
Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Introductory Fortran Programming

Gunnar Wollan1

Dept. of Geosciences, University of Oslo1

January 27th, 2006

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Outline

1 Motivation

2 About Fortran 77 and 95

3 Intro to Fortran 77 programming

4 Intro to Fortran 95 programming

5 Compiling and linking Fortran programs

6 Manipulate data files (File I/O)

7 File handling in Fortran

8 Arrays and loops

9 Subroutines and functions in Fortran

10 Pointers in Fortran 95

11 Exercises part 1

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

List of Topics

1 Motivation

2 About Fortran 77 and 95

3 Intro to Fortran 77 programming

4 Intro to Fortran 95 programming

5 Compiling and linking Fortran programs

6 Manipulate data files (File I/O)

7 File handling in Fortran

8 Arrays and loops

9 Subroutines and functions in Fortran

10 Pointers in Fortran 95

11 Exercises part 1

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Contents

Gentle introduction to Fortran 77 and 95 programming

File I/O

Arrays and loops

Functions and subroutines

Detailed explanation of modules

Computational efficiency aspects

Using modules as objects

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Contents

Gentle introduction to Fortran 77 and 95 programming

File I/O

Arrays and loops

Functions and subroutines

Detailed explanation of modules

Computational efficiency aspects

Using modules as objects

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Contents

Gentle introduction to Fortran 77 and 95 programming

File I/O

Arrays and loops

Functions and subroutines

Detailed explanation of modules

Computational efficiency aspects

Using modules as objects

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Contents

Gentle introduction to Fortran 77 and 95 programming

File I/O

Arrays and loops

Functions and subroutines

Detailed explanation of modules

Computational efficiency aspects

Using modules as objects

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Contents

Gentle introduction to Fortran 77 and 95 programming

File I/O

Arrays and loops

Functions and subroutines

Detailed explanation of modules

Computational efficiency aspects

Using modules as objects

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Contents

Gentle introduction to Fortran 77 and 95 programming

File I/O

Arrays and loops

Functions and subroutines

Detailed explanation of modules

Computational efficiency aspects

Using modules as objects

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Contents

Gentle introduction to Fortran 77 and 95 programming

File I/O

Arrays and loops

Functions and subroutines

Detailed explanation of modules

Computational efficiency aspects

Using modules as objects

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Required background

Programming experience with either C++, Java or Matlab

Interest in numerical computing using Fortran

Interest in writing efficient programs utilizing low-level details
of the computer

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Required background

Programming experience with either C++, Java or Matlab

Interest in numerical computing using Fortran

Interest in writing efficient programs utilizing low-level details
of the computer

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Required background

Programming experience with either C++, Java or Matlab

Interest in numerical computing using Fortran

Interest in writing efficient programs utilizing low-level details
of the computer

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

About learning Fortran

Fortran is a less complicated language than C++ and Java

Even so it takes time to master the advanced details of
Fortran 95

At least 6 months to a year working with Fortran 95 before
you are familiar with most of the details

Four days can only get you started

You need to use Fortran 95 in your own projects to master the
language

Fortran 77 code is not the main topic here, but you need to
have some knowledge of it

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

About learning Fortran

Fortran is a less complicated language than C++ and Java

Even so it takes time to master the advanced details of
Fortran 95

At least 6 months to a year working with Fortran 95 before
you are familiar with most of the details

Four days can only get you started

You need to use Fortran 95 in your own projects to master the
language

Fortran 77 code is not the main topic here, but you need to
have some knowledge of it

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

About learning Fortran

Fortran is a less complicated language than C++ and Java

Even so it takes time to master the advanced details of
Fortran 95

At least 6 months to a year working with Fortran 95 before
you are familiar with most of the details

Four days can only get you started

You need to use Fortran 95 in your own projects to master the
language

Fortran 77 code is not the main topic here, but you need to
have some knowledge of it

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

About learning Fortran

Fortran is a less complicated language than C++ and Java

Even so it takes time to master the advanced details of
Fortran 95

At least 6 months to a year working with Fortran 95 before
you are familiar with most of the details

Four days can only get you started

You need to use Fortran 95 in your own projects to master the
language

Fortran 77 code is not the main topic here, but you need to
have some knowledge of it

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

About learning Fortran

Fortran is a less complicated language than C++ and Java

Even so it takes time to master the advanced details of
Fortran 95

At least 6 months to a year working with Fortran 95 before
you are familiar with most of the details

Four days can only get you started

You need to use Fortran 95 in your own projects to master the
language

Fortran 77 code is not the main topic here, but you need to
have some knowledge of it

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

About learning Fortran

Fortran is a less complicated language than C++ and Java

Even so it takes time to master the advanced details of
Fortran 95

At least 6 months to a year working with Fortran 95 before
you are familiar with most of the details

Four days can only get you started

You need to use Fortran 95 in your own projects to master the
language

Fortran 77 code is not the main topic here, but you need to
have some knowledge of it

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

List of Topics

1 Motivation

2 About Fortran 77 and 95

3 Intro to Fortran 77 programming

4 Intro to Fortran 95 programming

5 Compiling and linking Fortran programs

6 Manipulate data files (File I/O)

7 File handling in Fortran

8 Arrays and loops

9 Subroutines and functions in Fortran

10 Pointers in Fortran 95

11 Exercises part 1

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Fortran 77

Into the early/middle of the nineties Fortran 77 was the
dominating language for number crunching

The predecessor Fortran IV was replaced by Fortran 77 in the
early eighties

At IBM in 1954 a group of people started to design the
FORmula TRANslator System, or FORTRAN0

The first version of Fortran was released in 1957 and the
language has evolved over time

Like many procedural languages Fortran has a fairly simple
syntax

Fortran is good for only one thing: NUMBERCRUNCHING

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Fortran 77

Into the early/middle of the nineties Fortran 77 was the
dominating language for number crunching

The predecessor Fortran IV was replaced by Fortran 77 in the
early eighties

At IBM in 1954 a group of people started to design the
FORmula TRANslator System, or FORTRAN0

The first version of Fortran was released in 1957 and the
language has evolved over time

Like many procedural languages Fortran has a fairly simple
syntax

Fortran is good for only one thing: NUMBERCRUNCHING

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Fortran 77

Into the early/middle of the nineties Fortran 77 was the
dominating language for number crunching

The predecessor Fortran IV was replaced by Fortran 77 in the
early eighties

At IBM in 1954 a group of people started to design the
FORmula TRANslator System, or FORTRAN0

The first version of Fortran was released in 1957 and the
language has evolved over time

Like many procedural languages Fortran has a fairly simple
syntax

Fortran is good for only one thing: NUMBERCRUNCHING

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Fortran 77

Into the early/middle of the nineties Fortran 77 was the
dominating language for number crunching

The predecessor Fortran IV was replaced by Fortran 77 in the
early eighties

At IBM in 1954 a group of people started to design the
FORmula TRANslator System, or FORTRAN0

The first version of Fortran was released in 1957 and the
language has evolved over time

Like many procedural languages Fortran has a fairly simple
syntax

Fortran is good for only one thing: NUMBERCRUNCHING

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Fortran 77

Into the early/middle of the nineties Fortran 77 was the
dominating language for number crunching

The predecessor Fortran IV was replaced by Fortran 77 in the
early eighties

At IBM in 1954 a group of people started to design the
FORmula TRANslator System, or FORTRAN0

The first version of Fortran was released in 1957 and the
language has evolved over time

Like many procedural languages Fortran has a fairly simple
syntax

Fortran is good for only one thing: NUMBERCRUNCHING

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Fortran 77

Into the early/middle of the nineties Fortran 77 was the
dominating language for number crunching

The predecessor Fortran IV was replaced by Fortran 77 in the
early eighties

At IBM in 1954 a group of people started to design the
FORmula TRANslator System, or FORTRAN0

The first version of Fortran was released in 1957 and the
language has evolved over time

Like many procedural languages Fortran has a fairly simple
syntax

Fortran is good for only one thing: NUMBERCRUNCHING

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Fortran 95

Fortran 95 extends Fortran 77 with

Nicer syntax, free format instead of fixed format
User defined datatypes using the TYPE declaration
Modules containing data definitions and procedure declarations
No implicit variable declarations, avoiding typing errors

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Fortran versus other languages

C is low level and close to the machine, but can be error prone

C++ is a superset of C and more reliable

Java is simpler and more reliable than C++

Python is more high-level than Java

Fortran 95 is more reliable than Fortran 77

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Fortran versus other languages

C is low level and close to the machine, but can be error prone

C++ is a superset of C and more reliable

Java is simpler and more reliable than C++

Python is more high-level than Java

Fortran 95 is more reliable than Fortran 77

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Fortran versus other languages

C is low level and close to the machine, but can be error prone

C++ is a superset of C and more reliable

Java is simpler and more reliable than C++

Python is more high-level than Java

Fortran 95 is more reliable than Fortran 77

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Fortran versus other languages

C is low level and close to the machine, but can be error prone

C++ is a superset of C and more reliable

Java is simpler and more reliable than C++

Python is more high-level than Java

Fortran 95 is more reliable than Fortran 77

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Fortran versus other languages

C is low level and close to the machine, but can be error prone

C++ is a superset of C and more reliable

Java is simpler and more reliable than C++

Python is more high-level than Java

Fortran 95 is more reliable than Fortran 77

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Speed of Fortran versus other languages

Fortran 77 is regarded as very fast

C yield slightly slower code

C++ and fortran 95 are slower than Fortran 77

Java is much slower

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Speed of Fortran versus other languages

Fortran 77 is regarded as very fast

C yield slightly slower code

C++ and fortran 95 are slower than Fortran 77

Java is much slower

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Speed of Fortran versus other languages

Fortran 77 is regarded as very fast

C yield slightly slower code

C++ and fortran 95 are slower than Fortran 77

Java is much slower

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Speed of Fortran versus other languages

Fortran 77 is regarded as very fast

C yield slightly slower code

C++ and fortran 95 are slower than Fortran 77

Java is much slower

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Why these differences

There are some reasons why som languages are faster than
others

The structure and complexity of the language
The complexity of the CPU and the experience of the compiler
developers
Compilation vs. interpretation

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Why these differences

There are some reasons why som languages are faster than
others

The structure and complexity of the language
The complexity of the CPU and the experience of the compiler
developers
Compilation vs. interpretation

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Some guidelines

Fortran 77 gives very fast programs, but the source code is
less readable and more error prone due to implicit declarations

Use Fortran 95 for your main program and if speed is critical
use Fortran 77 functions

Sometimes the best solution is a combination of languages,
e.g. Fortran with Python or C++

Use the language best suited for your problem

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Some guidelines

Fortran 77 gives very fast programs, but the source code is
less readable and more error prone due to implicit declarations

Use Fortran 95 for your main program and if speed is critical
use Fortran 77 functions

Sometimes the best solution is a combination of languages,
e.g. Fortran with Python or C++

Use the language best suited for your problem

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Some guidelines

Fortran 77 gives very fast programs, but the source code is
less readable and more error prone due to implicit declarations

Use Fortran 95 for your main program and if speed is critical
use Fortran 77 functions

Sometimes the best solution is a combination of languages,
e.g. Fortran with Python or C++

Use the language best suited for your problem

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Some guidelines

Fortran 77 gives very fast programs, but the source code is
less readable and more error prone due to implicit declarations

Use Fortran 95 for your main program and if speed is critical
use Fortran 77 functions

Sometimes the best solution is a combination of languages,
e.g. Fortran with Python or C++

Use the language best suited for your problem

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

List of Topics

1 Motivation

2 About Fortran 77 and 95

3 Intro to Fortran 77 programming

4 Intro to Fortran 95 programming

5 Compiling and linking Fortran programs

6 Manipulate data files (File I/O)

7 File handling in Fortran

8 Arrays and loops

9 Subroutines and functions in Fortran

10 Pointers in Fortran 95

11 Exercises part 1

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Our first Fortran 77 program

Goal: make a program writing the text “Hello World

Implementation

Without declaring a text string variable
With a text string variable declaration

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Without declaring a string variable

Fortran fixed format

C234567
PROGRAM hw1

WRITE(*,*) ’Hello World’
END PROGRAM hw1

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

With declaring a string variable

Fortran fixed format

C234567
PROGRAM hw1

CHARACTER*11 str = ’Hello World’
WRITE(*,*) str

END PROGRAM hw1

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Some comments to the “Hello World program

Fortran 77 uses fixed format

The source code is divided into positions on the line

This is a heritage from the old days when communication with
the computer was by punched cards

A character in the first column identifies to the compiler that
the rest of the line is a comment

The coumns 2 to 5 is for jump labels and format specifiers

Column 6 is for continuation of the previous line

The column 7 to 72 is for the source code

Column 73 to 80 is for comments

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Some comments to the “Hello World program

Fortran 77 uses fixed format

The source code is divided into positions on the line

This is a heritage from the old days when communication with
the computer was by punched cards

A character in the first column identifies to the compiler that
the rest of the line is a comment

The coumns 2 to 5 is for jump labels and format specifiers

Column 6 is for continuation of the previous line

The column 7 to 72 is for the source code

Column 73 to 80 is for comments

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Some comments to the “Hello World program

Fortran 77 uses fixed format

The source code is divided into positions on the line

This is a heritage from the old days when communication with
the computer was by punched cards

A character in the first column identifies to the compiler that
the rest of the line is a comment

The coumns 2 to 5 is for jump labels and format specifiers

Column 6 is for continuation of the previous line

The column 7 to 72 is for the source code

Column 73 to 80 is for comments

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Some comments to the “Hello World program

Fortran 77 uses fixed format

The source code is divided into positions on the line

This is a heritage from the old days when communication with
the computer was by punched cards

A character in the first column identifies to the compiler that
the rest of the line is a comment

The coumns 2 to 5 is for jump labels and format specifiers

Column 6 is for continuation of the previous line

The column 7 to 72 is for the source code

Column 73 to 80 is for comments

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Some comments to the “Hello World program

Fortran 77 uses fixed format

The source code is divided into positions on the line

This is a heritage from the old days when communication with
the computer was by punched cards

A character in the first column identifies to the compiler that
the rest of the line is a comment

The coumns 2 to 5 is for jump labels and format specifiers

Column 6 is for continuation of the previous line

The column 7 to 72 is for the source code

Column 73 to 80 is for comments

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Some comments to the “Hello World program

Fortran 77 uses fixed format

The source code is divided into positions on the line

This is a heritage from the old days when communication with
the computer was by punched cards

A character in the first column identifies to the compiler that
the rest of the line is a comment

The coumns 2 to 5 is for jump labels and format specifiers

Column 6 is for continuation of the previous line

The column 7 to 72 is for the source code

Column 73 to 80 is for comments

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Some comments to the “Hello World program

Fortran 77 uses fixed format

The source code is divided into positions on the line

This is a heritage from the old days when communication with
the computer was by punched cards

A character in the first column identifies to the compiler that
the rest of the line is a comment

The coumns 2 to 5 is for jump labels and format specifiers

Column 6 is for continuation of the previous line

The column 7 to 72 is for the source code

Column 73 to 80 is for comments

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Some comments to the “Hello World program

Fortran 77 uses fixed format

The source code is divided into positions on the line

This is a heritage from the old days when communication with
the computer was by punched cards

A character in the first column identifies to the compiler that
the rest of the line is a comment

The coumns 2 to 5 is for jump labels and format specifiers

Column 6 is for continuation of the previous line

The column 7 to 72 is for the source code

Column 73 to 80 is for comments

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

An example of a punched card for Fortran

the layout of a Fortran card

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

An example of a punched card for Fortran

the layout of a Fortran card

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

List of Topics

1 Motivation

2 About Fortran 77 and 95

3 Intro to Fortran 77 programming

4 Intro to Fortran 95 programming

5 Compiling and linking Fortran programs

6 Manipulate data files (File I/O)

7 File handling in Fortran

8 Arrays and loops

9 Subroutines and functions in Fortran

10 Pointers in Fortran 95

11 Exercises part 1

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Scientific Hello World in Fortran 95

Usage:

./hw1 2.3

Output of the program hw1

Hello, World! sin(2.3)=0.745705

What to learn

Store the first command-line argument in a floating-point
variable
Call the sine function
Write a combination of text and numbers to the screen

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Scientific Hello World in Fortran 95

Usage:

./hw1 2.3

Output of the program hw1

Hello, World! sin(2.3)=0.745705

What to learn

Store the first command-line argument in a floating-point
variable
Call the sine function
Write a combination of text and numbers to the screen

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Scientific Hello World in Fortran 95

Usage:

./hw1 2.3

Output of the program hw1

Hello, World! sin(2.3)=0.745705

What to learn

Store the first command-line argument in a floating-point
variable
Call the sine function
Write a combination of text and numbers to the screen

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Scientific Hello World in Fortran 95

Usage:

./hw1 2.3

Output of the program hw1

Hello, World! sin(2.3)=0.745705

What to learn

Store the first command-line argument in a floating-point
variable
Call the sine function
Write a combination of text and numbers to the screen

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

The code

The hw1 program

PROGRAM hw1
IMPLICIT NONE
DOUBLE PRECISION :: r, s
CHARACTER(LEN=80) :: argv ! Input argument
CALL getarg(1,argv) ! A C-function
r = a2d(argv) ! Our own ascii to

! double
s = SIN(r) ! The intrinsic

! SINE function
PRINT *, ’Hello Word sin(’,r,’)=’,s

END PROGRAM hw1

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Dissection(1)

Contrary to C++ the compiler does not need to se a
declaration of subroutines and intrinsic functions

Only external functions must be declared

Comments in Fortran 95 are the exclamation mark ! on a line

The code is free format unlike Fortran 77

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Dissection(1)

Contrary to C++ the compiler does not need to se a
declaration of subroutines and intrinsic functions

Only external functions must be declared

Comments in Fortran 95 are the exclamation mark ! on a line

The code is free format unlike Fortran 77

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Dissection(1)

Contrary to C++ the compiler does not need to se a
declaration of subroutines and intrinsic functions

Only external functions must be declared

Comments in Fortran 95 are the exclamation mark ! on a line

The code is free format unlike Fortran 77

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Dissection(1)

Contrary to C++ the compiler does not need to se a
declaration of subroutines and intrinsic functions

Only external functions must be declared

Comments in Fortran 95 are the exclamation mark ! on a line

The code is free format unlike Fortran 77

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Dissection(2)

Floating point variables in Fortran

REAL: single precision
DOUBLE PRECISION: double precision

a2d: your own ascii string to double conversion function,
Fortran has no intrinsic functions of this kind in contrast to
C/C++ so you have to write this one yourself or you can use
the C/C++ atof() if you declare it as external real function

Automatic type conversion: DOUBLE PRECISION = REAL

The SIN() function is an intrinsic function and does not need
a specific declaration

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Dissection(2)

Floating point variables in Fortran

REAL: single precision
DOUBLE PRECISION: double precision

a2d: your own ascii string to double conversion function,
Fortran has no intrinsic functions of this kind in contrast to
C/C++ so you have to write this one yourself or you can use
the C/C++ atof() if you declare it as external real function

Automatic type conversion: DOUBLE PRECISION = REAL

The SIN() function is an intrinsic function and does not need
a specific declaration

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Dissection(2)

Floating point variables in Fortran

REAL: single precision
DOUBLE PRECISION: double precision

a2d: your own ascii string to double conversion function,
Fortran has no intrinsic functions of this kind in contrast to
C/C++ so you have to write this one yourself or you can use
the C/C++ atof() if you declare it as external real function

Automatic type conversion: DOUBLE PRECISION = REAL

The SIN() function is an intrinsic function and does not need
a specific declaration

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Dissection(2)

Floating point variables in Fortran

REAL: single precision
DOUBLE PRECISION: double precision

a2d: your own ascii string to double conversion function,
Fortran has no intrinsic functions of this kind in contrast to
C/C++ so you have to write this one yourself or you can use
the C/C++ atof() if you declare it as external real function

Automatic type conversion: DOUBLE PRECISION = REAL

The SIN() function is an intrinsic function and does not need
a specific declaration

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Dissection(2)

Floating point variables in Fortran

REAL: single precision
DOUBLE PRECISION: double precision

a2d: your own ascii string to double conversion function,
Fortran has no intrinsic functions of this kind in contrast to
C/C++ so you have to write this one yourself or you can use
the C/C++ atof() if you declare it as external real function

Automatic type conversion: DOUBLE PRECISION = REAL

The SIN() function is an intrinsic function and does not need
a specific declaration

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

An interactive version

Let us ask the user for the real number instead of reading it
from the command line

WRITE(*.FMT=’(A)’,ADVANCE=’NO’) ’Give a number: ’
READ(*,*) r
s = SIN(r)
! etc.

The keyword ADVANCE=’NO’ suppress the linefeed Fortran
put at the end of each WRITE statement

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Scientific Hello World in Fortran 77

The f77 code

C234567
PROGRAM hw1
REAL*8 r,s
CHARACTER*80 argv
CALL getarg(1,argv)
r = a2d(argv)
s = SIN(r)
WRITE(*,*)’Hello World! sin(’,r’)=’,s

END PROGRAM hw1

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Differences from the Fortran 95 version

Fortran 77 uses REAL*8 instead of DOUBLE PRECISION

Fortran 77 lacks IMPLICIT NONE directive

A double precision variable has to be declared in Fortran 77
since default real numbers are single precision

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Differences from the Fortran 95 version

Fortran 77 uses REAL*8 instead of DOUBLE PRECISION

Fortran 77 lacks IMPLICIT NONE directive

A double precision variable has to be declared in Fortran 77
since default real numbers are single precision

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Differences from the Fortran 95 version

Fortran 77 uses REAL*8 instead of DOUBLE PRECISION

Fortran 77 lacks IMPLICIT NONE directive

A double precision variable has to be declared in Fortran 77
since default real numbers are single precision

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

List of Topics

1 Motivation

2 About Fortran 77 and 95

3 Intro to Fortran 77 programming

4 Intro to Fortran 95 programming

5 Compiling and linking Fortran programs

6 Manipulate data files (File I/O)

7 File handling in Fortran

8 Arrays and loops

9 Subroutines and functions in Fortran

10 Pointers in Fortran 95

11 Exercises part 1

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

How to compile and link (Fortran 95) on a unix/linux

system

One step (compiling and linking):

unix> f90 -O3 -o hw1 hw1.f90

Two steps:

unix> f90 -O3 -c hw1.f90
unix> f90 -O3 -o hw1 hw1.o

A linux system with Intel Fortran Compiler:

linux> ifort -O3 -o hw1 hw1.f90

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

How to compile and link (Fortran 95) on a unix/linux

system

One step (compiling and linking):

unix> f90 -O3 -o hw1 hw1.f90

Two steps:

unix> f90 -O3 -c hw1.f90
unix> f90 -O3 -o hw1 hw1.o

A linux system with Intel Fortran Compiler:

linux> ifort -O3 -o hw1 hw1.f90

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

How to compile and link (Fortran 95) on a unix/linux

system

One step (compiling and linking):

unix> f90 -O3 -o hw1 hw1.f90

Two steps:

unix> f90 -O3 -c hw1.f90
unix> f90 -O3 -o hw1 hw1.o

A linux system with Intel Fortran Compiler:

linux> ifort -O3 -o hw1 hw1.f90

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

How to compile and link (Fortran 95) on a windows

system

On a windows system one usually uses an Integrated
Development Environment (IDE)

This IDE contains drop down menus to compile and run the
program

An integrated debugger is also available in such an IDE

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

How to compile and link (Fortran 95) on a windows

system

On a windows system one usually uses an Integrated
Development Environment (IDE)

This IDE contains drop down menus to compile and run the
program

An integrated debugger is also available in such an IDE

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

How to compile and link (Fortran 95) on a windows

system

On a windows system one usually uses an Integrated
Development Environment (IDE)

This IDE contains drop down menus to compile and run the
program

An integrated debugger is also available in such an IDE

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Using the make utility to compile a program

What is the make utility?

The make utility reads a file containing the name(s) of the
file(s) to be compiled togehter with the name of the
executable program

The makefile is either called makefile or Makefile as default
and is available on all unix/linux systems

Invoking the make utiltity:

linux> make
unix> make
unix> gmake

On unix machines there are often both the gnu make utility
and a native make. The native make utility can often have a
different syntax than the gnu make

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Using the make utility to compile a program

What is the make utility?

The make utility reads a file containing the name(s) of the
file(s) to be compiled togehter with the name of the
executable program

The makefile is either called makefile or Makefile as default
and is available on all unix/linux systems

Invoking the make utiltity:

linux> make
unix> make
unix> gmake

On unix machines there are often both the gnu make utility
and a native make. The native make utility can often have a
different syntax than the gnu make

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Using the make utility to compile a program

What is the make utility?

The make utility reads a file containing the name(s) of the
file(s) to be compiled togehter with the name of the
executable program

The makefile is either called makefile or Makefile as default
and is available on all unix/linux systems

Invoking the make utiltity:

linux> make
unix> make
unix> gmake

On unix machines there are often both the gnu make utility
and a native make. The native make utility can often have a
different syntax than the gnu make

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Using the make utility to compile a program

What is the make utility?

The make utility reads a file containing the name(s) of the
file(s) to be compiled togehter with the name of the
executable program

The makefile is either called makefile or Makefile as default
and is available on all unix/linux systems

Invoking the make utiltity:

linux> make
unix> make
unix> gmake

On unix machines there are often both the gnu make utility
and a native make. The native make utility can often have a
different syntax than the gnu make

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Using the make utility to compile a program

What is the make utility?

The make utility reads a file containing the name(s) of the
file(s) to be compiled togehter with the name of the
executable program

The makefile is either called makefile or Makefile as default
and is available on all unix/linux systems

Invoking the make utiltity:

linux> make
unix> make
unix> gmake

On unix machines there are often both the gnu make utility
and a native make. The native make utility can often have a
different syntax than the gnu make

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

A short example of a makefile

Makefile

$(shell ls *.f90 ./srclist)
SRC=$(shell cat ./srclist)
OBJECTS= $(SRC:.f90=.o)
prog : $(OBJECTS)

$(FC) -o $@ $(OBJECTS)
%.o : %.f90

$(FC) -c $?

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Rolling your own make script

The main feature of a makefile is to check time stamps in files
and only recompile the required files

Since the syntax of a makefile is kind of awkward and each
flavour of unix has its own specialities you can make your own
script doing almost the same

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Rolling your own make script

The main feature of a makefile is to check time stamps in files
and only recompile the required files

Since the syntax of a makefile is kind of awkward and each
flavour of unix has its own specialities you can make your own
script doing almost the same

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

The looks of a make.sh script(1)

make.sh

#!/bin/sh
if [! -n ‘‘$F90_CMPL’’]; then

case ‘uname -s‘ in
Linux)

F90_CMPL=ifort
F90_OPTS= -static
;;

*)
F90_CMPL=f90
F90_OPTS=

esac
fi

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

The looks of the make.sh script(2)

make.sh

files=‘/bin/ls *.f90‘
for file in files; do
stem=‘echo $file | sed ’s/\.f90//’‘
echo $F90_CMPL $F90_OPTS -I. -o $stem $file
$F90_CMPL $F90_OPTS -I. -o $stem $file
ls -s stem

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

How to compile and link (Fortran 77)(1)

Either use the f90 compiler or if present the f77 compiler

Rememeber that Fortran 77 is s subset of Fortran 95

An example:

f90 -o prog prog.f or
f77 -o prog prog.f

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

How to compile and link (Fortran 77)(1)

Either use the f90 compiler or if present the f77 compiler

Rememeber that Fortran 77 is s subset of Fortran 95

An example:

f90 -o prog prog.f or
f77 -o prog prog.f

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

How to compile and link (Fortran 77)(1)

Either use the f90 compiler or if present the f77 compiler

Rememeber that Fortran 77 is s subset of Fortran 95

An example:

f90 -o prog prog.f or
f77 -o prog prog.f

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

How to compile and link (Fortran 77) (2)

NOTE! The file extension of the Fortran source code is
important

A file with the extension .f90 is automatically a Fortran 90/95
free format file

If the file has the extension .f the compier sees this as a
Fortran 77 fixed format file

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

How to compile and link (Fortran 77) (2)

NOTE! The file extension of the Fortran source code is
important

A file with the extension .f90 is automatically a Fortran 90/95
free format file

If the file has the extension .f the compier sees this as a
Fortran 77 fixed format file

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

How to compile and link (Fortran 77) (2)

NOTE! The file extension of the Fortran source code is
important

A file with the extension .f90 is automatically a Fortran 90/95
free format file

If the file has the extension .f the compier sees this as a
Fortran 77 fixed format file

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

How to compile and link in general

We compile a set of programs in Fortran and C++

Compile each set of files with the right compiler:

unix> f90 -O3 -c *.f90
unix> g++ -O3 -c *.cpp

Then link:

unix> f90 -o exec_file *.o -L/some/libdir \
-L/other/libdir -lmylib -lyourlib

Library type: lib*.a: static; lib*.so: dynamic

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

How to compile and link in general

We compile a set of programs in Fortran and C++

Compile each set of files with the right compiler:

unix> f90 -O3 -c *.f90
unix> g++ -O3 -c *.cpp

Then link:

unix> f90 -o exec_file *.o -L/some/libdir \
-L/other/libdir -lmylib -lyourlib

Library type: lib*.a: static; lib*.so: dynamic

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

How to compile and link in general

We compile a set of programs in Fortran and C++

Compile each set of files with the right compiler:

unix> f90 -O3 -c *.f90
unix> g++ -O3 -c *.cpp

Then link:

unix> f90 -o exec_file *.o -L/some/libdir \
-L/other/libdir -lmylib -lyourlib

Library type: lib*.a: static; lib*.so: dynamic

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

How to compile and link in general

We compile a set of programs in Fortran and C++

Compile each set of files with the right compiler:

unix> f90 -O3 -c *.f90
unix> g++ -O3 -c *.cpp

Then link:

unix> f90 -o exec_file *.o -L/some/libdir \
-L/other/libdir -lmylib -lyourlib

Library type: lib*.a: static; lib*.so: dynamic

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

List of Topics

1 Motivation

2 About Fortran 77 and 95

3 Intro to Fortran 77 programming

4 Intro to Fortran 95 programming

5 Compiling and linking Fortran programs

6 Manipulate data files (File I/O)

7 File handling in Fortran

8 Arrays and loops

9 Subroutines and functions in Fortran

10 Pointers in Fortran 95

11 Exercises part 1

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Example: Data transformation

Suppose we have a file with an xy-data pair

0.1 1.1
0.2 1.8
0.3 2.2
0.4 1.8

We want to transform the y value using some mathematical
function f(y)

Goal: write a Fortran 95 program that reads the xy-data pair
from the file, transforms the y value and write the new
xy-data pair to a new file

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Example: Data transformation

Suppose we have a file with an xy-data pair

0.1 1.1
0.2 1.8
0.3 2.2
0.4 1.8

We want to transform the y value using some mathematical
function f(y)

Goal: write a Fortran 95 program that reads the xy-data pair
from the file, transforms the y value and write the new
xy-data pair to a new file

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Example: Data transformation

Suppose we have a file with an xy-data pair

0.1 1.1
0.2 1.8
0.3 2.2
0.4 1.8

We want to transform the y value using some mathematical
function f(y)

Goal: write a Fortran 95 program that reads the xy-data pair
from the file, transforms the y value and write the new
xy-data pair to a new file

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Program structure

Read the names of input and output files as command-line
arguments

Print error/usage message if less than two command-line
arguments are given

Open the files

While more data in the file:

read x and y from the input file
set y=myfunc(y)
write x and y to the output file

Close the files

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Program structure

Read the names of input and output files as command-line
arguments

Print error/usage message if less than two command-line
arguments are given

Open the files

While more data in the file:

read x and y from the input file
set y=myfunc(y)
write x and y to the output file

Close the files

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Program structure

Read the names of input and output files as command-line
arguments

Print error/usage message if less than two command-line
arguments are given

Open the files

While more data in the file:

read x and y from the input file
set y=myfunc(y)
write x and y to the output file

Close the files

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Program structure

Read the names of input and output files as command-line
arguments

Print error/usage message if less than two command-line
arguments are given

Open the files

While more data in the file:

read x and y from the input file
set y=myfunc(y)
write x and y to the output file

Close the files

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Program structure

Read the names of input and output files as command-line
arguments

Print error/usage message if less than two command-line
arguments are given

Open the files

While more data in the file:

read x and y from the input file
set y=myfunc(y)
write x and y to the output file

Close the files

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Program structure

Read the names of input and output files as command-line
arguments

Print error/usage message if less than two command-line
arguments are given

Open the files

While more data in the file:

read x and y from the input file
set y=myfunc(y)
write x and y to the output file

Close the files

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

The fortran 95 code(1)

Code

FUNCTION myfunc(y) RESULT(r)
IMPLICIT NONE
DOUBLE PRECISION, INTENT(IN) :: y
DOUBLE PRECISION :: r
IF(y>=0.) THEN

r = y**0.5*EXP(-y)
ELSE

r = 0.
END IF

END FUNCTION myfunc

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

The fortran 95 code(2)

Code

PROGRAM dtrans
IMPLICIT NONE
INTEGER :: argc, rstat
DOUBLE PRECISION :: x, y
CHARACTER(LEN=80) :: infilename, outfilename
INTEGER,PARAMETER :: ilun = 10
INTEGER,PARAMETER :: olun = 11
INTEGER, EXTERNAL :: iargc
argc = iargc()
IF (argc < 2) THEN

PRINT *, ’Usage: dtrans infile outfile’
STOP

END IF
CALL getarg(1,infilename)
CALL getarg(2,outfilename)

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

The fortran 95 code(3)

Code

OPEN(UNIT=ilun,FILE=infilename, &
FORM=’FORMATTED’, IOSTAT=rstat)
OPEN(UNIT=olun,FILE=outfilename,&
FORM=’FORMATTED’, IOSTAT=rstat)
rstat = 0
DO WHILE(rstat == 0)
READ(UNIT=ilun,FMT=’(F3.1,X,F3.1)’,&

IOSTAT=rstat) x, y
IF(rstat /= 0) THEN

CLOSE(ilun); CLOSE(olun)
STOP

END IF
y = myfunc(y)
WRITE(UNIT=olun,FMT=’(F3.1,X,F3.1)’,&

IOSTAT=rstat) x, y
END DO

END PROGRAM dtrans

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

List of Topics

1 Motivation

2 About Fortran 77 and 95

3 Intro to Fortran 77 programming

4 Intro to Fortran 95 programming

5 Compiling and linking Fortran programs

6 Manipulate data files (File I/O)

7 File handling in Fortran

8 Arrays and loops

9 Subroutines and functions in Fortran

10 Pointers in Fortran 95

11 Exercises part 1

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Fortran file opening

Open a file for reading

OPEN(UNIT=ilun,FORM=’FORMATTED’,IOSTAT=rstat)

Open a file for writing

OPEN(UNIT=ilun,FORM=’FORMATTED’,IOSTAT=rstat)

Open for appending data

OPEN(UNIT=ilun,FORM=’FORMATTED’,&
POSITION=’APPEND’,IOSTAT=rstat)

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Fortran file opening

Open a file for reading

OPEN(UNIT=ilun,FORM=’FORMATTED’,IOSTAT=rstat)

Open a file for writing

OPEN(UNIT=ilun,FORM=’FORMATTED’,IOSTAT=rstat)

Open for appending data

OPEN(UNIT=ilun,FORM=’FORMATTED’,&
POSITION=’APPEND’,IOSTAT=rstat)

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Fortran file opening

Open a file for reading

OPEN(UNIT=ilun,FORM=’FORMATTED’,IOSTAT=rstat)

Open a file for writing

OPEN(UNIT=ilun,FORM=’FORMATTED’,IOSTAT=rstat)

Open for appending data

OPEN(UNIT=ilun,FORM=’FORMATTED’,&
POSITION=’APPEND’,IOSTAT=rstat)

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Fortran file reading and writing

Read a double precision number

READ(UNIT=ilun,FMT=’(F10.6)’,IOSTAT=rstat) x

Test if the reading was successful

IF(rstat /= 0) STOP

Write a double precision number

WRITE(UNIT=olun,FMT=’(F20.12)’,IOSTAT=rstat) x

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Fortran file reading and writing

Read a double precision number

READ(UNIT=ilun,FMT=’(F10.6)’,IOSTAT=rstat) x

Test if the reading was successful

IF(rstat /= 0) STOP

Write a double precision number

WRITE(UNIT=olun,FMT=’(F20.12)’,IOSTAT=rstat) x

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Fortran file reading and writing

Read a double precision number

READ(UNIT=ilun,FMT=’(F10.6)’,IOSTAT=rstat) x

Test if the reading was successful

IF(rstat /= 0) STOP

Write a double precision number

WRITE(UNIT=olun,FMT=’(F20.12)’,IOSTAT=rstat) x

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Formatted output

The formatted output in Fortran is selected via the FORMAT
of FMT statement

In fortran 77 the FORMAT statement is used

C234567
100 FORMAT(F15.8)

WRITE(*,100) x

In Fortran 95 the FMT statement is used

WRITE(*,FMT=’(F15.8)’) x

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Formatted output

The formatted output in Fortran is selected via the FORMAT
of FMT statement

In fortran 77 the FORMAT statement is used

C234567
100 FORMAT(F15.8)

WRITE(*,100) x

In Fortran 95 the FMT statement is used

WRITE(*,FMT=’(F15.8)’) x

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Formatted output

The formatted output in Fortran is selected via the FORMAT
of FMT statement

In fortran 77 the FORMAT statement is used

C234567
100 FORMAT(F15.8)

WRITE(*,100) x

In Fortran 95 the FMT statement is used

WRITE(*,FMT=’(F15.8)’) x

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

A convenient way of formatting in Fortran 95(1)

Instead of writing the format in the FMT statement we can
put it in a string variable

CHARACTER(LEN=7) :: fmt_string
fmt_string = ’(F15.8)’
WRITE(*,FMT=fmt_string) x

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

A convenient way of formatting in Fortran 95(2)

We can use a set of such format strings

CHARACTER(LEN=7),DIMENSION(3) :: fmt_string
fmt_string(1) = ’(F15.8)’
fmt_string(2) = ’(2I4)’
fmt_string(3) = ’(3F10.2)’
WRITE(*,FMT=fmt_string(1)) x

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Unformatted I/O in Fortran

More often than not we use huge amount of data both for
input and output

Using formatted data increase both the filesize and the time
spent reading and writing data from/to files

We therefore use unformatted data in these cases

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Unformatted I/O in Fortran

More often than not we use huge amount of data both for
input and output

Using formatted data increase both the filesize and the time
spent reading and writing data from/to files

We therefore use unformatted data in these cases

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Unformatted I/O in Fortran

More often than not we use huge amount of data both for
input and output

Using formatted data increase both the filesize and the time
spent reading and writing data from/to files

We therefore use unformatted data in these cases

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Opening and reading an unformatted file

Open syntax:

OPEN(UNIT=ilun,FILE=infile,FORM=’UNFORMATTED’,&
IOSTAT=rstat)

Reading syntax:

READ(UNIT=ilun,IOSTAT=rstat) array

the array variable can be a single variable, a vector or a
multidimensional matrix

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Opening and reading an unformatted file

Open syntax:

OPEN(UNIT=ilun,FILE=infile,FORM=’UNFORMATTED’,&
IOSTAT=rstat)

Reading syntax:

READ(UNIT=ilun,IOSTAT=rstat) array

the array variable can be a single variable, a vector or a
multidimensional matrix

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Opening and reading an unformatted file

Open syntax:

OPEN(UNIT=ilun,FILE=infile,FORM=’UNFORMATTED’,&
IOSTAT=rstat)

Reading syntax:

READ(UNIT=ilun,IOSTAT=rstat) array

the array variable can be a single variable, a vector or a
multidimensional matrix

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Using direct access file I/O

In some cases it is advantageous to be able to read and write
the same portion of a file without reading it sequentially from
start

This is performed by using direct access file I/O

Open syntax:

OPEN(UNIT=ilun,FILE=infile,ACCESS=’DIRECT’,&
RECL=lng,IOSTAT=rstat)

Reading syntax:

READ(UNIT=ilun,REC=recno,IOSTAT=rstat) array

The array most be of equal size to the record length and the
recno variable contains the record number to be read

The records are numbered from 1 and up

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Using direct access file I/O

In some cases it is advantageous to be able to read and write
the same portion of a file without reading it sequentially from
start

This is performed by using direct access file I/O

Open syntax:

OPEN(UNIT=ilun,FILE=infile,ACCESS=’DIRECT’,&
RECL=lng,IOSTAT=rstat)

Reading syntax:

READ(UNIT=ilun,REC=recno,IOSTAT=rstat) array

The array most be of equal size to the record length and the
recno variable contains the record number to be read

The records are numbered from 1 and up

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Using direct access file I/O

In some cases it is advantageous to be able to read and write
the same portion of a file without reading it sequentially from
start

This is performed by using direct access file I/O

Open syntax:

OPEN(UNIT=ilun,FILE=infile,ACCESS=’DIRECT’,&
RECL=lng,IOSTAT=rstat)

Reading syntax:

READ(UNIT=ilun,REC=recno,IOSTAT=rstat) array

The array most be of equal size to the record length and the
recno variable contains the record number to be read

The records are numbered from 1 and up

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Using direct access file I/O

In some cases it is advantageous to be able to read and write
the same portion of a file without reading it sequentially from
start

This is performed by using direct access file I/O

Open syntax:

OPEN(UNIT=ilun,FILE=infile,ACCESS=’DIRECT’,&
RECL=lng,IOSTAT=rstat)

Reading syntax:

READ(UNIT=ilun,REC=recno,IOSTAT=rstat) array

The array most be of equal size to the record length and the
recno variable contains the record number to be read

The records are numbered from 1 and up

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Using direct access file I/O

In some cases it is advantageous to be able to read and write
the same portion of a file without reading it sequentially from
start

This is performed by using direct access file I/O

Open syntax:

OPEN(UNIT=ilun,FILE=infile,ACCESS=’DIRECT’,&
RECL=lng,IOSTAT=rstat)

Reading syntax:

READ(UNIT=ilun,REC=recno,IOSTAT=rstat) array

The array most be of equal size to the record length and the
recno variable contains the record number to be read

The records are numbered from 1 and up

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Using direct access file I/O

In some cases it is advantageous to be able to read and write
the same portion of a file without reading it sequentially from
start

This is performed by using direct access file I/O

Open syntax:

OPEN(UNIT=ilun,FILE=infile,ACCESS=’DIRECT’,&
RECL=lng,IOSTAT=rstat)

Reading syntax:

READ(UNIT=ilun,REC=recno,IOSTAT=rstat) array

The array most be of equal size to the record length and the
recno variable contains the record number to be read

The records are numbered from 1 and up

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

The namelist file

A special type of file exists in Fortran 95

It is the namelist file which is used for input of data mainly for
initializing purposes

Reading syntax:

INTEGER :: i, j, k
NAMELIST/index/i, j, k
READ(UNIT=ilun,NML=index,IOSTAT=rstat)

This will read from the namelist file values into the variables i,
j, k

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

The namelist file

A special type of file exists in Fortran 95

It is the namelist file which is used for input of data mainly for
initializing purposes

Reading syntax:

INTEGER :: i, j, k
NAMELIST/index/i, j, k
READ(UNIT=ilun,NML=index,IOSTAT=rstat)

This will read from the namelist file values into the variables i,
j, k

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

The namelist file

A special type of file exists in Fortran 95

It is the namelist file which is used for input of data mainly for
initializing purposes

Reading syntax:

INTEGER :: i, j, k
NAMELIST/index/i, j, k
READ(UNIT=ilun,NML=index,IOSTAT=rstat)

This will read from the namelist file values into the variables i,
j, k

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

The namelist file

A special type of file exists in Fortran 95

It is the namelist file which is used for input of data mainly for
initializing purposes

Reading syntax:

INTEGER :: i, j, k
NAMELIST/index/i, j, k
READ(UNIT=ilun,NML=index,IOSTAT=rstat)

This will read from the namelist file values into the variables i,
j, k

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

The contents of a namelist file

Namelist file syntax:

&index i=10, j=20, k=4 /

A namelist file can contain more than one namelist

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

The contents of a namelist file

Namelist file syntax:

&index i=10, j=20, k=4 /

A namelist file can contain more than one namelist

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

List of Topics

1 Motivation

2 About Fortran 77 and 95

3 Intro to Fortran 77 programming

4 Intro to Fortran 95 programming

5 Compiling and linking Fortran programs

6 Manipulate data files (File I/O)

7 File handling in Fortran

8 Arrays and loops

9 Subroutines and functions in Fortran

10 Pointers in Fortran 95

11 Exercises part 1

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Matrix-vector product

Goal: calculate a matrix-vector product

Make a simple example with known solution (simplifies
debugging)
Declare a matrix A and vectors x and b
Initialize A
Perform b = A ∗ x
Check that b is correct

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Matrix-vector product

Goal: calculate a matrix-vector product

Make a simple example with known solution (simplifies
debugging)
Declare a matrix A and vectors x and b
Initialize A
Perform b = A ∗ x
Check that b is correct

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Basic arrays in Fortran

Fortran 77 and 95 uses the same basic array construction

Array indexing follows a quickly learned syntax:

q(3,2)

This is the same as in Matlab. Note that in C/C++ a
multidimensional array is transposed

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Basic arrays in Fortran

Fortran 77 and 95 uses the same basic array construction

Array indexing follows a quickly learned syntax:

q(3,2)

This is the same as in Matlab. Note that in C/C++ a
multidimensional array is transposed

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Basic arrays in Fortran

Fortran 77 and 95 uses the same basic array construction

Array indexing follows a quickly learned syntax:

q(3,2)

This is the same as in Matlab. Note that in C/C++ a
multidimensional array is transposed

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Declaring basic vectors

Declaring a fixed size vector

INTEGER, PARAMETER :: n = 100
DOUBLE PRECISION, DIMENSION(n) :: x
DOUBLE PRECISION, DIMENSION(50) :: b

Vector indices starts at 1 not 0 like C/C++

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Declaring basic vectors

Declaring a fixed size vector

INTEGER, PARAMETER :: n = 100
DOUBLE PRECISION, DIMENSION(n) :: x
DOUBLE PRECISION, DIMENSION(50) :: b

Vector indices starts at 1 not 0 like C/C++

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Declaring basic matrices

Declaring a fixed size matrix

INTEGER, PARAMETER :: m = 100
INTEGER, PARAMETER :: n = 100
DOUBLE PRECISION, DIMENSION(m,n) :: x

Matrix indices starts at 1 not 0 like C/C++

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Declaring basic matrices

Declaring a fixed size matrix

INTEGER, PARAMETER :: m = 100
INTEGER, PARAMETER :: n = 100
DOUBLE PRECISION, DIMENSION(m,n) :: x

Matrix indices starts at 1 not 0 like C/C++

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Looping over the matrix

A nested loop

INTEGER :: i, j
DO j = 1, n

DO i = 1, n
A(i,j) = f(i,j) + 3.14

END DO
END DO

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Matrix storage scheme

Note: matices in fortran are stored column wise; the row
index should vary fastest

Recall that in C/C++ matrices are stored row by row and the
column index should vary fastest

Typical loop in C/C++ (2nd index in inner loop):

DO i = 1, m
DO j = 1, n
A(i,j) = f(i,j) + 3.14

END DO
END DO

We now traverse A in jumps

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Matrix storage scheme

Note: matices in fortran are stored column wise; the row
index should vary fastest

Recall that in C/C++ matrices are stored row by row and the
column index should vary fastest

Typical loop in C/C++ (2nd index in inner loop):

DO i = 1, m
DO j = 1, n
A(i,j) = f(i,j) + 3.14

END DO
END DO

We now traverse A in jumps

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Matrix storage scheme

Note: matices in fortran are stored column wise; the row
index should vary fastest

Recall that in C/C++ matrices are stored row by row and the
column index should vary fastest

Typical loop in C/C++ (2nd index in inner loop):

DO i = 1, m
DO j = 1, n
A(i,j) = f(i,j) + 3.14

END DO
END DO

We now traverse A in jumps

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Matrix storage scheme

Note: matices in fortran are stored column wise; the row
index should vary fastest

Recall that in C/C++ matrices are stored row by row and the
column index should vary fastest

Typical loop in C/C++ (2nd index in inner loop):

DO i = 1, m
DO j = 1, n
A(i,j) = f(i,j) + 3.14

END DO
END DO

We now traverse A in jumps

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Dynamic memory allocation

Very often we do not know the length of the array in advance

By using dynamic memory allocation we can allocate the
necessary chunk of memory at runtime

You need to allocate and deallocate memory

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Dynamic memory allocation

Very often we do not know the length of the array in advance

By using dynamic memory allocation we can allocate the
necessary chunk of memory at runtime

You need to allocate and deallocate memory

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Dynamic memory allocation

Very often we do not know the length of the array in advance

By using dynamic memory allocation we can allocate the
necessary chunk of memory at runtime

You need to allocate and deallocate memory

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Dynamic memeory allocation in Fortran 95

There are two ways of declaring allocatable matrices in
Fortran 95

Using the ALLOCATABLE attribute

Using a POINTER variable

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Dynamic memeory allocation in Fortran 95

There are two ways of declaring allocatable matrices in
Fortran 95

Using the ALLOCATABLE attribute

Using a POINTER variable

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Dynamic memeory allocation in Fortran 95

There are two ways of declaring allocatable matrices in
Fortran 95

Using the ALLOCATABLE attribute

Using a POINTER variable

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Allocating memory using the ALLOCATABLE attribute

Declare an ALLOCATABLE array variable

DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: x
ALLOCATE(x(100))
...

DEALLOCATE(x)

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Allocating memory using a POINTER

Declare a pointer array variable

DOUBLE PRECISION, POINTER :: x(:)
ALLOCATE(x(100))
...

DEALLOCATE(x)

Keep in mind that a Fortran 95 POINTER is not the same as
a pointer in C/C++

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Allocating memory using a POINTER

Declare a pointer array variable

DOUBLE PRECISION, POINTER :: x(:)
ALLOCATE(x(100))
...

DEALLOCATE(x)

Keep in mind that a Fortran 95 POINTER is not the same as
a pointer in C/C++

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Declaring and initializing A, x and b

Code

DOUBLE PRECISION, POINTER :: A(:,:), x(:), b(:)
CHARACTER(LEN=20) :: str
INTEGER :: n, i, j
CALL getarg(1,str)
n = a2i(str)
ALLOCATE(A(n,n)); ALLOCATE(x(n))
ALLOCATE(b(n))
DO j = 1, n

x(j) = j/2.
DO i = 1, n
A(i,j) = 2. + i/j

END DO
END DO

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Matrix-vector product loop

Code for computation of the matrix-vector product

DOUBLE PRECISION :: sum
DO j = 1, n

sum = 0.
DO i = 1, n
sum = sum + A(i,j) * x(i)

END DO
b(j) = sum

END DO

Another way to compute eth matrix-vector product is to use
an intrinsic fortran function MATMUL

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Matrix-vector product loop

Code for computation of the matrix-vector product

DOUBLE PRECISION :: sum
DO j = 1, n

sum = 0.
DO i = 1, n
sum = sum + A(i,j) * x(i)

END DO
b(j) = sum

END DO

Another way to compute eth matrix-vector product is to use
an intrinsic fortran function MATMUL

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

List of Topics

1 Motivation

2 About Fortran 77 and 95

3 Intro to Fortran 77 programming

4 Intro to Fortran 95 programming

5 Compiling and linking Fortran programs

6 Manipulate data files (File I/O)

7 File handling in Fortran

8 Arrays and loops

9 Subroutines and functions in Fortran

10 Pointers in Fortran 95

11 Exercises part 1

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Subroutines

A subroutine does not return any value and is the same as a
void function in C/C++

In Fortran all arguments are passed as the address of the
variable in the calling program

This is the same as a call by refrence in C++

It is easy to for a C++ programmer to forget this and then
accidentally change the contents of the variable in the calling
program

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Subroutines

A subroutine does not return any value and is the same as a
void function in C/C++

In Fortran all arguments are passed as the address of the
variable in the calling program

This is the same as a call by refrence in C++

It is easy to for a C++ programmer to forget this and then
accidentally change the contents of the variable in the calling
program

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Subroutines

A subroutine does not return any value and is the same as a
void function in C/C++

In Fortran all arguments are passed as the address of the
variable in the calling program

This is the same as a call by refrence in C++

It is easy to for a C++ programmer to forget this and then
accidentally change the contents of the variable in the calling
program

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Subroutines

A subroutine does not return any value and is the same as a
void function in C/C++

In Fortran all arguments are passed as the address of the
variable in the calling program

This is the same as a call by refrence in C++

It is easy to for a C++ programmer to forget this and then
accidentally change the contents of the variable in the calling
program

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

An example of a subroutine

This subroutine will calculate the square root of two
arguments and returning the sum of the results in a third
argument

SUBROUTINE dsquare(x,y,z)
DOUBLE PRECISION, INTENT(IN) :: x, y
DOUBLE PRECISION, INTENT(OUT) :: z
z = SQRT(x) + SQRT(y)

END SUBROUTINE dsquare

Using the INTENT(IN) and INTENT(OUT) will prevent any
accidentally changes of the variable(s) in the calling program
by flagging an error at compile time

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

An example of a subroutine

This subroutine will calculate the square root of two
arguments and returning the sum of the results in a third
argument

SUBROUTINE dsquare(x,y,z)
DOUBLE PRECISION, INTENT(IN) :: x, y
DOUBLE PRECISION, INTENT(OUT) :: z
z = SQRT(x) + SQRT(y)

END SUBROUTINE dsquare

Using the INTENT(IN) and INTENT(OUT) will prevent any
accidentally changes of the variable(s) in the calling program
by flagging an error at compile time

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Functions

A function always return a value just like corresponding
functions in C/C++

The syntax of the function statement can be written in two
ways depending on the fortran version

In Fortran 77 it looks like a corresponding C++ function

But in fortran 95 another syntax has been introduced
although both versions can be used in Fortran 95

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Functions

A function always return a value just like corresponding
functions in C/C++

The syntax of the function statement can be written in two
ways depending on the fortran version

In Fortran 77 it looks like a corresponding C++ function

But in fortran 95 another syntax has been introduced
although both versions can be used in Fortran 95

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Functions

A function always return a value just like corresponding
functions in C/C++

The syntax of the function statement can be written in two
ways depending on the fortran version

In Fortran 77 it looks like a corresponding C++ function

But in fortran 95 another syntax has been introduced
although both versions can be used in Fortran 95

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Functions

A function always return a value just like corresponding
functions in C/C++

The syntax of the function statement can be written in two
ways depending on the fortran version

In Fortran 77 it looks like a corresponding C++ function

But in fortran 95 another syntax has been introduced
although both versions can be used in Fortran 95

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

An example of a function in Fortran 77 style

This function will calculate the square root of two arguments
and returning the sum of the results

C234567
DOUBLE PRECISION, FUNCTION dsquare(x,y)
DOUBLE PRECISION, INTENT(IN) :: x, y
DOUBLE PRECISION :: z
z = SQRT(x) + SQRT(y)
dsquare = z

END FUNCTION dsquare

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

An example of a function in Fortran 95 style

This function will calculate the square root of two arguments
and returning the sum of the results

FUNCTION dsquare(x,y), RESULT(z)
DOUBLE PRECISION, INTENT(IN) :: x, y
DOUBLE PRECISION :: z
z = SQRT(x) + SQRT(y)

END FUNCTION dsquare

It is the variable type in the RESULT statement that identifies
the type of the function

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

An example of a function in Fortran 95 style

This function will calculate the square root of two arguments
and returning the sum of the results

FUNCTION dsquare(x,y), RESULT(z)
DOUBLE PRECISION, INTENT(IN) :: x, y
DOUBLE PRECISION :: z
z = SQRT(x) + SQRT(y)

END FUNCTION dsquare

It is the variable type in the RESULT statement that identifies
the type of the function

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

List of Topics

1 Motivation

2 About Fortran 77 and 95

3 Intro to Fortran 77 programming

4 Intro to Fortran 95 programming

5 Compiling and linking Fortran programs

6 Manipulate data files (File I/O)

7 File handling in Fortran

8 Arrays and loops

9 Subroutines and functions in Fortran

10 Pointers in Fortran 95

11 Exercises part 1

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

More about pointers in Fortran 95

As mentioned earlier a pointer in Fortran 95 IS NOT the same
as a pointer in C/C++

A fortran 95 pointer is used as an alias pointing to another
variable, it can be a single variable, a vector or a
multidimensional array

A pointer must be associated with a target variable or another
pointer and have the same shape that the target it is pointing
to

Or the pointer can have memory allocated and be treated as a
regular variable or array

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

More about pointers in Fortran 95

As mentioned earlier a pointer in Fortran 95 IS NOT the same
as a pointer in C/C++

A fortran 95 pointer is used as an alias pointing to another
variable, it can be a single variable, a vector or a
multidimensional array

A pointer must be associated with a target variable or another
pointer and have the same shape that the target it is pointing
to

Or the pointer can have memory allocated and be treated as a
regular variable or array

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

More about pointers in Fortran 95

As mentioned earlier a pointer in Fortran 95 IS NOT the same
as a pointer in C/C++

A fortran 95 pointer is used as an alias pointing to another
variable, it can be a single variable, a vector or a
multidimensional array

A pointer must be associated with a target variable or another
pointer and have the same shape that the target it is pointing
to

Or the pointer can have memory allocated and be treated as a
regular variable or array

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

More about pointers in Fortran 95

As mentioned earlier a pointer in Fortran 95 IS NOT the same
as a pointer in C/C++

A fortran 95 pointer is used as an alias pointing to another
variable, it can be a single variable, a vector or a
multidimensional array

A pointer must be associated with a target variable or another
pointer and have the same shape that the target it is pointing
to

Or the pointer can have memory allocated and be treated as a
regular variable or array

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Some examples of pointer usage(1)

A target pointer example

DOUBLE PRECISION, TARGET, DIMENSION(100) :: x
DOUBLE PRECISION, POINTER :: y(:)
...

y => x
...

y => x(20:80)
...

y => x(1:33)
NULLIFY(y)

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Some examples of pointer usage(2)

What happens when we try to access a deallocated array?

PROGRAM ptr
IMPLICIT NONE
DOUBLE PRECISION, POINTER :: x(:)
DOUBLE PRECISION, POINTER :: y(:)
ALLOCATE(x(100))
x = 0.
x(12:19) = 3.14
y => x(10:20)
PRINT ’(A,3F10.4)’, ’Y-value ’, y(1:3)
y => x(11:14)
DEALLOCATE(x)
PRINT ’(A,3F10.4)’, ’Y-value ’, y(1:3)
PRINT ’(A,4F10.4)’, ’X-value ’, x(11:14)

END PROGRAM ptr

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Some examples of pointer usage(3)

This is what happened

bullet.uio.no$ EXAMPLES/ptr
0.0000 0.0000 3.1400
0.0000 3.1400 3.1400

forrtl: severe (174): SIGSEGV,
segmentation fault occurred

When we try to access the x-array in the last PRINT
statement we get an segmentation fault

This means we try to access a variable which is not associated
with any part of the memory the program has access to

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Some examples of pointer usage(3)

This is what happened

bullet.uio.no$ EXAMPLES/ptr
0.0000 0.0000 3.1400
0.0000 3.1400 3.1400

forrtl: severe (174): SIGSEGV,
segmentation fault occurred

When we try to access the x-array in the last PRINT
statement we get an segmentation fault

This means we try to access a variable which is not associated
with any part of the memory the program has access to

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Some examples of pointer usage(3)

This is what happened

bullet.uio.no$ EXAMPLES/ptr
0.0000 0.0000 3.1400
0.0000 3.1400 3.1400

forrtl: severe (174): SIGSEGV,
segmentation fault occurred

When we try to access the x-array in the last PRINT
statement we get an segmentation fault

This means we try to access a variable which is not associated
with any part of the memory the program has access to

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Some examples of pointer usage(4)

In our little example we clearly see that the memory pointed
to by the x-array is no longer available

On the other hand the part of the memory the y-array is
pointing to is still available

To free the last part of memory the y-array refers to we must
nullify the y-array:

NULLIFY(y)

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Some examples of pointer usage(4)

In our little example we clearly see that the memory pointed
to by the x-array is no longer available

On the other hand the part of the memory the y-array is
pointing to is still available

To free the last part of memory the y-array refers to we must
nullify the y-array:

NULLIFY(y)

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Some examples of pointer usage(4)

In our little example we clearly see that the memory pointed
to by the x-array is no longer available

On the other hand the part of the memory the y-array is
pointing to is still available

To free the last part of memory the y-array refers to we must
nullify the y-array:

NULLIFY(y)

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

List of Topics

1 Motivation

2 About Fortran 77 and 95

3 Intro to Fortran 77 programming

4 Intro to Fortran 95 programming

5 Compiling and linking Fortran programs

6 Manipulate data files (File I/O)

7 File handling in Fortran

8 Arrays and loops

9 Subroutines and functions in Fortran

10 Pointers in Fortran 95

11 Exercises part 1

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise1: Modify the Fortran 95 Hello World program

Locate the Hello World program

Compile the program and test it

Modification: write “Hello World!” and format it so the text
and numbers are without unnecessary spaces and trailing
zeroes

Hello World sin(2.30000000000000)= 0.7457052121

unlike it is in this printout

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise1: Modify the Fortran 95 Hello World program

Locate the Hello World program

Compile the program and test it

Modification: write “Hello World!” and format it so the text
and numbers are without unnecessary spaces and trailing
zeroes

Hello World sin(2.30000000000000)= 0.7457052121

unlike it is in this printout

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise1: Modify the Fortran 95 Hello World program

Locate the Hello World program

Compile the program and test it

Modification: write “Hello World!” and format it so the text
and numbers are without unnecessary spaces and trailing
zeroes

Hello World sin(2.30000000000000)= 0.7457052121

unlike it is in this printout

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise1: Modify the Fortran 95 Hello World program

Locate the Hello World program

Compile the program and test it

Modification: write “Hello World!” and format it so the text
and numbers are without unnecessary spaces and trailing
zeroes

Hello World sin(2.30000000000000)= 0.7457052121

unlike it is in this printout

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise2: Extend the Fortran 95 Hello World program

Locate the first Hello World program

Read the three command-line arguments: start, stop and inc

Provide a “usage message and abort the program in case
there are too few command-line arguments

Do r = loop start, loop stop, loop inc and compute the sine
of r and write the result

Write and additional loop using DO WHILE construction

Verify that the program works

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise2: Extend the Fortran 95 Hello World program

Locate the first Hello World program

Read the three command-line arguments: start, stop and inc

Provide a “usage message and abort the program in case
there are too few command-line arguments

Do r = loop start, loop stop, loop inc and compute the sine
of r and write the result

Write and additional loop using DO WHILE construction

Verify that the program works

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise2: Extend the Fortran 95 Hello World program

Locate the first Hello World program

Read the three command-line arguments: start, stop and inc

Provide a “usage message and abort the program in case
there are too few command-line arguments

Do r = loop start, loop stop, loop inc and compute the sine
of r and write the result

Write and additional loop using DO WHILE construction

Verify that the program works

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise2: Extend the Fortran 95 Hello World program

Locate the first Hello World program

Read the three command-line arguments: start, stop and inc

Provide a “usage message and abort the program in case
there are too few command-line arguments

Do r = loop start, loop stop, loop inc and compute the sine
of r and write the result

Write and additional loop using DO WHILE construction

Verify that the program works

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise2: Extend the Fortran 95 Hello World program

Locate the first Hello World program

Read the three command-line arguments: start, stop and inc

Provide a “usage message and abort the program in case
there are too few command-line arguments

Do r = loop start, loop stop, loop inc and compute the sine
of r and write the result

Write and additional loop using DO WHILE construction

Verify that the program works

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise2: Extend the Fortran 95 Hello World program

Locate the first Hello World program

Read the three command-line arguments: start, stop and inc

Provide a “usage message and abort the program in case
there are too few command-line arguments

Do r = loop start, loop stop, loop inc and compute the sine
of r and write the result

Write and additional loop using DO WHILE construction

Verify that the program works

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise3: Integrate a function(1)

Write a function

DOUBLE PRECISION FUNCTION trapezoidal(f,a,b,n)
DOUBLE PRECISION, EXTERNAL :: f
DOUBLE PRECISION :: a, b
INTEGER :: n
...

END FUNCTION trapezoidal

It shall integrate a user-defined function∫
b

a
f (x)dx ≈ h(f (a)

2 + f (b)
2 +

∑
n−1
i=1 f (a + ih)), h = b−a

n−1

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise3: Integrate a function(1)

Write a function

DOUBLE PRECISION FUNCTION trapezoidal(f,a,b,n)
DOUBLE PRECISION, EXTERNAL :: f
DOUBLE PRECISION :: a, b
INTEGER :: n
...

END FUNCTION trapezoidal

It shall integrate a user-defined function∫
b

a
f (x)dx ≈ h(f (a)

2 + f (b)
2 +

∑
n−1
i=1 f (a + ih)), h = b−a

n−1

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise3: Integrate a function(2)

The user defined function is specified as external in the
argument specifications of the trapezoidal function

Any function taking a double precision as an argument and
returning a double precision number can now be used as an
input argument to the trapezoidal function

Verify that trapeziodal is implemented correctly

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise3: Integrate a function(2)

The user defined function is specified as external in the
argument specifications of the trapezoidal function

Any function taking a double precision as an argument and
returning a double precision number can now be used as an
input argument to the trapezoidal function

Verify that trapeziodal is implemented correctly

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise3: Integrate a function(2)

The user defined function is specified as external in the
argument specifications of the trapezoidal function

Any function taking a double precision as an argument and
returning a double precision number can now be used as an
input argument to the trapezoidal function

Verify that trapeziodal is implemented correctly

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Binary format

A number like π can be represented in ASCII format as 3.14
(4 bytes) or 3.14159E + 00 (11 bytes), for instance

In memory, the number occupies 8 bytes (a double), this is
the binary format of the number

The binary format (8 bytes) can be stored directly in a file

Binary format (normally) saves space, and input/output is
much faster since we avoid translation between ASCII
characters and the binary representation

The binary format varies with the hardware and occasionally
with the compiler version

Two types of binary formats: little and big endian

Motorola and Sun: big endian; Intel and HP Alpha: little
endian

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Binary format

A number like π can be represented in ASCII format as 3.14
(4 bytes) or 3.14159E + 00 (11 bytes), for instance

In memory, the number occupies 8 bytes (a double), this is
the binary format of the number

The binary format (8 bytes) can be stored directly in a file

Binary format (normally) saves space, and input/output is
much faster since we avoid translation between ASCII
characters and the binary representation

The binary format varies with the hardware and occasionally
with the compiler version

Two types of binary formats: little and big endian

Motorola and Sun: big endian; Intel and HP Alpha: little
endian

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Binary format

A number like π can be represented in ASCII format as 3.14
(4 bytes) or 3.14159E + 00 (11 bytes), for instance

In memory, the number occupies 8 bytes (a double), this is
the binary format of the number

The binary format (8 bytes) can be stored directly in a file

Binary format (normally) saves space, and input/output is
much faster since we avoid translation between ASCII
characters and the binary representation

The binary format varies with the hardware and occasionally
with the compiler version

Two types of binary formats: little and big endian

Motorola and Sun: big endian; Intel and HP Alpha: little
endian

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Binary format

A number like π can be represented in ASCII format as 3.14
(4 bytes) or 3.14159E + 00 (11 bytes), for instance

In memory, the number occupies 8 bytes (a double), this is
the binary format of the number

The binary format (8 bytes) can be stored directly in a file

Binary format (normally) saves space, and input/output is
much faster since we avoid translation between ASCII
characters and the binary representation

The binary format varies with the hardware and occasionally
with the compiler version

Two types of binary formats: little and big endian

Motorola and Sun: big endian; Intel and HP Alpha: little
endian

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Binary format

A number like π can be represented in ASCII format as 3.14
(4 bytes) or 3.14159E + 00 (11 bytes), for instance

In memory, the number occupies 8 bytes (a double), this is
the binary format of the number

The binary format (8 bytes) can be stored directly in a file

Binary format (normally) saves space, and input/output is
much faster since we avoid translation between ASCII
characters and the binary representation

The binary format varies with the hardware and occasionally
with the compiler version

Two types of binary formats: little and big endian

Motorola and Sun: big endian; Intel and HP Alpha: little
endian

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Binary format

A number like π can be represented in ASCII format as 3.14
(4 bytes) or 3.14159E + 00 (11 bytes), for instance

In memory, the number occupies 8 bytes (a double), this is
the binary format of the number

The binary format (8 bytes) can be stored directly in a file

Binary format (normally) saves space, and input/output is
much faster since we avoid translation between ASCII
characters and the binary representation

The binary format varies with the hardware and occasionally
with the compiler version

Two types of binary formats: little and big endian

Motorola and Sun: big endian; Intel and HP Alpha: little
endian

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Binary format

A number like π can be represented in ASCII format as 3.14
(4 bytes) or 3.14159E + 00 (11 bytes), for instance

In memory, the number occupies 8 bytes (a double), this is
the binary format of the number

The binary format (8 bytes) can be stored directly in a file

Binary format (normally) saves space, and input/output is
much faster since we avoid translation between ASCII
characters and the binary representation

The binary format varies with the hardware and occasionally
with the compiler version

Two types of binary formats: little and big endian

Motorola and Sun: big endian; Intel and HP Alpha: little
endian

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise 4: Work with binary data in Fortran 77 (1)

Scientific simulations often involve large data sets and binary
storage of numbers saves space in files

How to write numbers in binary format in Fortran 77:

WRITE(UNIT=olun) array

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise 4: Work with binary data in Fortran 77 (1)

Scientific simulations often involve large data sets and binary
storage of numbers saves space in files

How to write numbers in binary format in Fortran 77:

WRITE(UNIT=olun) array

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise 4: Work with binary data in Fortran 77 (2)

Create datatrans2.f (from datatrans1.f) such that the input
and output data are in binary format

To test the datatrans2.f we need utilities to create and read
binary files

make a small Fortran 77 program that generates n xy-pairs of
data and writes them to a file in binary format (read n from
the command line)
make a small Fortran 77 program that reads xy-pairs from a
binary file and writes them to the screen

With these utiltities you can create input data to datatrans2.f
and view the file produced by datatrans2.f

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise 4: Work with binary data in Fortran 77 (2)

Create datatrans2.f (from datatrans1.f) such that the input
and output data are in binary format

To test the datatrans2.f we need utilities to create and read
binary files

make a small Fortran 77 program that generates n xy-pairs of
data and writes them to a file in binary format (read n from
the command line)
make a small Fortran 77 program that reads xy-pairs from a
binary file and writes them to the screen

With these utiltities you can create input data to datatrans2.f
and view the file produced by datatrans2.f

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise 4: Work with binary data in Fortran 77 (2)

Create datatrans2.f (from datatrans1.f) such that the input
and output data are in binary format

To test the datatrans2.f we need utilities to create and read
binary files

make a small Fortran 77 program that generates n xy-pairs of
data and writes them to a file in binary format (read n from
the command line)
make a small Fortran 77 program that reads xy-pairs from a
binary file and writes them to the screen

With these utiltities you can create input data to datatrans2.f
and view the file produced by datatrans2.f

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise 4: Work with binary data in Fortran 77 (2)

Create datatrans2.f (from datatrans1.f) such that the input
and output data are in binary format

To test the datatrans2.f we need utilities to create and read
binary files

make a small Fortran 77 program that generates n xy-pairs of
data and writes them to a file in binary format (read n from
the command line)
make a small Fortran 77 program that reads xy-pairs from a
binary file and writes them to the screen

With these utiltities you can create input data to datatrans2.f
and view the file produced by datatrans2.f

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise 4: Work with binary data in Fortran 77 (3)

Modify datatrans2.f program such that the x and y numbers
are stored in one long dynamic array

The storage structure should be x1, y1, x2, y2, ...

Read and write the array to file in binary format using one
READ and one WRITE call

Try to generate a file with a huge number (10 000 000) of
pairs and use the unix time command to test the efficiency of
reading/writing a single array in one READ/WRITE call
compared with reading/writing each number separately

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise 4: Work with binary data in Fortran 77 (3)

Modify datatrans2.f program such that the x and y numbers
are stored in one long dynamic array

The storage structure should be x1, y1, x2, y2, ...

Read and write the array to file in binary format using one
READ and one WRITE call

Try to generate a file with a huge number (10 000 000) of
pairs and use the unix time command to test the efficiency of
reading/writing a single array in one READ/WRITE call
compared with reading/writing each number separately

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise 4: Work with binary data in Fortran 77 (3)

Modify datatrans2.f program such that the x and y numbers
are stored in one long dynamic array

The storage structure should be x1, y1, x2, y2, ...

Read and write the array to file in binary format using one
READ and one WRITE call

Try to generate a file with a huge number (10 000 000) of
pairs and use the unix time command to test the efficiency of
reading/writing a single array in one READ/WRITE call
compared with reading/writing each number separately

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise 4: Work with binary data in Fortran 77 (3)

Modify datatrans2.f program such that the x and y numbers
are stored in one long dynamic array

The storage structure should be x1, y1, x2, y2, ...

Read and write the array to file in binary format using one
READ and one WRITE call

Try to generate a file with a huge number (10 000 000) of
pairs and use the unix time command to test the efficiency of
reading/writing a single array in one READ/WRITE call
compared with reading/writing each number separately

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise 5: Work with binary data in Fortran 95

Do the Fortran 77 version of the exercise first!

How to write numbers in binary format in Fortran 95

WRITE(UNIT=olun, IOSTAT=rstat) array

Modify datatrans1.f90 program such that it works with binary
input and output data (use the Fortran 77 utilities in the
previous exercise to create input file and view output file)

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise 5: Work with binary data in Fortran 95

Do the Fortran 77 version of the exercise first!

How to write numbers in binary format in Fortran 95

WRITE(UNIT=olun, IOSTAT=rstat) array

Modify datatrans1.f90 program such that it works with binary
input and output data (use the Fortran 77 utilities in the
previous exercise to create input file and view output file)

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise 5: Work with binary data in Fortran 95

Do the Fortran 77 version of the exercise first!

How to write numbers in binary format in Fortran 95

WRITE(UNIT=olun, IOSTAT=rstat) array

Modify datatrans1.f90 program such that it works with binary
input and output data (use the Fortran 77 utilities in the
previous exercise to create input file and view output file)

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise 6: Efficiency of dynamic memory allocation(1)

Write this code out in detail as a stand-alone program:

INTEGER, PARAMETER :: nrepetitions = 1000000
INTEGER :: i, n
CHARACTER(LEN=80) :: argv
CALL getarg(1,argv)
n = a2i(argv)
DO i = 1, nrepetitions

! allocate a vector of n double precision numbers
! set second entry to something
! deallocate the vector

END DO

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise 6: Efficiency of dynamic memory allocation(2)

Write another program where each vector entry is allocated
separately:

INTEGER :: i, j
DOUBLE PRECISION :: sum
DO i = 1, nrepetitions

! allocate each of the double precision
!numbers separately
DO j = 1, n
! allocate a double precision number
! add the value of this new item to sum
! deallocate the double precision number

END DO
END DO

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise 6: Efficiency of dynamic memory allocation(3)

Measure the CPU time of vector allocation versus allocation
of individual entries:

unix> time myprog1
unix> time myprog2

Adjust the nrepetitions such that the CPU time of the fastest
method is of order 10 seconds

Wollan Introductory Fortran Programming

Motivation F77 and F95 F77 programming F95 programming Compiling Data files File handling Arrays and loops Subroutines and functions Pointers Exercises (1)

Exercise 6: Efficiency of dynamic memory allocation(3)

Measure the CPU time of vector allocation versus allocation
of individual entries:

unix> time myprog1
unix> time myprog2

Adjust the nrepetitions such that the CPU time of the fastest
method is of order 10 seconds

Wollan Introductory Fortran Programming

	Motivation
	About Fortran 77 and 95
	Intro to Fortran 77 programming
	Intro to Fortran 95 programming
	Compiling and linking Fortran programs
	Manipulate data files (File I/O)
	File handling in Fortran
	Arrays and loops
	Subroutines and functions in Fortran
	Pointers in Fortran 95
	Exercises part 1

