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5.6.3 Weak binding, Nearly free electrons (NFE)



1 Introduction

Books:
e Kittel: Introduction, Theory (too difficult)
e Ziman (out of print) ...electrons in material
e Hook & Hall (not quite theoretical)
e Peierls
Content
1. Free electron gas — Pauli Paramagnetism (exclusively QM)

e dependence of Ey = Ey(T)
e Specific heat
e magnetisation (each electron being a permanent magnet); Paramagnetism:

magnetisation M || H (both CM and QM)

2. Langevin (CM) and Brillouin (QM) (ionic) paramagnetism — Weiss’ model of
ferromagnetism
only QM; for ferromagnetism for H — 0, M — My # 0

3. Diamagnetism (Landau) (exclusively QM)
M 7] H; due to motion of electrically charged particles in H

4. "not quite free" electrons — band structure



2 Free electron gas

i.e. Fermi gas
n:/N(E)fFD(E)dE
U= /EN(E)fFD(E)dE

N(E): density of states /unit energy range

2.1 Model for N(F)

Free electrons in large box (Lg, Ly, L), choose periodic boundary conditions.

Schrédinger equation is
2
_h_Aw =FEv
2m
i.e. o B
m -
A= —==¢ = —[k[*
Separability trial: ¢ (z,y,2) = X(2)Y (y)Z(2)
d’X d?Y 2z -
YZ—— +XZ7—— + XY — = —|k*?XYZ
dx? * dy? * dz? 1]
1¥X+1¥Y+1¥Z
X da? Y dy? 7 dz?

= —(k} + k; + k2)

i.e. as x,y, z are independent

el + k’gX = = X = etika

d2Y .
+ k2Y — 0 — Y — eilkyy

dy2 Yy

a2z .

T +kZ=0 = 7 =t

2w 2mm 2nm
| k, =
v =L, L

The



i.e.

n? - h? 2 m? n?
E=_—|k]* = —4r? <— +— +_>
2m 2m Lz L2 L2
with Ly = Ly =L, =1L
B 2h2 72

FE
mL?

(1> +m? +n?)

Sommerfeld model
The No. of states up to energy Ej,,, = M(E) = No. of points up to (I,m,n). For
large (I,m,n) we regard (I,m,n) as continuous. M (E) =volume of sphere of radius

2 2 2 _ |/L?mE

Ar 4 4w (L*mBENY?
M@FGmZ?QﬁW>O@/

The density, i.e. number of states/unit energy range at energy F is

dM
N(B) = —= EV/?

So in the Sommerfeld model N (E) o< E'/2, especially is N(F) monotonic and N(0) = 0

2.2 Calculate Ey(T)

Our electron gas follows the Fermi-Dirac distribution f(E) = Wlo(”f))_u' With the
chemical potential Ey(T) > 0.
Find the T dependence of Ey(T) for 0 < T < 1.

Assume we know N(E) (e.g. from Sommerfeld model), then the total number of

particles is n = [ N(E)f(E)dE.
{1 E < Eo(0) = Ep

For T'= 0 we have f(F) = 0 Ev By e
n= - (E)f(E)dE =
OEF
= | N(E)E
0
For0<T <1
dM
n= /N(E)f(E)dE _ /fﬁdE _
— MBS~ [ MpdE =



As M(0) = 0 and f(F) decreases exponentially whereas M (F) is only a power. f'(F) ~
—0p(E — Eo(T)).
Expand M (FE) around Ey(T") (wirte Eo(T) = Ep)
M(E) = M(Ey) + M'(E)(E — Ep) + %M”(EO)(E - Ep)’ +...
So we get
n=(B) [ - 205 [(8 - B (-
-2 [ (B~ By (m)ap

BeP(E—Eq) .
7(%(}37%)“)2 l.e. we get

MU)(Ey)
J

We know f so we can calculate f: —f'(z) =

B(E—E) _
&&T(lde. We change variables x = 3(F — Ey) to get

00 J T
I = / T
—BEo /8] (e:l: + 1)
We may savely extend the lower limit to —oo as the factor e® in the integrand is already
small at x = —FEy for small T. So we get

(o] x] ew
I = ——  _dx=
’ /_oo 87 (e® +1)?

with I; = [[°(E — Ep)’

1 /Oo j 1
= — )
A ) oo (e%m —I—e_%x)

For odd j this integral vanishes, as we have an asymmetric integrand and symmetric
o . . 2
limits. For odd values of j we get the definite integral from tables. Iy = 1,15 = 3“?, .
So we get

71'2
n = M(Eo(T)) + 6—B2M//(E0(T)) + ...

Eo(T) N(E)dE and the number of particles is independent of T" we get

As M(Eo(T)) = |

0
By Eo(T) 2
[ Ny - /0 N(E)IE + 5o N'(Bo(T)
Efr Eo(T) 2 .
/0 N(E)dE — /0 N(E)IE = J5N'(Bo(T)
Ep 7'('2 ,
/E L N(BE = TN (D)



recall in Sommerfeld model N oc N*/2 i.e. monotonic increasing and |Eo(T) — Ep| < 1
ie. [ N(E)E ~ N(Ey(T))[Er — Bo(T)] ie.

2
N(Eo(T)[Er — Eo(T)] = G—ﬁgN/(EO(T))

0 . P——
Eo(T2) Eo(Ty) Ee
E

Figure 2.1: Fermi-Dirac distribution for 0 < 77 < T3

2.3 Calculate Cy

Cy = g—g i.e. calculate U.
Define N = [ E'N(E')dE'

U= /EN(E)f(E)dE _ W (E) =

- /0 N (E)(—f(E)dE



Expand NV (FE) around Ey(T).

N(E) = N(Ey) —l—./\//(Eo)(E — Fy) + %N//(Eo)(E — E0)2 +...

U =N(Ey) /0 CPUE N () [(E - B)(-p)iEs

+N//(2EO) /(E—E(])2(—f/)dE+ _
~ N (Fy) + 6—ﬂ2N”( 0)

We assume we know N(E) and Ey(T).

Er Ey(T)

EN(E)dE +/ EN(E)dE =
Ep

Eo(T)
N(Ey(T)) = /0 EN(E)dE =

0

Eo(T)
=U(0) —I—/ EN(E)dE
Ey

Approximation 7' < 1 and monotonicity of N(FE)
N(Ey(T)) = U(0) + Eo(T)N(Eo(T))[Eo(T) — EF]

But previously Eo(T') — Er = — gz (In N go() 50
N{(Eo(T) ~ U (0) = Eo(T)N(Eo(T)) o=

So the total energy is

U(r) ~ U(0) - 6;2 BN (o) NY |, + s (0N, =
= U(0) ~ T3 Bo' (o) + (5 N (B) + BolN ()] =
—U(0) + 6”; N(Ey(T) =~ U(0) + i]szN(EF)
So we Cy 22
Cv = TN (T

And Cy T20, 0 as predicted otherwise by 3rd law



2.4 Pauli spin-paramagnetism

Magnetisation of elementary permanent magnets (magnetic moment of electron spin,
dipol moment +/i) by external field B. Assume B is pointing up.

The energy of T electron in external field = —,uB uB

The energy of | electron in external field = —ﬁé =+uB

For T' = 0 all states up to Er are filled completly, each with one T and one | electron.
However large B M = 0 always. So magnetisation only possible for T" > 0. Without a
magnetic field the number of up-electron = number of down-electrons, since E(1) = E(]).
Now switch on the magnetic field.

E(1) = E — B
E(])=E+uB

Now the number of states for a given energy FE,e, changes. For the up-electrons, the
energy is decreased, i.e. if an electron has energy F now, it had E + uB before, i.e. the
number of states for energy E is Ny(E) = N(E + pB). The total magnetisation is the
resulting magnetic moment.

M=y [IN(E+uB) - N(E - uB)f(E)E
Approximate for T < 1 and B weak, i.e. uB < F
N(E + uB) — N(E — uB) ~ 2‘%”3
i.e.

M:2u2B/%f(E)dE:2uzB/OOO dCfE(Nf)dE—MB/ Nf/(E)dE =

= 2B / N(E
0

At T =0 we have M = 22 BN (Er). For 0 < T < 1 expand N and proceed as usual

N"(Eo(T)) =2
M =2u2B{ N(Ey(T) + ——1~ 2 —
The susceptibility is x = % i.e.

N"(Ey(T)) 7 |
2 6,32

e.g. for the Sommerfeld model: N o« cE'Y/2 N" = —CiE_3/2

X = 2p° {N(Eo(T) +

7'1'2 _
M = 24%Be {EO(T)1/2 - ME 3/2} =

72 (kT\?
= 21> BeEy(T)'/? {1 T (f) }

10



kT

F

2
) } so for T' < 1 we have x is independent of T

11



3 Classical and quantum-mechanical
lonic paramagnetism

3.1 Classical ionic Langevin paramagnetism

No translational or vibrational degrees of freedom.
The energy of a magnetic dipole ji in a magnetic field H = (0,0, H) is

E= —[iﬁ = —uH cos 6

The partition function is Z; = fe_ﬁEdT =/ ePrH cos0dr  The phase space in this case
is only Q(6, ¢).

Z = / ePrH cost 0y — / ePHH cos O gin 9dhdep =

BuH cos 6™
= 2%/65“HCOS€d(— cosf) = 2w {67] =
BuB ],

A e PrH _ ofuH

PuH 2
= mz;{ sinh(GuH)

The average magnetic moment in z-direction is

M7 = (uz) = /MCOSHfB(Q) = Zﬁ /cos fePrH cosfqey —
1
I 1 d BuB cos 6
=L [ —— dQ) =
7y ) Buan*

1 d 1 dz

- - = BuH cos 6 :__1:
ZlﬁdH/e K=z an

_ 1dlnz

3 dH

12



The total magnetisation is M* = NM7
N N
M?=NM{ = ———InZ; = ———sinh

— Ndi [nsinh(BuH) —In H| =
[ cosh cosh(BuH) 1] _

B
N
B smh (BpH) H
=Nu

[coth(ﬂuH) - WLH} — Ny [coth(x) _ i]

In the limits

e T« 1land/or H>lie z>1
M; 1
—=x=l-—-=1
1 x

i.e. no agitation or the magnetic field forces all dipoles in one direction, so we get

saturation.

e I'>1land/or H< lie. 21

M  l+a+%+l-z+% 1 2442 1

~

x
poolte+ S -(1-z+%) T 20z 2

i.e. very agitated system or no influence by H so no magnetisation. As H — 0,
M?—0

acM;mu

Figure 3.1: Ratio of classical magnetisation in dependence on z = SuH

13



3.1.1 Curie Law

For T > 1 the susceptibility goes like
e
X=7
It can be easily seen that it holds for this model as
M* 1 p? 1

_ _2___
X=T7 =P =57

3.1.2 Calculate Cy
as Cy = W and (F) = —HM{ we get

0 1
NupH | coth(ufH) — ——= || =
o Vet (comtusn) 5]
op wH 1 }
=—-NHpu— |— + =
Har [ sinh?(uBH)  pHB3?
uH 1
12 + 2| —
sinh*(uBH) pHp
(2H?3? }
sinh?(GuH)
This violates the 3rd law as Cy /4 0 as T'— 0. It is sensible, as this model is classical.

Cy =

= uNHE[3? [—

— vk |1~

3.2 Quantum mechanical Brillouin ionic paramagnetism
Choose H = (0,0, H). Now (E) = —uH (J.,), (J,) = mh.
3.2.1 Model for j = ;

7, = Z elBHmMA _ e%huHﬁ + e—%inﬁ
m

So we get for the magnetisation

z _ 19 10 shuHp —ihuHBY) _
Ml E(‘)—HIDZI Ba—Hln( +e 2 > =
1 MﬂhegﬁuHﬁ ——ﬁuHﬁ

ﬁ 2 exhuHB 4 o~ ThuHB

h
= % tanh <§h,uﬁH>
My 1 1

@ = tanh <§h,uBH> = tanh x r = 571#5[{

In the limits we get

14



e '<land/or H> lie z>1

Saturation
e I'>land/or H<K lie 2k 1
M§ l+z—(1—2x)

Iy T 1tz +1-—2

The only difference to the classical calulation is the slope for T'> 1

1

f) ——

09 |

08 [

07 |

06 [

05 |

MM o

04 |

03 |

02 [

01 |

0

Figure 3.2: Ratio of quantum magnetisation in dependence of x = %huﬂH

Curie Law

Again the Curie law holds for T' > 1:

1 .1 1
= —ph=huB = ~1W*p*B =

X 2u2u6 1 wep
h2N21 C1

2
Ak T T

Calculate Cy

(E) = —BM{ = —R“TH tanh <W> i.e.

_ OB yheH

1 B—00
cosh? (—h‘f B >

0

15



3.2.2 Model for j =1

My

M7
iy

in the limits

e "< 1land/or H>1

i.e. Saturation

e I'>1and/or H<<1

Zy = eMHB y emhnHB 4 q

B sinh(hpSH)
= 2hu cPuHB | o~ huHB 1 |

sinh x
Sdreeg1 TSP

Le.z>1

M o evPH
— 1
hup — eMBH 1

Le.z>1

Mi  14+z—(1-x) 2x

hp 1l+tz+l-axz+1 3

09

08

07

06

05 [

MM

04 |

03

02

01

Figure 3.3: Ratio of quantum magnetisation in dependence of © = AuSH
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Calculate Cy

(E) = —BM; = —lpH 220 with « = hpBH, so

8 <E> 2 (ex + e_x + 1) COShII}‘ _ Sinhaj(ex _ e—x)
=N—"" =2kx _
C 8T (ex + e T 4+ 1)2

oy 52 cosh? z — 2sinh? 2 + cosh _ opp? 2+coshz
(2coshz + 1)2 (2coshz + 1)2

—Zx
2+ e _ okple T 2e7 % +1 .
(2e* +1)? (2+ e x)?

~ T < 12ka?
T<1
as in 3rd law

3.2.3 Brillouin functions B;(x)

For arbitrary j we have —j < m < j, i.e. (2j 4+ 1) values for m. So we get for the
partition function with y = hufSH

j
71 = Z e = ¥ 4 Uy L eIy =

m=—j
gy 25+ (25+1) _ (24D
e—(2j+1) eV eV —ey2)
:eJyZe ny_ejy — Y — - —
l—e™v e 2 <e§—e_§)
. 2j+1
. Slnh< —> : Sl

(- U _ sinh ((j + §)huSH)

€ U B H

Slnh§ sinh p’zﬁ

Define = = jy, so
sinh (m(l + %))

Z1 = -
sinh 21
J

17



So for the magnetisation we get

_jhuBs  sinhg;
. 1
B sinh <x(1 + 2))

(1 + %) sinh % cosh (az(l + %)) - % cosh 5 sinh (a;(l + %))

sinh? %
sinh 7 cosh (x(l + %)) — cosh 5 sinh (z(1+13))
. T - 1
sinh % sinh <:17(1 + Z)>

—jhyucoth (x(l n %)> + %’“‘ [coth <%> — coth (az(1 + %))]

h,
=jhu coth (m(l + %)) + ?,u

In the limits

e '<land/or H>lie z>1

M; 1 e 1
ST ey e R
jhu J (s5+%) 2je

e I'>land/or HK lie. 2k 1
M§ ~ M7(0) + M7 (0)z+...=

M¢{(0) =0, M{(0) = %jfl) (Maple). So we get

Mi  j+1
Jhp 3j
Plot
Figure 3.4:

3.3 Ferromagnetism

Empirically we find the hysterisis loop, i.e. a residual magnetic moment. Both Para-
and Ferromagnetism are due to alignmennt of elementary dipols. Both are QM effects

i.e. relevant paramagnetism is Brillouin paramagnetism.

18



Heisenberg model: with S the spin operator. The hamiltonian is
H==-) fi55
i#j
1,7 label all permanent elementary dipols. <§> =expectation value of S. We have

§,~ o [l; and 5‘; o M total magnetisation.
We write S; as §; = <§> + (5'; — <§>) In the mean field approximation we claim

|S; — <§> | is small vs. <§> Then

== 315 [(8) + 8- ()] [(8) + 5~ ()] -
~— gfij <§>2 —2 <§>2 +(5) S+ qj)} =
— —;fij :— <§>2 + <§> (Si + Hj)} =

201|M|2— €2 ﬁ-M
=:AN

The energy of a dipole moment /i in field B,E = —ﬁ.g, is replaced by F = —ﬁ(é—l—)\M).
In the Weiss model (mean field approximation) we replace the magnetic field in the
Brillouin model by an effective field Beyy = B 4+ AM. Restrict to j = % Brillouin
expression.

h h
M; = #Ntanh (7’%3#0

Define x = % So the total magnetisation is

M = Nztanh(z(B + x5 M)
Is there a Curie Law for T">> 1 7

M ~ Nzzf(B + AM) = Nz?6B + N2?B\M

i.e.
M- Nz?6B  #’NB
1 —Na:2ﬂ)\ N %—:172)\]\7
So we get for x = %
<@)2 N
k
X = P)

~
|
|
wfE
~—
=z

19



The Curie-Weiss Law for 7" > 1 is

2 2
rewrite the magnetisation.

2 2
With C = (M) % and T, = <h“) )‘TN = $2)‘TN the critical temperature. We can

M T. M}
AM = 2?BA—N = £—1
=P TAANN =T

i.e. the ratio of magnetisation in z-direction becomes

Mg hu T,
m = % = tanh (753 + m?>

Solve graphically: y1(m) = m,y2(m) = tanh <%ﬂB + m%) The spontaneous magneti-
sation for T' > T, has only the trivial solution myy = 0 (cf. Figure 3.5) For T' < T we

1

05 [

-0.5

L L L L
-2 -15 -1 -0.5 0 0.5 1 15 2
m

Figure 3.5:

get a nontrivial solution my > 0 (cf. Figure 3.6) Whether we have a non-trivial solution
depends on the slope of yo

T <1 T>T.

dyo E 1 T, >1 T<T,
T coshzTch T

i.e. we get the non-trivial solution only for T' < T,

20



0.5

-0.5

Figure 3.6:

21

T
yi(q
y2(x)

1 1 1 1 1

-15 0.5 0 0.5 1 15
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4 Diamagnetism

Diamagnetic moment is result of electrons moving in "cyclotron" orbits in external uni-
form magnetic field H. The magnetic field is characterised by H=vVAand H— H if
A — A+ VA ie. gauge invariance of H. The interaction of charged matter with A is
described by

Pop—-A

oOl®

4.1 Classically

Now calculate classically with the Boltzmann distribution

1 - oOF
F=—gho M“(a—H>T,N

as P = — 92 when dW = PdV. Now dW = MdH.

)
7 = / dpdze PP =

= /dﬁdfexp <—%(ﬁ— Sg)'(ﬁ— Z #)>

rait . A e

As A is constant we change variables to p’ = p'+ £ A
RN _ B o
71 = dp'die” 2m? P

i.e. Z1 independent of Aie. independent of ﬁ, = F is independent of H

oF

S M=-— =
OH

0

classically no magnetisation

4.2 Quantum mechanically

Now calculate with Fermi-Dirac statistics'. Recall:

F=NEy(T) - kT In (1 i eﬁ(Eo—Ei))

ef. Peierls "Quantum theory of Solids" §7.2.

22



4.2.1 Find Energy spectrum

We have to find E; i.e. solve the Stationary state Schrodinger equation. The Sch. eq. of
electron of mass m and charge —e is

Hy = By

1
% = By
m

Where A is the magnetic vector potential of the uniform magnetic field H. Choose
H = (0,0,H). As we A is not uniquely defined, we can choose A = (0, Hz, 0).

o e \* 92 9% e 9% e 92
<axi‘#2‘> _W+<8—3P_EH$>'<6—¢_EH$>+@

The differential operator only involves x. Try the following :

P(x,y,2) = u(x)ei(yky—i-zkz)
0 Pu o s
qu — We (y §U+ z)
o2
gt = kv
. § 0" e . ieH \? eH \?
<@_£Hx>'<8_y2‘£m>w_ <Z’%—%w> w—‘(@-%x) Y
So the Schrédinger equation becomes

2 2 . -

This is a 1 dimensional Schrodinger equation

R2 9%u  h? e2H? he 2 R,
Tmaat am e <$ - e—H’%> w= <E - %’“) u

We transform it to a SHO. Let £ =z — %ky ie.

h? 9*u 1 e*H? , h?
S gu, —(B- 22
2m O€2 * 2mm2c2€ “ < 2m Z> "

23



With the cyclotron frequency wy = % and ' = E — %kg this is the "normal" SHO
Sch. eq. centered on x = %k‘y

B2 %u 1 9
Z = FEu
“om 552 + me£ U=

The energy spectrum is
E, = <n + —> hwpy
i.e. the real energy spectrum is
E, = <n+ 1> th+h—2k2

Impose Boundary conditions in y and z. We have a free particle in a large box of sides
(Lg, Ly, L) ie.

2
k;y:L—Zz ko=

n and m are related via E,; m = L2k, = :I:g—;—vim\/En —(n+3) hwg
The centre of motion is zg = %k‘y but x is restricted to 0 <z < Ly ie. 0 < ky < %Lm.

4.2.2 Calculate g(F)

Estimate g(E) to do statmech, i.e. find h(E) such that g(E) = 9% The number of states
up to energy E, = (n+ %) hwy is h(E,) = Sn,_lm(n’) as for each energy we have a
degeneracy of [ in y-direction; and for given n’ we have m(n’) possible values for m so
the total energy does not exceed E,.

N e
n’=0
L,L.

:En; 22 ke

_LLZEH */— E—< %)th:

2

_ L.L,L, eH\/_ 1
= Z\/E— §>th

(2m)?

E/ subject to sqrt being real. Now treat energy continuous and calculate F'.

24



4.2.3 Calculate y

F=NE,— kT/ln [1 + eﬁ(EO_E)} (g9(E)dE) =

— NEy— k:T/ln [1 + eﬁ<Eo—E>} jh dE =

:NEO—k:T{[hln[l—i—eﬁ(Eo /h—ln 1+e< )]dE}:

_ h(E) _

= NEp — /h(E)fFD(E)dE
This being a low T' phenomenon: frp(F) = 0(E — Ey);

h=...)_ [E— <n+%>th]l/2:

n/

2 d 1 3/2

n

i.e. we get
F=NE,— gL(szL e\/%H/fFD %; [E— <n+%> thr/2dE:
R e o
— NE gL(Zi)f e;;_HZ [Eo - <n+ ;) thrm _

Now evaluate > (not us!) (Poisson summation formula?)

1 3/2 25/2 (/2
2 |0-g | =39 160

2¢f. Titchmarsh "Theory of Fourier integral" §2.8.

25



i.e. with ¢g = Lo

ok
F=NE - %L@Lj)f e\h/f_m {2 - e 2]
= NEo - %%e\gf_m < >5 ’ [ 8/2 116Eé/2(th)2 =
= NEo - gL@Lw)g e\h/i’?_m [5Eg/2 N i6 i (?) B
-5y Shetale e 2y (2)]

i.e. the magnetisation is

M = _or __22L.LyL: ey 2mEéﬁH
OH ~ 163 (2m)2  hec

1 LyLyL. e\/2m
12 (27r) h3c

EY*H

The susceptibility is

8_M 1 L L L 6\/2mE1/2 0
0H — 12 (27r)2 B3¢ Y

X:

i.e. against the external field.
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5 Electrons in periodic potential

The electrons move in a periodic potential, e.g. a crystal lattice.

5.1 Periodic Functions

We need to describe periodic functions f(z) = f(x+ L). We do this, using Fourier Series:

f($): i Cneknix

n=—oo
with the wave-"vector" k, = 2% and ¢, = %fOL f(z)e~*n%dz. In 3 dimensions we get
f@) =) etm?
{n}

with E{n} = 27“ <n1/;1 + ngl;;g + nggg) and cp = % fd?’xf(x)e_ikf. k is the reciprocal
vector to Z. So if f is periodic along the standard axis €1, €5, €3 we get reciprocal wave-
vectors kg, so that for any periodic translation Xy, = miLe1 + maLéz + mgLés the

inner product E{n}.)?{m} = (27 i.e. this means periodicity.

5.2 Bravais Lattice

A periodic 3 dimensional structur (crystal) can be described using the Bravais Lattice,
using three vectors (dp, ds,ds) to form a parallelepiped. After every translation by a
vector X{n} = n1dy + nods + n3dz with ny,no,ng € N the structure looks the same. The
volume of this parallelopiped is

Vo = |d1.(a2 x ds)| cyclicin 1,2,3
or using the Levi-Civita symbol
Va = leijr(a1)i(az);(as)x]
Now we have to expand a function periodic on the Bravais Lattice
f@ = f(@+ Xy)

with X{n} = n1d; + neds + ngds i.e. we need an analogue of Fourier Series, i.e. we need
to find a "reciprocal lattice" space with wave-vectors I?{m} such that K{m}.)?{n} =127
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5.3 Reciprocal Lattice

We have the Bravais Lattice (@, d2,d3) and define the reciprocal lattice (51, b, 53)
- c
by = —(d2 x @
1 Va( 9 X d3)
with a dimensionless constant c. Using the Levi-Civita symbol

- C

P = meijk(ﬁj X C_ik)

by

(The 2 in the denominater results from summation and antisymmetry of Levi-Civita-

symbol)

The reciprocal of (51, 52, 53) should be (@1, da,ds). So calculate the reciprocal of 51

L Cop
Clzvb(ngbg)

(c1)i = %ﬁz‘jk(bz)j(bs)k =

c c c
= Vbeijk Vaejmn(ai’»)m(@)n] [Vaekpq(al)p(@)q =
3

c
= V2V, €ijk€hpq€imn(a3)m(a1)n(a1)p(az)q =

3

= —Va2‘/bEijkequﬁjmn(a?,)m(al)n(al)p(az)q =

Using the identity €;xepgr = dipdjq — 0ig0jp We get

c3
(c1); = Vg—vbejmn(a?))m(al)n [(a1)i(a2); — (a1);(az)i] =

The first term is €jmn(a2)j(as)m(a1)n = Vi, the second term is €jmn(a1)n(a1);
because of antisymmetry of €. SO we have

s
V2V,

(c1)i = (a1)iVa =

provided ¢* = V,V},

28

=0



Note. Works in 4 dimension too.

Vo = €ijri(ar)i(az)j(as)k(aa);

(b)i = Vaeijkl(a2)j(a3)k(a4)l
(ba); = —Viaeijkxag)j(ank(al)l
(b3); = V%éijkl(%)j(al)k(az)z

(ba)i = —V%Eijkl(al)j(az)k(as)l

And & = @; provided ¢t =V, Vj,.
For 2 dimensions

Va = €ij(a1)i(az);
and the reciprocals are defined as
c
(br)i = greij(a2);

(b2)i = —Viﬁij(al)j

a
Again & = @; provided ¢? =V, V},
Now back to 3d again. We had

C
(br); = melmneijk(am)j(an)k

Now calculate the inner product of a lattice vector and a reciprocal lattice vector. e.g.
for @;.by. As by = Viac_ig X ds we get

ﬁ'gl _ Via(_il((_ig X 53) 1=1 _ c 1=
i01 = S = . = .
-ai(dx x az) =23
So for general vectors it is easy to see
ﬁibj = Cfsij

Now define a I?{m} = mlgl + ngQ +m353. Then for a translation X{n} =nid; +nods +
ngds in x-space we get

K.X = E nym;d;b; = g nim;cd; j = ¢ g ;M
.J .J i

i.e. to get a multiple of 27 for arbitrary n,m we must have

c=27
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(5.1)

Then the reciprocal lattice is defined by
- 27 o R
by = melmn (am X an)

And the Fourier decomposition of f is
F@) =3 epmyeFim
{m}

5.4 Bloch’'s theorem

We have the stationary state Schrodinger equation
FLZ
[——A +V(z )] Y= FEy
2m

Our solution should satisfy
(@ + X)IP = (@)

Y@+ X) = ()

(5.2)

For some real phase . Now Bloch’s theorem is that
(@ +X) = F (@)

For some wave-vector k in reciprocal space. (5.2) expresses the action of a generator of
translations on the lattice. (For generator of translations in continuum see Note below)

Note. In continuum theory we can define the generator of translations via

s o 1 o o B
¢($+a)_¢(l‘)+aza |m 2|az ]8 6 | t...=
o . .0 _
= (Z) + ia; < 5 >¢ + za,za] ( za—%> <—z%j> Y+...=
= Y(Z) + takiyp + 1zalza3kk‘ .
:ei56¢
with E:%
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5.4.1 Brillouin Zone

Ask is unique up to addition of a reciprocal lattice vector, we can restrict k to the basic
cell of the reciprocal lattice, also called Brillouin Zone. The Brillouin zone is defined
as Wigner-Seitz primitive cell in the reciprocal lattice. To construct the Brillouin zone,
choose a lattice point as origin and connect it to every lattice point nearby. On each
connecting line draw at a perpendicular plane at the midpoint. The enclosed space is
a primitiv cell. No two points in the interior are equal (with respect to addition of
lattice vectors) and the whole space can be filled with these cells. For example in one
dimension our Bravais lattice is defined by a, then the reciprocal lattice vector is 27“ and
the reciprocal lattice is given by n%’r So our Brilloun zone is just —7 <k < 7.

For two dimensions, let us take a reciprocal lattice defined by the primitive vectors
by = (3,0) and by = (1,2) Then the Brillouin zone has the form shown in Figure 5.1

P
75

Figure 5.1: Brillouin zone for 51 and 52

5.5 Schrédinger equation

Now exploit Bloch’s theorem. Factor out "% from P(X)

ezk ¢(f) _ eikfezk UE(5+X)
etk X ¢t fu];(:i’) = kT ik up (T + X)
i.e.
up(@ + X) = uz(&) (5.3)



Now tackle the Schrodinger equation:

0 0
A¢— 8:17@611321/}_
0 0

= Oz 0m; (e™mou(@)) =

= — 7y — . VR R TIN
i <e +ikie"™ M up(T) | =

T
7 Oug
1kT = . k 1..\2

A 2
= ¢ <axi+z’k,~> up (%) =

k (v + iE)QuE(f)

8l

81

= ei
So we get a new Schddinger equation

<V+Z'E)2u,;+2h—?

(E—=V(z))ugz=0 (5.4)

Now if uj is solution with E(E) S0 is uz Conjugate equation (5.4) to get

2m

= (B = V(@) uz =0

<V — iE)2uZ~+

-,

But this is the equation for —&, so ur =u_j and E(—k) = E(k) But for some points on
the Boundary of the Brillouin zone k=—k (with respect to r.l. vector addition) and so
E(k) = E(~k)
VE(k)|; = VE(=k)|_i
VER)|; = ~VE®F)|_;
VE(k)|; =-VE(k)|:
VE(k); =0

i.e. at some points of the Boundary the derivative of F vanishes. Furthermore, if the
lattice has sufficient symmetry, the symmetry also carries on to the reciprocal lattice.
e.g. symmetry at the plane z =0, i.e. (ks, ky,k.) = (—kg, ky, k.) for some points on the
boundary and therefore

E(ky, ky, k) = E(—kg, ky, k2)

0 0

a—kxE(kxykwk:z”E = 8kIE(_kmykya kz)|—kac,ky,kz
o o

8kxE(k)|6BZ =0
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In general, it can be shown, that for sufficient symmetry the derivative of E in direction
normal to the boundary vanishes.

e.g. in one dimension our lattice is obviously symmetric in the z-direction and we get
oF

Shlez =0

5.6 Band structure

Restrict to one dimensional case. From our previous results (and experiments) we expect
to see band structures in the energy, as in Figure 5.6.

forbidden band

-pila pila

5.6.1 Effective Mass

The velocity of an electron is the group velocity of its wave-packet and is given by

10F
=—-— 5.5
YT hok (5:5)
Now an external force F' acting on the electron results in an acceleration:
dv 1
—=—F 5.6
dd  m (56)
But we also have
dv _ 10°F dk
dt — hok? dt
But k= £ and F = %, so we get
L1 PEdp 1 0°E
m~ h20k2dt  h? Ok2
So we define the effective mass as
1 1 O*°FE
- 5.7
m*  h2 Ok? (57)

The particle would react to an external force, as if it had a mass m*4.
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e At the bottom of the higher band, the curvature of the energy is positiv, so our
particle has positive effective mass, and %* <1

e At the top of the lower band, the curvature of the energy is negative, so our particle
would have negative mass. It is an effective antiparticle or "hole"

5.6.2 Strong binding
V(z) =) Uk(x)
k

with Ug(z) being the potential of the individual atomic cites, Ug(z) = U(x—ka). Assume
our potential is (spherically) symmetric, i.e. the Hamiltonian is symmetric, i.e. our
eigenfunctions are symmetric or antisymmetric. Only small overlap, i.e. restrict to
nearest neighbours, i.e. for an electron trapped primarly at atomic cite m, ¢, ~ 0
outside the potentials m — 1,m,m + 1. The Schrédinger equation we have to solve is
h2 d2
—%@w;w(ax)w = By (58)

Now we have solutions ¢,,(x) for each individual potential, i.e.

h? d
—%@%n + Z Uk(z)pm = Eodm

and we can write the solutions as

Om(z) = ¢(x — ma)
with ¢(z) being the solution for the potential at the origin.
Use perturbation theory to calculate ¢ (z). Take ¢ as a linear superpositions of the
unperturbed solutions

P(@) = Amdm() (5.9)

and use variational method to minimize the energy
04, =0

Now the energy is

£ = -

f (Zm A:NS:@) H (En An¢n) dx _
_ A;;mf@:nHQSndl'An .

AL [ O dedrAn

A Hpn Ay

A T A,

_ (AHA)

(4, JA)
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We notice, that trivially Jp,, = J5,,, Hmn = H,,,, as the identity and the Hamiltonian

are hermitian. Because of periodicity the Hamiltonian can write
mn—/¢ H(;Sndx—/qﬁ —ma)Ho(x — na)dr =
= /qb*(x)Hgb(:E + (m —n)a)dx

Then because of (anti-)symmetry of our eigen-functions and of the Hamiltonian we can
reflect at the origin and get

fﬂmz/@ﬂﬂ@Hwﬂme—nMsz

— [ 6" o) Ho) Ho(~(a — (m— ma))do =
— /¢*(az)H¢(m + (n —m)a)dx = Hym,
— H(jm —n)

Additionally, as H is hermitian and symmetric, it must be real. Now variate

0=64F = ZaA*éA*_

- - 285 1]

1 *
) k n

For arbitrary d4:

> (Hin — EJin) An =0

n

Now calculate the matrix element H,,,,:

2 2

R a2 R d2
- o= d2+u]¢ndx+/¢ o AV~ U] e =

2
=/%%%W+/@l——i~wum1%w=
2m dx?

= EOJmn + hmn
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Again Ay, = h(lm —nl|) as H and J are. Our variational equation becomes

> (Hun = EJpn) Ap =0

n

n

Z(E - EO)JmnAn = hmnAn

n

Now the overlap restricts the function only to the nearest neighbours
JmnAp = Ap,
and
honn Rhmm—1Am—1 + bmmAm + Bmm+1Ams1 =
— (At + Ay / 6V — Upor)brdit

:Am / ¢:n (Um—l + Um-‘rl) (bmdx"’_

+ (Am—1 + Amt1) / &r Ums10m—1dz

Now use the differences notation:
/ 65 (Ut + Unst) dmda = h(0) = / " (2) (U(z +a) + Uz — a)) $(a)da
[ GaUniadnords =h(1) = [ 6@V - a)o(e ~ )iz

So we get

= (E — E())JmTLAn

or
_ hmnAn _ Am—l + Am+1

JmnAn, Am

We can express the complex numbers A,, as A,, = ™" for a complex number x. So we
get with our lattice constant a

(@) =Y Apdm(@) =D M p(x) = > €M ¢(z —ma)

E - Ey h(0) + h(1) (5.10)
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Bloch’s theorem stated
P( +a) = e* ()

and so
Z eME(x — (m — 1)a) = e Z e p(x — na)

equation equal functions gives n = m — 1 and so

imk _ ei(k—l—nrf)a

e
eime ez(k—i—(m—l)n)a
etha — ezka

with k£ and a real, so we can re-express our energy change

Am—l + Am-‘rl
Ap,

Note that our "constants" h(0) and h(1) were dependent on our eigen-functions i.e. on
our energy level Ey. Our energy level becomes stretched into a band of width 4h(1). If
the original energy levels are further apart than 4h(1) we get forbidden band between
them.

E — Ey = h(0) + h(1) = h(0) + h(1)2cos ka (5.11)

forbidden band

5.6.3 Weak binding, Nearly free electrons (NFE)

Use stationary state perturbation theory. The unperturbed eigenstate of the electron is

the plane wave
1 3

T) = —=€e—px
The energy is
E, x p2

So we have degenerate energy levels. We therefore need to calculate perturbation for
degenerate levels
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Degenerate energy level perturbation

Start we the exactly solvable problem
Hoyp)© = E©0)

And assume there exist two distinc solutions with the same (degenerate ) E(©)

Hopy” = EOy{”
Hop = EOy{)

As they are distinct we can assume <¢§0), §0)> = 0. Now introduce a small perturbing

potential V'
H=Hy+ gV
And we have to solve the Schriodinger equations

Hiy = Exin (5.12)
Hipy = Egtpy (5.13)

where Ey # Fy (degeneracy removed) and

By =E9 4+ gV 4
and

Y1 = Clﬂﬁgo) + 612¢§0) + 9¢§1) +...
Py = c21w§°) + 6221/150) + 91/151) +...

Substituting these into (5.12) and (5.13) and comparing coefficients up to g! we get

c11 <E<0> — Ho) v{” + 1o <E<0> ~ Ho) v =0 (5.14)
(B~ Ho) v’ + (B = V) (entl” + el ) =0 (5.15)
eo <E<0> - Ho) O + ex <E<0> _ HO) o =0 (5.16)
(B = Ho) vl + (ES” = V) (carv” + exnl?) =0 (5.17)

Now taking inner product of (5.15) with wgo) we get

BO (9,00} = (0, How") + enBY = en (0, vel”) — e (o7, vl ) =0
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So in our matrix notation we get

1
Viiern + Vigcie = Ei )011

And take inner product of (5.15) with Q/Jg])
BO (6 4"y — (00, HopV) + B — enaVar — eroVin = 0

Varci1 + Vagcio = Eil)cu
Doing the same with (5.17) yields

1
Viiear + Viacos = Eé Jen

1
Vaica1 + Vagcos = Eé )022

So both first order corrections can be calculated from solving the eigenvalue equation

<V11 V12> <01> _ g <01>
Vor Vag ) \e2 C2

So we get the two corrections by solving

Vii — EW Vio _
det [ Va1 Voo — EM| 0

Nearly free electrons
Our unperturbed eigen-functions were

Yr(x) = %em

with L = Na and the energy-eigenvalues were degenerate, as
E, =ck* = E_y

Now calculate the first order energy corrections on introducing our perturbing potential.
Our potential is periodic, so we can express it as a Fourier Series

V(z) = i Cnel e

n=—oo

To calculate the energy corrections we need to calculate the matrix elements between
two degenerate eigen-functions ¢ and ¥_g.

1
Vi = f/_

ot~

V(z)e'* =Rz gy

ot
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Now for k' = k we get

ol

1
Vip = I /_é V(z)dx

By choosing our energy zero level, we can always make this integral zero. The off-diagonal

matrix elements are

L
1 /2 i( 25 42k
:—ch e'\"a dx
L

At the Borders of our Brillouin Zones k = m7, so we get

So by solving the for the roots of

—EY Vim

Vo —ED| 7Y

det

We get the energy correction at the zone Boundary as

EW = 4], (5.18)

40



