
Programming
Fundamentals in C++

What programming language are you most
comfortable with?

(put your answers the chat)

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!
Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

C++ basics

Today’s
questions

Why C++?

What do core programming
fundamentals look like in C++?

How do we test code in CS106B?

What’s next?

Why C++?

Review: How is C++ different from other languages?

● C++ is a compiled language (vs. interpreted)
○ This means that before running a C++ program, you must first compile it to

machine code.

Review: How is C++ different from other languages?

● C++ is a compiled language (vs. interpreted)

● C++ is gives us access to lower-level computing resources (e.g. more direct
control over computer memory)
○ This makes it a great tool for better understanding abstractions!

Review: How is C++ different from other languages?

● C++ is a compiled language (vs. interpreted)

● C++ is gives us access to lower-level computing resources (e.g. more direct
control over computer memory)

● If you’re coming from a language like Python, the syntax will take some getting
used to.
○ Like learning the grammar and rules of a new language, typos are

expected. But don’t let this get in the way of working toward literacy!

Review: How is C++ different from other languages?

● C++ is a compiled language (vs. interpreted)

● C++ is gives us access to lower-level computing resources (e.g. more direct
control over computer memory)

● If you’re coming from a language like Python, the syntax will take some getting
used to.

Zoom Poll!
Where does C++ rank among the popular programming
languages of the world?

C++ Overview
If someone claims to have the perfect programming language,
he is either a fool or a salesman or both.
– Bjarne Stroustrup, Inventor of C++

C++ History

● C++ is a high-performance, robust (and complex) language built on top of the C
programming language (originally named C with Classes)

○ Bjarne Stroustrup, the inventor of C++, chose to build on top of C because it was fast, powerful,
and widely-used

C++ History

● C++ is a high-performance, robust (and complex) language built on top of the C
programming language (originally named C with Classes)

○ Bjarne Stroustrup, the inventor of C++, chose to build on top of C because it was fast, powerful,
and widely-used

● C++ has been an object-oriented language from the beginning
○ We will spend the middle portion of this class talking about the paradigm of object-oriented

programming

C++ History

● C++ is a high-performance, robust (and complex) language built on top of the C
programming language (originally named C with Classes)

○ Bjarne Stroustrup, the inventor of C++, chose to build on top of C because it was fast, powerful,
and widely-used

● C++ has been an object-oriented language from the beginning
○ We will spend the middle portion of this class talking about the paradigm of object-oriented

programming

● C++ is quite mature and has become complex enough that it is challenging to
master the language

○ Our goal in this class will be to help you become literate in C++ as a second programming
language

C++ History

● C++ is a high-performance, robust (and complex) language built on top of the C
programming language (originally named C with Classes)

○ Bjarne Stroustrup, the inventor of C++, chose to build on top of C because it was fast, powerful,
and widely-used

● C++ has been an object-oriented language from the beginning
○ We will spend the middle portion of this class talking about the paradigm of object-oriented

programming

● C++ is quite mature and has become complex enough that it is challenging to
master the language

○ Our goal in this class will be to help you become literate in C++ as a second programming
language

C++ Benefits and Drawbacks

Benefits

C++ Benefits and Drawbacks

Benefits

● C++ is fast
○ Get ready for the Python vs C++ speed

showdown during Assignment 1!

C++ Benefits and Drawbacks

Benefits

● C++ is fast
○ Get ready for the Python vs C++ speed

showdown during Assignment 1!

● C++ is popular
○ Many companies and research projects

use C++ and it is common for coding
interviews to be conducted in C++

C++ Benefits and Drawbacks

Benefits

● C++ is fast
○ Get ready for the Python vs C++ speed

showdown during Assignment 1!

● C++ is popular
○ Many companies and research projects

use C++ and it is common for coding
interviews to be conducted in C++

● C++ is powerful
○ C++ brings you closer to the raw

computing power that your computer
has to offer

C++ Benefits and Drawbacks

Benefits

● C++ is fast
○ Get ready for the Python vs C++ speed

showdown during Assignment 1!

● C++ is popular
○ Many companies and research projects

use C++ and it is common for coding
interviews to be conducted in C++

● C++ is powerful
○ C++ brings you closer to the raw

computing power that your computer
has to offer

Drawbacks

C++ Benefits and Drawbacks

Benefits

● C++ is fast
○ Get ready for the Python vs C++ speed

showdown during Assignment 1!

● C++ is popular
○ Many companies and research projects

use C++ and it is common for coding
interviews to be conducted in C++

● C++ is powerful
○ C++ brings you closer to the raw

computing power that your computer
has to offer

Drawbacks

● C++ is complex
○ We will rely on the Stanford C++

libraries to provide a friendlier
level of abstraction

○ In the future, you may choose to
explore the standard libraries

C++ Benefits and Drawbacks

Benefits

● C++ is fast
○ Get ready for the Python vs C++ speed

showdown during Assignment 1!

● C++ is popular
○ Many companies and research projects

use C++ and it is common for coding
interviews to be conducted in C++

● C++ is powerful
○ C++ brings you closer to the raw

computing power that your computer
has to offer

Drawbacks

● C++ is complex
○ We will rely on the Stanford C++

libraries to provide a friendlier
level of abstraction

○ In the future, you may choose to
explore the standard libraries

● C++ can be dangerous
○ "With great power comes great

responsibility"

What do core programming
fundamentals look like in C++?

What do core programming
fundamentals look like in C++?

Get ready for a whirlwind tour!

Comments, Includes,
and Console Output

Comments

● Single-line comments

// Two forward slashes comment out the rest of the line

cout << "Hello, World!" << endl; // everything past the double-slash is a comment

● Multi-line comments

/* This is a multi-line comment.

 * It begins and ends with an asterisk-slash.

 */

Includes

● Utilizing code written by other programmers is one of the most powerful things
that you can do when writing code.

● In order to make the compiler aware of other code libraries or other code files
that you want to use, you must include a header file. There are two ways that
you can do so:
○ #include <iostream>

■ Use of the angle bracket operators is usually reserved for code from the C++ Standard
library

○ #include "console.h"
■ Use of the quotes is usually reserved for code from the Stanford C++ libraries, or code in

files that you have written yourself

Console Output

● The console is the main venue that we will use in this class to communicate
information from a program to the user of the program.

Console Output

● The console is the main venue that we will use in this class to communicate
information from a program to the user of the program.

● In C++, the way that you get information to the console is by using the cout
keyword and angle bracket operators (<<).

cout << "The answer to life, the universe, and everything is " << 42 << "." << endl;

Console Output

● The console is the main venue that we will use in this class to communicate
information from a program to the user of the program.

● In C++, the way that you get information to the console is by using the cout
keyword and angle bracket operators (<<).

● The endl is necessary to put the cursor on a different line. Here is an example
with and without the endl keyword.

cout << "This is some text followed by endl." << endl;
cout << "This is more text.";
cout << "We want to go to the next line here, too" << endl;
cout << "We made it to the next line." << endl;

Console Output

● The console is the main venue that we will use in this class to communicate
information from a program to the user of the program.

● In C++, the way that you get information to the console is by using the cout
keyword and angle bracket operators (<<).

● The endl is necessary to put the cursor on a different line. Here is an example
with and without the endl keyword.

cout << "This is some text followed by endl." << endl;
cout << "This is more text.";
cout << "We want to go to the next line here, too" << endl;
cout << "We made it to the next line." << endl;

Note: In C++, all programming statements must end in a semicolon.

Variables and Types

Variables

● A way for code to store information by associating a value with a name

Variables

● A way for code to store information by associating a value with a name

classNum106

tuesdayTemp94.7

Variables

● A way for code to store information by associating a value with a name

classNum106

tuesdayTemp94.7

We will think of
a variable as a
named
container
storing a value.

Variables

● A way for code to store information by associating a value with a name

classNum106

tuesdayTemp94.7

Note: C++ uses
the camelCase
naming
convention

Variables

● A way for code to store information by associating a value with a name
● Variables are perhaps one of the most fundamental aspects of

programming! Without variables, the expressive power of our computer
programs would be severely degraded.

Types

● As you should know from prior programming classes, all variables have a type
associated with them, where the type describes the representation of the
variable.

Types

● As you should know from prior programming classes, all variables have a type
associated with them, where the type describes the representation of the
variable.

● Examples of types in C++
○ int 42

-3
106

Types

● As you should know from prior programming classes, all variables have a type
associated with them, where the type describes the representation of the
variable.

● Examples of types in C++
○ int
○ double 1.06

-18.3454545

4.00

Types

● As you should know from prior programming classes, all variables have a type
associated with them, where the type describes the representation of the
variable.

● Examples of types in C++
○ int
○ double
○ string

"Hello, World!"

"CS106B"

"I love computer
science <3"

Types

● As you should know from prior programming classes, all variables have a type
associated with them, where the type describes the representation of the
variable.

● Examples of types in C++
○ int
○ double
○ string
○ char

'a'

'3'
'&'

Types

● As you should know from prior programming classes, all variables have a type
associated with them, where the type describes the representation of the
variable.

● Examples of types in C++
○ int
○ double
○ string
○ char

● In C++, all types must be explicitly defined when the variable is created, and
a variable cannot change its type.

Typed Variables

int a; // declare a new integer variable

a

in
t

Typed Variables

int a; // declare a new integer variable

a = 5; // initialize the variable value

a

5in
t

Typed Variables

int a; // declare a new integer variable

a = 5; // initialize the variable value

char b = 'x'; // b is a char
("character") a

5in
t

b

'x'ch
ar

Typed Variables

int a; // declare a new integer variable

a = 5; // initialize the variable value

char c = 'x'; // b is a char ("character")

double d = 1.06; // d is a double, a type
used to represent decimal numbers

a

5in
t

c

'x'ch
ar

d

1.06

do
ub

le

Typed Variables

int a; // declare a new integer variable

a = 5; // initialize the variable value

char c = 'x'; // b is a char ("character")

double d = 1.06; // d is a double, a type
used to represent decimal numbers

string s = "this is a C++ string";

a

5in
t

c

'x'ch
ar

d

1.06

do
ub

le

s

"this is a
C++ string"st

rin
g

Typed Variables

int a; // declare a new integer variable

a = 5; // initialize the variable value

char c = 'x'; // b is a char ("character")

double d = 1.06; // d is a double, a type
used to represent decimal numbers

string s = "this is a C++ string";

double a = 4.2; // ERROR! You cannot
redefine a variable to be another type

a

5in
t

c

'x'ch
ar

d

1.06

do
ub

le

s

"this is a
C++ string"st

rin
g

Typed Variables

int a; // declare a new integer variable

a = 5; // initialize the variable value

char c = 'x'; // b is a char ("character")

double d = 1.06; // d is a double, a type
used to represent decimal numbers

string s = "this is a C++ string";

double a = 4.2; // ERROR! You cannot
redefine a variable to be another type

int a = 12; // ERROR! You do not need the
type when re-assigning a variable

a

5in
t

c

'x'ch
ar

d

1.06

do
ub

le

s

"this is a
C++ string"st

rin
g

Typed Variables

int a; // declare a new integer variable

a = 5; // initialize the variable value

char c = 'x'; // b is a char ("character")

double d = 1.06; // d is a double, a type
used to represent decimal numbers

string s = "this is a C++ string";

double a = 4.2; // ERROR! You cannot
redefine a variable to be another type

int a = 12; // ERROR! You do not need the
type when re-assigning a variable

a = 12; // this is okay, updates variable
value

a

12in
t

c

'x'ch
ar

d

1.06

do
ub

le

s

"this is a
C++ string"st

rin
g

Functions and
Parameters

Anatomy of a function

function(input)input output

Anatomy of a function

parameters/
arguments

function(input)input output

Anatomy of a function

function(input)input output

parameters/
arguments

parameter(s)
One or more variables that your

function expects as input

Definition

Anatomy of a function

function(input)input output

parameters/
arguments

argument(s)
The values passed into your
function and assigned to its

parameter variables

Definition

Anatomy of a function

function(input)input output

return value

Anatomy of a function

function(input)input output

return value
return value

The value that your function
hands back to the “calling”

function

Definition

Anatomy of a function

function(input)input output

parameters/
arguments

return value

Anatomy of a function

returnType functionName(varType parameter1, varType parameter2, ...);

function
prototype

Anatomy of a function

returnType functionName(varType parameter1, varType parameter2, ...);

function name

Anatomy of a function

returnType functionName(varType parameter1, varType parameter2, ...);

input expected
(parameters)

Anatomy of a function

returnType functionName(varType parameter1, varType parameter2, ...);

input expected
(parameters)

Notice that these look very
similar to variable declarations!
You can think of parameters as a
special set of local variables that
belong to a function.

Anatomy of a function

returnType functionName(varType parameter1, varType parameter2, ...);

output expected
(return type)

Anatomy of a function

returnType functionName(varType parameter1, varType parameter2, ...);

output expected
(return type)

How do you designate a function
that doesn't return a value? You
can use the special void keyword.
Note that this type is only
applicable for return types, not
parameters/variables.

Anatomy of a function

returnType functionName(varType parameter1, varType parameter2, ...);

returnType functionName(varType parameter1, varType parameter2, ...) {

 returnType variable = /* Some fancy code. */

 /* Some more code to actually do things. */

 return variable;

}

function
definition

Anatomy of a function

returnType functionName(varType parameter1, varType parameter2, ...);

returnType functionName(varType parameter1, varType parameter2, ...) {

 returnType variable = /* Some fancy code. */

 /* Some more code to actually do things. */

 return variable;

}

returned value

Function Example

double average(double a, double b){
double sum = a + b;
return sum / 2;

}

int main(){
double mid = average(10.6, 7.2);
cout << mid << endl;
return 0;

}

Function Example

double average(double a, double b){
double sum = a + b;
return sum / 2;

}

int main(){
double mid = average(10.6, 7.2);
cout << mid << endl;
return 0;

}

Order matters! A
function must always
be defined before it is
called.

Function Example

double average(double a, double b){
double sum = a + b;
return sum / 2;

}

int main(){
double mid = average(10.6, 7.2);
cout << mid << endl;
return 0;

}

caller
(calling function)

callee
(called function)

Function Example

double average(double a, double b){
double sum = a + b;
return sum / 2;

}

int main(){
double mid = average(10.6, 7.2);
cout << mid << endl;
return 0;

}

parameters

return value

arguments

a10.6

do
ub

le

b7.2

sum17.8

do
ub

le
do

ub
le

double average(double a, double b){
double sum = a + b;
return sum / 2;

}

int main(){
double mid = average(10.6, 7.2);
cout << mid << endl;
return 0;

}

Function Example

a10.6

do
ub

le

b7.2

sum17.8

do
ub

le
do

ub
le

double average(double a, double b){
double sum = a + b;
return sum / 2;

}

int main(){
double mid = average(10.6, 7.2);
cout << mid << endl;
return 0;

}

Function Example
These variables only
exist inside average()!

double average(double a, double b){
double sum = a + b;
return sum / 2;

}

int main(){
double mid = average(10.6, 7.2);
cout << mid << endl;
return 0;

}

Function Example

mid

8.9

do
ub

le

double average(double a, double b){
double sum = a + b;
return sum / 2;

}

int main(){
double mid = average(10.6, 7.2);
cout << mid << endl;
return 0;

}

Function Example

mid

8.9

do
ub

le

This variable only
exists inside main()!

// C++:
#include<iostream>
using namespace std;

int doubleValue(int x) {
 x *= 2;
 return x;
}

int main() {
 int myValue = 5;
 int result = doubleValue(myValue);

 cout << "myValue: " << myValue << " ";
 cout << "result: " << result << endl;
}

Pass by Value

Zoom Poll!

What is the console
output of this block of
code?

// C++:
#include<iostream>
using namespace std;

int doubleValue(int x) {
 x *= 2;
 return x;
}

int main() {
 int myValue = 5;
 int result = doubleValue(myValue);

 cout << "myValue: " << myValue << " ";
 cout << "result: " << result << endl;
}

Pass by Value

myValue: 5 result: 10

Why is this the case?

// C++:
#include<iostream>
using namespace std;

int doubleValue(int x) {
 x *= 2;
 return x;
}

int main() {
 int myValue = 5;
 int result = doubleValue(myValue);

 cout << "myValue: " << myValue << " ";
 cout << "result: " << result << endl;
}

Pass by Value

● The reason for the output is that the parameter x
was passed to the doubleValue function by value,
meaning that the variable x is a copy of the variable
passed in. Changing it inside the function does not
change the value in the calling function.

● Pass-by-value is the default mode of operation when
it comes to parameters in C++

● C++ also supports a different, more nuanced way of
passing parameters – we will see this tomorrow!

Mid-Lecture
Announcements
Break!

Announcements

● Complete the C++ survey and help us plan tomorrow's lecture!
● Fill out your section time preferences by today at 5pm PDT.

○ Make sure to check what time you’ve been assigned tomorrow morning.
● Finish Assignment 0 by Wednesday at 11:59 pm local time.

○ If you’re running into issues with Qt Creator, come to the Qt Installation
Help Session tonight at 7pm PDT. Join the QueueStatus here to get help.

● Assignment 1 will be released later today, and after this lecture is over, you will
have the skills you need to get started on the first part!
○ There be a YEAH (Your Early Assignment Help) session held from 6-7pm

PDT on Wednesday evening to help folks get started on the assignment.

https://docs.google.com/forms/u/1/d/e/1FAIpQLSeFQo_H0K4snbZpGKlCE9XNAOeYriWghJIF3NdA5CoRx5Qfkw/viewform
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1208/assignments/assign0/
https://queuestatus.com/queues/774

Control Flow

Boolean Expressions

Expression Meaning

a < b a is less than b

a <= b a is less than or equal to b

a > b a is greater than b

a >= b a is greater than or equal to b

a == b a is equal to b

a != b a is not equal to b

Operator Meaning

a && b Both a AND b are true

a || b Either a OR b are true

!a If a is true, returns false, and vice-versa

Conditional Statements

● The C++ if statement tests a boolean expression and runs a block of code if the expression is true, and, optionally, runs a

different block of code if the expression is false. The if statement has the following format:
○ if (expression) {

 statements if expression is true
} else {
 statements if expression is false
}

Note: The parentheses around
expression are required.

Conditional Statements

● The C++ if statement tests a boolean expression and runs a block of code if the expression is true, and, optionally, runs a

different block of code if the expression is false. The if statement has the following format:
○ if (expression) {

 statements if expression is true
} else {
 statements if expression is false
}

Note: The parentheses around
expression are required.

● In Python, a block is defined as an indentation level,
where whitespace is important. C++ does not have any
whitespace restrictions, so blocks are denoted with
curly braces, { to begin a block, and } to end a block.

● Blocks are used primarily for conditional statements,
functions, and loops.

Conditional Statements
● The C++ if statement tests a boolean expression and runs a block of code if the expression is true, and, optionally,

runs a different block of code if the expression is false. The if statement has the following format:
○

● Additional else if statements can be used to check for additional conditions as well
○

if (expression) {
 statements if expression is true
} else {
 statements if expression is false
}

if (expression1) {
 statements if expression1 is true
} else if (expression2) {
 statements if expression2 is true
} else {
 statements if neither expression1 nor expression2 is true
}

while loops

● Loops allow you to repeat the execution of a certain block of code multiple
times

while loops

● Loops allow you to repeat the execution of a certain block of code multiple
times

● while loops are great when you want to continue executing something until a
certain condition is met and you don't know exactly how many times you want
to iterate for

while loops

● Loops allow you to repeat the execution of a certain block of code multiple
times

● while loops are great when you want to continue executing something until a
certain condition is met and you don't know exactly how many times you want
to iterate for

while (expression) {
 statement;
 statement;
 ...
}

Execution continues until
expression evaluates to false

while loops

● Loops allow you to repeat the execution of a certain block of code multiple
times

● while loops are great when you want to continue executing something until a
certain condition is met and you don't know exactly how many times you want
to iterate for

while (expression) {
 statement;
 statement;
 ...
}

int i = 0;
while (i < 5) {
 cout << i << endl;
 i++;
}

Output:
0
1
2
3
4

while loops

● Loops allow you to repeat the execution of a certain block of code multiple
times

● while loops are great when you want to continue executing something until a
certain condition is met and you don't know exactly how many times you want
to iterate for

while (expression) {
 statement;
 statement;
 ...
}

int i = 0;
while (i < 5) {
 cout << i << endl;
 i++;
}

Output:
0
1
2
3
4

Note: The i++ increments the variable i by 1, and is the reason C++ got its name!
(and there is a corresponding decrement operator, --, as in i--).

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

● for loop syntax in C++ can look a little strange, let's investigate!

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

for (initializationStatement; testExpression; updateStatement) {
 statement;
 statement;
 ...
}

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

for (initializationStatement; testExpression; updateStatement) {
 statement;
 statement;
 ...
} The initializationStatement

happens at the beginning of the loop,
and initializes a variable.

E.g., int i = 0.

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

for (initializationStatement; testExpression; updateStatement) {
 statement;
 statement;
 ...
}

The testExpression is evaluated
initially, and after each run through the
loop, and if it is true, the loop
continues for another iteration.

E.g., i < 3.

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

for (initializationStatement; testExpression; updateStatement) {
 statement;
 statement;
 ...
}

The updateStatement happens after
each loop, but before
testExpression is evaluated.

E.g., i++.

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

for (initializationStatement; testExpression; updateStatement) {
 statement;
 statement;
 ...
}

for (int i = 0; i < 3; i++) {
 cout << i << endl;
}

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

for (initializationStatement; testExpression; updateStatement) {
 statement;
 statement;
 ...
}

for (int i = 0; i < 3; i++) {
 cout << i << endl;
}

Output:
0
1
2

Interactive Example

Try it for yourself!

Write a program that prints out the

calls for a spaceship that is about to

launch. Countdown the numbers from

10 to 1 and then write “Liftoff.”

Try it for yourself!

Write a program that prints out the

calls for a spaceship that is about to

launch. Countdown the numbers from

10 to 1 and then write “Liftoff.”

def main():

 for i in range(10, 0, -1):

 print(i)

 print ("Liftoff")

if __name__ == "__main__":

 main()

Python

Try it for yourself!

Write a program that prints out the

calls for a spaceship that is about to

launch. Countdown the numbers from

10 to 1 and then write “Liftoff.”

def main():

 for i in range(10, 0, -1):

 print(i)

 print ("Liftoff")

if __name__ == "__main__":

 main()

Python

C++

#include <iostream>

using namespace std;

int main() {

 /* TODO: Your code goes here! */

 return 0;

}

Try it for yourself!

Write a program that prints out the

calls for a spaceship that is about to

launch. Countdown the numbers from

10 to 1 and then write “Liftoff.”

def main():

 for i in range(10, 0, -1):

 print(i)

 print ("Liftoff")

if __name__ == "__main__":

 main()

Python

C++

#include <iostream>

using namespace std;

int main() {

 /* TODO: Your code goes here! */

 return 0;

}

Breakout
Rooms!

How do we test code in
CS106B?

Testing
Software and cathedrals are much the same – first we build them,
then we pray.
– Sam Redwine

Why is testing important?

Why is testing important?

The hole in the ozone layer over
Antarctica remained undetected for
a long period of time because the
data analysis software used by
NASA in its project to map the ozone
layer had been designed to ignore
values that deviated greatly from
expected measurements.

Source: https://royal.pingdom.com/10-historical-software-bugs-with-extreme-consequences/

http://earthobservatory.nasa.gov/Features/RemoteSensingAtmosphere/remote_sensing5.php
http://earthobservatory.nasa.gov/Features/RemoteSensingAtmosphere/remote_sensing5.php
https://royal.pingdom.com/10-historical-software-bugs-with-extreme-consequences/

Why is testing important?

In 1996, a European Ariane 5 rocket
was set to deliver a payload of
satellites into Earth orbit, but problems
with the software caused the launch
rocket to veer off its path a mere 37
seconds after launch. The problem was
the result of code reuse from the
launch system’s predecessor, Ariane 4,
which had very different flight
conditions from Ariane 5.

Source: https://royal.pingdom.com/10-historical-software-bugs-with-extreme-consequences/

http://en.wikipedia.org/wiki/Ariane_5_Flight_501
http://en.wikipedia.org/wiki/Ariane_5_Flight_501
https://royal.pingdom.com/10-historical-software-bugs-with-extreme-consequences/

Why is testing important?

A 2002 study commissioned by the
National Institute of Standards and
Technology (referred to here) found
that software bugs cost the U.S.
economy $59.5 billion every year
(imagine the global costs…). The
study estimated that more than a
third of that amount, $22.2 billion,
could be eliminated by improved
testing.

Source: https://royal.pingdom.com/10-historical-software-bugs-with-extreme-consequences/

http://tvnz.co.nz/view/news_technology_story_skin/453830?format=html
https://royal.pingdom.com/10-historical-software-bugs-with-extreme-consequences/

Why is testing important?

● Testing can save money

● Testing can save lives

● Testing can prevent disasters

● Testing is a programmer's responsibility.
○ You must think about ethical considerations when you

develop code that impacts people.

What are good testing strategies?

What are good testing strategies?

● Write tests that cover a wide variety of use cases for your function!

What are good testing strategies?

● Write tests that cover a wide variety of use cases for your function!
○ Use your critical thinking and analysis skills to identify a diverse

range of possible ways in which your code might be used.

What are good testing strategies?

● Write tests that cover a wide variety of use cases for your function!
○ Use your critical thinking and analysis skills to identify a diverse

range of possible ways in which your code might be used.

What are good testing strategies?

● Write tests that cover a wide variety of use cases for your function!

● Consider:
○ Basic use cases
○ Edge cases

Testing strategies

● Write tests that cover a wide variety of use cases for your function!

● Consider:
○ Basic use cases
○ Edge cases

edge case
Uses of your function/program that

represent extreme situations

Definition

Testing strategies

● Write tests that cover a wide variety of use cases for your function!

● Consider:
○ Basic use cases
○ Edge cases

edge case
Uses of your function/program that

represent extreme situations

Definition

For example, if your function takes in an
integer parameter, test what happens if the
value that is passed in negative, zero, a large
positive number, etc!

SimpleTest

What is SimpleTest?

● SimpleTest is a C++ library developed by some of the lecturers here at
Stanford that allows standalone, C++ unit testing

● For those of you coming from CS106A in Python, this is similar in
functionality to the doctest infrastructure that you learned

● We will see SimpleTest a lot this quarter! You will learn how to write
good, comprehensive suites of tests using this library, starting from the
very first assignment.

How does SimpleTest work?

CS106B Testing Guide
– make sure to read it!

http://web.stanford.edu/class/cs106b/testing

How does SimpleTest work?
main.cpp

#include "testing/SimpleTest.h"
#include "all-examples.h"

int main()
{
 if (runSimpleTests(SELECTED_TESTS)) {
 return 0;
 }

 return 0;
}

NO_TESTS
SELECTED_TESTS
ALL_TESTS

How does SimpleTest work?
main.cpp

#include "testing/SimpleTest.h"
#include "all-examples.h"

int main()
{
 if (runSimpleTests(SELECTED_TESTS)) {
 return 0;
 }

 return 0;
}

all-examples.cpp

#include "testing/SimpleTest.h"

int factorial (int num);

int factorial (int num){
/* Implementation here */

}

PROVIDED_TEST("Some provided tests."){
EXPECT_EQUAL(factor(12), 16);

 EXPECT(isPerfect(6));
 EXPECT(!isPerfect(12));
}

STUDENT_TEST("student wrote this test"){
// student tests go here!

}

How does SimpleTest work?
main.cpp

#include "testing/SimpleTest.h"
#include "all-examples.h"

int main()
{
 if (runSimpleTests(SELECTED_TESTS)) {
 return 0;
 }

 return 0;
}

all-examples.cpp

#include "testing/SimpleTest.h"

int factorial (int num);

int factorial (int num){
/* Implementation here */

}

PROVIDED_TEST("Some provided tests."){
EXPECT_EQUAL(factorial(1), 1);
EXPECT_EQUAL(factorial(2), 2);
EXPECT_EQUAL(factorial(3), 6);
EXPECT_EQUAL(factorial(4), 24);

}

STUDENT_TEST("student wrote this test"){
// student tests go here!

}

How does SimpleTest work?
main.cpp

#include "testing/SimpleTest.h"
#include "all-examples.h"

int main()
{
 if (runSimpleTests(SELECTED_TESTS)) {
 return 0;
 }

 return 0;
}

all-examples.cpp

#include "testing/SimpleTest.h"

int factorial (int num);

int factorial (int num){
/* Implementation here */

}

PROVIDED_TEST("Some provided tests."){
EXPECT_EQUAL(factorial(1), 1);
EXPECT_EQUAL(factorial(2), 2);
EXPECT_EQUAL(factorial(3), 6);
EXPECT_EQUAL(factorial(4), 24);

}

STUDENT_TEST("student wrote this test"){
// student tests go here!

}

What’s next?

Strings, Vectors, C++ Review

