical state as understood by classical mechanics, the ”classical state”, and its
quantum counterpart, the ”quantum state”. This difference will be explored in the
next few lectures.



20 CHAPTER 1. THE CLASSICAL STATE



Chapter 2

Origins of Quantum Mechanics

Where do correct ideas come from? Do they drop from the sky? No! Are they innate
in the mind? No! They come from social practice, and from it alone.
- Mao Tse-Tung

The suggestion that all matter is composed of atoms, and the name ”atom” itself,
are due to the Greek thinker Democritus, who lived five centuries before Christ. Not
until the 19th century, however, did evidence for this hypothesis begin to accumulate,
particularly from thermodynamics. The evidence was indirect, but compelling: as-
suming that gases are composed of atoms, one could derive analytically the equation
of state for ideal gases PV = nRT , which had been discovered empirically by Boyle
and others. In addition, assuming that solids as well as gases are composed of atoms,
one could deduce their specific heats, which agreed fairly well with the experimental
values at high temperatures . By the early 20th century, improvements in technology
and the discovery of radioactivity had enabled physicists to study in some detail the
internal structure of atoms, the mass and charge of the electron, and the interaction
of atoms with light.

Certain aspects of atomic physics which emerged from these early investigations
were puzzling and even paradoxical, in the sense that the observed behavior of elec-
trons, atoms, and light seemed in contradiction to the known laws of mechanics and
electromagnetism. These aspects fell roughly into three categories:

1. The Particle-like Behavior of Light Waves
Black-body radiation, the photoelectric effect, the Compton effect.

2. The Puzzling Stability of the Atom
Why doesn’t the electron fall into the nucleus? What is the origin of atomic

spectra?

3. The Wave-like Behavior of Particles
Electron diffraction.

21
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Quantum mechanics emerged as an attempt to explain these phenomena and, as
in the bible, the story begins with light.

2.1 Black-Body Radiation

Isaac Newton believed that light is composed of particles, and he had good reason
to think so. All wave motion exibits interference and diffraction effects, which are
the signature of any phenomenon involving waves. Newton looked for these effects
by passing light through small holes, but no diffraction effects were observed. He
concluded that light is a stream of particles.

One of Newton’s contemporaries, Christian Huygens, was an advocate of the wave
theory of light. Huygens pointed out that the refraction of light could be explained
if light moved at different velocities in different media, and that Newton’s inability
to find diffractive effects could be due simply to the insensitivity of his experiments.
Interference effects are most apparent when wavelengths are comparable to, or larger
than, the size of the holes. If the wavelength of light were very small compared to the
size of the holes used by Newton, interference effects would be very hard to observe.

Huygens turned out to be right. More sensitive optical experiments by Young
(1801) and Fresnel demonstrated the interference and diffraction of light, and mea-
surements by Foucault (1850) showed that the speed of light in water was different
from the speed of light in air, as required to explain refraction. Then Maxwell, in
1860, by unifying and extending the laws of electricity and magnetism, demonstrated
that electric and magnetic fields would be able to propagate through space as waves,
traveling with a velocity v = 1/

√
µ0ε0, which turned out to equal, within experimen-

tal error, the known velocity of light. Experimental confirmation of the existence of
electromagnetic waves followed shortly after, and by the 1880s the view that light is
a wave motion of the electromagnetic field was universally accepted.

It is a little ironic that following this great triumph of the wave theory of light,
evidence began to accumulate that light is, after all, a stream of particles (or, at least,
light has particle properties which somehow coexist with its wave properties). The
first hint of this behavior came from a study of black-body radiation undertaken by
Max Planck, which marks the historical beginning of quantum theory.

Any object, at any finite temperature, emits electromagnetic radiation at all pos-
sible wavelengths. The emission mechanism is simple: atoms are composed of nega-
tively charged electrons and positively charged nuclei, and upon collision with other
atoms these charges oscillate in some way. According to Maxwell’s theory, oscillating
charges emit (and can also absorb) electromagnetic radiation. So it is no mystery
that if we have a metallic box whose sides are kept at some constant temperature
T , the interior of the box will be filled with electromagnetic radiation, which is con-
stantly being emitted and reabsorbed by the atoms which compose the sides of the
box. There was, however, some mystery in the energy distribution of this radiation
as a function of frequency.
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The energy density of radiation in the box, as a function of frequency, is easily
worked out using the equipartition principle of statistical mechanics. The total energy
is

Erad = no. of degrees of freedom×
1

2
kT

= 2× (no. of standing waves) ×
1

2
kT (2.1)

where k is Boltzman’s constant and T is the temperature of the box. An electro-
magnetic field in a box can be thought of as a superposition of an infinite number of
standing waves; the ”degrees of freedom” are the amplitudes of each distinct standing
wave. The factor of 2 comes from the fact that each standing wave can be in one of
two possible polarizations.

As we will see in a later lecture, the number of standing waves that can exist in
a cubical box of volume V , for frequencies in the interval [f, f + ∆f ], is

N(f)∆f = V
4π

c3
f 2∆f (2.2)

Then the energy of radiation in this range of frequencies will be

∆Erad = 2N(f)∆f ×
1

2
kT =

4πkTf 2

c3
V ∆f (2.3)

The energy density per unit frequency E(f, T )is therefore

E(f, T ) ≡
∆Erad

V ∆f
=

4πkTf 2

c3
(2.4)

which is known as the Rayleigh-Jeans law.
The Rayleigh-Jeans law can be tested by making a hole in the box, and measur-

ing the intensity of radiation emitted from the box as a function of frequency; this
intensity is directly proportional to E(f, T ). Radiation from a small hole in a cavity
is known as ”black-body radiation”, because any radiation falling into the hole is not
reflected out the hole, but is ultimately absorbed by the walls. The experimental
result, compared to the prediction, is shown in Fig. [2.1]. Theory disagrees with
experiment at high frequencies. In fact, it is clear that there had to be something
wrong with theory, because the total energy is predicted to be

Erad = 2× (no. of standing waves) ×
1

2
kT

= ∞ (2.5)

simply because the range of frequencies is infinite, so there is an infinite number of
different standing waves that can be set up in the box. The energy of a box is finite
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(otherwise its mass, according to special relativity, would be infinite), so this result
cannot possibly be correct.

Planck’s contribution to this problem was a masterpiece of what is known in
physics as phenomenology. The first step of phenomenology is to stare at the data,
in this case the experimental curve shown in Fig. [2.1], and try to find some simple
analytical expression that fits it. Planck found that

E(f, T ) =
8πhf 3

c3

1

ehf/kT − 1
(2.6)

would do nicely, if one chose the constant h to be

h = 6.626× 10−34 J-s (2.7)

The second step is to try to derive the analytical expression for the data, starting
from some simple physical assumptions about the system. Planck took aim at the
equipartition principle. This principle is only valid if the energy associated with each
degree of freedom can take on any value between 0 and∞, depending on the physical
state. In electromagnetism, the energy of a standing wave of a given wavelength is
proportional to the square of its amplitude, which can certainly be any number in the
range [0,∞]. Planck’s suggestion was that, for some unknown reason, the oscillating
charges in the walls could only emit or absorb energy in multiples of hf , where f is
the frequency of the oscillator. This means that the energy of radiation of frequency
f in the box could only have the possible values

En = nhf (2.8)

where n is an integer. This assumption, combined with the rules of statistical me-
chanics, is enough to deduce the Planck distribution (2.6).

Note the appearance in Planck’s formula of the constant h, known as Planck’s
constant. It is one of the three most fundamental constants in physics, sharing the
honor with c, the speed of light, and G, Newton’s constant. All theoretical predictions
of quantum physics, to the extent that they disagree with classical physics, have
Planck’s constant h appearing somewhere in the expression.

2.2 The Photoelectric Effect

The success of Planck’s idea immediately raises the question: why is it that oscillators
in the walls can only emit and aborb energies in multiples of hf? The reason for this
was supplied by Albert Einstein in 1905, in connection with his explanation of the
photoelectric effect.

It was found by Lenard, in 1900, that when light shines on certain metals, the
metals emit electrons. This phenomenon is known as the photoelectric effect, and
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what is surprising about it is that the energy of the emitted electrons is independent
of the intensity of the incident light.

The experimental setup, used to measure the energy of the most energetic elec-
trons, is shown in Fig. [2.2]. The electrons are emitted at the photocathode, fall
on a collecting plate, and complete a circuit. The resulting current is measured by
an ammeter. A battery can be used to put a potential difference V across the gap
between the cathode and the plate, which tends to repel the electrons back towards
the cathode. For an electron to reach the collecting plate, it must have an energy of
at least eV , where e is the magnitude of the charge of an electron. As the repelling
potential is increased, fewer electrons have sufficient energy to reach the plate, and
the current measured by the ammeter decreases. Let Vs denote the voltage where
the current just vanishes; i.e. Vs is the lowest voltage such that, at any V > Vs, the
current is zero. This means that the maximum energy of the emitted electrons is just

Emax = eVs (2.9)

It is found experimentally that Emax, contrary to expectation, is independent of
the intensity of the light falling on the photocathode. As the intensity increases, for
fixed light frequency, the number of emitted electrons increases, but Emax is constant.
On the other hand, when Emax is plotted as a function of frequency, the result is as
shown in Fig. [2.3]. For frequencies f greater than some minimum f0 = E0/h, the
data for Emax vs. f fits a straight line, whose slope equals Planck’s constant! In other
words

Emax = hf − E0 (2.10)

Einstein’s explanation of this formula is quite simple: Light is composed of parti-
cles called photons. Each photon has an energy

Ephoton = hf (2.11)

Suppose that the minimum energy required to free an electron from the photocathode
is E0, and an electron absorbs energy from the light by absorbing a photon. Then
the maximum possible energy for an emitted electron is the energy of the absorbed
photon, less the minimum energy required to free the electron from the metal, i.e.

Emax = hf − E0 (2.12)

Raising the intensity of the light simply increases the number of photons hitting the
metal per second, which increases the number of emitted electrons per second. But
the energy of each electron is dependent only on the energy of the absorbed photon,
and this energy depends only on frequency.

Einstein’s theory of the photon composition of light immediately explains Planck’s
condition that the energy of electromagnetic radiation of frequency f , in a box, is
restricted to the values

E = nhf (2.13)
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Since there can only be an integer number of photons n at any given frequency, each
of energy hf , the energy of the field at that frequency can only be nhf . Planck’s
restriction on energies is thereby explained in a very natural, appealing way.

Except for one little thing. ”Frequency” is a concept which pertains to waves;
yet Einstein’s suggestion is that light is composed of particles. The notion that
the energy of each ”particle” is proportional to the frequency of the electromagnetic
”wave”, which in turn is composed of such ”particles”, seems like an inconsistent mix
of quite different concepts. However, inconsistent or not, evidence in support of the
existence of photons continued to accumulate, as in the case of the Compton effect.

2.3 The Compton Effect

Consider an electromagnetic wave incident on an electron at rest. According to clas-
sical electromagnetism, the charged electron will begin to oscillate at the frequency of
the incident wave, and will therefore radiate further electromagnetic waves at exactly
the same frequency as the incident wave. Experiments involving X-rays incident on
free electrons show that this is not the case; the X-rays radiated by the electrons are
a frequencies lower than that of the incident X-rays. Compton explained this effect
in terms of the scattering by electrons of individual photons.

According to special relativity, the relation between energy, momentum, and mass
is given by

E =
√

p2c2 + m2c4 (2.14)

For particles at rest (p = 0), this is just Einstein’s celebrated formula E = mc2.
For a particle moving at the speed of light, such as a photon, the rest mass m = 0;
otherwise the momentum would be infinite, since momentum p is related to velocity
v via the relativistic expression

p =
mv

√

1− v2

c2

(2.15)

Then if, for a photon, m = 0 and E = hf , and given the relation for waves that
v = λf , we derive a relation between photon momentum and wavelength

p =
E

c
=

hf

c
=

h

λ
(2.16)

where λ is the wavelength of the electromagnetic wave; in this case X-rays.
Now suppose that a photon of the incident X-ray, moving along the z-axis, strikes

an electron at rest. The photon is scattered at an angle θ relative to the z-axis,
while the electron is scattered at an angle φ, as shown in Fig. [2.4]. If %p1 denotes the
momentum of the incident photon, %p2 denotes the momentum of the scattered photon,
and %pe is the momentum of the scattered electron, then conservation of momentum
tells us that

%pe = %p1 − %p2 (2.17)
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while, from conservation of energy, we have

E1 + mc2 = E2 +
√

p2
ec

2 + m2c4 (2.18)

In this formula E1 is the energy of the incident photon, and mc2 is the energy of an

electron at rest, while E2 is the energy of the scattered photon, and
√

p2
ec2 + m2c4 is

the energy of the scattered electron. Using the fact that E = pc for photons, we have

p2
ec

2 + m2c4 = [p1c− p2c + mc2]2 (2.19)

Square the momentum conservation equation to find p2
e

p2
e = (%p1 − %p2) · (%p1 − %p2)

= p2
1 + p2

2 − 2p1p2 cos θ (2.20)

and insert the expression for p2
e into the energy conservation equation (2.19), to find

1

p2
−

1

p1
=

1

mc
(1− cos θ) (2.21)

Finally, using the relation (2.16), Compton deduced that

λ2 − λ1 =
h

mc
(1− cos θ) (2.22)

which, in fact, agrees with experiment.

2.4 The Heisenberg Microscope

The particle-like behavior of light waves has some troubling implications for the con-
cept of a physical state, as understood by classical physics. The classical state of a
pointlike particle at any moment in time is given by its position and its momentum
(%x, %p), which are supposed to be determined by measurement. Of course, this presup-
poses that one can measure position and momentum simultaneously, to any required
degree of precision. But the relation p = h/λ suggests that such simultaneous mea-
surements might not be possible, at least, not if such measurements involve the use
of light. Roughly, the reason is this: In order to determine particle position to an
accuracy ∆x, it is necessary to use light of wavelength λ < ∆x. But that means
that the photons composing light of such a wavelength carry momentum p > h/∆x.
In order to observe the particle’s position, the particle must scatter light. But this
means that the scattered photon can impart much of its momentum to the observed
particle, changing the momentum of the particle by some undetermined amount of
order ∆p ≈ h/∆x. The product of the two uncertainties is therefore

∆x∆p ≈ ∆x
h

∆x
= h (2.23)
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This implies that the more accurately we measure the particle’s position (∆x very
small), the more uncertainty there is in its momentum (∆p very large), and vice versa.

A concrete, although much oversimplified arrangement for measuring particle po-
sition is known as ”Heisenberg’s microscope”; the setup is shown in Fig. [2.5]. The
idea is to measure the position of a particle moving along the x-axis with a known
momentum px, to an accuracy ∆x. This is done by shining light on the particle. The
particle scatters the incident light, and this scattered light is brought to a focal point
by a lens of diameter D. However, the ability of a lens to determine position is limited
by the resolution of the lens.

Consider two point sources of light a distance L from the lens, which are separated
by an interval ∆x. Resolution of these two points requires resolution of an angular
separation

φ =
∆x

L
(2.24)

On the other hand, according to the Rayleigh criterion, the smallest angular separa-
tions which can be resolved by a lens of diameter D is of the order

φmin ≈
λ

D
(2.25)

Equating these two angles, we find that the smallest possible separation between two
points which can be resolved by the lens is

∆x ≈
λ

D/L
≈

λ

sin θ
(2.26)

If a lens cannot resolve point sources separated by intervals less than ∆x, it is also
unable to resolve the position of a single point source to an accuracy better than ∆x.

Because a lens focuses all light at a certain image point, we cannot determine
at exactly what angle the light was scattered, relative to the y-axis. Scattered light
will reach the lens at any scattering angle between 0 and θ. But that means that the
x-component of the momentum of the scattered photon is uncertain by approximately

∆px ≈ p sin θ =
h

λ
sin θ (2.27)

Multiplying (2.24) by (2.27) gives the uncertainty relation

∆x∆px ≈ h (2.28)

as before.
A physical state is supposed to be determined by measurement, but from the re-

lation (2.28) we see that measurements of position and momentum cannot be made
simultaneously, to arbitrarily high precision, if light is used to observe the particle
position. This is the first hint that something may be wrong with the classical view
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of a physical state. Of course, it could be that the relation (2.28) is simply a practi-
cal limit on measurement; a particle might have a definite position and momentum
despite our inability to measure those quantities simultaneously. But the difficulty
could also be much more profound: if a physical state is simply the mathematical
representation of the outcome of an accurate measurement process (a view which
was advocated in Fig. [1.5] of Lecture 1) and if accurate numbers (x, p) are never
an outcome of any measurement, then perhaps we are mistaken in thinking that a
physical state corresponds to definite values of (x, p). In other words, the origin of
the uncertainty could be due to trying to fit a square peg (the true physical state,
whatever that may be) into a round hole (the set (x, p)). At the very least, if x and
p cannot be measured simultaneously, then there is certainly no experimental proof
that the classical state is the true physical state. This view is obviously a very radical
option; for the moment we only raise it as a possibility, and turn to the mystery of
the stability of the atom.

2.5 The Bohr Atom

Atoms have radii on the order of 10−10 m, and have masses on the order of 10−26 kg.
In 1911, Ernest Rutherford studied the internal structure of atoms by bombarding
gold foil with α-particles from radioactive Cesium. By studying the scattering of
the α-particles by the gold atoms (a topic we will turn to at the end of the course),
Rutherford found that almost all the mass of the atom is concentrated in a positively
charged nucleus, of radius on the order of 10−15 m, i.e. 100,000 times smaller than
the radius of the atom itself. The nucleus is surrounded by much lighter, negatively
charged electrons, which collectively account for less than 1/2000th of the total mass
of the atom. Atomic structure was pictured as analogous to the solar system, with the
nucleus playing the role of the sun, orbited by much lighter electrons (the ”planets”),
bound in their orbits by Coulomb attraction to the nucleus.

However, orbital motion is a form of accellerated motion, and electrons are charged
particles. According to electromagnetic theory, an accellerating charged particle ra-
diates electromagnetic waves. As electrons move in their orbits, they should be con-
stantly radiating energy in the form of electromagnetic waves, and as the electrons
lose energy, they should spiral into the nucleus; a process which would take only a
fraction (about 10−10) of a second. By this reasoning, atoms should be about the size
of nuclei, but in fact they are roughly 100,000 times larger. So what accounts for the
stability of the electron orbits; why don’t electrons spiral into the nucleus?

Another mystery of atomic structure was the existence of spectral lines. If a gas
is placed in a discharge tube, with a sufficiently large voltage difference maintained
at opposite ends of the tube, the gas glows. But, unlike thermal radiation (which
occurs due to random collisions among atoms) the light emitted from the discharge
tube is not spread diffusely over a broad range of frequencies, but is composed instead
of discrete, very definite wavelengths. When such light (in the visible spectrum) is
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passed through a prism or diffraction grating, it is split into a relatively small number
of bright lines, known as ”spectral lines”. It is not hard to understand that an atom,
stimulated by an electric current, might emit light; but why should it only emit that
light at certain definite frequencies? Empirically, spectoscopists had found that each
spectral line of hydrogen could be associated with two integers, m and n, such that
the wavelength λ of the spectral line was given by

1

λ
= RH

(

1

n2
−

1

m2

)

(2.29)

where
RH = 109677.576(12) cm−1 (2.30)

is known as ”Rydberg’s constant” for Hydrogen. This formula works for Hydrogen,
modified forms work for certain other gases, but, at the time, nobody could explain
its success.

In 1913, Niels Bohr discovered that the formula for the spectral lines of Hydrogen
could be derived from one crucial assumption about electron orbits: the angular
momentum of an electron can only come in multiples of Planck’s constant divided by
2π. In particular, for circular orbits,

L = pr = n
h

2π
(2.31)

where p is the electron momentum, and r is the radius of the (assumed) circular orbit.
The expression h/2π comes up so often in quantum physics that it is given its own
symbol

h̄ ≡
h

2π
(2.32)

pronounced ”h-bar”.
Bohr was led to the assumption (2.31) by the following reasoning: A charged

particle rotating in a circular orbit will emit electromagnetic waves which possess
both energy and angular momentum. Suppose ∆E is the energy of radiation emitted
in a certain time interval ∆t. Then according to Maxwell’s electrodynamics, the
electromagnetic radiation also contains a certain amount of angular momentum ∆L,
related to ∆E by the formula

∆E = 2πf∆L (2.33)

where f is the frequency of the radiation. Now, according to Einstein, the smallest
amount of energy emitted is that of one photon, ∆E = hf . Then the smallest amount
of angular momentum that could have been emitted would be

∆L =
h

2π
(2.34)

In the case of the hydrogen atom, this means that the angular momentum of the
electron, upon emitting a photon, must change by exactly this amount. This led



2.5. THE BOHR ATOM 31

Bohr to guess that, if electron angular momentum can only change by units of h̄,
then the total angular momentum of the electron in the Hydrogen atom should be an
integer multiple of that amount. This is the condition (2.31). Lets see how it leads
to a prediction for atomic spectra.

The electron is assumed to be moving around the nucleus in a circular orbit. Now,
for any circular orbit, the centripetal force must equal the attractive force, i.e.

p2

mr
=

e2

r2
(2.35)

However, Bohr’s quantization condition (2.31) implies

pn =
nh̄

r
(2.36)

where the subscript indicates that each momentum is associated with a particular
integer n. Inserting this expression into (2.35) and solving for r, we find

rn =
n2h̄2

me2
(2.37)

The total energy of the electron, in an orbit of radius rn, is therefore

En =
p2

n

2m
−

e2

rn

=
n2h̄2

2mr2
n

−
e2

rn

= −
(

me4

2h̄2

)

1

n2
(2.38)

The total energy is negative because the electron is in a bound state; energy must be
added to bring the electron energy to zero (i.e. a free electron at rest).

Bohr’s idea was that a Hydrogen atom emits a photon when the electron jumps
from an energy state Em, to a lower energy state En. The photon energy is the
difference of these two energies

Ephoton = Em −En

hf =

(

me4

2h̄2

)

(

1

n2
−

1

m2

)

h
c

λ
=

(

me4

2h̄2

)

(

1

n2
−

1

m2

)

1

λ
=

(

me4

2chh̄2

)

( 1

n2
−

1

m2

)

(2.39)
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This final expression not only matches the form of the empirical equation for spectral
lines, but an explicit evaluation of the constant factor shows that it is numerically
equal to the Rydberg constant

RH =
me4

2chh̄2 (2.40)

In addition to getting the Hydrogen spectra right, Bohr’s quantization condition
(2.31) also implies, if it doesn’t exactly explain, the stability of the atom. For if
Bohr’s condition is correct, then there is a minimum radius for the electron orbit,
namely

r1 =
h̄2

me2
= 5.29× 10−11 m (2.41)

which is known as the ”Bohr radius”. The electron can neither spiral nor jump to
a radius smaller than this. Therefore, Bohr’s theory actually predicts the size of the
Hydrogen atom, which agrees with empirical estimates based on, e.g., the van der
Waals equation of state.1

After the success of Bohr’s model of the atom, attempts were made to gener-
alize his work to elliptical orbits, to include relativistic effects, and to apply it to
multi-electron atoms. The outcome of a great deal of effort was this: sometimes
the quantization condition worked, and sometimes it didn’t. Nobody understood the
range of validity of the quantization condition, nor why classical mechanics should be
subject to such a drastic restriction. A good new idea was needed.

2.6 De Broglie Waves

We have already seen that for photons

Ephoton = hf and pphoton =
h

λ
(2.42)

Louis de Broglie’s very great contribution to physics, in the year 1924, was the sug-
gestion that these relations also hold true for electrons, i.e.

Eelectron = hf and pelectron =
h

λ
(2.43)

In the case of light, the conceptual difficulty is with the left-hand side of these equa-
tions: how can light waves have particle properties? In the case of electrons, it is the
right-hand side of the equations which is difficult to understand: what does one mean
by the frequency and wavelength of an electron?

De Broglie had the idea that the wave which is somehow associated with an
electron would have to be a standing wave along the electron orbits of the hydrogen

1Of course, there is a hidden assumption that n > 0, i.e. there are no orbits of radius r = 0.
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atom. Now the condition for a standing wave on, e.g., a circular string, is simply that
an integral number of wavelengths fit along the circumference, i.e.

nλ = 2πr (2.44)

But then, under the assumption that the wavelength of an electron ”wave” is related
to its momentum by p = h/λ, this becomes

n
h

p
= 2πr (2.45)

or
pr = nh̄ (2.46)

which is precisely Bohr’s quantization condition!
Although deriving the Bohr model is a splendid achievement of de Broglie’s as-

sumptions, it is still true that any wave motion should exhibit interference phenomena.
By sending light through a pair of slits, Young (in 1801) found the characteristic 2-slit
interference pattern of wave motion, thereby confirming the wave-like nature of light.
What if one does the same experiment with electrons?
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Chapter 3

The Wave-like Behavior of
Electrons

Truth is stranger than fiction, but it is because fiction is obliged to stick to possibilities;
truth isn’t.
- Mark Twain

Matter in the solid state consists of atoms in a regular (”crystalline”) array of
some kind, and the atomic structure of solids is determined by X-ray diffraction. X-
rays, being a form of wave motion, reflect off the atoms in the array, and interfere to
form a pattern which can be calculated from the principles of physical optics, given a
knowlege of the structure of the array, and the wavelength of the X-rays. The inverse
problem, finding the structure of the array given the X-ray interference pattern, is
the subject of X-ray crystallography.

In 1927 Davisson and Germer, in an effort to check De Broglie’s hypothesis that
electrons are associated with wave motion, directed a beam of electrons at the surface
of crystalline nickel. The electrons were reflected at various angles, and it was found
that the intensity of the reflected electrons, as a function of reflection angle, was
identical to the interference pattern that would be formed if the beam were instead
composed of X-rays. Assuming that the electron beam was indeed some sort of
wave, the wavelength could be determined from the intensity pattern of the reflected
electrons. The wavelength λ was found to equal, within experimental error, the
de Broglie prediction λ = h/p, where p is the electron momentum, determined by
accellerating the incident beam of electrons across a known potential V. Apart from
brilliantly confirming the existence of ”de Broglie waves”, this is an experiment with
extraordinary and profound implications. To discuss these implications, it is useful
to consider an experimental setup less complicated than that used by Davisson and
Germer, in which the electrons are directed at an inpenetrable barrier containing two,
very narrow, slits. First, however, we need an expression for the wavefunction of de
Broglie waves.

35
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3.1 Wave Equation for de Broglie Waves

Where there is a wave, there is a wavefunction. The wavefunction ψ(x, t) of a plane
wave of frequency f and wavelength λ may be given, e.g., by a sin wave

sin(kx− ωt) (3.1)

where k is the wavenumber

k =
2π

λ
=

p

h̄
(3.2)

and ω is the angular frequency

ω = 2πf =
E

h̄
(3.3)

and where we have used the de Broglie relations to express λ and f in terms of
electron momentum p and energy E. Then the electron wavefunction could have the
form of a sin wave

ψ(x, t) = sin(kx− ωt) = sin
(

px− Et

h̄

)

(3.4)

or a cosine

ψ(x, t) = cos(kx− ωt) = cos
(

px− Et

h̄

)

(3.5)

or any linear combination of sin and cosine, including the complex function

ψ(x, t) = ei(px−Et)/h̄ (3.6)

Normally we would rule out a complex wavefunction of the form (3.6), on the grounds
that, e.g., the displacement of a vibrating string, or the strength of electric and
magnetic fields in a radio wave, or the pressure variation in a sound wave, are strictly
real quantitites.

Given the wavefunction, what is the wave equation? Waves on strings, sound
waves, and light waves, all satisfy wave equations of the form

∂2ψ

∂t2
= α

∂2ψ

∂x2
(3.7)

where α = 1/v2 is a constant. However, if we plug the sin-wave form (3.4) into this
expression we find

E2

h̄2 sin
px−Et

h̄
= α

p2

h̄2 sin
px− Et

h̄
(3.8)

which implies
E2 = αp2 (3.9)
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The same result is obtained, of course, for the cosine. This expression for the energy
of a non-relativistic particle in terms of its momentum is simply wrong. For a particle
of mass m, the correct expression is

E =
p2

2m
(3.10)

In order to recover this expression, we need a wave equation with one time derivative
(which brings down one factor of E), and two space derivatives (which bring down a
factor of p2), i.e.

∂ψ

∂t
= α

∂2ψ

∂x2
(3.11)

A sin-function will not satisfy this equation, however, since we end up with a cosine
on the left-hand side, and a sin on the right-hand side; and vice-versa for the cosine
wavefunction. The wavefunction which does work is the complex form (3.6), which,
when inserted into (3.11) gives

−iE

h̄
ei(px−Et)/h̄ = α

−p2

h̄2 ei(px−Et)/h̄ (3.12)

Setting E = p2/2m, we can solve for α to find

∂ψ

∂t
=

ih̄

2m

∂2ψ

∂x2
(3.13)

or, equivalently,

ih̄
∂ψ

∂t
= −

h̄2

2m

∂2ψ

∂x2
(3.14)

This is the wave equation for de Broglie waves moving in one dimension. The gener-
alization to three dimensions is a wavefunction of the form

ψ(%x, t) = ei("k·"x−ωt) = ei("p·"x−Et)/h̄ (3.15)

which satisfies the wave equation

ih̄
∂ψ

∂t
= −

h̄2

2m
∇2ψ (3.16)

It is important to realize that in contrast to waves in classical physics, the amplitude
of de Broglie waves is necessarily complex.

Problem: Consider a wavefunction of the form

ψ(x, t) = A sin
(

px−Et

h̄

)

+ B cos
(

px− Et

h̄

)

(3.17)

where A and B are complex numbers. Assuming that this wavefunction solves the
wave equation (3.11), show that it must be proportional to a complex exponential.
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3.2 The Double-Slit Experiment

We consider a beam of electrons which, after accelleration across a potential difference
V , aquires a momentum in the x-direction

p =
√

2meV (3.18)

The beam is directed at a barrier with two horizontal slits of negligible width, sep-
arated by a distance d. Those electrons which pass through the slits eventually fall
on a screen, which is lined with detectors (geiger counters or photographic plates),
to record the number of electrons falling on the screen, as a function of the vertical
distance y along the screen (see Fig. [3.1]).

Let us compute the amplitude of the de Broglie wave at the screen, without
concerning ourselves, for the moment, with the connection between the de Broglie
wave and the actual motion of the electron. Before encountering the barrier, the de
Broglie wave is a plane wave moving in the x-direction, as shown in Fig. [3.2]. On the
other side of the barrier, the two slits act as coherent sources of cylindrical waves. To
compute the amplitude at a point y on the screen, we simply sum the amplitude of
two waves, one originating at slit A, and the other at slit B. The amplitude at point
y, of the wave passing through slit A, is

ψA(y, t) = N exp[i(kLAy − ωt)] = N exp[i(pLAy − Et)/h̄] (3.19)

where N is a constant, p is the magnitude of the electron momentum, and LAy is
the distance from slit A to point y on the screen. Similarly, the amplitude of the
contribution from slit B is

ψB(y, t) = N exp[i(kLBy − ωt)] = N exp[i(pLBy −Et)/h̄] (3.20)

By the superposition principle of wave motion 1 the amplitude of the de Broglie wave
at point y is

ψ(y, t) = ψA(y, t) + ψB(y, t)

= 2N exp[i(pLav −Et)/h̄] cos
(p∆L

2h̄

)

(3.21)

where

∆L = LBy − LAy

Lav =
1

2
(LAy + LBy) (3.22)

If the distance to the screen is much greater than the separation d of the slits, then
∆L is approximately

∆L = d sin θ (3.23)

1which actually follows from the fact that the wave equation (3.16) is a linear equation.
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where θ is the angle, relative to the x-axis, from the center of the barrier to the point
y on the screen.

Now the intensity of a wave is proportional to the square of its amplitude. The
generalization to complex amplitudes is that the intensity is proportional to the square
of the modulus of the amplitude, i.e.

I ∝ ψ∗ψ (3.24)

The intensity of the de Broglie wave arriving at point y on the screen is therefore

I(y) ∝ cos2

(

pd sin θ

2h̄

)

(3.25)

Finally we can make contact with particle motion, because ”intensity” is a concept
which applies not only to waves, but also to a beam of particles. Intensity is the energy
passing through a surface, per unit area, per unit time. Let

N(y) = no. of electrons per unit area per unit time (3.26)

which reach the screen in the neighborhood of point y. Since each electron has an
energy E = p2/2m, it follows that

I(y) = N(y)
p2

2m
(3.27)

Comparing this expression to (3.24) and (3.25), we have a prediction from de Broglie’s
theory that

N(y) ∝ ψ∗ψ

∝ cos2

(

pd sin θ

2h̄

)

(3.28)

which can be compared to experiment, simply by counting the number of electrons ar-
riving per second at different regions on the screen. The result of the Davisson-Germer
experiment, and other experiments closely analogous to the double-slit experiment, is
that de Broglie’s prediction is confirmed. Just as photons have particle-like properties,
electrons undoubtably have wave-like properties.

Suppose that Ntotal electrons get past the barrier. Lets ask the question: what
is the probability that any one of these electrons will pass through a small area ∆A
of the screen, centered at point y, in one second? Assuming that the particles move
independently, this probability is

prob. to cross ∆A/sec =
N(y)∆A

Ntotal
(3.29)
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But in order for an electron to pass through a small region of the screen sometime
in the interval t = t0 and t = t0 + ∆t, an electron moving with velocity v must have
been located in a small volume

∆V = ∆A× v∆t (3.30)

in front of the surface ∆A (see Fig. [3.3]). Therefore, the probability that a particle
passes the area element ∆A in time ∆t, is equal to the probability that the particle,
at a given time t0, is located in a small volume in front of the screen size ∆V , i.e.

prob. to be in ∆V at time t = prob. to cross ∆A/sec×∆t

=
N(y)∆A

Ntotal
∆t

=
1

vNtotal
N(y)∆V

∝ ψ∗(y, t)ψ(y, t)∆V (3.31)

We see that the probability for an electron to be in a certain volume ∆V is propor-
tional to the square of the modulus of the de Broglie wave, times the volume element.
Now if ψ is a solution of the de Broglie wave equation (3.16), so is ψ ′ = const. × ψ;
this follows from the linearity of the wave equation. Therefore we can always choose
a solution of the wave equation such that the proportionality sign in eq. (3.31) is
replaced by an equals sign. With this choice, we arrive at the interpretation of the
de Broglie wavefunction proposed by Max Born:
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The Born Interpretation

Denote the wavefunction associated with an electron by ψ(x, y, z, t).
Then the probability P∆V at time t, of finding the elecron inside a small
volume ∆V centered at point (x, y, z) is

probability P∆V (x, y, z) = ψ∗(x, y, z, t)ψ(x, y, z, t)∆V (3.32)

If an electron exists, then the total probability that it is somewhere in the Universe
is 100%. Therefore, a corrollary of the Born interpretation is the Normalization
Condition ∫

dxdydz ψ∗(x, y, z, t)ψ(x, y, z, t) = 1 (3.33)

which must be satisfied by any wavefunction associated with an electron.

3.3 Do Electrons Travel Along Trajectories?

The double-slit experiment is arranged in such a way that equal numbers of electrons,
per second, pass through slits A and B. This can be checked by closing slit B, counting
the total number of electrons per second reaching the screen, and then closing slit A,
and counting again. If the counts/sec are equal, then, when both slits are open, the
chance that an electron reaching the screen passed through slit A is 50%, with an
equal 50% chance that it passed through slit B.

We can determine experimentally the probability PA(y) that an electron, having
passed through slit A, will land on a detector placed at point y on the screen. Close
slit B, leaving A open and count the number of particles ny that land on the detector,
and the total number nT landing anywhere on the screen. Then

PA(y) =
ny

nT
(3.34)

In a similar way, by opening slit B and closing slit A, we can determine the probability
PB(y). Then, with both slits open, the probability that an electron that passed
through the barrier will land on the detector at y is

P (y) = (prob. of coming from slit A)× PA(y)

+ (prob. of coming from slit B)× PB(y)

=
1

2
[PA(y) + PB(y)] (3.35)

Clearly, if either PA(y), or PB(y) (or both) are non-zero, then the probability P (y) is
also non-zero.



42 CHAPTER 3. THE WAVE-LIKE BEHAVIOR OF ELECTRONS

Now the probabilities PA(y) and PB(y) are nearly constant for detectors placed
in a sizable region of the screen (see Fig. [3.4]), which is consistent with the fact
that the moduli of the de Broglie waves ψA and ψB are (nearly) constant. Then P (y)
should be nearly constant as well.

In fact, P (y) is not constant at all. Instead, it goes like

P (y) ∝ cos2

(

pd sin θ

2h̄

)

∝ ψ∗(y, t)ψ(y, t) (3.36)

In particular there are certain points, satisfying

pd sin θ = 2h̄(n +
1

2
)π (3.37)

where P (y) = 0 even though PA(y) and PB(y) are non-zero! In other words, if one
closes slit B, leaving A open, there is a finite chance that the electron will reach such
a point. If one closes A and leaves B open, there is a finite chance that the electron
will reach that point. But if both slits A and B are open, the electron will never reach
such a point, if the angle from the slits to the point satisfies (3.37). Clearly then, in
contrast to (3.35),

P (y) += (prob. of coming from slit A)× PA(y)

+ (prob. of coming from slit B)× PB(y) (3.38)

When a conclusion (eq. (3.35) in this case) turns out to be false, and the reasoning
which led to the conclusion is correct, then there must be something wrong with
the premises. The premises in this case are that the electrons in the beam travel
independently of one another, and that each electron in the beam passed through
either slit A or slit B. More generally, we have assumed that the electron, as a
”pointlike particle”, follows a trajectory which takes it through one of the two slits
on its way to the screen.

It is easy to check whether the interference effect is due to some collective inter-
action between electrons in the beam. We can use a beam of such low intensity that
the electrons go through the barrier one by one. It takes a little longer to accumulate
the data needed to compute PA(y), PB(y), and P (y), but the results are ultimately
the same. So this is not the explanation.

Then perhaps we should stop thinking of the electron as a point-like object, and
start thinking of it as literally a de Broglie wave? A wave, after all, can pass through
both slits; that is the origin of interference. The problem with this idea is that de
Broglie waves expand. At slits A and B, the wave is localized just in the narrow
region of the open slits, but as the wave propagates towards the screen it expands,
typically spanning (in a real electron diffraction experiment) a region on the order
of 10 cm across. Then one would detect ”parts” of an electron. Assuming a de
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Broglie wave which had expanded to several centimeters across was intense enough
to trigger even a single geiger counter, then if a set of geiger counters were arranged
in a close array, they would all be triggered simultaneously. Likewise, a wave of such
dimensions should leave a diffuse glow on a photographic plate, or a thick cylindrical
track through a cloud chamber. None of this is ever observed. No matter how big
the de Broglie wave of a single electron becomes (as big as a baseball, as big as a
house...), only a single ”click” of a geiger counter is heard, only a sharp ”dot” on a
photographic plate is recorded. An electron is not, literally, a wave. As far as can be
determined from measurements of electron position, electrons are discrete, point-like
objects.

If electrons are pointlike objects, then one could imagine (with the help of a pow-
erful microscope) actually observing the barrier as the electrons reach it, to determine
if they go through slit A, or slit B, or somehow through both. If one would perform
such an experiment,2 the result is that each electron is indeed observed to pass either
through slit A or slit B (never both), but then the interference pattern is wiped out!
Instead, one finds the uniform distribution of eq. (3.35). Thus if an electron is forced
(essentially by observation) to go through one or the other of the two slits, the inter-
ference effect is lost. Interference is regained only if the electron is not constrained to
a trajectory which has passed, with certainty, through one or the other slit.

We are left with the uncomfortable conclusion that electrons are pointlike objects
which do not follow definite trajectories through space. This sounds like a paradox:
how then can electrons get from one point to another? It is actually not a paradox,
but it does require a considerable readjustment of our concept of the physical state
of electrons (not to mention atoms, molecules, and everything else that makes up the
physical Universe). This will be the subject of the next lecture.

2This is usually presented as a ”thought” experiment in most textbooks, but recently a real
experiment of this sort has been carried out, with the results described above.
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Chapter 4

The Quantum State

We take for granted the idea that every object, at every moment in time, is centered at
a definite point in three-dimensional space, and that over a span of time, the location
of the object traces a trajectory through that space. We are sure of this because of
our long experience, beginning at birth, with the behavior of macroscopic objects, i.e.
objects on the scale of a micron or larger, objects which we can see, objects which we
have the illusion of observing continuously.1

It is now time to abandon the view that objects move in trajectories in three-
dimensional space, at least in the case of microscopic objects such as electrons, pho-
tons, and atoms. This is for two reasons. First, if a particle moves in a trajectory, then
it must have a definite position and momentum at every moment in time. However,
as we have discussed in the case of the Heisenberg microscope, there is no exper-
iment which can verify this. Second, and more importantly, the mere assumption
that electrons and photons follow definite trajectories %x(t) leads to conclusions which
disagree with experiment, such as the Davisson-Germer experiment discussed in the
last lecture, and many other examples to follow later in the course.

How, then, does an electron get from one point to another, without tracing a path
through space? The answer is that the electron does follow a path; however, it is not
a path in the ordinary three-dimensional space we are used to.

4.1 A New Representation of Motion

Consider a particle moving back and forth, according to the laws of classical physics, in
a thin closed pipe of length L. A plot of its trajectory might look like Fig. [4.1]. This
is the standard way of representing one-dimensional motion in classical mechanics.
To every instant of time t there is a corresponding number x(t), which in this case is
the distance from one end of the pipe. Is there any other conceivable representation
of motion in one dimension?

1No observation is truly continuous, because of the discrete, photon composition of light.

45



46 CHAPTER 4. THE QUANTUM STATE

Let us imagine subdividing the length of the pipe into N equal intervals of length
ε = L/N , as shown in Fig. [4.2]. If the particle is in the first interval, we choose
to represent its state not by a number, such as x1, but rather by an N-dimensional
vector
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(4.1)

If the particle is in the second interval, this will be represented by

%e 2 =
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and so on, down to the N-th interval which is denoted by

%e N =
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(4.3)

The position of the particle is therefore approximated, at any given time, by one of
the %e n unit vectors, and as the particle moves from one interval to another, the unit
vector ”jumps” discontinuously from some %e k to either %e k+1 or %e k−1, depending on
which way the particle is moving. If the number of intervals N is large enough, the
particle position can be represented, as a function of time, to arbitrary precision.

A reasonable objection to this representation of motion is that, in introducing a set
of N orthogonal vectors {%e n}, we have also introduced an N-dimensional space which
contains linear combinations of those vectors. What, for example, is the physical
meaning of a vector such as

%v = a%e 1 + b%e 2
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(4.4)

which seems to suggest that the particle could be in intervals 1 and 2 at the same
time? In a classical mechanics, a particle is definitely in a single interval at any
given time, so only the unit vectors %e n are physically meaningful. The very natural
mathematical operation of addition of vectors would therefore have to be regarded,
in this representation of classical motion, as physically meaningless.

On the other hand, we have already seen that the de Broglie wavefunction ψ(x, t)
gives probabilistic information about the location of the electron. Therefore, let us give
the following ”Born Interpretation” to the N-dimensional vector, whose components
ψn are allowed to be complex numbers:

%ψ = ψ1%e
1 + ψ2%e

2 + ... + ψN%e N
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(4.5)

The probability Pn that an electron, in the state represented by the vector %ψ, will
be found upon measurement to be in the n-th interval of the tube, is equal to squared
modulus

Pn = ψ∗
nψn (4.6)

Digression

We must pause for a moment to discuss the inner product of vectors with complex
components. The norm of a vector is defined as square root of the inner product of
a vector with itself

|v| =
√

%v · %v (4.7)

where the inner product is represented as the product of a row vector times a column
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vector. If the components of %v are real numbers, this is given by

%v · %v = [v1, v2, v3..., vN ]
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N (4.8)

On the other hand, if the components of %v are complex, this can lead to a negative
inner product, and an imaginary norm. In vector algebra the norm of a vector is
always real, so the definition of a row vector is modified: its components are the
complex conjugate of the corresponding column vector, i.e

%v · %v = [v∗
1, v

∗
2, v

∗
3..., v

∗
N ]
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In vector algebra a vector comes in two forms, rows and columns. However, the
notation %v does not distinguish between row and column vectors, and sometimes this
distinction is useful. We therefore introduce the ”bra-ket” notation in which a ”ket”
|v > corresponds to a column vector

|v >⇐⇒



























v1

v2

v3

.

.

.
vN



























(4.10)

and a ”bra” < v| to the corresponding row vector

< v| ⇐⇒ [v∗
1, v

∗
2, v

∗
3, ...., v

∗
N ] (4.11)

In this notation, the inner product is

< v|v >= %v · %v = v∗
1v1 + v∗

2v2 + ... + v∗
NvN (4.12)
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and this is the end of the digression.

Returning to the ”Born Interpretation” of the vector %ψ (or ”|ψ >”), we see that
the total probability for the electron to be found somewhere in the tube is

Ptotal = P1 + P2 + ... + PN

= ψ∗
1ψ1 + ψ∗

2ψ2 + ... + ψ∗
NψN

= %ψ · %ψ

= < ψ|ψ > (4.13)

From the fact that the probability to find the particle somewhere in the tube is 100%,
we can conclude that |ψ > is a unit vector, i.e.

< ψ|ψ >= 1 (4.14)

We can now view electron motion in the following way: The physical state of the
electron is represented by unit vectors |ψ > in a complex N-dimensional vector space.
Since the tip of a unit vector falls on the surface of sphere of radius R = 1, in the
N-dimensional space, the motion of the electron corresponds to a trajectory along the
surface of a unit sphere in N-dimensional space. In this way, an electron can travel
smoothly and continuously, with no ”jumps”, from e.g. the interval 1, represented
by vector %e 1 to the interval 2, represented by %e 2, as shown in Fig. [4.3]. Of course,
in going from interval 1 to interval 2, the electron passes through intermediate states
such as (4.4), where the electron cannot be viewed as being either in interval 1 or in
interval 2. But the electron is always located at a definite point on the surface of the
unit-sphere, and it is this surface, rather than the line of length L along the tube,
which should be regarded as the arena of electron motion.

To complete this new representation of motion we need to take the limit ε → 0,
which sends the number of intervals N → ∞. Then the physical states |ψ > are
vectors of unit length in an infinite dimensional vector space known as Hilbert
Space.

4.2 Hilbert Space

Any function f(x) with the property of square integrability
∫ ∞

−∞
dx f ∗(x)f(x) <∞ (4.15)

can be regarded as a vector, and a de Broglie wavefunction ψ(x, t) can, in particular,
be regarded as a vector of unit length.

Recall that a vector %v is represented by a set of numbers (the components of the
vector) labeled by an index. There is one number, denoted, vi for each integer value
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of the index i in some range i = 1, 2, ..., N . But a function f is also a set of numbers
labeled by an index. There is one number, denoted f(x), for each real-number value of
the index x in the range −∞ < x <∞. The argument of a function, x, is completely
analogous to the index i of a vector; the value of the function f(x) corresponds to
the component vi of the vector.

The notation of vector algebra has the advantage that when we want to refer to
the vector as whole, and not any particular component of the vector, we can write
%v, (or |v > for the column vector in our new ”bra-ket” notation). On the other
hand, when we denote a function by f(x), it is sometimes unclear whether we are
referring to the function as a whole, or just the particular value at the point x. Let
us adopt the notation that |f > refers to the entire function, and f(x) just the value
(”component”) at the argument (”index”) x. Then its easy to see that functions
behave in every way like vectors with a continuous index. For example, one can add
vectors

%v = a%u + b%w (4.16)

which means, in terms of components

vi = aui + bwi (4.17)

and one can also add functions

|f >= a|g > +b|h > (4.18)

which means, in terms of ”components”

f(x) = ag(x) + bh(x) (4.19)

Vectors have inner products with each other

< u|v >= %u · %v =
N
∑

i=1

u∗
i vi (4.20)

as well as a norm with themselves

|v|2 =< v|v >=
N
∑

i=1

v∗
i vi (4.21)

and so do functions:
< g|f >=

∫ ∞

−∞
dx g∗(x)f(x) (4.22)

and
|f |2 =< f |f >=

∫ ∞

−∞
dx f ∗(x)f(x) (4.23)

If {vi}, i = 1, 2, ..., N are the components of the column (”ket”) vector |v >, then
{v∗

i } are the components of the corresponding row (”bra”) vector < v|. Likewise,
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f(x), −∞ < x < ∞ represent the ”components” of |f >, and f ∗(x) represents the
components of the corresponding bra < f |.

There is a linear operation called matrix multiplication which turns a vector into
another vector

%v′ = M%v (4.24)

or
|v′ >= M |v > (4.25)

in our new notation. In terms of components, matrix multiplication is defined as

v′
i =

N
∑

j=1

Mijvj (4.26)

and it has the linearity property that

M(a|u > +b|v >) = aM |u > +bM |v > (4.27)

where a and b are constants. There is a similar linear operation which turns functions
into other functions

|f ′ >= O|f > (4.28)

having the linearity property

O(a|f > +b|g >) = aO|f > +bO|g > (4.29)

In terms of ”components,” this operation is written

f ′(x) =
∫ ∞

−∞
dy O(x, y)f(y) (4.30)

where O(x, y) is some function of two variables x and y, in complete analogy to the
rule for matrix multiplication (4.26). Finally, the expression in linear algebra

< u|M |v > = %u · M%v

=
N
∑

i=1

N
∑

j=1

u∗
i Mijvj (4.31)

corresponds, in the case of functions, to the expression

< g|O|f >=
∫ ∞

−∞
dx

∫ ∞

−∞
dy g∗(x)O(x, y)f(y) (4.32)

A function, therefore, is just a vector with a continuous index. Since there are
an infinite number of ”components” (one component f(x) for each value of x), the
vector is a member of an infinite-dimensional space known as ”Hilbert Space.” Stated
another way: Hilbert Space is the infinite-dimensional vector space of all
square-integrable functions.
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4.3 The Dirac Delta Function

If the linear operation

f ′(x) =
∫ ∞

−∞
dy O(x, y)f(y) (4.33)

is analogous to matrix multiplication in ordinary linear algebra, then what choice of
O(x, y) corresponds, in particular, to multiplication by the unit matrix?

In linear algebra, multiplication of any vector by the unit matrix I is an operation
that takes the vector into itself:

|v >= I|v > (4.34)

In component form, the unit matrix is known as the Kronecker Delta Iij = δij ,
which obviously must have the property that

vi =
∑

i

δijvj (4.35)

The Kronecker delta satisfying this equation, for any vector |v > whatever, is given
by the diagonal matrix

δij =

{

1 if i = j
0 if i += j

(4.36)

The corresponding operation for functions

|f >= I|f > (4.37)

is written in component form

f(x) =
∫ ∞

−∞
dy δ(x− y)f(y) (4.38)

and the function δ(x− y) which fulfills this equation, for any function f(x) whatever,
is known as the Dirac Delta function. It is useful not just in quantum mechanics,
but throughout mathematical physics.

The Dirac delta function δ(x−y) is defined as the limit of a sequence of functions
δL(x− y), known as a delta sequence, which have the property that

f(x) = lim
L→∞

∫ ∞

−∞
dy δL(x− y)f(y) (4.39)

for any function f(x). Two such sequences which can be shown to have this property
are

δL(x− y) =

√

L

π
e−L(x−y)2 (4.40)

and

δL(x− y) =
∫ L

−L

dk

2π
eik(x−y) (4.41)
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It is reasonable to ask why one should go to the trouble of introducing sequences.
Why not take the L→∞ limit right away, in eq. (4.40), and define

δ(x− y) =

{

∞ if x = y
0 if x += y

(4.42)

in analogy to the Kronecker delta δij? The answer is that the Dirac delta function is
not, strictly speaking, a function, any more than ∞ is a number, and the integral of
the right hand side of (4.42) is ill-defined. If one treats ∞ as an ordinary number, it
is easy to produce contradictions, e.g.

1×∞ = 2×∞ =⇒ 1 = 2 (4.43)

Instead, one must think of ∞ as the limit of a sequence of numbers, but which is not
itself a number. There are many different sequences which can be used, e.g.

1, 2, 3, 4, 5, ....

or 2, 4, 6, 8, 10, ....

or 1, 4, 9, 16, 25, ... (4.44)

all of which have ∞ as their limit. Similarly, there are many different sequences of
functions tending to the same limit, which is not a function in the ordinary sense.
Such limits are known as ”generalized functions,” of which the Dirac delta function
is one very important example.

Let us check that (4.40) and (4.41) satisfy the defining property (4.39) for delta
sequences. For the sequence of gaussians (4.40)

lim
L→∞

∫ ∞

−∞
dy

√

L

π
e−L(y−x)2f(y)

= lim
L→∞

∫ ∞

−∞
dz

√

L

π
e−Lz2

f(x + z)

= lim
L→∞

∫ ∞

−∞
dz

√

L

π
e−Lz2

[

f(x) +
df

dx
z +

1

2

d2f

dx2
z2 + ...

]

= lim
L→∞

√

L

π

[

√

π

L
f(x) + 0 +

1

4L

√

π

L

d2f

dx2
+ ...

]

= f(x) (4.45)

where we have changed variables z = y − x, expanded f(x + z) in a Taylor series
around the point x, and used the standard formulas of gaussian integration:

∫ ∞

−∞
dz e−cz2

=
√

π

c
∫ ∞

−∞
dz ze−cz2

= 0
∫ ∞

−∞
dz z2e−cz2

=
1

2c

√

π

c
(4.46)
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The result (4.45) establishes that the sequence of gaussians (4.40) is a delta sequence:

δ(x− y) = lim
L→∞

√

L

π
e−(x−y)2/L (4.47)

In a similar way, we can prove that (4.41) is a delta sequence

lim
L→∞

∫ ∞

−∞
dy f(y)

∫ L

−L

dk

2π
eik(x−y)

= lim
L→∞

∫ ∞

−∞
dy f(y)

sin[L(x− y)]

π(x− y)
(4.48)

Change variables to z = L(x− y), and this becomes

lim
L→∞

∫ ∞

−∞
dy f(y)

∫ L

−L

dk

2π
eik(x−y)

= lim
L→∞

∫ ∞

−∞
dy f(x−

z

L
)
sin(z)

πz

= f(x)
∫ ∞

−∞
dz

sin(z)

πz
= f(x) (4.49)

which establishes that

δ(x− y) =
∫ ∞

−∞

dk

2π
eik(x−y) (4.50)

A number of useful identities for the Dirac delta function are listed below:

f(x)δ(x− a) = f(a)δ(x− a) (4.51)

f(x)δ[c(x− a)] = f(x)
1

|c|
δ(x− a) (4.52)

f(x)
d

dx
δ(x− a) = −

df

dx
δ(x− a) (4.53)

f(x)δ[g(x)] = f(x)

∣

∣

∣

∣

∣

dg

dx

∣

∣

∣

∣

∣

−1

δ(x− x0) (4.54)

where, in the last line, g(x) is a function with a zero at g(x0) = 0
Since δ(x − y) is not a function, these identities should not be interpreted as

meaning: for a given value of x, the number on the right-hand side equals the number
on the left-hand side. Instead, they mean that

∫ ∞

−∞
dx ”left-hand side” =

∫ ∞

−∞
dx ”right-hand side” (4.55)
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As an example, we prove the third of these identities using the formula for inte-
gration by parts:

∫ ∞

−∞
dx f(x)

d

dx
δ(x− y) = lim

L→∞

∫ ∞

−∞
dx f(x)

d

dx
δL(x− y)

= lim
L→∞

[

f(x)δL(x− y)|x=∞
x=−∞ −

∫ ∞

−∞
dx

df

dx
δL(x− y)

]

= lim
L→∞

∫ ∞

−∞
dx

[

−
df

dx
δL(x− y)

]

=
∫ ∞

−∞
dx

[

−
df

dx

]

δ(x− y) (4.56)

where the boundary terms are dropped because δL(±∞) = 0.

Problem - Prove the other three delta-function identities above, in the sense of eq.
(4.55)

4.4 Expectation, Uncertainty, and the Quantum
State

In classical mechanics, the physical state of a system is specified by a set of generalized
coordinates and momentum {qi, pi}, which is a point in the phase space of the system.
In the course of time, the physical state traces a trajectory through the phase space. In
the case of a single particle moving in three dimensions, the physical state is denoted
{%x, %p}, and the phase space is 6-dimensional. The projection of the trajectory in the
6-dimensional phase space onto the three dimensional subspace spanned by the x, y,
and z axes, or in other words, the path %x(t), is the trajectory which we can actually
see the particle follow.

In quantum mechanics, the physical state of a pointlike particle, moving in one
dimension, is specified at each moment of time by a wavefunction ψ(x, t). At any
given time t, this wavefunction is a function only of x, and can be regarded as a
vector |ψ > in Hilbert space. Because of the normalization condition imposed by the
Born Interpretation

< ψ|ψ >=
∫

dxdydz ψ∗(x, y, z, t)ψ(x, y, z, t) = 1 (4.57)

|ψ > is necessarily a vector of unit length. In the course of time, |ψ > follows a
path through Hilbert space. In rough analogy to the motion of unit vectors in finite
dimensional spaces, one could imagine that the tip of the unit vector |ψ > traces
a path on the surface of a unit sphere, although in this case the space is infinite-
dimensional.
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A physical state has the property that, given the state at some time t, we can
determine the state at a slightly later time t + ε. In classical mechanics, the rule is

qa(t + ε) = qa(t) + ε

(

∂H

∂pa

)

t

pa(t + ε) = pa(t)− ε

(

∂H

∂qa

)

t

(4.58)

The physical state |ψ > in quantum mechanics also has this property. Given the
wavefunction ψ(x, t) at any particular time t, the wavefunction at a slightly later
time t+ ε is determined, for a particle moving freely in one dimension, from the wave
equation for de Broglie waves

ψ(x, t + ε) = ψ(x, t) + iε
h̄

2m

∂2

∂x2
ψ(x, t) (4.59)

The Born Interpretation tells us how to use the wavefunction ψ(x, t) to make cer-
tain experimental predictions. Unlike the predictions of classical mechanics, however,
which specify the outcome of any measurement on a single system with certainty,
given the physical state {qi, pi} of the system, the predictions of quantum mechanics
are statistical in nature. The Born Interpretation tells us that the probability to find
the particle in a small interval around the point x, of length ∆L, is

P∆L(x) = ψ∗(x, t)ψ(x, t)∆L (4.60)

The meaning of this prediction, in practice, is as follows: Suppose we have a very
large number of particles Np which are in identical physical states described by a
certain wavefunction ψ(x, t). If we measure the position of all of these particles
simultaneously, the number nx which will be observed to be in the interval ∆L around
point x is predicted, according to the Born Interpretation, to be

nx

Np
= P∆L(x) + O(N−1/2

p )

= ψ∗(x, t)ψ(x, t)∆L + O(N−1/2
p ) (4.61)

The term of order N−1/2
p is statistical error, which can be made arbitrarily small by

choosing a sufficiently large number of particles Np.
To understand the origin of the statistical error, consider flipping a coin N times,

where N is a very large, even number. Only very rarely does the coin come up heads
exactly N/2 times. Usually the number of heads deviates from N/2 by a amount on
the order of ∆N ∼

√
N . The ratio of the deviation ∆N to the total number of coin

flips N varies each time one does the full set of N coin flips, but it is generally of
order

∆N

N
∼

1√
N

(4.62)
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The deviation of order N−1/2
p in eq. (4.61) has the same origin, and is present in any

set of measurements which involve random processes. From now on we will suppose
that Np is so large that this deviation is ignorable.

Instead of simultanously observing a swarm of Np particles, each of which are in
the same state, one could instead perform an experiment in which a single particle
is placed in a particular state ψ(x, t), its position is observed, and then the identical
experiment is repeated Np times. If nx is the number of experiments in which the
particle lands in the interval ∆L around point x, then the prediction according to the
Born Interpretation is again eq. (4.61). In fact, this is what is actually happening in
the electron 2-slit experiment. Electrons can be made to pass one by one through the
slits, and the wavefunction of each electron at the location of the screen is identical.
The statistical prediction for the number of electrons reaching a particular small
region of the screen is then eq. (3.28) of the last lecture.

Let us imagine making a series of experiments on the motion of a particle moving
in one dimension, in which the particle is somehow initialized to be in a certain
quantum state |ψ >, and then the position of the particle is measured. There are
two particularly useful numbers which can be predicted by quantum theory, and
measured by the series of experiments. One number is the average value x of the
particle position. Let xi be the position of the particle in the i-th experiment, and
NE be the total number of experiments. Then the average value of the particle
position is defined as

x ≡
1

NE

NE
∑

i=1

xi (4.63)

We can also define the average value of x2 as

x2 ≡
1

NE

NE
∑

i=1

(xi)
2 (4.64)

The other useful number is the average square deviation δx2 of the observed positions
xi from their average value x. The average square deviation is defined as

δx2 ≡
1

NE

NE
∑

i=1

(xi − x)2 (4.65)

or, expanding the quantity in parentheses

δx2 =
1

NE

NE
∑

i=1

[x2
i − 2xix + x2]

= x2 − 2x x + x2

= x2 − x2 (4.66)

The ”root-mean-square” deviation δx is just the square-root of δx2. These two num-
bers, x and δx, can be reported as result of the series of measurements.
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The Born Interpretation enables us to predict the values of these two numbers,
given the quantum state |ψ >. These predicted values come from probability theory.
Suppose we make a series of measurements on the quantity Q, which can only take
on the possible values Q1, Q2, Q3..., QnQ

; and suppose the corresponding probabilities
of finding these values, in any given measurement, is P1, P2, P3...., PnQ

. Then the
expected average value, or ”Expectation Value” of Q is defined as

< Q >=
nQ
∑

n=1

QnPn (4.67)

where nQ is the number (which could be infinite) of possible values of the observable
Q. This theoretical expectation value should equal (up to statistical error) the average
value

Q =
1

NM

nQ
∑

n=1

NnQn (4.68)

where Nn is the number of measurements that found the value Q = Qn, and NM is
the total number of measurements

NM =
nQ
∑

n=1

Nn (4.69)

(One should be careful not to confuse the index i in eq. (4.63), which labels the
experiment, with the index n in eq. (4.67), which labels the possible values the
observable Q.) The reason that < Q > and Q should equal one another is that the
fraction of times that the value Q = Qn is observed should equal the probability of
observing Qn in any given measurement, i.e.

Pn =
Nn

NM
(4.70)

Inserting this expression for the probability into (4.67), one finds < Q >= Q.
In the case of a particle moving in one dimension, one of the possible observables

is the position x. Since x can take any value in a continous range, the sum in (4.67) is
replaced by an integral, and the probability of observing a particle in an infinitesmal
interval dx around the point x is

Pdx(x) = ψ∗(x, t)ψ(x, t)dx (4.71)

With these modifications, the formula for expectation values predicts

< x > =
∫ ∞

−∞
xPdx(x)

=
∫ ∞

−∞
xψ∗(x, t)ψ(x, t)dx (4.72)
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Likewise, the expectation value for the observable x2 is

< x2 >=
∫ ∞

−∞
x2ψ∗(x, t)ψ(x, t)dx (4.73)

and the expectation value of the square deviation is given by

∆x2 = < (x− < x >)2 >

= < (x2 − 2x < x > + < x >2) >

=
∫ ∞

−∞
dx [x2 − 2x < x > + < x >2]ψ∗(x, t)ψ(x, t) (4.74)

Using the fact that < x > is a constant which can be taken outside the integral, and
the normalization condition (3.33), we find

∆x2 = < x2 > −2 < x >< x > + < x >2

= < x2 > − < x >2 (4.75)

as in eq. (4.66). The square root of this quantity, ∆x, is referred to as the Uncer-
tainty in the position of the particle in the quantum state |ψ >.

We see that from the Born interpretation we can extract two numbers from the
wavefunction, the expectation value < x > and the Uncertainty ∆x, which can be
compared to the experimental values of average position x, and root-mean-square
deviation δx respectively. Experimentally, however, there are other observables of a
particle which can be measured, such as its momentum and its energy, and values
of p, δp, E, δE can be determined from experiment. The Born Interpretation does
not tell us how to compute these quantities; this will require a further investigation
of the dynamics of the quantum state, which is the topic of the next lecture.
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Chapter 5

Dynamics of the Quantum State

History is just one damn thing after another.
- Anonymous

The classical motion of a particle is represented by a trajectory in 3-dimensional
space, while the quantum-mechanical motion of a particle, according to the last chap-
ter, is supposed to be described by a curve on the unit sphere of an infinite dimen-
sional space. How can classical physics be in any sense an approximation of quantum
physics, if the arena of motion is so very different in the two theories?

The answer is this: it is not the physical state of the particle, but rather our obser-
vations of its position, that should, in some limit, approximate a classical trajectory.
And although the quantum state of a particle doesn’t correspond, in general, to a
definite point in 3-space, it is still true that the expectation value of particle position
at time t

< x >≡
∫

dx xψ∗(x, t)ψ(x, t) (5.1)

traces a trajectory through ordinary space. Given an equation of motion for the
quantum state ψ(x, t), it should be possible to derive laws of motion for < x >, and
compare them with the classical laws of motion for x(t). The simplest possibility is
that these two sets of laws look the same. This is known as ”Ehrenfest’s Principle”.

5.1 Ehrenfest’s Principle

Let {qa, pa} be the generalized coordinates and momenta of a mechanical system.
Ehrenfest’s Principle is the statement that Hamilton’s equations of motion are valid
as expectation value equations in quantum mechanics:

61
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Ehrenfest’s Principle

d

dt
< qa > = <

∂H

∂pa
>

d

dt
< pa > = − <

∂H

∂qa
> (5.2)

In particular, for a particle of mass m moving in a potential V (x) in one dimension,

d

dt
< x > = <

p

m
>

d

dt
< p > = < −

∂V

∂x
> (5.3)

Let us check whether these equations are satisfied by the equation for De Broglie
waves in one dimension

ih̄
∂ψ

∂t
= −

h̄2

2m

∂2ψ

∂x2
(5.4)

From the first equation of (5.3), we obtain an expression for the expectation value of
momentum

< p > = m∂t < x >

= m∂t

∫

dx ψ∗(x, t)xψ(x, t)

= m
∫

dx

{

∂ψ

∂t

∗
xψ + ψ∗x

∂ψ

∂t

}

(5.5)

Then, applying the equation (5.4) for de Broglie waves

< p > = m

(

ih̄

2m

)

∫

dx{−(
∂2

∂x2
ψ∗)xψ + ψ∗x

∂2

∂x2
ψ} (5.6)

and using the integration by parts formula1

∫

dx (
∂2

∂x2
F )G =

∫

dx F
∂2

∂x2
G (5.7)

this becomes

< p > = m

(

ih̄

2m

)

∫

dx ψ∗{x
∂2

∂x2
ψ −

∂2

∂x2
(xψ)}

= m

(

ih̄

2m

)

∫

dx ψ∗
{

x
∂2

∂x2
ψ −

∂

∂x

(

ψ + x
∂

∂x
ψ

)}

=
∫

dxψ∗
(

−ih̄
∂

∂x

)

ψ (5.8)

1We assume that the wave function ψ and its derivatives vanish at x = ±∞, so there are no
boundary terms.
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Equation (5.8) should be understood as a prediction, given the quantum state
ψ(x, t), for the expectation value of momentum. Next, taking the time-derivative of
< p >, so as to compare to the second equation of (5.3),

∂t < p > = ∂t

∫

dx ψ∗
(

−ih̄
∂

∂x

)

ψ

=

(

ih̄

2m

)

(−ih̄)
∫

dx{−(
∂2

∂x2
ψ∗)

∂

∂x
ψ + ψ∗ ∂

∂x

∂2

∂x2
ψ}

=

(

ih̄

2m

)

(−ih̄)
∫

dxψ∗{−
∂2

∂x2

∂

∂x
ψ +

∂

∂x

∂2

∂x2
ψ}

= 0 (5.9)

we conclude that ∂t < p >= 0, which agrees with Ehrenfest’s principle for the case
that the potential V = 0.

In the case that V += 0, the equation for de Broglie waves does not satisfy the
second of equations (5.3). So the de Broglie wave equation must be generalized so
as to agree with Ehrenfest’s principle for any potential V (x). This generalized wave
equation was found by Schrodinger; it is as central to quantum mechanics as F = ma
is to classical mechanics.

5.2 The Schrodinger Wave Equation

The quantum mechanical law of motion found by Schrodinger, describing a particle
of mass m moving in one dimension in an arbitrary potential V (x), is known as

The Schrodinger Wave Equation

ih̄
∂ψ

∂t
= −

h̄2

2m

∂2

∂x2
ψ + V (x)ψ (5.10)

It is easy to verify that this equation does, in fact, satisfy Ehrenfest’s principle. Once
again, starting with the first of the Ehrenfest equations (5.3),

< p > = m∂t < x >

= m
∫

dx

{

∂ψ

∂t

∗
xψ + ψ∗x

∂ψ

∂t

}

(5.11)
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Then rewriting the Schrodinger equation (and its complex conjugate) as

∂ψ

∂t
=

ih̄

2m

∂2ψ

∂x2
−

i

h̄
V ψ

∂ψ∗

∂t
= −

ih̄

2m

∂2ψ∗

∂x2
+

i

h̄
V ψ∗ (5.12)

and inserting into (5.11), we have

< p > = m
∫

dx

{(

−
ih̄

2m

∂2ψ∗

∂x2
+

i

h̄
V ψ∗

)

xψ

+ ψ∗x

(

ih̄

2m

∂2ψ

∂x2
−

i

h̄
V ψ

)}

= m

(

ih̄

2m

)

∫

dx{−(
∂2

∂x2
ψ∗)xψ + ψ∗x

∂2

∂x2
ψ}

=
∫

dxψ∗
(

−ih̄
∂

∂x

)

ψ (5.13)

which is the same rule for computing < p > as in the previous V = 0 case. Then

∂t < p > = −ih̄
∫

dx

[

∂ψ∗

∂t

∂ψ

∂x
+ ψ∗ ∂2ψ

∂t∂x

]

= −ih̄
∫

dx

[

∂ψ∗

∂t

∂ψ

∂x
−

∂ψ∗

∂x

∂ψ

∂t

]

= −ih̄
∫

dx

{(

−
ih̄

2m

∂2ψ∗

∂x2
+

i

h̄
V ψ

)

∂ψ

∂x

−
∂ψ∗

∂x

(

ih̄

2m

∂2ψ

∂x2
−

i

h̄
V ψ

)}

= −
h̄2

2m

∫

dx

[

∂2ψ∗

∂x2

∂ψ

∂x
+

∂ψ∗

∂x

∂2ψ

∂x2

]

+
∫

dx

[

ψ∗V
∂ψ

∂x
+

∂ψ∗

∂x
V ψ

]

(5.14)

Again applying integration by parts to the first term of the first integral, and the
second term of the second integral, we find

∂t < p > = −
h̄2

2m

∫

dx

[

−
∂ψ∗

∂x

∂2ψ

∂x2
+

∂ψ∗

∂x

∂2ψ

∂x2

]

+
∫

dx

[

ψ∗V
∂ψ

∂x
− ψ∗ ∂

∂x
(V ψ)

]

=
∫

dx

[

ψ∗V
∂ψ

∂x
− ψ∗V

∂ψ

∂x
− ψ∗∂V

∂x
ψ

]
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=
∫

dx ψ∗
(

−
∂V

∂x

)

ψ

= < −
∂V

∂x
> (5.15)

exactly as required by Ehrenfest’s principle.
We see that Ehrenfest’s principle and the Schrodinger equation, taken together,

make the following prediction for the expectation value of particle momentum at time
t, regardless of the potential V (x)

< p >=
∫

dx ψ∗(x, t) p̃ ψ(x, t) (5.16)

where p̃ is the differential operator known as the Momentum Operator

p̃ ≡ −ih̄
∂

∂x
(5.17)

This supplies an important piece of information. The Born interpretation of the
wavefunction tells us how to compute the expectation value of of position < x > of a
particle, given its wavefunction ψ(x, t). But position is not the only observable of a
particle that can be measured; for example, one can also measure a particle’s momen-
tum, and the Born interpretation does not tell us how to compute the corresponding
expectation value < p >. Now we have the rule for finding < p >; it is contained in
equations (5.16) and (5.17) above.

Eq. (5.17) can be used to express any x-derivative in terms of the momentum
operator, and in particular

∂2

∂x2
= −

1

h̄2 p̃2 (5.18)

Then the Schrodinger equation can be written in the compact form

ih̄∂tψ =

(

p̃2

2m
+ V

)

ψ

= H̃ψ (5.19)

where

H [p, q] =
p2

2m
+ V (5.20)

is just the Hamiltonian for a particle of mass m, moving in a potential field V , and
H̃ is the Hamiltonian Operator

H̃ = H [p̃, x] (5.21)

obtained by replacing momentum p by the momentum operator p̃ in the Hamiltonian
function.
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Finally, we need to check the consistency of the Schrodinger equation with the
Born Interpretation. According to the Born Interpretation, at any instant of time t,

< ψ|ψ >=
∫

dx ψ∗(x, t)ψ(x, t) = 1 (5.22)

for a particle moving in one dimension. Now suppose this normalization condition is
true at some time t0, and and the wavefunction evolves according to the Schrodinger
equation. Will this condition also be valid at later times t > t0? To check this, we
differentiate < ψ|ψ > with respect to time

∂t < ψ|ψ > =
∫

dx {(∂tψ
∗)ψ + ψ∗(∂tψ)}

=
∫

dx

{(

−
ih̄

2m
∂2

xψ
∗ +

i

h̄
V ψ∗

)

ψ + ψ∗
(

ih̄

2m
∂2

xψ −
i

h̄
V ψ

)}

=
ih̄

2m

∫

dx
{

−(∂2
xψ

∗)ψ + ψ∗∂2
xψ
}

= 0 (5.23)

where we have once again used the integration by parts formula (5.7). This result
means that the norm of the wavefunction is constant in time, which is known as
”Conservation of Probability”. The inner product < ψ|ψ > is the total probabil-
ity to find the particle anywhere in space. If the norm is constant, and < ψ|ψ >= 1
at some time t = t0, then < ψ|ψ >= 1 at any any later time.

The Schrodinger equation for motion in 3-dimensions is a straightforward gener-
alization of the one-dimensional case:

ih̄
∂ψ

∂t
=
−h̄2

2m
∇2ψ + V (x, y, z)ψ (5.24)

In this case, the generalized coordinates are q1 = x, q2 = y, q3 = z, and the first of
the Ehrenfest equations (5.2) tells us

< px >=
∫

d3x ψ∗(x, y, z, t) p̃x ψ(x, y, z, t)

< py >=
∫

d3x ψ∗(x, y, z, t) p̃y ψ(x, y, z, t)

< pz >=
∫

d3x ψ∗(x, y, z, t) p̃z ψ(x, y, z, t) (5.25)

where

p̃x ≡ −ih̄
∂

∂x

p̃y ≡ −ih̄
∂

∂y

p̃z ≡ −ih̄
∂

∂z
(5.26)
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and one can then readily verify the 2nd Ehrenfest equation

∂t < %p >=< −∇V > (5.27)

In terms of the p̃-operators, the Schrodinger equation in 3-dimensions can be written

ih̄
∂ψ

∂t
=

[ 1

2m
(p̃2

x + p̃2
y + p̃2

z) + V (x, y, z)
]

ψ

= H̃ψ (5.28)

Problem: Verify conservation of probability and the Ehrenfest equations in the
three-dimensional case.

5.3 The Time-Independent Schrodinger Equation

When the potential V (x) is time-independent we can simplify the Schrodinger equa-
tion by the method of separation of variables. Write

ψ(x, t) = φ(x)T (t) (5.29)

and substitute into the (one-dimensional) Schrodinger equation:

ih̄φ(x)
∂T

∂t
= TH̃φ (5.30)

divide both sides by φT

ih̄
1

T (t)

∂

∂t
T (t) =

1

φ(x)
H̃φ(x) (5.31)

Since the lhs depends only on t, and the rhs only on x, the only way this equation
can be true is if both sides equal a constant, call it E:

ih̄
1

T (t)

∂

∂t
T (t) = E

1

φ(x)
H̃φ(x) = E (5.32)

The first of these two differential equations can be solved immediately:

T (t) = e−iEt/h̄ (5.33)

while the second equation
H̃φ = Eφ (5.34)
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or, more explicitly
[

−
h̄2

2m

d2

dx2
+ V (x)

]

φ(x) = Eφ(x) (5.35)

is known as the Time-Independent Schrodinger Equation.
Equation (5.34) is an example of an Eigenvalue Equation. This is a linear

differential equation in which one has to solve simultaneously for a set of constants,
known as the eigenvalues, and a set of corresponding functions known as the eigen-
functions. In the case of the Schrodinger equation, the constant E is called the the
”energy eigenvalue,” and the function φ(x) is called the ”energy eigenfunction” or
”energy eigenstate.”

To each energy eigenvalue E there is at least one (and sometimes more than one)
energy eigenstate, and to each eigenstate there corresponds a solution

ψ(x, t) = φ(x)e−iEt/h̄ (5.36)

of the time-dependent Schrodinger equation. Such solutions are also known as sta-
tionary states because the time-dependence is contained entirely in an overall phase.
This means that the probability to find a particle in the neighborhood of point x, i.e

Pε(x) = ψ∗(x, t)ψ(x, t)ε = φ∗(x)φ(x)ε (5.37)

is constant in time.
Let {φα(x), Eα} denote a complete set of eigenstates and corresponding eigenval-

ues, in the sense that any other eigenstate which is not in the set can be expressed as a
linear combination of those that are. Then the general solution to the time-dependent
Schrodinger equation is

ψ(x, t) =
∑

α

cαφα(x)e−iEαt/h̄ (5.38)

if the energy eigenvalues are a discrete set, or

ψ(x, t) =
∫

dα cαφα(x)e−iEαt/h̄ (5.39)

if the energy eigenvalues span a continuous range, or a combination

ψ(x, t) =
∑

α

cαφα(x)e−iEαt/h̄ +
∫

dα cαφα(x)e−iEαt/h̄ (5.40)

of sum and integral, if some eigenvalues are discrete and others are found in a con-
tinuous range.

Most of the effort in quantum mechanics goes into solving the time-independent
Schrodinger equation (5.35). Once a complete set of solutions to that equation is
found, the general solution (eq. (5.40)) to the time-dependent problem follows im-
mediately.
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5.4 The Free Particle

When the potential V (x) vanishes everywhere, the Schrodinger equation in one di-
mension reduces to the equation for de Broglie waves

ih̄
∂ψ

∂t
= −

h̄2

2m

∂2ψ

∂x2
(5.41)

and this equation was deduced from the wavefunction for plane waves, corresponding
to a particle with definite momentum p and energy Ep = p2/2m

ψp(x, t) = N exp[i(px− Ept)/h̄]

= N exp[i(px−
p2

2m
t/h̄] (5.42)

The Schrodinger equation (whether V = 0 or not) is a linear equation, and any linear
equation has the property that, if ψp1

, ψp1
, ψp3

, ... are all solutions of the equation,
then so is any linear combination

ψ = cp1
ψp1

+ cp2
ψp2

+ cp3
ψp3

+ ... (5.43)

In particular,

ψ(x, t) =
∫ ∞

−∞

dp

2πh̄
f(p) exp[i(px−

p2

2m
t)/h̄] (5.44)

is a linear combination of plane wave solutions (5.42). This means that (5.44) is a
solution of the free-particle Schrodinger equation (5.41), for any choice of function
f(p) whatsoever.

Problem: Show that the wavefunction in eq. (5.44) is a solution of the free particle
Schrodinger equation by substituting (5.44) directly into (5.41).

Equation (5.44) is an example of the general solution (5.39) of a time-dependent
Schrodinger equation. The time-independent Schrodinger equation in this case is

−
h̄2

2m

∂2φ

∂x2
= Eφ (5.45)

For each positive eigenvalue E ∈ [0,∞] there are two linearly independent solutions

φp(x) = eipx/h̄ p = ±
√

2mE (5.46)

such that any other solution for a given E can be expressed as a linear combination

φ(x) = c1e
i
√

2mEx/h̄ + c2e
−i

√
2mEx/h̄ (5.47)
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The set of eigenfunctions and corresponding eigenvalues
{

φp(x) = eipx/h̄, Ep =
p2

2m

}

−∞ < p <∞ (5.48)

is therefore a complete set of solutions of the time-independent Schrodinger equation.
Inserting these solutions into eq. (5.39), we arrive at the general solution (5.44).

It is easy to show that eq. (5.44) is, in fact, the general solution of the free-particle
Schrodinger wave equation, in the sense that any solution of the free-particle equation
can be put into this form. First of all, the wavefunction ψ(x, t) at all times is uniquely
determined by the wavefunction at one initial time, say t = 0, denoted

φ(x) ≡ ψ(x, 0) (5.49)

This is because the Schrodinger equation is first-order in the time derivative, so that
given ψ(x, t) at some time t, the wavefunction is determined an infinitesmal time t+ ε
later by the rule given in eq. (4.59). Next, for any given φ(x) we can always find a
function f(p) such that

φ(x) =
∫ ∞

−∞

dp

2πh̄
f(p)eipx/h̄ (5.50)

To determine f(p), multiply both sides of the equation by exp[−ip′/h̄], and integrate
with respect to x:

∫ ∞

−∞
dx φ(x)e−ip′x/h̄ =

∫ ∞

−∞
dx

∫ ∞

−∞

dp

2πh̄
f(p)ei(p−p′)x/h̄

=
∫ ∞

−∞

dp

2πh̄
f(p)

∫ ∞

−∞
dx exp[i

p− p′

h̄
x]

=
∫ ∞

−∞

dp

2πh̄
f(p)2πδ

(

p− p′

h̄

)

(5.51)

where we have used the integral representation of the Dirac delta function (4.50).
Using also the identity (4.52):

δ

(

p− p′

h̄

)

= h̄δ(p− p′) (5.52)

we get
∫ ∞

−∞
dx φ(x)e−ip′x/h̄ =

∫ ∞

−∞
dp f(p)δ(p− p′) = f(p′) (5.53)

The conclusion is that any φ(x) can be expressed in the form (5.50), for f(p) chosen
to equal

f(p) =
∫ ∞

−∞
dx φ(x)e−ipx/h̄ (5.54)

The terminology is that φ(x) is the Fourier Transform of f(p) (eq. (5.50)), and
f(p) is the Inverse Fourier Transform of φ(x) (eq. (5.54)).
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We now have a prescription, given the wavefunction at any initial time t = 0, for
finding the wavefunction at any later time: From φ(x) = ψ(x, 0), compute the inverse
Fourier transform f(p) using (5.54), then insert f(p) into the rhs of eq. (5.44). The
integral of eq. (5.44) will then give the wavefunction ψ(x, t) at any later time.

5.5 Gaussian Wavepackets

A wavefunction of the form

φ(x) = NδL(x) (5.55)

goes to zero, as L→∞, everywhere except at the point x = 0. At the other extreme,
a plane wave

φ(x) = Neip0x/h̄ (5.56)

has a constant modulus |φ| = N at every point along the entire line −∞ < x < ∞.
A wavefunction which interpolates between these two extreme cases is the ”gaussian
wavepacket”

φ(x) = Ne−x2/2a2

eip0x/h̄ (5.57)

in which a gaussian damping factor is used to modulate a plane wave. As a → 0,
at fixed p0, this wavefunction is proportional to δL(x) (where L = 1/2a2), while as
a→∞, φ(x) approaches a plane wave.

Gaussian wavepackets provide a very useful example of how the wavefunction of
a free particle evolves in time. Assume that the initial wavefunction ψ(x, 0) has the
form of the gaussian wavepacket (5.57), with some fixed value of the constant a. The
first task is to ”normalize” the wavefunction, which means: choose the constant N
in (5.57) so that the normalization condition

∫

dx ψ∗(x, t)ψ(x, t) = 1 (5.58)

is fulfilled at t = 0 (which implies that it will be fulfilled for all t, by conservation of
probability). The condition is

1 =
∫

dx ψ∗(x, 0)ψ(x, 0)

= N2
∫

dx e−x2/a2

= N2
√

πa2 (5.59)

Therefore

N =
( 1

πa2

)1/4

(5.60)
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We begin by computing the initial expectation values < x >0, < p >0 and the initial
uncertainty ∆x0 in position, at time t = 0. First

< x >0 =
∫

dx xφ∗(x)φ(x)

=
(

1

πa2
)
)1/2 ∫ ∞

−∞
dx xe−x2/a2

= 0 (5.61)

and

< p >0 =
∫

dx φ∗(x)

(

−ih̄
∂

∂x

)

φ(x)

= −
ih̄√
πa2

∫

dx exp

(

−i
p0x

h̄
−

x2

2a2

)

∂

∂x
exp

(

i
p0x

h̄
−

x2

2a2

)

= −i
ih̄√
πa2

∫

dx
(

i
p0

h̄
−

x

a2

)

e−x2/a2

= p0 (5.62)

These are the relevant expectation values at t = 0 of position and momentum. Next,
the squared uncertainty is

∆x2
0 = < x2 >0 − < x >2

0=< x2 >0

=
∫

dx x2φ∗(x)φ(x)

=
( 1

πa2

)1/2 ∫ ∞

−∞
dx x2e−x2/a2

=
1

2
a2 (5.63)

The initial uncertainty in position at time t = 0 is therefore

∆x0 =
a√
2

(5.64)

To find the time-evolution of the wavefunction, we first compute the inverse Fourier
Transform

f(p) =
∫

dx φ(x)e−ipx/h̄

=
(

1

πa2

)1/4 ∫

dx exp

[

−
x2

2a2
− i

(p− p0)

h̄
x

]

(5.65)

Using the formula for gaussian integration
∫ ∞

−∞
dz e−Az2−Bz =

√

π

A
eB2/4A (5.66)
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this becomes
f(p) = (4πa2)1/4e−a2(p−p0)2/2h̄2

(5.67)

Then, substituting f(p) into (5.44), we find the wavefunction at any later time t

ψ(x, t) = (4πa2)1/4
∫ dp

2πh̄
e−a2(p−p0)2/2h̄2

exp

[

i(px−
p2

2m
t)/h̄

]

=
(4πa2)1/4

2πh̄

∫

dq exp

[

−
a2

2h̄2 q2 + i
q + p0

h̄
x− i

(q + p0)2

2mh̄
t

]

=
(4πa2)1/4

2πh̄
exp[i(p0x−

p2
0

2m
t)/h̄]

×
∫

dq exp

[

−
(

a2

2h̄2 +
it

2mh̄

)

q2 + i
(

x

h̄
−

p0t

mh̄

)

q

]

=
(4πa2)1/4

2πh̄





π
a2

2h̄2 + it
2mh̄





1/2

exp

{

−
(x− v0t)2

2(a2 + ih̄t/m)

}

ei(p0x−
p2
0

2m
t)/h̄(5.68)

where
v0 ≡

p0

m
(5.69)

Although (5.68) looks like a complicated expression, its modulus is very simple:

|ψ|2 = ψ∗(x, t)ψ(x, t)

=
1

√

πa2(t)
exp

[

−
(x− v0t)2

a2(t)

]

(5.70)

where we have defined

a(t) ≡

√

a2 +
h̄2

m2a2
t2 (5.71)

Note that the modulus of the wavefunction remains a gaussian at all times, but the
width a(t) of the gaussian increases, i.e. the wavefunction ”spreads out” as time
passes.

We can then calculate < x > and ∆x at any time t > 0:

< x > =
1

√

πa2(t)

∫

dx x exp

[

−
(x− v0t)2

a2(t)

]

=
1

√

πa2(t)

∫

dx′ (x′ + v0t) exp

[

−
x′2

a2(t)

]

= v0t (5.72)

and also

∆x2 = < (x− < x >)2 >=< (x− v0t)
2 >
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=
1

√

πa2(t)

∫

dx (x− v0t)
2 exp

[

−
(x− v0t)2

a2(t)

]

=
1

√

πa2(t)

∫

dx′ x′2 exp

[

−
x′2

a2(t)

]

=
1

2
a2(t) (5.73)

so that

∆x =
a(t)√

2
=

1√
2

√

a2 +
h̄2

m2a2
t2 (5.74)

To compute < p >, we make use again of the representation (5.44)

< p > =
∫

dx ψ∗(x, t)

(

−ih̄
∂

∂x

)

ψ(x, t)

=
∫

dx

{

∫ dp1

2πh̄
f(p1)e

i(p1x−Ep1
t)/h̄

}∗ (

−ih̄
∂

∂x

)

∫ dp2

2πh̄
f(p2)e

i(p2x−Ep2
t)/h̄

=
∫ dp1

2πh̄
f ∗(p1)e

iEp1
t/h̄
∫ dp2

2πh̄
p2f(p2)e

−iEp2
t/h̄
∫

dx ei(p2−p1)x/h̄

=
∫ dp1

2πh̄
f ∗(p1)e

iEp1
t/h̄
∫ dp2

2πh̄
p2f(p2)e

−iEp2
t/h̄2πh̄δ(p1 − p2)

=
∫ dp

2πh̄
pf ∗(p)f(p) (5.75)

Note that the time-dependence has vanished completely from this equation. It follows
that

< p >=< p >0= p0 (5.76)

and the expectation values of position and momentum together obey

< x >t = < x >0 +
< p >0

m
t

< p >t = p0 (5.77)

With the ”<>” signs removed, these are the equations of a classical trajectory in
phase space for a free particle of mass m.

On the other hand, the positional uncertainty ∆x of the quantum state, which
is proportional to the width a(t) of the gaussian, increases in time; this is known as
the ”spreading of the wavepacket”. As noted in Lecture 3, one of the reasons that
the electron cannot be regarded as being literally a wave is that its wavefunction
expands to macroscopic size quite rapidly, and it is quite certain that electrons are
not macroscopic objects. Let us consider the time t2a that it takes a free particle
wavefunction to double in size (a(t) = 2a(0)):

t2a =
√

3
ma2

h̄
(5.78)



5.5. GAUSSIAN WAVEPACKETS 75

and the time it takes to expand to some very much larger size a(t) = A >> a

tA =
maA

h̄
(5.79)

As an example, choose the initial spread of the wavepacket to be on the order of the
diameter of atomic hydrogen

a = 10−10 m (5.80)

and A to be a macroscopic distance, e.g.

A = 10 cm (5.81)

Begin by considering an electron, which has a mass me = 9.11 × 10−31 kg; and
h̄ = 1.05 × 10−34 J-s. Then the time required for the wavefunction to expand from
a = 10−10 m to 2× 10−10m is

t2a =
√

3
mea2

h̄
= 1.5× 10−16 s (5.82)

Likewise, the time required for the wavefunction to spread to A = 10 cm is

tA =
meaA

h̄
= 8.7× 10−6 s (5.83)

If the energy of the electron is E = 10 electron volts (eV), then the velocity is

v =
√

2E/m = 1.87× 106 m/s (5.84)

Therefore, for the wavefunction of a 10 eV electron to expand from an atomic diameter
to a width of 10 cm, the electron need only travel

d = vtA = 16.3 m (5.85)

Compare these figures for an electron with the corresponding results for an object
the mass of a baseball, say mB = .25 kg. Supposing the width of the wavefunction is
also initially a = 10−10 m, the corresponding numbers are

t2a = 4.1× 1014 s = 1.3 million years

tA = 2.4× 1023 s = 1.8× 1017 years (5.86)

In other words, for all practical purposes, the wavefunction of an object of macroscopic
mass doesn’t expand at all.
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5.6 Group Velocity and Phase Velocity

We have seen that the expectation value of position < x > moves at a velocity
v =< p > /m. This is a consequence of Ehrenfest’s principle for a free particle. On
the other hand, the velocity vphase of any plane wave is given by the usual formula

vphase = λf (5.87)

so that for a De Broglie wave of a definite momentum p

vphase =
h

p

Ep

h

=
Ep

p
=

p2/2m

p

=
p

2m
(5.88)

which is half the velocity that one might expect, since a classical particle with mo-
mentum p moves at a velocity p/m. There is no contradiction, however. The velocity
vphase = λf of a plane wave is known as the ”phase velocity” of the wave; it refers
to the speed at which a point of given phase on the wave (a crest or a trough, say),
propagates through space. However, that is not necessarily the same speed at which
the energy carried by a group of waves travels through space. That velocity is known
as the ”group velocity”.

Consider a wave which is a superposition of two plane waves of frequencies f1, f2,
and wavelengths λ1, λ2, respectively, and which have the same amplitude A. We will
assume that the difference between frequencies ∆f is much smaller than the average
frequency f , i.e.

∆f << f and ∆λ << λ (5.89)

By the superposition principle of wave motion

ψ(x, t) = ψ1(x, t) + ψ2(x, t)

= A
[

ei(k1x−ω1t) + ei(k2x−ω2t)
]

= 2Aei(kx−ωt) cos[
1

2
i(∆kx−∆ωt)] (5.90)

which is the product of two waves, one of which is moving with the velocity

vphase =
ω

k
(5.91)

and the other moving with velocity

vgroup =
∆ω

∆k
(5.92)
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The corresponding exponentials can be expanded into sines and cosines, the product
of two cosines is shown in Fig. [5.2]. The ”packets” of waves move collectively with
the group velocity vgroup; the crest of a wave within each packet travels at the phase
velocity vphase.

Now let us consider a general wavepacket of the form

ψ(x, t) =
∫

dk f(k)ei(kx−ω(k)t) (5.93)

For a free particle in quantum mechanics, the wavenumber and angular frequency are
related to momentum and energy

k =
p

h̄
and ω =

Ep

h̄
(5.94)

Suppose, as in the case of the gaussian wavepacket (eq. (5.67)), that f(k) is peaked
around a particular value k0. In that case, we can make a Taylor expansion of ω(k)
around k = k0:

ω(k) = ω0 +

(

dω

dk

)

k0

(k − k0) + O[(k − k0)
2] (5.95)

Inserting this exansion into (5.93), and dropping terms of order (k− k0)2 and higher,
we get

ψ(x, t) ≈
∫

dk f(k) exp

[

i

(

k0x + (k − k0)x− ω0t−
dω

dk
(k − k0)t

)]

≈ ei(k0x−ω0t)
∫

dkf(k) exp [i(k − k0)(x− vgroupt)]

≈ ei(k0x−ω0t)F [x− vgroupt] (5.96)

where

vgroup =

(

dω

dk

)

k=k0

(5.97)

This is again a product of two waveforms; a plane wave moving with velocity

vphase =
ω0

k0
(5.98)

and a wavepulse F [x − vgroupt] moving with velocity vgroup of equation (5.97). The
product is indicated schematically in Fig. [5.3]. It is clear that the wavepacket
propagates collectively at the velocity of the pulse, vgroup rather than the velocity of
a crest vphase.2

2According to (5.96) the wavepacket propagates without changing its shape, which is not quite
true, as we have seen in the case of the gaussian wavepacket. The ”spreading” of the wavepacket is
due to terms of order (k − k0)2, which were dropped in eq. (5.96).
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In the case of a free particle, we have

vgroup =

(

dω

dk

)

k=k0

=

(

d(Ep/h̄)

d(p/h̄)

)

p=<p>

=

(

dEp

dp

)

p=<p>

=
< p >

m
(5.99)

which is the standard relation between velocity and momentum. The conclusion is
that, although the phase velocity of a de Broglie wave is half the classical velocity, a
packet of de Broglie waves travels collectively at exactly the classical velocity.

5.7 The Particle in a Closed Tube

Finally we return to the example of Lecture 4, in which a particle is moving in a
closed tube of length L; collisions between the particle and the ends of the tube are
assumed to be elastic. Since the potential barrier against leaving the tube is, for all
practical purposes, infinite, the particle is moving in an infinite potential well

V (x) =

{

0 0 ≤ x ≤ L
∞ otherwise

(5.100)

The problem is to solve the time-independent Schrodinger equation (5.35) in this
potential.

In the interval x ∈ [0, L], the time-independent Schrodinger equation is the same
as that for a free particle

−
h̄2

2m

∂2

∂x2
φ = Eφ (5.101)

and has the same solutions for E > 0, namely any linear combination

φ(x) = c1e
ipx/h̄ + c2e

−ipx/h̄ where p =
√

2mE (5.102)

On the other hand, in the regions x < 0 and x > L, we have
[

−
h̄2

2m

∂2

∂x2
+∞

]

φ = Eφ (5.103)

The only possible solution of this equation, for finite E, is

φ(x) = 0 x < 0 or x > L (5.104)
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which simply means that the probability of finding the particle outside the tube is
zero.

The solution of a differential equation must be a continuous function. Continuity
of the wavefunction at the points x = 0 and x = L gives two boundary conditions

0 = φ(0) = c1 + c2

0 = φ(L) = c1e
ipL/h̄ + c2e

−ipL/h̄ (5.105)

The first condition gives c2 = −c1, and then the second condition becomes

2ic1 sin[
pL

h̄
] = 0 (5.106)

The second equation can be recognized as the condition for a standing wave in an
interval of length L, i.e.

sin(kL) = 0 (5.107)

which is satisfied for wavenumbers

k =
nπ

L
(5.108)

or, in terms of wavelengths λ = 2π/k,

L = n
λ

2
(5.109)

In the case of a particle in a tube, the wavenumber k is the same as for de Broglie
waves

k =
2π

λ
=

p

h̄
(5.110)

and the standing wave requirement sin(kL) = 0 implies

pL

h̄
= nπ

⇒ pn = n
πh̄

L
(5.111)

where a subscript n has been added to indicate that each p =
√

2mE is associated
with a positive integer n = 1, 2, 3, .... The energy eigenstates are therefore

φn(x) =

{

N sin
[

nπ
L x

]

0 ≤ x ≤ L

0 otherwise
(5.112)

where N = 2ic1, each with a corresponding eigenvalue

En =
p2

n

2m
= n2 π2h̄2

2mL2
(5.113)
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It is useful to normalize φn(x), so that the solution to the time-dependent Schrodinger
equation

ψn(x, t) = φn(x)e−iEnt/h̄ (5.114)

is a physical state. The normalization condition is

1 =
∫ ∞

−∞
dx ψ∗

n(x, t)ψn(x, t)

= |N |2
∫ L

0
dx sin2

[

nπx

L

]

= |N |2
L

2
(5.115)

This determines the normalization constant

N =

√

2

L
(5.116)

so that






φn(x) =

√

2

L
sin[

nπx

L
], En =

n2π2h̄2

2mL2







, n = 1, 2, 3, ... (5.117)

is the complete set of energy eigenvalues and energy eigenfunctions (in the inter-
val [0, L]). Then the general solution of the time-dependent Schrodinger equation,
according to eq. (5.38) is

ψ(x, t) =
∞
∑

n=1

anφn(x)e−iEnt/h̄

=

√

2

L

∞
∑

n=1

an sin[
nπx

L
]e−iEnt/h̄ (5.118)

Now suppose that the wavefunction ψ(x, t) is specified at an initial time t = 0.
How do we find the wavefunction at any later time t > 0, using eq. (5.118)? The
problem is to find the set of constants {an} given ψ(x, 0).

The method for finding the an , for the particle in a tube, is closely analogous to
solving for f(p) for the free particle in eq. (5.44), given ψ(x, 0). Begin with

ψ(x, 0) =
∞
∑

n=1

anφn(x) (5.119)

and multiply both sides of the equation by φ∗
k(x)3

φ∗
k(x)ψ(x, 0) =

∞
∑

n=1

anφ
∗
k(x)φn(x) (5.120)

3Since φn is a real function, complex conjugation does nothing. It is indicated here because in
general, when the energy eigenstates are complex, this operation is necessary.
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Integrate over x

∫ L

0
dx φ∗

k(x)ψ(x, 0) =
∞
∑

n=1

an

∫ L

0
dx φ∗

k(x)φn(x) (5.121)

and use the orthogonality relation

< φk|φn > =
∫ ∞

−∞
dx φ∗

k(x)φn(x)

=
2

L

∫ L

0
dx sin[k

πx

L
] sin[n

πx

L
]

= δkn (5.122)

where δij is the Kronecker delta introduced in Lecture 4.
Eq. (5.122) is refered to as orthogonality because it is the expression, for vectors

in Hilbert space, which corresponds to the orthogonality relation for unit vectors %e i

in an N -dimensional vector space

%e i · %e j = δij (5.123)

In a later lecture we will see that the set of energy eigenstates {|φn >} can (and
should) be viewed as a set of orthonormal basis vectors in Hilbert space.

Applying the orthogonality relation, eq. (5.121) becomes

∫ L

0
dx φ∗

k(x)ψ(x, 0) =
∞
∑

n=1

anδkn

= ak (5.124)

This gives us the complete prescription for finding the physical state of the particle
at any time t > 0, given the state at an initial time t = 0. One has to compute the
set of coefficients

an = < φn|ψ(t = 0) >

=
∫ L

0
dx φ∗

n(x)ψ(x, 0) (5.125)

and substitute these into eq. (5.118) to get the wavefunction ψ(x, t).
The expectation values of position and momentum, as a function of time, can also

be expressed in terms of the coefficients an. For the position

< x > =
∫

dxψ∗(x, t)xψ(x, t)

=
∫

dx

{ ∞
∑

i=1

aiφi(x)e−iEit/h̄

}∗

x
∞
∑

j=1

ajφj(x)e−iEjt/h̄

=
∞
∑

i=1

∞
∑

j=1

a∗
i aje

i(Ei−Ej)t/h̄Xij (5.126)
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where we have defined

Xmn ≡
∫ L

0
φ∗

m(x)xφn(x)

=
2

L

∫ L

0
dx x sin[m

πx

L
] sin[n

πx

L
]

=











1
2L m = n
0 m− n even

2L
π2 [(m + n)−2 − (m− n)−2] m− n odd

(5.127)

Similarly, for momentum

< p > =
∫

dxψ∗(x, t)p̃ψ(x, t)

=
∫

dx

{ ∞
∑

i=1

aiφi(x)e−iEit/h̄

}∗ (

−ih̄
∂

∂x

) ∞
∑

j=1

ajφj(x)e−iEjt/h̄

=
∞
∑

i=1

∞
∑

j=1

a∗
i aje

i(Ei−Ej)t/h̄Pij (5.128)

where

Pmn ≡
∫ L

0
φ∗

m(x)

(

−ih̄
∂

∂x

)

φn(x)

= −ih̄
2πn

L2

∫ L

0
dx sin[m

πx

L
] cos[n

πx

L
]

=

{

− ih̄
L

4mn
m2−n2 m− n odd
0 m− n even

(5.129)

Example: The Step Function Wavepacket

As an example of the use of these formulas, suppose that a particle is initially in
the physical state

ψ(x, 0) =
1√
2a

{

eip0x/h̄ x0 − a < x < x0 + a
0 otherwise

= Θ[a2 − (x− x0)
2]eip0x/h̄ (5.130)

where Θ(x) is the step function

Θ(x) =

{

1 x ≥ 0
0 x < 0

(5.131)

Problem: Show that this state is normalized, and that the position and expectation
values at time t = 0 are

< x >= x0 < p >= p0 (5.132)
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The real part of ψ(x, 0) is sketched in Fig. [5.4]. Then the coefficients an are
easily calculated:

an =

√

2

L

∫ x0+a

x0−a
dx eipx/h̄ sin[

nπx

L
]

=

√

2

L





exp i
[

p
h̄ −

nπ
L

]

x0

p
h̄ −

nπ
L

cos
[

p

h̄
−

nπ

L

]

a

−
exp i

[

p
h̄ + nπ

L

]

x0

p
h̄ + nπ

L

cos
[

p

h̄
+

nπ

L

]

a



 (5.133)

Now collecting formulas:

ψ(x, t) =

√

2

L

∞
∑

n=1

an sin[
nπx

L
]e−iEnt/h̄

< x > =
∞
∑

i=1

∞
∑

j=1

a∗
i aje

i(Ei−Ej)t/h̄Xij

< p > =
∞
∑

i=1

∞
∑

j=1

a∗
i aje

i(Ei−Ej)t/h̄Pij

En = n2 π2h̄2

2mL2
(5.134)

From this set of equations we can calculate ψ(x, t), < x >, < p > at any time t to
any desired accuracy, by keeping a sufficiently large number of terms in the sums.

Now lets plug in some numbers. Suppose the particle is an electron, p0 is the
momentum corresponding to an energy of 10 eV,

p0 = 1.7× 10−24 kg-m/s (5.135)

and also choose

a = 10−8 m

L = 10−7 m (5.136)

The corresponding wavefunction, calculated at various instants, is shown in Fig. [5.5].
The expectation values of position and momentum are plotted as a function of time
in Fig. [5.6]. These should be compared to the corresponding figures for x(t) and p(t)
for a classical pointlike electron of momentum p0, initially located at the point x0.
Note that the wavefunction for the electron ”bounces” from one end of the wall to the
other while slowly spreading out. The expectation values of position and momentum,
as expected, closely parallel the classical behavior.
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Chapter 6

Energy and Uncertainty

We have seen that for a gaussian wavepacket

φ(x) =
1

(πa2)1/4
e−(x−x0)2/2a2

eip0x/h̄ (6.1)

the uncertainty in position is ∆x = a/
√

2, which means that this uncertainty vanishes
as a→ 0. In this limit, φ∗φ approaches a Dirac delta function, and all the probability
Pdx(x) is concentrated at the point x = x0. If a particle is in such a quantum state
when its position is measured, it is certain to be found at the point x = x0; this
quantum state is known as an Eigenstate of Position.

On the other hand, as a→∞, the gaussian wavepacket (6.1) approaches a plane
wave. According to de Broglie, the plane wave represents a particle moving with a
definite momentum p0, therefore the uncertainty in momentum should be ∆p = 0 in
that limit. If the particle is in a plane wave state when its momentum is measured,
it is certain to be found to have momentum p = p0; this quantum state is known as
an Eigenstate of Momentum.

Because the eigenstates of position and momentum are very different, it is impossi-
ble for a particle to be in a physical state in which both its position and its momentum
are certain; i.e. ∆x = ∆p = 0. A simple consequence is that no measurement can
determine, precisely and simultaneously, the position and momentum of a particle.
If such measurements were possible, they would leave the particle in a physical state
having ∆x = ∆p = 0, and no such quantum state exists. A more quantitative expres-
sion of this limitation on measurements is known as the Heisenberg Uncertainty
Principle. To derive it, we need to be able to compute ∆p for an arbitrary physical
state.

85
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6.1 The Expectation Value of pn

According to the Born Interpretation, the expectation value of any function F (x) of
position is given by

< F (x) > =
∫

F (x)Pdx(x)

=
∫

dx F (x)ψ∗(x, t)ψ(x, t) (6.2)

while from Ehrenfest’s Principle, one finds that the expectation value of momentum
is

< p >=
∫

dx ψ∗(x)

(

−ih̄
∂

∂x

)

ψ(x, t) (6.3)

But we would also like to know how to compute the expectation value of energy

< E >=< H > = <
p2

2m
+ V (x) >

=
1

2m
< p2 > + < V (x) > (6.4)

as well as the uncertainty in momentum

∆p2 =< p2 > − < p >2 (6.5)

and to evaluate either of these quantities, it is necessary to evaluate < p2 >. What
is needed is a probability distribution for momentum, Pdp(p), analogous to Pdx(x),
giving the probability that the particle momentum will be found within a small range
of momenta around p. This distribution can be deduced from the rule for computing
< p >, and the inverse Fourier transform representation (5.50).

At a given time t0, the wavefunction is a function of x only, which we denote,
again, by

φ(x) ≡ ψ(x, t0) (6.6)

and expectation value of momentum at that instant is given by

< p >=
∫

dxφ∗(x)

(

−ih̄
∂

∂x

)

φ(x) (6.7)

Expressing φ(x) in terms of its inverse Fourier transform, eq. (5.50), and proceeding
as in eq. (5.75)

< p > =
∫

dx φ∗(x)

(

−ih̄
∂

∂x

)

φ(x)

=
∫

dx

{

∫ dp1

2πh̄
f(p1)e

ip1x/h̄

}∗ (

−ih̄
∂

∂x

)

∫ dp2

2πh̄
f(p2)e

ip2x/h̄

=
∫ dp1

2πh̄
f ∗(p1)

∫ dp2

2πh̄
p2f(p2)

∫

dx ei(p2−p1)x/h̄

=
∫ dp1

2πh̄
f ∗(p1)

∫ dp2

2πh̄
p2f(p2)2πh̄δ(p1 − p2) (6.8)
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Then, using the delta function to eliminate one of the p-integrations, we find

< p >=
∫

dp p
f ∗(p)f(p)

2πh̄
(6.9)

Comparison of this expression to the corresponding expression for position

< x >=
∫

xPdx(x) (6.10)

shows that the probability Pdp(p) to find the particle momentum in an infinitesmal
range dp around momentum p is

Pdp(p) =
f ∗(p)f(p)

2πh̄
dp (6.11)

Then the expectation value < G(p) > of any function of momentum is given by

< G(p) >=
∫ dp

2πh̄
G(p)f ∗(p)f(p) (6.12)

and in particular

< pn >=
∫ dp

2πh̄
pnf ∗(p)f(p) (6.13)

It is useful to express < pn > directly in terms of the wavefunction φ(x), rather
than its Fourier transform. Using eq. (5.54) to reexpress f(p) in terms of φ(x), and
inserting this expression into (6.13), we have

< pn > =
∫ dp

2πh̄
pn
{
∫

dx1 φ(x1)e
−ipx1/h̄

}∗ ∫

dx2 φ(x2)e
−ipx2/h̄

=
∫

dx1 φ∗(x1)
∫

dx2 φ(x2)
∫ dp

2πh̄
pnei(x1−x2)p/h̄

=
∫

dx1 φ∗(x1)
∫

dx2 φ(x2)

(

ih̄
∂

∂x2

)n
∫ dp

2πh̄
ei(x1−x2)p/h̄

=
∫

dx1 φ∗(x1)
∫

dx2 φ(x2)

(

ih̄
∂

∂x2

)n

δ(x1 − x2) (6.14)

Integrating by parts n times with respect to x2, this becomes

< pn > =
∫

dx1

∫

dx2φ
∗(x1)δ(x1 − x2)

(

−ih̄
∂

∂x2

)n

φ(x2)

=
∫

dxφ∗(x)

(

−ih̄
∂

∂x

)n

φ(x) (6.15)

The conclusion is that the expectation value < pn > at any time t is just

< pn >=
∫

dx ψ∗(x, t) p̃n ψ(x, t) (6.16)

where p̃ is the momentum operator

p̃ = −ih̄
∂

∂x
(6.17)

introduced in the last lecture.
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6.2 The Heisenberg Uncertainty Principle

Let us use (6.16) to compute the momentum uncertainty ∆p for the gaussian wavepacket

φ(x) =
1

(πa2)1/4
e−x2/2a2

eip0x/h̄ (6.18)

which we already know has a momentum expectation value

< p >= p0 (6.19)

and a position uncertainty

∆x =
a√
2

(6.20)

The squared momentum uncertainty is

∆p2 = < p2 > − < p >2=< p2 > −p2
0

= −h̄2
∫

dx φ∗(x)
∂2

∂x2
φ(x) − p2

0

= −
h̄2

√
πa2

∫

dx exp

(

−i
p0x

h̄
−

x2

2a2

)

×
[

(i
p0

h̄
−

x

a2
)2 −

1

a2

]

exp

(

i
p0x

h̄
−

x2

2a2

)

− p2
0

=
h̄2

2a2
(6.21)

or

∆p =
h̄√
2a

(6.22)

Multiplying ∆x and ∆p, the product of uncertainties is simply

∆x∆p =
h̄

2
(6.23)

We will show in the next chapter (the section on the generalized Uncertainty
Principle) that h̄/2 is the smallest value for the product of ∆x∆p that can be obtained
for any wavefunction; wavefunctions which differ from the gaussian wavepacket have
products greater than h̄/2. Therefore, for any physical state, the product of position
and momentum uncertainties obeys the inequality

∆x∆p ≥
h̄

2
(6.24)

A corollary of this fact is
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The Heisenberg Uncertainty Principle

It is impossible, by any measurement process, to simultaneously de-
termine the position and momentum of a particle to an accuracy greater
than

∆x∆p =
h̄

2
(6.25)

If in fact we could determine the position and momentum to an accuracy greater
than (6.25), then the particle would be left in a physical state with ∆x∆p < h̄/2. But
according to eq. (6.24) there are no such physical states. Therefore, measurements of
that kind are impossible.

The Uncertainty Principle is an unavoidable consequence of quantum theory, and
if one could design a measurement process which would be more accurate than the
bound (6.25), then quantum theory would be wrong. We have already discussed one
attempt to measure x and p simultaneously, in the example of the Heisenberg mi-
croscope. In that case it was found that the photon composition of light, combined
with the Rayleigh criterion of resolution, results in ∆x∆p ≈ h̄, which is in agree-
ment with the Uncertainty Principle. There have been other ingenious proposals for
measurements which would violate the Uncertainty Principle, especially due to Al-
bert Einstein in his discussions with Niels Bohr.1 A careful study of these proposals
always reveals a flaw. In much the same way that the existence of perpetual motion
machines is ruled out by the Second Law of Thermodynamics, the existence of an
apparatus which would give a precise determination of position and momentum is in
conflict with the nature of physical states in quantum mechanics.

However, the example of Heisenberg’s microscope often leads to a misunderstand-
ing that the Uncertainty Principle is simply saying that ”the observation disturbs
what is being observed.” It is true that an observation usually changes the physical
state of the observed system. But it is not true that this is full content of the Un-
certainty principle. If position-momentum uncertainty were only a matter of light
disturbing the observed particle, then we would be free to imagine that a particle
really has a definite position and definite momentum at every moment in time, but
that the physical properties of light prevent their accurate simultaneous determina-
tion. This interpretation is wrong, because if a particle had a definite position and
momentum at every moment of time, then the particle would follow a definite tra-
jectory. We have already seen that the assumption that particles follow trajectories
is inconsistent with electron interference. The Heisenberg principle is best under-
stood, not as a slogan ”the observation disturbs what is observed,” but rather as a
consequence of the nature of physical states in quantum mechanics, which cannot be
simultaneously eigenstates of position and momentum. The fact that uncertainties

1c.f. Niels Bohr, ”Discussions with Einstein,” in Atomic Physics and Human Knowledge, available
on loan in my office.
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in position and momentum exist independent of any ”disturbance” of the system by
observation, and that these uncertainties have important physical consequences, is
very well illustrated by the stability of the Hydrogen atom.

• Why the Hydrogen Atom is Stable

Suppose the wavefunction of an electron is concentrated, more or less uniformly,
in a sphere of radius R around the nucleus, and falls rapidly to zero outside this
sphere. The precise form of the wavefunction is not so important, because we only
want to make a very rough estimate of the electron energy, whose expectation value
is given by

< H > = < Kinetic Energy > + < Potential Energy >

= <
p2

2m
> + < −

e2

r
>

=
∫

d3x ψ∗(x, y, z, t)(−
h̄2

2m
∇2)ψ(x, y, z, t)

+
∫

d3x ψ∗(x, y, z, t)(−
e2

r
)ψ(x, y, z, t) (6.26)

First of all we can estimate the expectation value of the potential energy, which is
roughly

< V >∼ −
e2

R
(6.27)

Next, the uncertainty in the particle position is

∆x ≈ ∆y ≈ ∆z ∼ R (6.28)

which implies, by the Uncertainty Principle,

∆px ≈ ∆py ≈ ∆pz ∼
h̄

2R
(6.29)

and the expectation value of kinetic energy is therefore on the order

< KE > =
1

2m
< p2

x + p2
y + p2

z >

=
1

2m
(∆p2

x + ∆p2
y + ∆p2

z)

∼
3h̄2

8mR2
(6.30)

The expectation value of the total energy is then

< H >=
3h̄2

8mR2
−

e2

R
(6.31)
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The total energy is minimized for d < H > /dR = 0, and this minimum is obtained
at

R =
3h̄2

4me2
(6.32)

which is not very far off the Bohr radius

r1 =
h̄2

me2
(6.33)

We can now understand why the electron doesn’t fall into the nucleus. The po-
tential energy is minimized by an electron localized at r = 0. However, the more
localized an electron wavefunction is, the smaller ∆x is, and the smaller ∆x is, the
greater is the uncertainty in ∆p. But the greater the value of ∆p, the greater is the
expectation value of kinetic energy

<
p2

2m
>∼

h̄2

2m∆x2
(6.34)

and at some point this (positive) kinetic energy overwhelms the (negative) Coulomb
potential, which goes like −e2/∆x. This is why the minimum electron energy in the
Hydrogen atom is obtained by a wavefunction of some finite extent, on the order of
the Bohr radius.

The application of the Uncertainty principle to the Hydrogen atom shows that
there is much more to this principle than simply the fact that an observation disturbs
an observed object. There are very many hydrogen atoms in the universe; very few
of them are under observation. If ∆p were due to a disturbance by observation,
then there would be nothing to prevent an unobserved electron from falling into the
nucleus. Nevertheless, all hydrogen atoms, observed or not, have a stable ground
state, and this is due to the fact that there is no physical state in which an electron
is both localized, and at rest.

Problem: Compute the expectation value of the kinetic and potential energy from
eq. (6.26), using the gaussian wavepacket in three dimensions

φ(x, y, z) = N exp[−(x2 + y2 + z2)/2R2] (6.35)

(apply the normalization condition to determine N). In computing the expectation
value of the potential energy, the formula for spherical coordinates

∫

dxdydz f(r) = 4π
∫

dr r2f(r) (6.36)

may be useful. Find the value of R which minimizes < H >, and compare this value
to the Bohr radius. Also compare numerically the minimum value of < H > to the
ground state energy E1 of the Bohr atom.
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6.3 The Energy of Energy Eigenstates

We have seen that the expectation value of energy is given by

< E >=
∫

dx ψ∗(x, t)H̃ψ(x, t) (6.37)

but of course a series of experiments can give much more information about the energy
distribution than just < E >. According to Bohr’s model of the Hydrogen atom, an
orbiting electron can be found to have only certain definite energies

En = −
(

me4

2h̄2

)

1

n2
(6.38)

and there must be some truth to this idea, because it explains atomic spectra so well.
We would like to use the Schrodinger equation to compute which energies are possible
for an orbiting electron or for any other system, and the probabilities of finding these
energies in a measurement process.

A first sign that the energies of bound states may be discrete comes from the
particle in a tube, where it was found that the energy eigenvalues are

En = n2 π2h̄2

2mL2
(6.39)

The question is: In what way are the energy eigenvalues of the time-independent
Schrodinger equation related to the energies that might actually be found in a partic-
ular measurement? We now show, using eq. (6.37), and the orthogonality property
(see below) of the energy eigenstates

< φn|φm >= 0 if En += Em (6.40)

that the set of energy eigenvalues coincides with the set of energies that can be found
by measurement, and also show how to compute the probability associated with each
energy.

For simplicity, assume that the eigenvalues are discrete and non-degenerate, which
means that no two eigenvalues are equal. To prove the orthogonality property (6.40),
begin by considering the quantity

Hmn =
∫

dx φ∗
m(x) H̃ φn(x) (6.41)

From the time-independent Schrodinger equation

H̃φk(x) = Ekφk(x) (6.42)

this becomes

Hmn = En

∫

dx φ∗
m(x)φn(x)

= En < φm|φn > (6.43)
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On the other hand, using the integration by parts formula (5.7),

Hmn =
∫

dx

{

−
h̄2

2m
φ∗

m

∂2φn

∂x2
+ V (x)φ∗

mφn

}

=
∫

dx

{

−
h̄2

2m

∂2φ∗
m

∂x2
φn + V (x)φ∗

mφn

}

=
∫

dx (H̃φm)∗φn

= E∗
m < φm|φn > (6.44)

Comparing (6.43) and (6.44),

En < φm|φn >= E∗
m < φm|φn > (6.45)

For the case n = m, this equation implies

En = E∗
n (6.46)

i.e. the energy eigenvalues are real, while for n += m

(En −Em) < φm|φn >= 0 (6.47)

When the eigenvalues are non-degenerate, it means that

n += m =⇒ En += Em (6.48)

and therefore
< φm|φn >= 0 (n += m) (6.49)

Choosing the eigenstates φn to satisfy the normalization condition

< φn|φn >= 1 (6.50)

establishes the relation
< φm|φn >= δmn (6.51)

which we have already seen to be true (eq. (5.122)) in the case of the particle in a
tube.

According to eq. (5.38), the general solution to the time-dependent Schrodinger
equation can be expressed in terms of the energy eigenstates as

ψ(x, t) =
∑

n

anφne−iEnt/h̄ (6.52)

Then the energy expectation value is

< E > =
∫

dx

[

∑

n

amφme−iEmt/h̄

]∗

H̃
∑

n

anφne−iEnt/h̄

=
∑

m

∑

n

a∗
mane−i(En−Em)t/h̄En < φm|φn >

=
∑

n

Ena∗
nan (6.53)
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Now recall the expression (4.67), from probability theory, for the expectation value
of any quantity Q

< Q >=
∑

n

QnP (Qn) (6.54)

where {Qn} are the set of possible values of the quantity, and P (Qn) is the probability
that the value Qn will be found by measurement. Comparing (6.53) to (6.54), we find
that:

I. The set of energies that can be found by measurement is the set of energy eigenvalues
{En} of the time independent Schrodinger equation; and

II. The probability that a state ψ(x, t) will be found to have an energy En is given
by the squared modulus of coefficients

P (En) = |an|2 (6.55)

To compute an in terms of the wavefunction ψ(x, t), we multiply both sides of
(6.52) by φ∗

m(x), and integrate over x, and use the orthogonality property (6.51)
∫

dx φ∗
m(x)ψ(x, t) =

∫

dx φ∗
m(x)

∑

n

anφne−iEnt/h̄

< φm|ψ > =
∑

n

ane−iEnt/h̄ < φm|φn >

=
∑

n

ane−iEnt/h̄δmn

= ame−iEmt/h̄ (6.56)

So we see that
an(t) ≡ ane−iEnt/h̄ =< φn|ψ > (6.57)

and the probability for finding the energy En, when the system is in the physical state
|ψ >, is given by

P (En) = | < φn|ψ > |2 (6.58)

In particular, for the particle in a tube, the lowest possible energy for the particle
is the lowest eigenvalue

E1 =
π2h̄2

2mL2
(6.59)

and the corresponding eigenstate

φ1(x) =

√

2

L
sin(

πx

L
) (6.60)

is known as the ”ground state.” In general, the ground state is the lowest energy
state of a quantum system (in quantum field theory, it is also known as the ”vacuum
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state”). Energy eigenstates of higher energies are known as ”excited states.” The
fact that the ground state energy of the particle in the tube E1 is greater than zero
is another example of the Uncertainty Principle at work. Since the the particle is
confined in a region of length L, it means that ∆x ≤ L, and therefore

∆p >
h̄

2L
(6.61)

Assuming < p >= 0, this would give a lower bound to the energy of roughly

E ≈
(∆p)2

2m
>

h̄2

8mL2
(6.62)

and this lower bound is in fact smaller, by some numerical factors, than the true
ground state energy E1 given in (6.59), in agreement with the Uncertainty Principle.
Note that the dependence on h̄, m, L of the lower bound is the same as that of E1.
Again, it is not a question of ”the observation disturbing the observed.” There is
simply no physical state of a particle in a tube which has an energy lower than E1.

Energy eigenstates are stationary states, in the sense that the time-dependence of
the wavefunction is entirely contained in an overall phase factor

ψα(x, t) = φα(x)e−iEαt/h̄ (6.63)

and this phase cancels out when computing expectation values of any function of x
and p, e.g.

< x > =
∫

dx ψ∗
α(x, t) x ψα(x, t)

=
∫

dx φ∗
α(x) x φα(x)

< p > =
∫

dx ψ∗
α(x, t) p̃ ψα(x, t)

=
∫

dx φ∗
α(x) p̃ φα(x) (6.64)

Therefore

∂t < x > = 0

< −
∂V

∂x
> = 0 (6.65)

where the second equation follows from ∂t < p >= 0, and Ehrenfest’s Principle. Note
that these equations are similar to the corresponding expressions for a stationary
state in classical mechanics: the particle is static, so

∂tx = 0 (6.66)
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and it remains static because the force on the particle vanishes, i.e.

F = −
∂V

∂x
= 0 (6.67)

On the other hand, in classical mechanics the kinetic energy of a stationary state
is zero. This is not the case in quantum mechanics. For the example of the particle
in a tube, the expectation value of momentum vanishes in an energy eigenstate

< p >n =
∫ L

0
dx φ∗

n(x) p̃ φn(x)

=
2

L

∫ L

0
dx sin(

nπx

L
)

(

−ih̄
∂

∂x

)

sin(
nπx

L
)

= 0 (6.68)

However, as required by the Uncertainty Principle, the uncertainty in momentum is
not zero:

(∆pn)2 =
∫ L

0
dxφ∗

n(x) (p̃− < p >n)2 φn(x)

=
2

L

∫ L

0
dx sin(

nπx

L
)

(

−ih̄
∂

∂x

)2

sin(
nπx

L
)

=
n2h̄2π2

L2
(6.69)

The energy eigenvalues (in this example) are simply given by the kinetic energy which
is due to this uncertainty

En =
(∆pn)2

2m
=

n2π2h̄2

2mL2
(6.70)

There is no adequate classical picture, either in terms of a particle following a tra-
jectory (in which case < x > changes in time), or of a particle at rest (in which
case the kinetic energy vanishes), of the energy eigenstates. These are best pictured
as standing waves, which, at a more fundamental level, represent the components of
vectors in Hilbert space. Nevertheless, when standing waves of different energies are
superimposed, it is possible to produce a wavepacket which, as we have seen in the
last lecture, roughly follows a classical trajectory according to Ehrenfest’s Principle.
This is an important point to keep in mind: Dynamics, non-stationarity, change of
any sort in quantum mechanics, implies an uncertainty in the value of energy. If the
value of the energy is certain, the system is in an energy eigenstate, and if the system
is in an energy eigenstate, the system is stationary.



Chapter 7

Operators and Observations

Is this a dagger I see before me, the handle toward my hand? Come, let me clutch
thee! I have thee not, and yet I see thee still. Art thou not, fatal vision, as sensible to
feeling as to sight? Or art thou but a dagger of the mind, a false creation, proceeding
from the heat-oppressed brain?
- Shakespeare, Macbeth

The mathematical core of quantum mechanics is linear algebra in an infinite num-
ber of dimensions. Almost every manipulation in quantum theory can be intepreted
as an operation involving inner products and/or matrix multiplication. This is for
three reasons. First, as we have seen in Lecture 4, physical states in quantum me-
chanics are represented by wavefunctions, and any function can be regarded as a
vector with a continuous index. Second, the dynamical equation of quantum me-
chanics, i.e. the Schrodinger equation, is a linear differential equation. As we will
see, linear differential operators can be interpreted as infinite-dimensional matrices.
Finally, the predictions of quantum mechanics, namely, the probabilities of observing
such-and-such an event, are in fact determined by the inner products of vectors in
Hilbert Space. This lecture will be devoted to these mathematical aspects of quantum
theory.

7.1 Probabilities From Inner Products

We have so far learned how to use the quantum state |ψ > to calculate the expectation
value of any function of position, any function of momentum, or any sum of such
functions, such as energy. In particular

< x > =
∫

dx ψ∗(x, t) x̃ ψ(x, t)

< p > =
∫

dx ψ∗(x, t) p̃ ψ(x, t)

97
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< H > =
∫

dx ψ∗(x, t) H̃ ψ(x, t) (7.1)

where

x̃ψ(x, t) ≡ xψ(x, t)

p̃ψ(x, t) ≡ −ih̄
∂

∂x
ψ(x, t)

H̃ψ(x, t) ≡
{

−
h̄2

2m

∂2

∂x2
+ V (x)

}

ψ(x, t) (7.2)

The probabilities for finding a particle near a certain position x0, or momentum p0,
or at a certain energy En, are given by

Pdx(x0) = |ψ(x0)|2dx

Pdp(p0) = |
1√
2πh̄

f(p0)|2dp

P (En) = |an|2 (7.3)

where

an = < φn|ψ >

f(p0) =
∫

dx φ(x)e−ip0x/h̄ (7.4)

A probability is a number, a quantum state |ψ > is a vector. Numbers can be
obtained from vectors by taking inner products. The probability P (En) is clearly the
square modulus of an inner product, and in fact the other two probabilities can also
be expressed in that way. Define

φx0
(x) ≡ δ(x− x0)

φp0
(x) ≡

1√
2πh̄

eip0x/h̄ (7.5)

Then we may write

ψ(x0) =
∫

dx δ(x− x0)ψ(x)

= < φx0
|ψ > (7.6)

and also

1√
2πh̄

f(p) =
∫

dx

[

1√
2πh̄

eip0x/h̄

]∗

ψ(x, t)

= < φp0
|ψ > (7.7)
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In terms of φx0
, φp0

, φn, the probabilities can be rewritten as follows:

Pdx(x0) = | < φx0
|ψ > |2dx

Pdp(p0) = | < φp0
|ψ > |2dp

P (En) = | < φn|ψ > |2 (7.8)

The (generalized) functions φx0
, φp0

, φn all share two things in common. First, they
all satisfy Eigenvalue Equations:

x̃φx0
(x) = x0φx0

(x)

p̃φp0
(x) = p0φp0

(x)

H̃φn(x) = Enφn(x) (7.9)

The functions φx0
, φp0

, φn are known as ”Eigenfunctions” or ”Eigenstates” (the
terms are synonymous), of the operators x̃, p̃, H̃ respectively, and the corresponding
numbers x0, p0, En are known as ”Eigenvalues”. Secondly, the inner products of
these eigenstates are either delta-functions or Kronecker deltas, depending on whether
the eigenvalues belong to a continuous range (x0, p0 ∈ [−∞,∞]), or a discrete set
(En ∈ {Ek}):

< φx1
|φx2

> =
∫

dx δ(x− x1)δ(x− x2)

= δ(x1 − x2)

< φp1
|φp2

> =
∫

dx
1

2πh̄
ei(p2−p1)x/h̄

= δ(p1 − p2)

< φn|φm > = δnm (7.10)

The relationship that exists between observables x, p, H and operators x̃, p̃, H̃, and
between probabilites and inner products, generalizes to all other observable quantities
of a system.

7.2 Operators and Observables

An Observable is any property of a system that can be measured; e.g. position,
momentum, energy, angular momentum, magnetic moment, and so on. In classical
mechanics, all observables are functions of the generalized coordinates and momenta
{qa, pa}, so a knowledge of the physical state implies a knowledge of all possible
observables of the system.

An Operator is a rule for changing functions into other functions. Given any
function |ψ > as input, an operator specifies a unique function |ψ′ > as output.
Symbolically,

|ψ′ >= O|ψ > or |Oψ > (7.11)
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or, in ”component” notation
ψ′(x) = Õψ(x) (7.12)

A linear operator has the property that, for any two functions |ψ1 > and ψ2 >, and
any two constants a and b,

O{a|φ1 > +b|ψ2 >} = aO|ψ1 > +bO|ψ2 > (7.13)

Examples of linear operators are multiplication by a constant

Õψ(x) = cψ(x) (7.14)

or multiplication by a fixed function F (x),

Õψ(x) = F (x)ψ(x) (7.15)

or differentiation

Õψ(x) =
∂

∂x
ψ(x) (7.16)

A non-linear operation could be, e.g., taking a square root

Õψ(x) =
√

ψ(x) (7.17)

In Lecture 4 it was noted that any linear operator O has a matrix representation
O(x, y) such that eq. (7.11) can be written, in component form,

ψ′(x) =
∫

dy O(x, y)ψ(y) (7.18)

in analogy to matrix multiplication

%v′ = M%v

v′
i =

N
∑

i=1

Mijvj (7.19)

Given a linear operation Õ, we can always obtain a corresponding matrix represen-
tation O(x, y) by using the Dirac delta function

Õψ(x) = Õ
∫

dy δ(x− y)ψ(y)

=
∫

dy
[

Õδ(x− y)
]

ψ(y) (7.20)

so that
O(x, y) = Õδ(x− y) (7.21)
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An important subset of linear operators are the Hermitian operators. An Hermitian
operator is a linear operator with the property that

< ψ|O|ψ > =
∫

dxdy ψ∗(x)O(x, y)ψ(y)

= a real number, for any ψ(x) whatever (7.22)

The Relation Between Operators and Observables:

In quantum mechanics, to every observable O there exists a correspond-
ing hermitian operator Õ. Knowledge of the physical state ψ(x, t) at some
time t implies a knowledge of the expectation value of every observable,
according to the rule

< O > = < ψ|O|ψ >

=
∫

dx
∫

dy ψ∗(x)O(x, y)ψ(y)

=
∫

dx ψ∗(x) Õ ψ(x) (7.23)

This is a principle of quantum mechanics which simply generalizes the examples
we have already seen.

O = position

< x > = < ψ|x|ψ >

x̃ψ(x) = xψ(x)

X(x, y) = xδ(x− y) (7.24)

O = momentum

< p > = < ψ|p|ψ >

p̃ψ(x) = −ih̄
∂

∂x
ψ(x)

P (x, y) = −ih̄
∂

∂x
δ(x− y) (7.25)

O = energy
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E = < ψ|H|ψ >

H̃ψ(x) =

[

−
h̄2

2m

∂2

∂x2
+ V (x)

]

ψ(x)

H(x, y) =

[

−
h̄2

2m

∂2

∂x2
+ V (x)

]

δ(x− y) (7.26)

Note that

H̃ = H [p̃, x] =
p̃2

2m
+ V (x) (7.27)

so that, as noted in Lecture 5, the operator corresponding to the Hamiltonian function
is obtained by replacing the momentum p by the momentum operator p̃.

The reason that an observable must correspond to an Hermitian operator is that
expectation values are real numbers. The reality condition (7.22) requires, for an
Hermitian operator,

< ψ|O|ψ > = < ψ|O|ψ >∗
∫

dxdy ψ∗(x)O(x, y)ψ(y) =
∫

dxdy ψ(x)O∗(x, y)ψ∗(y)

=
∫

dxdy ψ∗(y)O∗(x, y)ψ(x)

=
∫

dxdy ψ∗(x)O∗(y, x)ψ(y)

=
∫

dxdy ψ∗(x)O†(x, y)ψ(y)

= < ψ|O†|ψ > (7.28)

where we renamed variables x→ y and y → x in the second to last line. The operator
Õ† is known as the Hermitian Conjugate of the operator Õ. It is pronounced “O-
dagger,” and has matrix elements

O†(x, y) = O∗(y, x) (7.29)

An operator is Hermitian iff
Õψ(x) = Õ†ψ(x) (7.30)

or, in matrix representation

∫

dy O(x, y)ψ(y) =
∫

dy O∗(y, x)ψ(y) (7.31)

for any physical state |ψ >.
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This hermiticity relation is quite restrictive; for example, it is not even satisfied
by the simple operation of differentiation:

Õψ(x) =
∂

∂x
ψ(x) (7.32)

In that case

O(x, y) =
∂

∂x
δ(x− y) (7.33)

so that

O†(x, y) =
∂

∂y
δ(y − x) (7.34)

and therefore

Õ†ψ(x) =
∫

dyO†(x, y)ψ(y)

=
∫

dy

[

∂

∂y
δ(y − x)

]

ψ(y)

=
∫

dy δ(x− y)

[

−
∂ψ

∂y

]

= −
∂

∂x
ψ(x)

= −Õψ(x) (7.35)

Since Õ is not hermitian in this case, it is possible for < ψ|O|ψ > to be imaginary.
In fact, for the gausian wavepacket (6.1)

< φ|Oφ > =
1√
πa2

∫

dx exp[−
x2

2a2
− i

p0x

h̄
]
∂

∂x
exp[−

x2

2a2
+ i

p0x

h̄
]

= i
p0

h̄
(7.36)

So the derivative operator cannot correspond to a physical observable, because it
would lead to imaginary expectation values.

The operators of the three examples above, corresponding to the observables of
position, momentum, and energy, had therefore better be Hermitian. Lets check this.

Hermiticity of the Position Operator

From the matrix representation

X(x, y) = xδ(x− y) (7.37)

we have, from the properties of delta functions,

X†(x, y) = X∗(y, x)

= yδ(y − x)

= xδ(x− y)

= X(x, y) (7.38)
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Therefore the position operator is Hermitian, and < x > is always real.

Hermiticity of the Momentum Operator

The matrix representation of the momentum operator is

P (x, y) = p̃δ(x− y)

= −ih̄
∂

∂x
δ(x− y) (7.39)

Then hermitian conjugate of the momentum operator has matrix elements

P †(x, y) = P ∗(y, x)

= ih̄
∂

∂y
δ(x− y) (7.40)

and we have

p̃†ψ(x) =
∫

dyP †(x, y)ψ(y)

=
∫

dy

[

ih̄
∂

∂y
δ(x− y)

]

ψ(y)

=
∫

dy δ(x− y)

[

−ih̄
∂

∂y

]

ψ(y)

= −ih̄
∂

∂x
ψ(x)

= p̃ψ(x) (7.41)

Therefore the momentum operator is Hermitian, and < p > is always real.

Hermiticity of the Hamiltonian Operator

In this case

H̃†ψ(x) =
∫

dy

[{

−
h̄2

2m

∂2

∂y2
+ V (y)

}

δ(x− y)

]

ψ(y)

= −
h̄2

2m

∫

dy ψ(y)
∂2

∂y2
δ(x− y) +

∫

dy V (y)δ(x− y)ψ(y)

=
h̄2

2m

∫

dy
∂ψ

∂y

∂

∂y
δ(x− y) + V (x)ψ(x)

= −
h̄2

2m

∫

dy
∂2ψ

∂y2
δ(x− y) + V (x)ψ(x)

=

[

−
h̄2

2m

∂2

∂x2
+ V (x)

]

ψ(x)

= H̃ψ(x) (7.42)
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where we have integrated twice by parts. This establishes the hermiticity of the
Hamiltonian.

The Hermitian conjugate Õ† of any linear operator Õ, hermitian or not, has the
following important property:

< ψ1|O|ψ2 >=< O†ψ1|ψ2 > (7.43)

for any |ψ1 > and |ψ2 >. This is because

< ψ1|O|ψ2 > =
∫

dx
∫

dy ψ∗
1(x)O(x, y)ψ2(y)

=
∫

dy
[
∫

dx O(x, y)ψ∗
1(x)

]

ψ2(y)

=
∫

dy
[
∫

dx O∗(x, y)ψ1(x)
]∗

ψ2(y)

=
∫

dy
[
∫

dx O†(y, x)ψ1(x)
]∗

ψ2(y)

= < O†ψ1|ψ2 > (7.44)

In particular, for an Hermitian operator

< ψ1|O|ψ2 >=< Oψ1|ψ2 > (7.45)

Exercise: Show that the Hermitian conjugate of a product of linear operators
A, B, C, D is given by

(ABCD)† = D†C†B†A† (7.46)

7.3 Eigenstates As States of Zero Uncertainty

What does a measurement do?
A measurement apparatus is designed to determine the value of some observable

O, and by doing so it must leave the system in a physical state in which the value
of that observable is a definite number. But that means that the system is left in a
state for which the uncertainty ∆O of the observable vanishes, at least at the instant
the measurement is performed. If, for example, the position of a particle is measured
precisely, then the particle is known to be at that position the instant the measurement
is performed; the physical state must resemble a Dirac delta function. Likewise, if the
momentum of a particle is measured, the particle is known to have that momentum,
and the physical state must resemble a plane wave. In general, whatever the state of
the system may be just before the measurement, the outcome of a measurement is a
state of ”zero-uncertainty” ∆O = 0 in the observable O. Exactly how a measurement
apparatus accomplishes this feat is a question which will not concern us now, but will
be taken up later in the course.
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From the fact that every observable O = x, p, E, ... is associated with an Hermitian
operator Õ = x̃, p̃, H̃, ..., we see that a zero-uncertainty state φ(x) must have the
property

(∆O)2 =< φ|(O− < O >)2|φ >= 0 (7.47)

Denote the expectation value < O > by λ, and define

D̃ ≡ Õ − λ (7.48)

Since Õ is Hermitian, and multiplication by a constant λ is an Hermitian operation,
the operator D̃ is also Hermitian. Then, using the hermiticity of D̃

(∆O)2 = < φ|(D)2|φ >

= < φ|D|Dφ >]

= < φ|D|φ′ >

= < Dφ|φ′ >

= < φ′|φ′ >

=
∫

dx φ′∗(x)φ′(x) (7.49)

where we have defined
φ′(x) ≡ D̃φ(x) (7.50)

Now putting together

∆O = 0

(∆O)2 =
∫

dx φ′∗(x)φ′(x)

φ′∗(x)φ′(x) ≥ 0 for all x (7.51)

we must conclude that

0 = φ′(x)

= D̃φ(x)

= [Õ − λ]φ(x) (7.52)

or, in other words, for a zero-uncertainty state

Õφ(x) = λφ(x) (7.53)

This an eigenvalue equation, of the form already seen for position, momentum and
energy in equation (7.9). Therefore:

I) Any state with vanishing uncertainty in the observable O is an eigenstate
of the corresponding Hermitian operator Õ.
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A measurement process therefore has the property that, whatever the physical state
of the object may be at the time just prior to the measurement, the system is left in
one of the eigenstates of Õ at a time just after the measurement.

We can go further. Given that the expectation value of the observable < O > in
the eigenstate φ is the eigenvalue λ, and given that the uncertainty ∆O = 0 vanishes,
it follows that a measurement of O could only result in the value O =< O >= λ.
Any measurement that was different from the mean value would imply a non-zero
uncertainty. But since the result of a measurement is to leave the system in such a
zero-uncertainty state, it follows that

II) A measurement of the observable O can only result in a value which is
equal to one of the eigenvalues of the corresponding operator Õ.

In general there are many solutions φ(x), λ to the eigenvalue equation (7.53), so it
is useful to denote a set of linearly independent solutions as {φα(x), λα}, with different
solutions distinguished by the value of the subscript α. The eigenvalue equation is
written

Õφα = λαφα (7.54)

with φα the eigenstate and λα the corresponding eigenvalue. If all the eigenvalues
are different, the eigenvalues are said to be non-degenerate. If there are n linearly-
independent eigenstates φα1

, φα2
, ..., φαn whose eigenvalues are the same, i.e. λα1

=
λα2

= ... = λαn , then the eigenvalue is said to be n-fold degenerate. For example,
the energy eigenvalues of a free particle are two-fold degenergate, because for each
eigenvalue E there are two linearly independent eigenstates, e.g.

ei
√

2mE/h̄ and e−i
√

2mE/h̄ (7.55)

which satisfy

H̃φ = −
h̄2

2m

∂2

∂x2
φ = Eφ (7.56)

Theorem H1

The eigenvalues of an Hermitian operator are real.

Proof: This follows directly from the definition of an Hermitian operator

< ψ|O|ψ > is real (7.57)

Choose ψ to be an eigenstate φα

< φα|O|φα >= λa < φα|φα > (7.58)

Since the inner product of any vector with itself is a real number, it follows that the
lhs is real if and only if λα is real.
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Theorem H2

If two eigenstates of an Hermitian operator correspond to different
eigenvalues, then the two eigenstates are orthogonal.

Proof: Suppose φα′ and φα′′ are eigenstates of an Hermitian operator Õ, and λα′ +=
λα′′ . From eq. (7.45), we have

< φα′|O|φα′′ > = < Oφα′|φα′′ >

< φα′ |λα′′|φα′′ > = < λα′φα′|φα′′ >

λa′′ < φα′|φα′′ > = λ∗
α′ < φα′ |φα′′ >

λa′′ < φα′|φα′′ > = λa′ < φα′ |φα′′ > (7.59)

Given that the eigenvalues are different, the only way this equation can hold true is
that

< φα′ |φα′′ >= 0 (7.60)

Theorem H3

For any square-integrable function ψ(x) and any Hermitian operator Õ,
the function ψ can always be expressed as some linear combination of the
eigenstates of Õ

ψ(x) =
∑

α

cαφα(x) (7.61)

where the sum is replaced by an integral if the eigenvalues span a contin-
uous range.
(We will not try to prove this here.)

With the help of these theorems, we are ready to say something about physics:

The Generalized Born Interpretation (I)

Suppose that an observable O corresponds to a Hermitian operator Õ whose eigen-
values are discrete and non-degenerate, and whose eigenstates are normalized to

< φα′ |φα′′ >= δα′α′′ (7.62)

Denote the quantum state of the system at the time of measurement by |ψ >. Then:

(I) The outcome of any measurement of the observable will be one of the
eigenvalues {λα}.
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(II) The probability P (λα) that any given eigenvalue will be the result of
the measurement is

P (λa) = | < φα|ψ > |2 (7.63)

The argument for eq. (7.63) is identical to the reasoning of Lecture 6 concerning
energy eigenvalues. This time, we will carry the argument through in bra-ket notation.
The expectation value is given by

< O >=< ψ|O|ψ > (7.64)

From Theorem H3
|ψ >=

∑

α

cα|φα > (7.65)

To determine the coefficients cα, multiply both sides of eq. (7.65) by < φβ|

< φβ|ψ >=
∑

α

cα < φβ|φα > (7.66)

Using Theorem H2
< φβ|ψ >=

∑

α

cαδαβ (7.67)

therefore
cβ =< φβ|ψ > (7.68)

The bra vector < ψ| corresponding to the ket |ψ > is

< ψ| =
∑

α

c∗α < φα| (7.69)

Substituting these expressions into the expectation value

< O > =

[

∑

α

c∗α < φα|
]

O





∑

β

cβ|φβ >





=
∑

α

∑

β

c∗αcβ < φα|O|φβ >

=
∑

α

∑

β

c∗αcβ < φα|λα|φβ >

=
∑

α

∑

β

λαc
∗
αcβ < φα|φβ >

=
∑

α

∑

β

λαc
∗
αcβδαβ

=
∑

α

λαc
∗
αcα

=
∑

α

λα| < φα|ψ > |2 (7.70)
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Finally, compare this expression for < O > against the expression for an expectation
value from probability theory

< O >=
∑

α

OαP [Oα] (7.71)

where {Oα} are the possible values that the observable can have. We have already
shown, in the beginning of this section, that the only values which can be found by
a measurement are the eigenvalues of Õ, i.e.

{Oα} = {λα} (7.72)

then the probability is uniquely determined to be

P (λa) = | < φα|ψ > |2 (7.73)

and this establishes the Generalized Born Interpretation.

Exercise: Write equations (7.64) through (7.73) in component notation (i.e. in terms
of functions and integrals over functions).

Let us record and review the solutions to the eigenvalue equations seen thus far:

Eigenstates of Position

For
x̃ = x (7.74)

the eigenvalue equation is
xφx0

(x) = x0φx0
(x) (7.75)

which has solutions

{eigenstates φx0
(x) = δ(x− x0), eigenvalues x0 ∈ [−∞,∞]} (7.76)

with inner products

< φx1
|φx2

>= δ(x1 − x2) (7.77)

As a consequence of theorem H3, any arbitrary function ψ(x) can be written as a
superposition of these eigenstates:

ψ(x) =
∫

dx0 cx0
φx0

(x)

=
∫

dx0 cx0
δ(x− x0) (7.78)

which is seen to be satisfied by choosing

cx0
= ψ(x0) (7.79)
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Eigenstates of Momentum

For

p̃ = −ih̄
∂

∂x
(7.80)

the eigenvalue equation is

−ih̄
∂

∂x
φp0

(x) = p0φp0
(x) (7.81)

which has solutions
{

eigenstates φp0
(x) =

1√
2πh̄

eip0x/h̄, eigenvalues p0 ∈ [−∞,∞]

}

(7.82)

with inner products

< φp1
|φp2

>= δ(p1 − p2) (7.83)

As a consequence of theorem H3, any arbitrary function ψ(x) can be written as a
superposition of these eigenstates:

ψ(x) =
∫

dp0 cp0
φp0

(x) (7.84)

The coefficient function cp0
is obtained by multiplying both sides of this equation by

φ∗
p1

(x), and integrating over x
∫

dx φ∗
p1

(x)ψ(x) =
∫

dx
∫

dp0 cp0
φ∗

p1
(x)φp0

(x)

1√
2πh̄

∫

dx ψ(x)e−ip1x/h̄ =
∫ dp0

2πh̄
cp0

∫

dx ei(p0−p1)x/h̄

=
∫

dp cp0
δ(p1 − p2) (7.85)

or

cp =
1√
2πh̄

∫

dx ψ(x)e−ip1x/h̄ (7.86)

Eigenstates of Energy: The Particle in a Tube

The Hamiltonian operator is

H̃ = −
h̄2

2m

∂2

∂x2
+ V (x) (7.87)

where V (x) for the particle in a tube was given in eq. (5.100). The eigenvalue
equation is the time-independent Schrodinger equation

[

−
h̄2

2m

∂2

∂x2
+ V (x)

]

φn(x) = Enφn(x) (7.88)
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which has solutions






eigenstates φn(x) =

√

2

L
sin[

nπx

L
], eigenvalues En = n2 h̄2π2

2mL2
, , n = 1, 2, 3, ...







(7.89)
The eigenstates have inner products

< φn|φm >= δnm (7.90)

Once again, theorem H3 insists that any arbitrary function ψ(x) can be written as a
linear combination1

ψ(x) =
∞
∑

n=1

cnφn(x)

=

√

2

L

∞
∑

n=1

cn sin[
nπx

L
] (7.91)

This is a Fourier series, and it is well known that any function in the interval [0, L]
can be expressed in this form. The coefficients cn are obtained in the same way as
before, i.e. by multiplying both sides by φ∗

m and integrating over x:

|ψ > =
∞
∑

n=1

cnφn(x)

< φm|ψ > =
∞
∑

n=1

cn < φm|φn >

=
∞
∑

n=1

cnδnm (7.92)

and we find

cm = < φm|ψ >

=

√

2

L

∫ L

0
dx sin[

mπx

L
]ψ(x) (7.93)

7.4 The Generalized Uncertainty Principle

Suppose we want to devise a measurement apparatus that will measure two observ-
ables A and B simultanously. From the discussion of previous sections, it is clear

1We exclude pathological cases for which < E >= ∞, such as wavefunctions which are non-zero
in the regions x < 0 or x > L.
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that the result of such a measurement will be to leave the system in a state of zero
uncertainty in both observables, i.e. ∆A = ∆B = 0, and that means that the physical
state would have to be an eigenstate of both both Ã and B̃. Now, it may or may not
be true that such physical states exist, in general, for all possible eigenvalues of Ã and
B̃. If not, then it is not possible to measure the observables A and B simultanously.
For example, in the case of position x and momentum p, there are no physical states
which are eigenstates of both x̃ and p̃; this is why it is impossible to measure both x
and p simultaneously and precisely.

There is a simple test for whether or not two observables can be measured simul-
taneously, which requires the concept of the commutator. The Commutator of two
operators is defined to be

[Ã, B̃] ≡ ÃB̃ − B̃Ã (7.94)

If [Ã, B̃] = 0, the two operators are said to commute. Commutators are computed by
letting them act on an arbitrary function. For example:

[x̃, x̃2]f(x) = (xx2 − x2x)f(x) = 0 (7.95)

therefore x̃ and x̃2 commute, i.e.

[x̃, x̃2] = 0 (7.96)

Similarly

[x̃, p̃y]f(x, y, z) =

[

x(−ih̄
∂

∂y
)− (−ih̄

∂

∂y
)x

]

f(x)

= −ih̄

[

(x
∂f

∂y
− x

∂f

∂y

]

= 0 (7.97)

which means that x̃ and p̃y commute,

[x̃, p̃y] = 0 (7.98)

However,

[x̃, p̃]f(x) =

[

x(−ih̄
∂

∂x
)− (−ih̄

∂

∂x
)x

]

f(x)

= −ih̄

(

x
∂f

∂x
−

∂

∂x
(xf)

)

= −ih̄

(

x
∂f

∂x
− x

∂f

∂x
− f

)

= ih̄f (7.99)
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From this we can conclude that the operators corresponding to position along the
x-axis, and momentum in the x-direction, do not commute, and that

[x̃, p̃] = ih̄ (7.100)

Problem: Compute the commutators: [H̃, x̃], [H̃, p̃], [p̃2, x̃2].

The condition that two observables can be measured simultaneously is then stated
by:

The Commutator Theorem

Two observables A and B are simultaneously measureable (have the
same set of eigenstates) if and only their corresponding operators com-
mute, i.e. [Ã, B̃] = 0.

The fact that position and momentum are not simultaneously observable is a
special case of this theorem. For simplicity, we will prove theorem only in the case
that the eigenvalues of Ã and B̃ are discrete and non-degenerate.

Let us begin with the ”if” part of the theorem: [Ã, B̃] = 0 implies that eigenstates
of Ã are eigenstates of B̃ and vice versa. Now [Ã, B̃] = 0 means that

ÃB̃f(x) = B̃Ãf(x) (7.101)

and let φa be any eigenstate of Ã, i.e.

Ãφa = aφa (7.102)

Then

ÃB̃φa(x) = B̃Ãφa(x)

= aB̃φa(x) (7.103)

Now if we define
φ′

a = B̃φa (7.104)

then eq. (7.103) becomes
Ãφ′

a = aφ′
a (7.105)

which means that φ′
a is an eigenstate of Ã with eigenvalue a. But since the eigenvalues

of Ã are non-degenerate, it can only be that φ′
a is proportional to φa, i.e.

φ′
a(x) = bφa(x) (7.106)
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where b is some constant. In that case, from the definition of φ′,

B̃φa(x) = bφa(x) (7.107)

This proves that every eigenstate of Ã is an eigenstate of B̃. Such states are zero-
uncertainty states of both A and B, so simultaneous measurement is possible.

Next we prove the ”only if” part of the commutator theorem. Suppose the outcome
of a measurement is that A = a and B = b. Since the eigenvalues of Ã are non-
degenerate, the resulting physical state is φa, where

Ãφa = aφa (7.108)

However, this must also be a zero-uncertainty state for B, and therefore

B̃φa = bφa (7.109)

It follows that

AB|φa > = bA|φa >

= ba|φa > (7.110)

while

BA|φa > = aB|φa >

= ab|φa > (7.111)

therefore

[A, B]|φa > = (AB − BA)|φa >

= (ba− ab)|φa >

= 0 (7.112)

Now, according to theorem H3, any square-integrable function can be represented as
a linear combination of eigenstates of Ã, i.e.

|f >=
∑

a

ca|φa > (7.113)

and this means that

[Ã, B̃]|f > =
∑

a

ca[Ã, B̃]|φa >

= 0 (7.114)

If the operator [Ã, B̃] acting on any function f(x) gives 0, then the operator itself is
zero

[Ã, B̃] = 0 (7.115)
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which proves the ”only if” portion of theorem.
The proof above extends trivially to continuous non-degenerate eigenvalues, sim-

ply replacing a discrete index by a continuous index, and sums by integrals. The
commutator theorem is also true if the eigenvalues are degenerate, but those compli-
cations will be postponed to a later lecture.

There is a generalization of the Heisenberg Uncertainty Principle to the case of
any two observables which cannot be simultaneously measured:

The Generalized Uncertainty Principle

The uncertainties ∆A and ∆B of any two observables in any physical
state |ψ > satisfy the inequality

∆A∆B ≥
1

2
| < ψ|[A, B]|ψ > | (7.116)

Proof: Begin with the expressions for uncertainty

(∆A)2 = < ψ|(Ã− < A >)2|ψ >

(∆B)2 = < ψ|(B̃− < B >)2|ψ > (7.117)

and define the Hermitian operators

D̃A ≡ A− < A > and D̃B = B− < B > (7.118)

and also
|ψ1 >= DA|ψ > and |ψ2 >= DB|ψ > (7.119)

Then

(∆A)2 = < ψ|DADA|ψ >

= < ψ|DA|ψ1 >

= < DAψ|ψ1 > (hermiticity)

= < ψ1|ψ1 > (7.120)

Similarly,
(∆B)2 =< ψ2|ψ2 > (7.121)

Now, making use of the Cauchy-Schwarz inequality for vectors (see problem below)

|u||v| ≥ | < u|v > | (7.122)
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and squaring both sides, we have

| < ψ1|ψ1 > || < ψ2|ψ2 > | ≥ | < ψ1|ψ2 > |2

(∆A)2(∆B)2 ≥
1

2

[

| < ψ1|ψ2 > |2 + | < ψ2|ψ1 > |2
]

≥
1

2

[

| < DAψ|DBψ > |2 + | < DBψ|DAψ > |2
]

≥
1

2

[

| < ψ|DADBψ > |2 + | < ψ|DBDAψ > |2
]

(7.123)

Next write

DADB = F + G

DBDA = F −G (7.124)

where

F =
1

2
(DADB + DBDA)

G =
1

2
[DA, DB] =

1

2
[A, B] (7.125)

Substituting these expressions into (7.123) we get

(∆A)2(∆B)2 ≥
1

2
[(< F > + < G >)(< F > + < G >)∗

+ (< F > − < G >)(< F > − < G >)∗]

≥ | < F > |2 + | < G > |2

≥ | < G > |2

≥
1

4
| < ψ|[A, B]|ψ > |2 (7.126)

Taking the square root of both sides establishes the generalized Uncertainty Principle.
In particular, the Heisenberg Uncertainty principle follows by choosing A = x and
B = p, in which case

∆x∆p ≥
1

2
| < ψ|ih̄|ψ > |

≥
h̄

2
(7.127)

as seen in Lecture 6.

Problem: By minimizing the norm of the vector

|u > +q|v > (7.128)

with respect to q, prove the Cauchy-Schwarz inequality

|u||v| ≥ | < u|v > | (7.129)
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7.5 The Time-Energy Uncertainty Relation

It was noted, at the end of the last lecture, that change of any kind in a quantum-
mechanical system implies an uncertainty in the energy of that system. We would
like to quantify this remark: How long does it take for a physical state to change
substantially, and how is that length of time related to the energy uncertainty?

Of course, it is necessary to define what is meant by a ”substantial” change in
the state. Consider position, momentum, or any other observable Q. At a given
moment, Q has a certain expectation value < Q >, and an uncertainty ∆Q. As
time passes, < Q > usually changes in some way. We will say that < Q > has
changed ”substantially” when it has increased or decreased by an amount equal to
the uncertainty ∆Q of the observable. The relation between the time ∆t required
for such a change, and the energy uncertainty ∆E, is expressed in the form of an
inequality known as

The Time-Energy Uncertainty Relation

Let Q be any observable, and let ∆t be the time required for the expec-
tation value < Q > to change by an amount equal to its uncertainty ∆Q.
Then

∆t∆E ≥
h̄

2
(7.130)

where ∆E is the uncertainty in the energy of the system.

To prove this statement, let us begin with an expression for the rate of change of
the observable

d

dt
< Q > =

d

dt

∫

dx ψ∗(x, t) Q̃ ψ(x, t)

=
∫

dx

[

dψ

dt

∗

Q̃ψ + ψ∗Q̃
dψ

dt

]

=
∫

dx
[

(
1

ih̄
H̃ψ)∗Q̃ψ + ψ∗Q̃(

1

ih̄
H̃ψ

]

=
1

ih̄
[− < Hψ|Q|ψ > + < ψ|Q|Hψ >]

=
1

ih̄
[− < ψ|HQ|ψ > + < ψ|QH|ψ >]

= < ψ|
1

ih̄
[Q, H ]|ψ > (7.131)

Then the time ∆t required for < Q > to change by an amount equal to its uncertainty
∆Q satisfies

∣

∣

∣

∣

∣

d < Q >

dt

∣

∣

∣

∣

∣

∆t = ∆Q
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1

h̄
| < ψ|[Q, H ]|ψ > |∆t = ∆Q (7.132)

We now apply the generalized uncertainty principle, eq. (7.116) with A = Q and
B = H (note that ∆H ≡ ∆E)

1

h̄
(∆Q∆E)∆t ≥

1

h̄

(

1

2
| < ψ|[Q, H ]|ψ > |

)

∆t =
1

2
∆Q (7.133)

or, dividing by ∆Q on both sides

∆E∆t ≥
h̄

2
(7.134)

which proves the energy-time uncertainty relation, for any observable Q.
As an example of this uncertainty relation, consider the time required for a free

particle to move a distance equal to its uncertainty in position ∆x; i.e. for < x > to
change by ∆x. The wavepacket is moving with a group velocity

vg =
< p >

m
(7.135)

so the time it takes for the packet to move a distance equal to the uncertainty in
position is

∆t =
∆x

vg
=

m∆x

< p >
(7.136)

On the other hand, the uncertainty in energy is related to the uncertainty in momen-
tum via

∆E = ∆

(

p2

2m

)

=
< p > ∆p

m
(7.137)

Then

∆t∆E =
m∆x

< p >

< p > ∆p

m
= ∆x∆p

≥
h̄

2
(7.138)

as predicted by the time-energy uncertainty relation.
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Chapter 8

Rectangular Potentials

Most of the effort in solving quantum-mechanical problems goes into solving the time-
independent Schrodinger equation (243). Given a complete set of solutions to the
time-independent equation, the general solution (248) of the time-dependent equation
follows immediately.

We have already seen that in the case of a free particle, the energy eigenvalues
could take on any value in the range [0,∞], while in the case of a particle trapped in a
tube, the energies could take on only certain discrete values. This distinction between
the energies of bound and unbound particles is very general, and in fact the solutions
to any time-independent Schrodinger equation, with any potential V (x), are always
of two kinds: (i) bound states, which have discrete energy eigenvalues, E1, E2, E3, ...;
and (ii) unbound or ”scattering” states, which have energies in a continuous range
E ∈ [Elow,∞]. So we begin this lecture with an explanation of why the energies
of bound states are always discrete, and also why the unbound states, which are
energy eigenstates and therefore stationary, have something to do with the scattering
of particles by a potential, which is of course a dynamic process.

8.1 A Qualitative Sketch of Energy Eigenstates

Consider a particle of total energy E in the potential shown in Fig. [8.1]. In classical
physics, if E < Vmax, the particle could never be found in the regions where V (x) > E,
because that would imply that the kinetic energy KE = E − V was negative. Such
intervals are referred to as the ”classically forbidden” regions; intervals where
E > V (x) are the ”classically allowed” regions. A particle in region II could never
get out; it would be a bound state trapped by the potential, forever bouncing between
points x2 and x3. On the other hand, a particle in region I or III could never enter
region II, but would bounce off the potential wall at points x1 and x4, respectively.

In quantum mechanics the physical state is governed by the Schrodinger equation,
and generally there is no reason that the wavefunction must be exactly zero in regions
where E < V (x). This means that there is usually a finite probability to find a par-

121
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ticle in the classically forbidden regions, and this fact gives rise to some remarkable
phenomena which are inconceivable at the classical level. Nevertheless, the wave-
function does behave quite differently in the classically allowed and the classically
forbidden regions, as one might expect, since classical behavior is an approximation
to quantum mechanics, and should become exact in the h̄→ 0 limit.

The time-independent Schrodinger equation is a 2nd order differential equation

d2φ

dx2
= −

2m

h̄2 (E − V )φ (8.1)

In general, the first derivative of a function f ′ = df/dx is the slope of f(x), the second
derivative f ′′ = d2f/dx2 is the curvature. If f ′′ > 0 at point x, then f(x) is concave
upwards at that point; similarly, if f ′′ < 0, then f(x) is concave downwards. From
eq. (8.1), we can see that:

E > V Classically Allowed Region

φ > 0 φ(x) concave downwards
φ < 0 φ(x) concave upwards

(8.2)

Since the wavefunction tends to curve downwards when φ is positive, and upward
when φ is negative, the result is an oscillating wavefunction in the classically allowed
regions, as shown in Fig. [8.2].

E < V Classically Forbidden Region

φ > 0 φ(x) concave upwards
φ < 0 φ(x) concave downwards

(8.3)

In the classically forbidden regions, oscillatory behavior is impossible, and the wave-
function tends to either grow or decay exponentially, as shown in Fig. [8.3]

We can use this qualitative information to sketch a rough picture of what an
energy eigenstate in the potential shown in Fig. [8.1] must look like. Let us begin
with E > Vmax. In that case, there are no classically forbidden regions, and the
function oscillates everywhere. The curvature, and therefore the rate of oscillation,
depends on the ratio

φ′′

φ
= −

h̄2

2m
(E − V ) (8.4)

so that the greater E − V is, the faster the wavefunction oscillates. The general
behavior is shown in Fig. [8.4]; an energy eigenstate will look something like this for
any energy E > Vmax.
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Now suppose the energy is in the range E ∈ [0, Vmax]. Then there will be clas-
sically forbidden regions, and in these regions the wavefunction will grow or decay
exponentially. In the classically allowed regions, the wavefunction oscillates as shown
in Fig. [8.5].

Finally, suppose that E < 0. Then, except for a finite interval where V (x) < 0
and E > V , the entire real line is a classically forbidden region. Typical solutions of
the time-independent Schrodinger equation would blow up exponentially as x→ ±∞.
Such wavefunctions are physically meaningless; they say that the particle is infinitely
more probable to be found at the ”point” x = ±∞ than anywhere else, but infinity,
as we know, is not a point. Wavefunctions of this kind are called non-normalizable
and do not belong to the Hilbert space of physical states. Non-normalizable solutions
of the time-independent Schrodinger equation are simply thrown away in quantum
mechanics. Although such wavefunctions satisfy the equation of interest, they do not
correspond to physical states.

Almost all solutions with E < 0 are therefore excluded, but not quite all. It is
still consistent with the behaviour (8.3) for the wavefunction to decay exponentially
to zero as x → ±∞, as shown in Fig. [8.6]. In wavefunctions of this sort, the
probability of finding the particle outside region II drops exponentially with distance,
so it is reasonable to say that the particle is trapped by the potential well, or in other
words that the particle is in a ”bound state.” However, it is only possible to have the
wavefunction decay to zero in regions I and III only for certain very special values of
the energy eigenvalue E, for reasons which will now be explained.

Suppose the value of the wavefunction φ(x) and its first derivative φ′(x) are spec-
ified at some point x = a. Since the time-independent Schrodinger equation is a
2nd-order equation, this is enough information to solve the equation and find the
wavefunction everywhere in space. Now for almost all choices of first derivative φ′ at
x = a, the wavefunction will eventually diverge to φ → ±∞ as x → ∞, as shown
in Fig. [8.7]. For φ′(a) > c, the wavefunction diverges to +∞, while for φ′(a) < c,
the wavefunction diverges to −∞, where c is some constant. However, precisely at
φ′(a) = c, it is possible for the wavefunction to decay smoothly to zero as x → ∞,
as we would expect for a bound state. Even so, we do not yet have a physical state,
because in general the wavefunction will be divergent as x → −∞. But there is one
more parameter that can be varied, namely, the energy eigenvalue E. So imagine
varying E, always choosing φ′(a) so that φ(x) → 0 as x → ∞. As E varies, the
point b in Fig. [8.7] where the wavefunction starts to blow up can be moved further
and further to the left. Eventually, for one special value of E, we get b → −∞, and
the wavefunction decays smoothly to zero both in region I and region III, as shown
in Fig. [8.6]. Only for such an energy does the wavefunction represent a physical
bound state. Changing the energy slightly results in an unacceptable, exponentially
divergent solution.

In general there is more than one value of E, sometimes an infinite number of
values, which are associated with bound state solutions. But since an infinitesmal
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change in any of those eigenvalues results in a non-physical state, the bound state
energies always form a discrete set.

Finally, it should be noted that it is not always the case that V (x) → 0 as
x → ±∞. Suppose, e.g., that V (x) → V∞ > 0 as x → ±∞. In that case, unbound
states would have energies in the range E ∈ [V∞,∞], while the bound state energies
would be a discrete set with values E < V∞.

8.2 Unbound States and Quantum Scattering

Consider a particle which is moving in a tube closed at one end. The corresponding
potential is

V (x) =

{

0 x < 0
∞ x ≥ 0

(8.5)

Initially, before the particle encounters the end of the tube, its state is represented
by some wavepacket indicated in Fig. [8.8a], with a momentum expectation value
< p >= p0. After bouncing off the end of the tube, the ”scattered” wavepacket
will be moving in the opposite direction with < p >= −p0, as shown in Fig. [8.8c].
At some intermediate time, the wavepacket is in contact with the end of the tube.
Since the wavepacket is finite in extent, there is going to be some delay from the
time that the front of the wavepacket reflects off the end of the tube, to the time
that the back of the wavepacket reflects off the end. During this time interval, part
of the wavepacket which reflected off the end of the tube overlaps with the rest of
the incoming wavepacket, which has not yet encountered the end of the tube (Fig.
[8.8b]).

Now if the wavepacket is of some finite extent ∆x, then by the Uncertainty Prin-
ciple ∆p ∼ h̄/∆x. Imagine preparing the initial wavepacket with a very small uncer-
tainty ∆p. As ∆p → 0, then ∆x → ∞, and the time (and space) interval in which
the incoming and reflected waves overlap becomes very large. The limiting case, with
∆x = ∞, is shown in Fig. [8.9]. In this case, the incoming ”wavepacket” at any
instant of time is an infinite plane wave

φinc(x) = Aeip0x/h̄ (8.6)

while the reflected wavepacket is also an infinite plane wave of the opposite momentum

φref(x) = Be−ip0x/h̄ (8.7)

These plane waves overlap over the entire half-line x ∈ [−∞, 0], so the total wave-
function is the superposition of the incoming and reflected waves

φ(x) = φinc(x) + φref(x)

= Aeip0x/h̄ + Be−ip0x/h̄ (8.8)
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Because φ(x) = 0 for x > 0 and because the wavefunction is continuous at x = 0, we
must have

φ(x) = 0 ⇒ A = −B (8.9)

or
φ(x) = N sin[p0x/h̄] (8.10)

The state (8.10) is a stationary state. Substituting (8.10) into the time-independent
Schrodinger equation, the corresponding energy eigenvalue is found to be

E =
p2

0

2m
(8.11)

Despite the stationarity, this energy eigenstate is obviously just the limit of a non-
stationary situation, in which an incoming wavepacket is scattered backwards by an
infinite potential. During the (long) interval in which the incoming wavepacket (with
∆p very small) reflects from the end of the tube, the wavefunction near the end of the
tube looks very much like the energy eigenstate (8.10). In fact, in the ∆p→ 0 limit,
we can easily identify the part of the eigenstate that corresponds to the incoming
wavepacket (φinc) and the part which corresponds to the scattered wavepacket (φref).
This is a general feature of unbound states: an unbound stationary state can be
viewed as the limit of a dynamical situation, in which an incoming wavepacket of
a very precise momentum is scattered by a potential. Part of the unbound state is
identified as the incoming wave, other parts represent the scattered waves.

As a second example, consider a particle wavepacket incident on the potential well
of Fig. [8.1]. The incoming wavepacket is shown in Fig. [8.10a]. Upon encountering
the potential, the wavepacket splits into a reflected wavepacket, moving backwards
towards x = −∞, and a transmitted wavepacket which has passed through the well
and is moving on towards x = +∞, as shown in Fig. [8.10c].1 At some intermediate
time, the incoming and reflected wavepackets overlap, and as we take ∆p→ 0 for the
incoming wave, the incoming and reflected waves overlap over a very large region. .
The limiting case is shown in Fig. [8.5]. This is again a stationary state, but the wave
to the left of the potential well is a superposition of incoming and reflected waves

φleft(x) = φinc(x) + φref(x)

= Aeip0x/h̄ + Be−ip0x/h̄ (8.12)

while the wavefunction to the right of the potential well is the outgoing transmitted
wave

φright(x) = φtrans(x)

= Ceip0x/h̄ (8.13)

1Incidentally, this is another reason why a particle in quantum mechanics cannot be taken literally

as a wave. Although the wavepacket splits into reflected and transmitted packets, the particle itself
does not split: there is some probability that the particle would be found to reflect, and some
probability that the particle is transmitted, but the particle itself never splits into a reflected particle
and a transmitted particle.
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In any real scattering experiment, of course, there is always some finite uncer-
tainty in the momentum of the incoming particle, the wavepacket is always finite in
extent, and that means that eventually the incident wave is completely replaced by
the scattered waves. Nevertheless, to compute the quantities of interest in a scattering
experiment, it is convenient to consider the ∆p = 0 limit, and work with stationary
states in which the incoming and reflected waves always overlap. The ”quantities of
interest” in a scattering experiment are the ratio of intensities of the incident and
scattered waves, because such ratios can be directly related to observable quantities.

In connection with the 2-slit experiment discussed in Lecture 3, we learned that
if we have a beam of np particles of average velocity v =< p > /m, with the wave-
function of each particle represented at some time t by φ(x), then the intensity of the
beam at point x at time t is given by

I = npvφ
∗(x)φ(x)

= average no. of particles

passing point x per unit time (8.14)

The goal of scattering theory is to find the intensity of the scattered beam as compared
to the intensity of the incoming beam. In the simple case of an incoming particle of
momentum p0 approaching the end of a tube,

Iinc =
p0

m
φ∗

inc(x)φinc(x) =
p0

m
|A|2

Iref =
p0

m
φ∗

ref(x)φref(x) =
p0

m
|B|2 (8.15)

and, since A = −B,
Iref = Iinc (8.16)

Physically, this means that if the flux of incoming particles past some point x0 is,
say, 1000 particles per second, then the flux of reflected particles past that point is
also 1000 particles per second; i.e. every incident particle is reflected, no particles are
transmitted past the infinite potential barrier at x = 0. In the second example shown
in Fig. [8.10] we have, in addition to Iinc and Iref , an intensity for the transmitted
wave, representing particles which have gone through the potential barrier

Itrans =
p0

m
φ∗

trans(x)φtrans(x) =
p0

m
|C|2 (8.17)

The quantities we need to calculate, which can then be compared with experiment,
are the Reflection Coefficient

R =
Iref

Iinc
=

|B|2

|A|2

=
no. of particles/sec reflected

no. of particles/sec incident
(8.18)
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and the Transmission Coefficient

T =
Itrans

Iinc
=

|C|2

|A|2

=
no. of particles/sec transmitted

no. of particles/sec incident
(8.19)

Of course, the ratios B/A and C/A can only be obtained by actually solving the
time-independent Schrodinger equation, which we will do, in this lecture, for simple
rectangular potentials.

8.3 The Step Potential

Consider a particle moving in a potential which rises suddenly from V (x) = 0, at
x < 0, to V (x) = V , at x ≥ 0, as shown in Fig. [8.11]. If E > V then the entire
real line is a classically allowed region; an particle moving to the right will pass the
potential barrier and continue moving to the right. On the other hand, if E < V , the
half-line x > 0 is a classically forbidden region; an incoming particle will be reflected
at x = 0 and move away to the left. We will consider these two cases separately:

Energies E > V

The Schrodinger equation in region I (x < 0) is the equation for a free particle

−
h̄2

2m

∂2φ1

∂x2
= Eφ1 (8.20)

with the usual free particle solution

φ1(x) = Aeip1x/h̄ + Be−ip1x/h̄ where p1 =
√

2mE (8.21)

In region II (x > 0) the equation is

−
h̄2

2m

∂2φ2

∂x2
= (E − V )φ2 (8.22)

with the solution

φ2(x) = Ceip2x/h̄ + De−ip2x/h̄ where p2 =
√

2m(E − V ) (8.23)

The scattering region is at x = 0, this is where ∂V/∂x += 0. The part of the
wavefunction that represents a (very long) wavepacket moving towards the scattering
region is

φinc(x) =

{

Aeip1x/h̄ x < 0
De−ip2x/h̄ x > 0

(8.24)
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The choice of A and D is a choice of the initial state. If D = 0 then the particle
is initially approaching the potential step from the left; if A = 0 the particle is
approaching from the right. If both A and D are non-zero, then the initial wavepacket
is split into two pieces, one approaching from the left and one from the right. It is
possible to have a initial wavepacket which is discontinuous in this way, but it is
uncommon. The standard experimental setup would be to have a particle source
located to one side or the other of the scattering region. We will suppose that the
particles are coming in from the left, and set D = 0. In that case the remaining pieces
of the wavefunction have the interpretation as transmitted and reflected waves

φref(x) = Be−ip1x/h̄ (x < 0)

φtrans(x) = Ceip2x/h̄ (x > 0) (8.25)

To determine the reflection and transmission coefficients, we need B and C in terms
of A.

The solution of the Schrodinger equation must be a continuous function, and its
first derivative must also be continuous. If this were not true, the second derivative
would be infinite, which violates the Schrodinger equation if the energy and potential
are finite. 2 Imposing continuity of the wavefunction φ and its first derivative φ′ at
x = 0 give the conditions

φ1(0) = φ2(0) =⇒ A + B = C

φ′
1(0) = φ′

2(0) =⇒ p1(A− B) = p2C (8.26)

These two equations allow us to solve for B and C in terms of A:

B =
p1 − p2

p1 + p2
A

C =
2p1

p1 + p2
A (8.27)

The resulting wavefunction is sketched in Fig. [8.12].
Recall that intensity is proportional to the (group) velocity, I = vφ∗φ, and in this

case the velocity of the transmitted wave v2 = p2/m is different from the velocity of
the incident and reflected waves v1 = p1/m. The transmission coefficient is therefore

T =
v2|C|2

v1|A|2

=
p2

p1

4p2
1

(p2 + p1)2
(8.28)

2An exception is if the potential becomes infinite at some point, as in the case of a particle in a
tube. In such situations, the slope of the wavefunction can be discontinuous.
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while the reflection coefficient is

R =
v1|B|2

v1|A|2

=
(p2 − p1)2

(p2 + p1)2
(8.29)

Notice that
R + T = 1 (8.30)

which has the interpretation that

no. of particles reflected/sec + no. of particles transmitted/sec

= no. of particles incident/sec (8.31)

and is a consequence of the conservation of probability by the Schrodinger equation.
It should also be noted that R += 0, in general. This is in sharp contrast to classical

physics, where no particles of energy E > V would be reflected.

Question: Why is (8.31) a consequence of conservation of probability?

Energies E < V

In this case, the solutions (8.21) in region I and (8.23) in region II are the same
as before, however

p2 =
√

2m(E − V ) = iq2 (8.32)

is an imaginary number. The solution φ2 in the classically forbidden region is then

φ2(x) = Ce−q2x/h̄ + Deq2x/h̄ where q2 =
√

2m(V − E) (8.33)

Like any solution in the classically forbidden region, φ2 is, in general, a combination
of exponentially growing and exponentially decaying functions. Solutions with D += 0
are non-normalizable, however, and do not correspond to physical states. So we need
only consider solutions with D = 0.

Once again applying continuity of the wavefunction and its first derivative, we
have

φ1(0) = φ2(0) =⇒ A + B = C

φ′
1(0) = φ′

2(0) =⇒ ip1(A−B) = −q2C (8.34)

Solving for B and C,

B =
p1 − iq2

p1 + iq2
A

C =
2p1

p1 + iq2
A (8.35)
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But in this case

R =
|B|2

|A|2
= 1 (8.36)

which means that all incident particles are reflected; no particles are transmitted
towards x → +∞, as in the classical case. The resulting wavefunction is shown in
Fig. [8.13]. Unlike the classical case, however, there is a finite probability to find the
particle at any finite distance x > 0

P∆x(x > 0) = |C|2e−2q2x/h̄∆x (8.37)

Once again, there is no way of interpreting this result in classical terms. Classically,
force is proportional to the derivative of the potential, so there is only a force on the
particle at x = 0. There is nothing to prevent a particle at x > 0 to continue moving
to the left. Quantum mechanically, although there is a finite probability to find the
particle at x > 0, that probability decreases exponentially with x, and any particle
of energy E < V is ultimately reflected.

8.4 The Finite Square Well: Bound States

An attractive potential which is finite at infinity normally has a discrete (finite or infi-
nite) number of bound states, and an infinite number of unbound states with energies
in the range [Emin,∞]. The simplest example is the finite square well potential3

V (x) =











0 x < −a
−V0 −a ≤ x ≤ a
0 x > a

(8.38)

shown in Fig. [8.14].
For particle energies E > 0 the entire real line is classically allowed; these are

the unbound states. For E < 0 regions I and II are classically forbidden, and the
wavefunction of a physical state must fall exponentially to zero as x → ±∞. These
are the bound states.

3It is conventional to call it a ”square” well although the shape may just as well be rectangular.
The potential for a particle in a tube is known as the ”infinite square well.”
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Bound States E < 0

We begin with a discussion of the bound states. In Regions I and III the Schrodinger
equation is the same as a free particle equation, and the solution is

φI(x) = a1e
i
√

2mEx/h̄ + a2e
−i

√
2mEx/h̄

φIII(x) = b1e
i
√

2mEx/h̄ + b2e
−i

√
2mEx/h̄ (8.39)

However, since E < 0, the square-root is imaginary. Writing E = −E , we have

φI(x) = a1e
−
√

2mEx/h̄ + a2e
√

2mEx/h̄

φIII(x) = b1e
−
√

2mEx/h̄ + b2e
√

2mEx/h̄ (8.40)

If ψ is a physical state, we must set a2 = b1 = 0; otherwise the wavefunction blows
up exponentially as x→ ±∞ and the state is non-normalizable. Then

φI(x) = Ae−
√

2mEx/h̄

φIII(x) = Be
√

2mEx/h̄ (8.41)

Now suppose we choose A to be a real number. Then φ(x) must be real everywhere.
The reason is that the Schrodinger equation is a linear equation with real coefficients,
so writing

φ(x) = φR(x) + iφI(x) (8.42)

its easy to see that φR and φI must both satisfy the Schrodinger equation

H̃φR = EφR H̃φI = EφI . (8.43)

Setting A to be a real number means that φI = 0 for x > a, which means it is
zero everywhere, because the Schrodinger equation says that φ′′(x) ∝ φ(x). The
conclusion is that φ(x) is real everywhere; in particular, the constant B is also a real
number.

Let φ(x) be a solution of the time-independent Schrodinger equation with energy
En. We can show that

ϕ(x) = φ(−x) (8.44)

is also an eigenstate of H̃ , with the same energy. Start with the time-independent
Schrodinger equation

−
h̄2

2m

d2

dx2
φ(x) + V (x)φ(x) = Eφ(x) (8.45)

make the change of variables x→ −x

−
h̄2

2m

d2

dx2
φ(−x) + V (−x)φ(−x) = Eφ(−x)

−
h̄2

2m

d2

dx2
ϕ(x) + V (x)ϕ(x) = Eϕ(x) (8.46)
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This proves that ϕ(x) is also a solution. The crucial fact used in (8.46) was the
symmetry of V (x) around x = 0

V (x) = V (−x) (8.47)

Without this symmetry, ϕ(x) = φ(−x) would not be a solution of the Schrodinger
equation.

If En is degenerate, then φ(x) and ϕ(x) could be two different states. On the
other hand, if En is non-degenerate, then the two functions must be proportional to
one another:

ϕ(x) = cφ(x) (8.48)

where c is a real-valued constant, since φ and ϕ are both real-valued. Finally, the
normalization condition requires

∫

dx ϕ2 = c2
∫

dx φ2 = 1 (8.49)

which means, since φ is normalized, that c = ±1. We conclude that if En is non-
degenerate there are two possibilities:

1. ”Even Parity”

φ(−x) = +φ(x) (8.50)

2. ”Odd Parity”

φ(−x) = −φ(x) (8.51)

Assuming that the energy eigenvalues are non-degenerate, the algebra simplifies
a lot. In region II, the Schrodinger equation is of the form

d2φII

dx2
= −

2m

h̄2 (V0 − E)φII (8.52)

with solutions
φII = c1e

i
√

2m(V0−E)x/h̄ + c2e
−i
√

2m(V0−E)x/h̄ (8.53)

However, since φII must be a real function, we expand the exponentials in a combi-
nation of sin and cosine

φII = CE cos
[

√

2m(V0 − E)x/h̄
]

+ CO sin
[

√

2m(V0 − E)x/h̄
]

(8.54)

We have seen that the non-degenerate solutions have to be either even or odd parity.
For even parity, CO = 0, while for odd parity CE = 0. We deal with these cases
separately.
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Even Parity Bound States

The requirement that φ(x) = φ(−x) also implies that A = B. So we have alto-
gether

φI(x) = Ae−
√

2mEx/h̄

φII(x) = CE cos
[

√

2m(V0 − E)x/h̄
]

φIII(x) = Ae
√

2mEx/h̄ (8.55)

The continuity of the wavefunction at x = ±a requires

Ae−
√

2mEa/h̄ = CE cos
[

√

2m(V0 − E)a/h̄
]

(8.56)

while the continuity of the first derivative at x = ±a gives

√
2mEAe−

√
2mEa/h̄ =

√

2m(V0 − E)CE sin
[

√

2m(V0 − E)a/h̄
]

(8.57)

Dividing equation (8.57) by equation (8.56) results in a transcendental equation
for E = −E √

E =
√

V0 − E tan
[

√

2m(V0 − E)a/h̄
]

(8.58)

which determines the energy eigenvalues.
This transcendental equation can be solved graphically, by plotting the left and

right hand sides of the equation to find the points at which the two curves intersect.
The result is shown in Fig. [8.15]. We learn from the figure that the solutions, denoted
by En, with n an odd integer, are all at E < V0. This is because for E > V0 the tangent
in eq. (8.58) becomes a hyperbolic tangent, so the rhs diverges to −∞ as x → ∞,
never again intersecting

√
E . Each solution En is located between points where the

tangent equals 0; these ”nodes” occur at

E = V0 − (kπ)2 h̄2

2ma2
(k = 0, 1, 2, ...) (8.59)

and since E > 0, this means that the number K of even-parity energy eigenvalues is
the largest number such that

[(K − 1)π]2
h̄2

2ma2
≤ V0 (8.60)

Thus there are a finite number - and no less than one! - of even-parity bound states.
The number K of such bound states increases as the well becomes deeper (larger V0),
and wider (larger a).

Odd Parity Bound States
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This time, the requirement that φ(−x) = −φ(x) implies that B = −A, and
CE = 0. The wavefunction has the form

φI(x) = Ae−
√

2mEx/h̄

φII(x) = CO sin
[

√

2m(V0 − E)x/h̄
]

φIII(x) = −Ae
√

2mEx/h̄ (8.61)

From continuity of the wavefunction at x = ±a we have

Ae−
√

2mEa/h̄ = CO sin
[

√

2m(V0 − E)a/h̄
]

(8.62)

and from continuity of the first derivative at x = ±a

−
√

2mEAe−
√

2mEa/h̄ =
√

2m(V0 − E)CO cos
[

√

2m(V0 − E)a/h̄
]

(8.63)

Dividing eq. (8.63) by eq. (8.62) gives us the transcendental equation for the energies
of odd parity bound states

√
E = −

√

V0 − Ectn
[

√

2m(V0 − E)a/h̄
]

=
√

V0 − E tan
[

√

2m(V0 − E)
a

h̄
+

π

2

]

(8.64)

which can be solved graphically, as shown in Fig. [8.16]. Once again, there are as
many roots as there are nodes of the tangent; this time the nodes are located at

E = V0 − [(k +
1

2
)π]2

h̄2

2ma2
(k = 0, 1, 2, ...) (8.65)

and the number of odd parity nodes is the largest integer M such that

[(K −
1

2
)π]2

h̄2

2ma2
< V0 (8.66)

Note that for

V0 <
(

π

2

)2 h̄2

2ma2
(8.67)

there are no odd-parity bound states.

To sum up, we have found that for a finite square well

1. The number of bound state energies is finite, and there is at least one bound state;

2. The number of bound states increases with the width and depth of the well;
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3. The energies are non-degenerate;

4. Each energy eigenstate is either even parity or odd parity, and this is a consequence
of the symmetry of the potential V (x) = V (−x), and the fact that the energies
are non-degenerate.

5. Although the particle is bound to the well, the wavefunction of the particle may
be non-negligible far outside the well, where (in classical physics) there are no
forces at all acting on the particle.

Scattering States E > 0

For E > 0, the solution of the time-independent Schrodinger equation in all three
regions is

φIII(x) = Aei
√

2mEx/h̄ + Be−i
√

2mEx/h̄

φII(x) = Cei
√

2m(E+V0)x/h̄ + De−i
√

2m(E+V0)x/h̄

φI(x) = Eei
√

2mEx/h̄ + Fe−i
√

2mEx/h̄ (8.68)

As explained in the introduction, the wavefunction in regions I and III can be thought
of as a superposition of incoming and outgoing wavepackets, in the limit that the
uncertainty in momentum of the wavepackets goes to zero. The momentum is either
p =

√
2mE, in which case the packet is moving from left to right, or p = −

√
2mE,

in which case the packet is moving from right to left. Therefore, we can interpret the
components of φIII and φI as representing:

Aei
√

2mEx/h̄ an incoming wavepacket from the left

Be−i
√

2mEx/h̄ an outgoing wavepacket to the left

Eei
√

2mEx/h̄ an outgoing wavepacket to the right

Fe−i
√

2mEx/h̄ an incoming wavepacket from the right

Now suppose we are interested in an experimental situation in which a particle of a
fairly precise momentum is sent towards the potential well from the left. In that case
there is no incoming wavepacket from the right, so we can set F = 0. The incoming
wavepacket eventually reaches the potential well. Some of the incoming wavepacket
is reflected towards the left; some is transmitted towards the right. So we now have

φIII(x) = Aei
√

2mEx/h̄ + Be−i
√

2mEx/h̄

φII(x) = Cei
√

2m(E+V0)x/h̄ + De−i
√

2m(E+V0)x/h̄

φI(x) = Eei
√

2mEx/h̄ (8.69)
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where

Aei
√

2mEx/h̄ represents the incoming wavepacket

Be−i
√

2mEx/h̄ represents the reflected wavepacket

Eei
√

2mEx/h̄ represents the transmitted wavepacket

The reflection and transmission coefficients will therefore be

R =
BB∗

AA∗ T =
EE∗

AA∗ (8.70)

so the problem is to compute B and E in terms of A.
We should pause to note that φ(x) += ±φ(−x). The reason is that in this case

the energy is degenerate; a particle approaching the potential from the left can have
exactly the same energy as a particle approaching the well from the right. In this situa-
tion, an energy eigenstate does not necessarily have the property that φ(x) = ±φ(−x);
although ϕ(x) = φ(−x) is an energy eigenstate, it is not necessarily equivalent to φ(x)
if the energy is degenerate. For the wavefunction φ(x) of eq. (8.69), which represents
a particle approaching the well from the left and then scattering, ϕ(x) represents a
particle approaching the potential from the right, and then scattering.

Denote

k =

√
2mE

h̄
and q =

√

2m(E + V0)

h̄
(8.71)

so that

φIII(x) = Aeikx + Be−ikx

φII(x) = Ceiqx + De−iqx

φI(x) = Eeikx (8.72)

Imposing continuity of the wavefunction and its first derivative at x = a give us

φI(a) = φII(a) =⇒ Eeika = Ceiqa + De−iqa

φ′
I(a) = φ′

II(a) =⇒ kEeika = q(Ceiqa −De−iqa) (8.73)

The corresponding continuity conditions at x = −a are

φIII(−a) = φII(−a) =⇒ Ae−ika + Beika = Ce−iqa + Deiqa

φ′
III(−a) = φ′

II(−a) =⇒ k(Ae−ika − Beika) = q(Ce−iqa −Deiqa) (8.74)

We first solve eq. (8.73) for C and D in terms of E:

C =
1

2
(1 +

k

q
)Eei(k−q)a

D =
1

2
(1−

k

q
)Eei(k+q)a (8.75)
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substitute into (8.74)

Ae−ika + Beika =

[

1

2
(1 +

k

q
)ei(k−2q)a +

1

2
(1−

k

q
)ei(k+2q)a

]

E

k(Ae−ika −Beika) = q

[

1

2
(1 +

k

q
)ei(k−2q)a −

1

2
(1−

k

q
)ei(k+2q)a

]

E (8.76)

Solving for E in terms of A, we find

2kAe−ika =

[

(k + q)
1

2
(1 +

k

q
)ei(k−2q)a + (k − q)

1

2
(1−

k

q
)ei(k+2q)a

]

E

=

[

(k +
k2

2q
+

q

2
)ei(k−2q)a + (k −

k2

2q
−

q

2
)ei(k+2q)a

]

E (8.77)

so that

E

A
=

2e−ika

(1 + k
2q + q

2k )ei(k−2q)a + (1− k
2q −

q
2k)ei(k+2q)a

=
e−2ika

cos(2qa) + 1
2(

k
2q + q

2k )(e−2iqa − e2iqa)

=
e−2ika

cos(2qa)− i
2(

k
q + q

k) sin(2qa)
(8.78)

In a similar way, one can solve for B in terms of A

B

A
=

1
2 ie

−2ika( q
k −

k
q ) sin(2qa)

cos(2qa)− 1
2 i(

q
k + k

q ) sin(2qa)
(8.79)

From these ratios, we obtain the transmission and reflection coefficients

T =
∣

∣

∣

∣

E

A

∣

∣

∣

∣

2

=
1

cos2(2qa) + 1
4(

k
q + q

k )2 sin2(2qa)

R =
∣

∣

∣

∣

B

A

∣

∣

∣

∣

2

=
1
4(

q
k −

k
q )

2 sin2(2qa)

cos2(2qa) + 1
4(

k
q + q

k )2 sin2(2qa)
(8.80)

and it is easy to check that
R + T = 1 (8.81)

as required by conservation of probability.
Now notice that something interesting happens when the energy E of the incoming

particle is such that

2qa = 2
√

2m(E + V0)
a

h̄
= nπ (8.82)
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In this case
T = 1 and R = 0 (8.83)

i.e. there is no reflection at all. A particle of this energy is certain to be transmitted
past the potential well. The condition (8.82) has a simple interpretation in terms of
de Broglie wavelengths. The momentum of the particle inside the well is

P =
√

2m(E − V ) =
√

2m(E + V0) (8.84)

so the condition (8.82) is

2a
P

h̄
= nπ

2a
P

h
2π = nπ

2a = n
λ

2
(8.85)

where we use the de Broglie relation p = h/λ. Since the width of the potential well is
2a, it means that there is no reflection whenever the width of the well is exactly an
integer number of half-wavelengths across, which is also the condition for a standing
wave on an interval of length 2a.

There is a related phenomenon in atomic physics known as the Ramsauer effect,
in which low energy electrons are scattered by a thin film of some material. At
certain well-defined energies, the scattering of the electrons is minimized. In this
case, an atom can be viewed as an attractive potential well for the electrons. Since
an atom is electrically neutral, the potential is zero until the incoming electrons move
past the electrons orbiting the nucleus. As the electron approaches closer to the
nucleus, there is of course an attractive force, since the nucleus is positive. The
analysis of the scattering is more complicated than for the finite square well, the
motion is in three dimensions rather than one dimension, and the potential well is
not rectangular. Nevertheless, the solid is nearly ”transparent” for incoming electrons
of certain definite energies; an effect which is closely analogous to the finite square
well case.

8.5 Tunnelling

Next we consider a repulsive square well potential

V (x) =











0 x < −a
V0 −a ≤ x ≤ a
0 x > a

(8.86)

Since this potential differs from the attractive square well of the last section only by
the sign in front of V0, there is no need to repeat the algebra of the last section. We
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can simply take the formulas for the scattering state of the attractive well, replace
V0 everywhere by −V0, and these will be the corresponding formulas for the repulsive
well. Then again denote

k =

√
2mE

h̄
and q =

√

2m(E − V0)

h̄
(8.87)

so that

φIII(x) = Aeikx + Be−ikx

φII(x) = Ceiqx + De−iqx

φI(x) = Eeikx (8.88)

Classically, if E > V0, the incoming particle will travel through the well and
continue moving to the right. If E < V0 the incoming particle is reflected at x = −a,
and travels back to the left.

In quantum mechanics, if E > V0, the situation is qualitatively much like the
case for the attractive potential: some of the incoming wave is reflected, and some is
transmitted. It is worth noting that no matter how large E is compared to V0, there
is always some finite probability that the particle is reflected. Quantum-mechanically,
if a bullet is fired at a fixed target of tissue paper, there is always some (exceedingly
small) probability that the bullet will bounce off the paper.

If E < V0, then the quantity

q =

√

2m(E − V0)

h̄
(8.89)

is imaginary. Substituting

q = iQ and sin(2qa) = −isinh(2Qa) (8.90)

into equation (8.80) gives us

T =
1

cosh2(2Qa) + 1
4(

k
Q + Q

k )2sinh2(2Qa)

R =
1
4(

Q
k −

k
Q)2sinh2(2Qa)

cosh2(2Qa) + 1
4(

k
Q + Q

k )2sinh2(2Qa)
(8.91)

If the width of the well is large enough, so that

2a >>
1

Q
=

h̄
√

2m(V0 −E)
(8.92)

then

sinh2(2Qa) ≈ cosh2(2Qa) ≈
1

4
e2Qa (8.93)
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and the transmission coefficient is approximately

T ≈ e−4Qa = exp[−4
√

2m(V0 −E)a/h̄] (8.94)

The situation is sketched in Figure [8.17]. Most of the incoming wave is reflected.
In the classically forbidden region, the wavefunction decays exponentially. However,
since the width of the classically forbidden region is finite, the wavefunction at the
other end of the barrier is finite, and so there exists a transmitted wave. This means
that no matter how high the barrier V0 is compared to the energy E of the incoming
particle, there is always some finite probability for the particles to penetrate through
the barrier.

Quantum-mechanically, a soap bubble heading for a brick wall has a finite, al-
though exceedingly small, probability of being found on the other side of the brick
wall.

The fact that a particle can penetrate a potential barrier whose height exceeds
the energy of the particle is known as ”Tunnelling”. It has important applications
throughout modern physics, e.g. in the study of semiconductors, and of radioactive
decay.



Chapter 9

The Harmonic Oscillator

There are only a very few potentials for which the Schrodinger equation can be solved
analytically. The most important of these is the potential

V (x) =
1

2
k(x− x0)

2 (9.1)

of the harmonic oscillator, because so many of the systems encountered in nuclear
physics, condensed matter physics, and elementary particle physics can be treated,
to a first approximation, as a set of coupled harmonic oscillators.

There are several reasons why the harmonic oscillator potential shows up so of-
ten. First of all, any finite potential looks like a harmonic oscillator potential in the
neighborhood of its minimum. Suppose the minimum of a potential is at the point
x = x0. Expand the potential in a Taylor series around x0

V (x) = V (x0) +

(

dV

dx

)

x=x0

(x− x0) +
1

2

(

d2V

dx2

)

x=x0

(x− x0)
2 + ... (9.2)

Because V (x) is a minimum at x0, the first derivative of the potential vanishes there,
so

V (x) = V (x0) +
1

2

(

d2V

dx2

)

x=x0

(x− x0)
2 + ... (9.3)

For small displacements, this is just a harmonic oscillator.
Secondly, any time the classical equations of motion are linear, it means that

we are dealing with a harmonic oscillator, or a set of coupled harmonic oscillators.
Newton’s law of motion F = ma is generally non-linear, since F (x) is usually a non-
linear function of x. However, if F depends linearly on x, it follows that the potential
depends quadratically on x, which implies a harmonic oscillator. Now it so happens
that any non-dispersive wave equation, e.g.

1

v2

∂2y

∂t2
=

∂2y

∂x2
(9.4)

141
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is a linear equation of motion. This equation might describe a transverse wave on
a string, or a sound wave in a solid, or an electromagnetic plane wave, propagating
in the x-direction. Any system that satisfies a wave equation of this form can be
thought of as an infinite set of harmonic oscillators. To see this, we define the Fourier
transform Y (q, t) of the wavefunction y(x, t) at any time t as

Y (q, t) =
∫ ∞

−∞
dx y(x, t)eiqx (9.5)

with the inverse transform

y(x, t) =
∫ ∞

−∞

dq

2π
Y (q, t)e−iqx (9.6)

The functions y(x, t) and Y (q, t) contain the same amount of information about the
wave at time t, since one function can be obtained from the other. Now multiply
both sides of (9.4) by eiqx, integrate over x, and then integrate by parts:

∫

dx
1

v2

∂2y

∂t2
eiqx =

∫

dx
∂2y

∂x2
eiqx

∂2

∂t2

∫

dx
1

v2
y(x, t)eiqx =

∫

dx y(x, t)
∂2

∂x2
eiqx

1

v2

∂2

∂t2

∫

dx y(x, t)eiqx = −q2
∫

dx y(x, t)eiqx

1

v2

∂2

∂t2
Y (q, t) = −q2Y (q, t) (9.7)

But this is simply the equation of motion of a harmonic oscillator

accelleration

(

∂2Y

∂t2

)

∝ − displacement (Y ) (9.8)

We conclude that the wave equation (9.4) is secretly an infinite number of harmonic
oscillator equations; one equation for each wavenumber q.

Wave equations show up everywhere in classical physics. Waves propagate in
solids, liquids, gases, and plasmas; they propagate in the electromagnetic field, and
even (according to Einstein’s theory of general relativity) in the gravitational field.
All of these systems can therefore be regarded, at some level of approximation, as
sets of harmonic oscillators. This is why the harmonic oscillator potential is the most
important problem to solve in quantum physics. Fortunately, it is a problem with a
simple and elegant solution.

9.1 Raising and Lowering Operators

Let a and b be any two real numbers, and define

c = a + ib (9.9)
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Then there is a simple identity
a2 + b2 = c∗c (9.10)

Lets find the corresponding identity for operators. Instead of two real numbers, con-
sider two Hermitian operators A and B, which, of course, have only real eigenvalues.
Define the non-Hermitian operator

C = A + iB (9.11)

whose hermitian conjugate is
C† = A− iB (9.12)

Then the sum of squares of A and B satisfies the identity

A2 + B2 = C†C − i[A, B] (9.13)

and the commutator of C with C† is

[

C, C†
]

= −2i[A, B] (9.14)

These relations are easy to check (exercise!), keeping in mind that operators A and
B do not necessarily commute. Now, the Hamiltonian operator can be written as a
sum of squares of Hermitian operators

H̃ =

(

p̃√
2m

)2

+ (
√

V (x))2 (9.15)

so, writing

A =
√

V

B =
p̃√
2m

C =
√

V + i
p̃√
2m

(9.16)

we have

H̃ = C†C − i

√

1

2m
[
√

V , p̃] (9.17)

and
[

C, C†
]

= −2i

√

1

2m
[
√

V , p̃] (9.18)

This is not a particularly useful way to express H̃ in most situations; generally the
commutator [

√
V , p̃] is just another complicated operator. In the case of the harmonic
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oscillator, however, this commutator is very simple:

[A, B] =

√

1

2m





√

1

2
kx2, p̃





=

√

k

4m
[x, p]

= ih̄

√

k

4m
(9.19)

In classical physics, the resonant angular frequency of a harmonic oscillator of mass
m and spring constant k is

ω =

√

k

m
(9.20)

so

[A, B] = i
1

2
h̄ω (9.21)

Therefore

H̃ = C†C +
1

2
h̄ω (9.22)

and
[

C, C†
]

= h̄ω (9.23)

We now define the Lowering Operator

a =

√

1

h̄ω
C

=

√

1

h̄ω





√

k

2
x + i

p̃√
2m





=
1√
2h̄

(

√
mωx + i

p̃√
mω

)

(9.24)

and its Hermitian conjugate known as the Raising Operator

a† =

√

1

h̄ω
C†

=
1√
2h̄

(

√
mωx− i

p̃√
mω

)

(9.25)

The commutator of these two operators follows from [C, C†] = h̄ω,

[

a, a†
]

= 1 (9.26)
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In terms of the raising and lowering operators, we have

H̃ = h̄ω(a†a +
1

2
)

x =

√

h̄

2mω
(a + a†)

p =
1

i

√

mωh̄

2
(a− a†) (9.27)

The reason for calling a the ”lowering” operator is that it has the amazing property
of taking an eigenstate of H̃ into another eigenstate, with a lower energy. Suppose
ϕn is some particular eigenstate, with

H̃ϕn = Enϕn (9.28)

Define
φ′ = aϕn (9.29)

then

H̃φ′ = h̄ω(a†a +
1

2
)aϕn

= h̄ω(a†aa +
1

2
a)ϕn (9.30)

The commutation relation (9.26) implies

a†a = aa† − 1 (9.31)

so that

H̃φ′ = h̄ω[(aa† − 1)a +
1

2
a]ϕn

= a[h̄ω(a†a +
1

2
)− h̄ω]ϕn

= a[H̃ − h̄ω]ϕn

= (En − h̄ω)aϕn

= (En − h̄ω)φ′ (9.32)

which proves that aφn is an energy eigenstate with eigenvalue E = En − h̄ω. The
operator a† is termed the ”raising operator” for similar reasons. Let

φ” = a†ϕn (9.33)

Then

H̃φ” = h̄ω(a†a +
1

2
)a†ϕn

= h̄ω(a†aa† +
1

2
a†)ϕn (9.34)
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The commutation relation (9.26) also says that

aa† = a†a + 1 (9.35)

so

H̃φ” = h̄ω[a†(a†a + 1) +
1

2
a†]ϕn

= a†[h̄ω(a†a +
1

2
) + h̄ω]ϕn

= a†[H̃ + h̄ω]ϕn

= (En + h̄ω)a†ϕn

= (En + h̄ω)φ” (9.36)

and therefore φ” = a†ϕn is an energy eigenstate with eigenvalue E = En + h̄ω.
Next we use the fact that the harmonic oscillator, like the hydrogen atom, has a

lowest energy state (or ”ground” state). That there must be a lowest energy state is
clear from the uncertainty principle, but we can also see it from the fact that

< p2 > = < ψ|p2|ψ >=< pψ|pψ > ≥ 0

< x2 > = < ψ|x2|ψ >=< xψ|xψ > ≥ 0 (9.37)

where we have used the hermiticity of x and p, and also the fact that the norm of
any non-zero vector is greater than zero. Then

< H >=
1

2m
< p2 > +

1

2
k < x2 > ≥ 0 (9.38)

This proves that a ground state exists, with an energy greater than or equal to
zero. However, the existence of a ground state seems to contradict the fact that, by
operating on the ground state with the lowering operator a, we get a state with still
lower energy. Denote the ground state by ϕ0, the ground-state energy by E0, and let
ϕ′ = aϕ0. Then, according to eq. (9.32)

H̃(aϕ0) = (E0 − h̄ω)(aϕ0) (9.39)

This equation is satisfied if ϕ′ = aϕ0 is an eigenstate of H̃ with energy E0−h̄ω, which
means that ϕ0 is not the ground state, or if

aϕ0 = 0 (9.40)

Since we have proved that a ground state exists, then the lowering operator must
”annihilate” the ground state; i.e. bring it to 0, as shown in (9.40). Equation (9.40)
is a first-order differential equation for the ground state:

(

√
mωx + h̄

1√
mω

∂

∂x

)

ϕ0 = 0 (9.41)
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which has the unique solution

ϕ0 = Ne−mωx2/2h̄ (9.42)

The constant N is determined from the normalization condition

1 = N2
∫ ∞

−∞
dx e−mωx2/h̄

= N2

√

πh̄

mω
(9.43)

so the ground-state eigenfunction is

ϕ0 =
[

mω

πh̄

]1/4

e−mωx2/2h̄ (9.44)

The corresponding ground-state energy E0 is

H̃ϕ0 = h̄ω(a†a +
1

2
)ϕ0

=
1

2
h̄ωϕ0

=⇒ E0 =
1

2
h̄ω (9.45)

The state with the next-to-lowest energy is obtained by operating with the raising
operator a† on the ground state:

ϕ1 = c1a
†ϕ0 (9.46)

where c1 is a normalization constant. Since the raising operator raises the energy by
h̄ω, the energy of this state is

E1 = E0 + h̄ω

= h̄ω(1 +
1

2
) (9.47)

The state with the next higher energy is

ϕ2 ∝ a†ϕ1

= c2(a
†)2ϕ0 (9.48)

with energy

E2 = E1 + h̄ω

= h̄ω(2 +
1

2
) (9.49)
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Proceeding in this way, we find an infinite set of eigenstates of the form

ϕn = cn(a†)nϕ0 n = 0, 1, 2, 3, ...

En = h̄ω(n +
1

2
) (9.50)

Now, how do we know that this is all the eigenstates that there are? Suppose, for
example, that there were an eigenstate ϕ′ with an energy in between E0 and E1.
If that were the case, the applying the lowering operator to the state would either
annihilate the state, or else give an eigenstate with an energy lower than the ground
state. Since the ground state exists, and is ϕ0 by definition, it means that aϕ′ = 0.
But the only solution to this equation is ϕ′ = ϕ0. Therefore, there is no state with
energy between E0 and E1. So suppose instead there were a state ϕ′′ with energy
between En and En+1. Applying the lowering operator to ϕ′′ lowers the energy by
integer multiples of h̄ω, until we reach a state ϕ′ with an energy between E0 and E1.
But we have just seen that there is no such state. This means that there is no state
with energy between En and En+1. So the only possible energies are those shown in
(9.50).

Still, how do we know that these energies are non-degenerate? Suppose, e.g., there
was a state ϕ′

1 += ϕ1 with energy E1. Applying the lowering operator, we would get
a second ground state ϕ′

0 with energy E0. But then, since there is no energy lower
than the ground-state energy,

aϕ′
0 = 0 =⇒ ϕ′

0 = ϕ0 (9.51)

which implies, since
ϕ′

0 ∝ aϕ′
1 (9.52)

that ϕ′
1 = ϕ1. This argument is easily generalized to any energy En, and the conclu-

sion is that there is only one eigenstate for each energy eigenvalue.
Next, we need to find the normalization constants cn in (9.50). This is done

iteratively. Begin from
c0 = 1 (9.53)

and impose the normalization condition

1 = < ϕn|ϕn >

= c2
n < (a†)nϕ0|(a†)nϕ0 >

= c2
n < a†(a†)n−1ϕ0|(a†)nϕ0 >

= c2
n < (a†)n−1ϕ0|a(a†)n|ϕ0 > (9.54)

The idea is to commute the a operator to the right, past the a† operators, until it
finally operates on, and annhilates, the ground state ϕ0. We have

a(a†)n = (aa†)(a†)n−1
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= (a†a + 1)(a†)n−1

= a†a(a†)n−1 + (a†)n−1

= a†(a†a + 1)(a†)n−2 + (a†)n−1

= (a†)2(a†a + 1)(a†)n−3 + 2(a†)n−1

= (a†)3(a†a + 1)(a†)n−4 + 3(a†)n−1

.

.

= (a†)na + n(a†)n−1 (9.55)

Equation (9.54) becomes

1 = c2
n < (a†)n−1ϕ0|[(a†)na + n(a†)n−1]|ϕ0 > (9.56)

Using a|ϕ0 >= 0,

1 = nc2
n < (a†)n−1ϕ0|(a†)n−1|ϕ0 >

= n
c2
n

c2
n−1

< ϕn−1|ϕn−1 >

= n
c2
n

c2
n−1

(9.57)

so that
cn =

cn−1√
n

(9.58)

Using this equation, and c0 = 1, we get

c1 = 1

c2 =
1√
2 · 1

c3 =
1√

3 · 2 · 1
(9.59)

or, in general

cn =
1√
n!

(9.60)

We now have the general solution for the energy eigenstates of the harmonic
oscillator:

ϕn(x) =
1√
n!

(a†)nϕ0(x)

=
(

mω

πh̄

)1/4 1√
n!





1√
2
(
√

mω

h̄
x−

√

h̄

mω

∂

∂x
)





n

e−mωx2/2h̄ (9.61)
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Rescaling x

y =
√

mω

h̄
x (9.62)

The general solution becomes

ϕ(x) =
1√
n!

(

mω

πh̄

)1/4
(

1√
2

)n (

y −
∂

∂y

)n

e−y2/2

=
1√
n!

(

mω

πh̄

)1/4
(

1√
2

)n

Hn(y)e−y2/2 (9.63)

with corresponding eigenvalues

En = h̄ω(n +
1

2
) (9.64)

The functions Hn(y) are known as Hermite Polynomials. Operating n times on
the ground state with the raising operator a† results in a function which is just the

ground state multiplied by an n-th order polynomial in the variable y =
√

mω/h̄x.
These are the Hermite polynomials. The first several Hermite polynomials are:

H0(y) = 1

H1(y) = 2y

H2(y) = 4y2 − 2

H3(y) = 8y3 − 12y (9.65)

By applying eq. (9.63), the Hermite polynomials, and the eigenstates ϕn(x), can be
determined to any order desired.

9.2 Algebra and Expectation Values

One of the most remarkable properties of the quantum harmonic oscillator is that
many calculations involving expectation values can be done algebraically, without ever
using the explicit form of the eigenstates ϕn(x). The reasons for this are, first, that the
x and p operators are linear combinations of the raising and lowering operators (eq.
(9.27)); and second, that the raising and lowering operators have a simple algebraic
action on the eigenstates.

Consider the raising operator acting on the state ϕn. Using eq. (9.61) we have

a†|ϕn > =
1√
n!

(a†)n+1|ϕ0 >

=
√

(n + 1)
1

√

(n + 1)!
(a†)n+1|ϕn+1 >

=
√

n + 1|ϕn+1 > (9.66)
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and we can also derive a similar equation for aϕn:

a|ϕn > =
1√
n!

a(a†)n|ϕ0 >

=
1√
n!

[(a†)na + n(a†)n−1]|ϕ0 >

= n
1√
n!

(a†)n−1|ϕ0 >

=
√

n
1

√

(n− 1)!
(a†)n−1|ϕ0 >

=
√

n|ϕn−1 > (9.67)

In summary:

a|ϕn > =
√

n|ϕn−1 >

a†|ϕn > =
√

n + 1|ϕn+1 >

x =

√

√

√

√

h̄

2mω
(a + a†)

p =
1

i

√

√

√

√

mωh̄

2
(a − a†) (9.68)

As an example of the use of these relations, let us compute the position uncertainty
∆x in the n-th energy eigenstate. As usual

(∆x)2 =< x2 > − < x >2 (9.69)

Now
√

2mω

h̄
< x > = < ϕn|(a + a†)|ϕn >

=
√

n < ϕn|ϕn−1 > +
√

n + 1 < ϕn|ϕn+1 >

= 0 (9.70)

Next, applying successively the relations (9.68)

2mω

h̄
< x2 > = < ϕn|(a + a†)(a + a†)|ϕn >

= < ϕn|(aa + aa† + a†a + a†a†)|ϕn >

= < ϕn|aa|ϕn > + < ϕn|aa†|ϕn > + < ϕn|a†a|ϕn > + < ϕn|a†a†|ϕn >

=
√

n < ϕn|a|ϕn−1 > +
√

n + 1 < ϕn|a|ϕn+1 >
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+
√

n < ϕn|a†|ϕn−1 > +
√

n + 1 < ϕn|a†|ϕn+1 >

=
√

n(n− 1) < ϕn|ϕn−2 > +(n + 1) < ϕn|ϕn >

+n < ϕn|ϕn > +
√

(n + 1)(n + 2) < ϕn|ϕn+2 >

= 0 + (n + 1) + n + 0

= 2n + 1 (9.71)

so the position uncertainty is

∆x =

√

h̄

2mω
(2n + 1) (9.72)

Notice that the explicit form of the wavefunction ϕn(x) was not needed to compute
∆x; the calculation is completely algebraic, and required only the relations (9.68). It
is easy to see that any expression of the form

< φm|F [x, p]|φn > (9.73)

where F [x, p] is any polynomial in the x and p operators, can also be computed
algebraically by the same method.



Chapter 10

Symmetry and Degeneracy

We live in a world which is almost, but not quite, symmetric. The Earth is round,
nearly, and moves in an orbit around the Sun which is circular, almost. Our galaxy
looks roughly like a spiral. Human beings and most animals have a left-right symme-
try; the left-hand side looks the same as the right-hand side, more or less. Starfish
have a pentagonal symmetry, table salt has a cubic symmetry, and in general Nature
abounds in geometrical shapes of various kinds.

The symmetry which is apparent in large structures (animals, planets, galaxies...)
is even more evident at the very small scales that are the domain of quantum physics.
Symmetries appear in the arrangement of atoms in solids, in the arrangement of
electrons in atoms, and in the structure of the nucleus. Symmetry principles are
especially important for understanding the variety and behavior of the elementary
particles, out of which all larger structures are built.

The mathematical expression of a geometrical symmetry is an invariance under
some transformation of coordinates. Let us consider some examples which will be
important:

• Reflection Symmetry A stick-figure sketch is shown in Fig. [10.1]. Suppose
we assign to every point on the sketch a set of coordinates (x, y) in the coordinate
system shown, and then suppose that every point on the sketch is moved to another
point

(x, y)→ (x′, y′) (10.1)

according to the rule
x′ = x + a y′ = y + b (10.2)

where a and b are constants. This is an example of a transformation of coordinates,
known as a Translation. Under this transformation, the whole figure is moved to
somewhere else in the plane, as shown in Fig. [10.2]. This is not an invariance of the
sketch, since the transformed sketch can be distinguished, by its new position, from
the original sketch. So we say that the translations (10.2) are not a symmetry of the
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figure. On the other hand, suppose every point (x′, y′) on the original sketch were
moved to a new point (x′, y′) according to the rule

x′ = −x y′ = y (10.3)

This transformation replaces the right-hand side of the figure by the left-hand side,
and vice-versa. The transformed stick figure is indistinguishable from the original
figure, and it is therefore said to be symmetric under left-right reflection.

• Periodicity (Symmetry under Finite Translations) Consider next the
sin-wave shown in Fig. [10.3]. In general, if we transform every point (x, y) →
(x′, y′) according to the rule (10.2), the figure will end up in a different place, and
thus be distinguishable from the untransformed figure. However, if we make the
transformation

x′ = x + 2πn y′ = y (10.4)

where n is an integer, then the new figure is the same as the old, due to the peri-
odicity of sin-waves. These special translations are therefore a symmetry of periodic
functions, such as sin and cosine.

• Rotation Symmetry As a final example, consider the points on a circle of
radius R. Each point on the circle can be assigned polar coordinates (r, θ), where
r = R and 0 ≤ θ < 2π. A circle is obviously symmetric under arbitary rotations

r′ = r θ′ = θ + δθ (10.5)

where δθ is any constant angle.

Symmetries are important in quantum mechanics whenever the Hamiltonian is
invariant under some coordinate transformation:

x′ = f(x)

∂

∂x′ =

(

∂f

∂x

)−1
∂

∂x
(10.6)

where the word ”invariant” means that

H̃ [−ih̄
∂

∂x′ , x
′] = H̃[−ih̄

∂

∂x
, x] (10.7)

Suppose φα(x) is an eigenstate of H̃

H̃ [−ih̄
∂

∂x
, x]φα(x) = Eαφα(x) (10.8)
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If we relabel the coordinates x→ x′,

H̃ [−ih̄
∂

∂x′ , x
′]φα(x

′) = Eαφα(x
′) (10.9)

and then use the invariance of the Hamiltonian under x′ = f(x), we find

H̃ [−ih̄
∂

∂x
, x]φα(f(x)) = Eαφα(f(x)) (10.10)

which proves that the transformed wavefunction

φ′(x) = φα(f(x)) (10.11)

is also an energy eigenstate, with energy Eα.
The reason that the symmetries of the Hamiltonian are important is that they

are invariably associated with conservation laws; i.e. the expectation value of some
observable Q (different from the energy) is constant in time

d

dt
< Q >= 0 (10.12)

For example, symmetry of the Hamiltonian with respect to arbitrary translations
(10.2) is associated with the conservation of momentum; and symmetry of the Hamil-
tonian with respect to rotations by an arbitrary angle (10.5) is associated with the
conservation of angular momentum. It is always possible to choose the set of energy
eigenstates {φα} to be eigenstates not only of the Hamiltonian, but also of some
subset of the conserved observables, and the values of these observables can be used
to distinguish between different energy eigenstates which may have the same energy
eigenvalue. This lecture will be devoted to some examples of symmetric Hamiltonians,
and their corresponding conservation laws.

10.1 The Free Particle, and Momentum Conserva-
tion

The free particle Hamiltonian in one dimension is invariant under arbitrary transla-
tions

x′ = x + a (10.13)

because V (x′) = V (x) = 0 everywhere, and because

∂

∂x′ =
∂

∂x
(10.14)

Let us define a linear operator T , which acts on functions by transforming the coor-
dinate

TF (x) = F (x′) = F (x + a) (10.15)
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Then

TH̃[
∂

∂x
, x]ψ(x) = H̃[

∂

∂x′ , x
′]ψ(x′)

= H̃[
∂

∂x
, x]ψ(x′)

= H̃[
∂

∂x
, x]Tψ(x) (10.16)

From this equation, we see that the operator T commutes with the the Hamilitonian
operator

[T, H̃ ] = 0 (10.17)

Now notice that

TF (x) = F (x + a)

= F (x) +
∂F

∂x
a +

1

2

∂2F

∂x2
a2 + ...

=
∞
∑

n=0

an

n!

∂n

∂xn
F (x)

= exp

[

a
∂

∂x

]

F (x)

= exp[iap̃/h̄]F (x) (10.18)

which means that T is the exponential of the momentum operator. Since T com-
mutes with H̃ for any displacement a, it follows that the momentum operator p also
commutes with H

[p̃, H̃ ] = 0 (10.19)

This is easy to check for the free particle Hamiltonian, since H̃ = p̃2/2m, and p̃
commutes with p̃2.

In Lecture 8, we found an equation of motion for expectation values

d

dt
< Q >=

i

h̄
< [Q, H ] > (10.20)

It follows that if an Hermitian operator commutes with the Hamiltonian, the corre-
sponding observable is conserved:

d

dt
< Q >= 0 (10.21)

In the special case of the free particle, we therefore have conservation of momentum

d

dt
< p >= 0 (10.22)
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We have already noted that the energies of the free particle are 2-fold degenerate;
i.e. for each energy E there are two linearly independent states with the same energy,
and any linear combination of those two states

ψ(x) = aei
√

2mEx/h̄ + be−i
√

2mEx/h̄ (10.23)

is also an eigenstate with energy E. However, since p̃ commutes with H̃, it follows
from the commutator theorem that energy E and momentum p are simultaneously
observable. This means that we can choose the complete set of energy eigenstates
{φα} to be eigenstates of H̃ and p̃, which is

{

φp(x) =
1√
2πh̄

eipx/h̄; Ep =
p2

2m
; p ∈ [−∞,∞]

}

(10.24)

Each value of the momentum p singles out one and only one energy eigenstate φp(x),
whereas an energy eigenvalue, by itself, is not enough to specify the state uniquely.

10.2 Parity

The free particle potential
V (x) = 0 (10.25)

the harmonic oscillator potential

V (x) =
1

2
kx2 (10.26)

and the finite square well potential

V (x) =











0 x < −a
−V0 −a ≤ x ≤ a
0 x > a

(10.27)

are all invariant under the Parity transformation

x′ = −x (10.28)

which is a left-right reflection of the x-axis. The kinetic energy term of the Hamilto-
nian is also invariant under this transformation, since

−
h̄2

2m

∂

∂x′
∂

∂x′ = −
h̄2

2m

(

−
∂

∂x

)(

−
∂

∂x

)

= −
h̄2

2m

∂

∂x

∂

∂x
(10.29)
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therefore the Hamiltonians of the free particle, the Harmonic oscillator, and the finite
square well are invariant under the Parity transformation. Define the Parity operator
as the linear operator which has the property

PF (x) = F (−x) (10.30)

Once again, we see that

PH̃[∂x, x]ψ(x) = H̃[−∂x,−x]ψ(−x)

= H̃[∂x, x]ψ(−x)

= H̃[∂x, x]Pψ(x) (10.31)

so the Parity operator commutes with the Hamiltonian

[P, H̃] = 0 (10.32)

and is conserved
d

dt
< P >= 0 (10.33)

It is easy to show that Parity is an Hermitian operator (exercise). Suppose φβ is an
eigenstate of the Parity operator with eigenvalue β

Pφβ(x) = βφβ (10.34)

Then
PPφβ(x) = βPφβ(x) = β2φβ(x) (10.35)

On the other hand,
PPφβ(x) = Pφβ(−x) = φβ(x) (10.36)

Comparing the last two equations, we see that

β2 = 1 =⇒ β = ±1 (10.37)

Eigenstates with β = +1 are known as ”even-parity” eigenstates, denoted φ+(x), and
have the property

φ+(−x) = +φ+(x) (10.38)

while eigenstates with β = −1 are known as ”odd-parity” eigenstates, denoted φ−(x),
with the property

φ−(−x) = −φ−(x) (10.39)

By the Commutator Theorem, the Hamiltonian operator and the Parity operator
have a common set of eigenstates. We have already seen in Lecture 9 that every
energy eigenstate of the finite square well was either an even parity state, or an odd
parity state. The same is true for the energy eigenstates of the Harmonic oscillator.
The harmonic oscillator ground state φ0(x) is a gaussian function which is invariant
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under x→ −x; it is therefore an even-parity eigenstate. The raising operator, on the
other hand transforms as

a†(−x,−∂x) = −a†(x, ∂x) (10.40)

Using the general form for the harmonic oscillator eigenstates

φn(x) =
1√
n!

(a†)nφ0(x) (10.41)

it is clear that
Pφn(x) = φn(−x) = (−1)nφn(x) (10.42)

and the energy eigenstates are even-parity for n even, and odd-parity for n odd.
Finally, the free particle Hamiltonian is invariant under Parity, so there must be

a complete set of energy eigenstates which are also eigenstates of the parity operator.
Note that the eigenstates of momentum are not eigenstates of parity

Peipx/h̄ = e−ipx/h̄ += ±eipx/h̄ (10.43)

On the other hand, an energy eigenstate does not have to be a momentum eigenstate.
As we have seen, an eigenstate of energy E has the general form

φE(x) = aeipx/h̄ + be−ipx/h̄ p =
√

2mE (10.44)

If φE(x) is an even-parity eigenstate, it requires that a = b, or

φE+(x) = A cos[
px

h̄
] (10.45)

while if φE(x) is an odd-parity eigenstate, it means that a = −b, or

φE−(x) = B sin[
px

h̄
] (10.46)

So a complete set of energy eigenstates is given by the set

{φE+(x), φE−(x), E ∈ [0,∞]} (10.47)

This is complete because any energy eigenstate of the form (10.44) can be expressed
as a linear combination of φE+ and φE−. Note that specifying the energy E, and the
parity ±1, determines the energy eigenstate uniquely.

It may seem odd that an eigenstate of momentum is not an eigenstate of par-
ity (and vice versa). After all, both are associated with coordinate transformations
which are symmetries of the free particle Hamiltonian. However, the order of these
transformations is important. Suppose we have a particle at point x. If we first make
a translation x′ = x + a, and then a tranformation x′′ = −x′, the particle winds up
at coordinates x′′ = −x− a. On the other hand, if we make these transformations in
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reverse order, first x′ = −x and then x′′ = x′ +a, the particle ends up at x′′ = −x+a,
which is a different point. It is not surprising, then, that the momentum operator p̃
and the Parity operator P don’t commute:

P p̃f(x) = (−p̃)f(−x)

= −p̃P f(x)

+= p̃P f(x) (10.48)

Since

[P, p̃] += 0 (10.49)

it follows that P and p̃ cannot have the same set of eigenstates. There are two lessons
to be learned from this:

1. When the order of symmetry transformations is important, then the operators
associated with those transformations do not commute.

2. When two (or more) operators commute with the Hamiltonian, but not with each
other, there are always degenerate energy eigenvalues.

10.3 The Particle in a Square

As a second example of the two principles stated above, we consider a two-dimensional
problem: a particle moving freely inside a square of length L, whose lower left-hand
corner is located at the point x = 0, y = 0. The symmetries of a square include:
reflection of the x-axis around the point x = L/2:

x′ = L− x (10.50)

reflection of the y-axis around y = L/2

y′ = L− y (10.51)

and the interchange of coordinates

x′ = y y′ = x (10.52)

which is equivalent to a reflection around the line x = y.
The Hamiltonian for a particle of mass m moving in the square is

H̃ = −
h̄2

2m

(

∂2

∂x2
+

∂2

∂y2

)

+ V (x, y) (10.53)
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where

V (x, y) = v(x) + v(y)

v(x) =

{

0 0 < x < L
∞ otherwise

(10.54)

The variables in the Hamiltonian are separable:

H̃ = H̃x + H̃y

H̃x = −
h̄2

2m

∂2

∂x2
+ v(x)

H̃y = −
h̄2

2m

∂2

∂y2
+ v(y) (10.55)

so the method of separation of variables

φ(x, y) = ψ(x)ϕ(y) (10.56)

can be applied to solve the time-independent Schrodinger equation

H̃φ = Eφ (10.57)

We get
ϕ(y)H̃xψ(x) + ψ(x)H̃yϕ(y) = Eψ(x)ϕ(y) (10.58)

and dividing by φ(x, y) on both sides

H̃xψ(x)

ψ(x)
+

H̃yϕ(y)

ϕ(y)
= E (10.59)

Since the first ratio is only a function of x, and the second is only a function of y, the
only way that the sum of the two ratios can be a constant, for all values of x and y,
is if each ratio is a constant, i.e.

H̃xψn(x) = Enψn(x)

H̃yϕm(y) = Emϕm(y) (10.60)

In this way the two-dimensional equation has been reduced to two one-dimensional
equations, each of which is identical to the Schrodinger equation for a particle in a
tube, and which have the same solutions:

ψn(x) =

√

2

L
sin[

nπx

L
] En = n2 h̄2π2

2mL2

ϕm(y) =

√

2

L
sin[

mπy

L
] Em = m2 h̄2π2

2mL2
(10.61)
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A complete set of energy eigenstates is then

{

φnm(x, y) =
2

L
sin[

nπx

L
] sin[

mπy

L
], Enm = (n2 + m2)

h̄2π2

2mL2

}

(10.62)

The energies Enm are two-fold degenerate for n += m, since

Enm = Emn (10.63)

Since the Hamiltonian H̃ is invariant under reflections of the x-axis around the
point x = L/2, and reflections of the y-axis around y = L/2, we define the corre-
sponding operators

Rxf(x, y) = f (L− x, y)

Ryf(x, y) = f (x, L− y) (10.64)

It is easy to see that Rx and Ry commute,

RxRyf(x, y) = RyRxf(x, y)

= f (L− x, L− y))

=⇒ [Rx, Ry] = 0 (10.65)

and that the energy eigenstates of eq. (10.62) are eigenstates of both Rx and Ry,
with eigenvalues ±1, since

sin

[

nπ(L− x)

L

]

=

{

1 n odd
−1 n even

× sin[
nπx

L
] (10.66)

However, the Hamiltonian H̃ is also invariant under an interchange of the x and y
coordinates

If(x, y) = f(y, x) (10.67)

and this operator does not commute with Rx and Ry:

IRxf(x, y) = f (y, L− x)

RxIf(x, y) = f (L− y, x) (10.68)

The eigenvalues of I are determined by the same reasoning as in the case of parity.
Suppose φβ is an eigenstate of I with eigenvalue β. Then

IIφβ(x, y) = Iφβ(y, x) = φβ(x, y) (10.69)

but also
IIφβ(x, y) = βIφβ(x, y) = β2φβ(x, y) (10.70)
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Therefore

β2 = 1 =⇒ β = ±1 (10.71)

Because φnm(x, y) and φmn(x, y) have the same energy, so does any linear combi-
nation

Φ(x, y) = aφnm(x, y) + bφmn(x, y) (10.72)

Requiring Φ to be an eigenstate of I with eigenvalue β = 1 means that φ(x, y) =
φ(y, x), or

a sin[
nπy

L
] sin[

mπx

L
] + b sin[

mπy

L
] sin[

nπx

L
]

= a sin[
nπx

L
] sin[

mπy

L
] + b sin[

mπx

L
] sin[

nπy

L
] (10.73)

which is satisfied for a = b. Likewise, for Φ an eigenstate of I with eigenvalue β = −1,
which means that φ(x, y) = −φ(y, x) we need a = −b. Finally, the complete set of
energy eigenstates which are also eigenstates of the x− y interchange operator I are

{

Φnm+ = 1√
2
[φnm(x, y) + φnm(y, x)]

Φnm− = 1√
2
[φnm(x, y)− φnm(y, x)]

}

(10.74)

Once again, we see that there are symmetry operations which do not commute
with one another, and that the energy eigenvalues are degenerate. The choice of a
complete set of energy eigenstates, (10.62) or (10.74), is determined by requiring that
the energy eigenstates, in addition to being eigenstates of the Hamiltonian, are also
eigenstates of one of the symmetry operators.

10.4 The Quantum Corral

The ”quantum corral” refers to a particle moving in the interior of a circle. The
potential, in polar coordinates, is given by

V (r) =

{

0 r < R
∞ r > R

(10.75)

which, since it depends only on the radial coordinate, is obviously invariant under
arbitrary rotations

r′ = r θ′ = θ + δ′θ (10.76)

Polar coordinates are related to cartesian coordinates by

x = r cos θ y = r sin θ (10.77)
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and the Laplacian operator ∇2, in two dimensions, is given in polar coordinates by

∇2 ≡
∂2

∂x2
+

∂2

∂y2

=
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
(10.78)

Under an arbitrary rotation of the form (10.76), ∂/∂θ′ = ∂/∂θ, so the Laplacian is
invariant. It follows that the Hamiltonian for a particle moving inside a circle

H̃ = −
h̄2

2m

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)

+ V (r) (10.79)

is invariant under rotations.
As in the previous examples, we introduce a rotation operator Rδθ defined by

Rδθf(r, θ) = f(r, θ + δθ) (10.80)

and, proceeding as in the case of the translation operator

f(r, θ + δθ) = f(r, θ) +
∂f

∂θ
δθ +

1

2

∂2f

∂θ2
+ ...

= exp[δθ
∂

∂θ
]f(r, θ) (10.81)

so that

Rδθ = exp[δθ
∂

∂θ
] (10.82)

Since the Hamiltonian is invariant under rotations

[Rδθ, H̃ ] = 0 (10.83)

it follows from (10.82) that

[
∂

∂θ
, H̃ ] = 0 (10.84)

Now, in cartesian coordinates

∂

∂θ
=

∂x

∂θ

∂

∂x
+

∂y

∂θ

∂

∂y

= −r sin θ
∂

∂x
+ r cos θ

∂

∂y

= x
∂

∂y
− y

∂

∂x

=
1

−ih̄
(xp̃y − yp̃x) (10.85)
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In three dimensions, angular momentum around the z-axis is given by

Lz = xpy − ypx (10.86)

In two dimensions, this is the only possible component of angular momentum. The
corresponding operator is Lz = xp̃y − yp̃x, and we see that the rotation operator is
just the exponentiated angular momentum operator

Rδθ = eiδθLz/h̄ (10.87)

and Lz commutes with the Hamiltonian

[Lz, H̃] = 0 (10.88)

It follows that
d

dt
< Lz >= 0 (10.89)

In other words, symmetry of the potential with respect to rotations around some axis
implies the Conservation of Angular Momentum around that axis.

By the Commutator Theorem, the operators Lz and H̃ have a common set of
eigenstates. Since

Lz = −ih̄
∂

∂θ
(10.90)

the Hamiltonian operator contains the angular momentum operator

H̃ = −
h̄2

2m

(

∂2

∂r2
+

1

r

∂

∂r
−

1

h̄2r2
L2

z

)

+ V (r) (10.91)

so we begin by solving for the eigenstates of angular momentum

Lzφ(r, θ) = αφ(r, θ)

−ih̄
∂

∂θ
φ(r, θ) = αφ(r, θ) (10.92)

which is similar to the momentum eigenvalue equation, and has a similar solution

φ(r, θ) = ϕ(r)eiαθ/h̄ (10.93)

There is one difference, however, between the eigenstates of momentum and an-
gular momentum. Whereas the position x + a is different from position x, for any
non-zero constant a, the angle θ + 2π is identical to θ. This imposes an additional
constraint

φ(r, θ + 2π) = φ(r, θ) (10.94)

on the wavefunction of any physical state. In particular, for the angular momentum
eigenstates (10.93), the constraint can only be satisfied if the eigenvalues α of angular
momentum take on only discrete values

α = nh̄, n = 0,±1,±2,±3, .... (10.95)
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and these are the only values which could result from an accurate measurement. In
short, the values of angular momentum are ”quantized” in units of h̄. Essentially, it is
a consequence of the wavelike properties of matter, combined with the 2π-periodicity
of angles. Denote an eigenstate of angular momentum by

φn(r, θ) = ϕn(r)einθ (10.96)

and substitute into the time-independent Schrodinger equation,
[

−
h̄2

2m

(

∂2

∂r2
+

1

r

∂

∂r
−

1

h̄2r2
L2

z

)

+ V (r)

]

φn = Enφn (10.97)

Using the fact that
Lzφn = nh̄φn (10.98)

the Schrodinger equation becomes
[

−
h̄2

2m

(

∂2

∂r2
+

1

r

∂

∂r
−

n2

r2

)

+ V (r)

]

ϕn(r) = Enϕn(r) (10.99)

As in the case of the infinite square well, the wavefunction must be zero where V (r) =
∞, i.e.

ϕ(r) = 0 when r ≥ R (10.100)

Inside the circle, at r ≤ R, the Schrodinger equation is
[

∂2

∂r2
+

1

r

∂

∂r
+ (

2mE

h̄2 −
n2

r2
)

]

ϕn(r) = 0 (10.101)

Define

k2 =
2mE

h̄2

ρ = kr (10.102)

In terms of the rescaled radial coordinate ρ, the time-independent equation becomes
[

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+ (1−

n2

ρ2
)

]

ϕn = 0 (10.103)

This is one of the standard differential equations of mathematical physics, known
as Bessel’s Equation. The solutions are the Bessel Functions, denoted Jn(ρ), and
Neumann Functions, Nn(ρ). The Neumann functions are infinite, and therefore non-
differentiable wrt x and y, at r = 0. So Neumann functions do not correspond to
physical states, and can be discarded. We are therefore left with solutions

ϕn(r) = Jn(kr) with energy E =
h̄2k2

2m
(10.104)
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This is a bound state solution, since the particle is bound by the potential inside a
circle, and we know that the energies of bound states are discrete. In this case, the
possible energies are determined by the condition that

φn(R, θ) = 0 =⇒ ϕn(R) = 0 =⇒ Jn(kR) = 0 (10.105)

Bessel functions are oscillating functions (wavefunctions in classically allowed re-
gions oscillate), so the constant k must be chosen such that kR is a ”zero” of the
Bessel function Jn. Denote

Jn(xnj) = 0 (10.106)

where {xn1, xn2, xn3, ...} are the zeros of the n-th Bessel function. In particular

x0j = 2.405, 5.520, 8.654, ...

x1j = 3.832, 7.016, 10.173, ... (10.107)

and the possible energies must therefore satisfy

kR = xnj Enj =
h̄2k2

2m
(10.108)

Finally, the complete set of energy eigenstates and eigenvalues are

{

φnj = Jn(
xnj

R
r)einθ, Enj =

h̄2x2
nj

2mR2
, Lz = nh̄

}

(10.109)

Note that the energy eigenvalues are degenerate, Enj = E(−n)j . This means that
there must be at least two operators which commute with the Hamiltonian, but not
with each other. In this case, an operator which commutes which H̃ , but not with
Lz, is the reflection operator

Pθf(r, θ) = f(r,−θ) (10.110)

corresponding to the reflection symmetry θ′ = −θ.
Very recent advances in technology, specifically, the invention of the scanning

tunnelling microscope, and the development of techniques for manipulating matter
at the atomic scale, have made it possible to actually trap electrons in a circle, and
measure the square modulus of the wavefunction. The result, shown in Fig. [10.4], is
breath-taking. The peaks arranged in a circle show the electron clouds of iron atoms,
which are used to form the ”corral”. The circular ripples inside the ”corral” show
the wavefunction (modulus squared) of the trapped electrons. In the photograph,
the electrons are in an energy eigenstate, and the wavefunction (modulus squared) is
proportional to the square of a Bessel function.



168 CHAPTER 10. SYMMETRY AND DEGENERACY

10.5 Complete Sets of Observables

To summarize the lessons of this lecture:

1. If two (or more) hermitian operators commute with the Hamiltonian, but not with
each other, then the energy eigenvalues of the Hamiltonian must be degenerate.

Reason: if H commutes with A and B, then H and A share a common set of eigen-
states, and H and B share a common set of eigenstates. But if A doesn’t commute
with B, these two sets of eigenstates must be different. However, if the eigenvalues
of H were non-degenerate, then there is only one possible choice of energy eigen-
states. Since there are (at least) two different sets of energy eigenstates, the energy
eigenvalues must be degenerate.

Example: The free particle Hamiltonian commutes with momentum p and parity P ,
but [p, P ] += 0. The common set of eigenstates of H and p is

{

ei
√

2mEx/h̄, e−i
√

2mEx/h̄, E ∈ [0,∞]
}

(10.111)

and the common set of eigenvalues of H and P is
{

cos[
√

2mEx/h̄], sin[
√

2mEx/h̄], E ∈ [0,∞]
}

(10.112)

Each of these sets is a Complete Set of States, in the sense that any energy
eigenstate can be written as a linear combination of the eigenstates of either set.
Then, by theorem H3, any wavefunction φ(x) can be written as a sum of eigenstates
of either set.

2. Symmetries of the Hamiltonian imply conservation laws.

Reason: Symmetry under coordinate transformations can be associated with opera-
tors which produce those transformations; these operators commute with any Hamil-
tonian which is invariant under the given transformation. Operators which commute
with the Hamiltonian are conserved, according to eq. (10.20).

Examples: Symmetry of the free-particle Hamiltonian under translations implies con-
servation of momentum; symmetry of the Hamiltonian under rotations, e.g. for a
particle bound inside a circle, implies conservation of angular momentum.

3. As a general rule, symmetry operations do not commute. Therefore, as a con-
sequence of item 1, the more symmetric the Hamiltonian, the greater is the
degeneracy in its energy eigenvalues.
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Example: It will be seen in the next lecture that the energy degeneracy of a spherically
symmetric Hamiltonian in three dimensions is greater than the energy degeneracy of
a rotationally invariant Hamiltonian in two dimensions.

Items 1 and 3 actually hold true not just for the Hamiltonian, but for all operators.
If A commutes with B and C, but B and C don’t commute with each other, then the
eigenvalues of A are degenerate. The more symmetries an operator has, the greater
is the degeneracy in its eigenvalues.

Suppose the operators A, B, C commute, and that the set of eigenstates of A
which are also eigenstates of B and C is unique. Then the set {A, B, C} is known as
a Complete Set of Observables. Measurement of a complete set of observables is
sufficient to uniquely determine the quantum state (which must be an eigenstate of
all operators in the set). Examples:

a. Momentum p is a complete set of observables. In fact, any operator with non-
degenerate eigenvalues is a complete set.

b. Energy E is a complete set, for the Harmonic Oscillator and Square Well poten-
tials.

c. Energy E and parity P is a complete set, for the free particle.

d. Energy E and reflection Rx is a complete set for the particle in a square. So is E
and the observable corresponding to x-y interchange I.

e. Energy E and angular momentum Lz is a complete set for the ”quantum corral”.



170 CHAPTER 10. SYMMETRY AND DEGENERACY



Chapter 11

Angular Momentum

When the potential energy in three dimensions depends only on the radial coordinate,
the potential is said to be ”spherically symmetric”, and the Hamiltonian is invariant
under arbitrary rotations; in particular, the Hamiltonian is invariant under rotations
around the x, y, and z-axes. In the last lecture we found that for rotations around
the origin in the x− y plane, the rotation operator is

Rz(δθ) = eiLzδθ/h̄ (11.1)

There is nothing special about the z-axis; rotations around the x and y-axes must
have the corresponding forms

Rx(δθ) = eiLxδθ/h̄

Ry(δθ) = eiLyδθ/h̄ (11.2)

In the case of rotations around different axes, the order of rotations is important.
For example, consider a particle at a point on the z-axis, shown in Fig. [11.1], and
imagine doing first a rotation by 90o around the z-axis, and then a rotation by 900

along the x-axis. The first rotation, around the z-axis, leaves the particle where it
is. The second rotation, around the x-axis, brings the particle to a final position
along the y-axis. Now reverse the order of coordinate transformations: A rotation
around the x-axis brings the particle to a point to the y-axis, and the subsequent
rotation around the z-axis brings the particle to a point on the x-axis. Thus the two
transformations, performed in different orders, result in different final positions for
the particle.

It follows that, although we expect the angular momentum operators to commute
with a symmetric Hamiltonian, we do not expect the Lx, Ly, Lz operators to com-
mute with each other. The energy eigenvalues will therefore be degenerate, angular
momentum is conserved, and the angular momentum operators can be used to select
among different complete sets of energy eigenstates. In this lecture, we will learn how
to construct eigenstates of angular momentum, which is a necessary step towards
solving the Schrodinger equation for spherically symmetric potentials

171
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11.1 The Angular Momentum Commutators

Angular momentum in classical physics is defined as

%L = %r × %p (11.3)

or, in components,

Lx = ypz − zpy

Ly = zpx − xpz

Lz = xpy − ypx (11.4)

The corresponding quantum-mechanical operators are obtained by replacing p with
p̃, i.e.

L̃x = yp̃z − zp̃y = −ih̄

{

y
∂

∂z
− z

∂

∂y

}

L̃y = zp̃x − xp̃z = −ih̄

{

z
∂

∂x
− x

∂

∂z

}

L̃z = xp̃y − yp̃z = −ih̄

{

x
∂

∂y
− y

∂

∂x

}

(11.5)

Spherical coordinates are related to cartesian coordinates by

z = r cos θ

x = r sin θ cos φ

y = r sin θ sin φ (11.6)

and a spherically symmetric potential, also known as a central potential, is a func-
tion which is independent of the angular coordinates θ, φ, i.e.

V (r, θ, φ) = V (r) (11.7)

We have already deduced that the Hamiltonian should commute with the angular
momentum operators, simply because the Hamiltonian of a particle in a central po-
tential is invariant under a rotation of coordinates, and the operators which generate
rotations are the exponential of the angular momentum operators. These commuta-
tors can of course be checked directly, e.g in the case of the z-component of angular
momentum we have

[L̃z, H̃] = [L̃z ,
1

2m
p̃2 + V (r)]

=
1

2m
[L̃z , p̃

2] + [Lz, V (r)] (11.8)
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where

[L̃z, V (r)] = x[py, V (r)]− y[px, V (r)]

= −ih̄

(

x
∂V

∂y
− y

∂V

∂x

)

= −ih̄

(

x
∂V

∂r

∂r

∂y
− y

∂V

∂r

∂r

∂x

)

= −ih̄

(

x
∂V

∂r

y

r
− y

∂V

∂r

x

r

)

= 0 (11.9)

and

[L̃z, p̃
2] = [(xp̃y − yp̃x), p̃

2
x + p̃2

y + p̃2
z]

= [xp̃y, p̃
2
x]− [yp̃x, p̃

2
y]

= p̃y[x, p̃2
x]− p̃x[y, p̃2

y]

= −2ih̄p̃yp̃x + 2ih̄p̃xp̃y

= 0 (11.10)

This proves that
[L̃z, H̃] = 0 (11.11)

Similar steps show that
[L̃x, H̃ ] = [L̃y, H̃] = 0 (11.12)

which means that in a central potential, angular momentum is conserved.
However, since the order of rotations around the x, y, and z-axes are important,

the operators L̃x, L̃y, L̃z cannot commute among themselves. For example,

[L̃x, L̃y] = [(yp̃z − zp̃y), (zp̃x − xp̃z)]

= [yp̃z, zp̃x] + [zp̃y , xp̃z]

= yp̃x[p̃z, z] + xp̃y[z, p̃z ]

= ih̄(−yp̃x + xp̃y)

= ih̄L̃z (11.13)

Altogether,

[L̃x, L̃y] = ih̄L̃z
[

L̃y, L̃z

]

= ih̄L̃x
[

L̃z, L̃x

]

= ih̄L̃y (11.14)

These angular momentum commutators are the fundamental equations that will be
applied in this lecture. They will be used to determine both the eigenvalues and the
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eigenstates of angular momentum, by an algebraic methods which closely resembles
the treatment of the harmonic oscillator.

The fact that the angular momentum operators commute with the Hamiltonian,
but not with each other, means that the energy eigenvalues of the Hamiltonian are
degenerate. It also means that all three components of angular momentum cannot be
measured simultaneously, which tells us that there does not exist any physical state
in which the direction of angular momentum is definite. However, despite the fact
that the direction of angular momentum is indefinite, there do exist states in which
the magnitude of angular momentum is definite; these are eigenstates of the squared
angular momentum operator

L̃2 = L̃2
x + L̃2

y + L̃2
z (11.15)

Each of the components of angular momentum commutes with L̃2. For example,

[L̃z, L̃
2] = [L̃z, L̃

2
x + L̃2

y + L̃2
z]

= [L̃z, L̃
2
x] + [L̃z, L̃

2
y] (11.16)

We evaluate the first commutator with the help of the relations in eq. (11.14)

[L̃z, L̃
2
x] = L̃zL̃xL̃x − L̃xL̃xL̃z

= (L̃xL̃z + [L̃z, L̃x])L̃x − L̃2
xL̃z

= L̃xL̃zL̃x + ih̄L̃yL̃x − L̃2
xL̃z

= L̃x(L̃xL̃z + [L̃z, L̃x]) + ih̄L̃yL̃x − L̃2
xL̃z

= ih̄(L̃xL̃y + L̃yL̃x) (11.17)

The second commutator gives a similar result:

[L̃z , L̃
2
y] = L̃zL̃yL̃y − L̃yL̃yL̃z

= (L̃yL̃z + [L̃z, L̃y])L̃y − L̃2
yL̃z

= L̃yL̃zL̃y − ih̄L̃xL̃y − L̃2
xL̃z

= L̃y(L̃yL̃z + [L̃z, L̃y])− ih̄L̃xL̃y − L̃2
yL̃z

= −ih̄(L̃yL̃x + L̃xL̃y)

= −[L̃z , L̃
2
x] (11.18)

Adding the two commutators together gives zero, and therefore L̃z commutes with
L̃2. The same result is obtained for the other components of angular momentum:

[L̃x, L̃
2] = [L̃y, L̃

2] = [L̃z, L̃
2] = 0 (11.19)
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11.2 The Eigenvalues of Angular Momentum

The energy eigenvalues of H̃ , for a particle in a central potential, are degenerate, since
H̃ commutes with the components of angular momentum, which do not commute with
each other. The same can be said for the eigenvalues of L̃2. These eigenvalues must
be degenerate, because L̃2 also commutes with L̃x, L̃y, L̃z, which do commute with
each other. By the commutator theorem L̃2 and L̃x have a common set of eigenstates;
so do L̃2 and L̃x, and also L̃2 and L̃z. But, again by the commutator theorem, these
must be different sets of eigenstates.

Denote the eigenstates of L̃2 and, say, Lz , as ϕab. Angular momentum has units
of action, i.e. energy×time, which is the same units as Planck’s constant h̄. So we
may as well write the eigenvalues of angular momentum in units of h̄ where

L̃2ϕab = a2h̄2ϕab

L̃zϕab = bh̄ϕab (11.20)

where a and b are dimensionless numbers. The eigenvalues of L̃z may be positive or
negative, but the eigenvalues of L̃2 are necessarily positive, because L̃2 is a sum of
squares of Hermitian operators. Therefore,

< ϕab|L̃2ϕab > = < ϕab|L̃2
x|ϕab > + < ϕab|L2

y|ϕab > + < ϕab|L2
z|ϕab >

a2h̄2 < ϕab|ϕab > = < ϕab|L̃2
x|ϕab > + < ϕab|L̃2

y|ϕab > +h̄2b2 < ϕab|ϕab >

a2h̄2 = < L̃xϕab|L̃xϕab > + < L̃yϕab|L̃yϕab > +h̄2b2

a2h̄2 = h̄2b2 + |L̃xϕab|2 + |L̃yϕab|2 (11.21)

which establishes that the eigenvalues of L̃2 are positive semi-definite, and also that

−a ≤ b ≤ a (11.22)

The fact that L̃2 is a sum of squares of Hermitian operators, which commute in
a simple way among themselves (eq. (11.14)), suggests trying the same trick that we
used for the Harmonic oscillator. Applying eq. (9.13) of Lecture 9, we have

L̃2 = (L̃2
x + L̃2

y) + L̃2
z

= (L̃+L̃− + i[L̃x, L̃y]) + L̃2
z

= L̃+L̃− − h̄Lz + L̃2
z (11.23)

where

L̃+ ≡ L̃x + iL̃y

L̃− ≡ L̃x − iL̃y (11.24)

L̃− is the Hermitian conjugate of L̃+. Equivalently, since

[L̃+, L̃−] = −2i[L̃x, L̃y] = 2h̄L̃z (11.25)
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we have

L̃2 = L̃+L̃− − h̄L̃z + L̃2
z

= L̃−L̃+ + [L̃+, L̃−]− h̄L̃z + L̃2
z

= L̃−L̃+ + h̄L̃z + L̃2
z (11.26)

Finally, we need the commutators of L̃z with L̃±:

[L̃z, L̃+] = [L̃z, L̃x] + i[L̃z , L̃y]

= ih̄L̃y + i(−ih̄L̃x)

= h̄L̃+ (11.27)

and likewise
[L̃z, L̃−] = −h̄L̃− (11.28)

In summary, the commutators of (11.14) in terms of L̃x, L̃y, L̃z can be replaced
by commutators involving L̃±, L̃z, and L̃2 can also be expressed in terms of L̃±, L̃z:

[L̃+, L̃−] = 2h̄L̃z
[

L̃z, L̃±

]

= ±h̄L̃±

L̃2 = L̃+L̃− + L̃2
z − h̄L̃z

= L̃−L̃+ + L̃2
z + h̄L̃z (11.29)

The point of introducing the L̃± operators is that they act on eigenstates of L̃z

just like the raising and lowering operators a and a† act on eigenstates of the harmonic
oscillator Hamiltonian. Let

ϕ′ = L+ϕab (11.30)

Then

Lzϕ
′ = LzL+ϕab

= (L+Lz + h̄L+)ϕab

= (h̄b + h̄)L+ϕab

= h̄(b + 1)ϕ′ (11.31)

and we see that ϕ′ = L+ϕab is also an eigenstate of Lz, with the eigenvalue h̄(b + 1).
The raising operator has therefore raised the eigenvalue of Lz by the amount h̄. The
”raised” eigenstate ϕ is also an eigenstate of L2, with the same eigenvalue as ϕab:

L̃2ϕ′ = L̃2L̃+ϕab

= L̃+L̃2ϕab

= h̄2a2L̃+ϕab

= h̄2a2ϕ′ (11.32)
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Therefore,
L̃+ϕab = C+

abϕa,b+1 (11.33)

where C+
ab is a constant. This establishes the fact that L+ is a raising operator,

analogous to the a† operator used in solving the harmonic oscillator. In a similar
way, we can show that L− is a lowering operator. Define

ϕ” = L̃−ϕab (11.34)

Then

L̃zϕ” = L̃zL̃−ϕab

= (L̃−L̃z − h̄L−)ϕab

= (h̄b− h̄)L̃−ϕab

= h̄(b− 1)ϕ” (11.35)

so that ϕ” = L̃−ϕab is also an eigenstate of L̃z, with the eigenvalue h̄(b−1). It is also
an eigenstate of L̃2:

L̃2ϕ” = L̃2L̃−ϕab

= L̃−L̃2ϕab

= h̄2a2L̃−ϕab

= h̄2a2ϕ” (11.36)

Therefore L̃− is a lowering operator

L̃−ϕab = C−
abϕa,b−1 (11.37)

where C−
ab is a constant.

In the case of the Harmonic oscillator, we deduced from the fact that < E >≥ 0
that there must be a state of lowest energy ϕ0, and therefore a lowest energy eigenvalue
E0. Since the lowering operator a cannot produce a state of lower energy than E0, it
must annihilate the ground state

aϕ0 = 0 (11.38)

The argument for angular momentum is quite similar. We have already found that
the eigenvalues of L̃z have both a lower and and upper bound, for fixed h̄2a2, since

−a ≤ b ≤ a (11.39)

So let us denoted the minimum value of b as bmin and the maximum value as bmax,
where |bmin|, |bmax| ≤ a. The corresponding eigenstates must have the property that

L̃+ϕabmax = 0

L̃−ϕabmin
= 0 (11.40)
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Now, we must be able to reach the highest state ϕabmax by acting successively on
ϕabmin

with the raising operator

ϕabmax ∝ (L̃+)nϕabmin
(11.41)

which implies, since the raising operator raises b to b + 1, that

bmax = bmin + n n = a positive integer or 0 (11.42)

or, equivalently,

bmax = bav +
n

2

bmin = bav −
n

2

bav =
1

2
(bmax + bmin) (11.43)

Next, using the expressions for L̃2 in (11.29)

L̃2ϕabmax = (L̃−L̃+ + L̃2
z + h̄L̃z)ϕabmax

h̄2a2ϕabmax = h̄2bmax(bmax + 1)ϕabmax (11.44)

so that

a2 = bmax(bmax + 1)

= (bav +
1

2
n)(bav +

1

2
n + 1) (11.45)

Likewise,

L̃2ϕabmin
= (L̃+L̃− + L̃2

z − h̄L̃z)ϕabmin

h̄2a2ϕabmin
= h̄2bmin(bmin − 1)ϕabmin

(11.46)

so that

a2 = bmin(bmin − 1)

= (bav −
1

2
n)(bav −

1

2
n− 1)

= (−bav +
1

2
n)(−bav +

1

2
n + 1) (11.47)

Equating the right-hand sides of (11.45) and (11.47)

(bav +
1

2
n)(bav +

1

2
n + 1) = (−bav +

1

2
n)(−bav +

1

2
n + 1) (11.48)
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which implies that:

bav = 0

bmax =
n

2

bmin = −
n

2

a2 =
n

2

(

n

2
+ 1

)

(11.49)

It is customary to use the notation

l ≡
n

2
m ≡ b (11.50)

and to relabel eigenstates ϕab as ϕlm. In this notation, the eigenvalues of angular
momentum are

L̃2ϕlm = l(l + 1)h̄2ϕlm

L̃zϕlm = mh̄ϕlm

l = 0,
1

2
, 1,

3

2
, 2,

5

2
, 3, ...

m = −l,−l + 1,−l + 2, ......, l − 3, l − 2, l− 1, l (11.51)

Note that, as predicted, the eigenvalues of L̃2 are degenerate: to each eigenvalue
L2 = l(l + 1)h̄2 there are 2l + 1 linearly independent eigenstates ϕlm, for values of
m in the range −l ≤ m ≤ l, as in (11.51). In other words, each L2 eigenvalue is
2l + 1-fold degenerate.

11.3 The Angular Momentum Cones

It is time to pause and interpret the remarkable result, eq. (11.51), of the last section.
What we have found is that angular momentum is ”quantized”, in the sense that a
measurement of the magnitude of angular momentum will only find one of the discrete
set of values

|L| =
√

l(l + 1)h̄, l = 0,
1

2
, 1,

3

2
, 2,

5

2
, 3, ... (11.52)

and a measurement of the component of angular momentum along a certain axis, e.g.
the z-axis, would only find one of the possible values

Lz = mh̄ m ∈ {−l,−l + 1,−l + 2, ...l − 2, l − 1, l} (11.53)

These eigenvalues have been deduced without solving the Schrodinger equation, or
any other differential equation. They were obtained from the commutation relations
(11.14) and a bit of clever algebra, nothing more.
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Confirmation of these results comes from Nature. All elementary particles, for
example, have an intrinsic spin angular momentum. The magnitude of this spin
angular momentum depends on the type of elementary particle, but it is always one
of the values (11.52). The π-meson has spin 0, corresponding to l = 0. Electrons,
protons, neutrons, and quarks have ”spin 1

2”, i.e. their total spin angular momentum
has a magnitude

|S| =

√

3

4
h̄ (11.54)

corresponding to l = 1
2 . The ρ and ω mesons have ”spin 1”, i.e.

|S| =
√

2h̄ (11.55)

corresponding to l = 1. The ∆-hyperon has ”spin 3
2” (l = 3

2), and so on. The
component of spin angular momentum along a particular axis can also be measured
experimentally for those particles which have a magnetic moment. The component of
magnetic moment along a given axis is proportional to the spin angular momentum
along that axis. Experimentally, the values of the component Sz along, e.g., the
z-axis, obey the relation (11.53). There are, however, some important differences
between intrinsic spin angular momentum (whose magnitude can never change for a
given type of particle) and orbital angular momentum, which can change by discrete
amounts. We will reserve further discussion of spin angular momentum for later in
the course.

Apart from the fact that both the total magnitude |L| and component Lz come
in discrete amounts (11.51), angular momentum in quantum mechanics differs from
angular momentum in classical mechanics in several ways. Of these, the most striking
is the fact that the angular momentum in the z-direction (or in any other direction) is
always smaller than the magnitude of total (non-zero) angular momentum. Lz = lh̄
is the largest possible value for Lz, and

lh̄ <
√

l(l + 1)h̄ (11.56)

which means that the angular momentum can never be completely aligned in a par-
ticular direction. In fact, if the angular momentum did point in a definite direction,
then all components Lx, Ly, Lz would be definite. But these components cannot be
simultaneously definite, because the corresponding operators don’t commute. These
means that there is no physical state in which the angular momentum points in a
particular direction.

In classical physics, we visualize angular momentum %L as a vector. In quantum
physics, it is better to visualize the angular momentum associated with a given eigen-
state ϕlm as a cone. In an eigenstate the magnitude of angular momentum |L| and
the z-component Lz are fixed,

|L| =
√

l(l + 1)h̄ Lz = mh̄ (11.57)
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while values of Lx and Ly are indefinite; although their squared expectation values
must satisy

< L2
x > + < L2

y > + < L2
z >=< L2 > (11.58)

We can picture the angular momentum associated with ϕlm as the cone of all vectors
%L satisfying (11.57). The cones for l = 2, m = −2,−1, 0, 1, 2, are shown in Fig. [11.2].

In classical mechanics it is easy to add two or more angular momenta; it is just a
matter of vector addition. In quantum mechanics, as one might imagine, the process
is more complicated. For example, suppose one has two electrons which are each in
angular momentum eigenstates, and we ask: ”what is the total angular momentum
of the system?” (How does one go about adding ”cones” of angular momentum?) We
will learn the quantum-mechanical rules for addition of angular momentum in the
second semester of this course.

Problem: Show that in a ϕlm eigenstate, that

< Lx >=< Ly >= 0 (11.59)

and that

< L2
x >=< L2

y >=
1

2
h̄2
[

l(l + 1)−m2
]

(11.60)

From this information, verify the generalized uncertainty principle (eq. (7.116)) for
∆Lx∆Ly.

11.4 Eigenfunctions of Angular Momentum

In the case of the harmonic oscillator, we found the ground state wavefunction by
solving the first-order differential equation

aϕ0(x) = 0 (11.61)

and then all other eigenstates can be obtained by applying the raising operator a†.
In the case of angular momentum, the strategy is very similar. For a given l, we first
solve the first-order differential equations

L+ϕll(x, y, z) = 0

Lzϕll(x, y, z) = lh̄ϕll (11.62)

and then obtain all other ϕlm wavefunctions in the multiplet by applying successively
the lowering operator L−.

It is much easier to solve these differential equations in spherical coordinates
r, θ, φ

z = r cos θ

x = r sin θ cos φ

y = r sin θ sin φ (11.63)
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because in spherical coordinates, the r variable drops out of the angular momentum
operators:

L̃x = ih̄

(

sin φ
∂

∂θ
+ cot θ cosφ

∂

∂φ

)

L̃y = ih̄

(

− cos φ
∂

∂θ
+ cot θ sinφ

∂

∂φ

)

L̃z = −ih̄
∂

∂φ

L̃2 = −h̄2

[

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

]

(11.64)

and therefore any eigenstate of angular momentum has the form

ϕlm(x, y, z) = f(r)Ylm(θ, φ) (11.65)

where

L̃2Ylm(θ, φ) = l(l + 1)h̄2Ylm(θ, φ)

L̃zYlm(θ, φ) = mh̄Ylm(θ, φ) (11.66)

and where f(r) is any function such that the normalization condition

1 =
∫

dxdydz φ∗(x, y, zφ(x, y, z)

=
∫ ∞

0
dr r2

∫ π

0
dθ sin θ

∫ 2π

0
dφ f ∗(r)f(r)Y ∗

lm(θ, φ)Ylm(θ, φ) (11.67)

is satisfied. It is conventional to normalize the Ylm such that the integral over angles
is also equal to one:

∫ π

0
dθ sin θ

∫ 2π

0
dφ Y ∗

lm(θ, φ)Ylm(θ, φ) = 1 (11.68)

With this normalization, the Ylm(θ, φ) are known as ”Spherical Harmonics”.
In spherical coordinates, the raising and lowering operators are

L̃+ = L̃x + iL̃y

= h̄eiφ

(

∂

∂θ
+ icotθ

∂

∂φ

)

L̃− = L̃x − iL̃y

= −h̄e−iφ

(

∂

∂θ
− icotθ

∂

∂φ

)

(11.69)
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and we solve the first-order differential equations

L̃+Yll = 0 L̃zYll = lh̄Ylm (11.70)

by the method of separation of variables

Ylm(θ, φ) = A(θ)B(φ) (11.71)

The Lz eigenvalue equation (for any m) becomes

−ih̄
dB

dφ
= mh̄B (11.72)

which has the solution
B(φ) = eimφ (11.73)

As was pointed out in the case of the ”quantum corral”, discussed in the last
lecture, the angle φ = 0 is the same as the angle φ = 2π, so the wavefunctions must
satisfy the periodicity condition

Ylm(θ, φ + 2π) = Ylm(θ, φ) (11.74)

But this means, since B(φ) = eimφ, that m must be restricted to the integer values

m = 0,±1,±2,±3, ...,±n, ... (11.75)

As a result, since −l ≤ m ≤ l, the possible values for l are

l = 0, 1, 2, 3, ..., n, ... (11.76)

So, although we have found algebraically that m could have both integer and half-
integer values

m = 0,±
1

2
,±1,±

3

2
, ...,±n/2, ... (11.77)

it turns out that the periodicity condition has ruled out the half-integer possibilities
for orbital angular momentum. As we will see next semester, the half-integer val-
ues are still possible for intrinsic spin angular momentum, where the requirement of
angular periodicity of the wavefunction does not apply.

So far we have
Ylm(θ, φ) = A(θ)eimφ (11.78)

and in particular
Yll(θ, φ) = A(θ)eilφ (11.79)

Applying the raising operator to this state, we must have

0 = L̃+Yll

= h̄eiφ

(

icotθ
∂

∂φ
+

∂

∂θ

)

A(θ)eilφ

= h̄ei(l+1)φ

(

−lcotθ +
∂

∂θ

)

A(θ) (11.80)
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or
d

dθ
A(θ) = lcotθA(θ) (11.81)

which is solved by
A(θ) = const.× sinl θ (11.82)

Then
Yll(θ, φ) = N sinl θeilφ (11.83)

where N is a normalization constant, which is determined from the normalization
condition

1 =
∫ π

0
dθ sin θ

∫ 2π

0
dφ Y ∗

ll Yll

= 2πN2
∫ π

0
dθ sin(2l+1) θ

=
2π3/2l!

Γ(l + 3
2)

N2 (11.84)

where the Γ-function is a special function with the properties

Γ(x + 1) = xΓ(x) Γ(
1

2
) =

√
π (11.85)

Of course, the normalization condition only determines N , even assuming N is real,
up to an overall sign. The convention is to choose this sign to be (−1)l, so that finally

Yll(θ, φ) = (−1)l

[

Γ(l + 3
2)

2π3/2l!

]1/2

sinl θeilφ (11.86)

From here we can get the other Ylm using the lowering operator

L̃−Yl,m(θ, φ) = C−
lmYl,m−1(θ, φ) (11.87)

given the constants C−
lm. Corresponding constants C+

lm are defined from

L̃+Yl,m(θ, φ) = C+
lmYl,m+1(θ, φ) (11.88)

To get the C−
lm constants, we again resort to some clever algebra. We have

L̃−L̃+ = L̃2 − L̃2
z − h̄L̃z

L̃+L̃− = L̃2 − L̃2
z + h̄L̃z (11.89)

Then

< ϕlm|L̃−L̃+|ϕlm > = < ϕlm|(L̃2 − L̃2
z − h̄L̃z)|ϕlm >

< L̃+ϕlm|L̃+ϕlm > = h̄2[l(l + 1)−m2 −m) < ϕlm|ϕlm >

(C+
lm)∗C+

lm = h̄2(l −m)(l + m + 1) (11.90)
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so that
C+

lm = h̄
√

(l −m)(l + m + 1)eiω (11.91)

Likewise

< ϕlm|L̃+L̃−|ϕlm > = < ϕlm|(L̃2 − L̃2
z + h̄L̃z)|ϕlm >

< L̃−ϕlm|L̃−ϕlm > = h̄2[l(l + 1)−m2 + m) < ϕlm|ϕlm >

(C−
lm)∗C−

lm = h̄2(l + m)(l −m + 1) (11.92)

so that
C−

lm = h̄
√

(l + m)(l −m + 1)eiω (11.93)

where ω is an arbitrary phase. This can always be absorbed into a rescaling of the
wavefunction; i.e. ϕlm → eiωϕlm, which does not affect the physical state at all. So
we can always choose the C−

lm to be real. It is not hard to show that

C−
lm = (C+

l,m−1)
∗ (11.94)

Exercise: Prove this relation.

Therefore, if the C− coefficients are real, then the C+ coefficients are also real,
and we have

C−
lm = h̄

√

(l + m)(l −m + 1)

C+
lm = h̄

√

(l −m)(l + m + 1) (11.95)

and we can now compute all the Ylm using

Yll(θ, φ) = (−1)l

[

Γ(l + 3
2)

2π3/2l!

]1/2

sinl θeilφ

L̃−Ylm = h̄
√

(l + m)(l −m + 1)Yl,m−1

L̃+Ylm = h̄
√

(l −m)(l + m + 1)Yl,m+1 (11.96)

Since the Yll was normalized to 1 in equation (11.84), all of the Ylm obtained by
applying the lowering operator will also be normalized to 1. Also, since L̃2 and L̃z

are Hermitian operators, spherical harmonics corresponding to different values of l
and/or m will be orthogonal:

∫ π

0
dθ sin θ

∫ 2π

0
dφ Y ∗

lm(θ, φ)Yl′m′(θ, φ) = δll′δmm′ (11.97)

Example: the l = 1 multiplet
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As an example of the procedure, let us compute the l = 1 multiplet of spherical
harmonics, i.e. Y11, Y10, Y1,−1. We begin with

Y11 = (−1)

[

Γ(5
2)

2π3/2

]1/2

sin θeiφ

= −
√

3

8π
sin θeiφ (11.98)

then

L−Y11 = −
√

3

8π
h̄e−iφ

(

icotθ
∂

∂φ
−

∂

∂θ

)

sin θeiφ

h̄
√

2Y10 =

√

3

8π
h̄(cotθ sin θ + cos θ)

Y10 =

√

3

4π
cos θ (11.99)

And applying the lowering operator again

L̃−Y10 =

√

3

4π
h̄e−iφ

(

icotθ
∂

∂φ
−

∂

∂θ

)

cos θ

h̄
√

2Y1,−1 =

√

3

4π
h̄e−iφ sin θ

Y1,−1 =

√

3

8π
e−iφ sin θ (11.100)

It is easy to check that applying the lowering operator one more time annihilates the
state

L̃−Y1,−1 = 0 (11.101)

as it should. In fact,in constructing the spherical harmonics, we could start with the
solution of the differential equation

L̃−Yl,−l = 0 (11.102)

and obtain the rest of the Ylm by using the raising operator L̃+.

Problem: Obtain the l = 1 multiplet by solving (11.102), and then applying the
raising operator.

Of course, one rarely has to go to the trouble of computing the spherical harmonics,
since they are listed in many books. The first few, including the l = 1 multiplet we
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have just computed, are

Y00 =

√

1

4π

Y11 = −
√

3

8π
sin θeiφ

Y10 =

√

3

4π
cos θ

Y1,−1 =

√

3

8π
sin θe−iφ

Y22 =

√

15

32π
sin2 θe2iφ

Y21 = −
√

15

8π
sin θ cos θeiφ

Y20 =

√

5

16π
(3 cos2 θ − 1)

Y2,−1 =

√

15

8π
sin θ cos θe−iφ

Y2,−2 =

√

15

32π
sin2 θe−2iφ (11.103)

There is a nice graphical way of representing the spherical harmonics. The modulus
of the spherical harmonics |Ylm| is a function only of θ, and is independent of φ. So,
in polar coordinates (r, θ) where θ is the angle away from the z-axis, we plot the
function

r(θ) = |Ylm(θ, φ)| (11.104)

The resulting diagrams are shown in Fig. [11.3].

• The Rigid Rotator As a first application of the spherical harmonics, let us
consider a rigid rod with moment of inertia I, which pivots freely around one fixed
end at r = 0. Since the length of the rod is fixed, the generalized coordinates are the
angular position of the rod (θ, φ). The classical Hamiltonian describing the dynamics
of this simple system is

H =
1

2I
L2 (11.105)

where %L is the angular momentum. The corresponding Schrodinger equation is then
simply

H̃ϕlm(θ, φ) =
1

2I
L̃2ϕlm(θ, φ) = Elmϕlm(θφ) (11.106)
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and the energy eigenstates are angular momentum eigenstates

ϕlm(θ, φ) = Ylm(θ, φ) Elm =
1

2I
l(l + 1)h̄2 (11.107)

We note that the energy eigenvalues are degenerate, as expected

Elm = Elm′ − l ≤ m, m′ ≤ l (11.108)

11.5 The Radial Equation for Central Potentials

It has already been noted that the angular momentum operators involve only θ and
φ, so an eigenstate of L̃2 and Lz has the general form

ϕ = f(r)Ylm(θ, φ) (11.109)

where f(r) is an arbitrary function of r. For central potentials V (r, θ, φ) = V (r), the
Hamiltonian commutes with the angular momentum operators, so by the commutator
theorem H̃, L̃2, L̃z have a common set of eigenstates of the form (11.109). However,
if ϕ is an eigenstate of H , then the radial function f(r) is no longer arbitrary, but
is determined from an ordinary differential equation in the variable r known as the
”Radial Equation”.

Let us begin with the classical Hamiltonian

H =
%p · %p
2m

+ V (r) (11.110)

The momentum vector %p, in spherical coordinates, can be expressed as a sum of
two vectors, one of which (%pr) is parallel to the radial direction, and the other (%p⊥)
perpendicular to the radial direction, i.e.

%p = %pr + %p⊥

%pr ≡ p cos(θrp)êr =
1

r2
(%r · %p)%r

|%p⊥| ≡ p sin(θrp) =
|%r × %p|

r

=
|%L|
r

(11.111)

so that

H =
1

2m

[

p2
r +

L2

r2

]

+ V (r) (11.112)

where

pr = |%pr| =
%r · %p
r

(11.113)
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Upon quantization, r, %p and %L become operators,

r̃F (r, θ, φ) = rF (r, θ, φ)
%̃pF (r, θ, φ) = −ih̄∇F (r, θ, φ)
%̃LF (r, θ, φ) = −ih̄%r ×∇F (r, θ, φ) (11.114)

and we define the operator corresponding to pr as

p̃r =
1

2

(

%r

r
· %̃p + %̃p ·

%r

r

)

(11.115)

This ordering of r and p̃ is chosen so that p̃r is an Hermitian operator. If we had
simply substituted %p → %̃p in (11.113), then p̃r would not be Hermitian, and neither
would the Hamiltonian, which involves p̃2

r. In terms of differential operators

p̃rF = −
1

2
ih̄

[

1

r
%r · ∇+∇ ·

%r

r

]

F

= −
1

2
ih̄

[

∂

∂r
+

%r

r
· ∇+

1

r
(∇ · %r) + %r · (∇

1

r
)

]

F

= −
1

2
ih̄

[

2
∂

∂r
+

3

r
−

1

r

]

F

= −ih̄

[

∂

∂r
+

1

r

]

F

= −ih̄
1

r

∂

∂r
rF (11.116)

so that

p̃r = −ih̄
1

r

∂

∂r
r (11.117)

In terms of this operator, the Schrodinger equation

H̃ϕ(r, θ, φ) = Eϕ(r, θ, φ) (11.118)

is
[

1

2m

(

p̃2
r +

1

r2
L̃2
)

+ V (r)
]

ϕ(r, θ, φ) = Eϕ(r, θ, φ) (11.119)

or, explicitly
[

−
h̄2

2m

(

(
1

r

∂2

∂r2
r) +

1

r2
(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
)

)

+ V (r)

]

ϕ = Eϕ (11.120)

This equation could be obtained more quickly by starting from
[

−
h̄2

2m
∇2 + V (r)

]

ϕ = Eϕ (11.121)
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and then just expressing ∇2 in spherical coordinates

∇2 = (
1

r

∂2

∂r2
r) +

1

r2
(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
) (11.122)

Comparing ∇2 to eq. (11.64), we see that it contains the operator L̃2, although the
reason for this is not so clear. The appearance of the angular momentum operator,
on the other hand, is quite obvious from eq. (11.112).

Having found the eigenstates of angular momentum, we write

ϕ(r, θ, φ) = Rklm(r)Ylm(θ, φ) (11.123)

where the index k is introduced to distinguish between states of different energy,
which have the eigenvalues of L2 and Lz. Substitute into the Schrodinger equation

[

1

2m
p̃2

r +
1

2mr2
L̃2 + V (r)

]

Rklm(r)Ylm(θ, φ) = EklmRklm(r)Ylm(θ, φ)

Ylm

[

1

2m
p̃2

r +
h̄2

2mr2
l(l + 1) + V (r)

]

Rklm(r) = EklmRklm(r)Ylm(θ, φ)(11.124)

Cancelling Ylm on both sides of the equation, we note that neither the potential nor the
differential operator depend on m, so we can write that Rklm = Rkl and Eklm = Ekl.
We then have an equation which involves only the radial coordinate

1

2m

[

p̃2
r +

h̄2l(l + 1)

r2

]

Rkl(r) + V (r)Rkl(r) = EklRkl(r) (11.125)

which, using

p̃2
r = −h̄2 1

r

∂2

∂r2
r

= −h̄2

[

∂2

∂r2
+

2

r

∂

∂r

]

(11.126)

becomes

d2Rkl

dr2
+

2

r

dRkl

dr
+

[

2m

h̄2 {Ekl − V (r)} −
l(l + 1)

r2

]

Rkl(r) = 0 (11.127)

This is the radial equation for energy eigenstates in a spherical potential.
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• The Free Particle The simplest possible central potential is V (r) = 0. If we
write

E =
h̄2k2

2m
(11.128)

Then the radial equation is

d2Rkl

dr2
+

2

r

dRkl

dr
+

[

k2 −
l(l + 1)

r2

]

Rkl(r) = 0 (11.129)

Rescaling the r coordinate,
u = kr (11.130)

this becomes
[

d2

du2
+

2

u

d

du
+

(

1−
l(l + 1)

u2

)]

Rkl(r) = 0 (11.131)

Writing
Rkl(r) = Wl(u) (11.132)

we have a second-order differential equation

d2Wl

du2
+

2

u

dWl

du
+

(

1−
l(l + 1)

u2

)

Wl = 0 (11.133)

which is known as the Spherical Bessel Equation. Solutions of this equation,
which are finite and differentiable at r = 0 are the spherical Bessel functions
Wl(u) = jl(u), the first few of which are listed below:

j0(u) =
sin(u)

u

j1(u) =
sin(u)

u2
−

cos(u)

u

j2(u) =
(

3

u3
−

1

u

)

sin(u)−
3

u2
cos(u) (11.134)

Putting everything together, the eigenstates of energy and angular momentum

{H̃, L̃2, L̃z} (11.135)

for V = 0 are
ϕklm(r, θ, φ) = jl(kr)Ylm(θ, φ) (11.136)

with eigenvalues

Ek =
h̄2k2

2m
L2 = l(l + 1)h̄2 Lz = mh̄ (11.137)

Since there is one and only one eigenstate corresponding to a given set of eigenvalues
of {H̃, L̃2, L̃z}, it follows that E, L2, Lz is a complete set of observables.
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For the free particle in one dimension, we found that E, P was a complete set of
observables, where P is parity, and also that p is a complete set of observables, where
p is momentum. Similarly, in three dimensions, the three components of momentum
{px, py, pz} are a complete set of observables, because there is one and only one
eigenstate of {p̃x, p̃y, p̃z} with a given set of eigenvalues

−ih̄
∂

∂x
ψp(x, y, z) = pxψp(x, y, z)

−ih̄
∂

∂y
ψp(x, y, z) = pyψp(x, y, z)

−ih̄
∂

∂z
ψp(x, y, z) = pzψp(x, y, z) (11.138)

namely
ψp(x, y, z) = N exp[i(pxx + pyy + pzz)/h̄] (11.139)

This wavefunction is also an eigenstate of the Hamiltonian

H̃ψp = −
h̄2

2m
∇2ψp = Epψp (11.140)

with energy

Ep =
1

2m
(p2

x + p2
y + p2

z) (11.141)

The Hamiltonian of a free particle is invariant under translations

%r → %r + %a (11.142)

and also under rotations of the coordinates. The energy eigenstates {ψp} are eigen-
states of the Hamiltonian and the translation operator

T = ei"a·"̃p (11.143)

while the energy eigenstates {jl(kr)Ylm(θ, φ)} are eigenstates of the Hamiltonian and
the rotation operator along the z-axis

R = eiδφL̃z (11.144)

as well as the total angular momentum operator L̃2.



Chapter 12

The Hydrogen Atom

Historically, the first application of the Schrodinger equation (by Schrodinger him-
self) was to the Hydrogen atom, and the result for the frequency of the Hydrogen
spectral lines was the same as that obtained by Bohr.1 In this lecture we will re-
trace Schrodinger’s steps in solving the Schrodinger equation for the Hydrogen atom.
Unlike the case of the harmonic oscillator, and case of angular momentum, the raising-
lowering operator trick doesn’t apply here. Nevertheless, we will see that the energy
eigenvalues of the Hamiltonian are again determined, ultimately, by algebra.

The Hydrogen atom is a simple system: a light electron bound to a heavy proton.
The proton is so much heavier than the electron (about 2000 times heavier) that we
may regard its position as fixed, at the center of a system of spherical coordinates.
The potential energy between the electron and proton is given, in suitable units, by
the Coulomb expression

V (r) = −
e2

r
(12.1)

Since this potential is spherically symmetric, we know from the preceding lecture that
the Hamiltonian will commute with the angular momentum operators, and therefore
that energy eigenstates may also be chosen to be eigenstates of L2 and Lz, i.e.

φE(r, θ, φ) = Rkl(r)Ylm(θ, φ) (12.2)

The time-independent Schrodinger equation is
[

−
h̄2

2m
∇2 −

e2

r

]

φE(r, θ, φ) = EφE(r, θ, φ) (12.3)

or
[

1

2m
(p̃2

r +
1

r2
L̃2)−

e2

r

]

Rkl(r)Ylm(θ, φ) = ERklYlm (12.4)

1The difference is that Bohr’s rather ad hoc quantization condition (mvr = nh̄) was successful
only for Hydrogen and a few other simple atoms. In contrast, the Schrodinger equation is a law of
motion, as fundamental as F = ma (which it replaces).
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which reduces, as shown in the previous lecture, to the ”radial equation” for Rkl(r)

d2Rkl

dr2
+

2

r

dRkl

dr
+

[

2m

h̄2 {Ekl +
e2

r
} −

l(l + 1)

r2

]

Rkl(r) = 0 (12.5)

or
[

1

r

d2

dr2
r −

l(l + 1)

r2
+

2me2

h̄2

1

r
+

2mE

h̄2

]

R(r) = 0 (12.6)

We are interested in the spectrum of atomic hydrogen, so this means we would
like to solve for the bound states, i.e. those states for which E < 0. From now on,
we take E = −|E| < 0. Multiply the above equation by r on the left, and define

u(r) = rR(r) (12.7)

so that
[

d2

dr2
−

l(l + 1)

r2
+

2me2

h̄2

1

r
−

2m|E|
h̄2

]

u(r) = 0 (12.8)

This equation involves two constants, namely

2mE

h̄2 and
2me2

h̄2 (12.9)

which we can reduce to one constant by rescaling r. Define

k2 =
2m|E|

h̄2 and r =
ρ

2k
(12.10)

Substitute into (12.8), and we find

d2u

dρ2
−

l(l + 1)

ρ2
u +

(

λ

ρ
−

1

4

)

u = 0 (12.11)

where we have defined

λ =
me2

kh̄2 =
1

ka0
(12.12)

(a0 is the Bohr radius h̄2/me2). The problem is reduced to finding values λ and
functions u(ρ) which satisfy (12.11).

The strategy for solving (12.11) is to first solve the equation in the asymptotic
limits ρ→∞ and ρ→ 0. With the solutions for very large and very small ρ in hand,
we then look for a solution which interpolates between these two regions.

Begin with ρ → ∞. Then terms proportional to 1/ρ2 and 1/ρ can be dropped,
and the equation becomes

d2u

dρ2
−

u

4
= 0 (12.13)
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which has the general solution

u(ρ) = Ae−ρ/2 + Beρ/2 (12.14)

The second term, proportional to the constant B, is non-normalizable, therefore B =
0 for physical states. Hence, we find that

u(ρ)→ Ae−ρ/2 as ρ→∞ (12.15)

Next, consider the ρ→ 0 regime. Then terms proportional to a constant, or 1/ρ,
are negligible compared to the term proportional to 1/ρ2, so the radial equation is
approximately

d2u

dρ2
−

l(l + 1)

ρ2
u = 0 (12.16)

which, one can easily check, is solved by

u(ρ) = Cρl+1 + Dρ−l (12.17)

For any value l > 0 the wavefunction (proportional to u/r) is non-normalizable for
D += 0, and even at l = 0 the ratio u/r is non-differentiable at r = 0 if D += 0. So we
will set D = 0 also.

Since we now know that u(ρ) ∼ e−ρ/2 at large ρ, and u(ρ) ∼ ρl+1 at small ρ, we
can guess that the exact solution might have the form

u(ρ) = e−ρ/2ρl+1F (ρ) (12.18)

where F (ρ) is some unknown function, which goes to a constant as ρ→ 0, and grows
slower than an exponential as ρ → ∞. This kind of educated guess regarding the
form of the solution of an equation is called an ”ansatz”. Substituting (12.18) in
(12.11) gives an equation for F (ρ)

[

ρ
d2

dρ2
+ (2l + 2− ρ)

d

dρ
− (l + 1− λ)

]

F (ρ) = 0 (12.19)

The next step is to write F (ρ) as a power series

F (ρ) =
∞
∑

j=0

cjρ
j (12.20)

and insert into (12.19) to get

ρ
∑

j

cjj(j − 1)ρj−2 +
∑

j

(2l + 2− ρ)cjjρ
j−1 −

∑

j

(l + 1− λ)cjρ
j = 0

∑

j

{cjj(j − 1) + cjj(2l + 2)}ρj−1 −
∑

j

{cjj + cj(l + 1− λ)}ρj = 0(12.21)
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Since this equation has to be true for every value of ρ, it follows that the coefficient
of each power of ρ must vanish. The coefficient in front of ρj is

cj+1(j + 1)j + cj+1(2l + 2)(j + 1)− cjj − cj(l + 1− λ) = 0 (12.22)

or
cj+1(j + 1)(2l + 2 + j)− cj(l + 1 + j − λ) = 0 (12.23)

This equation allows us to compute the coefficients {cj} iteratively:

cj+1 =
j + l + 1− λ

(j + 1)(j + 2l + 2)
cj (12.24)

However, we have also required that F (r) grow more slowly than an exponential,
in order that u(ρ) ∼ exp[−ρ/2] as ρ→∞. It turns out that this can only be true for
very special values of the constant λ. Recall that the asympotic behavior of a solution
of the Schrodinger equation can be either exp[+ρ/2] or exp[−ρ/2]. Suppose it turns
out that F (ρ) ∼ exp(ρ) as ρ→∞. Then we would end up with the non-normalizable
solution for u(r). In fact, for almost all values of λ, this is exactly what happens.
According to (12.24), at large index j

cj+1 ≈
cj

j + 1
(12.25)

which implies

cj ≈
const.

j!
(12.26)

This means that at large ρ, where the power series in ρ is dominated by the terms at
large index j,

F (ρ) =
∑

j

cjρ
j

≈ const.×
∑

j

1

j!
ρj

≈ const.× eρ (12.27)

in which case
u(ρ) ≈ ρl+1eρ/2 (12.28)

which is non-normalizable. So, even though we started with an ansatz (12.18) which
seemed to incorporate the asympotic behavior we want, the equation for F ends up
generating, for almost any choice of λ, the asympotic behavior that we don’t want.
This situation is already familiar from the discussion in Lecture 8. Typically, solutions
of the Schrodinger equation for E < 0 are non-normalizable for almost all values of E.
Only at a discrete set of bound-state energies is it possible to have the wavefunction
fall to zero asymptotically.
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For the hydrogen atom, the only way to have a normalizable solution is if one of
the cj coefficients vanishes, i.e. for some j = js, we have cjs+1 = 0. Then, from eq.
(12.24),

cj = 0 for all j > js (12.29)

and

F (ρ) =
js
∑

j=0

cjρ
j

∼ cjsρ
js as ρ→∞ (12.30)

Since F (ρ) is a polynomial, R(r) = u(ρ)/r will be normalizable.
From eq. (12.24), we see that the condition for cjs+1 to vanish, given cjs += 0, is

that
λ = n = js + l + 1 (12.31)

where n is an integer. Therefore, the bound-state energies of the Hydrogen atom are
deduced from the condition that

λ =
1

ka0
= n (12.32)

The integer n is known as the ”principal quantum number.” Using

k =

√

2m|E|
h̄

and a0 =
h̄2

me2
(12.33)

the bound-state energies, labeled by the integer n, are

En = −
me4

2n2h̄2 (12.34)

This is the same result as that obtained by Niels Bohr; it is in agreement with the
experimental result (eq. 2.29 and 2.30 of Chapter 2) for the Hydrogen spectrum.

We can now write

ρ = 2kr =
2r

na0
(12.35)

Putting everything together, the energy eigenstates are

ϕnlm(r, θ, φ) = NnlRnl(r)Ylm(θ, φ)

= Nnl
unl(2r/na0)

r
Ylm(θ, φ)

ρ =
2r

na0

unl(ρ) = ρl+1e−ρ/2Fnl(ρ)
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Fnl(ρ) =
n−l−1
∑

j=0

cjρ
j

cj+1 =
j + l + 1− λ

(j + 1)(j + 2l + 2)
cj

c0 = 1 (12.36)

with the normalization constants Nnl determined from the normalization condition

1 =
∫ ∞

0
drr2

∫ π

0
dθ sin(θ)

∫

dφ ϕ∗
nlm(r, θ, φ)ϕnlm(r, θ, φ)

= N2
nl

∫ ∞

0
drr2R2

nl(r)

= N2
nl

∫ ∞

0
dr u2

nl(2r/na0) (12.37)

and corresponding to an energy eigenvalue

En = −
me4

2n2h̄2 (12.38)

The choice c0 = 1 is arbitrary. A different choice would simply lead to a different
normalization constant, and the wavefunction would end up exactly the same.

It is clear that the energy eigenvalues are degenerate. To specify a unique eigen-
state ϕnlm(r, θ, φ), it is necessary to specify three integers: n, l, m. On the other hand,
the energy eigenvalue En depends only on one of those integers. To determine the de-
gree of degeneracy, i.e. the number of linearly independent eigenstates with the same
energy En, we observe that the maximum index js of the (non-zero) cj coefficients
satisfies

js = n− l − 1 ≥ 0 (12.39)

and therefore
l = 0, 1, 2, ..., n− 1 (12.40)

Also, there are 2l + 1 values of m,

m = −l,−l + 1, ......, l − 1, l (12.41)

corresponding to a given value of l. Therefore, the total number of l, m combinations
that can exist for a given integer n are

degeneracy of En =
n−1
∑

l=0

(2l + 1)

=

(

2
n−1
∑

l=0

l

)

+ n

= n2 (12.42)
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In atomic physics, the integer values of the l quantum number are assigned letters,
namely:

l = 0 S

l = 1 P

l = 2 D

l = 3 F (12.43)

Beyond l = 3, the assignment is alphabetical, i.e. l = 3, 4, 5, 6... correspond to
”F,G,H,I...” respectively (the reasons for these letter assignments go back to the
history of spectroscopy, and need not concern us here.)2 Thus the {nlm} = {100}
state is referred to as the ”1S” state; the {nlm} = {21m} states are referred to as
the ”2P” states, and so on, as indicated in Fig. [12.1].

We now use the formulas in eq. (12.36) to calculate the 1S and 2S wavefunctions
explicitly.

• The 1S Ground State Since js = n− l−1 ≥ 0, the smallest possible value for
n is n = 1, which implies that l = m = 0. This is the lowest energy state, or ”ground
state” of the hydrogen atom; it is the state where the binding energy is greatest.
According to (12.36) we have

ϕ100 = N
u10(2r/a0)

r
Y00

=
N√
4π

u10(2r/a0)

r
(12.44)

where

u10(ρ) = e−ρ/2ρF10(ρ)

= e−ρ/2ρ
1−0−1
∑

j=0

cjρ
j

= e−ρ/2ρ (12.45)

Therefore

ϕ100 =
N√
4π

2

a0
e−r/a0 (12.46)

2”S” stands for the ”sharp” series of spectral lines, ”P” stands for the ”principal” series, ”D” for
”diffuse” and ”F” for ”fundamental.”
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We must normalize the wavefunction to determine N :

1 =
∫

r2drdΩ|ϕ100|2

= N2
∫

drr2u10(2r/a0)
2

= N2
(

2

a0

)2 ∫ ∞

0
dr r2e−2r/a0

= N2a0 (12.47)

So, finally, the ground-state wavefunction is

ϕ100(r, θ, φ) =
2

√

4πa3
0

e−r/a0 (12.48)

• The 2S Excited State The n = 2 states are known as the ”first excited”
states, since they correspond to the lowest energy excitation above the ground state.
The l = 0 state is always referred to as the S-state; so the {nlm} = {200} is known
as the 2S state, in spectroscopic notation. Again, using eq. (12.36)

φ200(r, θ, φ) = N
u20(r/a0)

r
Y00

u200(ρ) = e−ρ/2ρF20(ρ)

= e−ρ/2ρ
2−0−1
∑

j=0

cjρ
j

= e−ρ/2ρ(c0 + c1ρ)

c1 =
0 + l + 1− n

(0 + 1)(0 + 2l + 2)
c0

= −
1

2
(12.49)

so that

φ200 =
N√
4π

(1−
1

2
ρ)

ρ

r
e−ρ/2

=
N

a0

√
4π

(

1−
r

2a0

)

e−r/2a0 (12.50)
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normalization gives N = (2a0)−1/2, and therefore

ϕ200 =
1

√

8πa3
0

(

1−
r

2a0

)

e−r/2a0 (12.51)

In general, the wavefunction for principal quantum number has the form

ϕnlm = (polynomial in r of order ≤ n-1 )× e−r/na0Ylm(θ, φ) (12.52)

A polynomial can go through zero, so in general the probability distribution in the
radial direction has ”bumps”, whose positions depend on both n and l. In particular,
if we are only interested in the probability of finding an electron between radii r1 and
r2, then

prob(r1 < r < r2) =
∫ r2

r1

drr2
∫

dΩ ϕ∗
nlmϕnlm

=
∫ r2

r1

dr r2R2
nl(r)

=
∫ r2

r1

dr P (r) (12.53)

where we define the radial probability density

P (r) = r2R2
nl(r)

= ((2n-th order polynomial in r)× e−2r/na0 (12.54)

A sketch of P (r) vs. r is shown in Fig. [12.2], for a number of low-lying energy
eigenstates.

12.1 The Scale of the World

We know that the volume of a gram of water is one cubic centimeter. Why isn’t the
volume instead one cubic kilometer, or one cubic parsec?

If you burn a log in a fireplace, enough energy is released to warm the room. If
you burn instead a stick of dynamite, the energy released will destroy the room, and
probably the rest of the house. But neither the log nor the dynamite will release
enough energy to flatten a city, or vaporize the planet. Why not?

Quantum mechanics answers these questions, given as input the masses of the
electron and proton, and the electron charge. In fact, the solution of the Hydrogen
atom provides us with rough, order-of-magnitude estimates for the volume of a mole
of solid anything, and the energy released by burning a mole of anything. This is
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because the volume of a solid depends mainly on the number of atoms, and the size
of each atom. The energy released in a chemical reaction also depends on the number
of molecules participating in the reaction, and the energy released by each molecule.
The number of molecules in a mole is known as Avogadro’s number, which is

NA = 6.02× 1023

≈
1 gram

mproton in grams
(12.55)

The proton mass gives slightly the wrong value, due to the proton-neutron mass
difference. Anyway, NA tells us approximately how many protons or neutrons there
are in a gram, or how many molecules in a mole (= (no. of protons+neutrons per
molecule) × one gram). Quantum mechanics then predicts, in principle, the volume
of each molecule, and the energy released in any given chemical reaction.

Of course, using quantum mechanics to find the precise volume of any given
molecule is a formidable task. But we can use the solution of the hydrogen atom
to make order-of-magnitude estimates. The volume of any given molecule is certainly
larger than that of the hydrogen atom, but usually not by much more than one or
two powers of 10. Likewise, the energy released in a chemical reaction is typically less
than the hydrogen atom binding energy, but this is still a rough order-of-magnitude
estimate. If we are satisfied with accuracy within a couple of orders of magnitude,
then we can answer the two questions posed above:

1. What is the volume of a mole of (solid or liquid) anything?

2. How much energy is released by burning a mole of anything?

Start with the first question. We will imagine that all molecules fit inside a cube
of length equal to the diameter of the Hydrogen atom in its ground state. This gives
us a volume

v ∼ (2a0)
3 (12.56)

where a0 is the Bohr radius

a0 =
h̄2

me2
= 5× 10−9 cm (12.57)

so that
v ∼ 10−24cm3 (12.58)

Then the volume of a mole is

Vmole = NAv ∼ 0.6 cm3 (12.59)

which is at least the right order of magnitude. The volume of a mole of anything is
a few cubic centimeters, not cubic kilometers or cubic parsecs.
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To estimate the energy released by burning a mole of anything, assume that the
energy released per molecule is of the order of magnitude of the binding energy of an
electron in the Hydrogen atom ground state. This is surely not very accurate, but
again, we are not going to worry about a few powers of ten. The binding energy is

|E1| =
me4

2h̄2 ≈ 2× 10−18 J (12.60)

Then burning a mole of anything would release an energy E on the order

E ∼ NA|E1| ∼ 1200 kJ (12.61)

which is sufficient to turn half a kilogram of water, at 100 C and 1 atm pressure,
completely into steam. Released in a short time this would make a good bang, but
its certainly not enough energy to flatten a city.

In this way, we can use quantum mechanics to estimate the ”scale of the world;”
i.e. volume per gram, energy released in chemical reactions, and so on. In fact,
with a bit more work, its possible to go on and estimate the order-of-magnitude
size of animals and mountains!3 As explained in Lecture 6, the size and binding
energy of the Hydrogen atom is ultimately due to an interplay between the attractive
Coulomb potential and a kinetic energy coming from the Uncertainty principle. It
is this interplay that sets the scale of the world. Of course, the argument is a little
incomplete: it required as input the masses of the electron and proton, as well as the
electron charge.4 Where do these numbers come from? It is the religious belief of most
physicists (including your professor) that all such numbers will one day be derived
from an ultimate ”Theory of Everything,” whose cornerstone will be the principles of
quantum mechanics.5

3There is a beautiful essay by V. Weisskopf on this subject.
4Nowadays, its possible to calculate the mass of the proton from the theory of the strong inter-

actions (QCD), but this still requires input of a dimensionful constant known as “QCD Λ.”
5An excellent non-technical discussion is found in S. Weinberg’s recent book, entitled Dreams of

a Final Theory.
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Chapter 13

Electron Spin

Lets go back, for a moment, to the classical picture of the Hydrogen atom, with an
electron moving in a circular orbit around the proton. A charge moving in a circle
constitutes a current loop, and, according to the usual laws of electromagnetism a
current loop is associated with a magnetic moment according to the rule

µ =
1

c
IA (13.1)

where µ is the magnetic moment, I is the current, and A is the area enclosed by the
circular orbit. The current is the charge per unit length of loop, times the velocity,
so in this case, for a circular orbit of radius r

I = −
e

2πr
v

v =
p

M
=

L

Mr
A = πr2 (13.2)

Putting it all together, and noting that as vector quantities both %µ and %L are normal
to the loop, we get

%µ = −
e

2Mc
%L (13.3)

(note that the radius r drops out of the expression). Finally, in an external magnetic
field %B, the interaction energy between the magnetic dipole and the field is given by

Emag = − %B · %µ

=
e

2Mc
%B · %L (13.4)

Suppose then that a hydrogen atom is sitting in an external constant magnetic
field, directed along the z-axis. In that case, the Hamiltonian relevant for the motion
of the electron is

H = H0 +
e

2Mc
BzLz (13.5)

205
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where H0 is the Hydrogen atom Hamiltonian in the absence of an external field

H0 =
p2

2M
−

e2

r
(13.6)

Going over to quantum theory, H0 and Lz become operators which, as it happens,
commute with each other: an eigenstate ϕnlm of H0 is also an eigenstate of Lz

Lzϕnlm = mh̄ϕnlm (13.7)

Therefore, an eigenstate of H0 is an eigenstate of the total Hamiltonian

Hϕnlm =

(

E0
n + mBz

eh̄

2Mc

)

ϕnlm (13.8)

with energy eigenvalues

Enlm = E0
n + mBz

eh̄

2Mc
(13.9)

where E0
n are the energy eigenvalues of the electron when there is no external field.

This means that if we insert a collection of hydrogen atoms between the poles of
a strong magnet, then spectral lines corresponding to transitions between principal
quantum numbers n1 and n2 should split into many spectral lines, corresponding to
transitions between states with different values of the Lz quantum numbers m1 and
m2. There are certain selection rules governing which transitions are possible; these
rules will be derived in a later chapter. This splitting of spectral lines in an external
magnetic field is known as the (strong-field) Zeeman effect.

The only trouble is that when the experiment is actually done, an analysis of the
spectral lines reveals that in fact there are twice as many energy levels as one would
expect, for each pair of quantum numbers n and l. Instead of the 2l + 1 levels one
would expect (because there are 2l + 1 values of m for each l), there are two sets of
2l + 1 levels, with energies

E+
nlm ≈ E0

n + (m + 1)Bz
eh̄

2Mc

E−
nlm ≈ E0

n + (m− 1)Bz
eh̄

2Mc
(13.10)

What can possibly account for this extra splitting?
The most natural explanation is that, in addition to the magnetic moment due to

its orbital angular momentum, an electron also has an intrinsic magnetic moment, as-
sociated with an intrinsic spin angular momentum. Classically, after all, any spinning
charge aquires a magnetic moment in the direction of the spin angular momentum.
So let us suppose that the intrinsic magnetic moment of the electron is

%µe = −
eg

2Mc
%S (13.11)
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where g is some constant, known as the gyromagnetic ratio. In quantum theory S
must be a Hermitian operator, and we assume that it satisfies the same commutation
relations as orbital angular momentum

[Sx, Sy] = ih̄Sz

[Sy, Sz] = ih̄Sx

[Sz, Sx] = ih̄Sy (13.12)

From these commutation relations alone, we know from the discussion in Lecture 11
that the possible eigenvalues of S2 and Sz are

S2 = s(s + 1)h̄2 s = 0,
1

2
, 1,

3

2
, ...

Sz = szh̄ − s ≤ sz ≤ s (13.13)

Taking the electron magnetic moment into account, the total Hamiltonian is then

H = H0 +
e

2Mc
BzLz − (µe)zBz

H = H0 +
e

2Mc
Bz(Lz + gSz) (13.14)

The electron spin is independent of the electron position and momentum, therefore
we may assume that

[H0, Sz] = [Lz, Sz] = 0 (13.15)

and this means that operators H0, Lz, Sz have a common set of eigenstates, which
we denote |nlmsz >. Then

H|nlmsz > = Enmsz |nlmsz >

Enmsz = E0
n +

eh̄

2Mc
Bz(m + gsz) (13.16)

Comparison to (13.10) shows that we get agreement if the electron has an intrinsic
spin

s =
1

2
⇒ sz = ±

1

2
(13.17)

and gyromagnetic ratio
g ≈ 2 (13.18)

so that E+ corresponds to sz = 1
2 , and E− to sz = −1

2 .
An independent check of the double-valued character of the electron magnetic mo-

ment is provided by the Stern-Gerlach Experiment, in which a beam of electrons
is sent through a (non-uniform) magnetic field, oriented (mainly) in the z-direction,
as shown in Fig. [13.1]. Classically, the force exerted on a dipole µ in a non-uniform
magnetic field is

%F = ∇(µ · B) (13.19)
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so the z-component of the force is

Fz =
∂Bz

∂z
µz

=
eg

2Mc

∂Bz

∂z
Sz (13.20)

A measurement of the deflection of the electron beam is therefore going to be a
measurement of the z-component of electron spin. If s = 1

2 , then there are only
two possibilities: sz = ±1

2 , and the force is oriented either up or down along the z-
axis, with equal magnitude. Each electron should be deflected along one of only two
trajectories, as shown in Fig. [13.1]. This is, in fact what is found experimentally. The
Stern-Gerlach apparatus is therefore a way of measuring the component of electron
spin along a given axis, for any given electron. If deflected upwards, the electron is
in an Sz = +1

2 h̄ (or ”spin up”) eigenstate. If the electron is deflected downwards, it
is in an Sz = −1

2 h̄ (or ”spin down”) eigenstate.
As already mentioned, any spinning charged object has a magnetic moment, ac-

cording to the laws of classical electromagnetism. Should we then think of the electron
as being literally a spinning ball of charge? There are two main problems with such a
picture. First, if we imagine that the electron is composed of some substance with a
constant charge-to-mass ratio of e/M , then, generalizing only slightly the reasoning
that applies to a current loop, the electron should have a magnetic moment

%µ =
e

2Mc
%S (13.21)

instead of what is actually found, which is about twice that value

%µ =
e

2Mc
g%S (13.22)

with gyromagnetic ratio g ≈ 2. The second reason is simply the fact that, in this
picture, the electron spin angular momentum is just the orbital angular momentum
of electron ”substance.” But, as we have already seen, orbital angular momentum can
only have values l = 0, 1, 2, ...; in particular, l = 1

2 is ruled out. So the picture of an
electron as a spinning volume of charged ”electron stuff” cannot easily account for
the origin of the electron magnetic moment.

13.1 Spin Wavefunctions

The next question is how to write the wavefunction of an eigenstate of spin angular
momentum. If the electron were a spinning ball of charge, then it would be natural to
represent the spin wavefunction by spherical harmonics Yssz(θ

′, φ′), where ∂tθ′ is the
classical angular velocity of the spinning ball. As we have seen, the ”ball of charge”
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picture is inadequate, and in any case there are no spherical harmonics with s = 1
2 .

So...what to do?
For the moment lets forget all about the x, y, z-degrees of freedom of the particle,

and concentrate just on the spin. Now, although we don’t have spherical harmonics
for s = 1/2, we can still represent the eigenstates of S2 and Sz by two orthonormal
ket vectors

|s =
1

2
, sz =

1

2
> and |s =

1

2
, sz = −

1

2
> (13.23)

where

S2|
1

2

1

2
> =

3

4
h̄2|

1

2

1

2
>

Sz|
1

2

1

2
> =

1

2
h̄|

1

2

1

2
>

S2|
1

2
−

1

2
> =

3

4
h̄2|

1

2
−

1

2
>

Sz|
1

2
−

1

2
> = −

1

2
h̄|

1

2
−

1

2
> (13.24)

Then (if we disregard position dependence) any s = 1
2 state can be represented as a

superposition

|ψ >= a|
1

2

1

2
> +b|

1

2
−

1

2
> (13.25)

Now this looks exactly like the way we would represent a vector in a two-dimensional
space. So before going on, its worth recalling a few facts of vector algebra.

Let %e1 and %e2 be two orthonormal vectors (i.e. orthogonal unit vectors) in a two
dimensional space. For example, %e1 and %e2 could be unit vectors along the x and y
axes, respectively. Orthonormality means that

%e1 · %e1 = 1

%e2 · %e2 = 1

%e1 · %e2 = 0 (13.26)

If we have a set of D orthonormal vectors in a D-dimensional space, those vectors
are known as a basis for the vector space, and any vector can be expressed a linear
combination of those basis vectors. In the case we are considering, D = 2, any vector
can be written in the form

%v = a%e1 + b%e2 (13.27)

It is useful and traditional to represent a (ket) vector in a finite dimensional space as
a column of numbers, i.e.

%v ↔
[

a
b

]

(13.28)
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This is the column vector representation of the vector %v, in the basis {%e1, %e2}. You
will notice that the components of the column vector are inner products of the ket
vector %v with the bra vectors {%e1, %e2}, i.e.

a = %e1 · %v =< e1|v >

b = %e2 · %v =< e2|v > (13.29)

We can choose %v = %e1 or %e2, and find the values of a and b for the basis vectors. Its
easy to see that the corresponding column vectors are

%e1 ↔
[

1
0

]

%e2 ↔
[

0
1

]

(13.30)

In Lecture 3 we discussed the notion of a linear operator: its simply a rule for
changing any vector %v into another vector %v ′

%v′ = M%v (13.31)

such that, for any two vectors,

M(a%u + b%v) = aM%u + bM%v (13.32)

The matrix element mij of a linear operator M in the basis {%ek} is given by the
inner product

Mij = %ei · M%ej (13.33)

or, in bra-ket notation
Mij =< ei|M |ej > (13.34)

Suppose we are given the matrix elements of some linear operator M in a certain
basis. Then its easy to see that the components

v′
i =< ei|v′ > (13.35)

of the transformed vector |v′ >= M |v >, in terms of the components

vi =< ei|v > (13.36)

of the original vector are given by the usual rule of matrix multiplication

v′
i = < ei|v′ >

= < ei|M |v >

= < ei|M
∑

j

vj|ej >

=
∑

j

< ei|M |ej > vj

=
∑

j

Mijvj (13.37)
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In column vector notation, this is written
[

v′
1

v′
2

]

=

[

M11 M12

M21 M22

] [

v1

v2

]

(13.38)

After this brief excursion in vector algebra, lets return to the problem of electron
spin. The idea is that we can express the spin wavefunction as a column vector of 2
components, known as a spinor, and express the spin operators as 2 × 2 matrices.
To begin with, the basis vectors are chosen to be the two eigenstates of S2, Sz for
s = 1

2 ,

|e1 >= |
1

2

1

2
> |e2 >= |

1

2
−

1

2
> (13.39)

In this basis, the eigenstates themselves can be written as the column vectors (spinors)

|
1

2

1

2
>↔ χ+ ≡

[

1
0

]

|
1

2
−

1

2
>↔ χ− ≡

[

0
1

]

(13.40)

and any spin- 1
2 state can be written as a superposition, in ket notation

|ψ >= ψ+|e1 > +ψ−|e2 > (13.41)

or, in column vector notation,

|ψ >↔
[

ψ+

ψ−

]

(13.42)

Now we can figure out what the spin operators S2, Sx, Sy, Sz look like as matrices,
using the relationships that were proved, in Lecture 11, for any operators satisfying
the angular momentum commutation relations (13.12). Writing equations (330) and
(373) from Lecture 11 in ket-notation, we have

S2|ssz > = s(s + 1)h̄2|ssz >

Sz|ssz > = szh̄|ssz >

S−|ssz > =
√

(s + sz)(s− sz + 1)h̄|s, sz − 1 >

S+|ssz > =
√

(s− sz)(s + sz + 1)h̄|s, sz + 1 >

Sx =
1

2
(S+ + S−)

Sy =
1

2i
(S+ − S−) (13.43)

where we have just used the symbol S instead of L, s instead of l, and sz instead of
m. For the electron, s = 1

2 and sz = 1
2 , −

1
2 . From these relations, we easily get all

the matrix elements, e.g.

(Sx)12 = < e1|Sx|e2 >
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= <
1

2

1

2
|Sx|

1

2
−

1

2
>

=
1

2

[

<
1

2

1

2
|S+|

1

2
−

1

2
> + <

1

2

1

2
|S−|

1

2
−

1

2
>
]

=
1

2

[

<
1

2

1

2
|h̄|

1

2

1

2
> +0

]

=
1

2
h̄ (13.44)

After computing all the needed components, the matrix form of the spin operators,
for spin s = 1

2 , are

S2 =
3

4
h̄2

[

1 0
0 1

]

Sz =
1

2
h̄

[

1 0
0 −1

]

Sx =
1

2
h̄

[

0 1
1 0

]

Sy =
1

2
h̄

[

0 −i
i 0

]

(13.45)

It is useful to extract a common factor of h̄
2 , and to write

Sx =
h̄

2
σx Sy =

h̄

2
σy Sz =

h̄

2
σz (13.46)

where the matrices

σx =

[

0 1
1 0

]

σy =

[

0 −i
i 0

]

σz =

[

1 0
0 −1

]

(13.47)

are known as the Pauli Spin Matrices.

Exercise: Consider a particle with spin s = 1. Find the matrix representation of
S2, Sx, Sy, Sz in the basis of eigenstates of S2, Sz, denoted
|ssz >= |11 >, |10 >, |1− 1 >

Next we must take account of the spatial degrees of freedom. Suppose the wave-
function ψ is an eigenstate of momenta and an eigenstate of Sz, with eigenvalue
sz = 1

2 h̄ (”spin up”). Then we require, as usual,

−ih̄∂xψ = pxψ

−ih̄∂yψ = pyψ

−ih̄∂zψ = pzψ (13.48)
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and, in addition,

Szψ =
1

2
h̄ψ (13.49)

where Sz is the matrix shown in (13.45). Its easy to see that the solution is

ψp+ = ei"p·"x/h̄

[

1
0

]

(13.50)

Similarly, an eigenstate of momentum and Sz with sz = −1
2 (”spin down”) will be

ψp− = ei"p·"x/h̄

[

0
1

]

(13.51)

According to our general rules, the (normalized) superposition of two physical states
is also a physical state, so in general an electron wavefunction must have the form

ψ =
∫

d3p [f+(p)ψp+ + f−(p)ψp−]

=
∫

d3p

[

f+(p)ei"p·"x

f−(p)ei"p·"x

]

=

[

ψ+(x)
ψ−(x)

]

(13.52)

where ψ+(x) and ψ−(x) are any two square-integrable functions satisfying a normal-
ization condition

< ψ|ψ > =
∑

i=+,−

∫

d3x ψ∗
i (%x)ψi(%x)

=
∫

d3x [|ψ+(%x)|2 + |ψ−(%x)|2]

= 1 (13.53)

The interpretation of the two terms in the spinor wavefunction, ψ+/−(x), is easy
to see from a computation of the Sz expectation value

< Sz > = < ψ|Sz|ψ >

=
∫

dxdydz [ψ∗
+, ψ∗

−]
h̄

2

[

1 0
0 −1

] [

ψ+

ψ−

]

=
∫

dxdydz
(

+
1

2
h̄|ψ+|2 + (−

1

2
h̄)|ψ−|2

)

= (
1

2
h̄)Prob(spin up) + (−

1

2
h̄)Prob(spin down) (13.54)
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where ”spin up” and ”spin down” refer to the two possibilities of finding sz = 1
2 and

sz = −1
2 . Comparing the last two lines

Prob(spin up) =
∫

dxdydz |ψ+|2

Prob(spin down) =
∫

dxdydz |ψ−|2 (13.55)

Although ψ+ and ψ− are, in general, independent functions, there are many im-
portant cases where the spatial and spin parts of the wavefunction factorize, i.e.

ψ = ψ(x)

[

a
b

]

(13.56)

An example we have just seen are the eigenstates of momenta and Sz shown in eq.
(13.50) and (13.51). Another example is the set of eigenstates of H, L2, Lz, S2, Sz,
where H is the Hydrogen atom Hamiltonian. The ”spin-up” eigenstates are

ϕ(r, θ, φ)χ+ = Rnl(r)Ylm(θ, φ)

[

1
0

]

(13.57)

while the ”spin-down” eigenstates are

ϕ(r, θ, φ)χ− = Rnl(r)Ylm(θ, φ)

[

0
1

]

(13.58)

In ket notation, the states are labeled by their quantum numbers:

{|nlmssz >} where s =
1

2
, sz = ±

1

2
(13.59)

We can get some practice in the use of spinor notation and spin matrices, by
studying the precession of electron spin in an external magnetic field.

• Electron Precession

Suppose an electron is in a state where p ≈ 0, so the electron spinor, while it can
depend on time, does not depend on space, i.e.

ψ(t) =

[

ψ+(t)
ψ−(t)

]

(13.60)

In addition, suppose that there is an external, constant magnetic field, of magnitude
B, in the z-direction. The Hamiltonian is then

H =
p2

2M
− %µ · %B

≈
eh̄Bg

4Mc
σz

≈
1

2
h̄Ωσz (13.61)
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where

Ω =
eB

Mc
(13.62)

Ω is known as the ”cyclotron frequency.” The eigenstates of this Hamiltonian are then
simply χ±, because H is proportional to σz, and χ± are the eigenstates of σz:

Hχ+ = E+χ+ where E+ =
1

2
h̄Ω

Hχ− = E−χ− where E− = −
1

2
h̄Ω (13.63)

Eigenstates of the Hamiltonian are stationary states; an electron in such a state
will remain in that eigenstate indefinitely. But suppose instead that the electron spin
is initially in an eigenstate of Sx or Sy. What we now show is that the electron spin
will then tend to precess around the z-axis.

First, some notation. Define ”spin-up” states and ”spin-down” states in the x, y,
and z-directions to be the ±1

2 h̄ eigenstates of Sx, Sy, Sz respectively:

Sxαx =
1

2
h̄αx Sxβx = −

1

2
h̄βx

Syαy =
1

2
h̄αy Syβy = −

1

2
h̄βy

Szαz =
1

2
h̄αz Szβz = −

1

2
h̄βz (13.64)

We know already that

αz = χ+ =

[

1
0

]

and βz = χ− =

[

0
1

]

(13.65)

Finding the eigenstates αy, βy requires finding the eigenstates of the Pauli matrix σy.
It is instructive do this in detail.

The first thing to do is to find the eigenvalues of σy. The eigenvalue equation is

σy%u = λ%u (13.66)

and the eigenvalues are determined by solving the secular equation

det[σy − λI] = 0 (13.67)

where I is the unit matrix. For the Pauli matrix σy, this is

det

[

−λ i
−i −λ

]

= λ2 − 1 = 0 (13.68)

so the eigenvalues are
λ1 = +1 λ2 = −1 (13.69)
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Note that (i) σy is an Hermitian matrix; and (ii) the eigenvalues are both real. As we
found last semester, the eigenvalues of any hermitian operator are real, and eigenstates
corresponding to different eigenvalues are orthogonal. So far, we have verified the
reality of the eigenvalues. Now we solve for the two corresponding eigenstates, denoted

αy =

[

a1

a2

]

for eigenvalue λ = 1 (13.70)

and

βy =

[

b1

b2

]

for eigenvalue λ = −1 (13.71)

Start by solving for
[

0 −i
i 0

] [

a1

a2

]

=

[

a1

a2

]

[

−ia2

ia1

]

=

[

a1

a2

]

(13.72)

which has the solution

a2 = ia1 or αy =

[

a1

ia1

]

(13.73)

Finally, we determine a1 by normalization

1 = αy · αy = |a1|2 + |ia1|2 = 2|a1|2

=⇒ a1 =
1√
2

(13.74)

so

λ1 = +1 αy =
1√
2

[

1
i

]

(13.75)

The procedure for λ2 = −1 is identical:
[

0 −i
i 0

] [

b1

b2

]

= −
[

b1

b2

]

[

−ib2

ib1

]

=

[

−b1

−b2

]

(13.76)

And this time b2 = −ib1. Normalizing to determine b1, we find

λ2 = −1 βy =
1√
2

[

1
−i

]

(13.77)
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Note that the inner product

αy · βy =
1

2
[1,−i]

[

1
−i

]

= 1 + (−i)2 = 0 (13.78)

vanishes, so αy and βy are orthogonal, as expected.
By similar means we can find the eigenstates of σx, with the result:

αx =
1√
2

[

1
1

]

βx =
1√
2

[

1
−1

]

αy =
1√
2

[

1
i

]

βy =
1√
2

[

1
−i

]

χ+ = αz =

[

1
0

]

χ− = βz =

[

0
1

]

(13.79)

Exercise: Obtain the eigenstates αx and βx of Sx by the same means used for
obtaining the eigenstates of Sy.

To analyze the variation with time of the electron magnetic moment in an external
magnetic field, we use the time-dependent Schrodinger equation with Hamiltonian
(13.61)

ih̄∂tψ =
1

2
h̄Ωσzψ (13.80)

or, in matrix form,

[

∂tψ+

∂tψ−

]

= −i
1

2
Ω

[

1 0
0 −1

] [

ψ+

ψ−

]

=

[

−1
2 iΩψ+

1
2iΩψ−

]

(13.81)

These are two independent first-order differential equations, one for ψ+ and one for
ψ−, and the general solution is easily seen to be

ψ(t) =

[

ae−iΩt/2

beiΩt/2

]

(13.82)

where a and b are constants
Suppose that at time t = 0 the electron is in a ”spin-up” state in the x-direction.

This means that the constants a and b are determined to be

a = b =
1√
2

(13.83)
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Let T = 2π/Ω be the period corresponding to an angular frequency Ω. Then, from
the solution above, we see that the wavefunction for the electron spin ”precesses”
around the z-axis:

ψ(0) = αx (assumption)

ψ(
T

4
) =

1√
2

[

e−iπ/4

eiπ/4

]

= e−iπ/4αy

ψ(
T

2
) =

1√
2

[

e−iπ/2

eiπ/2

]

= e−iπ/2βx

ψ(
3T

4
) =

1√
2

[

e−3iπ/4

e3iπ/4

]

= e−3iπ/4βy

ψ(T ) =
1√
2

[

e−iπ

eiπ

]

= e−iπαx (13.84)

Thus the spin direction of the electron precesses around the z-axis with a precession
frequency f = Ω/2π. The fact that a spin 1/2 particle precesses in the presence
of an external magnetic field is of considerable practical importance for the Nuclear
Magnetic Resonance Imaging technique in medicine, which takes advantage of the
precession of atomic nuclei of spin 1/2.

• Spin-Orbit Coupling

Even when there is no external magnetic field, the frequencies of the spectral
lines of the Hydrogen atom are not exactly as predicted by Bohr. Certain lines
of the spectrum, when observed using a high-resolution spectrometer, are found to
actually be two closely spaced spectral lines; this phenomenon is known as atomic
fine structure. Historically, it was an attempt to explain this fine structure of spectral
lines in the alkali elements that led Goudsmit and Uhlenbeck, in 1925, to propose the
existence of electron spin.

To understand the Goudsmit-Uhlenbeck reasoning, consider an elecron moving
with velocity %v across a static electric field, such as the Coulomb field due to an
atomic nucleus. According to theory of special relativity, the electromagnetic field
as it appears in the rest frame of the electron is no longer entirely electric, but also
contains a magnetic component

%B = −
1

√

1− v2

c2

%v

c
× %E

≈ −
1

Mc
%p× %E (13.85)

Given that the electron has a magnetic moment %µ, there should be an interaction
energy due to the electron magnetic moment, in the rest frame of the electron

H ′ = −%µ · %B (13.86)
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However, we really want the interaction energy in the rest frame of the laboratory,
which is also (approximately) the rest frame of the proton. In transforming this
energy back to the proton rest frame there is a slight subtlety: the electron is not
moving with a uniform velocity %v, but is rather in accellerated motion as it circles
around the proton. To take this accelleration carefully into account would take us
too far afield, but suffice it to say that the interaction energy H ′ above is modified
by a factor of 1

2 , called the Thomas precession factor1

H ′ = −
1

2
%µ · %B

= −
%µ

2Mc
· ( %E × %p)

= −
e

2Mc
%µ ·

(

%r

r3
× %p

)

= −
e

2Mc

1

r3
%L · %µ (13.87)

Using

%µ = −
eg

2Mc
%S

≈ −
e

Mc
%S (13.88)

we get

H ′ =
e2

2M2c2

1

r3
%L · %S (13.89)

This expression is known as the ”spin-orbit” coupling, because it involves a coupling
of the electron spin angular momentum with the electron orbital angular momentum.
The full Hydrogen atom Hamiltonian should contain this spin-dependent term.

Now the spin-orbit term involves all the x, y, z components of angular momentum,
and we know that there is no physical state which is an eigenstate of all of these terms
simultaneously. However, let us define the total electron angular momentum

%J = %L + %S (13.90)

Then
J2 = L2 + 2%L · %S + S2 (13.91)

or
%L · %S =

1

2
(J2 − L2 − S2) (13.92)

The total Hamiltonian is then

H = H0 +
e2

4M2c2

1

r3
(J2 − L2 − S2) (13.93)

1A derivation can be found in, e.g., Jackson’s Electrodynamics.
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Now
[J2, L2] = [J2, S2] = 0 (13.94)

since L2 and S2 commute with all the components of %J = %L + %S, and therefore

[H, J2] = [H, L2] = [H, S2] = 0 (13.95)

Recall that in solving for the eigenstates of H0, we had to first find the eigenstates
of L2. For similar reasons, to find the eigenstates of H , we need first to find the
eigenstates of J2, L2, and S2. Finding the eigenstates of total angular momentum J 2,
given the eigenstates

Ylmχ± (13.96)

of orbital (L2, Lz) and spin (S2, Sz) angular momentum is carried out by a systematic
procedure known as the Addition of Angular Momentum, which is our next order
of business.



Chapter 14

The Addition of Angular
Momentum

”Consider the lilies of the field, how they grow. They toil not, neither do they spin...”
The Book of Mathew

In the previous chapter we found that there was a contribution to the Hydrogen
atom Hamiltonian proportional to the operator

L · S =
1

2
(J2 − L2 − S2) (14.1)

In order to find eigenstates of L · S, we need to find eigenstates of L2, S2, and the
total angular momentum J2. Now, first of all, the usual eigenstates of L2, Lz, S2, Sz

that we wrote down in the last Lecture, namely

ϕ(r, θ, φ)χ+ = Rnl(r)Ylm(θ, φ)

[

1
0

]

and ϕ(r, θ, φ)χ− = Rnl(r)Ylm(θ, φ)

[

0
1

]

(14.2)
are (mostly) not eigenstates of L · S. This is because L · S = LxSx + LySy + LzSz,
and while the wavefunctions above are eigenstates of Lz and Sz, they are (mostly)
not eigenstates of Lx, Ly and Sx, Sy. Because these wavefunctions are not eigenstates
of L · S, they are not eigenstates of the total angular momentum J 2, either.

Defining Jx = Lx +Sx etc., and using the fact that the orbital angular momentum
operators commute with the spin angular momentum operators (they act on different
degrees of freedom), its easy to see that the components of total angular momentum
satisfy the now-familiar commutation relations

[Jx, Jy] = ih̄Jz

[Jy, Jz] = ih̄Jx

[Jz, Jx] = ih̄Jy (14.3)

221
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So this means that Jz = Lz + Sz must commute with J2. What we want to do is to
construct eigenstates of J2, Jz, L2, S2, denoted |jjzls >, as linear combinations of the
eigenstates of L2, Lz, S2, Sz denoted by |lmssz >, whose corresponding eigenfunctions
are shown in (14.2). In other words, we want to find the set of Clebsch-Gordon
coefficients C lmssz

jjzls such that

|jjzls >=
∑

sz ,m=jz−sz

C lmssz
jjzls |lmssz > (14.4)

or, in wavefunction notation

Φjjz =
∑

sz,m=jz−sz

C lmssz
jjzls Ylmχsz (14.5)

(In the case of the Hydrogen atom, s = 1
2 . But the technique we are going to use will

work for any value of s.)
The trick is to notice that one of the |lmssz > states, known as the ”highest

weight state”, is also an eigenstate of J2. Suppose we ask which state is the eigen-
state with the highest eigenvalue of Jz. Now Jz = Lz + Sz, and any eigenstate of
Lz, Sz is also an eigenstate of Jz, although it is usually not an eigenstate of J2. The
eigenstate with the highest eigenvalue of Jz has to be the state with the highest
eigenvalue of Lz and Sz, and there is only one such state

”highest weight state” = Yllχ+ (14.6)

which has jz = l + 1
2 . Now if the highest jz is l + 1

2 , then this must also be the highest
possible value of j that can be constructed from the Ylmχsz . But there is only one
state with jz = l + s, so this must also be the eigenstate of the operator J 2 with
j = l + s. So we conclude that

Φjj = Yllχ+ (j = l + s) (14.7)

(By exactly the same reasoning, there is also a lowest weight state

Φj,−j = Yl,−lχ− (j = l + s) (14.8)

with jz = −(l + s).)

Exercise: Using

J2 = L2 + S2 + 2L · S
Jz = Lz + Sz (14.9)

and expressing Lx, Ly, Sx, Sy in terms of ladder operators, show explicitly that the
highest weight state is an eigenstate of J2, i.e.

J2Yllχ+ = jmax(jmax + 1)h̄2Yllχ+ where jmax = l +
1

2
JzYllχ+ = jmaxh̄Yllχ+ (14.10)
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From this one eigenstate of J2 (the highest weight state), it is simple to construct
all the other eigenstates of J2 and Jz, by successively applying the ladder operator

J− = L− + S− (14.11)

and the relations

J−|jjz > =
√

j(j + 1)− jz(jz − 1)h̄|j, jz − 1 >

L−|lm > =
√

l(l + 1)−m(m− 1))h̄|l, m− 1 >

S−|ssz > =
√

s(s + 1)− sz(sz − 1)h̄|s, sz − 1 > (14.12)

To see how it works, lets pick a particular example to work out, with l = 1. In this
case, the highest weight state is

Φ 3
2

3
2

= Y11χ+ (14.13)

Now apply the J− operator on both sides of this equation, and use eq. (14.12)

J−Φ 3
2

3
2

= (L− + S−)Y11χ+

h̄

√

3

2
(
3

2
+ 1)−

3

2
(
3

2
− 1)Φ 3

2
1
2

= (L−Y11)χ+ + Y11(S−χ+)

h̄
√

3Φ 3
2

1
2

= h̄





√

1(1 + 1)− 0Y10χ+ + Y11 ·
√

1

2
(
1

2
+ 1)−

1

2
(
1

2
− 1)χ−





= h̄
(√

2Y10χ+ + Y11χ−

)

(14.14)

Dividing both sides by
√

3h̄, we have found the eigenstate of J2, Jz with j = 3
2 and

jz = 1
2

Φ 3
2

1
2

=

√

2

3
Y10χ+ +

√

1

3
Y11χ− (14.15)

To get the state with jz = −1
2 , we just apply J− again, to both sides of (14.15)

J−Φ 3
2

1
2

= (L− + S−)





√

2

3
Y10χ+ +

√

1

3
Y11χ−





h̄

√

3

2
(
3

2
+ 1)−

1

2
(
1

2
− 1)Φ 3

2
− 1

2
= h̄

√

1

3

(√
2(L−Y10)χ+ + (L−Y11)χ−

+
√

2Y10(S−χ+) + Y11(S−χ−)
)

2h̄Φ 3
2
− 1

2
= h̄

√

1

3

(

2Y1−1χ+ +
√

2Y10χ−

+
√

2Y10χ− + 0
)

(14.16)
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and we get

Φ 3
2
− 1

2
=

√

2

3
Y10χ− +

√

1

3
Y1−1χ+ (14.17)

The remaining state with j = 3
2 has to be the lowest weight state (14.8). But just as

a check of the algebra, we obtain it by applying the ladder operator one more time

J−Φ 3
2
− 1

2
= (L− + S−)





√

2

3
Y10χ− +

√

1

3
Y1−1χ+





h̄
√

3Φ 3
2
− 3

2
= h̄

√

1

3

(√
2(L−Y10)χ− + (L−Y1−1)χ+ +

√
2Y10(S−χ−) + Y1−1(S−χ+)

)

= h̄

√

1

3
(2Y1−1χ− + 0 + 0 + Y1−1χ−)

= h̄
√

3Y1−1χ− (14.18)

and therefore
Φ 3

2
− 3

2
= Y1−1χ− (14.19)

as it should.
But is this all the eigenstates of J2, Jz that we can form from the l = 1, s = 1

2
states? So far we have constructed four orthonormal states

{Φ 3
2
jz

, jz =
3

2
,
1

2
,−

1

2
,−

3

2
} (14.20)

which are eigenstates of J2, Jz, out of six orthonormal states

Y11χ+ Y10χ+ Y1−1χ+

Y11χ− Y10χ− Y1−1χ−
(14.21)

So out of these six states, we ought to be able to build two more states which are
orthogonal to the four {Φ 3

2
jz
}. Now these extra two states can’t have j = 3/2, because

we have already constructed all of those states, and they can’t be j > 3/2, basically
because a state with jz > 3

2 isn’t available. So lets try to find states with j = 1/2.
There are exactly two such states

Φ 1
2

1
2

and Φ 1
2
− 1

2
(14.22)

so this would bring the total to six. But how do we get them? The trick is to first find
Φ 1

2
1
2

from the fact that it has to be orthogonal to Φ 3
2

1
2
, and also normalized. Then

we can use the ladder operator to get the other state.
We begin from the fact that Φ 1

2
1
2

is an eigenstate of Jz, with jz = 1
2 . There are

two states in the set of six (14.21) which have this value of jz , namely

Y11χ− and Y10χ+ (14.23)
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but these are not eigenstates of J2. So we look for a linear combination

Φ 1
2

1
2

= aY11χ− + bY10χ+ (14.24)

which has the orthonormality properties

< Φ 3
2

1
2
|Φ 1

2
1
2

> = 0

< Φ 1
2

1
2
|Φ 1

2
1
2

> = 1 (14.25)

Substituting (14.15) and (14.24) into the first equation or (14.25)

0 =





√

1

3
< Y11χ−| +

√

2

3
< Y10χ+|



 [a|Y11χ− > +b|Y10χ+ >]

=

√

1

3
[a +

√
2b] (14.26)

Therefore

Φ 1
2

1
2

= a



Y11χ− −
√

1

2
Y10χ+



 (14.27)

Impose the normalization condition on this state

1 = a2



< Y11χ−| −
√

1

2
< Y10χ+|







|Y11χ− > −
√

1

2
|Y10χ+ >





= a2(1 +
1

2
) ⇒ a =

√

2

3
(14.28)

So

Φ 1
2

1
2

=

√

2

3
Y11χ− −

√

1

3
Y10χ+ (14.29)

The last thing to do is to apply the ladder operator to both sides of this equation to
get the last of the six states

J−Φ 1
2

1
2

= (L− + S−)





√

2

3
Y11χ− −

√

1

3
Y10χ+





h̄Φ 1
2
− 1

2
=

√

2

3
(L−Y11χ− −

√

1

3
(L−Y10)χ+ +

√

2

3
Y11(S−χ−)−

√

1

3
Y10(S−χ+)

=
h̄√
3

[

2Y10χ−
√

2Y1−1χ+ + 0− Y10χ−

]

(14.30)

and finally

Φ 1
2
− 1

2
=

√

1

3
Y10χ− −

√

2

3
Y1−1χ+ (14.31)
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The set of all six eigenstates of J2, Jz that can be formed from the six states
Y1mχ±, together with the operation used to construct each, are displayed in Fig.
[14.1]. But there is nothing special about l = 1, of course, and the procedure shown
above works for arbitrary l, as shown in Fig. [14-2]. Note that, since −l ≤ m ≤ l
there are (2l+1) value for m, and 2 possible values of sz = ±1

2 . This means there are
2(2l + 1) orthogonal Ylmχ± states for each fixed l, s = 1

2 . From these, one constructs
a set of eigenstates of J2 with jmax = l + 1

2 , and jmin = l − 1
2 . The total number of

J2 eigenstates is the same as the number of Ylmχ± states , i.e.

N = (2jmax + 1) + (2jmin + 1)

= (2(l +
1

2
) + 1) + (2(l −

1

2
) + 1)

= 2(2l + 1) (14.32)

Now lets go back to the Hydrogen atom. Let H0 be the Hydrogen atom Hamilto-
nian without the spin-orbit contribution, i.e.

H0 = −
h̄2

2m
∇2 −

e2

r
(14.33)

Including electron spin, the eigenstates of H0, L2, Lz, S2, Sz are the set of states

{|nlmssz >} ⇔ {Rnl(r)Ylm(θ, φ)χsz , n = 1, 2, ...; l = 0, 1.., n− 1;

m = −l, ..., l, sz =
1

2
,−

1

2
} (14.34)

What has been done in this chapter is to show how to construct eigenstates of
H0, J2, Jz, L2, S2

{|njjzls >} ⇔ {Rnl(r)Φjjz , n = 1, 2, ...; l = 0, 1, .., n− 1,

j = l +
1

2
, l −

1

2
; jz = −j, ..., j} (14.35)

Now, taking into account the spin-orbit term, the Hamiltonian of the Hydrogen atom
is really

H = H0 + H ′ (14.36)

where

H ′ =
e2

4M2c2

1

r3
(J2 − L2 − S2) (14.37)

Since H still commutes with L2, S2, J2, Jz, the eigenfunctions of H will still have the
form

R′
nlj(r)Φjjz (14.38)

but now R′(r) will be a little different from Rnl(r), and also the new energy eigenvalues
E ′

njl will be a little different from the Bohr energies En. Since spin-orbit coupling is
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a small effect, there is a powerful method known as time-independent perturbation
theory which allows one to ”sneak up” on the eigenstates and eigenvalues of H , given
the eigenstates and eigenvalues of H0. This method will be presented in all its glory
in Lecture 17, but let us borrow, ahead of time, one of the results, which is that, if
|njjzls > is an eigenstate of H0, the energy eigenvalue of H is approximately

E ′
njjzls ≈ En+ < njjzls|H ′|njjzls > (14.39)

Then the spin-orbit coupling introduces a correction to the atomic energies which can
be calculated:

∆E = < njjzls|H ′|njjzls >

=
e2

4M2c2

∫

dr r2Rnl(r)
1

r3
Rnl(r) < Φjjz |(J2 − L2 − S2)|Φjjz >

=
e2

4M2c2

∫

dr r2Rnl(r)
1

r3
Rnl(r)× [j(j + 1)− l(l + 1)−

1

2
(
1

2
+ 1)]h̄2

= [j(j + 1)− l(l + 1)−
1

2
(
1

2
+ 1)]h̄2 e2

M2c2a3
0n3l(l + 1)(2l + 1)

(14.40)

where a0 is the Bohr radius. For a given l, we have seen that the j quantum number
can have one of two values, j = l + 1

2 or j = l − 1
2 , in which case

j(j + 1)− l(l + 1)−
3

4
=

{

l for j = l + 1
2

−(l + 1) for j = l − 1
2

(14.41)

Using also the expression for the Bohr energy

En = −
Me4

2h̄2n2
(14.42)

and defining the ”Fine Structure Constant”

α ≡
e2

h̄c
≈

1

137
(14.43)

the final result for the energies E ′ of atomic orbits is

E ′
n,j=l+ 1

2

= En +
1

(2l + 1)(l + 1)
|En|

α2

n

E ′
n,j=l− 1

2

= En −
1

(2l + 1)l
|En|

α2

n
(14.44)

The fact that the electron energy levels now depend (slightly) on l and j = l ± 1
2 ,

in addition to the principal quantum number n, causes a small splitting of the atomic
spectral lines associated with transitions between the various electron states. The
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splitting is very small; we can see that the correction to atomic energies is on the
order of the square of the fine structure constant, α2, which is less than one part in
10, 000.

At this point, you may feel a little let down. Did we go to all the trouble of learning
how to add angular momenta, just to compute a tiny, arcane splitting of hydrogen
atom spectral lines? The answer, of course, is no. The technique for adding angular
momentum is one of the most important tools there is in atomic, molecular, nuclear,
particle, and condensed matter physics, and the reason is simple: Things are made
of other things, and those other things spin. Atoms, for example, consist of electrons
and a nucleus. Like the electron, atomic nuclei also spin. So the possible spin angular
momenta of a given atom is determined by adding the total angular momentum of
the electron (J = L + S) to the spin angular momentum of the nucleus. Nuclei
are made of protons and neutrons, each of which have spin 1

2 . The energy levels of
nuclei depend on the total spin of the nuclei, and this requires adding the spins of the
protons and neutrons, together with their orbital angular momentum in the nucleus.
Likewise, protons and neutrons (and many other short-lived particles) are composed
of three quarks. Each quark has spin 1

2 . To determine which combination of three
quarks would give spin 1

2 protons and neutrons, and which would lead to higher spin
objects like hyperons, its necessary to be able to add the spin angular momenta of
the quarks. In short, its important to learn how to add angular momentum, because
all physical objects are composed of spinning particles. Viewed at the atomic level
everything spins, including the lilies of the field.

14.1 The General Method

Consider a composite system consisting of two subsystems, and suppose each subsys-
tem has a certain angular momentum. It could be that the system is an atom, one
subsystem is all the electrons, and the other subsystem is the nucleus. Or perhaps the
system is a deuterium nucleus, consisting of one proton, or one neutron. Or maybe
the system is a pi meson, consisting of one quark, and one antiquark. Depending
on the particular case, the angular momentum of each subsystem might be the or-
bital angular momentum of the subsystem, the spin of the subsystem, or maybe the
total (spin plus orbital) angular momentum of the subsystem. The point is, adding
angular momentum is an algebraic technique, and it really doesn’t matter whether
we are adding spin to spin, orbital to orbital, orbital to spin, etc. We will just de-
note the angular momentum of one system by J1, and the angular momentum of the
other system by J2, with the understanding that these can be any type of angular
momentum.

It is assumed that we know the eigenstates of J 2
1 , J1z, J2

2 , J2z, which we denote

{ψ1
j1m1

ψ2
j2m2

} (14.45)
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or, in ket notation
{|j1, m1, j2, m2 >} (14.46)

with eigenvalues

J2
1ψ

1
j1m1

ψ2
j2m2

= j1(j1 + 1)h̄2ψ1
j1m1

ψ2
j2m2

J1zψ
1
j1m1

ψ2
j2m2

= m1h̄ψ1
j1m1

ψ2
j2m2

J2
2ψ

1
j1m1

ψ2
j2m2

= j2(j2 + 1)h̄2ψ1
j1m1

ψ2
j2m2

J2zψ
1
j1m1

ψ2
j2m2

= m2h̄ψ1
j1m1

ψ2
j2m2

(14.47)

If, for example, J1 and J2 were both orbital angular momenta, then

ψ1
j1m1

ψ2
j2m2

= Yj1m1
(θ1, φ1)Yj2m2

(θ2, φ2) (14.48)

Denote the sum of the two angular momenta by

%J = %J1 + %J2 (14.49)

Given the eigenstates of J2
1 , J1z, J2

2 , J2z, we want to find the eigenstates of Φjm of the
total angular momentum J2, Jz, J2

1 , J2
2 .

Once again, the idea is to start from the highest-weight state, namely

Φjj = φ1
j1j1φ

2
j2j2 (j = j1 + j2) (14.50)

and get all the other states with j = j1 + j2 by applying the ladder operators. Then
we construct states with the next lowest value of angular momentum, j = j1 + j2−1,
and then states with j = j1 + j2− 2, and so on. The first question is: where does this
procedure end? If j = j1+j2 is the highest possible value of total angular momentum,
what is the lowest possible value?

This question can be answered by counting states. For a given j1 and j2 there are
a total of 2j1 +1 possible values of m1, and 2j2 +1 possible values of m2, so the total
number of orthonormal states ψ1

j1m1
ψ2

j2m2
is

N = (2j1 + 1)(2j2 + 1) (14.51)

Denote by jmin the lowest possible value of total angular momentum that can be
constructed from states of given j1 and j2. Then the total number of eigenstates of
total angular momentum will be

N ′ =
j1+j2
∑

j=jmin

(2j + 1) (14.52)

and jmin is determined from the requiring N = N ′. The solution to this condition is
that

jmin = |j1 − j2| (14.53)



230 CHAPTER 14. THE ADDITION OF ANGULAR MOMENTUM

which we now quickly verify. Suppose, e.g., that j1 > j2, so that jmin = j1− j2. Then

N ′ =
j1+j2
∑

j=j1−j2

(2j + 1)

=
j1+j2
∑

j=1

(2j + 1)−
j1−j2−1
∑

j=1

(2j + 1)

= 2
j1+j2
∑

j=1

j − 2
j1−j2−1
∑

j=1

j + (2j2 + 1) (14.54)

and using the fact that
L
∑

l=1

l =
L(L + 1)

2
(14.55)

we find

N ′ = (j1 + j2)(j1 + j2 + 1)− (j1 − j2)(j1 − j2 − 1) + (2j2 + 1)

= (2j1 + 1)(2j2 + 1)

= N (14.56)

The procedure for finding all the states is shown in Fig. [14.3]. Starting from the
highest weight state, eq. (14.50), we apply J− to the left-hand side and J1− + J2− to
the right-hand side to get Φj,j−1. Proceeding in this way, one finds all the states with
jmax = j1 + j2. Next, the state with j = m = jmax − 1 must have the form

Φjmax−1,jmax−1 = aφ1
j1j1φ

2
j2,j2−1 + bφ1

j1,j1−1φ
2
j2,j2 (14.57)

because these are the only states with jz = jmax − 1. The two constants a and b are
determined by orthogonality

< Φjmax,jmax−1|Φjmax−1,jmax−1 >= 0 (14.58)

and normalization
< Φjmax−1,jmax−1|Φjmax−1,jmax−1 >= 1 (14.59)

Having determined a and b, apply J− to the left hand side, and J1− + J2− to the
right hand side, to find Φjmax−1,jmax−2, and continue applying the ladder operator
successively to find all states with jmax − 1. Then determine the three constants
a, b, c in the state

Φjmax−2,jmax−2 = aφ1
j1j1φ

2
j2,j2−2 + bφ1

j1,j1−1φ
2
j2,j2−1 + cφ1

j1j1−2φ
2
j2,j2 (14.60)

from the two orthogonality conditions

< Φjmax,jmax−2|Φjmax−2,jmax−2 > = 0

< Φjmax−1,jmax−2|Φjmax−2,jmax−2 > = 0 (14.61)



14.1. THE GENERAL METHOD 231

and the normalization condition

< Φjmax−2,jmax−2|Φjmax−2,jmax−2 >= 1 (14.62)

Ladder operators are applied again, and the whole procedure is continued until all
of the states with total angular momentum j = |j1 − j2| have been found. At that
point, stop.

An important application of this procedure is the addition of the spin angular
momentum of two spin 1

2 particles; a case that turns up again and again in atomic,
nuclear, and particle physics. In this case, there are four eigenstates of S2

1 , S1z, S2
2 , S2z,

denoted
χ1
±χ2

± (14.63)

We want to find all possible eigenstates of S2, Sz, S2
1 , S

2
2 . In this case

smax =
1

2
+

1

2
= 1 smin = |

1

2
−

1

2
| = 0 (14.64)

The highest weight state is
Φ11 = χ1

+χ2
+ (14.65)

Applying the ladder operators

S−Φ11 = (S1− + S2−)χ1
+χ2

+√
2h̄Φ10 = (S1−χ1

+)χ2
+ + χ1

+(S2−χ2
+)

= h̄[χ1
−χ2

+ + χ1
+χ+

2 ] (14.66)

to find

Φ10 =
1√
2
[χ1

+χ2
− + χ1

−χ2
+] (14.67)

Again apply the ladder operators

S−Φ10 =
1√
2
(S1− + S2−)[χ1

+χ2
− + χ1

−χ2
+]

h̄
√

2Φ1−1 =
1√
2
[(S1−χ1

+)χ2
− + (S1−χ1

−)χ2
+ + χ1

+(S2−χ2
−) + χ1

−(S2−χ2
+)]

=
h̄√
2
[χ1

−χ2
− + 0 + 0 + χ1

−χ2
−] (14.68)

which gives, as it should, the lowest weight state

Φ1−1 = χ1
−χ2

− (14.69)

There are three states with j = 1, which are known as the triplet spin states.
The one remaining state at j = 0 is known, for obvious reasons, as the singlet spin
state. The singlet state

Φ00 = aχ1
+χ2

− + bχ1
−χ2

+ (14.70)
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is determined by the orthogonality and normalization conditions

< Φ10|Φ00 > = 0

< Φ00|Φ00 > = 1 (14.71)

From the orthogonality condition

0 =
1√
2
[< χ1

+χ2
−|+ < χ1

−χ2
+|][a|χ1

+χ2
− > +b|χ1

−χ2
+ >]

=
1√
2
(a + b) (14.72)

which tells us that b = −a. Substituting into the normalization condition

1 = a2[< χ1
+χ2

−|− < χ1
−χ2

+|][|χ1
+χ2

− > −|χ1
−χ2

+ >]

= 2a2 ⇐ a =
1√
2

(14.73)

we find that the spin singlet state is

Φ00 =
1√
2
[χ1

+χ2
− − χ1

−χ2
+] (14.74)

The triplet and singlet states, and procedure for finding them, is shown in Fig. [14.4].
One of the many applications of addition of spin 1

2 angular momentum is to the
so-called ”hyperfine splitting” of the hydrogen atom ground state; this has important
consequences for (of all things!) radio astronomy. Now the ground state of the
hydrogen atom has zero orbital angular momentum, so there is no L · S splitting of
the energy level. However, the proton, like the electron, is a spin 1

2 particle, and, like
the electron, it has a certain magnetic moment

µp =
gpe

2mp
Sp (14.75)

where, experimentally, gp = 5.59. For the electron, the corresponding ”g-factor” is
very close to ge = 2, and the electron magnetic moment is

µe = −
e

me
Se (14.76)

Now, according to classical electrodynamics, the magnetic field due to a magnetic
dipole at position %r is given by

%B =
µ0

4πr3
[3(%µ · %er)%er − %µ] +

2µ0

3
%µδ3(r) (14.77)
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So the contribution to the Hamiltonian for the electron, due to the interaction of the
electron magnetic dipole moment with the magnetic field due to the proton dipole
moment is

H ′ =
µ0gpe2

8πmpme

3(Sp · er)(Se · er)− Sp · Se

r3
+

µ0gpe2

3mpme
Sp · Seδ

3(r) (14.78)

The Sp operators in H ′ act on the spin degrees of freedom of the proton. Therefore
we have to enlarge, a little bit, our expression for the hyrogen wavefunction, to include
these extra quantized degrees of freedom. The ground state wavefunction(s), which
are eigenstates of H0, S2

e , Sez, S2
p , Spz, are the four states

Rn0(r)Y00(θ, φ)χe
±χp

± (14.79)

where χe
± refers to the spin state of the electron, and χp

± refers to the spin state of
the proton. We can also, following the procedure above, reorganize these four states
into four other states, which are eigenstates of H0, S2, Sz, S2

e , S
2
p , where %S = %Se + %Sp,

i.e.

ψtriplet
s=1,sz

= Rn0(r)Y00(θ, φ)











χe
+χp

+ (sz = 1)
1√
2
(χe

+χp
− + χe

−χp
+) (sz = 0)

χe
−χp

− (sz = −1)

ψsinglet
s=0,sz=0 = Rn0(r)Y00(θ, φ)

1√
2
(χe

+χp
− − χe

−χp
+) (14.80)

Then, once again making use of a result (to be shown) from first order perturbation
theory

∆Etriplet
1sz

= < ψtriplet
ssz

|H ′|ψtriplet
ssz

>

∆Esinglet = < ψsinglet|H ′|ψsinglet > (14.81)

The expectation values above involve an integration over angles θ, φ. The Y00 spher-
ical harmonic has no angular dependence, but the first term in H ′ does have such
dependence. When the integral over solid angle is carried out, the first term in H ′

averages to zero. The integration over r, θ, φ for the second term is very easily carried
out, since it involves a delta function, and we find

∆E =
µ0gpe2

3memp
< ψ|δ3(r)Sp · Se|ψ >

=
µ0gpe2

3memp
< ψ|δ3(r)

1

2
(S2 − S2

p − S2
e )|ψ >

=
µ0gpe2

3memp

1

2
h̄2[s(s + 1)−

3

4
−

3

4
) < ψ|δ3(r)|ψ >

=
µ0gpe2h̄2

3memp
|ψ(r = 0)|2

1

2
[s(s + 1)−

3

2
] (14.82)
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Then, using the fact that for the Hydrogen atom ground state

|ψ(r = 0)|2 =
1

πa3
0

(14.83)

with Bohr radius a0 = h̄2/me2, we get

∆E =
4gph̄

4

3mpm2
ec

2a4
0

{

1
4 (triplet)
−3

4 (singlet)
(14.84)

It is then possible for the electron-proton system to make a transition from the
higher energy triplet state, to the lower energy singlet state, emitting a photon, whose
energy is the difference in energies between the triplet/singlet states. According to
De Broglie relation, the frequency of this emitted photon will be

f =
∆Etriplet −∆Esinglet

h

=
4gph̄

4

3mpm2
ec2a4h

= 1420 MHz (14.85)

with a corresponding wavelength of 21 cm.
Atomic hydrogen is the most common element found in interstellar space, and

transitions back and forth between the triplet and singlet states (separated by only
about 6 millionths of an electron volt), occur very easily. For that reason, the 21 cm
spectral line due to transitions between the hydrogen triplet and singlet states, is one
of the most dominant features of the interstellar radio spectrum.



Chapter 15

Identical Particles

I wouldn’t belong to any club that would have ME as a member!
- Groucho Marx

In ordinary experience, no two objects are exactly identical. ”Identical” twins
are similar, rather than identical; ”identical” ping-pong balls can be always be dis-
tinguished (at least under a microscope) by some small difference in size, shape or
surface markings.

It’s different with elementary particles. As far as we can tell, there are no scratches,
marks, or personality traits that would distinguish one electron from another electron,
or one proton from another. When we speak of identical particles in quantum physics,
we mean the particles are identical, not just very very similar. The fact that there
are objects in the world which seem to be exactly identical leads to a very interesting
(almost metaphysical!) question of principle regarding physical states.

To start out, imagine that we have two identical spin-0 particles. The position of
one particle is denoted by x1, and that of the other particle by x2. Consider the state
where particle 1 is at the point a, and particle 2 is at the point b, so the state would
be 1

ψ(x1, x2) = δ(x1 − a)δ(x2 − b) (15.1)

Now suppose someone comes along and interchanges the two particles (Fig. [15.1]).
The particles would then be in a different physical state

ψ′(x1, x2) = δ(x1 − b)δ(x2 − a)

= ψ(x2, x1) (15.2)

However...if the particles are exactly identical, then there is no way of ever distinguish-
ing between the states ψ(x1, x2), and ψ′(x1, x2). A measurement could only determine

1Strictly speaking, a delta function is not a physical state, because it isn’t normalized to one. So,
to be more rigorous, just replace the delta functions by gaussians which are narrowly peaked around
points a and b. This doesn’t affect the argument at all.
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that one particle was found at point a, and one particle was found at point b. The
particles themselves don’t carry labels telling which is particle 1, and which is particle
2. But if there are different physical states which are experimentally indistiguishable,
then the difference between them amounts to a kind of ”hidden” information, which
is not accessible to human knowledge.

Now, there is really no obvious reason, a priori, that wavefunctions can’t carry
hidden information. Perhaps this information is really there, but only accessible to
the Lord and His Angels. In a similar vein, the example of the Heisenberg microscope
in Lecture 2 suggested that there is no experimental way to measure position and
momentum simultaneously to arbitrary precision. That doesn’t logically imply that
a particle can’t have a definite position and momentum, at any given time, but we
found in fact that there are no physical states with this property. Therefore, let us
tentatively take the point of view that physical states do not contain any experimen-
tally inaccessible information, and see where it leads. We have two particles, with
particle 1 at position x1 and particle 2 at position x2. Now interchange the particles,
as in Fig. [15.1], moving particle 2 to position x1, and particle 1 to position x2.
Mathematically, this means relabeling x1 → x2 and x2 → x1; i.e. it is an interchange
of particle coordinates. Quantum mechanically, if the two-particle state is denoted
ψ(x1, x2), the interchange of coordinates brings us to a new state which depends on
the variables x1 and x2 in a different way, namely

ψ′(x1, x2) = ψ(x2, x1) (15.3)

which is experimentally indistinguishable from the old state. Now we will make the
following

Interchange Hypothesis:

Interchanging the positions of two identical particles does not change the physical
state.

This hypothesis imposes a very strong constraint on physical states. Its interesting
to first see what it would imply in classical physics. The classical state of a system
of two identical particles, according to the discussion in the first chapter, is given by
a point in the 12-dimensional phase space

{%x1, %p1, %x2, %p2} (15.4)

In classical physics, an interchange should involve interchanging the position and
momentum of each particle. Such an interchange would lead, in general, to a different
(although experimentally indistinguishable) point in phase space

{%x2, %p2, %x1, %p1} (15.5)
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The only physical states which are left unchanged by an interchange of coordinates
and momenta, would be those special points in phase space for which

%x1 = %x2 %p1 = %p2 (15.6)

This constraint would imply, e.g., that all electrons in the universe are located at the
same point, and are moving with the same velocity!

Clearly, the Interchange Hypothesis is too much to ask of classical physics. Quan-
tum physics, however, is a little more tolerant, due the superposition principle. Al-
though neither state (15.1) nor state (15.2) satisfies the Interchange hypothesis, a
superposition of the two states

ΨS(x1, x2) = δ(x1 − a)δ(x2 − b) + δ(x1 − b)δ(x2 − a) (15.7)

clearly does (the ”S” stand for ”symmetric”). Unlike the classical states satisfying the
Interchange Hypthesis, the quantum state ΨS(x1, x2) allows one to find two identical
particles at two different places, while being symmetric in the positions x1 and x2.

However, there is one other state that be constructed from states (15.1) and (15.2)
which also satisfies the Interchange Hypothesis, namely

ΨA(x1, x2) = δ(x1 − a)δ(x2 − b)− δ(x1 − b)δ(x2 − a) (15.8)

(the ”A” stands for ”antisymmetric”). In this case, the change in coordinates gives a
change in sign

ΨA(x2, x1) = −ΨA(x1, x2) (15.9)

It is important to understand, at this point, that two wavefunctions that differ
only by an overall sign, or in general, two wavefunctions that differ only by an overall
phase, i.e.

ψ and eiδψ (15.10)

correspond to the same physical state, because the constant eiδ factor drops out of all
expectation values and probabilities. In particular, ΨA and −ΨA correspond to the
same physical state. So in general, we are looking for 2-particle wavefunctions which
satisfy

ψ(x2, x1) = eiδψ(x1, x2) (15.11)

What possible values can there be, in eq. (15.11), for the phase eiδ?
Lets define an exchange operator that operates on wavefunctions by interchang-

ing the coordinates, and, if the particle has spin, also the spin indices, i.e.

PEψ(z1, z2) = ψ(z2, z1) (15.12)

where
zi ≡ {%xi, siz} (15.13)



238 CHAPTER 15. IDENTICAL PARTICLES

and sz is the spin index, if the particles have an intrinisic spin. Then the states
satisfying the Interchange Hypothesis would satisfy

PEψ(z1, z2) = eiδψ(z1, z2) (15.14)

Its easy to see that PE is an Hermitian operator (why?), and eq. (15.14) is an
eigenvalue equation. Then, by same logic we used to deduce the eigenstates of parity,
we apply eq. (15.12) twice to get

PEPEψ(z1, z2) = PEψ(z2, z1)

= ψ(z1, z2) (15.15)

Then apply eq. (15.14) twice, to find

PEPEψ(z1, z2) = εiδPEψ(z1, z2)

=
(

εiδ
)2

ψ(z1, z2) (15.16)

Comparing (15.15) and (15.16), we deduce that the only possible eigenvalues are

eiδ = ±1 (15.17)

Therefore, the only 2-particle physical states which satisfy the Interchange Hypothesis
are the symmetric states ψS(z1, z2), with the property

ψS(z1, z2) = +ψ(z2, z1) (15.18)

and the antisymmetric states ψA(z1, z2)

ψA(z1, z2) = −ψA(z2, z1) (15.19)

All of this easily generalizes to systems containing any number of identical par-
ticles. Suppose there are N such particles, and the corresponding wavefunction is
denoted ψ(z1, z2, ..., zN). Denote by P ij

E the operator which exchanges the i-th posi-
tion and spin with the j-th position and spin, i.e.

P ij
E ψ(z1, z2, .., zi, .., zj , ..., zN) = ψ(z1, z2, .., zj , .., zi, ..., zN) (15.20)

Then the states which are allowed by the Interchange hypothesis are the symmetric
states, satisfying

ψS(z1, z2, .., zi, .., zj, ..., zN) = +ψS(z1, z2, .., zj, .., zi, ..., zN ) (15.21)

and the antisymmetric states, satisfying

ψA(z1, z2, .., zi, .., zj, ..., zN ) = −ψA(z1, z2, .., zj, .., zi, ..., zN ) (15.22)
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for any choice of i, j with i += j.
So far, all this reasoning has been very hypothetical. If quantum states carry

no experimentally inaccessible ”hidden information,” then the wavefunctions must be
either symmetric or antisymmetric with respect to an interchange of positions and
spins. Now comes an absolutely astounding fact, known as

The Spin Statistics Theorem

Systems of identical particles with integer spin s = 0, 1, 2... are described by
wavefunctions that are symmetric under the interchange of particle coordinates and
spin. Systems of identical particles with half-integer spin s = 1

2 ,
3
2 ,

5
2 ... are described by

wavefunctions that are antisymmetric under the interchange of particle coordinates
and spin.

Particles with integer spin are known as Bosons. Examples are pi-mesons (spin
zero), photons (spin 1), and gravitons (spin 2). Particles with half-integer spin are
known as Fermions. Examples include electrons, protons, and neutrinos (spin 1/2),
the Omega hyperon (spin 3/2), and the (hypothetical) gravitino (spin 3/2) predicted
by a theory known as supergravity.

The Spin-Statistics Theorem is called a theorem because it can be proven from
a handful of axioms (causality, locality, Lorentz invariance...) in the context of a
relativistic extension of quantum mechanics known as quantum field theory. We will
touch briefly on quantum field theory at the very end of the semester, but the proof
of the Spin-Statistics Theorem is not easy, and is simply beyond the scope of the
course. Let us just note here that its implications have been tested, experimentally,
in many ways. The most important consequence for atomic physics is known as

The Pauli Exclusion Principle

No two electrons can be in exactly the same quantum state.

This is the fact which makes chemistry possible, and leads to the remarkable
repetition of chemical properties among the elements which is summarized in the
Periodic Table. But in order to understand the Exclusion Principle, and how it follows
from the Spin-Statistics Theorem, its useful to first look at some simple examples of
2-electron wavefunctions.
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15.1 Two-Electron States

Suppose we have two spin-zero identical particles (such as pions) which are prepared in
such a way that one particle has momentum pa, and the other particle has momentum
pb. What is the wavefunction of the system?

Were it not for the spin statistics theorem, the wavefunction could be (up to a
normalization constant)

ψ(x1, x2) = eipa·x1/h̄eipb·x2/h̄ or eipa·x2/h̄eipb·x1/h̄ (15.23)

or any linear combination

ψ(x1, x2) = Aeipa·x1/h̄eipb·x2/h̄ + Beipa·x2/h̄eipb·x1/h̄ (15.24)

However, the spin-statistics theorm tells us that the only possible combination is the
one which is symmetric with respect to the interchange of coordinate labels 1 ↔ 2.
Thus there is only one possible state in this case

ψS(x1, x2) = eipa·x1/h̄eipb·x2/h̄ + eipa·x2/h̄eipb·x1/h̄ (15.25)

Next suppose there are two electrons, one with momentum pa, the other with
momentum pb. This time, we also have to say something about the spin states.
First, suppose the particle with momentum pa has spin up, and the particle with
momentum pb has spin down. Again, without knowing the spin-statistics theorem,
the states could be

ψ = eipa·x1/h̄χ1
+eipb·x2/h̄χ2

− or eipa·x2/h̄χ2
+eipb·x1/h̄χ1

− (15.26)

or any linear combination (χ1
+ means ”particle 1 has spin up, etc.). But the spin-

statistics theorem tells us that, up to a normalization constant, only the antisymmet-
ric combination

ψA = eipa·x1/h̄χ1
+eipb·x2/h̄χ2

− − eipa·x2/h̄χ2
+eipb·x1/h̄χ1

− (15.27)

will occur in nature.
The 2-electron state (15.27) is not an eigenstate of the total electron spin

S2 = (S1 + S2)
2 = S2

1 + S2
2 + 2S1 · S2 (15.28)

because χ1
+χ2

− is not an eigenstate of S1 · S2. But we saw, in the last chapter, that
it is possible to combine the spin angular momentum of two spin 1

2 particles into
eigenstates of total spin s = 0 and s = 1. What is then the wavefunction if one
particle has momentum pa, the other pb, and the total spin angular momentum is
s = 1?
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Lets begin with the spin part of the wavefunction. In the last chapter, it was
found that spin 1

2 combinations that give s = 1 are

ΦS
11 = χ1

+χ2
+

ΦS
10 =

1√
2
[χ1

+χ2
− + χ1

−χ2
+]

ΦS
1−1 = χ1

−χ2
− (15.29)

The superscript ”S” has been added to draw attention to the fact that these states
are symmetric with respect to the interchange 1↔ 2. But the spin-statistics theorem
only says that the total wavefunction, including the spin and the spatial parts, must
change sign under the 1↔ 2 interchange. So if the spin part is symmetric, the spatial
part must be antisymmetric, i.e.

eipa·x1/h̄eipb·x2/h̄ − eipa·x2/h̄eipb·x1/h̄ (15.30)

and the possible wavefunctions for s = 1 are

ψtriplet = (eipa·x1/h̄eipb·x2/h̄ − eipa·x2/h̄eipb·x1/h̄)











ΦS
11 = χ1

+χ2
+

ΦS
10 = 1√

2
[χ1

+χ2
− + χ1

−χ2
+]

ΦS
1−1 = χ1

−χ2
−

(15.31)

The other possibility is s = 0. In this case, the spin wavefunction is

ΦA
00 =

1√
2
[χ1

+χ2
− − χ1

−χ2
+] (15.32)

Since this part of the wavefunction is antisymmetric under the 1 ↔ 2 interchange,
the spatial part must be symmetric, and therefore

ψsinglet = (eipa·x1/h̄eipb·x2/h̄ + eipa·x2/h̄eipb·x1/h̄)ΦA
00

= (eipa·x1/h̄eipb·x2/h̄ + eipa·x2/h̄eipb·x1/h̄)×
1√
2
[χ1

+χ2
− − χ1

−χ2
+] (15.33)

Finally, lets ask if its possible to prepare 2 electrons in a state where both electrons
have the same momentum pa = pb = p, and both particles have the same spin, e.g.
both are spin up. Its not hard to see that the only wavefunction which would describe
such a system is

ψ = eip·x1/h̄eip·x2/h̄χ1
+χ2

+ (15.34)

But this is a symmetric state, therefore, it cannot exist in nature! Two electrons can
never be prepared in a state, or found to be in a state, with the same momenta and
the same spin. Such a state, incidentally, is an s = 1 state, and one can see from eq.
(15.32) that the s = 1 states vanish for pa = pb. This is a first example of the Pauli
Exclusion Principle.
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The Exclusion Principle itself is derived from the Spin-Statistics Theorm by the
following argument: Any state of N electrons is a superposition of products of N
1-particle states, with each 1-particle state of the form

ψa(xi) =

[

ψa+(xi)
ψa−(xi)

]

(15.35)

For example, for the Hydrogen atom the index a could be a = (nlmssz), so that, e.g.

ψnlmssz(xi) = Rnl(ri)Ylm(θi, φi)χ
i
sz

(15.36)

Now suppose we try to prepare a state in which one electron is in state a, a second is
in state b, a third in state c, and so on. Because of the spin-statistics theorm, such a
state must be antisymmetric under the interchange of any two indices i ↔ j. Then
the only possibility is

Ψ =
N
∑

na=1

N
∑

nb=1

...
N
∑

nz=1

Dnanb...nzψa(xna)ψb(xnb
)...ψz(xnz) (15.37)

where Dnanb...nz is antisymmetric under interchange of any two indices, i.e.

Dnanbnc...nz = −Dnbnanc...nz (15.38)

But suppose that any two states are the same, e.g. a = b. Then for any term in the
sum, e.g.

Dijk...ψa(xi)ψa(xj)ψc(xk).... (15.39)

there is an equal term in the sum, of the opposite sign, i.e.

Djik...ψa(xj)ψa(xi)ψc(xk)... (15.40)

where opposite sign of this term is due to the antisymmetry property (15.38), and
so the two contributions (15.39) and (15.40) cancel. This means that if any two
1-electron states are the same, the N-particle wavefunction is zero. There is zero
probability to find two electrons in the same quantum state. This is the Pauli Exclu-
sion Principle, whose consequences for atomic physics are profound.

15.2 The Helium Atom

Before talking about atoms in general, let’s discuss one in particular: Helium. This is
obviously the next step up in complexity from Hydrogen and, since it has two electrons
rather than one, is a good place to apply our knowlege of 2-electron wavefunctions.
The Hamiltonian for the system is

H =

{

p2
1

2m
−

2e2

r1

}

+

{

p2
2

2m
−

2e2

r2

}

+
e2

r12

= H0(1) + H0(2) + V ′ (15.41)
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where r1 (r2) is the distance of electron 1 (electron 2) to the nucleus, and r12 is the
distance between the two electrons. We have neglected all other terms in the Hamil-
tonian that involve spin; nevertheless, due to the spin-statistics theorem, electron
spin turns out to be very important in determining the possible electron states.

The first thing to do is neglect V ′ also, and construct eigenstates of

H0(12) = H0(1) + H0(2) (15.42)

This is easy because the variables are separable, and the solutions of

H0Ψ(x1, x2) = EΨ(x1, x2) (15.43)

are just

Ψnlm,n′l′m′ = φnlm(r1, θ1, φ1)φn′l′m′(r2, θ2, φ2)

Enlm,n′l′m′ = En + En′ (15.44)

where the φnlm(r, θ, φ) and En are just the Hydrogen atom wavefunctions, with the
one modification that the charge e2 in those expressions are replaced by 2e2, since
the Helium nucleus has two protons. Of course, if the quantum numbers (nlm) and
(n′l′m′) are different, then any linear combination

Ψ = Aφnlm(r1, θ1, φ1)φn′l′m′(r2, θ2, φ2) + Bφnlm(r2, θ2, φ2)φn′l′m′(r1, θ1, φ1) (15.45)

is also an eigenstate of H0(12), with energy En + En′ . In particular, we can form
normalized, symmetric and antisymmetric combinations

ΨS
nlm,n′m′l′ =

1√
2
[φnlm(r1, θ1, φ1)φn′l′m′(r2, θ2, φ2) + φnlm(r2, θ2, φ2)φn′l′m′(r1, θ1, φ1)]

ΨA
nlm,n;l′m′ =

1√
2
[φnlm(r1, θ1, φ1)φn′l′m′(r2, θ2, φ2)− φnlm(r2, θ2, φ2)φn′l′m′(r1, θ1, φ1)]

(15.46)

So far we have only written down the spatial part of the energy eigenstates, and
ignored the spin part. But H commutes with the total spin operators S2, Sz, so we
should be able to construct energy eigenstates which are also total spin eigenstates.
The only possibilities for total spin is s = 1, which has a triplet of symmetric spin
wavefunctions, and s = 0, which has a single antisymmetric spin wavefunction. To
satisy spin-statistics, s = 1 must go with an antisymmetric spatial wavefunction, and
s = 0 with a symmetric spatial wavefunction, so all in all

Ψtriplet
nlm,n′l′m′ =

1√
2
[φnlm(r1, θ1, φ1)φn′l′m′(r2, θ2, φ2)

−φnlm(r2, θ2, φ2)φn′l′m′(r1, θ1, φ1)]











Φ11

Φ10

Φ1−1

Ψsinglet
nlm,n′l′m′ =

1√
2
[φnlm(r1, θ1, φ1)φn′l′m′(r2, θ2, φ2)

+φnlm(r2, θ2, φ2)φn′l′m′(r1, θ1, φ1)]Φ00 (15.47)
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if (nlm) and (n′m′l′) are different, and

Ψsinglet
nlm,nlm = φnlm(r1, θ1, φ1)φnlm(r2, θ2, φ2)Φ00 (15.48)

if (nlm) and (n′m′l′) are the same. Note that in the ground state

Ψsinglet
100,100 = φ100(1)φ100(2)×

1√
2
[χ1

+χ2
− − χ1

−χ2
+] (15.49)

the electrons are in spin up/spin down combinations. It is impossible to put two
spin up electrons (or two spin down electrons) into the Helium ground state; this is
another illustration of the exclusion principle.

Now lets consider the case where one electron is in the (100) state, and the other
electron is in the (nlm) state. The s = 0 singlet combination is known as Para-
helium, and the s = 1 triplet combination is known as Orthohelium. Neglecting
the electrostatic repulsive potential V ′ between the two electrons, Orthohelium and
Parahelium are degenerate in energy.

In order to see how the electron repulsion removes the degeneracy between Ortho-
and Parahelium, we will treat V ′ as though it were a small perturbing potential, and
use the formula

∆E =< Ψ|V ′|Ψ > (15.50)

which is valid if V ′ is a small correction to the rest of the Hamiltonian. Actually,
in this case V ′ is not so small; it is the same order of magnitude in strength as the
attractive potential of the electrons to the nucleus. But we will go ahead and use eq.
(15.50) anyway, trusting that it will produce results that are at least qualitatively, if
not quantitatively, correct. So the correction to the zeroth order energy

EO,P = E0 + ∆E (15.51)

for Ortho- and Parahelium will be

∆EO,P =
1

2

∫

d3x1d
3x2 {φ∗

100(x1)φ
∗
nlm(x2) ± φ∗

100(x2)φ
∗
nlm(x1)}

×
e2

|%x1 − %x2|
{φ100(x1)φnlm(x2) ± φ100(x2)φnlm(x1)}

× < Φs=0,1|Φs=0,1 > (15.52)

where the plus sign is for Parahelium, and the minus sign for Orthohelium. The spin
states are normalized, so < Φ|Φ >= 1, and therefore, collecting like terms,

∆EP = A + B

∆EO = A−B (15.53)

where

A =
∫

d3x1d
3x2 |φ100(x1)|2

e2

r12
|φnlm(x2)|2 (15.54)
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and

B =
∫

d3x1d
3x2 [φ∗

nlm(x1)φ100(x1)]
e2

r12
[φnlm(x2)φ

∗
100(x2)] (15.55)

Term A is associated with a simple, intuitive picture. If we think of the electron
in state (100) as having a charge density proportional to its probability density

ρ100(x) = −e|φ100(x)|2 (15.56)

and likewise for the electron in state (nlm)

ρnlm(x) = −e|φnlm(x)|2 (15.57)

then A is simply the Couloumb interaction energy between those two charge distri-
butions, i.e.

A =
∫

d3x1d
3x2

ρ100(x1)ρnlm(x2)

|%x1 − %x2|
(15.58)

On the other hand, there is no classical picture for the origin of term B. In terms
of the Feynman diagrams of relativistic quantum mechanics (see, e.g. Bjorken and
Drell, vol. I), one can visualize the interaction between electrons as occuring via the
transfer of a photon between them. The Coulomb interaction A comes about when
the electron in the (100) state emits a photon at point x1, which is absorbed by the
electron in the (nlm) state at point x2. The exchange interaction comes about when
the electron in the (100) emits a photon at point x1 and jumps into the (nlm) state,
while the electron at point x2 absorbs a photon, and drops into the (100) state. In
other words, the particles not only exchange a photon, but in doing so they also
exchange states. The diagrams are shown in Fig. [15.2] and I hope they give a hint
of what is going on, but, to be honest, an explanation of what these diagrams really
mean will have to wait for a course in quantum field theory.

Both the quantities A and B are positive numbers, so we can conclude that

E of Parahelium (s = 0) > E of Orthohelium (s = 1) (15.59)

The intuitive reason for this fact is something like this: The s = 1 state is symmetric
in spins, it is therefore antisymmetric in space. In spatially antisymmetric states, the
electrons tend to be further apart, on average, than for the corresponding spatially
symmetric states. For example, in an antisymmetric state the wavefunction vanishes
at x1 = x2. Being further apart means that the repulsive potential is somewhat
smaller, and hence the energy of the state is smaller. This is an example of a rule in
atomic physics known as Hund’s First Rule (see next section), which says that, other
things being equal, the state of highest spin is the state of lowest energy.
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15.3 The Periodic Table

One learns in a beginning chemistry course that chemical reactions among the ele-
ments involve electrons hopping from one atom to another, either in the form of an
ionic bond (one atom captures the electron of another, as in NaCl), or a covalent
bond (one or more electrons are shared between atoms, as in H2). But, why should
electrons hop back and forth between atoms? Why don’t they simply sit in the lowest
possible energy state of each atom, and refuse to budge unless seriously molested?
The key to that question, and to understanding the curious periodicity of chemical
properties among the elements, is the Pauli Exclusion Principle.

In principle, everything that can be known about an atom is contained in the
wavefunctions of its energy eigenstates. For purposes of chemistry it is the atomic
ground state, and particularly the ionization energy, which are important (the ion-
ization energy is the minimum energy required to remove a single electron from the
atom). Again in principle, the procedure for finding the ground state of an atom of
atomic number Z is very straightforward: First, write down Schrodinger’s equation
for the Z-electron state

[

Z
∑

n=1

{

−
h̄2

2m
∇2

n −
Ze2

rn

}

+
∑

n>m

e2

|%xn − %xm|

]

Ψ = EΨ (15.60)

Second, find the solution, antisymmetric with respect to particle interchange, which
has the lowest energy. The antisymmetry restriction is very important; the lowest
energy eigenstates are not antisymmetric in general.

Unfortunately, the second part of this suggested procedure is very hard carry out
in practice. The problem is that, due to the interactions among electrons, there is
no way of separating variables in the many-electron Schrodinger equation. What’s
more, the electron interaction term is too large to be treated as a small perturbation,
for which there exist systematic approximation methods.

But in the case that the number of electrons is fairly large, the theoretical physicist
has another trick up his or her sleave. In condensed matter, nuclear, and particle
physics this trick is known variously as the ”mean field,” or ”self-consistent field,”
or ”independent particle,” or ”random phase” approximation. In atomic physics the
method is known as the ”Hartree approximation.” Roughly the idea is this: when
each particle interacts with many other particles, the potential due to those many
other particles can be treated, on average, as though it were a classical potential,
in which each particle moves independently. If we knew this average potential, we
could calculate the wavefunction of each particle by solving a one-particle Schrodinger
equation; and, knowing the wavefunction of each particle, we could calculate the
average potential. Therefore one calculates the wavefunctions ”self-consisently,” i.e.
finding solutions which lead to a potential which give those solutions. Thats the
general idea. The weakness of the approximation is that it ignores all correllations
in the positions of the various particles. Still, when each particle interacts with
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many other particles, ignoring these subtle correllations is often justified. We won’t
actually do any calculations of multi-electron atomic wavefunctions using this method
(the computations are quite involved), but its still interesting and useful to see how
one gets started.

The first part of the Hartree approximation is to imagine that each electron,
numbered 1, 2, .., Z is in an individual state, denoted φ1, φ2, ..., φZ , so the total wave-
function would be

Φ(1, 2, ..., Z) = φ1(1)φ2(2)...φZ(Z) (15.61)

where the arguments 1, 2, .. refer to the coordinates and spin state of the indicated
particle. This is of course already in conflict with the spin-statistics theorem because
Φ should be antisymmetric. In fact, the approximation can be improved by anti-
symmetrizing Φ (its called the ”Hartree-Fock” approximation), but the improvement
is on the order of 10 − 20% , so we will ignore this additional complication. The
Pauli Exclusion principle, however, must be respected! This is imposed by requiring
that the φn are all orthogonal, or nearly so, so that no two electrons are in the same
quantum state. We will also suppose, for now, that the φn are of the form

φn(n) = φn(xn)χn
± (15.62)

The essence of the Hartree approximation is that the electron in the k-th state
”sees” the electron in the j-th state as being a cloud of charge, with charge density
given by

ρ(x) = −e|φj(x)|2 (15.63)

In that case, we can write down a Schrodinger equation for the wavefunction of the
k-th electron, treating the other electrons as though they were simply classical charge
distributions of the form (15.63), i.e.







−h̄2

2m
∇2 −

Ze2

r
+
∑

n (=k

∫

d3y
e2|φn(y)|2

|%x− %y|







φk(x) = Eφk(x) (15.64)

To make things even simpler, the last term is approximated by its angular average,
i.e.

{

−h̄2

2m
∇2 −

Ze2

r
+ Vk(r)

}

φk(x) = Eφk(x) (15.65)

where2

Vk(r) =
1

4π

∫

dΩ
∑

n (=k

∫

d3y
e2|φn(y)|2

|%x− %y|
(15.66)

There are two important observations to make about eq. (15.65). First, it is an
equation with a spherically symmetric potential. This means that the Hamiltonian

2This is the Coulomb term. The Hartree approximation, because it has not been properly anti-
symmetrized, misses the exchange term.
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commutes with L2, Lz, and the solutions can be labeled by same quantum numbers
as the Hydrogen atom wavefunctions, i.e. (nlm). Second, the potential is no longer
exactly 1/r. When a given electron is close to the nucleus, it sees a potential −Ze2/r,
due to the full charge of the nuclues. However, when the electron is near the edge
of the atom, it will only see a potential of strength −e2/r, because the other Z − 1
electrons are interposed, and screen the nuclear charge. As a result, energies are no
longer independent of the l quantum number. In fact, for a given n, the larger values
of l have a higher energy (i.e. are more weakly bound). The reason is that the higher
angular momentum states are further, on the average, from the nucleus. Therefore an
electron in such states sees a smaller attractive potential, and therefore has a smaller
binding energy.3

Without solving anything, a ground-state wavefunction in the Hartree approxima-
tion is denoted by listing the energy levels that the Z electrons are in. The notation
for each level is

n lN











n = 1, 2, 3, ... principal quantum no.
l = s, p, d, ... spectroscopic symbol for l = 0, 1, 2, .., n− 1
N = 1, 2, 3, ... number of electrons in this level ≤ 2(2l + 1)

(15.67)

The Pauli principle tells us that the maximum value for N , at any given l, is

Nmax(l) = 2(2l + 1) (15.68)

Each electron has to be in a different state, and there are 2l + 1 possible values of m
for each l. Therefore there can be 2l + 1 electrons with spin up, and 2l + 1 electrons
with spin down; a total of 2(2l+1) electrons in all. When there are exactly this many
electrons in a given level, the level is said to be ”filled.”

The last thing needed, in order to list the electron configuration of each atomic
ground state, is the actual order of the energies. In the hydrogen atom, the energies
depend only on the n quantum number, but in multi-electron atoms, as just men-
tioned, the binding energy decreases, as l increases. This listing can only be obtained
by actually carrying out the Hartree approximation, and is as follows:

1s, 2s, 2p, 3s, 3p, [4s, 3d], 4p, [5s, 4d], 5p, [6s, 4f, 5d], 6p, ... (15.69)

where the levels in brackets are very close in energy. Note that there are cases, such as
4s and 3d, where a level with smaller n and larger l has a higher energy than the level
with higher n and smaller l. Again, this is due to the l-dependence of the energy: the

3You might wonder why a spherically symmetric Hamiltonian with a 1/r potential has a greater
degeneracy of eigenstates than Hamiltonians with other central potentials V (r). The answer is that
Hamiltonians with 1/r potentials actually have a symmetry which includes, but is greater than,
spherical symmetry. Knowledge of this symmetry allows one, in the case of 1/r potentials, to define
raising and lowering operators that change l as well as m. A full discussion of this point, however,
is beyond the scope of this course.
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4s-orbital tends to be closer to the nucleus, and hence sees a larger effective positive
charge, than the 3d-orbital, which tends to be further from the nucleus, whose charge
is therefore screened to a greater extent by intervening electrons.

Knowledge of the atomic number Z of an atom, and the order of energies (15.69),
allows us to immediately write down the configuration of electrons in the ground state.
As an example, consider sodium, with an atomic number of Z = 11. Of the eleven
electrons, the first two go into the 1s state, which is filled. Two more electrons go
into the 2s state, which is also filled. Of the remaining seven electrons, six fill the 2p
level, and the remaining electron occupies the 3s level. So the electron configuration
is written4

Na: 1s2 2s2 2p6 3s (15.70)

Electrons in the highest energy level are known as valence electrons. It is these
electrons that determine the chemical properties of the atom. Sodium has one valence
electron, in the 3s state.

• A Quick Tour of the Periodic Table: The Periodic Table begins with
Hydrogen, with a 1s electron configuration in the ground state, and an ionization
enegy of 13.6 eV. The next element, Helium, has two electrons in a 1s2 configuration,
but (as we see in Fig. [15.3]), the ionization energy has almost doubled, to 24.6 eV.
The reason for this increase in ionization energy is quite simple: the charge of the
nucleus is twice as big as for Hydrogen, so each of the 1s levels is more tightly bound to
the nucleus. Helium will not easily give up an electron to form a molecule; moreover,
since the 1s level is filled, it will not capture an electron either. This element is
therefore chemically inert.

The electron configuration of the third element, Lithium, is 1s2 2s, and the ion-
ization energy is much less than Helium, being only 5.4 eV. Naively, since the charge
of the nucleus is now Z = 3, one might expect the ionization energy to increase, as
it did with Helium, so that Lithium would be even more inactive. It is at this point
that the Exclusion Principle comes into play, with a constraint that allows chemistry
to be interesting, and life to exist. Since the 1s level is filled, the third electron must
occupy the 2s level. But an electron in the 2s level is further away from the nu-
cleus, on average, than the two electrons in the 1s level, so the valence electron sees
a shielded charge, which is only about Z = 1. Having seen this, we can estimate that
the binding energy of the 2s electron in Lithium should be about the same as that of a
2s electron in Hydrogen, namely 3.4 eV. The actual binding energy (which is also the
ionization energy) is in fact slightly higher than that (5.4 eV, as mentioned above),
and this is because the electron in the 2s state has some amplitude for being close
to the nucleus, where it would see a larger effective nuclear charge. Moving to the
next element in line, Beryllium, the configuration is 1s2 2s2, and again the ionization

4When there is only one electron in a given level, one omits the superscript, i.e. 3s ≡ 3s1.
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energy increases because Z = 4, and the binding energy of each of the 2s states is
greater. But although the 2s shell is filled, the 2p shell is quite close in energy, and
the presence of a nearby atom may be enough to cause a rearrangement in which one
of the 2s electrons goes into the 2p state. So Beryllium is not as chemically inert as
Helium. In general, the most stable electron configurations are those for which: (i)
the valence level is filled; and (ii) there is a large jump in energy to the next level;
e.g. when all l levels for a given n are filled.

Roughly, then, this is the picture: The various electron levels can be lumped
together into groups which have about the same energy. These groups, and the
maximum number of electrons allowed in each group, are

1s 2 electrons
2s, 2p 8 ”
3s, 3p 8 ”
4s, 3d, 4p 18 ”
5s, 4d, 5p 18 ”
6s, 4f, 5d, 6p 32 ”
7s, 6d, 5f, ...

(15.71)

As one goes up in Z in each group, the binding energy tends to increase, due to the fact
that charge of the nucleus increases. Thus the ionization energy builds to a maximum,
which is the case when all of the energy levels in a group are filled, as seen in Fig.
[15.4]. These maxima occur for the inert gases: Helium, Neon, Argon, Krypton.
However, as Z increases further and the levels of the next higher group begin to be
filled, the ionization energy drops sharply from its value at the inert gas. The reason
is that the sudden decrease in binding energy of the next higher shell predominates
over the increase in Z. It should be noted that unless a shell is completely filled,
a high ionization energy does not mean that an element is necessarily very inert.
Chlorine, for example, has an ionization energy (13 eV) which is nearly as high as
the inert gas Argon (15.8 eV). But the valence level of Chlorine is not filled; there is
room for one more electron. And because the binding energy of the valence level is so
high, it is possible for Chlorine to capture an electron, thereby filling its valence level.
This is why, when Sodium and Chlorine are brought into proximity, it is energetically
favorable for Sodium to lose its valence electron (this only costs 5.1 eV), which is
more than compensated by a lowering of the Chlorine energy by the valence electron
bound state energy (−13 eV). The positively charged Sodium ion is then bound to the
negatively charged Chlorine ion by ordinary electrostatic attraction. The resulting
compound, as you probably know from high school chemistry,5 is ordinary table salt:
NaCl.

The groups shown above in (15.71) are associated with rows in the period table.
The first group, corresponding to the 1s level, is occupied only by Hydrogen and He-
lium. The next two groups are the ”short” rows of the Periodic Table, and constitute

5Do they still teach chemistry in high school?



15.3. THE PERIODIC TABLE 251

the eight elements of Lithium to Neon in the upper row, and Sodium to Argon in the
lower row. Next come two long rows of the periodic table, with 18 elements each:
Potassium to Krypton in the upper row, and Rubidium to Xenon in the lower row.
Then comes a long group of 32 elements, containing the rare earths, whose names I
can never remember. The last group of the heaviest elements, containing Thorium,
Uranium, and some other elements that have been created in the laboratory but
which don’t appear in nature, is not completely filled. The limitation on the size of
the periodic table comes not from atomic physics, but from nuclear physics, since
nuclei beyond some limiting Z tend to be highly radioactive, and decay an instant
after they are produced.

• Term Notation The Hartree approximation ignores all correllations between
electrons, and in particular it ignores the correllations that lead to the atomic ground
state being an eigenstate of total spin, orbital, and spin+orbital angular momenta

%S = %S1 + %S2 + ... + %SZ

%L = %L1 + %L2 + ... + %LZ

%S = %J1 + %J2 + ... + %JZ (15.72)

In fact, the Hamiltonian commutes with J2, L2, S2, and the ground state in particular
has definite values of the quantum numbers J, L, S, where we use capitals letters to
emphasize that these are quantum numbers for the ensemble of electrons. The Term
Notation or Spectroscopic Description of a many electron state with definite
quantum numbers J, L, S is given by the expression

2S+1LJ (15.73)

where
L = 0 1 2 3 4 5 ...
L = S P D F G H ...

(15.74)

There exists some folklore known as Hund’s Rules which allow one to guess,
sometimes, the term description for the ground state of a given atom. In these rules,
the phrase ”highest (lowest) possible” means: highest (lowest) possible consistent
with the exclusion principle. The rules are as follows:

Hund’s Rule’s

1. Other things being equal, the lowest energy state of atomic electrons is the state
with the highest S.
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2. For a given total spin S, the lowest energy state is the state with the largest L.

3. For a given total S and L, if the valence level is not more than half-filled, the
lowest energy state has the minimum J = |L − S|; if the shell is more than
half-filled, the lowest energy state has J = L + S.

As an example of these rules we consider Carbon, which has an atomic configura-
tion 1s2 2s2 2p2. The filled shells have zero spin and zero orbital angular momentum
(because there is no state one can make with mtotal += 0, Stotal

z += 0), so only the
two valence electrons are relevant for determining the overall spin, orbital, and total
angular momentum. The two spin 1

2 electrons in the 2p states can combine into S = 0
or S = 1. By Hund’s First Rule, the S = 1 value is chosen. This means (for Sz = +1)
both electrons are spin up. They are also both in an l = 1 orbital, so addition of
angular momentum could lead to any of the values L = 2, 1, 0. But because of the
exclusion principle, the two spin-up electrons can’t possibly have the same m values.
This means that the highest and lowest weight states for adding L1 = 1 and L2 = 1
are excluded, since we can’t have m1 = m2 = ±1. So this rules out L = 2. The high-
est L left, by Hund’s second rule, is L = 1. By Hund’s third rule, since the valence
shell is less than half filled, J = |L−S| = 0. So the term notation (or ”spectroscopic
description”) for the ground state of Carbon is 3P0.

There is much more that can be deduced about the Periodic Table, atomic physics,
and chemical reactions from quantum-mechanical principles. This is the subject mat-
ter of a course on Theoretical Chemistry. But there are two points that, once again,
deserve special emphasis. First, the existence of chemical reactions is a consequence
of the exclusion principle. Were it not for the exclusion principle, all atomic electrons
would sit in the 1s state, becoming more and more tightly bound as Z increases. The
second point is that the observed repetition of chemical properties is connected to the
2(2l + 1) occupancy of the s, p, d, f orbitals, and this in turn is connected to the pe-
culiar algebra of the angular momentum operators. In short, the chemical properties
of the elements are due essentially to the exclusion principle, and to the fact that two
rotations, done in different orders, end up in different places. Life is a byproduct of
chemistry; it’s a curious thought that we owe our existence to the absolute identity
of electrons, and to the non-commutative property of rotations.



Chapter 16

Live Wires and Dead Stars

Stars die. Their long lives are interesting and complex, occasionally culminating
in fantastic explosions (supernovas) that can briefly outshine entire galaxies. The
details are the subject matter of some other course. For us, it is sufficient to know
that every ”living” star balances its immense gravitational force, which tends to crush
all the atoms of the star inward to a single point, with an equally enormous outward
pressure, due to the heat produced by nuclear fusion. Eventually, any star will exhaust
its nuclear fuel, and then the gravitational force, unopposed, crushes the atoms of the
star to a fantastic density. In the course of collapse, for stars greater than about one
solar mass, the atomic electrons are absorbed by protons in the nuclei, via the process

e− + p → n + ν (16.1)

and the massless neutrinos ν, due to their weak interaction with all other matter,
escape into space. At this stage, all of the particles composing the star are neutrons,
the density of the star approximates that of atomic nuclei, and the dead star is known
as a ”neutron star.” For stars with masses less than about four solar masses, that is
the end of the story: the cold dead star remains as a neutron star until the end of
time. But this brings up the question: what force can there possibly be, within the
cold neutron star, that is capable of opposing the mighty gravitational force, which
would otherwise crush all the matter of the star to a single point?

It seems incredible that all this astrophysical drama should have anything at all
to do with the apparently more mundane question of why some materials conduct
electricity, and some don’t. Nevertheless, the physics of dead stars, and that of quite
ordinary solids, are related in certain unexpected ways. Both neutron stars, and the
electrons in cold metals, are examples of what are known as degenerate Fermi
gases. We begin by taking up the question of how is it possible for certain solids to
conduct electricity.

253
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16.1 The Kronig-Penny Model

A crystalline solid is a regular array of atoms, and, at first sight, conduction of
electricity is a mystery: if electrons are bound to atoms, how is possible for them to
move through the solid under the influence of a small electric field? The answer is
that in a crystal, not all of the electrons are actually bound to the atoms; in fact,
some of the electrons in the metal behave more like a gas of free particles, albeit with
some peculiar characteristics which are due to the exclusion principle.

To understand how electrons in a crystal can act as a gas, it is useful to solve for
the electron energy eigenstates in a highly idealized model of a solid, known as the
Kronig-Penny model, which makes the following simplifications:

S1. The solid is one-dimensional, rather than three-dimensional. The N atoms are
spaced a distance a from one another. In order that there are no special effects
at the boundaries, we consider a solid has no boundary at all, by arranging the
atoms in a circle as shown in Fig. [16.1].

S2. Instead of a Coulomb potential, the potential of the n-th atom is represented
by a delta-function attractive potential well

Vn(x) = −gδ(x− xn) (16.2)

where xn is the position of the n-th atom.

S3. Interactions between electrons in the 1-dimensional solid are ignored.

Obviously, these are pretty drastic simplifications. The important feature of this
model, which it shares with realistic solids, is that the electrons are moving in a
periodic potential. For purposes of understanding the existence of conductivity, it
is the periodicity of the potential, not its precise shape (or even its dimensionality)
which is the crucial feature.

Arranging the atoms in a circle, as in Fig. [16.1], means that the position variable
is periodic, like an angle. Just as θ + 2π is the same angle as θ, so the position x + L
is the same position as x, where

L = Na (16.3)

is the length of the solid. Let the position of the n-th particle be xn = na, n =
0, 1, ..., N − 1, the potential then has the form

V (x) = −g
N−1
∑

n=0

δ(x− na) (16.4)

Its clear that the potential satisfies

V (x + a) = V (x) (16.5)
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providing that we impose the periodicity requirement that x + L denotes the same
point as x. The “periodic delta-function” which incorporates this requirement is given
by

δ(x) =
1

2π

∑

m

exp [2πimx/L] (16.6)

The time-independent Schrodinger equation for the motion of any one electron in this
potential has the usual form

Hψk(x) =

[

−
h̄2

2m

∂2

∂x2
− g

N−1
∑

n=0

δ(x− na)

]

ψk(x) = Ekψk(x) (16.7)

Because V (x) has the symmetry (16.5), it is useful to consider the translation
operator first introduced in Chapter 10,

Taf(x) = exp[iap̃/h̄]f(x)

= f(x + a) (16.8)

Likewise,

T−af(x) = exp[−iap̃/h̄]f(x)

= f(x− a) (16.9)

Because p̃ is an Hermitian operator, its easy to see (just expand the exponentials in
a power series) that

T †
a = T−a

[Ta, T−a] = 0

T−aTa = 1 (16.10)

Due to the periodicity of the potential V (x), the Hamiltonian commutes with the
translation operators, which, as we’ve seen, also commute with each other, i.e.

[Ta, H ] = [T−a, H ] = [Ta, T−a] = 0 (16.11)

This means (see Chapter 10) that we can choose energy eigenstates to also be eigen-
states of T±a, i.e.

TaψE(x) = λEψE(x)

T−aψE(x) = λ′
EψE(x) (16.12)

Therefore,

λE = < ψE|Ta|ψE >

= < T †
aψE|ψE >

= < T−aψE|ψE >

= (λ′
E)∗ (16.13)
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But also

ψE(x) = TaT−aψE

= λEλ′
EψE

= ψE(x) (16.14)

This means that λ′
E = (λE)−1. Insert that fact into (16.13) and we conclude that

λ∗
E = (λE)−1, i.e.

λE = exp(iKa) (16.15)

for some K. In this way we arrive at

Bloch’s Theorem

For potentials with the periodicity property V (x + a) = V (x), each energy eigen-
state of the Schrodinger equation satisfies

ψ(x + a) = eiKaψ(x) (16.16)

for some value of K.

It is also easy to work out the possible values of K, from the fact that

ψ(x) = ψ(x + L)

= (Ta)
N ψ(x)

= exp[iNKa]ψ(x) (16.17)

which implies

K =
2π

Na
j j = 0, 1, 2, ..., N − 1 (16.18)

The limiting value of j is N − 1, simply because

exp[i2π
j + N

N
] = exp[i2π

j

N
] (16.19)

so j ≥ N doesn’t lead to any further eigenvalues (j and N − j are equivalent).
According to Bloch’s theorem, if we can solve for the energy eigenstates in the

region 0 ≤ x ≤ a, then we have also solved for the wavefunction at all other values of
x. Now the periodic delta function potential V (x) vanishes in the region 0 < x < a,
so in this region (call it region I) the solution must have the free-particle form

ψI(x) = A sin(kx) + B cos(kx) E =
h̄2k2

2m
(16.20)
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But according to Bloch’s theorem, in the region −a < x < 0 (region II),

ψII(x) = e−iKaψI(x + a)

= e−iKa[A sin k(x + a) + B cos k(x + a)] (16.21)

Now we apply continuity of the wavefunction at x = 0 to get

B = e−iKa[A sin(ka) + B cos(kb)] (16.22)

For a delta function potential, we found last semester a discontinuity in the slope of
the wavefunction at the location (x = 0) of the delta function spike, namely

(

dψ

dx

)

|ε
−
(

dψ

dx

)

|−ε
= −

2mg

h̄2 ψ(0) (16.23)

and this condition gives us

kA− e−iKak[A cos(ka)− B sin(ka)] = −
2mg

h̄2 B (16.24)

Solving eq. (16.22) for A,

A =
eiKa − cos(ka)

sin(ka)
B (16.25)

inserting into eq. (16.24) and cancelling B on both sides of the equation leads finally,
after a few manipulations, to

cos(Ka) = cos(ka)−
mg

h̄2k
sin(ka) (16.26)

This equation determines the possible values of k, and thereby, via E = h̄2k2/2m,
the possible energy eigenvalues of an electron in a periodic potential.

Now comes the interesting point. The parameter K can take on the values
2πn/Na, and cos(Ka) varies from cos(Ka) = +1 (n = 0) down to cos(Ka) = −1
(n = N/2), and back up to cos(Ka) ≈ +1 (n = N − 1). So the left hand side is
always in the range [−1, 1]. On the other hand, the right hand side is not always in
this range, and that means there are gaps in the allowed energies of an electron in a
periodic potential. This is shown in Fig. [16.2], where the right hand side of (16.26)
is plotted. Values of k for which the curve is outside the range [−1, 1] correspond
to regions of forbidden energies, known as energy gaps, while the values where the
curve is inside the [−1, 1] range correspond to allowed energies, known as energy
bands. The structure of bands and gaps is indicated in Fig. [16.3]; each of the
closely spaced horizontal lines is associated with a definite value of K.

In the case that we have M > N non-interacting electrons, each of the electrons
must be in an energy state corresponding to a line in one of the allowed energy bands.
The lowest energy state would naively be that of all electrons in the lowest energy
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level, but at this point we must invoke the Exclusion Principle: There can be no more
than one electron in any given quantum state. Thus there can a maximum of two
electrons (spin up and spin down) at any allowed energy in an energy band.

At the lowest possible temperature (T = 0 K), the electrons’ configuration is the
lowest possible energy consistent with the Exclusion Principle. A perfect Insulator
is a crystal in which the electrons completely fill one or more energy bands, and there
is a gap in energy from the most energetic electron to the next unoccupied energy
level. In a Conductor, the highest energy band containing electrons is only partially
filled.

In an applied electric field the electrons in a crystal will tend to accellerate, and
increase their energy. But...they can only increase their energy if there are (nearby)
higher energy states available, for electrons to occupy. If there are no nearby higher
energy states, as in an insulator, no current will flow (unless the applied field is so
enormous that electrons can ”jump” across the energy gap). In a conductor, there
are an enormous number of nearby energy states for electrons to move into. Electrons
are therefore free to accellerate, and a current flows through the material.

The actual physics of conduction, in a real solid, is of course far more complex
than this little calculation would indicate. Still, the Kronig-Penny model does a
remarkable job of isolating the essential effect, namely, the formation of separated
energy bands, which is due to the periodicity of the potential.

16.2 The Free Electron Gas

In the Kronig-Penney model, the electron wavefunctions have a free-particle form in
the interval between the atoms; there is just a discontinuity in slope at precisely the
position of the atoms. In passing to the three-dimensional case, we’ll simplify the
situation just a bit more, by ignoring even the discontinuity in slope. The electron
wavefunctions are then entirely of the free particle form, with only some boundary
conditions that need to be imposed at the surface of the solid. Tossing away the
atomic potential means losing the energy gaps; there is only one ”band,” whose
energies are determined entirely by the boundary conditions. For some purposes
(such as thermodynamics of solids, or computing the bulk modulus), this is not such
a terrible approximation.

We consider the case of N electrons in a cubical solid of length L on a side. Since
the electrons are constrained to stay within the solid, but we are otherwise ignoring
atomic potentials and inter-electron forces, the problem maps directly into a gas of
non-interacting electrons in a cubical box. Inside the box, the Schrodinger equation
for each electron has the free particle form

−
h̄2

2m
∇2ψ(x, y, z) = Eψ(x, y, z) (16.27)
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While, at the boundaries, we impose the ”box” conditions

ψ(0, y, z) = ψ(L, y, z) = 0

ψ(x, 0, z) = ψ(x, L, z) = 0

ψ(x, y, 0) = ψ(x, y, L) = 0 (16.28)

The solution of the particle in a box is a simple generalization of the particle in a
tube (Lecture 5), and the particle in a square (Lecture 10). The eigenstates are

ψn1n2n3
(x, y, z) =

(

2

L

)3/2

sin(
πn1

L
x) sin(

πn2

L
y) sin(

πn3

L
z) (16.29)

with energy eigenvalues

En1n2n3
=

π2h̄2

2mL2
(n2

1 + n2
2 + n2

3) (16.30)

Suppose the solid is at temperature T = 0. We ask the question: (i) what is the
total energy ET of the electrons in the solid; and (ii) what is the energy EF of the
most energetic electron in the solid? The energy of the most energetic electron in a
cold solid, EF , is known as the Fermi Energy.

Start with EF . The method for calculating the Fermi energy is to first suppose
that we know it, and, assuming that every energy En1n2n3

< EF is filled with two
electrons (spin up/down), figure out the total number of electrons in the solid. By
setting this number to N , we can determine EF .

To each eigenstate there corresponds a set of integers n1, n2, n3, so each possible
energy state can be represented a point in a three-dimensional space, with positive
integer coordinates. Denote the maximum value of n2

1+n2
2+n2

3, for the most energetic
state, by R2. The Fermi Energy is therefore

EF =
π2h̄2

2mL2
R2 (16.31)

Now all of the states with E ≤ EF are occupied. So we need to count the number of
points with integer coordinates (n1n2n3) such that

n2
1 + n2

2 + n2
3 ≤ R2 (16.32)

But since there is one site with integer coordinates per unit volume, the number of
sites satisfying (16.32) is simply the volume of a one octant of a sphere of radius R
(see Fig. 16.4). Since there can be no more than two electrons per site (n1n2n3), the
total number of electrons with energies less than EF , with all levels filled, is

N = 2×
1

8
×

4

3
πR3 =

1

3
πR3 (16.33)
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According to (16.31),

R =

(

2mL2

h̄2π2
EF

)1/2

(16.34)

so the number of electrons, in terms of EF , becomes

N =
π

3
L3
(

2mEF

h̄2π2

)3/2

(16.35)

Solving for the Fermi energy, we get

EF =
h̄2π2

2m

(

3N

πL3

)2/3

(16.36)

But the number density of electrons, ne, in the solid is just

ne =
N

L3
(16.37)

Therefore, we find that the Fermi energy just depends on the electron mass and
density (and not on the size of the box)

EF =
h̄2π2

2m

(

3

π
ne

)2/3

(16.38)

Next, approximate the sum over all states with energies less than EF by an integral

ET =
∑

n1

∑

n2

∑

n3

2En1n2n3

≈
∫

"n·"n≤R2
d3n 2En1n2n3

=
h̄2π2

mL2

1

8

∫

d3n %n · %n

=
h̄2π2

8mL2
4π

∫ R

0
dn n4

=
h̄2π3

10mL2
R5 (16.39)

where the factor of 1/8 in front of the integral comes, again, because the sites lie in
the octant of the sphere with positive integer coordinates. Next from (16.33)

R =
(

3N

π

)1/3

(16.40)

Using L = V 1/3, where V is the volume of the solid, we get finally

ET =
h̄2π3

10m

(3N

π

)5/3

V −2/3 (16.41)
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The pressure with which any object resists compression is given by

p = −
dET

dV
(16.42)

where ET is the energy of the object. For a cold electron gas, this is known as the
degeneracy pressure. The bulk modulus B describes the change in pressure per
fractional decrease in volume, i.e.

B = −V
dp

dV

= −V
d2ET

dV 2

=
π3h̄2

9m

(

3N

π

)5/3

V −5/3

=
π3h̄2

9m

(

3ne

π

)5/3

(16.43)

Rather surprisingly, given all the unrealistic assumptions that have gone into this
expression, it gives answers that compare reasonably well (within 30% in some cases)
to the experimental results.

Finally, we turn to the neutron star. The radius of the dead star is determined
by a balance between the inward gravitational pressure, and the outward degeneracy
pressure which is due to the fact that neutrons, like electrons, are spin 1

2 objects.
The degeneracy pressure is the same expression for neutron stars as it is for ordinary
solids, the only difference being that the electron mass m should be replaced by the
neutron mass mn, the electron number density ne by the neutron number density nn,
and N is the number of neutrons. The degeneracy pressure is

pD = −
dET

dV

=
h̄2π3

15mn

(

3N

π

)5/3

V −5/3

=
h̄2π3

15mn

(

3nn

π

)5/3

(16.44)

where ET is the total kinetic energy of the neutrons up to the Fermi level. On the
other hand, the gravitational potential energy of a sphere of constant density ρ and
radius R is given by

EG = −
(4π)2

15
Gρ2R5 (16.45)

Using ρ = M/V , where M is the mass of the star, and V = 4
3πR

3, we get an expression
for EG in terms of V

EG = −
3

5

(4π

3

)1/3

GM2V −1/3 (16.46)
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Then the inward gravitational pressure is

pG = −
dEG

dV

= −
1

5

(4π

3

)1/3

GM2V −4/3 (16.47)

Finally, requiring that the inward (pG) and outward (pD) pressures balance,

1

5

(

4π

3

)1/3

GM2V −4/3 =
h̄2π3

15mn

(

3N

π

)5/3

V −5/3 (16.48)

solving for V and then for R = (3V/4π)1/3, we get

R =

(

81π20

16

)1/3
h̄2

Gm3
n

N−1/3 (16.49)

For a two solar mass star, N = M/mn, R turns out to be about 10 km.
It seems from eq. (16.49) that no matter how massive the star (i.e. no matter

how large N) the degeneracy pressure will always end the collapse at a finite value of
R. Actually this is not quite right, because we have ignored relativistic effects. The
free Schrodinger equation is based on E = p2/2m, i.e. E grows quadratically with
p. In fact, the correct expression in relativity is E =

√
p2c2 + m2c4, and at velocities

very close to the speed of light, the energy is approximately E ≈ pc; i.e. the energy
grows only linearly with p. This means that the degeneracy pressure for relativistic
neutrons is less that one would expect from the non-relativistic calculation. In fact,
for stars at about four solar masses, the neutrons in the star do become relativistic,
and the degeneracy pressure is insufficient to counter the gravitational pressure. For
stars of that mass and greater, no known physical process can stop the continuing
collapse, and the star becomes a black hole.

For a star with a mass somewhat less than that of the sun, the cold star never
reaches the neutron star stage, since the elecron degeneracy pressure is sufficient to
stabilize the star at radii on the order of 10, 000 km. For masses somewhat greater
than that of the sun, the electrons becomes relativistic, and the collapse continues
until, for masses less than four solar masses, the star becomes a neutron star.

Before leaving the topic, it is hard to resist mentioning one last aspect of electron
spin. In the 1920’s Dirac wrote down a relativistic equation for electrons, which not
only predicted that electrons should have spin 1

2 , but also predicted the magnitude
of the electron magnetic moment, with g-factor g = 2. There was just one little
problem: in addition to free electrons with positive energy

E =
√

p2c2 + m2c4 (16.50)
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the equation also predicted negative energy states

E = −
√

p2c2 + m2c4 (16.51)

This had the uncomfortable consequence that an electron could radiate energy indef-
initely, as it dropped into ever lower negative energy states. To avoid this problem,
Dirac postulated that every negative energy state was filled; the lowest energy state in
nature being an infinite collection of negative energy electrons known as the ”Dirac
sea.” theory also allowed for the possibility than a negative energy electron could
absorb a photon and jump to a positive energy level, leaving an unoccupied posi-
tion in the negative energy levels. It turned out that this unoccupied position would
behave in every way as though it were itself a particle with the electron mass and
spin, but with the opposite charge: a ”positron.” These particles were discovered by
Anderson, in cosmic ray studies, just a few years after their existence was predicted
by Dirac.

Its clear that electron spin, and the spin-statistics theorem, explains a lot. It en-
ables us to understand the qualitative features of the periodic table and the existence
of conduction bands in crystals. It allows us to estimate the bulk modulus of solids,
and the radii of dead stars. And this is not even half the story! In addition to de-
generate fermion gases, there are also degenerate boson gases, in which every particle
occupies the lowest energy level. Aggregates of that kind are of crucial importance
in understanding such startling phenomena as superconductivity and superfluidity.
It would be nice to discuss those things also, but there are limits to the number of
things one can do in a year.
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Chapter 17

Time-Independent Perturbation
Theory

Consider a Hamiltonian which has this form:

H = H0 + a little bit extra potential (17.1)

where H0 is a Hamiltonian whose eigenvalue equation is already solved:

H0φ
0
n = E0

nφ
0
n (17.2)

It then makes sense that the solutions to the eigenvalue equation

Hφn = Enφn (17.3)

can be written, for each n, as

φn = φ0
n + a little bit extra function

En = E0
n + a little bit extra constant (17.4)

An example:

H = −
h̄2

2m

d

dx2
+

1

2
kx2 + λx4 (17.5)

In this case

H0 = −
h̄2

2m

d

dx2
+

1

2
kx2 (17.6)

is the Hamiltonian of a harmonic oscillator, whose energy eigenvalues and eigenfunc-
tions are well known, and

a little bit extra potential = λx4 (17.7)

Another example is the case of a a Hydrogen atom in an external electric field, directed
(say) along the z-axis

H = −
h̄2

2m
∇2 −

e2

r
+ eEz (17.8)
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This time

H0 = −
h̄2

2m
∇2 −

e2

r
(17.9)

is the usual Hydrogen atom Hamiltonian, and

a little bit extra potential = eEz (17.10)

Of course, in each case these extra potentials can only be characterized as “a little bit
extra” if the constants λ and eE are small, in some appropriate units (to be discussed
further below). Lets write in general that

a little bit extra potential = V ′(x) = λV (x) (17.11)

where λ is some constant which controls whether V ′(x) is small or not. Then the
solutions of the eigenvalue equation (17.3) are, obviously, funtions of λ, which can be
expanded in a Taylor series around λ = 0, i.e.

φn = φn(x, λ)

= φ(0)
n (x) + λφ(1)

n (x) + λ2φ(2)
n (x) + ...

En = En(λ)

= E(0)
n + λE(1)

n + λ2E(2)
n + ... (17.12)

where

E(k)
n ≡

1

k!

(

dk

dxk
En(λ)

)

λ=0

φk
n(x) ≡

1

k!

(

dk

dxk
φ(x, λ)

)

λ=0

(17.13)

and of course
H = H0 + λV (17.14)

Then the eigenvalue (17.3) becomes

(H0 + λV )(φ(0)
n + λφ(1)

n + λ2φ(2)
n + ...)

= (E(0)
n + λE(1)

n + λ2E(2)
n + ...)(φ(0)

n (x) + λφ(1)
n (x) + λ2φ(2)

n (x) + ...)

(17.15)

Collecting like powers of λ on each side we have

H0φ
(0)
n + λ(H0φ

(1)
n + V φ(0)

n ) + ... + λN(H0φ
(N)
n + V φ(N−1)

n ) + ...

= E(0)
n φ(0)

n + λ(E(0)
n φ(1)

n + E(1)
n φ0

n) + λ2(E(0)
n φ(2)

n + E(1)
n φ(1)

n + E(2)
n φ(0)

n ) + ...

+λN
N
∑

j=0

E(j)
n φ(N−j)

n + ... (17.16)



267

or

0 = (H0φ
(0)
n − E(0)

n φ(0)
n ) + λ(H0φ

(1)
n + V φ(0)

n −E(0)
n φ(1)

n −E(1)
n φ0

n) + ...

+λN(H0φ
(N)
n + V φ(N−1)

n −
N
∑

j=0

E(j)
n φ(N−j)

n ) + ...

= F (0) + λF (1) + λ2F 2 + ... (17.17)

Now this equation has to be true for every choice of λ. But since, by definition,
the E(k)

n and φ(k)
n (x) are independent of λ, we must have

F (0) = F (1) = F (2) = ... = 0 (17.18)

which gives us an infinite set of coupled equations:

(H0 − E(0)
n )φ(0)

n = 0

(H0 − E(0)
n )φ(1)

n = (E(1)
n − V )φ(0)

n

(H0 − E(0)
n )φ(2)

n = −V φ(1)
n + E(1)

n φ(1)
n + E(2)

n φ(0)
n

... = ...

(H0 − E(0)
n )φ(N)

n = −V φ(N−1) +
N−1
∑

j=1

E(j)
n φ(N−j)

n + EN
n φ(0)

n

... = ... (17.19)

We already know the solution of F (0) = 0, which is simply the set of zeroth-
order (in λ) eigenstates and eigenfunctions {φ(0)

n , E(0)
n }. Then the idea is input these

solutions to solve the equation F (1) = 0 for the set {φ(1)
n , E(1)

n }. This provides the
solution to φn, En up to first order in λ. We can then continue to solve these equations
iteratively, and obtain the eigenstates and eigenvalues to any order in λ desired.

But we first have to deal with a slight ambiguity. Notice that if φ(1)
n is a solution

of
(H0 − E(0)

n )φ(1)
n = (E(1)

n − V )φ(0)
n (17.20)

then so is
φ′(1)

n = φ(1)
n + aφ(0)

n (17.21)

where a is any constant. There is a similar ambiguity for any φ(N)
n . We can get

rid of this ambiguity is a simple way. We first note that the eigenvalue equation
Hφn = Enφn is a linear equation, which doesn’t set the overall normalization 〈φn|φn〉
of the eigenstates. So lets temporarily choose the normalization such that the overlap

〈φ0
n|φn〉 = 1 (17.22)

is unity, for any λ. Its easy to see, from the expansion (17.12), that this implies for
each N ,

〈φ0
n|φ(N)

n 〉 = 0 (17.23)
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and this condition eliminates the ambiguity mentioned above. Of course, after having
computed φn(x) by the process of iteratively solving the set of F (N) = 0 equations,
we will finally have to normalize φn(x) in the usual way to obtain a physical state.

Lets see how this iterative process works. Suppose we have solved all the F (k) = 0
equations up to k = N − 1. The k = N -th equation, in bra-ket notation, is

(H0 −E(0)
n )|φ(N)

n 〉 = −V |φ(N−1)
n 〉+

N−1
∑

j=1

E(j)
n |φ(N−j)

n 〉+ EN
n |φ(0)

n 〉 (17.24)

To solve for φ(N)
n , first express it in terms of a complete set of states spanning the

Hilbert space, namely, the zero-th order eigenstates of H0

φ(N)
n =

∑

i(=n

cN
niφ

(0)
i (17.25)

where we can neglect i = n because of (17.23). Now multiply eq. (17.24) on both

sides by the bra vector 〈φ(0)
i |, with i += n

〈φ(0)
i |(H0 −E(0)

n )|φ(N)
n 〉 = −〈φ(0)

i |V |φ(N−1)
n 〉+

N−1
∑

j=1

E(j)
n 〈φ

(0)
i |φ(N−j)

n 〉+ EN
n 〈φ

(0)
i |φ(0)

n 〉

(E(0)
i − E(0)

n )〈φ(0)
i |φ(N)

n 〉 = −〈φ(0)
i |V |φ(N−1)

n 〉+
N−1
∑

j=1

E(j)
n 〈φ

(0)
i |φ(N−j)

n 〉

(E(0)
i − E(0)

n )cN
ni = −〈φ(0)

i |V |φ(N−1)
n 〉+

N−1
∑

j=1

E(j)
n cN−1

ni (17.26)

so that

cN
ni =

1

E(0)
n −E(0)

i



〈φ(0)
i |V |φ(N−1)

n 〉 −
N−1
∑

j=1

E(j)
n cN−1

ni



 (17.27)

Therefore

φ(N)
n =

∑

i(=n

1

E(0)
n − E(0)

i



〈φ(0)
i |V |φ(N−1)

n 〉 −
N−1
∑

j=1

E(j)
n cN−1

ni



φ(0)
n (17.28)

is the N-th order correction to the zeroth-order wavefunction, expressed in terms of
the lower order E(j)

n and cN−1
ni .

Next we have to get the N -th order correction to the energy, and for this we
multiply eq. (17.24) on both sides by the bra vector 〈φ(0)

n |

〈φ(0)
n |(H0 −E(0)

n )|φ(N)
n 〉 = −〈φ(0)

n |V |φ(N−1)
n 〉+

N−1
∑

j=1

E(j)
n 〈φ(0)

n |φ(N−j)
n 〉+ EN

n 〈φ(0)
n |φ(0)

n 〉

0 = −〈φ(0)
n |V |φ(N−1)

n 〉+
N−1
∑

j=1

E(j)
n 〈φ(0)

n |φ(N−j)
n 〉+ EN

n 〈φ(0)
n |φ(0)

n 〉

(17.29)
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and making use of the constraint (17.23), we have

0 = −〈φ(0)
n |V |φ(N−1)

n 〉+ E(N)
n (17.30)

Putting everything together, we have the iterative equations

φ(N)
n =

∑

i(=n

cN
niφ

(0)
i

cN
ni =

1

E(0)
n − E(0)

i



〈φ(0)
i |V |φ(N−1)

n 〉 −
N−1
∑

j=1

E(j)
n cN−1

ni





E(N)
n = 〈φ(0)

n |V |φ(N−1)
n 〉 (17.31)

which allows us to compute the solutions

φn = φ(0)
n + λφ(1)

n + λ2φ(2)
n + ...

En = E(0)
n + λE(1)

n + λ2E(2)
n + ... (17.32)

to any desired accuracy.
Lets now work out the corrections to the energies and wavefunctions to second

order in λ (it is usually not necessary to go further than this). First of all, setting
N = 1 in (17.31)

c1
ni =

〈φ(0)
i |V |φ(0)

n 〉
E(0)

n − E(0)
i

(17.33)

so that

φ(1)
n =

∑

i(=n

〈φ(0)
i |V |φ(0)

n 〉
E(0)

n − E(0)
i

φ0
i (17.34)

and
E(1)

n = 〈φ(0)
n |V |φ(0)

n 〉 (17.35)

We can substitute these formulas into the N = 2 equations to get the second-order
correction to the wavefunction,

φ(2)
n =

∑

i(=n

1

E(0)
n − E(0)

i

[

〈φ(0)
i |V |φ(1)

n 〉 − E(1)
n c1

ni

]

φ(0)
n

=
∑

i(=n

1

E(0)
n − E(0)

i



〈φ(0)
i |V |







∑

k (=n

c1
nk|φ

(0)
k 〉







−E(1)
n c1

ni



φ(0)
n

=
∑

i(=n

∑

k (=n

1

E(0)
n −E(0)

i

1

E(0)
n − E(0)

k

〈φ(0)
i |V |φ(0)

k 〉〈φ
(0)
k |V |φ(0)

n > φ(0)
i

−
∑

i(=n

〈φ(0)
i |V |φ(0)

n 〉〈φ
(0)
i |V |φ(0)

n >

(E(0)
n − E(0)

i )2
φ(0)

i (17.36)
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and the second-order correction to the energy,

E2
n = 〈φ(0)

n |V |φ1
n〉

= 〈φ(0)
n |V

∑

i(=n

〈φ(0)
i |V |φ(0)

n 〉
E(0)

n −E(0)
i

|φ(0)
i 〉

=
∑

i(=n

∣

∣

∣〈φ(0)
n |V |φ(0)

i 〉
∣

∣

∣

2

E(0)
n − E(0)

i

(17.37)

You may wonder how much of this you really have to remember. The average

quantum physicist can recite from from memory the result for the wavefunction to

first order, and the energy to second order in λ. So these are the results to remember:

φn = φ(0)
n + λ

∑

i $=n

〈φ(0)
i |V |φ(0)

n 〉
E(0)

n − E(0)
i

φ(0)
i

En = E(0)
n + λ〈φ(0)

n |V |φ(0)
n 〉 + λ2 ∑

i $=n

∣

∣

∣

∣

〈φ(0)
n |V |φ(0)

i 〉
∣

∣

∣

∣

2

E(0)
n − E(0)

i

(17.38)

17.1 Validity of Perturbation Theory

Perturbation theory works when the perturbing potential V ′ is small compared to
H0. But...what do we mean by “small”? A good rule of thumb is that V ′ is small if
the first order correction λφ(1)

n is much less than the zeroth-order wavefunction, which
requires (at least) that

λ|c1
in| 5 1 =⇒ λ

∣

∣

∣

∣

∣

∣

〈φ(0)
i |V |φ(0)

n 〉
E(0)

n − E(0)
i

∣

∣

∣

∣

∣

∣

5 1 (17.39)

In other words, the “matrix element” V ′
in of the perturbing potential is much smaller

than the corresponding energy difference

|V ′
in| ≡ λ|〈φ(0)

i |V |φ(0)
n 〉| 5 |E(0)

n − E0
i | (17.40)

This is, of course, for i += n (otherwise the energy difference is trivially zero). For
i = n, we require that the first-order correction to the energy is small compared to
the zeroth-order energy, i.e.

E(1)
n 5 E(0)

n =⇒ |〈φ(0)
n |V |φ(0)

n 〉| 5 E(0)
n (17.41)
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17.2 Example - The Anharmonic Oscillator

Consider the Hamiltonian

H = −
h̄2

2m

d

dx2
+

1

2
kx2 + λx4

= H0 + λx4 (17.42)

The shift in the energy, to first order in λ, is

∆En = λE(1)
n

= λ〈n|x4|n〉 (17.43)

where we introduce the notation, for the harmonic oscillator, that

|n〉 ≡ |φ(0)
n > (17.44)

As usual in harmonic oscillator problems, it helps to express the position operator x
in terms of raising and lowering operators

x =

√

h̄

2mω
(a + a†)

x4 =

(

h̄

2mω

)2

(a + a†)4

=

(

h̄

2mω

)2
[

a2(a†)2 + aa†aa† + a(a†)2a+

+a†a2a† + a†aa†a + (a†)2a2
]

+non-contributing terms (17.45)

Using the raising/lowering operator properties

a†|n〉 =
√

n + 1|n + 1〉
a|n〉 =

√
n|n− 1〉 (17.46)

we find, e.g., that

〈n|a2(a†)2|n〉 =
√

n + 1〈n|a2a†|n + 1〉
=
√

n + 1
√

n + 2〈n|a2|n + 2〉
=
√

n + 1(n + 2)〈n|a|n + 1〉
= (n + 1)(n + 2) (17.47)

Evaluating all of the relevant terms in this way, we find

〈n|x4|n〉 =

(

h̄

2mω

)2
[

(n + 2)(n + 1) + (n + 1)2 + n(n + 1) + n(n + 1) + n2 + n(n− 1)
]

= 3

(

h̄

2mω

)2

[1 + 2n(n + 1)] (17.48)
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Then, to first order in λ

En = h̄ω(n +
1

2
) + 3λ

(

h̄

2mω

)2

[1 + 2n(n + 1)] (17.49)

which we can also express as

En = h̄(ω + δω)(n +
1

2
) + n2h̄δω (17.50)

where

δω = 6λ
h̄

4m2ω3
(17.51)

So the effect of the ẋ4 perturbation is essentially a shift δω in the angular fre-
quency of the oscillator, together with an increase in the spacing of energy levels. Its
interesting to note that no matter how small λ may be, the perturbative expansion
for the energy must break down completely when n is large enough. This is because
the zeroth-order energy increases only linearly with n, whereas the first-order cor-
rection increases quadratically. This breakdown of perturbation theory has a simple
physical explanation. Whatever the value of λ, it is always true that λx4 > 1

2kx2

when x is large enough. But highly excited harmonic oscillator states, which have
large n, spread out far from the origin x = 0, and therefore probe the region where
the perturbing potential is larger than the zeroth-order potential. In such regions,
one cannot expect perturbation theory to work, and in fact it doesn’t.

17.3 Perturbation Theory in Matrix Notation

Let us define the matrix elements of an operator, in the basis of Hilbert space spanned
by {φ(0)

n }, as

Oij = 〈φ(0)
i |O|φ(0)

j 〉 (17.52)

In this basis, H0 is a diagonal matrix:

[H0]ij = 〈φ(0)
i |H0|φ(0)

j 〉

= δijE
(0)
j

H0 =

















E0
1 0 0 ...

0 E0
2 0 ...

0 0 E0
3 ...

. . . ...

. . . ...

















(17.53)

For diagonal matrices, solving the eigenvalue problem

H0φ
(0)
n = E(0)

n φ(0)
n (17.54)
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is very easy. The eigenvectors are

%φ(0)
1 =

















1
0
0
.
.

















, %φ(0)
2 =

















0
1
0
.
.

















, %φ(0)
3 =

















0
0
1
.
.

















... (17.55)

and the eigenvalues are the diagonal elements of the matrix.
So now the problem is to find the eigenvectors of the (non-diagonal) matrix

H = H0 + V ′ =



















E(0)
1 + V ′

11 V ′
12 V ′

13 ...

V ′
21 E(0)

2 + V ′
22 V ′

23 ...

V ′
31 V ′

32 E(0)
3 + V ′

33 ...
. . . ...
. . . ...



















(17.56)

where

Hij = 〈φ(0)
i |H0 + V ′|φ(0)

j >= Ejδij + V ′
ij (17.57)

But this problem is already solved! To first order (in V ′) for the eigenvectors, and
second order in the eigenvalues, the solution is

%φn = %φ(0)
n +

∑

i(=n

V ′
in

E(0)
n − E(0)

i

%φ(0)
i + O(V ′2)

En = E0
n + V ′

nn +
∑

i(=n

∣

∣

∣V ′
in

∣

∣

∣

2

E(0)
n −E(0)

i

+ O(V ′3) (17.58)

You can see that we can apply these equations to finding the eigenstates and eigen-
values of any matrix of the form

M = M0 + Q (17.59)

where M0 is a diagonal matrix (Mij = miδij), and Q is a “perturbation” matrix such
that

|Qij| 5 |mi −mj | , |Qii| 5 |mi| (17.60)

Its just a matter of changing notation (replace H0 by M0, E(0)
n by mn, etc.).

Getting back to the original problem, suppose we have found the eigenstates {%φn}
from by the perturbative method (eq. (17.58)), or by some other method, and then
normalized the states so that

%φn · %φn = 1 (17.61)
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Now suppose we use the states {φn} to span the Hilbert space, instead of the set
{φ(0)

n }. Then you can easily see that in this new basis, it is the matrix H , rather than
H0, which is diagonal

H =

















E1 0 0 ...
0 E2 0 ...
0 0 E3 ...
. . . ...
. . . ...

















(17.62)

because
Hij = 〈φi|H|φj〉 = δijEj (17.63)

It is for this reason that the process of solving the Hamiltonian eigenvalue equation
Hφn = Enφn is often referred to as “diagonalizing the Hamiltonian”.

17.4 Degenerate Perturbation Theory

The energy eigenvalues of the Hydrogen atom are degenerate. The energy eigenstates
φnlm depend on quantum numbers n, l, m, but the energy eigenvalues depend only on
n. As we found back in chapter 10, this degeneracy is typical when the Hamiltonian
is invariant with respect to some symmetry operations (e.g. rotation around the x, y
or z axes) which don’t commute with each other.

But now if we try to apply perturbation theory to a Hamiltonian with degenerate
energy eigenvalues, we can immediately see that there is a problem. Consider, e.g.
the first-order correction to the wavefunction

φ(1)
n =

∑

i(=n

Vin

E(0)
n − E(0)

i

φ(0)
i (17.64)

Obviously, if there is some energy E(0)
k such that E(0)

n = E(0)
k , then the right-hand side

of this equation is not small, it is infinite. That is not exactly a small perturbation!
What can be done in this case, which is quite typical in atomic physics?

First of all, to simplify things a little bit, lets suppose that there is just one set of
states with degenerate energy eigenvalues, and that these are the states φ(0)

n labeled
by n = 1, 2, ..., q, i.e.

E(0)
1 = E(0)

2 = .... = E(0)
q (17.65)

The first-order correction to the wavefunction is derived from eq. (17.26) with N = 1
and i += n, and requires

(E(0)
i −E(0)

n )c1
ni = −〈φ(0)

i |V |φ(0)
n 〉 (17.66)

Now if i, n ≤ q, then E(0)
i = E(0)

n and the lhs of the equation is zero. But this is
impossible unless

〈φ(0)
i |V |φ(0)

n 〉 = 0 (17.67)
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for all i, n < q with i += n, which is generally not the case.
The way out of this dilemma is to first notice that the set of {φ(0)

n , n = 1, 2, ..., q}
spans a finite, q-dimensional subspace of the full Hilbert space, and any state in this
subspace is an eigenstate of H0, with the same degenerate energy E(0)

1 = E(0)
2 = ....

Then let V be the Hermitian, q × q matrix, whose matrix elements are

V ij = 〈φ(0)
i |V |φ(0)

j 〉 i, j ≤ q (17.68)

By the usual theorems about Hermitian operators (which also apply to Hermitian
matrices), the eigenstates {ϕn, n = 1, 2, ..., q} of V

V ϕn = Enϕn (17.69)

span the same q-dimensional Hilbert space as the {φ(0)
n , n = 1, 2, ..., q}, and moreover,

for i += n
〈ϕ(0)

i |V |ϕ(0)
n 〉 = 0 (17.70)

providing all the En are different (which we will assume).
This means that if we replace the initial set of eigenstates {φ(0)

n } of H0 with a new
set of zeroth-order eigenstates

φ′(0)
n =

{

ϕn n ≤ q
φ(0)

n n > q
(17.71)

then eq. (17.26) is automatically satisfied for i, n ≤ q

0 = (E(0)
i −E(0)

n )c1
ni = −〈φ′(0)

i |V |φ′(0)
n 〉 = 0 (17.72)

We can then consistently take

c1
ni = 0 for i, n ≤ q (17.73)

Given the new set of zeroth-order wavefunctions {φ′(0)
n }, perturbation theory can

be applied exactly as in the non-degenerate case, and we find for the first order
corrections that

φ(1)
n =

∑

i>q

〈ϕn|V |φ(0)
i 〉

E(0)
n − E(0)

i

φ(0)
i for n ≤ q

φ(1)
n =

∑

i(=n

〈φ(0)
n |V |φ′(0)

i 〉
E(0)

n − E(0)
i

φ′(0)
i for n > q

E(1)
n = 〈φ′(0)

n |V |φ′(0)
n 〉

=

{

En n ≤ q
〈φn|V |φn〉 n > q

(17.74)
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17.4.1 Diagonalizing the Submatrix

Equations (17.74) give the perturbative solutions to Hφn = Enφn to first order in
λ, when the first q energy eigenvalues are degenerate, providing one can solve the
eigenvalue equation

V ϕn = Enϕn (17.75)

Since the first q eigenstates {φ(0)
n , n = 1, 2, ..., q} are a basis of the q-dimensional

subspace, we can write

ϕn =
q
∑

i=0

aniφ
(0)
i (17.76)

Writing the {φ(0)
n , n = 1, 2, ..q} as basis vectors, as in eq. (17.55), we can write the

eigenvectors ϕn in the q-dimensional subspace in the form

%ϕn =



























an1

an2

an3

.

.

.
anq



























(17.77)

(In the full Hilbert space ϕn is an infinite-component vector, with zeros following
anq.) Then, in matrix notation, the eigenvalue problem (17.75) is simply





















V11 V12 V13 . . V1q

V21 V22 V23 . . V2q

V31 V32 V33 . . V3q

. . . . . .

. . . . . .
Vq1 Vq2 Vq3 . . Vqq





















%ϕn = En%ϕn (17.78)

We have already discussed how to solve the eigenvalue problem for a 2×2 matrix,
for example in solving for the eigenstates of the Pauli spin matrix σy in Chapter 13.
In general, one first solves for the eigenvalues En by solving the secular equation

det[V − EI] = 0 (17.79)

where I is the q × q unit matrix. The secular equation is a q-th order polynomial
which (in general) has q roots. These roots are the set of eigenvalues of the matrix
V , which we have denoted {En}. Then, for each eigenvalue, we solve for the vector
%ϕn in eq. (17.78) algebraically (as illustrated for the eigenstates of σy in Chapter 13).
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17.4.2 Example - The Two-Dimensional Harmonic Oscillator

The Hamiltonian for a harmonic oscillator in two dimensions is

H0 = −
h̄2

2M

[

∂2

∂x2
+

∂2

∂y2

]

+
1

2
k(x2 + y2) (17.80)

This system is symmetric with respect to rotations (around the z-axis), reflections
(x → −x and y → −y), and interchange x → y, y → x. Its not hard to verify
that these symmetries do not all commute with each other, and therefore at least
some of the energy eigenvalues must be degenerate. In fact, it is easy to solve for the
eigenvalues and eigenstates of H0 by the method of separation of variables. Writing

H0 = h[x] + h[y] (17.81)

where h[x] and h[y] are one-dimensional harmonic oscillator Hamiltonians in the x
and y coordinates respectively, and

φ(0)
mn(x, y) = φm(x)φn(y) (17.82)

we end up with the one-dimensional harmonic oscillator eigenvalue equations

h[x]φm(x) = Emφm(x)

h[y]φn(y) = Enφn(y) (17.83)

with the total energy eigenvalue of φ(0)
mn(x, y) being

E(0)
nm = Em + En (17.84)

The eigenvalue equations (17.83) we have solved long ago using raising/lowering op-
erators. In this case, we should introduce separate raising/lowering operators in the
x and y coordinates, i.e.

a =
1√
2h̄

(√
Mωx + i

px√
Mω

)

b =
1√
2h̄

(√
Mωy + i

py√
Mω

)

(17.85)

with commutator relations
[a, a†] = [b, b†] = 1 (17.86)

and
[a, b] = [a, b†] = [a†, b] = [a†, b†] = 0 (17.87)

In terms of these operators, the two dimensional harmonic oscillator is simply

H0 = h̄ω(a†a + b†b + 1) (17.88)
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and the φm(x) and φn(y) are one-dimensional harmonic oscillator eigenstates. The
total energy eigenvalue is the sum of Em + Em

φ(0)
mn(x, y) = φm(x)φn(y)

E(0)
mn = h̄ω(m + n + 1) (17.89)

Its easy to see that the energy E(0)
00 is unique, that E(0)

01 = E(0)
10 is two-fold degenerate,

E(0)
20 = E(0)

11 = E(0)
02 is three-fold degenerate, and so on (in general, the energy E0

mn is
(m + n + 1)-fold degenerate).

Now introduce a perturbing potential V ′ = λxy,

H = H0 + λxy (17.90)

As an exercise in degenerate perturbation theory, we will now compute the correction
to the energies E(0)

10 = E(0)
01 of the first excited states.

The first two excited states with degenerate energy eigenvalues, φ10 and φ01, span a
two-dimensional subspace of the Hilbert space. Our first task is to find the eigenstates
of the 2× 2 matrix

V =

[

〈φ10|xy|φ10〉 〈φ10|xy|φ01〉
〈φ01|xy|φ10〉 〈φ01|xy|φ01〉

]

(17.91)

Using

xy =
1

2β2
(a + a†)(b + b†) β ≡

√

Mω

h̄
(17.92)

we get

〈φ10|xy|φ10〉 =
1

2β2
〈φ1(x)|(a + a†)|φ1(x)〉〈φ0(y)|(b + b†)|φ0(y)〉 = 0

〈φ01|xy|φ01〉 =
1

2β2
〈φ0(x)|(a + a†)|φ0(x)〉〈φ1(y)|(b + b†)|φ1(y)〉 = 0

〈φ10|xy|φ01〉 =
1

2β2
〈φ1(x)|(a + a†)|φ0(x)〉〈φ0(y)|(b + b†)|φ1(y)〉 =

1

2β2

〈φ01|xy|φ10〉 =
1

2β2
〈φ0(x)|(a + a†)|φ1(x)〉〈φ1(y)|(b + b†)|φ0(y)〉 =

1

2β2

(17.93)

and therefore

V =
1

2β2

[

0 1
1 0

]

(17.94)

The problem of finding the eigenvectors and eigenvalues (“diagonalizing”) the
matrix V is pretty much the same as solving the eigenvalue problem for the Pauli
matrix σx. First we solve the secular equation

det[V − EI] = E2 −
(

1

2β2

)2

= 0 (17.95)
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to find two roots

E± = ±
1

2β2
(17.96)

corresponding to eigenstates

φ+ = aφ10 + bφ01

φ− = cφ10 + dφ01 (17.97)

We find these eigenstates by solving

1

2β2

[

0 1
1 0

] [

a
b

]

=
1

2β2

[

a
b

]

1

2β2

[

0 1
1 0

] [

c
d

]

= −
1

2β2

[

c
d

]

(17.98)

subject to the condition that

〈φ+|φ+〉 = a2 + b2 = 1

〈φ−|φ−〉 = c2 + d2 = 1 (17.99)

The solutions are

φ+ =
1√
2

[

1
1

]

=
1√
2

[φ10 + φ01]

φ− =
1√
2

[

1
−1

]

=
1√
2

[φ10 − φ01] (17.100)

Instead of two degenerate energies, E10 = E01, we now have energy eigenvalues to
first order in λ

Hφ+ = E+φ+

Hφ− = E−φ− (17.101)

where E = E(0) + λE , i.e.

E+ = E10 +
λ

2β2

E− = E10 −
λ

2β2
(17.102)

We say that the degeneracy is “lifted at first order” by the perturbation.
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17.4.3 Example - The Stark Effect

The Stark Effect is a splitting of spectral lines due to the (partial) lifting of atomic
energy level degeneracy by an external electric field.

Let us suppose that the electric field is directed along the z-axis. The Hamiltonian
of the Hydrogen atom is then

H0 =

(

−
h̄2

2m
∇2 −

e2

r

)

− eEzz

= H0 + λV (17.103)

where this time
λ = eEz and V = z (17.104)

Since the ground state energy is non-degenerate (only the φ100 state has this energy
at zero-th order), the lifting of degeneracy first occurs at n = 2. There are four states

at n = 2 with the same energy E(0)
2

|φnlm〉 = |nlm〉 = |200〉 , |211〉 , |210〉 , |21− 1〉 (17.105)

which span a 4× 4 subspace of Hilbert space. We first have to compute the 4× 4 V
matrix with matrix elements 〈2l1m1|z|2l2m2〉.

Consider the case m1 += m2. Then

〈2l1m1|z|2l2m2〉 ∼
∫ 2π

0
dφei(m2−m1) = 0 (17.106)

since z = r cos(θ) doesn’t depend on φ. Therefore only terms with m1 = m2 are
non-zero. Next, consider l1 = l2, where we find

〈2lm|z|2lm〉 ∼
∫

dΩ|Ylm|2 cos(θ) = 0 (17.107)

This is essentially because |Ylm|2 > 0 is an even function around θ = π/2, while cos(θ)
is an odd function for reflections around π/2.

Thus, the only non-zero matrix elements in this subspace are

〈210|z|200〉 = 〈200|z|210〉

=
∫

drr2
∫

dΩφ200zφ210

=
∫

drr2
∫

dΩ
2

(2a0)3/2

(

1−
r

2a0

)

e−r/2a0Y00 ×

×r cos(θ)
1√

3(2a0)3/2

r

a0
e−r/2a0Y10(θ, φ)

= 3a0 (17.108)



17.4. DEGENERATE PERTURBATION THEORY 281

where a0 = h̄2/me2 is the Bohr radius. The secular equation is then

det[V − EI]

= det











〈200|z|200〉 − E 〈200|z|211〉 〈200|z|210〉 〈200|z|21− 1〉
〈211|z|200〉 〈211|z|211〉 − E 〈211|z|210〉 〈211|z|21− 1〉
〈210|z|200〉 〈210|z|211〉 〈210|z|210〉 − E 〈210|z|21− 1〉
〈21− 1|z|200〉 〈21− 1|z|211〉 〈21− 1|z|210〉 〈21− 1|z|21− 1〉 − E











= det











−E 0 3a0 0
0 −E 0 0

3a0 0 −E 0
0 0 0 −E











= E4 − (3a0)
2E2

= 0 (17.109)

The roots of the secular equation are

E = 0, 3a0, − 3a0 (17.110)

Therefore the 4-fold degenerate E2 energy level splits into three (not four) levels

E2 =⇒











E2 + 3a0eEz

E2

E2 − 3a0eEz

(17.111)

Because the subspace is four-dimensional, but the perturbation results only in three
distinct energies, the degeneracy is not entirely lifted; a subset of states in this 4D
subspace still have degenerate energies.

Next we figure out the eigenstates corresponding to the n = 2 energy eigenvalues
at first order. We can always express a general state in the subspace spanned by the
zeroth-order n = 2 state as a superposition

|ψ〉 = a|φ200〉+ b|φ211〉+ c|φ210〉+ d|φ20−1〉 (17.112)

In vector notation, we can write

%ψ =











a
b
c
d











(17.113)

and the eigenvalue equation
V ψ = Eψ (17.114)

becomes










0 0 3a0 0
0 0 0 0

3a0 0 0 0
0 0 0 0





















a
b
c
d











= E











a
b
c
d











(17.115)
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There are three values of E to consider:

Case I: E = 3a0

Matrix multiplication on the left hand side of (17.115) gives us

3a0











c
0
a
0











= 3a0











a
b
c
d











(17.116)

from which we conclude that

c = a , b = d = 0 (17.117)

Normalization of

%φ =











a
0
a
0











(17.118)

gives us a = 1/
√

2. So to first order in λ = eEz we have an eigenstate

|φ〉E2+
=

1√
2

[

|φ200〉+ |φ210〉
]

(17.119)

for energy eigenvalue

E2+ = E(0)
2 + 3ea0Ez (17.120)

Case II: E = −3a0

3a0











c
0
a
0











= −3a0











a
b
c
d











(17.121)

and therefore

c = −a , b = d = 0 (17.122)

Normalization of

%φ =











a
0
−a
0











(17.123)
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still gives a = 1/
√

2, leading to the eigenstate

|φ〉E2−
=

1√
2

[

|φ200〉 − |φ210〉
]

(17.124)

for energy eigenvalue
E2− = E(0)

2 − 3ea0Ez (17.125)

Case III: E = 0

Finally, we consider E = 0, and eq. (17.115) becomes

3a0











c
0
a
0











= 0 (17.126)

This time, we can only conclude that a = c = 0, and that any normalized eigenstate
of the form

|φ〉E2
= a|φ211〉+ b|φ21−1〉 (17.127)

has an energy eigenvalue
E2 = E(0)

2 (17.128)

The normalization condition in this case only tells us that

a2 + b2 = 1 (17.129)

and therefore the linearly independent eigenstates with energy E2 span a two-dimensional
subspace of the full Hilbert space. Thus the perturbation does not remove all of the
degeneracy in energy eigenvalues; there is still some left.

The reason that there is still some degeneracy left, as seen in the E = 0 case, is
that there is still some symmetry left after the external electric field is applied. For an
electric field directed along the z-axis, the Hamiltonian is still invariant with respect
to rotations around the z-axis, as well as reflections along the x and y-axes; the result
is some remnant degeneracy in the energy eigenvalues.
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Chapter 18

Time-Dependent Perturbation
Theory

Thus far we have always assumed that the potential V (x) in the Schrodinger equa-
tion is time-independent. But nothing in this world is completely time independent,
and some of the most interesting, and technologically important, aspects of atomic
physics concern the interaction of atoms with electromagnetic radiation. Electromag-
netic waves consist of orthogonal electric and magnetic fields which oscillate, at any
point, harmonically in time. If the field strength is small enough, then the associated
electrostatic potential can be viewed as a small, time-varying perturbation to the
usual Hamiltonian of the atom. So to understand the effect of electromagnetic waves
on atomic electrons, we need to develop methods for dealing with time-dependent
perturbations of the atomic potential.

Let us then consider time-dependent Hamiltonians of the form

H = H0 + λV (x, t) (18.1)

where we assume that the eigenstates of H0, now denoted ϕn,

H0ϕn(x) = Enϕn(x) (18.2)

are known. Denote the corresponding energy-eigenstate solutions of the time-dependent
Schrodinger equation by

ψn(x, t) = ϕn(x)e−iωnt ωn =
En

h̄
(18.3)

Just to have a definite picture in mind, we might imagine that the ϕn are the
energy eigenstates of the Hydrogen atom, and the time-varying potential λV (x, t)
is the electrostatic potential, at point x, of an incident electromagnetic wave. The
question we are interested in answering is this: If the electron starts out at time t0 in

285
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a given orbital ϕn, what is the probability that the incident radiation will result in
the electron being found in the orbital ϕm at some later time t?

To begin with, since the states {ψn(x, t)} span the Hilbert space at any time t, we
can always expand the solution of the time-dependent Schrodinger equation ψ(x, t),
at any time t, in that basis:

ψ(x, t) =
∑

n

cn(t)ψn(x, t) (18.4)

The initial value problem, i.e. “given ψ(x, 0), find ψ(x, t),” can be phrased as: given
{cn(0)}, find {cn(t)}. Substituting (18.4) into the time-dependent Schrodinger equa-
tion

ih̄
d

dt
ψ = (H0 + λV )ψ (18.5)

to get

ih̄
∑

n

(

dcn

dt
− iωncn

)

ψn =
∑

n

(

h̄ωn + λV
)

cnψn (18.6)

Cancelling terms on each side proportional to h̄ωn, and going to ket notation

ih̄
∑

n

dcn

dt
|ψn〉 =

∑

n

λV cn|ψn〉 (18.7)

Multiply both sides by 〈ψk|

ih̄
dck

dt
= λ

∑

n

〈ψk|V |ψn〉cn (18.8)

Obviously, the solutions cn = cn(t) are are actually functions of both time and λ. We
can therefore expand the cn in a Taylor series around λ = 0

ck(t) = c(0)
k + λc(1)

k (t) + λ2c(2)
k (t) + ...

c(n)
k (t) =

1

n!

(

dnck

dλn

)

λ=0

(18.9)

Substituting this expansion into (18.8)

ih̄





dc(0)
k

dt
+ λ

dc(1)
k

dt
+ λ2 dc(2)

k

dt
+ ...



 =
∑

n

〈ψk|V |ψn〉
[

λc(0)
n + λ2c1

n + λ3c(2)
n + ...

]

(18.10)
and equating equal powers of λ on the right and left-hand sides gives an infinite set
of equations

ih̄
dc(0)

k

dt
= 0
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ih̄
dc(1)

k

dt
=

∑

n

〈ψk|V |ψn〉c(0)
n

ih̄
dc(2)

k

dt
=

∑

n

〈ψk|V |ψn〉c(1)
n

... = ...

ih̄
dc(m+1)

k

dt
=

∑

n

〈ψk|V |ψn〉c(m)
n

... = ... (18.11)

This set can be solved iteratively, starting from knowledge of the set {c(0)
n }.

Suppose that initially (say at t→ −∞), before the perturbation is turned on, the
system was in an energy eigenstate of the unperturbed Hamiltonian ϕl. For example,
in the case we have in mind, perhaps the electron of a Hydrogen atom is in some
definite orbital before a laser, aimed at the atom, is turned on. Then we have

cn(t→ −∞) = c(0)
n = δnl (18.12)

Substituting into the equation for dc(1)
k /dt,

ih̄
dc(1)

k

dt
= 〈ψk|V |ψl〉 (18.13)

which is integrated to yield

c(1)
k (t) =

1

ih̄

∫ t

−∞
dt1〈ψk(t1)|V (t1)|ψl(t1)〉 (18.14)

Likewise,

ih̄
dc(2)

k

dt
=
∑

n

〈ψk|V |ψl〉c(1)
n (18.15)

is integrated to

c(2)
k (t) =

1

ih̄

∑

n1

∫ t

−∞
dt1〈ψk(t1)|V (t1)|ψn1

(t1)〉c(1)
n1

(t1) (18.16)

inserting (18.14)

c(2)
k (t) =

(

1

ih̄

)2
∑

n1

∫ t

−∞
dt1〈ψk(t1)|V (t1)|ψn1

(t1)〉
∫ t1

−∞
dt2〈ψn1

(t2)|V (t2)|ψl(t2)〉

(18.17)
By induction, its not hard to see that

c(m)
k (t) =

(

1

ih̄

)m
∑

n1,n2,...,nm−1

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3...

∫ tm−1

−∞
dtm〈ψk(t1)|V (t1)|ψn1

(t1)〉 ×

× 〈ψn1
(t2)|V (t2)|ψn2

(t2)〉〈ψn2
(t3)|V (t3)|ψn3

(t3)〉...〈ψnm−1
(tm)|V (tm)|ψl(tm)〉

(18.18)
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or, using

|ψn(t)〉 = e−iωnt|ϕn〉
〈ψn(t)| = eiωnt〈ϕn| (18.19)

we have in general

c(m)
k (t) =

(

1

ih̄

)m
∑

n1,n2,...,nm−1

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3...

∫ tm−1

−∞
dtm

ei(ωk−ωn1
)t1ei(ωn1

−ωn2
)t2 ...ei(ωnm−1

−ωl)tm ×
×〈ϕk|V (t1)|ϕn1

〉〈ϕn1
|V (t2)|ϕn2

〉〈ϕn2
|V (t3)|ϕn3

〉...〈ϕnm−1
|V (tm)|ϕl〉

(18.20)

In what follows, we really only need the coefficients ck(t) to first order in λ:

c(1)
k (t) =

1

ih̄

∫ t

−∞
dt′ei(ωk−ωl)t′〈ϕk|V (t′)|ϕl〉 (18.21)

It is also often the case that the perturbing potential factorizes into time and space-
dependent pieces,

λV (x, t) = λv(x)f(t) (18.22)

so that to first order

ck(t) = δkl + λc(1)
k (t) = δkl + λ〈ϕk|v|ϕl〉

1

ih̄

∫ t

−∞
dt′ei(ωk−ωl)t′f(t′) (18.23)

Then the transition probability Pl→k for the system, initially in state ψl at time
t→ −∞, to be found in a different state ψk, k += l at time t, is just

Pl→k =
∣

∣

∣〈ψk(t)|ψ(t)〉
∣

∣

∣

2

=
∣

∣

∣ck(t)
∣

∣

∣

2

= λ2 1

h̄2

∣

∣

∣〈ϕk|v|ϕl〉
∣

∣

∣

2
∣

∣

∣

∣

∫ t

−∞
dt′ei(ωk−ωl)t

′

f(t′)
∣

∣

∣

∣

2

(18.24)

18.1 Harmonic Perturbations

As already mentioned, the electric potential associated with electromagnetic radiation
varies harmonically in time. Let us then consider a time-dependent potential of the
form

λV (x, t) =

{

0 t ≤ 0
λv(r)2 cos(ωt) t > 0

(18.25)
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Again we imagine that the system is in the state ψl at t ≤ 0, so that ck(0) = c0
k = δkl.

Substituting (18.25) into (18.23) gives us, for k += l,

ck(t) = λc(1)
k (t)

= λ〈ϕk|v|ϕl〉
1

ih̄

∫ t

0
dt′ ei(ωk−ωl)t′

[

eiωt′ + e−iωt′
]

= −λ〈ϕk|v|ϕl〉
1

ih̄

[

ei(ωkl−ω)t − 1

ωkl − ω
+

ei(ωkl+ω)t − 1

ωkl + ω

]

= −2iλ〈ϕk|v|ϕl〉
1

h̄

[

ei(ωkl−ω)t/2

ωkl − ω
sin[

1

2
(ωkl − ω)t]+

+
ei(ωkl+ω)t/2

ωkl + ω
sin[

1

2
(ωkl + ω)t]

]

(18.26)

where we have defined

ωkl = ωk − ωl =
Ek − El

h̄
(18.27)

Clearly, the transition probability Plk = |ck|2 is going to be largest when the
angular frequency ω of the perturbing potential is equal to either ωkl or −ωkl, i.e

h̄ω = Ek −El “absorbtion” (Ek > El)
h̄ω = El − Ek “stimulated emission” (El > Ek)

(18.28)

The terms “absorbtion” and “stimulated emission” refer to atomic electrons in the
field of an electromagnetic wave. According to the Einstein-Bohr picture, the incom-
ing radiation consists of photons, each of energy E = hf = h̄ω. An electron, initially
in an orbital with energy El, absorbs a photon of energy h̄ω from the incoming elec-
tromagnetic radiation, and jumps into a higher energy state Ek = El + h̄ω. This is
the absorbtion case.

But from our result (18.25) we draw some conclusions which cannot easily be
anticipated from the Bohr model. The first surprise is that, in addition to absorbtion,
where the electron gobbles up a photon and jumps to a higher energy, there is also
the phenomenon of stimulated emission, in which the incoming radiation “stimulates”
an electron in an excited state with energy El to jump down to a lower energy state
with energy Ek. In this case the electron does not absorb a photon (in fact it emits
one, although we cannot demonstrate that here). The two cases are illustrated in Fig.
18.1. There is no simple classical picture of stimulated emission; it is an intrinically
quantum-mechanical process. Nevertheless, the fact that such a process is required
was deduced by Albert Einstein long before the development of modern quantum
mechanics based on the Schrodinger equation. Einstein’s reasoning was based on the
necessities of thermal equilibrium: if absorbtion is possible, stimulated emission is
also required. Quantum theory must be consistent with statistical mechanics, and
happily the mysterious stimulated emission turns out to be a prediction of the theory.
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The second surprise is that although the transition from El to Ek by absorbtion is
most probable when the incoming radiation has an angular frequency ω = (Ek−El)/h̄,
the probability is non-zero away from this value also. In fact, for Ek less than but
close to El, the transition probability as a function of time is roughly

Plk(t) = λ2
∣

∣

∣〈ϕk|v|ϕl〉
∣

∣

∣

2 4

h̄2

sin2 1
2(ωkl − ω)t

(ωkl − ω)2
(18.29)

Fig. 18.2 is a graph of the function

g(ωkl − ω) =
sin2 1

2(ωkl − ω)t

(ωkl − ω)2
(18.30)

at a fixed time t (it has the same functional form as the intensity vs. distance of a
one-slit diffraction pattern). The central peak has a half-width of 2π/t, which means
that the expected relation for energy conservation, i.e.

Ek = El + h̄ω (18.31)

is only satisfied in the t → ∞ limit. For any finite t, there is a finite probability for
(18.31) to be violated. It seems as though we have lost energy conservation! How is
this possible?

Of course there is really no breakdown of energy conservation. The apparent
breakdown, in this case, comes from the assumption that the electromagnetic radi-
ation incident on the atom only contains photons of definite energy h̄ω; and this
assumption actually conflicts with the Heisenberg Uncertainty Principle. Lets see
how this works. First of all, if we write

ωkl = ω + ∆ω (18.32)

then there will normally only be a transition between orbitals by absorbtion if ∆ω is
within the “central peak”

∆ω ≈ ±
2π

t
(18.33)

so the apparent violation of energy conservation is of the order

∆E = h̄∆ω =
2h̄π

t
(18.34)

Now by assumption, the perturbing potential was turned on at t = 0, so the
portion of the electromagnetic wave, containing the photon absorbed by the electron,
has an extension in space of ∆x = ct. The electromagnetic wave itself can be thought
of as the wavefunction of the photon (a concept which can only be made precise in the
framework of relativistic quantum field theory), and this means that if the extension
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of the wave is ct, then the photon is localized within this region before absorbtion.
Therefore, by the Uncertainty Principle, the photon has an uncertainty in momentum

∆p ∼
h

∆x
=

h

ct
(18.35)

Using the relativistic relation between energy and momentum for massless particles,
E = pc, the photons in the beam therefore have an uncertainty in energy of order

∆E =
2πh̄

t
(18.36)

But this is the same magnitude as the apparent “violation” of energy conservation in
(18.31). We conclude that there is no violation at all, and that the failure of the Bohr
relation to hold exactly is just a consequence of the Uncertainty Principle applied
to photons, which tells us that the energy of photons in an electromagnetic wave of
frequency f is not exactly hf , if the wave has a finite extension in space.

Another puzzling fact is the existence of spontaneous emission of photons by elec-
trons. This occurs when an electron in an excited orbital emits a photon, and drops
to a lower energy orbital, without being subjected to electromagnetic radiation or any
other external potential. An external radiation field of the right frequency speeds up
(or “stimulates”) the process, but emission will occur in any case, eventually. But
this fact directly contradicts the notion that the wave functions ϕn(x) are eigenstates
of energy, and therefore stationary. A stationary state, excited or not, is by definition
independent of time; it cannot change unless acted on by an external perturbation.

As it happens, the excited states of the Hydrogen atom are not really eigenstates of
energy after all. Non-relativistic quantum mechanics, as taught in this course, is only
an approximation to the real world; in particular it is an approximation in which the
electromagnetic field is treated classically. In the theory of quantum electrodyamics,
an electron is in constant interaction with the quantized electromagnetic field even in
the absence of an external electromagnetic wave. Excited states of the Hydrogen atom
are not eigenstates in quantum electrodynamics, but instead have some uncertainty
in energy. From our discussion of the time-energy uncertainty relation in the first
semester, it is clear that this uncertainty is related to the average time it takes for
the state to change in some noticeable way, e.g. to emit a photon. Let us call this
average time τ . Then the uncertainty ∆E in a given atomic orbital is given by

∆E ≈
h̄

τ
(18.37)

The uncertainty in the energy of atomic orbitals leads to a corresponding broadening
(spread in frequencies) of the photons emitted in electron transitions between those
orbitals.

Finally, I want to mention briefly (and inadequately) a clever and technologi-
cally important application of stimulated emission. This is the laser, whose acronym
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(as you surely know) stands for “Light Amplification by Stimulated Emission of
Radiation”. The simplest version of the scheme involves an atom with three energy
levels, of energies E2 > E1 > E3, with the property that electrons which are excited
(from the ground state at E0) to level E2 tend to rapidly (within about 10 ns) emit
a photon and fall into the E1 level, which is comparatively long-lived; on the order
of micro- to milli-seconds before emitting a photon. The idea with lasers (or their
microwave relatives, the masers), is to excite a great many electrons from the ground
state into the E2 state, from which they fall into the E1 orbital. With enough energy
expended, it is possible to obtain a “population inversion”; i.e. more electrons in the
excited state at E1 than in the ground state. What then happens is that electrons
falling from E1 to the ground state emit photons, and these photons cause other
electrons to make the transition to the ground state by stimulated emission. The
photons which stimulate the emission, and the emitted photons, have about the same
energy (and therefore frequency), and they are in phase. Thus the light is extremely
coherent. This is in contrast to the light emitted by thermal radiation (e.g. by a light
bulb), where the relative phase in the wavefunction of different photons is random, the
black-body distribution of frequencies is broad, and the light is said to be incoherent.

18.1.1 Fermi’s Golden Rule

We have seen that the probability of an absorbtion transition is given by the expression

Plk(t) = λ2
∣

∣

∣〈ϕk|v|ϕl〉
∣

∣

∣

2 4

h̄2

sin2 1
2(ωkl − ω)t

(ωkl − ω)2
(18.38)

with a similar expression for stimulated emission (ωkl − ω → ωkl + ω). It seems that
this expression could be simplified, in the t→∞ limit, using the identity

f(0) =
∫

dωf(ω)δ(ω) = lim
t→∞

∫

dωf(ω)
2

π

sin2 1
2ωt

tω2
(18.39)

or, loosely speaking

δ(ω) = lim
t→∞

2

π

sin2 1
2ωt

tω2
(18.40)

Using this identity, it seems that we can express the transition probability in the
t→∞ limit as

Plk = λ2 2πt

h̄2

∣

∣

∣〈ϕk|v|ϕl〉
∣

∣

∣

2
δ(ω ± ωkl) (18.41)

At this point we have to stop, because something appears to have gone wrong. A
probability proportional to a Dirac δ-function is clearly a breakdown of the notion
that a perturbation is supposed to be a small correction.

So lets back up a bit. It is often the case that there is a group K of final states
{ϕk′, k′ ∈ K} which have nearly the same energies, i.e.

Ek′ = Ek + ε (k′, k ∈ K) (18.42)
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and nearly the same matrix elements

〈ϕk′|v|ϕl〉 ≈ 〈ϕk|v|ϕl〉 (k′, k ∈ K) (18.43)

For example, the electron final state might lie in a (conduction) band of energies. Or,
for a single atom, we might take into account the possibility that since the energy of an
excited orbital is not precise, there is a continuum of possible energies for the emitted
photon. Another possibility is the scattering of an electron by a potential, where
there is a continuum of possible final momenta %p with the same energy E = p2/2m.
In this situation, we may be interested in the transition probability to any one of a
set of final states K in the energy range [Ek, Ek + ∆].

Let us define the density of final states

g(E)δE ≡ no. of states with energies in the range [E, E + δE] (18.44)

Then the transition probability to some member of this set of final states is the
integral

PlK(t) = λ2
∫ Ek+∆

Ek

dEk′g(Ek′)
∣

∣

∣〈ϕk′|v|ϕl〉
∣

∣

∣

2 4

h̄2

sin2 1
2(ωk′l − ω)t

(ωk′l − ω)2
(18.45)

For large t, the integrand is very strongly peaked near Ek′ = El + h̄ω, and we can
assume that the matrix element of v(x), and the density of final states g(Ek′) is nearly
constant within the very narrow range of energies in the peak. Then we have

PlK(t) = λ2g(Ek)
∣

∣

∣〈ϕk|v|ϕl〉
∣

∣

∣

2 4

h̄2

∫ Ek+∆

Ek

dEk′

sin2 1
2(ωk′l ± ω)t

(ωk′l ± ω)2
(18.46)

The quick way to do the integral is to use the large-time limit (18.40)

lim
t→∞

sin2 1
2(ωkl ± ω)t

(ωkl ± ω)2
=

1

2
πtδ(ω ± ωkl) (18.47)

and we find that

PlK(t) = t
2π

h̄
g(Ek)

∣

∣

∣〈ϕk|v|ϕl〉
∣

∣

∣

2
(18.48)

The transition rate is defined as the probability of transition per unit time. There-
fore, differentiating (18.48) wrt t, we derive

Fermi’s Golden Rule

The transition rate to some member of a set of “energy-conserving” states with
Ek ≈ El + h̄ω is given, after sufficient time, by

Γlk =
2π

h̄
g(Ek)

∣

∣

∣〈ϕk|v|ϕl〉
∣

∣

∣

2
(18.49)
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We will postpone application of this rule until we study scattering. However, some
examples of the density of final states is called for. Lets begin with the harmonic
oscillator in two dimensions, where the energy eigenvalues were found to be

En1n2
= h̄ω(n1 + n2 + 1) = h̄ωN (18.50)

where N = n1 + n2 + 1 is an integer in the range [1,∞) and the degeneracy of
each energy is N -fold. Then the number of states lying between E = h̄ωN and
E + ∆E = h̄ω(N + ∆N) is approximately

n = N∆N

=
E

h̄ω

∆E

h̄ω

=
E

h̄2ω2
∆E

= g(E)∆E (18.51)

From this we conclude that for the two-dimensional harmonic oscillator

g(E) =
E

h̄2ω2
(18.52)

A second example is that of a particle in a cubical box of length L. In this case,
proceeding as in our discussion of the free electron gas,

En1n2n3
=

h̄2

2m

π2

L2
(n2

1 + n2
2 + n2

3)

=
π2h̄2

2mL2
(n2

1 + n2
2 + n2

3)

=
π2h̄2

2mL2
R2 (18.53)

The number of states n which lie between R and R + ∆R is given by the volume of
an octant of a spherical shell

n =
1

8

[

4

3
π(R + ∆R)3 −

4

3
πR3

]

=
1

2
πR2∆R + O(∆R3) (18.54)

But from (18.53)

R =

(

2mL2

π2h̄2

)1/2

E1/2 (18.55)

so also

∆R =
1

2

(

2mL2

π2h̄2

)1/2

E−1/2∆E (18.56)
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Substituting this expression for R and ∆R into (18.54)

n =
1

2
π

(

2mL2

π2h̄2

)

E
1

2

(

2mL2

π2h̄2

)1/2

E−1/2∆E

=
π

4

(

2mL2

π2h̄2

)3/2

E1/2∆E (18.57)

and from this we read off the density of final states

g(E) =
π

4

(

2mL2

π2h̄2

)3/2

E1/2 (18.58)

18.2 Adiabatic Perturbations

Next we consider the situation where the perturbation is turned on very slowly, so
that dV ′/dt is negligible (in a sense to be explained shortly). Then, starting from the
first order term

c(1)
k (t) =

1

ih̄

∫ t

−∞
dt′Vkl(t

′)eiωklt′ (18.59)

we integrate by parts

c(1)
k (t) =

1

ih̄

∫ t

−∞
dt′Vkl(t

′)
1

iωkl

∂

∂t′
eiωklt

′

= −
1

h̄ωkl

∫ t

−∞
dt′Vkl(t

′)
∂

∂t′
eiωklt

′

= −
1

h̄ωkl

[

Vkl(t)e
iωklt −

∫ t

−∞
dt′

∂Vkl

∂t′
eiωklt

′

]

(18.60)

Then assuming the time derivative of the potential is negligible,

c(1)
k (t) ≈ −

1

h̄ωkl
Vkl(t)e

iωklt

= −
〈ϕk|V (t)|ϕl〉
E(0)

k − E0
l

eiωklt (18.61)

The solution to the time-dependent Schrodinger equation, to first order, is

ψ(x, t) = ψl(x, t) + λ
∑

k (=l

〈ϕk|V (t)|ϕl〉
E(0)

l − E0
k

eiωkltψk(x, t) (18.62)

and using
ψk(x, t) = ϕk(x)e−iωkt (18.63)
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we get

ψ(x, t) = e−iωlt



ϕl(x) + λ
∑

k (=l

〈ϕk|V (t)|ϕl〉
E(0)

l − E0
k

ϕk(x)



 (18.64)

Notice that the expression inside the [...] brackets is the k-th eigenstate, to first
order in λ, of the Hamiltonian

H = H0 + V ′(x) (18.65)

where
V ′(x) = λV (x, t) (18.66)

Likewise, the energy expectation value at time t, given by

E(t) = 〈ψ(t)|H0 + λV (t)|ψ(t)〉

= E0
l + λ〈ϕl|V (t)|ϕl〉+

{

〈ϕl|H0

∑

k (=l

〈ϕk|V (t)|ϕl〉
E(0)

l −E0
k

|ϕk〉+

+hermitian conjugate
}

= E0
l + λ〈ϕl|V (t)|ϕl〉+

{

∑

k (=l

〈ϕl|H0|ϕk〉
〈ϕk|V (t)|ϕl〉
E(0)

l − E0
k

+hermitian conjugate
}

= E0
l + λ〈ϕl|V (t)|ϕl〉 (18.67)

We recognize this as the same result as in time-independent perturbation theory, for
a perturbing potential V ′(x) = λV (x, t)

To sum it up, for very slowly varying (“adiabatic”) potentials, the prescription is
simple: First solve the time-independent Schrodinger equation

[H0 + λV (x, t)]φl(x, t) = El(t)φl(x, t) (18.68)

where the time variable t in the above equation is just treated as a fixed parameter,
subject to the condition

lim
λ→0

φl(x, t) = ϕl(t) (18.69)

To first order in λ, the result is

φl(x, t) = ϕl(x) + λ
∑

k (=l

〈ϕk|V (t)|ϕl〉
E(0)

l − E0
k

ϕk(x)

El(t) = E0
l + λ〈ϕl|V (t)|ϕl〉 (18.70)

and
ψ(x, t) = φl(x, t)e−iEl(t)/h̄ (18.71)



18.2. ADIABATIC PERTURBATIONS 297

Note that since El(t) varies in time, the energy of the system is not conserved,
even after long times. But, you may ask, did we not prove from the Schrodinger
equation, back in the last semester, that ∂t〈H〉 = 0? Actually, if you look back at the
derivation, it assumed that the potential V (x) was time-independent. If the potential
depends on time, there is no reason for the energy to be constant. Of course, if we
would treat everything quantum-mechanically, including the source of the potential,
then the energy of the entire system must be conserved. But thats another story.

18.2.1 Example

Consider a particle of mass m, initially (time t = 0) in its ground state in a one-
dimensional box of length L; i.e.

ϕ1(x) =

√

2

L
sin

(

πx

L

)

E1 =
π2h̄2

2mL2
(18.72)

Suppose that the walls of the box move apart from each other very slowly, so that
the adiabatic assumption is justified, and that after some long time t the walls are a
distance αL apart.

We don’t even need perturbation theory to solve this problem. All that is required
is to solve the time independent Schrodinger equation (exactly) at time t. The result
is

ϕ1(x, t) =

√

2

αL
sin

(

πx

αL

)

E1(t) =
π2h̄2

2mα2L2
(18.73)

You can see that the particle has an energy loss

∆E =
π2h̄2

2mL2

(

1−
1

α2

)

(18.74)

which has a simple classical interpretation: The particle in the box exerts a pressure
on the walls. As the walls move, the particle does positive work, and loses energy.
Thats a good thing; otherwise steam and automobile engines wouldn’t work! Gas
molocules ultimately obey the laws of quantum mechanics. In pushing a piston, they
had better give up some of their energy to the piston, otherwise it would be hard to
understand how quantum mechanics would be consistent with the principles of heat
engine design, that were worked out in the 19th century.
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18.2.2 Validity

Before leaving the topic, its necessary to have some criterion for the validity of the
adiabatic method: what do we mean by saying that the potential is “slowly varying”?
Slowly varying compared to what?

Lets go back to the integration-by-parts formula, and assume that the perturbing
potential was turned on at t = 0

c1
k(t) = −

1

h̄ωkl

[

Vkl(t)e
iωklt −

∫ t

0
dt′

∂Vkl

∂t′
eiωklt′

]

(18.75)

Making the rough assumption that ∂Vkl

∂t is nearly constant in time, we can carry out
the time integration to get

c1
k(t) = −

1

h̄ωkl

[

Vkl(t)e
iωklt −

1

iωkl

∂Vkl

∂t
2 sin[

1

2
ωklt]e

iωklt/2

]

(18.76)

We are only justified in dropping the term proportional to the time derivative of Vkl

if
∣

∣

∣Vkl(t)
∣

∣

∣6
∣

∣

∣

∣

∣

2

ωkl

∂Vkl

∂t

∣

∣

∣

∣

∣

(18.77)

So this is the necessary condition for the validity of the adiabatic approximation.

18.3 Sudden Perturbations

Finally, let us consider the other extreme of time-dependent perturbation, namely,
the case where the potential changes instantly (or nearly so, e.g. by someone flipping
a switch):

V ′(x, t) =

{

0 t < 0
V ′(x) t ≥ 0

(18.78)

We will suppose that the possible energy eigenstates and eigenvalues both before and
after t = 0 are known:

H0φn = Enφn

Hφ′
n = E ′

nφ
′
n

H = H0 + V ′(x, t) (18.79)

Possibly {φ′
n, E

′
n} can determined by time-independent perturbation theory, or are

even known exactly (for some simple forms of V ′(x)).
Consider a system which is in an initial state

ψin(x, t = 0−) (18.80)
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at a moment (t = 0−) just before the perturbation is switched on. With this initial
condition, we want to know what the wavefunction will be at any time t > 0, and in
particular the probability of finding any particle energy eigenvalue E ′

k.
This is actually quite simple. First of all, at any time t > 0, the solution to the

time-dependent Schrodinger equation has the general form

ψ(x, t > 0) =
∑

n

cnφ
′
n(x)e−iEnt/h̄ (18.81)

Then continuity of the wavefunction in time, and particularly continuity at time t = 0,
requires that

ψin(x, t = 0−) =
∑

n

cnφ
′
n(x) (18.82)

This equation determines all the cn in the usual way (go to bra-ket notation, and
multiply on the left by 〈φ′

k|

ck = 〈φ′
k|ψin(t = 0−)〉 (18.83)

The probability of measuring energy E ′
k at any time t > 0 is then

P (Ek) =
∣

∣

∣〈φ′
k|ψ(t)〉

∣

∣

∣

2

=
∣

∣

∣ck

∣

∣

∣

2

=
∣

∣

∣〈φ′
k|ψin(t = 0−)〉

∣

∣

∣

2
(18.84)

18.3.1 Example

We consider the potential

V (x, t) =

{

1
2kx2 t < 0
1
2k

′x2 t ≥ 0
(18.85)

So for any time t the Hamiltonian is that of a harmonic oscillator (which is exactly
soluble) but with spring constant k at t < 0, and k′ at t > 0.

Suppose the particle is in its ground state at times t < 0. What is the probability
that the particle is in an excited state at t > 0?

Clearly the probability of being in an excited state is is related to the probability
P (E ′

0) of remaining in the ground state, i.e.

Pex = 1− P (E ′
0) = 1− |c0|2 (18.86)

The ground states before and after t = 0 are

φ0(x) =

(

mk

π2h̄2

)1/8

exp
[

−
1

2

√
mkx2/h̄

]

φ′
0(x) =

(

mk′

π2h̄2

)1/8

exp
[

−
1

2

√
mk′x2/h̄

]

(18.87)
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Then

c0 = 〈φ′
0|φ0〉

=
(

m

π2h̄2

)1/4

(kk′)1/8
∫

dx exp
[

−
1

2
(
√

mk +
√

mk′)x2/h̄
]

=
√

2
(kk′)1/8

(
√

k +
√

k′)1/2
(18.88)

so that

P (E ′
0) = 2

(kk′)1/4

√
k +

√
k′

(18.89)

Its interested to plug in some numbers. Suppose that the spring constant changes
drastically at t = 0, by a factor of 16, i.e.

k′ =
k

16
(18.90)

We might expect that such a large change would be very likely to kick the particle
out of the ground state. but in fact, one finds in this case that P (E ′

0) = 4
5 , so that

there is actually only a 20% chance that the particle is found in an excited state after
time t = 0.
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Chapter 21

Quantum Mechanics as Linear
Algebra

I have stressed throughout the course that physical states in quantum mechanics are
represented by vectors (in Hilbert Space), that observables are associated with linear
operators, and that linear operators have a matrix representation. This suggests
that the equations of quantum mechanics can be expressed in the terminology and
notation of linear algebra, i.e. vectors and matrices. This chapter will explore the
linear algebra/quantum mechanics connection in more detail. In addition, we will
study Dirac’s prescription for quantizing an arbitrary mechanical system.

It may help to have in mind the main theme. We saw in Lecture 7 that every
linear operator Õ has a matrix representation O(x, y), where

O(x, y) = Õδ(x− y) (21.1)

This is actually only one of an infinite number of possible matrix representations of
Õ; it is known as the x-representation (or position-representation). As we will see,
there exist other useful representations of operators, among them the p- (momentum-
)representation, and the E- (energy-)representation. Each matrix representation is
associated with a different set of orthonormal basis vectors in Hilbert Space, and
each set of orthonormal basis vectors are the eigenstates of some complete set of
linear operators. At the end of the chapter, you should aim for a good understanding
of the last sentence.

We begin with a quick review of some basic facts about vectors and matrices.
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21.1 Review of Vectors and Matrices

A D-dimensional column vector is a set of D complex numbers arranged in a column


























v1

v2

v3

.

.

.
vD



























(21.2)

and a D-dimensional row vector is a set of D complex numbers arranged in a row

[w1, w2, w3, ..., wD] (21.3)

To save typing, I will use D = 2 when displaying row and column vectors explicitly.
For each column vector, and one each row vector, there is defined an inner prod-

uct

[w1, w2] ·
[

v1

v2

]

= w1v1 + w2v2

=
D
∑

i=1

wivi (21.4)

To each column vector, there is a corresponding row vector (and vice-versa)
[

v1

v2

]

=⇒ [v∗
1, v

∗
2] (21.5)

The norm |v| of a vector v is defined as the square-root of the inner product of the
column vector with its corresponding row vector

|v|2 = [v∗
1 , v

∗
2] ·

[

v1

v2

]

=
D
∑

i=1

v∗
i vi (21.6)

A matrix M is a D ×D square array of complex numbers

M =

[

m11 m12

m21 m22

]

(21.7)

which transforms column vectors v into column vectors v ′ according to the rule
[

v′
1

v′
2

]

=

[

m11 m12

m21 m22

] [

v1

v2

]

=

[

m11v1 + m12v2

m21v1 + m22v2

]

(21.8)
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or, for each component of the transformed column vector,

v′
i =

D
∑

j=1

mijvj (21.9)

Likewise, a matrix transforms row vectors according to the rule

[w′
1, w

′
2] = [w1, w2]

[

m11 m12

m21 m22

]

= [(w1m11 + w2m21), (w1m12 + w2m22)] (21.10)

or, for each component of the transformed row vector

w′
i =

D
∑

j=1

wjmji (21.11)

Two matrices A and B can be multiplied to form a third matrix C = AB according
to the rule

[

c11 c12

c21 c22

]

=

[

a11 a12

a21 a22

] [

b11 b12

b21 b22

]

=

[

a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

]

(21.12)

or, in terms of matrix components,

cij =
D
∑

k=1

aikbkj (21.13)

The Hermitian Conjugate M † of a matrix M , with components mij is the
transpose complex conjugate of M , i.e.

M † =

[

m∗
11 m∗

21

m∗
12 m∗

22

]

(21.14)

or, in general, if we denote by [A]ij the i, j component of the matrix A,

[M †]ij = [M ]∗ji (21.15)

The Determinant of a matrix M is the sum of products of components

det(M) =
D
∑

i1=1

D
∑

i2

...
D
∑

iD=1

εi1i2...iDm1i1m2i2m3i3 ....mDiD (21.16)
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where

εi1i2...iD =











+1 if i1i2...iD an even permutation of 123...D
−1 if i1i2...iD an odd permutation of 123...D

0 otherwise
(21.17)

In particular, for a 2× 2 matrix

det

[

m11 m12

m21 m22

]

= m11m22 −m12m21 (21.18)

Two very important classes of matrices are the Hermitian matrices, which have
the property

H = H† (21.19)

or, in components,
[H ]ij = [H ]∗ji (21.20)

and the unitary matrices, which have the property

U † = U−1 (21.21)

By U−1, we mean a matrix with the property that

UU−1 = I (21.22)

where I is the unit matrix

I =

[

1 0
0 1

]

(21.23)

In terms of components
[I]ij = δij (21.24)

Hermitian 2× 2 matrices have the form

H =

[

a c + id
c− id b

]

(21.25)

where a, b, c, d are real numbers. A unitary 2× 2 matrix has the form

U = eiθ

[

a + ib −c + id
c + id a− ib

]

where a2 + b2 + c2 + d2 = 1 (21.26)

In general, for any D, a unitary matrix can be written

U = eiH

=
∞
∑

n=0

in

n!
Hn (21.27)
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where H is an Hermitian matrix.
The Eigenvalue Equation for a matrix M is the relation Mu = λu, or

[

m11 m12

m21 m22

] [

u1

u2

]

= λ

[

u1

u2

]

(21.28)

In components, the eigenvalue equation reads

D
∑

j=1

mijuj = λui (21.29)

The solutions of this equation are a set of normalized eigenvectors u(n) and corre-
sponding eigenvalues λ

{u(n), λn} =

{[

u(n)
1

u(n)
2

]

λ(n)

}

(21.30)

where the superscript n = 1, 2, .., D labels the different, linearly independent solu-
tions. If there are k linearly independent solutions with the same eigenvalue, then
that eigenvalue is said to be k-fold degenerate.1 The eigenvalue equation can also be
written

(M − λI)u = 0 (21.31)

• To Find the Eigenvalues: Take the determinant of M − λI and set it to
zero, i.e.

det(M − λI) = det

[

m11 − λ m12

m21 m22 − λ

]

= 0 (21.32)

In general this is a D-th order polynomial in λ, with D solutions λ1, λ2, ..., λD, which
are in general complex. If k eigenvalues are the same, there is a k-fold degeneracy.

• To Find the Eigenvectors: To find the eigenvector u(n) corresponding to a
given eigenvalue λn, solve the simultaneous set of equations

m11u
(n)
1 + m12u

(n)
2 = λnu(n)

1

m21u
(n)
2 + m22u

(n)
2 = λnu(n)

2 (21.33)

1Of course, if D=2, then an eigenvalue can be no more than 2-fold degenerate.
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or, in the case of a D ×D matrix, solve the D simultaneous equations

D
∑

j=1

miju
(n)
j = λnu(n)

i (i = 1, 2, 3, ..., D) (21.34)

The general solution of this equation, in terms of determinants, is given in any linear
algebra book. The solution is denoted u(n), and should be normalized so that

[u∗
1, u

∗
2]

[

u1

u2

]

=
D
∑

i=1

u∗
i ui = 1 (21.35)

Theorem

The eigenvalues of a Hermitian matrix are all real. Any two eigenvectors of a
Hermitian matrix, which correspond to different eigenvalues, are orthogonal.

Proof: Let u(m) and u(n) be two eigenvectors of a Hermitian matrix H , with
eigenvalues λn, λm respectively. Consider the quantity

Q =
∑

ij

(un
i ) ∗Hiju

(m)
j (21.36)

Since um is an eigenvector, we know that
∑

j

Hiju
(m)
j = λmu(m)

i (21.37)

so
Q = λm

∑

i

(u(n)
i )∗u(m)

i = λmu(n) · u(m) (21.38)

On the other hand, we can write Q as

Q =
∑

ij

(

H∗
iju

(n)
i

)∗
u(m)

j (21.39)

Because H is an Hermitian matrix,

H∗
ij = Hji (21.40)

so

Q =
∑

ij

(

Hjiu
(n)
i

)∗
u(m)

j

=
∑

j

(λnu(n)
j )∗u(m)

j

= λ∗
nu(n) · u(m) (21.41)
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Therefore
λ∗

nu(n) · u(m) = λmu(n) · u(m) (21.42)

For n = m, this implies
λn is real for all n (21.43)

which proves the first part of theorem. For n += m, and λn += λm, it also implies

u(n) · u(m) = 0 λn += λm (21.44)

which proves the second part of theorem.

• Example Lets find the eigenvalues and eigenvectors of the Hermitian matrix

H =

[

0 i
−i 0

]

(21.45)

First, to find the eigenvalues

det

[

−λ i
−i −λ

]

= λ2 − 1 = 0 (21.46)

so the eigenvalues are
λ1 = +1 λ2 = −1 (21.47)

Note that these are both real, in agreement with theorem above. Then solve for the
eigenvector u1

[

0 i
−i 0

] [

u1
1

u1
2

]

=

[

u1
1

u1
2

]

[

iu1
2

−iu1
1

]

=

[

u1
1

u1
2

]

(21.48)

which has the solution

u1
2 = −iu1

1 or u1 =

[

u1
1

−iu1
1

]

(21.49)

Finally, we determine u1
1 by normalization

1 = u1 · u1 = |u1
1|2 + | − iu1

1|2 = 2|u1
1|2

=⇒ u1 =
1√
2

(21.50)
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so

λ1 = +1 u1 =
1√
2

[

1
−i

]

(21.51)

The procedure for λ2 = −1 is identical:
[

0 i
−i 0

] [

u2
1

u2
2

]

= −
[

u2
1

u2
2

]

[

iu2
2

−iu2
1

]

=

[

−u2
1

−u2
2

]

(21.52)

And this time u2
2 = iu2

1. Normalizing to determine u2
1, we find

λ2 = −1 u2 =
1√
2

[

1
i

]

(21.53)

Note that the inner product

u1 · u2 =
1

2
[1, i]

[

1
i

]

= 1 + i2 = 0 (21.54)

vanishes, so u1 and u2 are orthogonal, again as predicted by theorem.

21.2 Linear Algebra in Bra-Ket notation

The definition of a column vector as a set of numbers is clearly not adequate as a
definition of the word ”vector” in physics. Take, for example, the electric field E,
which is a three-dimensional vector quantity. In a particular set of xyz cartesian
coordinates, the vector E may be represented by the three components







Ex

Ey

Ez





 (21.55)

but there is nothing sacred about any particular set of coordinates, and if we rotate
to another coordinate frame, the same vector E will have three different components







E ′
x′

E ′
y′

E ′
z′





 (21.56)

In classical mechanics and electromagnetism, a vector quantity is just denoted, e.g.,
by a boldface symbol E or by an arrow %E. This is the quantity which, in a particular
reference frame, is represented by a D-dimensional column vector.
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Laws of motion are fundamental, reference frames are not, and one of the ob-
jectives of vector notation is to express the laws of classical physics in coordinate-
independent form; e.g. Newton’s Law of motion, and Ampere’s Law

%F = m%a and ∇× %B = µ0
%j (21.57)

are true in any system of cartesian coordinates. Vector notation, with the associated
concepts of grad, div, and curl, is an elegant and useful way of avoiding the clutter
of coordinate indices, and displaying the content of dynamical equations in the most
direct way. In classical physics, vectors are usually three- (or in relativity, four-)
dimensional, and their components are real-valued. In quantum theory, the vectors of
interest are usually infinite-dimensional, and their components are typically complex-
valued. Bra-ket notation, introduced by Dirac, aims to accomplish for quantum
theory what vector notation does for classical mechanics; namely, to express the laws
of motion as directly as possible, in a way that is independent of the (irrelevant)
reference frame.

Because the vectors in quantum mechanics can have complex components, it is
important to distinguish between vectors whose components are column vectors, and
vectors whose components are row vectors. The former are the ”ket” vectors |v >,
the latter the ”bra” vectors < v|. There is a one-to-one correspondence between bra
and ket vectors. If the components (in some reference frame) of a ket vector are given
by

|v >↔



























v1

v2

v3

.

.

.
vD



























(21.58)

then the components of the corresponding bra vector are

< v| ↔ [v∗
1 , v

∗
2, v

∗
3, ..., v

∗
D] (21.59)

The symbol ↔ is used to remind us that the values of the components depend on
the choice of reference frame; they are only a particular representation of the bra-ket
vectors. The bra-ket vectors themselves, like %F or %E, are meaningful independent of
the basis chosen.

A Linear Vector Space is a collection of vectors {|v >}, which is complete under
vector addition, i.e. if |v1 > and |v2 > belong to the space, so does the combination

a|v1 > +b|v2 > (21.60)
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where a and b are any constants. There is also defined an inner product < u|v >
between bra and ket vectors

< u|v >=< v|u >∗ (21.61)

with the bi-linearity property

[a < q| + b < r|][c|s > +d|t >] = ac < q|s > +ad < q|t > +bc < r|s > +bd < r|t >
(21.62)

where a, b, c, d are all constants.
In order to distinguish quantitatively between vectors in the vector space, it is

important to introduce what amounts to a reference frame, called a basis. A basis
for a D-dimensional vector space is a set of D orthonormal vectors {|en >, n =
1, 2, ..., D}

< en|em >= δmn (21.63)

such that any element of the vector space can be written as a linear combination

|v >=
D
∑

m=1

vm|em > (21.64)

This expression is completely analogous to the expansion of vectors that is often seen
in classical mechanics

%F = Fx
%i + Fy

%j + Fz
%k (21.65)

where %i, %j, %k are unit vectors in the x,y,and z-directions respectively.
Taking the inner product of eq. (21.64) with the bra vector < en|

< en|v >=< en|
D
∑

m=1

vm|em > (21.66)

and using the bi-linearity property (21.62)

< en|v >=
D
∑

m=1

vm < en|em > (21.67)

and the orthonormality property (21.63)

< en|v >=
D
∑

m=1

vmδnm (21.68)

we find:

The Component (or ”Wavefunction”) of Vector |v > in the basis {|en >}

vn =< en|v > (21.69)
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Of course, in calling the components of a vector a ”wavefunction”, we are antici-
pating the use of eq. (21.69) in quantum mechanics.

Next, we want to know the components of the bra-vector < v| corresponding to
|v >. Writing

< v| =
∑

m

cm < em| (21.70)

taking the inner product with |en >, and again using the bilinearity (21.62) and
orthonormality (21.63) properties, we find

cn =< v|en > (21.71)

Then, using the fact that < u|v >=< v|u >∗ (eq. (21.61)), and eq. (21.69)

cn = v∗
n (21.72)

Therefore, in a given orthonormal basis {en}, the corresponding bra and ket vectors
have the form

|v > =
∑

n

vn|en >

< v| =
∑

n

v∗
n < en| (21.73)

The fact that the components of the bra vector are the complex conjugate of the
components of the ket vector is in agreement with what was already been stated in
equations (21.58) and (21.59).

• Linear Operators Just as a function f is a rule for taking any number (x)
and turning it into another number y (i.e. y = f(x)), so an an operator M is a rule
for taking any vector |v > into turning it into some other vector |v ′ >,

|v >→ |v′ >= M |v > or |Mv > (21.74)

A Linear Operator has the property

M [a|v > +b|u >] = aM |v > +bM |u > (21.75)

for any vectors |u >, |v > and constants a, b. Because of this property, we can
determine what a linear operator M does to any vector |v > by specifying what it
does to any basis vector |en >:

|v′ >= M |v > = M
∑

j

vj|ej >

=
∑

j

vjM |ej > (21.76)
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Since both |v′ > and M |ei > are ket vectors, they must have an expansion in basis
vectors which we write as

|v′ >=
∑

k

v′
k|ek > (21.77)

and
M |ej >=

∑

k

mkj |ek > (21.78)

Substituting into (21.76) gives
∑

k

v′
k|ek >=

∑

i

∑

k

vimki|ek > (21.79)

Taking the inner product of both sides with the bra vector < ei|, and using again the
bi-linearity property and orthonormality properties (21.62), (21.63)

< ei|
∑

k

v′
k|ek > = < ei|

∑

j

∑

k

vjmkj|ek >

∑

k

v′
k < ei|ek > =

∑

j

∑

k

vjmkj < ei|ek >

∑

k

v′
kδik =

∑

j

∑

k

vjmkjδik

v′
i =

∑

j

mijvj (21.80)

But this is just the rule, in components, for multiplying a column vector by a matrix.
This means that, in a given basis, the action of a linear operator on vectors is equiv-
alent to matrix multiplication. In fact, taking the inner product of both sides of eq.
(21.78) with the bra vector < ei|, we find

The Matrix Element of Operator M in the basis {|en >}

mij =< ei|M |ej > (21.81)

Next, it is useful to introduce a linear operation L on bras and kets which is
represented symbollically by

L = |u >< v| (21.82)

The meaning of this symbol is that L operating on any ket |w > will turn it into
another ket, proportional to |u >, by taking an inner product on the left

L|w > = (|u >< v|)|w >= |u > (< v|w >)

= (< v|w >)|u > (21.83)
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Likewise L acts on bra vectors < q| by taking an inner product on the right

< q|L = < q|(|u >< v|)
= < q|u >< v| (21.84)

We now show that any linear operator can be expressed as a linear combination
of |u >< v| symbols. Begin with the identity operator I, defined such that

I|v >= |v > and < u|I =< u| (21.85)

for all < u|, |v > in the vector space. It is easy to see that such an operator can be
written, in a given basis {|ei >} as

I =
∑

n

|en >< en| (21.86)

Check this:

I|v > =

(

∑

n

|en >< en|
)(

∑

k

vk|ek >

)

=
∑

n

∑

k

vk|en > δnk

=
∑

k

vk|ek >

= |v > (21.87)

Likewise

< u|I =

(

∑

k

uk < ek|
)(

∑

n

|en >< en|
)

=
∑

k

∑

n

ukδkn < en|

=
∑

k

uk < ek|

= < u| (21.88)

Finally, if M is any linear operator

IM = MI = M (21.89)

because
IM |v >= I|Mv >= |Mv >= M |v > (21.90)

and
MI|v >= M |v > (21.91)
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We are now ready to express any linear operator M in terms of |u >< v| symbols.
We have

M = IMI

=

(

∑

i

|ei >< ei|
)

M





∑

j

|ej >< ej |





=
∑

ij

|ei >< ei|M |ej >< ej|

=
∑

ij

mij |ei >< ej | (21.92)

Exercise: Let

|v′ > = M |v >

< u′| = < u|M (21.93)

where we denote the components of the bra-ket vectors shown as

|v > =
∑

i

vi|ei >

|v′ > =
∑

i

v′
i|ei >

< u| =
∑

i

ui < ei|

< u′| =
∑

i

u′
i < ei| (21.94)

Using the bra-ket representation of M in eq. (21.92), show that the components vi →
v′

i by matrix multiplication of a column vector, and ui → u′
i by matrix multiplication

of a row vector.

Exercise: Let {en} and {e′m} be two different bases for the same vector space.
Show that the D ×D matrix whose elements are

Uij =< ei|e′j > (21.95)

is a unitary matrix.

In general, the bra vector which corresponds to M |v > is not the same as < v|M ,
i.e.

< Mv| +=< v|M (21.96)
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The Hermitian conjugate M † of a linear operator M is defined to be that operator
with the property

< Mv| =< v|M † (21.97)

for any bra vector. That means, in particular,

M †
ij = < ei|M †|ej >

= < Mei|ej >

= < ej |Mei >∗

= < ej |M |ei >∗

= M∗
ji (21.98)

This is the definition of the Hermitian conjugate of a matrix, given in the previous
section. Therefore, the matrix elements of the operator M † are simply the hermitian
conjugate of the matrix elements of the operator M . As in the case of matrices, an
Hermitian Operator is an operator which is its own Hermitian conjugate, ie.

M † = M (21.99)

An Hermitian operator therefore has the property that

< v|M =< Mv| (21.100)

An eigenvalue equation for the linear operator M has the form

M |vn >= λn|vn > (21.101)

This becomes a matrix equation, in the basis {|en >}, by taking the inner product of
both sides of the equation with < ei|:

< ei|M |vn > = λn < ei|vn >

< ei|





∑

lj

M |el >< ej |



 |vn > = λnvn
i

∑

j

Mijv
n
j = λnvn

i (21.102)

which is the same as the matrix eigenvalue equation, in components, seen in the
previous section.

Theorem

The eigenvalues of an Hermitian operator are real. Eigenstates corresponding to
different eigenvalues are orthogonal.
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This is theorm proved in the last section for matrices. Below we simply run
through the proof once again (it was also seen in Lecture 7) in bra-ket notation:

< vn|M |vm > = λm < vn|vm >

< Mvn|vm > =

< vm|Mvn >∗ =

(λn < vm|vn >)∗ =

λ∗
n < vn|vm > = λm < vn|vm > (21.103)

For n = m, this implies that λn is real. For n += m and λn += λm, it implies that
< vn|vm >= 0; i.e. the two vectors are orthogonal. This proves theorem.

Theorem

If the eigenvalues of a linear operator are non-degenerate, then the normalized
eigenstates form a basis in the linear vector space.

The eigenvalues λn are obtained by solving the D-th order polynomial

det[Mij − λδij] = 0 (21.104)

A D-th order polynomial has D roots, unless two or more roots coincide, in which
case there is a degeneracy. Since the eigenvalue equation is a linear equation, it means
that if |vn > is an eigenvector, so is |v′n >= N |vn >. Choose N so that

|v′n| = 1 (21.105)

Then, if the eigenvalues are non-degenerate, by theorem above it means that

< vm|vn >= δnm for n, m = 1, 2, 3, ..., D (21.106)

and D orthonormal vectors form a basis for a D-dimensional linear vector space.

Since the eigenvectors {vn}of an Hermitian matrix M form a basis for the linear
vector space, we can represent any linear operator O in the space in terms of its
matrix elements in the ”M-basis”, i.e.

Omn =< vm|O|vn > (21.107)

and
O =

∑

mn

Omn|vm >< vn| (21.108)
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In particular, the matrix elements of M in the M-basis form a diagonal matrix

Mmn = < vm|M |vn >

= λnδmn (21.109)

and therefore

M =
∑

mn

λnδmn|vm >< vn|

=
∑

n

λn|vn >< vn| (21.110)

For this reason, solving the eigenvalue equation M |vn >= λn|vn > is sometimes
refered to as ”diagonalizing” the operator M , since the matrix Mmn is a diagonal
matrix in the basis spanned by the the eigenvectors {|vn >}

21.3 Hilbert Space

Hilbert space is an infinite-dimensional, linear vector space. The eigenvectors (or
eigenstates) of any Hermitian operator, having an infinite number of non-degenerate
eigenvalues, form a basis in Hilbert space.

So far we have encountered the eigenvalue equation for Hilbert space operators in
three versions. First, there is the ”operator-acting-on-a-function” version

Õψn(x) = λnψn(x) (21.111)

Second, the ”matrix-multiplication” version is
∫

dy O(x, y)ψn(y) = λnψ(x) (21.112)

where the matrix element O(x, y) was defined by the operator O acting on a delta-
function

O(x, y) = Õδ(x− y) (21.113)

Finally, there is the abstract ”bra-ket” version, which holds just as well in finite
dimensional linear vector spaces

O|ψn >= λn|ψn > (21.114)

We ask: what is the relationship of the first two forms of the eigenvalue equation
with the third ”bra-ket” form, and, in particular, what is the relationship between
the ket vector |ψ > and the wavefunction ψ(x)? The answer, briefly, is that the first
two forms are the eigenvalue equation in the x-representation, and the wavefunction
ψ(x) gives the components of the state vector |ψ > in the x-representation.
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The x-representation refers to the basis in Hilbert Space spanned by the eigen-
states of the position operator X. The eigenvalues of X are all the real numbers
x ∈ [−∞,∞], and we will denote the (normalized) ket vector corresponding to an
eigenvalue x0 simply as |x0 >, i.e.

X|x0 >= x0|x0 > (21.115)

Since the ket vectors form an orthonormal basis, it means that

< x|y >= δ(x− y) (21.116)

and also that
I =

∫

dy|y >< y| (21.117)

is the identity operator. To go from the bra-ket form (21.114) of the eigenvalue
equation to the matrix form (21.112), we use the identity operator I

O|ψn > = λn|ψn >

OI|ψn > = λn|ψn >
∫

dy O|y >< y|ψn > = λn|ψn > (21.118)

and take the inner-product of both sides of the equation with the bra < x|
∫

dy < x|O|y >< y|ψn > = λn < x|ψn > (21.119)

Comparing the forms (21.119) with (21.112) shows that we must identify

O(x, y) ≡< x|O|y > (21.120)

as the Matrix Element of O in the X-Representation, and

ψn(x) ≡< x|ψn > (21.121)

as the Wavefunction of State |ψn > in the X-Representation. If we go one step
further, and write

O(x, y) = Õδ(x− y) (21.122)

where Õ is an operator acting on functions of the variable x, and then substitute this
expression into the matrix form of the eigenvalue eq. (21.112), we get the original
form (21.111).

Most of the calculations done in elementary quantum mechanics are carried out
in the position basis, i.e. using the first form (21.111) of the eigenvalue equation,
and solving for wavefunctions in the x-representation. Nevertheless, there is nothing
sacred about the x-representation, and other representations are sometimes useful.
Among these are the p-representation, the harmonic-oscillator representation, and
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various angular-momentum representations. The harmonic-oscillator representation
is frequently used in quantum field theory, and the angular-momentum represen-
tations will be employed shortly, in our discussion of spin and addition of angular
momentum.

Suppose we have an Hermitian operator O with a set of eigenstates and non-
degenerate eigenvalues satisying

O|φn >= on|φn > (21.123)

Then the wavefunction of any state |ψ > in the O-representation is the inner product

ψ(n) =< φn|ψ > (21.124)

and the matrix element of any linear operator M in the O-representation is given by

MO
ij =< φi|M |φj > (21.125)

We will consider as examples four operators: position X,

X|x0 >= x0|x0 > x0 ∈ [−∞,∞] (21.126)

momentum P ,
P |p0 >= p0|p0 > p0 ∈ [−∞,∞] (21.127)

the harmonic oscillator Hamiltonian Hho,

Hho|ϕn >= En|ϕn > En = h̄ω(n +
1

2
) (21.128)

and the square well Hamiltonian Hsq,

Hsq|φi >= Ei|φi > Ei = n2 h̄2

2mL2
(21.129)

From the matrix elements and eigenfunctions of these operators in the X-representation,
we can construct the matrix elements and eigenstates in other representations. All
our work so far has been in the X-representation, so we begin there.

• The X-representation

Taking the inner product of the eigenvalue equation X|y >= y|y > with the bra
< x|, we get immediately the matrix elements

< x|X|y > = y < x|y >

= yδ(x− y)

= xδ(x− y) (21.130)
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The other operators, {P, Hho, Hsq}, we define by their matrix elements in the X-
representation

< x|P |y > = p̃δ(x− y) p̃ = −ih̄
∂

∂x

< x|Hho|y > =

{

p̃2

2m
+

1

2
kx2

}

δ(x− y)

< x|Hsq|y > =

{

p̃2

2m
+ V sq(x)

}

δ(x− y) (21.131)

(where V sq(x) is the square-well potential). We note once again that all of these
matrix elements have the form

O(x, y) = Õδ(x− y) (21.132)

and therefore the matrix eigenvalue equation

∫

dy < x|O|y >< y|ψn >= λn < x|ψn > (21.133)

becomes the operator-acting-on-a-function form

Õ
∫

dy δ(x− y)ψn(y) = λnψn(x)

Õψn(x) = λnψn(x) (21.134)

In this form, we have already solved for the eigenstates of X, P, Hho, Hsq:

position eigenstates ψx0
(x) = < x|x0 >= δ(x− x0)

momentum eigenstates ψp0
(x) = < x|p0 >=

1√
2πh̄

eip0x/h̄

harm. osc. eigenstates ϕnx = < x|ϕn >=
1√
n!

(a†)ne−mωx2/2h̄

sq. well eigenstates φn(x) = < x|φn >=

√

1

2L
sin

[

nπx

L

]

(21.135)

The only new thing is the insight that the wavefunction of a state in the X-representation
is an inner product ψ(x) =< x|ψ >.

Given these matrix elements and wavefunctions in the x-representation, we can
find the matrix elements and wavefunctions in other representations. First, however,
we check the validity of the operator identity

[X, P ] = ih̄I (21.136)
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as a matrix equation in the X-representation:

< x|[X, P ]|y > = < x|XP |y > − < x|PX|y >

= < x|XIP |y > − < x|PIX|y >

= < x|X
{
∫

dx |z >< z|
}

P |y > − < x|P
{
∫

dx |z >< z|
}

X|y >

=
∫

dz [< x|X|z >< z|P |y > − < x|P |z >< z|X|y >]

=
∫

dz

[

xδ(x− z)

(

−ih̄
∂

∂z
δ(z − y)

)

−
(

−ih̄
∂

∂x
δ(x− z)

)

zδ(z − y)

]

= −ih̄

[

x
∂

∂x
δ(x− y)− y

∂

∂x
δ(x− y)

]

= −ih̄δ(x− y)

[

−
∂

∂x
x + y

∂

∂x

]

= ih̄δ(x− y) (21.137)

(In the next to last line, the derivative is understood to be acting on some func-
tion of x standing to to the right). This example is an illustration of the fact that
the matrix representation of a product of operators is equal to the product of matrix
representations of each operator, i.e.

< φm|AB|φn > =
∑

k

< φm|A|φk >< φk|B|φn >

[AB]mn =
∑

k

AmkBkn (21.138)

• The P-representation

Taking the inner product of the eigenvalue equation P |p0 >= p0|p0 > with the
bra < p|, we have the momentum eignfunctions in the momentum-representation

ψp0
(p) =< p|p0 >= δ(p− p0) (21.139)

The eigenstates of position are given by

ψx0
(p) = < p|x0 >

= < x0|p >∗

= ψp(x)∗

=
1√
2πh̄

e−ip0x/h̄ (21.140)
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An in general, any state whose eigenfunction is ψ(x) in the x-representation will have
an eigenfunction ψ(p) in the p-representation given by

ψ(p) = < p|ψ >

= < p|Iψ >

= < p|
{
∫

dx |x >< x|
}

|ψ >

=
∫

dx < p|x >< x|ψ > (21.141)

or, using the result above for < p|x >,

ψ(p) =
1√
2πh̄

∫

dxψ(x)e−ipx/h̄ (21.142)

In other words, the momentum-space (P-representation) wavefunction is the Fourier
transform of the position-space (X-representation) wavefunction.

Next, we compute matrix elements of operators. For the momentum operator

< p1|P |p2 >= p2 < p1|p2 >= p1δ(p1 − p2) (21.143)

i.e. the momentum operator is diagonal (= 0 for p1 += p2) in the momentum repre-
sentation. Writing

< p|P |p′ >= p̃δ(p− p′) (21.144)

we see that
p̃ = p (21.145)

For the position operator, we again use the identity operation

< p1|X|p2 > = < p1|IXI|p2 >

= < p1|
{
∫

dx |x >< x|
}

X
{
∫

dy |y >< y|
}

|p2 >

=
∫

dxdy < p|x >< x|X|y >< y|p2 >

=
1

2πh̄

∫

dxdy xδ(x− y)e(ip2y−ip1x)/h̄

=
1

2πh̄

∫

dx xei(p2−p1)/h̄

= ih̄
∂

∂p1

1

2πh̄

∫

dx ei(p2−p1)/h̄

= ih̄
∂

∂p1
δ(p1 − p2) (21.146)

or
< p|X|p′ >= x̃δ(p− p′) (21.147)
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where

x̃ = ih̄
∂

∂p
(21.148)

In general, one can show that in the p-representation

< p1|Xn|φ2 >=

(

ih̄
∂

∂p1

)n

δ(p1 − p2) (21.149)

The matrix element of a Hamiltonian with potential V (x) therefore takes the form

< p|H|p′ >= H̃δ(p− p′) (21.150)

where

H̃ =
p2

2m
+ V

[

ih̄
∂

∂p

]

(21.151)

The Schrodinger equation in the momentum representation is obtained by starting
from

ih̄∂t|ψ >= H|ψ > (21.152)

and taking the inner product with the bra < p|

ih̄∂t < p|ψ > = < p|H|ψ >

ih̄∂t < p|ψ > = < p|H
{
∫

dp′ |p′ >< p′|
}

|ψ >

=
∫

dp′ < p|H|p′ > ψ(p′)

= H̃
∫

dp′δ(p− p′)ψ(p′) (21.153)

so finally

ih̄∂tψ(p, t) =

{

p2

2m
+ V

[

ih̄
∂

∂p

]}

ψ(p, t) (21.154)

is the Schrodinger equation in this representation. Unless the potential is either zero
(the free particle) or quadratic (the harmonic oscillator), this form of the Schrodinger
equation is usually higher than 2nd order in derivatives, and therefore harder to solve
than the corresponding equation in the X-representation.

Exercise: Verify eq. (21.149).

Exercise: Using eq. (21.146), verify that

< p|[X, P ]|p′ >= ih̄δ(p− p′) (21.155)

• The Harmonic Oscillator Representation
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We next consider a basis for Hilbert Space consisting of the eigenstates |ϕn > of
the Harmonic oscillator Hamiltonian Hho. The Hilbert Space we have discussed so far
consists of the physical states of a particle moving in one dimension. The Harmonic
Oscillator representation is just a basis in that space, and can be used whether or
not the particle is actually moving in a harmonic oscillator potential (although that
would be the most useful application).

From the orthonormality of eigenstates of a Hermitian operator, the wavefunction
of the eigenstate |ϕn > is

ϕn(m) =< ϕm|ϕn >= δmn m = 0, 1, 2, .... (21.156)

In other words, the wavefunction of eigenstates of the harmonic oscillator, in the
harmonic oscillator representation, can be represented as infinite-dimensional column
vectors:

ϕ0 =





















1
0
0
.
.
.





















ϕ1 =





















0
1
0
.
.
.





















ϕ2 =





















0
0
1
.
.
.





















..... (21.157)

In fact, because n = 0, 1, 2, ... is a discrete index, all ”eigenfunctions”
ψ(n) =< ϕn|ψ > can be thought of as the components of a column vector. In
particular, an eigenfunction of position |x >, in the HO-representation, is

ψx(n) = < ϕn|x >

= < x|ϕn >∗

= ϕn(x) (21.158)

In other words, an eigenstate of position has the form of a column vector

ψx =





















ϕ0(x)
ϕ1(x)
ϕ2(x)

.

.

.





















(21.159)

Then the orthogonality of position eigenstates implies

δ(x− y) = < x|y >
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= [ϕ∗
0(x), ϕ∗

1(x), ϕ∗
2(x), ...]





















ϕ0(y)
ϕ1(y)
ϕ2(y)

.

.

.





















(21.160)

Taking the inner product of the row and column vectors, we get the identity

∞
∑

n=0

ϕ∗
n(x)ϕn(y) = δ(x− y) (21.161)

Next we turn to the matrix elements of operators. Taking the inner product of
the eigenvalue equation Hho|ϕn >= En|ϕn > with the bra < ϕm| gives

Hho
mn ≡< ϕm|Hho|ϕn >= Enδmn (21.162)

i.e. Hho
mn is a diagonal matrix

Hho =





















E1 0 0 . . .
0 E2 0 . . .
0 0 E3 . . .
. . . . . .
. . . . . .
. . . . . .





















(21.163)

The matrix representations Xmn and Pmn are easily obtained using the raising and
lowering operator relations

X =

√

h̄

2mω
(a† + a)

P = i

√

mωh̄

2
(a† − a)

a†|φn > =
√

n + 1|φn+1 >

a|φn > =
√

n|φn−1 > (21.164)

Then

Xmn =

√

h̄

2mω

[

< ϕm|a†|ϕn > + < ϕm|a|ϕm >
]

=

√

h̄

2mω

[√
n + 1δm,n+1 +

√
nδm,n−1

]

(21.165)

and likewise

Pmn = i

√

mωh̄

2

[√
n + 1δm,n+1 −

√
nδm,n−1

]

(21.166)
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or

X =

√

h̄

2mω

















0 1 0 . . .
1 0

√
2 . . .

0
√

2 0
√

3 . .
0 0

√
3 0

√
4 .

. . . . . .

















P =

√

mωh̄

2

















0 −i 0 . . .
i 0 −i

√
2 . . .

0 i
√

2 0 −i
√

3 . .
0 0 i

√
3 0 −i

√
4 .

. . . . . .

















(21.167)

Notice that the matrix representations of Hho, X, and P , are all Hermitian.

Exercise: Using the matrix representations (21.165) and (21.166), show that

< ϕm|[X, P ]|ϕn >= δmn (21.168)

• The Square Well Representation

This representation is only useful for a Hilbert Space in which the position-space
wavefunctions are constrained to be zero outside a finite range x ∈ [0, L]. Such as
situation occurs if the particle is trapped in a tube of finite length. Like the harmonic
oscillator Hamiltonian Hho, the square well Hamiltonian Hsq has a discrete set of
eigenvalues and eigenvectors, so that ”wavefunctions” are the components of infinite-
dimensional column vectors, and operators are represented by ∞×∞ matrices.

From the orthonormality of eigenstates of a Hermitian operator, the wavefunction
of the square-well eigenstate |φn > is

φn(m) =< φm|φn >= δmn m = 1, 2, 3, .... (21.169)

which are the components of ∞-dimensional column vectors:

φ1 =





















1
0
0
.
.
.





















φ2 =





















0
1
0
.
.
.





















φ3 =





















0
0
1
.
.
.





















..... (21.170)
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These look just like the eigenstates of the harmonic oscillator Hamiltonian ϕn in
the HO-representation, but of course they correspond to very different states. An
eigenfunction of position |x >, in the square-well representation, is

ψx(n) = < φn|x >

= < x|φn >∗

= φn(x)

=

√

2

L
sin

(

nπx

L

)

(21.171)

As a column vector, an eigenstate of position has the form

ψx =

√

2

L

























sin
(

πx
L

)

sin
(

2πx
L

)

sin
(

3πx
L

)

.

.

.

























(21.172)

The orthogonality of position eigenstates implies

δ(x− y) = < x|y >

= [φ∗
1(x), φ∗

2(x), φ∗
3(x), ...]





















φ1(y)
φ2(y)
φ3(y)

.

.

.





















(21.173)

Taking the inner product of the row and column vectors, we get another identity,
analogous to (21.161)

2

L

∞
∑

n=1

sin
(nπx

L

)

sin
(nπy

L

)

= δ(x− y) (21.174)

As in the case of the harmonic oscillator, the matrix elements of the square-well
Hamiltonian in the square-well representation is diagonal:

Hsq
mn ≡< φm|Hsq|φn >= Enδmn (21.175)

i.e., as a matrix

Hsq =





















E1 0 0 . . .
0 E2 0 . . .
0 0 E3 . . .
. . . . . .
. . . . . .
. . . . . .





















(21.176)
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where this time

En = n2 h̄2π2

2mL2
(21.177)

The matrix representations Xmn is given by

Xmn =< φm|X|φn > (21.178)

which is best evaluated in the X-representation, which we already know should be

Xmn =
∫

dx φ∗
m(x)xφn(x)

=
1

2L

∫ L

0
dx x sin

mπx

L
sin

nπx

L
(21.179)

To go from the bra-ket expression (21.178) to its x-representation (21.179), we use
again the identity operator

Xmn = < φm|IXI|φn >

= < φm|
{
∫

dx |x >< x|
}

X
{
∫

dy |y >< y|
}

|φn >

=
∫

dx
∫

dy < φm|x >< x|X|y >< y|φn >

=
∫

dx
∫

dy φ∗
m(x)xδ(x− y)φn(y) (21.180)

Carrying out the y-integration, we obtain eq. (21.179). Carrying out the x-integration,
we finally obtain

Xmn =











− 8Lmn
π2(n2−m2)2 (n−m) odd

0 (n−m) even
L
2 n = m

(21.181)

Similarly, the momentum operator in the square-well representation is

Pmn = < φm|P |φn >

=
∫

dxdyφ∗
m(x)

(

−ih̄
∂

∂x
δ(x− y)

)

φn(y)

=
∫

dxφ∗
n(x)

(

−ih̄
∂

∂x

)

φn(x) (21.182)

which is evaluated to be

Pmn = −ih̄

{

4nm
L(n2−m2) (n−m) odd

0 (n−m) even
(21.183)
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Written out as ∞×∞ matrices, X and P are

X = L





















1
2 − 16

9π2 0 . . .
− 16

9π2
1
2 − 48

25π2 . . .
0 − 48

25π2

1
2 . . .

. . . . . .

. . . . . .

. . . . . .





















P =
ih̄

L





















0 8
3 0 . . .

−8
3 0 24

5 . . .
0 −24

5 0 . . .
. . . . . .
. . . . . .
. . . . . .





















(21.184)

which are both clearly Hermitian.

Exercise: Calculate the 11 matrix element of the [X, P ] commutator approximately,
in the square well representation, using

[X, P ]mn =
∞
∑

k=1

[XmkPkn − PmkXkn] (21.185)

Carry out the sum over k to k = 16.

• The Angular Momentum Representation

As a final example, we consider the Hilbert space spanned by the eigenstates of
angular momentum

J2|jm > = j(j + 1)h̄2|jm >

Jz|jm > = mh̄|jm > (21.186)

In the special case that j is an integer, the inner product of |jm > with eigenstates
of angles |θ, φ > gives the spherical harmonics

Yjm(θ, φ) =< θφ|jm > (21.187)

The spherical harmonics are the wavefunctions of eigenstates of angular momentum in
the ”angle basis,” spanned by the the set {|θ, φ >} of angle eigenstates (a rigid rotator
in an angle eigenstates has a definite angular position θ, φ However, the angular
momentum algebra also allows for half-integer eigenvalues j = 1/2, 3/2, .... In
particular, the j = 1/2 case is important for describing the spin angular momentum
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of the electron. In that case the |θ, φ > basis is inadequate, and the use of the angular
momentum basis |jm > becomes indispensible.

The eigenstates of angular momentum are written as unit column vectors

ϕ00 =



































1
0
0
.
.
.
.
.
.



































ϕ 1
2
, 1
2

=



































0
1
0
.
.
.
.
.
.



































ϕ 1
2
,− 1

2
=



































0
0
1
0
.
.
.
.
.



































ϕ11 =



































0
0
0
1
0
0
.
.
.



































ϕ10 =



































0
0
0
0
1
0
.
.
.



































ϕ00 =



































0
0
0
0
0
1
0
.
.



































(21.188)

Using eq. (21.186) above, and also the angular momementum raising and lowering
operators

J−|jm > =
√

(j + m)(j −m + 1)h̄|j, m− 1 >

J+|jm > =
√

(j −m)(j + m + 1)h̄|j, m + 1 > (21.189)

we get the matrix elements
[

J2
]

jm,j′m′
= j(j + 1)h̄2δjj′δmm′

[Jz]jm,j′m′ = mh̄δjj′δmm′
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[J−]jm,j′m′ =
√

(j ′ + m′)(j′ −m′ + 1)h̄δjj′δm,m′−1

[J+]jm,j′m′ =
√

(j ′ −m′)(j′ + m′ + 1)h̄δjj′δm,m′+1 (21.190)

In the form of ∞×∞ matrices these are

J2 = h̄2































0 . . . . . . . .
. 3

4 0 . . . . . .
. 0 3

4 . . . . . .
. . . 2 0 0 . . .
. . . 0 2 0 . . .
. . . 0 0 2 . . .
. . . . . . . . .
. . . . . . . . .































Jz = h̄































0 . . . . . . . .
. 1

2 0 . . . . . .
. 0 −1

2 . . . . . .
. . . 1 0 0 . . .
. . . 0 1 0 . . .
. . . 0 0 1 . . .
. . . . . . . . .
. . . . . . . . .































J+ = h̄































0 . . . . . . . .
. 0 1 . . . . . .
. 0 0 . . . . . .
. . . 0

√
2 0 . . .

. . . 0 0
√

2 . . .
. . . 0 0 0 . . .
. . . . . . . . .
. . . . . . . . .































J− = h̄































0 . . . . . . . .
. 0 0 . . . . . .
. 1 0 . . . . . .
. . . 0 0 0 . . .
. . .

√
2 0 0 . . .
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We can also write the operators Jx and Jy as matrices, using the identities

Jx =
1

2
(J+ + J−)

Jy = −
i

2
(J+ − J−) (21.192)
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Often, in dealing with problems in atomic, nuclear, or particle physics, we are
interested only in a finite subspace of Hilbert space consisting of eigenstates of a
definite total angular momentum; i.e. definite value of the quantum number j. For
example, the spin angular momentum of an electron corresponds to j = 1

2 , and
nothing can ever change that value, short of annihilating the electron. So it makes
sense to restrict considerations to the j = 1

2 subspace of Hilbert space, spanned by
the two eigenstates

|j =
1

2
, m =

1

2
> and |j =

1

2
, m = −

1

2
> (21.193)

In this subspace, the angular momentum operators are

J2 =
3

4
h̄2

[

1 0
0 1

]

Jz =
1

2
h̄

[

1 0
0 −1

]

J+ = h̄

[

0 1
0 0

]

J− = h̄

[

0 0
1 0

]

(21.194)

Using eq. (21.192), we can write the angular momentum operators Jx, Jy, Jz in the
j = 1

2 subspace as

Jx =
h̄

2
σx Jy =

h̄

2
σy Jz =

h̄

2
σz (21.195)

where the matrices

σx =

[

0 1
1 0

]

σy =

[

0 −i
i 0

]

σz =

[

1 0
0 −1

]

(21.196)

are known as the Pauli Spin Matrices. They will be useful in our later discussion
of electron spin.

21.4 Canonical Quantization

Quantum mechanics as presented in previous chapters has been formulated in the
x-representation. Let us review how we go from the classical mechanics of a particle
moving in one dimension, to the corresponding quantum theory: The transition is
made as follows:

Classical Quantum
−−−−−−−−−− −−−−−−−−−−−
physical state (x, p) wavefunction ψ(x)

Observables O = O(x, p) Operators Õ = Õ(x̃, p̃)
∂tx = ∂H

∂p , ∂tp = −∂H
∂x ih̄∂tψ(x, t) = H̃(x̃, p̃)ψ(x, t)

cc (21.197)
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and, in addition, we make the crucial identification of x̃ and p̃ as the following oper-
ators, acting on functions of x

x̃f(x) = xf(x)

p̃f(x) = −ih̄
∂

∂x
f(x) (21.198)

All of this was deduced from the wave equation for De Broglie waves, the Born
interpretation, and the Ehrenfest Principle. From the discussion in this chapter, we
see that the wavefunction ψ(x) is the wavefunction of a state in the x-representation,
the operators x̃ and p̃ operate exclusively on such wavefunctions.

Now, although the x-representation is extremely useful in quantum mechanics,
it is no more fundamental than, say, a choice of cartesian coordinates in classical
mechanics. The point of vector notation in classical mechanics is to write dynamical
equations which hold in any reference frame. Now we would like to do the same for
quantum mechanics. Up to a point, this is easy; its just a question of replacing the
wavefunction ψ(x) by the ket vector |ψ >, i.e.

Classical Quantum
−−−−−−−−− −−−−−−−−−

(x, p) |ψ >
O(x, p) O(X, P )

∂tx = ∂H
∂p , ∂tq = −∂H

∂x ih̄∂t|ψ >= H(X, P )|ψ >

cc (21.199)

But what do we now say about operators X and P , without referring directly to
the x-representation? The answer is that the correct, representation-independent
statement is just the commutator

[X, P ] = ih̄I (21.200)

which can be deduced from the Ehrenfest principle and the Schrodinger equation as
follows: Beginning from the Ehrenfest condition

<
∂H

∂p
>= ∂t < x > (21.201)

or

< ψ|
∂H

∂P
|ψ >= ∂t < ψ|X|ψ > (21.202)

and applying the Schrodinger equation in bra-ket form

∂t|ψ > =
1

ih̄
H|ψ >

∂t < ψ| = −
1

ih̄
< ψ|H (21.203)
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we get

< ψ|
∂H

∂P
|ψ >=< ψ|

1

ih̄
[X, H ]|ψ > (21.204)

Likewise, the second Ehrenfest equation

< −
∂H

∂x
>= ∂t < p > (21.205)

leads to

< ψ| −
∂H

∂X
|ψ >=< ψ|

1

ih̄
[P, H ]|ψ > (21.206)

Comparing the rhs and lhs of eqs. (21.204) and (21.206) leads us to require, as
operator identities,

[X, H ] = ih̄
∂H

∂P

[P, H ] = −ih̄
∂H

∂X
(21.207)

Let us assume that H [X, P ] can be expressed as a sum of products of operators X
and P . Of course X commutes with powers of X, and P commutes with powers of
P . 2 Now suppose that [X, P ] = ih̄I. Then

[X, P n] = XPP...P − PP...PX

= PXP...P + ih̄P n−1 − PP...PX

= PPX...P + 2ih̄P n−1 − PP...PX

.

.

= nih̄P n−1

= ih̄
∂

∂P
P n (21.208)

In the same way,

[P, Xn] = PXX...X −XX...XP

= XPX...X − ih̄Xn−1 −XX...XP

.

.

= −nih̄P n−1

= −ih̄
∂

∂X
Xn (21.209)

2This is because X and Xn have the same set of eigenstates, and likewise for P and P n.
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Given that H = H(P, X) can be expressed as a polynomial in X and P , the relation
(21.207) follows.

To find the operators x̃ and p̃ in x-representation (which is also sometimes ref-
ered to as the Schrodinger Representation), we use the definition of the X-
representation as the basis consisting of X eigenstates

X|x0 >= x0|x0 > (21.210)

so that

X(x, y) = < x|X|y >

= < Xx|y > (hermiticity of X)

= x < x|y > (|x > an eigenstate of X)

= xδ(x− y) (orthonormality) (21.211)

Then P (x, y) is determined by the condition that

ih̄δ(x− y) = < x|[X, P ]|y >

=
∫

dz [X(x, z)P (z, y)− P (x, z)X(z, y)

= (x− y)P (x, y) (21.212)

and this condition is satisfied by

P (x, y) = ih̄
∂

∂x
δ(x− y) (21.213)

as was shown above. Then writing, as before

O(x, y) = Õδ(x− y) (21.214)

so that
< x|O|ψ >= Õψ(x) (21.215)

we have shown, simply from the commutation relation (21.200) and the eigenvalue
equation (21.210) that

x̃ψ(x) = xψ(x)

p̃ψ(x) = −ih̄
∂

∂x
ψ(x) (21.216)

We are now ready to present the procedure, first enunciated by Dirac, for quantiz-
ing any mechanical system. The procedure is known as Canonical Quantization,
and goes as follows:

• Canonical Quantization, or, Quantum Mechanics in a Nutshell
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1. Begin with a system with a set of coordinates and momenta {qa, pa}, whose dy-
namics is described by a Hamiltonian H = H(p, q).

2. Physical states become vectors |ψ > in a Hilbert space.

3. All observables are associated with Hermitian operators acting on vectors in Hilbert
space. In particular, the coordinates qa and momenta pa correspond to opera-
tors

qa → Qa pa → Pa (21.217)

which satisy commutation relations

[Qa, Qb] = 0

[Pa, Pb] = 0

[Qa, Pb] = ih̄δabI (21.218)

4. Physical states evolve in time according to the Schrodinger equation

ih̄|ψ >= H [P, Q]|ψ > (21.219)

5. The expectation value < O > of an observable O(p, q), for a system in state |ψ >,
is given by

< O >=< ψ|O [P, Q] |ψ > (21.220)

Expressed in this way, the passage from classical to quantum mechanics is simple:
its just a question of imposing commutation relations between Q and P , and pos-
tulating the Schrodinger equation. In none of these steps is there any committment
to any particular basis in Hilbert space. Practical calculations, however, are usually
carried out in the Schrodinger representation. The reason is simple: the momentum
operator P appears only quadratically in the Hamiltonian, but the coordinates Q
generally appear (in the potential V (Q)) in more complicated ways. It then makes
sense to work in a basis which are eigenstates of the complicated part (V (Q)) of the
Hamiltonian. The Schrodinger representation (or Q-representation) is defined by the
basis of Q-eigenstates

Qa|{q} >= qa|{q} > (21.221)

The wavefunction in Schrodinger representation is

ψ(q) =< {q}|ψ > (21.222)



21.5. POISSON BRACKETS 341

and

Qa[{q}, {q′}] = qaδD(q − q′)

Pa[{q}, {q′}] = −ih̄
∂

∂qa
δD(q − q′) (21.223)

Using these matrix elements in the Schrodinger equation

ih̄ < {q}|ψ >=< {q}|H|ψ > (21.224)

leads to the Schrodinger equation in Schrodinger representation

ih̄ψ(q) = H

[

{−ih̄
∂

∂qa
}, {qa}

]

ψ(q) (21.225)

which is normally the most useful form of this equation.

21.5 Poisson Brackets

Let Q = Q(q, p) be some observable depending on the canonical coordinates and
momenta {qa, pa}. Using Hamilton’s equations and the chain rule for differentiation,
the variation in time of this quantity is

∂tQ =
∑

a

[

∂Q

∂qa

∂qa

∂t
+

∂Q

∂pa

∂pa

∂t

]

=
∑

a

[

∂Q

∂qa

∂H

∂pa
−

∂Q

∂pa

∂H

∂qa

]

= [Q, H ]PB (21.226)

where we have defined the Poisson Bracket of any two observables A(p, q) and
B(p, q) as

[A, B]PB =
∑

a

[

∂A

∂qa

∂B

∂pa
−

∂A

∂pa

∂B

∂qa

]

(21.227)

Note, in particular, that

[qa, qb]PB = 0 [pa, pb]PB = 0 [qa, pb]PB = δab (21.228)

An important feature of the Poisson bracket of two observables is that it always
has the same value, no matter which set of conjugate coordinates and momentum
are used. Normally there are many possible choices of coordinates and momenta.
For example, for motion of baseball in three dimensions, we could use the cartesian
coordinates x, y, z, and then obtain the conjugate momenta

px =
∂L

∂ẋ
py =

∂L

∂ẏ
pz =

∂L

∂ż
(21.229)
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but of course one could also express the Lagrangian in spherical coordinates r, θ, φ,
and obtain conjugate momenta

pr =
∂L

∂ṙ
pθ =

∂L

∂θ̇
pφ =

∂L

∂φ̇
(21.230)

It is a theorem of classical mechanics that the Poisson Brackets of any two quantities
do not depend of the choice of canonical coordinates and momenta. Therefore, any
equation expressed in terms of Poisson Brackets holds true for every possible choice
of {qa, pa}.

Now, from the Schrodinger equation we have

∂t < Q > = ∂t < ψ|Q|ψ >

=
1

ih̄
< ψ|(QH −HQ)|ψ >

= < ψ|
1

ih̄
[Q, H ]|ψ > (21.231)

Comparing this equation to the classical equation of motion

∂tQ = [Q, H ]PB (21.232)

suggests that the classical-to-quantum transition is obtained by associating the Pois-
son brackets of classical observables with the commutators of corresponding operators,
according to the rule

[A, B]PB →
1

ih̄
[A, B] (21.233)

Making this identification for the Poisson brackets (21.228) brings us again to the
basic operator commutator equations

[Qa, Qb] = 0

[Pa, Pb] = 0

[Qa, Pb] = ih̄δabI (21.234)

of canonical quantization. This beautiful and deep connection between the Pois-
son brackets of classical mechanics, and the commutators of operators in quantum
mechanics, was first pointed out by Dirac.



Chapter 22

The EPR Paradox and Bell’s
Theorem

No man is an island...

John Donne

Suppose we have a baseball in Philadelphia, and a football in Detroit, and we want
to specify the physical state of the combined baseball-football system. In classical
physics, this is done by first specifying the state of the baseball (its mass, composition,
location, velocity...), and then specifying, in a similar way, the state of the football.
There are no baseball+football states that can’t be described in this way. If we decide
to change the physical state of the football (by giving it a kick, say) then of course
this will not very much affect the state of the far away baseball.

The point here is that the physical states of composite systems in classical physics
are separable, in the sense that the description of the state of the whole system can
always be reduced to a specification of the state of the parts. Suppose, instead of
sports equipment, we consider the state of a system of two equal mass particles, which
is represented by a point in 12-dimensional phase space {%x1, %x2, %p1, %p2}. Obviously,
this state completely determines, and is determined by, the physical state {%x1, %p1} of
particle 1, and the physical state {%x2, %p2} of particle 2. Moreover, if particle 1 is not
in interaction with particle 2, then measurement of its location and/or momentum
will not in any way affect the position or momentum of particle 2.

Physical states of composite systems, which have the same ”common sense” prop-
erty of separability, certainly exist in quantum mechanics. For example, suppose
particle 1 is in state ψA and particle 2 is in state ψB . Then the state of the combined
1− 2 system is determined to be

ψ(x1, x2) = ψA(x1)ψB(x2) (22.1)

Likewise, if particle 1 is in state ψC , and particle 2 is in state ψD, the combined

343
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system is in state
ψ(x1, x2) = ψC(x1)ψD(x2) (22.2)

But what do we make of the (normalized) superposition

ψ(x1, x2) = aψA(x1)ψB(x2) + bψC(x1)ψD(x2) (22.3)

According to the principles of quantum mechanics, physical states are normalized
vectors in Hilbert space, and the sum of two vectors is another vector. If that vector
is normalized, it is a physical state too. So the wavefunction (22.3) is, from this point
of view, entirely kosher: it is a physically allowed state of the two-particle system. But
then if we ask: what is the state of particle 1, when the two-particle system is in state
(22.3), we discover that we can’t answer the question! Particle 1 is not in state ψA,
nor is it in state ψC ; neither is it in a linear combination such as cψA(x1) + dψC(x1).
The fact is, the state of particle 1 has become entangled with that of particle 2; it is
impossible to specify the state of either particle separately, even if the two particles
are non-interacting, and very far apart.

The fact that the quantum states of composite systems can be inseparable (or
entangled) in this way was first noticed by Einstein, Podolsky, and Rosen (”EPR”)
in 1933. The consequences of this entanglement are truly mind-bending, even by the
generous mind-bending standards of quantum mechanics.

22.1 The EPR Paradox

Einstein, Podolsky and Rosen were of the opinion that quantum mechanics is in some
way incomplete, because it leads to (what they considered to be) a paradox in certain
circumstances. To illustrate their point, we consider the following experiment (Fig.
22.1). Every time a button is pushed, two spin 1/2 particles are ejected, in opposite
directions, each particle eventually passing through a detector which measures the
spin of the particle along a given axis. The detectors can be rotated, so that the spin
along any axis, in particular along the x- and z-axes, can be measured. After many
trials, the following result is reported:

A. Both detectors are set to measure spin along the z-axis. Whenever the spin of the
particle on the left is found to be spin up, and this occurs 50% of the time, the
spin of the particle on the right is found to be spin down. Likewise, whenever
the particle on the left is found to be spin down, which is the other 50% of the
time, the particle on the right is found to be spin up.

This means that by measuring the z-component of the spin of the particle on the
left, we can determine the z-component of the spin of the particle on the right, without
actually interacting with the particle on the right. Suppose, in a particular run, that
the particle which moves to the left (which we’ll now call ”L”) is found to be spin-
up. Since the measurement on the left (goes the EPR argument) couldn’t possibly
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affect the spin of the other particle (”R”) on the right, and yet we know that R is
spin-down, it must be that R was spin down even before we made the measurement of
L. Therefore, the spin state of the particles before entering the detectors must have
been

ψ1 = αL
z βR

z (22.4)

where αz, βz refer to spin up and down states, respectively, along the z-axis. For
future reference, lets recall from Lecture 13 that

αz =

[

1
0

]

βz =

[

0
1

]

(22.5)

and

αx =
1√
2

[

1
1

]

βx =
1√
2

[

1
−1

]

(22.6)

Now, by the same reasoning, if the particle on the left were found to be spin down,
then the 2-particle state would have been be

ψ2 = βL
z αR

z (22.7)

even before the measurement was made. According to (A), in half the runs the
particles are in state ψ1, and in the other half they are in state ψ2.

This reasoning seems pretty solid, but now a troubling discovery is made. After
many more runs, it is found that

B. When both detectors are set to measure spin in the x-direction, the two particles
are never found to each have spin up, or each have spin down.

The problem is that, if the particles were initially in state ψ1, then the probability
that a measurement would find both spins up in the x-direction is

| < αL
xαR

x |ψ1 > |2 = | < αL
x |αL

z >< αR
x |βR

z > |2

=
1

4
(22.8)

Likewise, if the particles were initially in state ψ2, the probability to find both spins
up in the x-direction would be

| < αL
xαR

x |ψ2 > |2 = | < αL
x |βL

z >< αR
x |αR

z > |2

=
1

4
(22.9)

Then if the particles are half the time in state ψ1, and half the time in state ψ2, the
total probability for finding both particles with spin up along the x-axis is simply the
average of the two probabilities, i.e.

P (up up)x−axis =
1

2
| < αL

xαR
x |ψ1 > |2 +

1

2
| < αL

xαR
x |ψ2 > |2

=
1

4
(22.10)
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in total contradiction to the reported fact (B)! Conclusion: no experiment should
report both results (A) and (B).

And yet, as EPR pointed out, there are quantum-mechanical states which lead to
precisely these results. Suppose that the 2-particles, before reaching the detectors,
are in a spin-0 state

ψ =
1√
2
(ψ1 − ψ2)

=
1√
2
(αL

z βR
z − βL

z αR
z ) (22.11)

Then the probability to find L with spin up and R with spin down along the z-axis is

P (up down)z−axis = | < αL
z βR

z |ψ > |2

=
1

2

∣

∣

∣< αL
z βR

z |ψ1 > − < αL
z βR

z |ψ2 >
∣

∣

∣

2

=
1

2
(1− 0)2

=
1

2
(22.12)

Likewise, the probability to find L with spin down and R with spin up in the direction
is

P (down up)z−axis = | < βL
z αR

z |ψ > |2

=
1

2

∣

∣

∣< βL
z αR

z |ψ1 > − < βL
z αR

z |ψ2 >
∣

∣

∣

2

=
1

2
(0− 1)2

=
1

2
(22.13)

These two probabilitites are exactly what is reported in (A). Then we compute the
probability to find both L and R with spin up along the x-axis

P (up up)z−axis = | < αL
xαR

x |ψ > |2

=
1

2

∣

∣

∣< αL
xαR

x |ψ1 > − < αL
xαR

x |ψ2 >
∣

∣

∣

2

=
1

2

∣

∣

∣< αL
x |αL

z >< αR
x |βR

z > − < αL
x |βL

z >< αR
x |αR

z >
∣

∣

∣

2

=
1

2
(
1

2
−

1

2
)2

= 0 (22.14)

which is the same as result (B).
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Now if both (A) and (B) are true, it means that before any measurement takes
place, R is neither in state βR

z (as in state ψ1), nor in state αR
z (as in ψ2), because

this would contradict (B). So, suppose we measure the spin of L along the z-axis, and
it is found to be in spin up. At that point, we know that R is now spin down. But
we have already concluded that before the measurement took place, R was neither
spin up nor spin down. This means that, although R was not in a spin-down state
initially, it must have ”jumped” into a spin-down state after L was found in spin up,
even if, at the time of measurement, L and R were very far apart! But how could a
measurement of L, which perhaps is in Philadelphia, influence the state of R, which
is maybe in Detroit? This is the EPR ”paradox,” which led Einstein, Podolsky, and
Rosen to conclude that the quantum mechanical description of nature is somehow
incomplete.

22.2 Bell’s Theorem

Quantum mechanics might be wrong, but so far there is no evidence of that. So in
what way could it be incomplete? One possibility is that, contrary to everything
said so far in this course, the physical state of a particle is not completely specified
by its wavefunction. Perhaps the particle also has some other, ”hidden” degrees of
freedom, which determine with certainty, rather than probabilistically, the outcome
of any measurement of the particle. The probabilistic nature of quantum mechanics,
according to this view, is simply due to our ignorance of the actual values of these
”hidden variables.”

If the hidden variable idea were true, it seems that we might be able to wriggle
out of the EPR paradox. Denote the hidden variable by µ, and suppose the follow-
ing values imply the following results of spin measurements along the z and x-axes,
respectively:

µ = 1 leads to upz or upx

µ = 2 ” upz ” downx

µ = 3 ” downz ” upx

µ = 4 ” downz ” downx

(22.15)

Then we could explain (A) and (B), for example, by saying that the two particles
come out of the apparatus only with the hidden variable combinations

(µL, µR) = (1, 4) or (4, 1) or (2, 3) or (3, 2) (22.16)

Of course this is not yet a theory, only an idea for a theory, but the idea itself was
squelched by a celebrated theorem proved by J. Bell in 1964, which essentially says
the following:

Bell’s Theorem
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No local hidden variable theory can agree with all of the predictions of quantum
mechanics.

The restriction to a local theory means that theory does not contain any non-
local ”action-at-a-distance” interactions or, equivalently, any effects which propagate
from one place to another at greater than the speed of light. This means that a
measurement of L cannot affect the hidden variables of R; at least, not before the
time required for light to travel from the left detector to the particle on the right.

Only one example is needed of a quantum-mechanical prediction that cannot be
reproduced by a hidden variable theory; this is enough to prove the theorem. The
example I will give here is due to Mermin.

Consider the experimental setup shown in Fig. 22.2. This is very much like the
previous setup, in that when a button is pushed, two particles emerge, one traveling
to the detector on the right, and one to the detector on the left. On each detector
there is a switch, and two lights, one red and one green. When the switch is in
position 1 then the detector measures some observable, O1 say, and, depending on
the value found, the light flashes either red or green. Likewise, when the switch is in
position 2, the detector measures some other observable, O2 say. Again, depending
on the value found, the light flashes red or green. In our previous example, O1 = Sz,
and O2 = Sx, and we could have arranged that the light flashes red for spin up, and
green for spin down.

After many runs, the following results are found:

A. In runs in which the detectors have different switch settings, the lights on each
detector never both flash green; i.e. 12GG and 21GG never occur.1

B. In runs in which both switches are set to 2, one finds that 9% of the time both
lights flash green (22GG).

C. In runs in with both switches are set to 1, both lights never flash red, i.e. 11RR
never occurs.

Now we’ll imagine that these results can be explained by assuming that each
particle comes out of the apparatus in a definite state, with some definite values of
the hidden variables. From result (A), we can conclude that if one of the particles
is in a state which would cause a switch 2 detector to flash green, then the other
particle is in a state which would cause a switch 1 detector to flash red. If this were
not the case, then occasionally one would find 12GG and 21GG, which, it is asserted,
never occurs. It follows that in those 22GG runs where both lights flash green, each

1Where, e.g., 12RG means: the switch on the left-hand detector is set to 1, the switch on the
right-hand detector is set to 2, the light on the left-hand detector flashes red, the light on the
right-hand detector flashes green.
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particle must have been in a state which would cause a type 1 detector to flash red.
So, if we set both switches to 1, we would expect to see 11RR exactly as many times
as one sees 22GG, namely, 9% of the time. But according to result (C), 11RR never
occurs! Therefore, no hidden variable theory can be consistent with all three results
(A), (B), and (C). Can quantum theory ever predict such results?

Lets denote the eigenstates of observable O1 by the kets

|1G > and |1R > (22.17)

The meaning of the notation is that when a particle is in an eigenstate |1G >, it causes
the light on a switch 1 detector to flash green, and so on. Now suppose operator O2

is chosen such that its eigenstates are related to the eigenstates of O1 in the following
way:

|2G > =

√

3

5
|1G > +

√

2

5
|1R >

|2R > = −
√

2

5
|1G > +

√

3

5
|1R > (22.18)

Suppose further that the apparatus is designed such that the particles leaving the
apparatus are in the state

|Ψ >=

√

3

8
|1R >l |1G >r +

√

3

8
|1G >l |1R >r −

1

2
|1G >l |1G >r (22.19)

where the subscript r means that the state refers to the particle on the right, and l
refers to the particle on the left.

With observable O2 and state Ψ chosen in this way, then by following the standard
rules of quantum theory we can compute the probabilities for finding outcomes GG,
RR, RG, and GR, for switch settings 12, 21, 22, and 11. These probabilities are
shown in Fig. 22.3 They are in complete agreement with the asserted results (A), (B)
and (C) above.

In this way, Bell’s Theorem is proven. There are physical states in quantum
mechanics which lead to predictions that can never be reproduced by a local hidden
variables theory. These physical states are always of the ”entangled” form, in which
it is impossible to deduce the state of either particle separately.

Of course, the example constructed here, although sufficient to prove theorem,
is rather special. Bell’s theorem, in more generality, states that if the measured
values of various observables violate certain inequalities, then those results cannot be
explained by any local hidden variables theory. This brings us to an experimental
question: Maybe quantum mechanics is wrong! Can we actually observe, in the
laboratory, results which violate the Bell inequalities (i.e. cannot be explained by
local hidden variable theories)?



350 CHAPTER 22. THE EPR PARADOX AND BELL’S THEOREM

The relevant experiments were performed by Aspect and his collaborators in the
1970s. The two particles were two photons produced by the decay of Positronium
(an electron-positron bound state). All of the quantum-mechanical predictions were
confirmed. The mysterious non-local behavior of quantum theory, in which a mea-
surement of particle 1 somehow causes the distant particle 2 to jump into a state of
definite spin, cannot be explained by a local hidden variables theory.

Problem - Given the state (22.19) and the O2 eigenstates in eq. (22.18), derive
the probabilities shown in Fig. 22.3.

Problem - Suppose the two particles are electrons, and O1 = Sz is the spin
component along the z-axis, with the green light flashing for sz = 1/2, and the red
light flashing for sz = −1/2. Assume that O2 measures the spin component Se = %S ·%e
along some direction, specified by a unit vector

%e =







a
b
c





 (22.20)

Again, the light flashes green for spin up along %e, and red for spin down. With this
information, and eq. (22.18), find the direction %e.

22.3 Entangled States for ”Quantum Radio”?

The EPR paradox and Bell’s Theorem refer to experiments performed on particles in
entangled states. Its easiest to define such states by what they are not.

Let Ψ(x1, x2) denote a two-particle state. The state is separable if has the form

Ψ(x1, x2) = ψ(x1)ϕ(x2) (22.21)

If it does not have this form, then the state is inseparable, or ”entangled.” Now
suppose we are going to measure some observable A of particle 1, with eigenstates

Ãφn(x1) = λnφn(x1) (22.22)

and, for simplicity, suppose the eigenvalues {λn} are non-degenerate. Then we can
always write Ψ(x1, x2), whether separable or entangled, in the form

Ψ(x1, x2) =
∑

n

cnφn(x1)ϕn(x2) (22.23)
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where
cnϕn(x2) =

∫

dx1φ
∗
n(x1)Ψ(x1, x2) (22.24)

Defined in this way, the states {ϕn(x2)} do not have to be orthogonal, they do not
even have to be different states. If all the {ϕn(x2)} are the same state, then Ψ(x1, x2)
is separable. If at least some of the {ϕn(x2)} are different, then Ψ(x1, x2) is entangled.

Now we make the measurement of observable A on particle 1, and one of the
eigenvalues, λ = λk say, is obtained. This means that particle 1 has jumped into
the state φk(x1). But, if the intial state is entangled, it also means that particle 2
has jumped into state ϕk(x2), which it was not in before. In other words, the entire
two-particle state Ψ(x1, x2) has ”jumped” into state φk(x1)ϕk(x2), even if particles
1 and 2 are far apart, and a measurement is performed only on particle 1. This
certainly seems like a non-local influence, and Bell’s Theorem prevents the ”cheap”
explanation that particle 2 was really in state ϕk(x2) (perhaps supplemented by some
”hidden” variables) all along.

Its natural to suppose that if a measurement at detector 1 causes something to
happen to the distant particle 2, then this effect could be used to send messages, in-
stantaneously, between the observer at detector 1 and the observer at detector 2. But
if instantaneous (or in general, faster than light) communication were possible, then
according to special relativity it should also be possible to send messages backwards
in time. This would have some interesting practical applications. A typical scenario
is as follows:

The four accomplices had planned it for years, after coming into pos-
session of two pairs of super-secret - and highly illegal - quantum radios.
Now for the payoff. John, the ringleader, stands at the betting window of
a major racetrack, while his wife, Mary, waits impatiently on the planet
Mars. The third participant, Rajiv, is piloting a rocketship which is head-
ing towards Earth at a very substantial fraction of the speed of light. His
partner, Fatima, is on another rocketship, moving parallel to Rajiv and
at equal speed towards Mars. The objective of all these preparations is
for John to learn the name of the winning horse at the Kentucky Derby,
before the race is actually run.

The worldlines of all four participants are indicated on a spacetime diagram shown
in Fig. 22.4. At point A in Fig. 22.4, the race has just ended.

”Niels Bohr”, a long shot paying 200 to 1, has come in first. As Rajiv’s
rocket streaks overhead, John signals the name of the winning horse to
him. Rajiv then uses his quantum radio to send this information instan-
taneously to Fatima.

However, as we know from relativity theory, simultaneity is relative to reference
frame. In the John-Mary rest frame, events A and A’, are simultaneous, and B and
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B’ are simultaneous, but A is later than B and B’. Not so in the Rajiv-Fatima rest
frame: for them, events A and B’ are simultaneous.

When Rajiv signals the name of the winning horse to Fatima, she re-
ceives this information at spacetime point B’, just as her rocket is passing
Mars. Fatima relays the important information to Mary, and then Mary
contacts John, again by quantum radio, and transfers the message instan-
taneously (in the John-Mary rest frame) to Earth. The message reaches
John at spacetime point B, several minutes before the race is to begin.
John places a very large bet on ”Niels Bohr” to win, and ...

Lets leave the story there. Could entangled states be used to send instantaneous
messages in this way, even in principle? To answer this question, we again consider the
apparatus shown in Fig. 22.2. John is at detector 1. Mary is at detector 2, but has an
arsenal of laboratory equipment available to her, and can measure any observable she
likes. Is there some observation which she could perform on the right-hand particles,
which would tell her

I. whether John has turned on his detector; or

II. if John’s detector is on, whether the switch is on setting 1 or setting 2?

The entangled state of the particles coming out of the detector can always be
written in the form

|Ψ >= cR|1R >l |ψ >r +cG|1G >l |ψ′ > (22.25)

where, since this is an entangled state, ψ += ψ′. Mary has decided to measure the
observable Q. Suppose first that John has turned off his detector. In that case Mary
finds

< Q > = < Ψ|Q|Ψ >

= [c∗R < 1R|l < ψ|r + c∗G < 1G|l < ψ′|r]Q [cR|1R >l |ψr > +cG|1G >l |ψ′ >r]

= |cR|2 < ψ|Q|ψ > +|cG|2 < ψ′|Q|ψ′ > (22.26)

where we have used the orthogonality

< 1M |1N >= δMN M = R or G, N = R or G (22.27)

Now John turns on his detector, with the switch setting at 1. When he makes a
measurement, the two particles will be

either in state |1R > |ψ >, with probability |cR|2
or else in state |1G > |ψ′ >, with probability |cG|2

(22.28)
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If the right-hand particle is in state |ψ >, the expectation value for observable Q is
< ψ|Q|ψ >; while if the particle is in state |ψ′ >, the value is is < ψ′|Q|ψ′ >. After
many runs, the average value obtained must be

< Q > = Prob. to find 1R× < ψ|Q|ψ > +Prob. to find 1G× < ψ′|Q|ψ′ >

= |cR|2 < ψ|Q|ψ > +|cG|2 < ψ′|Q|ψ′ > (22.29)

which is the same as result (22.26). Therefore Mary can’t tell if John had turned on
his detector, if the switch setting is at 1. What if John sets the switch to setting 2?

In general, the ”switch 1” eigenstates {|1R >, |1G >} and the ”switch 2” eigen-
states {|2R >, |2G >} are simply different basis vectors for the left-hand particle
Hilbert Space, related by a unitary transformation

|1M >=
∑

M=R,G

UMN |2N > (22.30)

where we recall that the unitarity property

δMN =
∑

J

UNJU∗
MJ (22.31)

follows from orthonormality

δMN = < 1M |1N >

=
∑

K

U∗
MK < 2K|

∑

J

UNJ |2J >

=
∑

J

U∗
MJUNJ (22.32)

We can therefore write the entangled state |Ψ > as

|Ψ > =
∑

M=R,G

[cRURM |ψ >r +cGUGM |ψ′ >r] |2M >l

=
∑

M=R,G

bM |2M >l |ϕM >r (22.33)

where
bM |ϕM >≡ cRURM |ψ >r +cGUGM |ψ′ >r (22.34)

Then, after John makes his measurement, the particles will be

either in state |2R > |ϕR >, with probability |bR|2
or else in state |2G > |ϕG >, with probability |bG|2

(22.35)

After many runs, the expectation value < Q > is found by Mary to be

< Q > = Prob. to find 2R× < ϕR|Q|ϕR > +Prob. to find 2G× < ϕG|Q|ϕG >
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=
∑

|bM |2 < ϕM |Q|ϕM >

=
∑

M

[c∗RU∗
RM < ψ|r + c∗GU∗

GM < ψ′|r]Q [cRURM |ψ >r +cGUGM |ψ′ >r]

=
∑

M

[

|cR|2U∗
RMURM < ψ|Q|ψ > +|cG|2U∗

GMUGM < ψ′|Q|ψ′ >

+c∗RcGU∗
RMUGM < ψ|Q|ψ′ > +c.c.]

= |cR|2 < ψ|Q|ψ > +|cG|2 < ψ′|Q|ψ′ > (22.36)

where, in the last step, we have used the unitarity property (22.32).
The conclusion is that nothing Mary can measure will tell her whether John has

turned on his apparatus, or what observable he is measuring. This is a very general
result, and can be easily extended to more complicated situations. There is no such
thing as a ”quantum radio;” entangled states can never be used to transfer infor-
mation across long distances at a speed faster than light. One can never determine,
just by a measurement on one of the particles, whether the state of the system is
entangled, or whether is has become disentangled by a faraway measurement. The
”entangled” nature of entangled states, and their strange, non-local properties, can
only be appreciated when comparing measurements made on the entire system, rather
than any one of its parts.

22.4 For Whom the Bell(’s Theorem) Tolls

Entangled states are the norm, not the exception, in quantum mechanics. Generally
speaking, when any two systems come into interaction, the resulting state of the
combined system will be entangled. In this technical sense of quantum inseparability,
the poet was right: no man is an island. No electron is an island either.

As we have seen, the existence of entangled states means that a measurement
of one system can cause the second system, perhaps very distant from the first, to
jump into one or another quantum state. It is time to return to the EPR criticism:
”Isn’t this situation paradoxical? Doesn’t it imply that something must be wrong
with quantum theory?”

Now first of all, as pointed out by Niels Bohr in his response to EPR, this situation
is not really a paradox. The non-locality pointed out by EPR is certainly very, very
strange. But quantum non-locality is not actually a paradox in the sense of being a
logical contradiction.

”Well then, doesn’t this non-local behavior violate theory of Relativity?” Accord-
ing to relativity theory, after all, no signal can propagate faster than the speed of
light, so how can the state of particle 2 change instantaneously, in the laboratory
reference frame, upon measurement of particle 1? Here we must be careful - the
relativistic prohibition is against information propagating faster than the speed of
light. If such propagation were possible, it would also be possible to send messages
backwards in time, which would raise many other (authentic!) paradoxes. However,
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we have just seen that the observer at detector 2 can never, by simply observing one
of the particles, conclude anything about the settings of detector 1. Non-locality is
not a violation of relativity in the sense of information transfer.

At this point, it is worth noting is that non-locality is not really unique to entan-
gled states; some kind of non-local effect occurs in almost any measurement. Con-
sider, for example a single particle, whose wavepacket ψ(x) is distributed uniformly
in a large, dark room, filled with particle detectors. At a given time t = 0 the detec-
tors are suddenly all switched on and, just as suddenly, the position of the particle
is measured. This means that the wavepacket of the particle, which was spread all
over the room at t < 0, suddenly collapses to a narrow gaussian in the region of one
of the detectors at t = 0. This is known as the ”collapse of the wavefunction”, and it
also seems to be a form of non-local behavior. If we think of the particle wavepacket
as some sort of fluid, by what mechanism does it instantaneously collapse?

Now, in volume 1 of these notes I have urged you to avoid thinking of the wavefunc-
tion as representing some sort of material fluid. There are just too many difficulties
inherent in that kind of picture. Rather, one should think of Hilbert Space, rather
than ordinary space, as being the arena of dynamics, where the state (vector) of a
system evolves continuously, according to the Schrodinger equation, by rotation. This
change of arena alleviates a lot of the problems associated with non-locality. On the
other hand, I also said that a measurement causes the state to ”jump,” probabilisti-
cally, into one of a number of eigenstates of the quantity being measured.

Its time to face up to the real problem, the hard problem: By what process does
a measurement cause a state to suddenly jump to one of a set of states? Can this
behavior itself be explained quantum mechanically? This very puzzling issue has not
been settled to this day. It is known as the Problem of Measurement.
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Chapter 23

The Problem of Measurement

I was pleased to be able to answer immediately, and I did. I said I didn’t know.

Mark Twain

More than seventy years have passed since the invention of quantum mechanics.
It is a little disquieting that in all that time, despite its triumphant application to
atomic, nuclear, sub-nuclear, and condensed matter physics, no general agreement
has been reached on what quantum theory really means. This could indicate one
of two things. First, it may be that quantum theory is wrong in some unexpected
way, and this fact will someday be discovered by experiment. The other possibility
is that the problem to be discussed in this Lecture is not really a scientific question,
which can ultimately be settled by either calculation or experiment, but is more a
philosophical issue, in which arguments for or against various views are destined to
be endlessly refined, but no general consensus will ever be reached. In either case,
the interpretation of quantum mechanics is a deep and fascinating subject. In this
Lecture I will try to give a brief outline of the main contending views, although I
cannot hope, in this short space, to do justice to any one of them.

23.1 Mixtures and Pure States

What does a measurement do?
We have asked that question before, back in Lecture 7. The answer is: If the

detector is designed to measure some observable O, it will leave the measured object,
at least for an instant, in a zero-uncertainty state ∆O = 0 of that observable, i.e., in
an eigenstate of the operator O, and record the eigenvalue found.

Suppose, once again, that the object is an electron, and the detector is a Stern-
Gerlach apparatus which measures the electron spin in the z-direction. A red light
goes on if the electron is spin-up, a green light goes on if it is spin down. The electron

357
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exits the apparatus, which is enclosed in a black box, in an eigenstate of Sz (see Fig.
22.2).

Whenever we know the physical state of an object, the object is said to be in a
”pure state.” Suppose that the electron is in a ”pure state” entering the apparatus,
i.e. its state is known to be

φ = Aαz + Bβz (23.1)

where, for simplicity, we disregard the x, y, z degrees of freedom and concentrate on
the spin. Then, if the detector has been switched on, but before we look inside the
black box, the electron exiting the detector must be

either in state αz, with probability |A|2
or else in state βz, with probability |B|2 (23.2)

This is an example of a ”mixed state” or ”mixture.” In general, if the state of
an object is not known with certainty, but it is known that the object is in one of a
number of possible states, together with the probability of being in each state, then
the object is said to be in a mixed state.

John, who has set up this experiment, has left the lab for the day. Mary, knowing
John’s forgetful nature, goes to check that the detector inside the black box has
been switched off, thereby conserving the very expensive electronics inside. To her
consternation, she discovers that the box has already been locked by the janitor, who
has the only key. Can she tell, without opening the box, whether the detector inside
the box is on of off?

It is always possible to distinguish between a pure state and a mixture. Suppose
Mary measures, on the beam of electrons emerging from the box, the value of the
observable Q. If the detector is switched off, then the particles emerging from the
detector remain in the inital state φ, so that

< Q >pure = < φ|Q|φ >

= |A|2 < αz|Q|αz > +|B|2 < βz|Q|βz >

+A∗B < αz|Q|βz > +B∗A < βz|Q|αz > (23.3)

while for the mixture

< Q >mix = Prob. to find spin up× < αz|Q|αz > +Prob. to find spin down× < βz|Q|βz >

= |A|2 < αz|Q|αz > +|B|2 < βz|Q|βz > (23.4)

The difference between the pure and mixed-state results is called the ”interference
term”

< Q >int = < Q >pure − < Qmix >

= A∗B < αz|Q|βz > +B∗A < βz|Q|αz > (23.5)
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and reflects the fact that the pure state ψ, unlike the mixture (23.2), is not really
in one or the other state αz or βz. Of course, the interference term will vanish if
αz and βz are eigenstates of Q, e.g. if Q = Sz. Otherwise, the interference term is
not zero. Thus, all Mary has to do is run the beam of electrons emerging from the
first detector into a second detector, which measures electron spin in the x-direction;
from the resulting < Sx > she can learn whether or not the first detector has been
switched off.

Problem - For Q = Sx, calculate < Q >pure for the pure state (23.1) with
A = −B = 1/

√
2, and for the corresponding mixture.

The fact that mixtures can always be distinguished from pure states, at least in
principle, also holds good for entangled pure states. Consider, for example, the pure
state

Ψ =
∑

i

ciφi(x1)ϕi(x2) (23.6)

and the mixture

M = {particle in one of the states φi(x1)ϕi(x2) with probability |ci|2} (23.7)

Suppose, for simplicity, that all these states are orthonormal, i.e.

< φi|φj >=< ϕi|ϕj >= δij (23.8)

and that A is an observable of particle 1, and B an observable of particle 2. It is easy
to see that if we measure only A, or only B, that the mixture M and the pure state
Ψ give exactly the same answer, namely

< A > =
∑

i

|ci|2 < φi|A|φi >

< B > =
∑

i

|ci|2 < ϕi|B|ϕi > (23.9)

However, if we measure the expectation value of the product AB, then we find that
the pure state predicts

< AB >pure=
∑

ij

c∗i cj < ψi|A|ψj >< ϕi|B|ϕj > (23.10)

while for the mixture

< AB >mix=
∑

i

|ci|2 < ψi|A|ψi >< ϕi|B|ϕi > (23.11)
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The interference term is

< AB >int=
∑

i(=j

c∗i cj < ψi|A|ψj >< ϕi|B|ϕj > (23.12)

and it is non zero providing the matrices

Aij ≡< ψi|A|ψj > and Bij ≡< ϕi|B|ϕj > (23.13)

are both non-diagonal.

From this discussion we extract the following conclusions:

1. In principle, it is always possible to distinguish experimentally between a mixture
and a pure state;

2. To distinguish between pure and mixed states of composite systems, one must
make measurements on each of the components.

Thus, to the question, ”what does a measurement do?,” our tentative response
is: ”it leaves the measured system in a mixed state.” More precisely, if the detector
makes a measurement of observable Q whose eigenstates are {φi}, and if the the
particle as it enters the detector is in the one-particle pure-state

ψ =
∑

i

ciφi (23.14)

then the particle, immediately after detection, will be in the mixed state

M = {particle in one of the states φi with probability |ci|2} (23.15)

23.2 The Problem of Measurement

The problem of measurement is the problem that no closed system, evolving according
to the Schrodinger equation, can ever make a transition from a pure state to a mixed
state. A measurement, as we have described it, can therefore never occur if all relevant
objects (the detector as well as the detected object) obey the Schrodinger equation.

In order to explain how a detector works, one would begin by analyzing the in-
teraction between the detector and the particle, and describe the evolution of the
particle-detector system in terms of some (probably very complicated) Hamiltonian,
involving the degrees of freedom of both the particle and the detector. But to under-
stand why there is a problem connected with the measurement process, one doesn’t
need to know anything about this complicated Hamiltonian. It is enough to simply
assume that an appropriate Hamiltonian exists such that, if the particle starts out in
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an eigenstate of the relevant observable, then the corresponding eigenvalue is some-
how registered by the detector. Once again, take the measurement of electron spin as
an example. The detector is designed to measure Sz. This means that if the initial
state of the particle-detector system is

|Ψ0 >= |up > |ready > (23.16)

where |up > means the electron is in a spin-up state, and |ready > means that the
detector has been switched on, then the interaction between the electron and detector
leaves the combined system in the final state

|Ψf >= |up > |red > (23.17)

where |red > indicates that red light on the detector is on. It is assumed that the
transition from the intial to final state is adequately explained by the Schrodinger
equation, and thus we write, schematically,

|up > |ready >−→ |up > |red > (23.18)

Similarly, if the particle starts in a spin-down state,

|down > |ready >−→ |down > |green > (23.19)

Now for the crucial point. The Schrodinger equation is a linear equation. This
means that if

ψa(x, t) and ψb(x, t) (23.20)

are both solutions of the Schrodinger equation, and if the intial state is

Ψ0 = Aψa(x, 0) + Bψb(x, 0) (23.21)

then the corresponding final state (at time t = T , say) is

Ψf = Aψa(x, T ) + Bψb(x, T ) (23.22)

Suppose, then, that the electron entering the detector is in the spin state

|ψ >= A|up > +B|down > (23.23)

so that the initial particle-detector state is

|Ψ0 > = |ψ > |ready >

= A|up > |ready > +B|down > |ready > (23.24)

Then, from the linearity of the Schrodinger equation, we can conclude that the
particle-detector system must end up in the entangled final state

|Ψ >= A|up > |red > +B|down > |green > (23.25)
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THIS IS A PURE STATE, NOT A MIXTURE! A mixture, for the particle-detector
system would be

M =

{

either in state |up > |red >, with probability |A|2
or else in state |down > |green >, with probability |B|2 (23.26)

We have seen that pure states can always be distinguished, in principle, from mix-
tures. Then we are forced to conclude, after the measurement process has supposedly
taken place, that the light on the detector is neither flashing red, nor green, but is
somehow in a superposition of the two possible states!

When we add a human observer to the system, the quantum-mechanical assault
on common-sense only gets worse. Denote the initial state of the observer by the ket
”|waiting >.” When the observer sees a red light flash, her state changes to a new
state, denoted |I saw red >; likewise, if the green light flashes, the observer is left
in the state |I saw green >. The Hamiltonian describing the interaction between
particle, detector, and observer is assumed to lead to

|up > |ready > |waiting >−→ |up > |red > |I saw red > (23.27)

Similarly, if the particle starts in a spin-down state,

|down > |ready > |waiting >−→ |down > |green > |I saw green > (23.28)

Then, if the instead the particle starts off in the superposition of spin states |ψ > of
eq. (23.23), so the initial state of the combined system is

|Ψ0 > = |ψ > |ready > |waiting >

= A|up > |ready > |waiting > +B|down > |ready > |waiting >(23.29)

Then, by the linearity of the Schrodinger equation, we are forced to conclude that
the particle-detector-observer system ends up in the entangled final state

|Ψf >= A|up > |red > |I saw red > +B|down > |green > |I saw green > (23.30)

The observer has also ended up in a quantum superposition, in which she is neither in
the |I saw red > state, nor in the |I saw down > state. And this strange conclusion
is deduced simply from the assumption that a particle in a spin up (down) state
always leads the observer to an ”I saw red (green)” state, and from the linearity of
the Schrodinger equation.

Its time to stand back and reconsider. A simple line of reasoning, founded on the
well-established principles of quantum mechanics, has led us to a nonsensical result.
It is not just that the conclusion is counter-intuitive; by now you should be used to
that. Rather, the problem is that the apparent conclusion is just wrong: Human
beings never find themselves in superpositions of this kind. There must, somewhere,
be an error in our reasoning. But where?
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23.3 The ”Classic” Views (I): von Neumann

The simplest answer was given by von Neumann, who urges us to follow the chain
of events into the brain of the observer. The detector is in a superposition of ”red
light/green light” states, and it emits photons in a superposition of the corresponding
frequencies. The photons reach the retina of the observer, and certain neurons are
left in a superposition of excited/un-excited states. The message from the retina
travels to the cerebral cortex; very large collections of neurons are now in quantum
superpositions, and the brain remains in such a superposition until, at some point, a
sensation occurs. At the instant of conscious perception, the observer, the detector,
and even the particle, jump into one or the other of the ”up/down, red/green” states.

What von Neumann is suggesting is that human consciousness causes the wave-
function to ”collapse,” with a certain probablity, into one or another of the possible
neural states; the collapse of the wavefunction occurs due to the awareness of the
observer. It follows, since the Schrodinger equation can never cause a wavefunction
to collapse (i.e. cause a pure state to go to a mixture), that the mental function
described as ”awareness” or ”conciousness” cannot be described by the Schrodinger
equation; it is not a physical process in the usual sense.

The notion that there is something special about conciousness, and that it cannot
be explained by the dynamical laws that govern all other physical processes, is anath-
ema to most scientists. It is reminiscent of vitalism; a theory which held that one
must look beyond the usual laws of physics and chemistry to explain the processes
which occur in living organisms. This theory was, of course, long ago discredited by
spectacular advances in molecular biology.

Still, von Neumann’s idea should not be rejected out of hand. Philosophers have
argued for centuries about the so-called mind/body problem, and there exist sophisti-
cated arguments to the effect that, e.g., a computer following a complicated algorithm
to simulate some aspect of human behavior can never actually ”understand” what it
is doing.1 In the absence of any well-established ”Theory of Consciousness,” it is not
entirely obvious that awareness can be explained entirely in terms of the dynamics
of molecules obeying the Schrodinger equation. von Neumann argues that mental
processes simply cannot be explained in this way, due to the absence of superimposed
mental states. His argument, although obviously radical, cannot be immediately
dismissed.

23.4 The ”Classic” Views (II): Bohr

Niels Bohrs’ view (a.k.a. ”the Copenhagen Interpretation”) is that the wavefunction
which represents the physical state of a microscopic object does not refer to the state

1A fascinating and recent exposition of this point of view is found in the book Shadows of the
Mind, by Roger Penrose.
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of the object in isolation from the observer. Rather, the wavefunction is a compact
representation of the observer’s information about the observables of a given object,
and merely describes the possible outcome of a series of measurements. Put another
way, the wavefunction does not refer to ”physical reality” per se, in the absence of an
observer; it serves only to predict and correllate measurements. If there is no observer,
then no meaning can be attached to a quantum-mechanical wavefunction. From this
point of view, the ”collapse” of the wavefunction does not describe a new physical
process; it is just a change in the information available to the observer, obtained by
measurement.

The main criticism that can be leveled at Bohr’s interpretation is that it becomes
meaningless to speak of the physical state of an object in the absence of an observer.
How, then, can we describe quantum-mechanical processes that may have occured
in nature prior to the evolution of human beings, or events which, for one reason
or another, may have escaped human scrutiny? In classical physics, every object in
the Universe has a physical state, a definite position and momentum, regardless of
whether or not human beings are around to measure that state. Not so for quantum
mechanics, at least in the Bohr interpretation. It is impossible, in this view, to
imagine that any object is in any definite quantum state, without at least an implicit
reference to the Observer.

The fact that human observers are somehow an essential feature of the quantum-
mechanical description of nature is, for some, a very troubling aspect of Bohr’s view.
In general, the Copenhagen interpretation has something of the flavor of logical pos-
itivism, a philosophy which holds that the purpose of science is to correllate mea-
surements, rather than describe some ”objective” reality. ”Objective reality,” in the
positivist view, is a meaningless concept, and science should be formulated entirely
in terms of quantities which can be measured directly. This view, in the hands of
Mach and others, had considerable influence on physics in the early 20th century, and
certainly the Copenhagen interpretation show traces of this influence.

It is a little distressing to think that science is not about Nature, but only about
correllating measurements. Still, the consistency of the Copenhagen interpretation,
and its ability to evade puzzles connected with the apparent non-local ”collapse” of
entangled wavefunctions, should not be underestimated. To the extent that there is
an ”official” interpretation of quantum theory, it would be the Copenhagen view.

In Preparation:
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23.5 The Many-Universe Interpretation

23.6 Non-Local Hidden Variables: The Bohm The-
ory

23.7 Decoherence and Consistent Histories
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Chapter 24

The Feynman Path Integral

In classical physics the Euler-Lagrange equations are derived from the condition that
the action S[x(t)] should be stationary. These second order equations are equiva-
lent to the first order Hamilton equations of motion, which are obtained by taking
appropriate derivatives of the Hamiltonian function H [q, p]. Now the Hamiltonian
is a quantity that we have encountered frequently in these pages. But what about
the action? It would be surprising if something so fundamental to classical physics
had no part at all to play in quantum theory. In fact, the action has the central
role in an alternative approach to quantum mechanics known as the ”path-integral
formulation.”

Lets start with the concept of a propagator. Given the wavefunction ψ(x, t) at
time t, the wavefunction at any later time t + T can be expressed as

ψ(x, t + T ) =
∫

dy GT (x, y)ψ(y, t) (24.1)

where GT (x, y) is known as the propagator, and of course it depends on the Hamilto-
nian of theory. In fact, given a time-independent Hamiltonian with eigenstates

Hφn(x) = Enφn(x) (24.2)

its easy to see that
GT (x, y) =

∑

n

φn(x)φ∗
n(y)e−iEnT (24.3)

Richard Feynman, in 1948, discovered a very beautiful expression for the propagator
in terms of an integral over all paths that the particle can follow, from point y at
time t, to point x at time t + T , with an integrand

eiS[x(t)]/h̄ (24.4)

As we will see, his expression can be taken as a new way of quantizing a mechanical
system, equivalent to the ”canonical” approach based on exchanging observables for
operators.

367
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To see how a sum over paths comes in, lets suppose that we knew the propagator,
for any Hamiltonian, when the time difference T = ε is tiny, i.e.

ψ(x, t + ε) =
∫

dy Gε(x, y)ψ(y, t) (24.5)

In that case, we could get the propagator for large time differences by using the
propagator successively, i.e.

ψ(x, t + 2ε) =
∫

dydx1 Gε(x, x1)Gε(x1, y)ψ(y, t)

ψ(x, t + 3ε) =
∫

dydx2dx1 Gε(x, x2)Gε(x2, x1)Gε(x1, y)ψ(y, t) (24.6)

and by induction

ψ(x, t + Nε) =
∫

dy
∫

(

N−1
∏

i=1

dxn

)

Gε(x, xN−1)Gε(xN−1, xN−2)...Gε(x1, y)ψ(y, t)

(24.7)
So the propagator, for the time difference T = Nε, has the form

GT (x, y) =
∫

(

N−1
∏

i=1

dxn

)

Gε(x, xN−1)Gε(xN−1, xN−2)...Gε(x1, y) (24.8)

Now a set of points:
y at time t
x1 at time t + ε
x2 at time t + 2ε
... ........ ....

xN−1 at time t + (N − 1)ε
x at time t + T

(24.9)

connected by straight lines, as shown in Fig. 24.1, is a path between point (y, t) and
point (x, t + T ). The integral in eq. (24.8) is therefore a sum over all paths between
these two points, which consist of N straight-line segments of equal time-duration
ε = T/N . Clearly, as N →∞, any continuous path between (y, t) and (x, t + T ) can
be approximated to arbitrary precision.

Its clear, then, that a propagator can be represented by a sum over paths. The
problem is to find an expression for Gε(x, y), which doesn’t involve first solving the
eigenvalue equation (24.2) and plugging the result into (24.3). Fortunately, if ε is very
small, we can deduce Gε(x, y) from the time-dependent Schrodinger equation. First,
approximate the time-derivative with a finite difference

ih̄
ψ(x, t + ε)− ψ(x, t)

ε
≈ Hψ(x, t) (24.10)



369

so that

ψ(x, t + ε) =
(

1 +
ε

ih̄
H
)

ψ(x, t) + O(ε2)

=

(

1− i
ε

h̄
V +

iεh̄

2m

d2

dx2
+ O(ε2)

)

ψ(x, t)

= e−iεV (x)/h̄

(

ψ(x, t) +
iεh̄

2m
ψ′′(x, t)

)

+ O(ε2) (24.11)

Now lets write y = x + η, and expand ψ(y, t) in eq. (24.5) in a Taylor series

ψ(x, t + ε) =
∫

dy Gε(x, y)ψ(y, t)

=
∫

dη Gε(x, x + η)
[

ψ(x) + ψ′(x)η +
1

2
ψ′′(x)η2 + ...

]

(24.12)

Comparing (24.11) and (24.12) we see that, to first order in ε, the propagator Gε(x, x+
η) must satisfy

∫

dη Gε(x, x + η) = e−iεV (x)/h̄

∫

dη Gε(x, x + η)η = 0
∫

dη Gε(x, x + η)η2 =
iεh̄

m
(24.13)

Its also clear from (24.5) that, in the ε → 0 limit, the propagator must become a
delta function, i.e.

lim
ε→0

Gε(x, x + η) = δ(η) (24.14)

Therefore, Gε(x, x + η) is a delta sequence. We have seen two examples of delta
sequences in Lecture 4; one involved the integral of eikx over a finite range, the other
was a gaussian. The gaussian delta-sequence, together with the first of the conditions
in eq. (24.13), motivates trying, as an ansatz

Gε(x, x + η) = e−iεV (x)/h̄

√

A

π
e−Aη2

(24.15)

which will be a delta-sequence if A→∞ as ε→ 0. It is easy to check that this ansatz
satisfies the first and second conditions in (24.13). The constant A is determined by
the third condition

iεh̄

m
=

√

A

π

∫

dη η2e−Aη2

=
1

2A
(24.16)
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Solving for A, and recalling η = x− y, we finally have to first order in ε,

Gε(x, y) =
(

m

2iπεh̄

)1/2

exp

[

i
ε

h̄

{

1

2
m
(

x− y

ε

)2

− V (x)

}]

(24.17)

The expression above for Gε(x, y) is not exact; there are O(ε2) corrections. If we
insert this expression into eq. (24.8), the result for GT (x, y) will not be exact either:
the product of T/ε terms will give an overall error of order ε. However, we can get
the exact result for GT (x, y) by taking the N →∞ (ε = T

N → 0) limit

GT (x, y)

= lim
N→∞

∫

(

N−1
∏

i=1

dxn

)

Gε(x, xN−1)Gε(xN−1, xN−2)...Gε(x1, y)

= lim
N→∞

∫

(

N−1
∏

i=1

dxn

)

(

m

2iπεh̄

)N/2

exp

[

i

h̄

N
∑

n=1

ε

(

1

2
m

(xn − xn−1)2

ε2
− V (xn)

)]

(24.18)

where we have defined x0 ≡ y and xN ≡ x. We now introduce the notation for the
integral over all possible paths

∫

Dx(t) ≡ lim
N→∞

∫

(

N−1
∏

i=1

dxi

)

(

m

2iπεh̄

)N−1/2

(24.19)

and note that in the ε→ 0 limit

lim
N→∞

N
∑

n=1

ε

(

1

2
m

(xn − xn−1)2

ε2
− V (xn)

)

=
∫ t+T

t
dt
(

1

2
mẋ2 − V (x)

)

= S[x(t)] (24.20)

where S[x(t)] is the action functional defined back in Lecture 1. At last we have
arrived at the Feynman Path Integral

GT (x, y) =
∫

Dx(t) eiS[x(t)]/h̄ (24.21)

In words, this equation says that the amplitude for a particle to propagate from point
y at time t to point x at time t + T is given by the integral over all possible paths
running between those two points, with each path weighted by the amplitude eiS,
where S is the action of the given path. Of course, the precise meaning of

∫

Dx(t),
the sum over paths, must be given in terms of a limit, namely, the limit of a multiple
integral, as the number of integrals goes to infinity. But recall that the precise meaning
of an ordinary integral is also in terms of a limit: the limit of a sum over very many
points, as the number of points tends to infinity.
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24.1 The Free Particle Propagator

One might wonder if the path-integral formulation is useful: Is it really possible to
carry out an infinite multiple integral? The answer is yes, if the integrand is gaussian.
Any gaussian integral can be done, no matter whether it is a single integral, a multiple
integral, or a path integral.

As an example, we will work out the propagator for a free particle by two methods:
first, by using eq. (24.3), and, second, from the Feynman path integral. For a free
particle

φp(x) =
1√
2πh̄

eipx/h̄

Ep =
p2

2m
(24.22)

so eq. (24.3) becomes

GT (x, y) =
∫ dp

2πh̄
exp

[

−
iT

2mh̄
p2 +

i(x− y)

h̄
p

]

(24.23)

Using the gaussian integral formula
∫

dp e−ap2+bp =
√

π

a
eb2/4a (24.24)

we find

GT (x, y) =
1

2πh̄

(

π

iT/(2mh̄)

)1/2

exp

[

−
(x− y)2/h̄2

4iT/(2mh̄)

]

=
(

m

2iπh̄T

)1/2

exp

[

i
m(x− y)2

2h̄T

]

(24.25)

Now lets try to compute the same quantity by the path-integral method. We have

GT (x, y) = lim
N→∞

B−N
∫

dxN−1dxN−2...dx1 exp

[

−
m

2ih̄ε

N
∑

n=1

(xn − xn−1)
2

]

(24.26)

where

B =

(

2πiεh̄

m

)1/2

(24.27)

Factors like (xk − xk−1)2 couple together the integrals together. What we need is a
change of variables which will uncouple them, so that we can do the integrals one-
by-one. This is accomplished by the change of variables

zk = xk − xk−1

N−1
∑

n=1

zk = xN−1 − y (24.28)



372 CHAPTER 24. THE FEYNMAN PATH INTEGRAL

(recall that x = xN , y = x0), and let

a =
m

2iεh̄
(24.29)

Then

GT (x, y)

= lim
N→∞

B−N
∫

dzN−1dzN−2...dz1 exp

[

−a(x− xN−1)
2 − a

N−1
∑

k=1

z2
k

]

= lim
N→∞

B−N
∫

dzN−1dzN−2...dz1 e−a
∑N−1

k=1
z2
k exp

[

−a(x− y −
N−1
∑

k=1

zk)
2

]

= lim
N→∞

B−N
∫

dzN−1dzN−2...dz1 e−a
∑N−1

k=1
z2
k

∫

du e−a(x−y−u)2δ

[

u−
N−1
∑

k=1

zk

]

= lim
N→∞

B−N
∫

dzN−1dzN−2...dz1 e−a
∑N−1

k=1
z2
k

∫

du e−a(x−y−u)2
∫ dq

2π
eiq(u−

∑N−1

k=1
zk)

= lim
N→∞

B−N
∫ dq

2π

∫

due−a(x−u−y)2eiqu
N−1
∏

n=1

∫

dzke
−az2

k
+iqzk (24.30)

At this point, we again use the gaussian integral formula to do each of the N − 1
integrals over the {zk}. This gives us

GT (x, y) = lim
N→∞

B−N
∫ dq

2π

∫

due−a(x−u−y)2eiqu
[
√

π

a
e−q2/4a

]N−1

=
(π

a

)(N−1)/2

lim
N→∞

B−N
∫ dq

2π

∫

due−a(x−u−y)2eique−(N−1)q2/4a(24.31)

Finally, in rapid succession, we do the gaussian integrals over q and then u,

GT (x, y) = lim
N→∞

B−N
(

π

a

)(N−1)/2 1

2π

√

π

(N − 1)/4a

∫

due−a(x−u−y)2 exp[−
u2

4(N − 1)/4a
]

= lim
N→∞

B−N
(π

a

)(N−1)/2 1

2π

√

π

(N − 1)/4a

∫

due−a(x−u−y)2e−a(x−y)2/(N−1)

= lim
N→∞

B−N
(

π

a

)(N−1)/2 1

2π

√

4aπ

(N − 1)

√

π

a
e−a(x−y)2/(N−1) (24.32)

Inserting the expression for B, we get

GT (x, y) = lim
N→∞

[

m

2πih̄ε

]N/2
[

2πiεh̄

m

]N/2 √
a

π(N − 1)
e−a(x−y)2/(N−1)

= lim
N→∞

√

m

2πih̄ε(N − 1)
exp

[

−
m(x− y)2

2ih̄ε(N − 1)

]

(24.33)
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and finally, using T = Nε, we have in the N →∞ limit

GT (x, y) =
√

m

2πih̄T
eim(x−y)2/(2h̄T ) (24.34)

which is in perfect agreement with the expression obtained using eq. (24.3).

24.2 Stationary Phase and the Functional Deriva-
tive

A function f is a kind of input/output device. Input is a number x, output is another
number f(x). A generalization of the concept of function is the functional, which is
also an input/output device. Input is a function f(x), output is a number F [f(x)].
An example of a functional is the action S[x(t)]. Input is trajectory, x(t), between
times t1 and t2. Output is a number, the action of the trajectory

S[x(t)] =
∫ t2

t1
dt

{

1

2
mẋ2 − V (x(t))

}

(24.35)

An ordinary integral sums the values of a function over all points in a certain
range. A functional integral sums the values of a functional over all functions in a
certain range. The Feynman path integral

∫

Dx(t) eiS[x(t)]/h̄ (24.36)

is a functional integral.
If there is such a thing as integration of a functional, one expects also a cor-

responding concept of differentiation, which would express how fast the functional
changes when its argument (the function), changes in a certain way. The functional
derivative is defined, in analogy to ordinary derivatives, in the following way:

δF

δf(x)
≡ lim

ε→0

F [f(x′) + εδ(x− x′)]− F [f(x′)]

ε
(24.37)

This quantity is essentially a measure of how fast the functional changes when its
argument (the function) is changed in the region of point x′ = x. Most of the
usual lore about ordinary derivatives, e.g. the chain rule, holds true for functional
derivatives as well. A particular, very important case is when the functional depends
only on the value of the input function at one particular point, e.g. F (f) = f(y). In
this case

δ

δf(x)
f(y) = lim

ε→0

(f(y) + εδ(y − x))− f(y)

ε

= δ(x− y) (24.38)
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This example generalizes in a straightforward way

δ

δf(x)
fn(y) = lim

ε→0

(f(y) + εδ(y − x))n − fn(y)

ε

= nfn−1(y)δ(x− y)

δ

δf(x)
R(f(y)) = lim

ε→0

R(f(y) + εδ(y − x))− R(f(y))

ε

=
∂R(f(y))

∂f(y)
δ(x− y) (24.39)

Functional differentiation is the easiest and quickest way to derive the Euler-
Lagrange equations of motion, from the condition

δS

δx(t)
= 0 (24.40)

that the action should be stationary with respect to an infinitesmal change of path.
This works as follows:

0 =
δS

δx(t)

=
δ

δx(t)

∫

dt′
{

1

2
mẋ2 − V (x(t′))

}

=
∫

dt′
{

1

2
m

δ

δx(t)
ẋ2 −

δ

δx(t)
V (x(t′))

}

(24.41)

Now, using the definition of the functional derivative and the properties of delta
functions, we have

m
δ

δx(t)
ẋ2 = lim

ε→0

[∂t′(x(t′) + εδ(t− t′))]2 − (∂t′x(t′))2

ε

= 2ẋ(t′)∂t′δ(t− t′)

= −2∂2
t′x(t′)δ(t− t′) (24.42)

Then

0 =
∫

dt′
{

−m∂2
t′x(t′)δ(t− t′)−

∂V (x(t′))

∂x(t′)
δ(t− t′)

}

= −m∂2
t x−

∂V

∂x
(24.43)

which is, of course, Newton’s Law of motion F = ma.
To get a little more practice with functional derivatives, lets find the equations of

motion for a wave on a string. Denote the wavefunction of the string (which in this
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case just means the displacement of the string at point x and time t, by φ(x, t). The
action of the string is known to be

S[φ] = µ
∫

dt′
∫

dx′
{

1

2
(∂t′φ(x′, t′))2 −

v2

2
(∂x′φ(x′, t′))2

}

(24.44)

where µ is the string mass per unit length. Then the equation of motion for the
string is found from the condition that the action is stationary with respect to small
variations in φ(x, t), i.e.

0 =
δ

δφ(x, t)
S[φ(x′, t′)]

= lim
ε→0

S[φ(x′, t′) + εδ(x− x′)δ(t− t′)]− S[φ(x′, t′)]

ε

= µ
∫

dt′
∫

dx′
{

1

2

δ

δφ(x, t)
(∂t′φ(x′, t′))2 −

v2

2

δ

δφ(x, t)
(∂x′φ(x′, t′))2

}

= µ
∫

dt′dx′
{

∂t′φ(x′, t′)∂t′
δφ(x′, t′)

δφ(x, t)
− v2∂x′φ(x′, t′)∂x′

δφ(x′, t′)

δφ(x, t)

}

(24.45)

and using
δφ(x′, t′)

δφ(x, t)
= δ(x− x′)δ(t− t′) (24.46)

and the property
f(x)∂xδ(x− y) = −[∂xf(x)]δ(x− y) (24.47)

we obtain

0 = µ
∫

dx′dt′
{

−∂2
t′φ(x′, t′) + v2∂2

x′φ(x′, t′)
}

δ(x− x′)δ(t− t′) (24.48)

which finally leads us to the classical equation of motion, namely, the wave equation

∂2φ

∂t2
− v2∂

2φ

∂x2
= 0 (24.49)

Its now easy to understand the relationship between the Feynman path integral
and classical physics. Lets ask the question of which paths, out of all possible paths
between two points (x1, t1) and (x2, t2), give the largest contribution to the path
integral

∫

Dx(t) eiS[x(t)]/h̄ (24.50)

Now the contribution of each path to the integral has the same magnitude, since eiS/h̄

is just a complex number of modulus 1. However, if S >> h̄, then for most paths a
small variation δx(t) in the path will cause an enormous change in the phase S/h̄ the
integrand. Therefore, the contributions from nearby paths oscillate wildly in phase,
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and tend to cancel each other out. The exception is for paths in the vicinity of a path
where the phase S/h̄ is stationary. For paths in that vicinity, the contributions to
the functional integral have nearly the same phase, and hence sum up contructively.
But the path where the phase is stationary is the path xcl(t′) such that

(

δS

δx(t)

)

x=xcl

= 0 (24.51)

As we have seen, this is just the condition that the path xcl(t) is a solution of the
classical equations of motion. Therefore, for S >> h̄, the path integral is domi-
nated by paths in the immediate vicinity of the classical trajectory xcl(t). In the limit
h̄ → 0, only the classical path (and paths infinitesmally close to the classical path)
contributes. The ”semiclassical” or WKB approximation to the Feynman path in-
tegral is, in fact, the approximation of evaluating the integral in the neighborhood
single configuration xcl(t), i.e.

GT (x, y) =
∫

Dx(t) eiS[x(t)]/h̄

≈ prefactor× eiS[xcl(t)]/h̄ (24.52)

where the prefactor is a numerical term which comes from integrating over small
variations δx around xcl(t).

Problem - For some problems, the WKB approximation works extremely well,
even if S[x, t] is not so large compared to h̄. Apply this approximation to find the
propagator of a free particle, and compare it to the exact result.

24.3 Operators from Path Integrals

Given a trajectory, x(t), one can always define a momentum, mẋ(t). Then a natural
way to define a momentum operator acting on a wavefunction at time tf is in terms
of the path-integral

p̃ψ(xf , tf) ≡
∫

dy
∫

Dx(t) mẋ(tf)e
iS/h̄ψ(y, t0) (24.53)

where the paths run from (x0, t0) to (xf , tf ), and ψ(x, t0) is the wavefunction at any
earlier time t0 < tf . Let us take t = tf and t0 = t− ε, and then go to the limit ε→ 0.
In that case

p̃ψ(x, t) ≡ lim
ε→0

∫

dy m
(x− y)

ε
Gε(x, y)ψ(y, t− ε)

= lim
ε→0

∫

dy m
(x− y)

ε

( m

2πiεh̄

)1/2

exp
[

i
m

2εh̄
(x− y)2 − i

ε

h̄
V (x)

]

ψ(y, t− ε)

= lim
ε→0

∫

dy m
(x− y)

ε

( m

2πiεh̄

)1/2

exp
[

i
m

2εh̄
(x− y)2

]

ψ(y, t− ε) (24.54)
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where we have dropped the term in the exponent proportional to V (x), since that
term is negligible in the ε→ 0 limit. Now change variables to z = y − x. Then

p̃ψ(x, t)

= lim
ε→0

(

m

2πiεh̄

)1/2 m

ε

∫

dz (−z) exp
[

i
m

2εh̄
z2
]

ψ(x + z, t− ε)

= lim
ε→0

(

m

2πiεh̄

)1/2 m

ε

∫

dz (−z) exp
[

i
m

2εh̄
z2
]

ψ(x, t− ε) + ψ′(x, t− ε)z + O(z2)]

= − lim
ε→0

(

m

2πiεh̄

)1/2 m

ε

dψ

dx

∫

dz z2 exp
[

i
m

2εh̄
z2
]

(24.55)

The term proportional to z drops out in the integration, because z is an odd function
whereas the exponent is even. Also, terms of order z3 and higher disappear in the
ε → 0 limit. Performing the gaussian integral and taking the ε → 0 limit we finally
obtain

p̃ψ(x, t) = − lim
ε→0

( m

2πiεh̄

)1/2 m

ε

dψ

dx

(

−
π

im/(2εh̄)

)1/2
iεh̄

m

= −ih̄
dψ

dx
(24.56)

which is the same rule that we had deduced previously, in Lecture 5, from Ehrenfest’s
principle.

Problem - Use the same analysis to find the operator corresponding to p̃2. Note
that, if you use only a single integral as above, and just replace

m
(x− y)

ε
by m2 (x− y)2

ε2
(24.57)

something goes wrong! Can you figure out how to fix it?

24.4 Path-Integration as Quantization

Having derived the path-integral from the Schrodinger equation, one can of course
go in the other direction, i.e. derive the Schrodinger equation starting from the
concept of an integration over paths. We have seen that path-integrals with gaussian
integrands can be evaluated exactly; integrands with non-gaussian terms can often
be evaluated approximately by a perturbation technique. We have also seen that
path-integrals lead to the usual form of the momentum operator. Logically, the path-
integral approach is an alternative to canonical quantization based on commutators;
either method can be used to quantize a classical theory.
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Why then, have we spent the whole year following the Schrodinger equation ap-
proach? Why not begin with path-integral, and solve bound-state and scattering
problems by that method? In fact, such an approach to teaching non-relativistic
quantum mechanics can be and has been followed, by Feynman himself. The results
are enshrined in a textbook by Feynman and Hibbs. However, no other elementary
textbook, and not many instructors, have followed Feynman’s example. The reason
is simply that, in non-relativistic quantum mechanics, the path-integral is a rather
cumbersome procedure for solving problems, as compared to the Schrodinger equa-
tion.

In relativistic quantum field theory, however, the situation is different: for very
many problems it is the path-integral technique which is easier to use, and better
adapted than operator methods to the thorny technicalities that are encountered. As
a bonus, the path-integral formulation is naturally suited to various non-perturbative
approximation methods, such as the Monte Carlo procedure, in cases where pertur-
bation theory cannot be applied. Finally, there are interesting and deep connections
between quantum field theory, based on the Feynam path integral, and statistical
mechanics, based on the analysis of a partition function. But this is a long story, to
be taught in another, more advanced, course.



Chapter 25

A Glimpse of Quantum Field
Theory

25.1 The Quantization of Sound

Strike a solid at any point, and you generate a sound wave traveling through the solid.
On a microscopic level, a solid is a regular arrangement of atoms, and a sound wave
is simply a particular vibration of those atoms. But the motion of atoms should be
treated quantum mechanically. What, then, is the quantum mechanics of sound?

As usual, simplify. Our model will be a one-dimensional solid with periodic bound-
ary conditions. This is similar to the Kronig-Penney model, except the atoms are
allowed to vibrate. There are N atoms; the coordinate of the n-th atom is xn, and
its classical equilibrium position is xn0. Periodic boundary conditions mean that
xn+N = xn. Denote the displacement of the n-th atom from its equilibrium position
by

qn = xn − xn0 (25.1)

Assuming only nearest-neighbor atoms interact, we can write the potential as a sum
of two-body potentials, which we expand in Taylor series

V =
N
∑

n=1

f(qn+1 − qn)

=
N
∑

n=1

[f(0) + f ′(0)(qn+1 − qn) +
1

2
f ′′(0)(qn+1 − qn)2 + ...] (25.2)

The constant term is physically irrelevant, so set f(0) = 0 for convenience. Due to
the periodic boundary conditions qN+1 = q1,

N
∑

n=1

(qn+1 − qn) = 0 (25.3)

379
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so the second term is also zero. Then the potential must have the form

V =
1

2
K

N
∑

n=1

(qn+1 − qn)2 (25.4)

for small displacements of the atoms around equilibrium, where K ≡ f ′′(0). The
Hamiltonian is

H =
N
∑

n=1

[

1

2m
p2

n +
1

2
K(qn+1 − qn)2

]

(25.5)

where pn is the momentum of the n-th atom. Upon quantization,

pn → −ih̄
∂

∂xn
= −ih̄

∂

∂qn
(25.6)

and the N-body Schrodinger equation for the solid is

N
∑

n=1

[

−
h̄2

2m

∂2

∂q2
n

+
1

2
K(qn+1 − qn)2

]

Ψ[{qi}] = EΨ[{qi}] (25.7)

The system has a ground state, denoted Ψ0. Quantized sound waves can only corre-
spond to excited states of the system.

The Schrodinger equation above is a partial differential equation in N ∼ 1023

variables. The only chance of solving it is by the method of separation of variables.
Introduce the finite Fourier transform

qn =
1√
N

(N−1)/2
∑

k=−(N−1)/2

Qk exp[i
2πn

N
k]

pn =
1√
N

(N−1)/2
∑

k=−(N−1)/2

Pk exp[i
2πn

N
k] (25.8)

which automatically incorporates periodic boundary conditions. Using the identity

N
∑

n=1

exp[i
2π(k − k′)

N
n] = Nδkk′ (25.9)

we can write the inverse transform

Qk =
1√
N

N
∑

n=1

qn exp[−i
2πk

N
n]

Pk =
1√
N

(N−1)/2
∑

k=−(N−1)/2

pn exp[−i
2πk

N
n] (25.10)
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By taking the complex conjugate of these inverse transforms, and using the fact that
qn and pn are real numbers, we see that

Q∗
k = Q−k P ∗

k = P−k (25.11)

The wonderful thing about this transformation is that the Hamiltonian, written in
terms of Qk, Pk, is separable, i.e.

∑

n

q2
n =

1

N

∑

n

∑

k1

∑

k2

Qk1
Qk2

exp[i
2π(k1 + k2)

N
n]

=
∑

k

QkQ−k

∑

n

p2
n =

1

N

∑

n

∑

k1

∑

k2

Pk1
Pk2

exp[i
2π(k1 + k2)

N
n]

=
∑

k

PkP−k

∑

n

qn+1qn =
1

N

∑

n

∑

k1

∑

k2

Qk1
Qk2

exp[i
2π(k1 + k2)

N
n]ei2πk1/N

=
∑

k

QkQ−ke
i2πk/N

=
∑

k

QkQ−k cos[2πk/N ] (25.12)

Put it all together,

H =
∑

k

{

1

2m
PkP−k + K[1− cos(

2π

N
)]QkQ−k

}

(25.13)

We still need to know the commutation relations between P and Q:

[Qk, Pk′] =
1

N

∑

n

∑

n′

[qn, pn′] exp[−i
2π

N
(kn + k′n′)]

= ih̄δk,−k′ (25.14)

Thus,

Pk = −ih̄
∂

∂Q−k
(25.15)

In this way the Hamiltonian of the 1-dimensional solid has been rewritten as a sum
of harmonic oscillator Hamiltonians

H =
∑

k

[

1

2m
PkP−k +

1

2
σkQkQ−k

]

(25.16)

where
1

2
σk ≡ K[1− cos(

2πk

N
)] (25.17)
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As in the ordinary harmonic-oscillator problem, we solve HΨ = EΨ by introducing
raising-lowering operators

ak =
√

mωk

2h̄

[

Qk +
i

mωk
Pk

]

a†
k =

√

mωk

2h̄

[

Q−k −
i

mωk
P−k

]

Qk =

√

h̄

mωk
(ak + a†

−k)

Pk =
1

2i

√

2h̄mωk(ak − a†
−k) (25.18)

where

ωk =
√

σk

m
(25.19)

In terms of these operators, one finds that

H =
∑

k

h̄ωk(a
†
kak +

1

2
) (25.20)

where
[ak, a

†
k′] = δk,k′ (25.21)

The problem has been reduced to solving the dynamics of a set of uncoupled harmonic
oscillators; one oscillator for each wavenumber k in the range − 1

2(N − 1) ≤ k ≤
1
2(N − 1).

All lowering operators annihilate the harmonic-oscillator ground state, so we re-
quire that, for all wavenumbers k

akΨ0[Q] = 0 (25.22)

or

h̄
∂

∂Q−k
Ψ0 = −mωkQkψ0 (25.23)

This equation can be solved by inspection, and we have, for the ground state of the
solid,

Ψ0 = N exp

[

−
m

h̄

∑

k

ωkQkQ−k

]

= N exp

[

−
√

m

h̄

∑

k

{2K(1− cos(
2πk

N
)}1/2QkQ

∗
k

]

(25.24)

with ground-state (or ”zero-point”) energy

E0 =
∑

k

1

2
h̄ωk (25.25)
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In classical physics, there are no sound vibrations at all in a solid at zero temperature;
each atom is at rest in its equilibrium position xn = xn0. Quantum-mechanically,
of course, the atoms cannot be in such a position eigenstate, because, due to the
Uncertainty Principle, this would imply an infinite kinetic energy for each atom.
Thus, even at zero temperature, the atoms have a finite kinetic/potential energy of
vibration, which is why E0, the vibational energy at zero temperature, is sometimes
called the ”zero-point” energy

To get the excited states, its sufficient to observe that

[H, a†
k] = h̄ωka

†
k =⇒ Ha†

k = a†
k(H + h̄ωk) (25.26)

Repeated use of this commutator shows us that

HΨnanb...np = Enanb...npΨnanb...np (25.27)

where
Ψnanb...np = (a†

ka
)na(a†

kb
)nb...(a†

kp
)npΨ0 (25.28)

are the wavefunctions of the excited energy eigenstates, and

Enanb...np = nah̄ωa + nbh̄ωb + ... + nph̄ωp + E0 (25.29)

Interpretation: A glance at (25.8) shows that Qk is essentially the amplitude of a
vibrational (sound) wave of wavenumber k, propagating through the solid. Suppose
we try to excite such waves in the solid, by striking it at some given frequency.
In classical physics, the corresponding sound waves could have any energy at all,
depending on how vigorously we strike the solid. But quantum-mechanically, we
have just discovered that the energy of such sound waves is quantized in units of h̄ωk;
i.e. the energy that can be added to the solid, by exciting vibrations of wavenumber
k, can only be one of the possible values

∆E = nh̄ωk (25.30)

Where have we seen this equation before? It is, of course, Planck’s condition
for the energy in a radiation field, where ωk = 2πf is the angular frequency of
the radiation. Einstein’s interpretation of Planck’s formula, back in 1905, was that
the energy of the radiation field of a given frequency is subdivided in the form of
photons, each of which propagates through space like a particle of energy hf . By
quantizing the oscillations of a solid, we have found the same phenomenon. The
energy of sound vibrations of a solid, of a given wavenumber, is carried in the form
of particle-like excitations known as phonons, which propagate through the solid
with momentum proportional to wavenumber k, and energy equal to h̄ωk. For this
reason, we drop the ”raising/lowering” operator terminology, and refer to a†

k and
ak as creation/destruction operators, respectively, because they create/destroy
individual phonons in the solid.
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Of course, a phonon isn’t ”really” a particle, in the sense that one could trap such
an object, extract it from the solid, and (say) look at it under a microscope. What
is ”really” in the solid are the atoms which compose it. Phonons, even though they
carry energy and momentum, and even though they scatter (like particles) off impu-
rities in the solid and off one another, are merely convenient labels for the quantized
vibrational states of the underlying solid.

What to say, then, about photons? Are they, or are they not, elementary particles?

25.2 The Quantization of Light

Quantum mechanics began with Planck’s discovery that the energy of an electromag-
netic field must be divisible in units of hf . Then came Einstein’s identification of
those units as particles, ”photons.” Then came the Compton effect, the Bohr atom,
De Broglie waves, the Schrodinger equation...and then came a lot, some of which we
have touched on in this course. Now its time to return to the beginning. Why is
the energy of a radiation field quantized in units of hf? What happens if we apply
the principles of quantum mechanics, which was developed to describe the motion of
electrons and other particles, to the dynamics of the electromagnetic field?

First of all, what are the degrees of freedom of the system we are quantizing? An
electron only has a few: the position degrees of freedom (x, y, z), and the spin state.
The electromagnetic field, on the other hand, has an electric field %E and a magnetic
field %B defined at every point in space; the number of degrees of freedom must be
infinite! But how many independent degrees of freedom are there, exactly, per point?

A first guess might be that there are six degrees of freedom per point, namely the
three components of the electric field, and the three components of the magnetic field.
But this can’t be right. First of all, not all of the components of %E and %B are indepen-
dent (think of the no-monopole equation ∇ · B = 0). Secondly, Maxwell’s equations
are first-order differential equations, which means that they must be Hamiltonian,
rather than Euler-Lagrange, equations of motion. This implies that some of the E, B
fields are actually canonical ”momenta”, rather than canonical ”coordinates.”

The key to obtaining the degrees of freedom corresponding to canonical coordi-
nates is the introduction of the 4-vector potential Aµ(x) = {A0, A1, A2, A3}. Often A0

is called the ”scalar potential,” and the remaining three components %A = {A1, A2, A3}
are referred to as the ”3-vector potential,” or just ”vector potential.” In terms of the
4-vector potential, the electric and magnetic field strengths are expressed as

%E = −∇A0 − ∂t
%A

%B = ∇× %A (25.31)

Written in this form, the E, B fields automatically satisy the the no-monopole equa-
tion, and also Faraday’s Law. All that is necessary is to write an action as a functional
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of Aµ, whose stationarity condition supplies the other two of Maxwell’s equations,
namely Gauss’ and Ampere’s Law

(Note: From here on, I am going to adopt a system of units which is
popular among particle physicists, in which h̄ = c = 1.)

This action is given by

S =
∫

dt L[A, Ȧ]

=
1

2

∫

dt
∫

d3x [ %E2 − %B2]

=
1

2

∫

dt
∫

d3x [(∇A0 − ∂t
%A)2 − (∇× %A)2] (25.32)

Its easy to check that the two remaining Maxwell equations (Gauss’ Law and Ampere’s
Law) are given by the stationary phase condition

δS

δA0
= 0 =⇒ ∇ · %E = 0

δS

δAk
= 0 =⇒ ∂tE −∇×B = 0 (25.33)

This action can be used for Feynman path-integral quantization of the electromagnetic
field, but let us instead derive a Schrodinger equation. For that purpose we would like
to go the Hamiltonian formulation, but at this stage we encounter a stupid technical
complication. In order to go from the action to the Hamiltonian, we have to define
momenta

Pµ =
δL

δȦµ

(25.34)

The problem is that the Lagrangian contains no time derivative of the scalar potential
A0. This means that P0 = 0!

In this course, the fact that P0 = 0 is just an annoying technicality, which we have
to deal with in some way before proceeding. There is actually a considerable body of
theory on this precisely this sort of phenomenon in what are known as ”constrained
dynamical systems,” but, to make a long story short, what it indicates is that not all
field configurations Aµ are physically distinguishable. Let Aµ be a field configuration,
and A′

µ be another field configuration. If one can find a function φ(x, t) such that the
two field configurations are related by gauge transformation

A′
µ(x, t) = Aµ(x, t) + ∂µφ(x, t) (25.35)

then A and A′ have exactly the same electric and magnetic fields. They are, therefore,
physically equivalent. Four degrees of freedom per point is still too much, at least one
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degree of freedom is redundant; a given set of E, B fields does not uniquely specify
the vector potential. So let us use the gauge freedom to eliminate one more degree
of freedom, by imposing an additional condition F [A] = 0 on the A-fields. Some
popular examples are

A0 = 0 temporal gauge
A3 = 0 axial gauge
∇ · %A = 0 Coulomb gauge
∂µAµ = 0 Landau gauge

(25.36)

For our purposes, the most convenient gauge is temporal gauge, A0 = 0, because this
immediately solves the P0 = 0 problem. If we remove A0 from the start, then of
course it has no corresponding momentum. However, we then lose the Gauss Law,
because this is derived by varying S with respect to A0. So what we have to do is
impose the Gauss Law ∇ · E = 0 as a supplementary condition on our initial data,
before solving the other equations of motion. In quantum theory, one requires that
Gauss’ Law is satisfied as an operator equation

(∇ · E)Ψ = 0 (25.37)

on all physical states.
All of this business with gauge invariance just looks like a nasty technicality which

complicates the quantization of electromagnetism, and so it is. It is only in a more
advanced course, on quantum field theory, that one learns that the principle of gauge
invariance is one of the jewels of theoretical physics; it is our guiding light in con-
structing theories of the the strong, weak, electromagnetic (and even gravitational)
interactions.

Having decided to use the gauge transformation to set A0 = 0, we proceed to
construct the Hamiltonian. The main difference in procedure, compared to that in
Lecture 1, is that ordinary derivatives are replaced by functional derivatives. Thus

Pi =
δL

δȦi

= Ȧi

= Ei (25.38)

and

H =
{
∫

d3x Pi(x)Ȧi(x)
}

− L

=
1

2

∫

d3x [ %E2 + %B2]

=
1

2

∫

d3x [%P 2 + (∇× %A)2] (25.39)
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Its worth stressing that in Hamiltonian formulation, in A0 = 0 gauge, the canonical
variables are {Ai, Ei}, with the electric field Ei = Pi as the momentum variable
conjugate to the 3-vector potential Ai. Ampere’s Law follows from the Hamilton
equations of motion

Ȧi(x) =
δH

δPi(x, t)

= Ei(x) = Pi(x)

Ṗi(x) = −
δH

δAi(x)

= (∇× %B(x))i (25.40)

which, taken together, give
∂t

%E −∇× %B = 0 (25.41)

Of the remaining three Maxwell equations, Faraday’s Law and∇· %B = 0 are identities,
which follow from expressing E, B in terms of the vector potential A. The remaining
Gauss Law, ∇ · %E = 0, we have agreed to carry along separately without deriving it
from the Hamiltonian; this was the price for imposing A0 = 0.

Now quantize. The Schrodinger equation and the momentum operator can be
derived, as before, from Ehrenfest’s principle

∂t < Ai > = <
δH

δPi(x, t)
>

∂t < Pi > = − <
δH

δAi(x, t)
> (25.42)

but there are no surprises, and in the end one finds that, just as in ordinary quantum
mechanics

∂tΨ[A] = HΨ[A]

H =
∫

d3x [%P 2 + (∇× %A)2]

Pi(x) = −i
δ

δAi(x)
(25.43)

Note that

[Ai(x), Pj[x
′)] = [Ai(x), Ej(x

′)]

= iδijδ(x− x′) (25.44)

is the generalization of [x, p] = ih̄ in non-relativistic quantum mechanics. We still have
to impose the Gauss Law constraint, and this is done by imposing the corresponding
operator constraint

(∇ · E)Ψ = −i∂i
δ

δAi
Ψ = 0 (25.45)
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Only states satisfying this condition, in A0 = 0 gauge, are to be regarded as physical
states.

To see what the Gauss Law constraint implies, lets subdivide the vector potential
into a transverse part AT and a longitudinal part AL:

Ai(x) = AT
i (x) + AL

i (x) (25.46)

where
∇ · AT = 0 ∇×AL = 0 (25.47)

Define also

Ei(x) = ET
i (x) + EL

i (x)

= −i
δ

δAT (x)
− i

δ

δAL(x)
(25.48)

The Gauss Law constraint becomes

0 = ∇ · EΨ

= ∇ · ELΨ

= −i∂i
δ

δAL
i

Ψ (25.49)

which is satisfied if Ψ is independent of the longitudinal degree of freedom AL, i.e.

Ψ[Ai] = Ψ[AT ] (25.50)

As in the case of the one-dimensional solid, we want to be able to separate vari-
ables, and write the Hamiltonian as a sum of harmonic oscillators. Again, this is done
by going to the Fourier-transformed variables

Ai(x) = AT
i (x) + AL

i (x)

=
∫ d3k

(2π)3
[AT

i (k) + AL
i (k)]eikx (25.51)

with
%k · %AT = 0 %k × %AL = 0 (25.52)

The Fourier component %A(k) can be regarded as the amplitude of a wave traveling in
the %k direction. %AT is the component perpendicular to the direction of propagation,
while %AL is the component parallel to the direction of propagation.

Substitute the Fourier-transformed AL,T and EL,T into the Hamiltonian, and we
find that it takes the form

H =
1

2

∫ d3k

(2π)3
[ET

i (k)ET
i (−k) + EL

i (k)EL
i (−k) + k2AT

i (k)AT
i (−k)] (25.53)
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But EL = −iδ/δAL, and we have seen that Ψ[A] doesn’t depend on AL, by the Gauss
Law constraint. So the time-independent Schrodinger equation becomes

1

2

∫ d3k

(2π)3

[

−
δ2

δAT
i (k)δAT

i (−k)
+ k2AT

i (k)AT
i (−k)

]

Ψ[AT ] = EΨ[AT ] (25.54)

Once again, the Hamiltonian has the form of a sum over harmonic oscillator terms.
The ground-state solution, which must be a gaussian for any system of uncoupled
harmonic oscillators, can be written down almost by inspection:

Ψ0[A] = N exp
[

−
1

2

∫

d3k|k|AT
i (k)AT

i (−k)
]

(25.55)

and this can easily be converted back to a functional of A(x):

Ψ0 = N exp

[

−
1

2

∫

d3k
1

|k|
(k ×AT (k)) · (k ×AT (−k))

]

= N exp

[

−
1

2

∫

d3k

(

4π
∫ d3z

(2π)3

1

z2
eikz

)

(
∫

d3x1 i∇x1
× A(x1)e

ikx1

)

·
(
∫

d3x2 i∇x2
× A(x2)e

−ikx2

)]

(25.56)

Integration over k and z leads, finally, to one of my favorite equations in physics, the
ground state wavefunctional of the electromagnetic field

Ψ0[A] = N exp



−
1

4π

∫

d3xd3y
%B(x) · %B(y)

|x− y|2



 (25.57)

Substituting this state back into the Schrodinger equation, we easily find the zero-
point ground state energy

E0 =
1

2

∫ d3k

(2π)3
|k|δ3(0) (25.58)

which is infinite. This infinity is not surprising, because we are quantizing an infinite
number of degrees of freedom, each of which has a finite zero-point energy.

The ground state of a quantum field theory is known, quite rightly, as the ”vac-
uum” state; it is the lowest energy state attainable. It also shows us that the vacuum
is not ”nothing.” Even in the absence of any sources, even in the lowest energy state
possible, there are still quantum fluctuations of the electromagnetic field. In the end,
this is a consequence of the Uncertainty Principle. If the vector potential were every-
where vanishing, so that the uncertainty ∆A = 0, the uncertainty of the electric field
(the conjugate momentum) would be infinite. This would give an energy expectation
value even more strongly divergent than E0; each degree of freedom would contribute
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an infinite amount of energy. The ground state (25.57) is the lowest energy com-
promise, consistent with the Uncertainty Principle, between the energy due to the
”potential” term %B2, and the energy due to the ”kinetic” term %E2, in the quantized
Hamiltonian.

To find the excited state wavefunctionals and energies, we need to introduce raising
and lowering operators. Since the degrees of freedom, both in the Hamiltonian and in
the physical states, are the transverse components of the vector potential, we need to
extract these from the full vector potential. To this end, for a given %k, let us introduce
two unit (polarization) vectors which are orthogonal to %k and to each other:

%ελ(k) · %ελ′(k) = δλλ′

%ελ(k) · %k = 0 (25.59)

where the superscipts are λ = 1, 2. Then we can always write a transverse vector %AT

or %ET as a superposition of vectors in the %ε1 and %ε2 directions. Now introduce the
creation/destruction operators

a(k, λ) =
1

√

2|k|
ελi (k)

[

|k|Ai(k) +
δ

δAi(−k)

]

=
1

√

2|k|
ελi (k)

[

|k|AT
i (k) +

δ

δAT
i (−k)

]

a†(k, λ) =
1

√

2|k|
ελi (k)

[

|k|Ai(−k)−
δ

δAi(k)

]

=
1

√

2|k|
ελi (k)

[

|k|AT
i (−k)−

δ

δAT
i (k)

]

(25.60)

It is straighforward to verify that

1. these operators have the standard raising/lowering commutation relations

[a(k, λ), a(k′, λ′)] = δλλ′δ
3(x− x′) (25.61)

2. the destruction operators all annihilate the ground state

a(k, λ)Ψ0 = 0 for all k (25.62)

3. the Hamiltonian can be expressed, in terms of these operators, as

H =
∫

d3k |k|
∑

λ=1,2

[a†(k, λ)a(k, λ) +
1

2
δ3(0)] (25.63)
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4. The creation operator and the Hamiltonian satisfy the commutation relation

[H, a†(k, λ)] = |k|a†(k, λ) (25.64)

Problem: Verify these statements.

Making use of items (2) and (4) above, it follows that the excited energy eigenstates

HΨnanb...np = Enanb...npΨnanb...np (25.65)

of the quantized electromagnetic field have the form

Ψnanb...np = (a†(ka, λ))na(a†(kb, λ))nb...(a†(kp, λ))npΨ0 (25.66)

with energy eigenvalues

Enanb...np = na|ka| + nb|kb| + ... + np|kp| + E0 (25.67)

Restoring the factors of h̄ and the speed of light c, this expression is really

Enanb...np = nah̄c|ka| + nbh̄c|kb| + ... + nph̄c|kp| + E0

= nah̄ωa + nbh̄ωb + ... + nph̄ωp + E0

= nahfa + nbhfb + ... + nphfp + E0 (25.68)

where f is the frequency of radiation with a wavevector of modulus |k|.
In classical physics, any amount of energy can be stored in an electromagnetic

field of a given frequency f . The energy of the field is proportional to the square
of the amplitude, and the amplitude is proportional to the strength of the source.
What we learn from quantizing the electromagnetic field is that, as in an ordinary
harmonic oscillator, the energy (above the ground state) that can be stored at any
given frequency comes in multiples of hf , i.e.

∆E = nhf (25.69)

This rule, that the energy of an electromagnetic field at each frequency is quantized,
brings us full circle: it explains black-body radiation, it explains the photoelectric
effect, it gives us the formulae of Planck and Einstein. But we have learned quite a
bit more: we have learned what a photon is. It is an excited vibrational quantum
state of the underlying electromagnetic field, much as phonons in a solid are excited
quantum vibrational states of the underlying atoms. There is still more: it is believed
that all of the elementary particles are essentially excited states of quantized fields.
Combine quantum mechanics with classical field theory, and particles - or, at least,
excited states which carry energy and momentum and seem to behave in every way
like point particles - are the inevitable result. In particular, combine quantum theory
with Maxwell’s equations, and out come photons. The beauty and the staggering
implications of this result can hardly be overstated. It is the reason that modern
elementary particle theory is essentially the theory of quantized fields.


