
Common Lisp: A Brief Tutorial
August 2004

David R. Pierce
Stuart C. Shapiro

Copyright c© 2004 David R. Pierce and Stuart C. Shapiro
Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts.
A copy of the license can be obtained from the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA.

i

Table of Contents

1 Basics . 1
1.1 Introduction . 1
1.2 Syntax . 1
1.3 Read-Eval-Print . 1
1.4 Evaluation . 2
1.5 Comments . 3
1.6 Running Programs . 3

2 Data Types. 4
2.1 Booleans . 4
2.2 Numbers . 4
2.3 Functions . 5
2.4 Characters . 6
2.5 Strings . 6
2.6 Symbols . 7
2.7 Packages. 8
2.8 Lists . 9
2.9 Objects. 11

2.9.1 Classes . 11
2.9.2 Methods . 12
2.9.3 Multiple Inheritance . 13
2.9.4 Predefined Methods . 14

2.10 Equality Testing . 14
2.11 Data Conversion . 14

3 Control Structures . 15
3.1 Functional Programming . 15

3.1.1 Functions are Objects . 15
3.1.2 Anonymous Functions. 16
3.1.3 Mapping . 16
3.1.4 Lambda Lists . 17

3.2 Variables . 19
3.2.1 Global Variables . 19
3.2.2 Local Variables . 19

3.3 Assignment . 21
3.4 Conditionals . 22
3.5 Loops . 23

4 Input/Output . 26
4.1 Streams . 26
4.2 The Printer . 27
4.3 The Reader . 28

ii

5 Mutable Data Structures 30
5.1 Arrays . 30
5.2 Hash Tables . 30

Appendix A Exercise Solutions 31

Chapter 1: Basics 1

1 Basics

1.1 Introduction

These notes on Common Lisp are adapted from
Stuart C. Shapiro and David R. Pierce,
Lisp Programming for Graduate Students, 2004,
http://www.cse.buffalo.edu/~shapiro/Courses/CSE202/Summer2004/.

Since the notes rely heavily on Xanalys’s Common Lisp HyperSpec,1 they are best viewed
in their hypertext form.
To facilitate simultaneous browsing of the notes while working in the Lisp interpreter,
the notes are also available in Emacs Info. If you have followed the course Emacs setup
instructions (see section “Emacs Setup” in Emacs Setup), type C-h i to start Info, and
middle-click on ‘Common Lisp’. Otherwise, start Info using C-u C-h i and respond to the
query for a file with ‘/projects/drpierce/cse/467/info/lisp.info’.
CSE uses Franz Inc.’s Allegro Common Lisp (ACL) implementation. To start ACL from the
shell, simply execute the command ‘mlisp’. To start it within Emacs, see section “Running
Lisp” in Emacs Setup. Once Lisp has started, it awaits your input expressions. To exit the
Lisp interpreter, type ‘(exit)’.

1.2 Syntax

Common Lisp is an “expression-oriented” programming language. A Lisp program consists
of expressions, or forms. A form by itself is a program, but most programs are made up of
many forms.
There are three kinds of expressions:

Symbols Symbols are Lisp’s variables. Symbol names may legally contain many charac-
ters, but are usually made up of letters and dashes — for example, a-symbol.

Lists Lists are delimited by parentheses. For example, (f x y) is a list containing the
symbols f, x, and y. Lists are Lisp’s function calls. Evaluating (f x y) calls
the function named f on the arguments x and y (whatever they are).

Literals Literal expressions include numbers (e.g., 0.42e2), strings (e.g., "a string"),
characters (e.g., #\c), arrays (e.g., #(1 2 3)), etc.

1.3 Read-Eval-Print

Interaction with the Lisp interpreter takes place in a read-eval-print loop, which behaves as
follows:
1. Read a form and construct a Lisp object from it.
2. Evaluate the input object to produce an output object.

1 http://www.lispworks.com/reference/HyperSpec/Front/index.htm

Chapter 1: Basics 2

3. Print the output object using some print representation.

A subtle, but far-reaching, consequence of the read-eval-print interpreter model is that all
Lisp programs are in fact also Lisp data objects! For example, the “Hello World” program
— (print "Hello World") — is a list containing a symbol and a string.
Another aspect of read-eval-print is that it allows the interpreter to have different
reader/printer representations for the same object. When this is true, the Lisp printer
simply chooses one of them; but the Lisp reader can always recognize any of them.
Next we will consider evaluation, the second step of the loop. We will leave a more detailed
discussion of the reader and printer for later.

1.4 Evaluation

The read-eval-print loop evaluates input objects to produce output objects. Each different
kind of expression is evaluated in a different way.
• When symbols are evaluated, Lisp treats the symbol as a program variable and looks

up its value in its lexical scope.
• When lists are evaluated, Lisp expects to find a function name2 (a symbol) as the

first element of the list. The remaining elements of the list are evaluated to produce
arguments, and the corresponding function is called with those arguments.

• Literals, also called self-evaluating objects, evaluate to... er... themselves. (Surprise!)

Examples:
;; read a symbol, evaluate as a variable
pi

;; oops
foo

;; read a list, evaluate as a function call
(+ 3 5 7 11 13)

;; oops
(1 2 3)

;; read a string literal, evaluate as itself
"hello world"

But if symbols and lists are always evaluated, how can we get a symbol or list object? The
special form3 (quote expression) prevents expression from being evaluated.

;; a symbol
(quote pi)

2 Or the name of a special operator or macro, but we’ll ignore that for the moment.
3 Special forms are like function calls, except that they don’t necessarily evaluate all of their arguments. While

we can define new functions in Lisp, there is no way to define new special operators.

Chapter 1: Basics 3

;; same thing (an abbreviation)
’pi

;; ok this time
(quote foo)

;; some lists
(quote (1 2 3))
’(1 2 3)
’(a b c)

1.5 Comments

Comments in Lisp appear in two forms.
; this is a 1-line comment

#|
this is a block comment

|#

When using semicolon comments, a conventional style is to use more semicolons for more
important comments.

;;; a comment between function definitions for a section of code
;;; beginning in the first column of the text

;; a comment in the body of a function definition
;; indented at the same level as the code
...

... ; a comment after a line of code

1.6 Running Programs

While developing programs, it is usually most convenient to work in the Lisp interpreter.
However, you can also run Lisp programs on the command line. For example, suppose that
‘hello.cl’ contains the following program:

(princ "Hello World")
(princ #\newline)

To run this program, use the ‘-#!’ option to mlisp.
mlisp -#! hello.cl
a Hello World

Chapter 2: Data Types 4

2 Data Types

Before we consider Lisp’s data types, there are a couple functions that are useful for looking
at objects.

[Function]describe object
Describes object. .

[Function]type-of object
Returns the type of object.

2.1 Booleans

Notes:

• False is nil.

• Any non-nil object is true.

• The canonical true value is t.

• Actually t and nil are constant-valued symbols whose values are themselves.

[Special Operator]if test-form then-form [else-form]
The conditional expression. It evaluates test-form. If the test value is true, it evaluates
then-form and uses that value as its result. Otherwise it evaluates else-form for its
result. A missing else-form is equivalent to nil.

[Macro]and form*
“Short-circuited” conjunction operator.1 It evaluates each form from left to right. If
any form is false, and immediately returns nil. Otherwise, and returns the value of
the last form. If no forms are supplied, and returns t.

(and exp1 exp2) ≡ (if exp1 exp2 nil)

[Macro]or form*
“Short-circuited” disjunction operator. It evaluates each form from left to right. If
any form produces a true value, or immediately returns that value. Otherwise, or
returns nil. If no forms are supplied, or returns nil.

(or exp1 exp2) ≡ (if exp1 exp1 exp2)

t
nil
(and t 42)
(and nil 42)
(or t 42)
(or nil 42)

1 The specification says that and and or are macros. A macro is like a special operator, except that it is
defined in Lisp code. We can define our own macros, but that is a fairly advanced topic.

Chapter 2: Data Types 5

2.2 Numbers

Lisp has all the usual numerical functions, listed in Common Lisp HyperSpec section “Num-
bers”. An interesting aspect of Lisp is that it has rational and complex numeric types built
in.

42
17/714 ; note different input/output printed representations
0.42e2 ; note different input/output printed representations
(* 1 2 3 4 5)
(/ 33 2)
(float (/ 33 2))
(max 1 5 2 4 3)
(cos (/ pi 4))
(gcd 2142 3066)
(= (* 3 14) 42.0 (/ 714 17))
(< 1/2 2/3 3/4)
(and (integerp 42)

(rationalp 42) (rationalp 1/42)
(realp 42) (realp 1/42) (realp 42.0))

Notes:
• Many Lisp functions can take any number of arguments; *, max, <, and = above are

good examples.
• The letter ‘p’ at the end of a function name (e.g., integerp) stands for predicate to

indicate a function that returns a boolean value.

Exercise: Write an expression to compute the average of 12 and 17.

2.3 Functions

Function objects are obtained using the function special form.
(function max)
#’max ; same thing (an abbreviation)
(describe #’max)

Functions are defined by defun.
(fboundp ’quadratic) ; not bound yet

(defun quadratic (a b c x)
"Returns the value of the quadratic polynomial A*X^2 + B*X + C at X."
(+ (* a x x) (* b x) c))

(fboundp ’quadratic) ; now bound
(function quadratic)
(quadratic 2 4 2 3)

Notes:
• Variables have lexical scope.

Chapter 2: Data Types 6

• Variables have no types. Objects have types. Variables can hold any type of object.
• The body of a function is a sequence of expressions. These expressions are evaluated

in order, and the value of the last expression is returned by the function as its value.

Examples:
(defun factorial (n)

"Returns the factorial of N."
(if (<= n 0)

1
(* n (factorial (1- n)))))

(factorial 100)

Exercise: Define (fibonacci n) to compute the nth Fibonacci number (i.e., 1, 1, 2, 3, 5,
8, 13, ...). The Fibonacci numbers are defined by the relationship F[n] = F[n-1] + F[n-2],
where F[1] = F[2] = 1.

2.4 Characters

Characters, like numbers, are self-evaluating objects. The syntax is #\name . Character
functions can be found in Common Lisp HyperSpec section “Characters”.

#\c
#\latin_small_letter_c ; note different printed representations
#\space

(characterp #\a)
(alpha-char-p #\a)
(char-upcase #\a)
(char-code #\a)
(code-char 98)
(char= #\a #\b)
(char< #\a #\b)

Exercise: Define (char-1+ character) to return the character whose code is one more
than character’s.

2.5 Strings

Strings are also self-evaluating. They are delimited by double quotes. Backslash is the
escape character for strings. String functions are listed in Common Lisp HyperSpec section
“Strings”. Since strings are also sequences,2 additional useful functions can be found in
Common Lisp HyperSpec section “Sequences”.

"hello world"
"\" \\ \"" ; the string " \ "

2 Sequences are one-dimensional ordered collections of objects. Lists and vectors are also sequences.

Chapter 2: Data Types 7

;; string functions
(string #\a)
(string #\\)
(length "\" \\ \"")
(char "\" \\ \"" 0)
(char "\" \\ \"" 1)
(char "\" \\ \"" 2)
(string-capitalize "hello world")
(string-trim "as" "sassafras")
(string= "hello world" "Hello World")
(string-equal "hello world" "Hello World")
(string< "hello" "world")
(string/= "world" "word")

;; sequence functions
(subseq "hello world" 4)
(subseq "hello world" 3 8)
(position #\space "hello world")
(position #\l "hello world")
(position #\l "hello world" :start 5)
(concatenate ’string "hello" "world")

Exercise: Define (string-1+ string) to construct a new string by adding 1 to the char-
acter code of each character in string. For example, (string-1+ "a b c") ⇒ "b!c!d".

2.6 Symbols

Recall that symbols are evaluated as variables — that is, a symbol may have a value. If
it does it is bound; otherwise it is unbound. Symbols also serve as function names, as we
have already seen.

The syntax for symbols comprises any sequence of characters that can’t be interpreted as
a number or other literal. Backslash is the escape character, and the vertical bar ‘|’ serves
as escape brackets.

’hello
’hello\ world ; note different printed representations
(symbol-name ’hello\ world)
(boundp ’pi)
(boundp ’foo)
(describe ’0.42e2)
(describe ’0.42a2)
(describe ’0.42\e2)
(describe ’|0.42e2|)

Two symbols with the same name3 are guaranteed to be the same object. When the Lisp
reader (the first step of read-eval-print) reads a symbol, this is what it does:

3 And interned in the same package.

Chapter 2: Data Types 8

1. Reads the characters you type, and constructs a string (the symbol’s name).4

2. Looks up the symbol object by its name in a “catalog.”
3. If it’s not there, creates it and puts it there.

As a result, every time a symbol name is read, the same object is produced. The function
eq tests for object identity.

(eq ’hello\ world ’|hello world|)
(eq ’hello ’Hello)

The process of installing a symbol in the catalog is called interning it and a symbol that’s
been so installed is called an interned symbol. You can intern a symbol by calling the
intern function with a string argument. Other symbol functions are listed in Common
Lisp HyperSpec section “Symbols”.

2.7 Packages

The “catalog” that a symbol is interned into is called a package. Packages are Lisp’s
mechanism for managing names: variable and function names are symbols, and their package
is their “namespace.” The reader uses the current package (the value of *package*) to look
up symbol names. The current package when Lisp starts up is called ‘common-lisp-user’.

A package can export symbols for other packages to use. This gives the using package
access to the variables and functions named by the exporting package’s symbols. Consider
the describe function:

(describe ’describe)
a
describe is a symbol.
It is unbound.
It is external in the common-lisp package and accessible in the

acl-socket, aclmop, antcw, clos-x-resources, cltl1, common-lisp-user,
common-windows, compiler, composer, cross-reference, debugger,
defsystem, excl, excl.scm, extended-io, foreign-functions, g6,
gprofiler, grapher, inspect, ipc, lep, lep-io, multiprocessing, net.uri,
profiler, quad-line, system, top-level, winx, and xlib packages.
Its function binding is #<Function describe>

The function takes arguments (x &optional stream)
Its property list has these indicator/value pairs:

excl::dynamic-extent-arg-template nil

See that describe is external in (exported from) the package common-lisp, and accessible
in (used by) the common-lisp-user package, among others.

An external (exported) symbol in another package can also be accessed by its “full” or
qualified name — package:name . An internal (non-exported) symbol can also be accessed
by doubling the colon — package::name . (It is usually a bad idea to access symbols in
this way!)

4 Some older Lisp implementations convert unescaped symbol names to upper case. In such an implementation,
’year2004 ⇒ YEAR2004, while ’|year2004| ⇒ year2004.

Chapter 2: Data Types 9

(eq ’length ’common-lisp:length)
;; creates a new symbol in another package! (oops)
’common-lisp::helloworld
(eq ’common-lisp::helloworld ’common-lisp-user::helloworld)

One special package is called keyword. Any symbol beginning with ‘:’ is a keyword symbol.
Moreover, every keyword symbol is external and has a constant value, namely itself. This
makes keyword symbols convenient to use for symbolic data. For example, many functions
use keyword symbols to indicate that certain optional arguments are being provided.

(describe ’keyword::foo)
(eq :foo ’:foo)
(position #\l "hello world" :start 5) ; a "keyword argument"

To build modular systems, one defines a package for related functions and variables, and
exports the API symbols. We won’t go into further detail about packages in this tutorial;
instead you may read Common Lisp HyperSpec section “Packages”.

2.8 Lists

As we know, lists are a fundamental data structure in Lisp. They are the syntax for function
calls, as well as the origin of the language’s name (LISt Processing).
Lists hold a sequence of elements, which may be (references to) any Lisp objects. They are
created by list.

’()
’(1 2 3)
(list 1 2 3)

Notes:
• Notice that ’() ⇒ nil. The symbol nil represents the empty list as well as false.
• Lists are compared using equal (see Section 2.10 [Equality Testing], page 14).

Exercise: Construct the list containing the two lists (a b c) and (1 2 3).
List functions are documented in Common Lisp HyperSpec section “Conses”.

(listp nil)
(listp ’(1 2 3))
(endp nil)
(endp ’(1 2 3))
(eq (list 1 2 3) (list 1 2 3))
(equal (list 1 2 3) (list 1 2 3))

(length ’(1 2 3))
(first ’(1 2 3))
(second ’(1 2 3))
(third ’(1 2 3))
(rest ’(1 2 3))
(member 2 ’(1 2 3))
(nth 4 ’(0 1 2 3 4 5 6 7 8 9))
(nthcdr 0 ’(0 1 2 3 4 5 6 7 8 9))

Chapter 2: Data Types 10

(nthcdr 4 ’(0 1 2 3 4 5 6 7 8 9))
(last ’(0 1 2 3 4 5 6 7 8 9))
(last ’(0 1 2 3 4 5 6 7 8 9) 4)
(butlast ’(0 1 2 3 4 5 6 7 8 9))
(butlast ’(0 1 2 3 4 5 6 7 8 9) 4)
(append ’(1 2 3) ’(4 5 6))

Since lists are also sequences, the functions in Common Lisp HyperSpec section “Sequences”
apply to lists.
Exercise: Define (count-symbol symbol list) to return the number of times symbol oc-
curs in list. For example, (count-symbol ’a ’(a b r a c a d a b r a)) ⇒ 5.
The basic building block of a list is called a cons. A cons is an object containing two
elements — called the car and the cdr (for historical reasons). The syntax of a cons is (car
. cdr). You can picture the cons (1 . 2) as:

+---+---+
| / | \ |
+/--+--\+

car / \ cdr
/ \

V V
+---+ +---+
| 1 | | 2 |
+---+ +---+

Conses are used to construct lists (aka linked lists) in a familiar way (e.g., (1 2 3)).
+---+---+ +---+---+ +---+---+
| | | --+--->| | | --+--->| | | --+---> nil
+-|-+---+ +-|-+---+ +-|-+---+
| | |
| | |
V V V

+---+ +---+ +---+
| 1 | | 2 | | 3 |
+---+ +---+ +---+

When we use conses as lists, we usually refer to the car and cdr as the first and rest, or
head and tail. A list whose final cdr is not nil is called a dotted list — for example, (1 2
. 3). A proper list has nil as its final cdr. The function cons creates cons cells. Since lists
are linked cons cells, it follows that cons is also the function to add elements to the front
of a list. The functions car and cdr access the elements of a cons, so they are equivalent
to first and rest.

(cons 1 2)
(cons 1 nil)
’(1 . nil)
(cons 1 ’(2 3))
(consp ’(1 . 2))
(car ’(1 . 2))
(cdr ’(1 . 2))

Chapter 2: Data Types 11

(first ’(1 . 2))
(rest ’(1 . 2))

Exercise: Implement append: Define (my-append list1 list2) to append list1 to list2.

2.9 Objects

This section introduces the Common Lisp Object System (CLOS). More detail about CLOS
can be found in Common Lisp HyperSpec section “Objects”.

2.9.1 Classes

Classes are defined by defclass. The definition consists of the class name, list of super-
classes, list of slots, and other options. Documentation is found in Common Lisp HyperSpec
section “Classes”.

(defclass animal ()
((name :type string :reader name :initarg :name)
(weight :type integer :accessor weight :initarg :weight)
(covering :type symbol :reader covering :initarg covering)))

(defclass mammal (animal)
((covering :initform ’hair)))

(defclass bird (animal)
((covering :initform ’feathers)))

(defclass penguin (bird) nil)

Slot options for defclass include the following:

:documentation
A documentation string.

:allocation
Either :instance, meaning that this is a slot local to each instance, or :class,
meaning that this slot is shared among instances.

:initarg A symbol used like a keyword in make-instance to provide the value of this
slot.

:initform
A form, evaluated when each instance is created, to give the value for this slot.

:reader A symbol which is made the name of a method used to get the value of this
slot for each instance.

:writer A symbol which is made the name of a method used to set the value of this
slot for each instance. For example, if set-slot is the symbol, it is used by
evaluating (set-slot value instance).

Chapter 2: Data Types 12

:accessor
A symbol which is made the name of a method used to get or set the value of
this slot for each instance.

:type The permitted type of values of this slot.

Instances are created by make-instance. Slots are accessed by their reader or accessor
methods.

(setf willy (make-instance ’penguin :name "Willy" :weight 20))
(class-of willy)
(typep willy ’penguin)
(name willy)
(covering willy)

(The ‘setf’ used in this example is an assignment statement, assigning the variable willy
the value resulting from make-instance. See Section 3.3 [Assignment], page 21.)

Exercise: Define a new class fish, which is a kind of animal, covered by scales.

Exercise: Create an instance, a 0.1 pound fish named “Nemo”.

All of the Lisp types we are already familiar with are built-in classes. The root of the class
hierarchy is the type t. Here is a partial class hierarchy for the built-in classes.

t
number

real
rational

ratio
integer

float
single-float
double-float

complex
character
sequence

vector
bit-vector
string

list
null
cons

array
vector

symbol
null

function
hash-table
standard-object (the default superclass of instances)

Chapter 2: Data Types 13

2.9.2 Methods

CLOS employs generic functions, which are conceptually slightly different from member
methods in languages like Java. A generic function is a function that dispatches to different
methods based on the types of the arguments. Generic functions are covered in Common
Lisp HyperSpec section “Generic Functions and Methods”.

(defgeneric moves-by ((a animal))
(:documentation "Returns the mode of mobility of animal A.")
(:method ((a mammal))

"Mammals walk."
’walking)

(:method ((a bird))
"Birds fly."
’flying))

(setf tweety (make-instance ’bird :name "Tweety" :weight 0.1))
(moves-by tweety)
(moves-by willy) ;; oops

(defmethod moves-by ((a penguin))
"Penguins swim (not fly)."
’swimming)

(moves-by willy)

Methods can be defined using either defgeneric or defmethod.

Exercise: Define classes to represent geometric figures — circles, triangles, and rectangles.

Exercise: Define a generic function area to compute the area of a geometric figure.

2.9.3 Multiple Inheritance

CLOS allows a class to have multiple superclasses. This of course complicates the inher-
itance conceptually (see Common Lisp HyperSpec section “Determining the Class Prece-
dence List”), so it should be used carefully.

(defclass carnivore (animal) nil)
(defclass herbivore (animal) nil)

(defgeneric eats-p ((predator animal) (prey animal))
(:documentation "Returns true if PREDATOR will eat PREY.")
(:method ((pred herbivore) (prey animal))

nil)
(:method ((pred carnivore) (prey herbivore))

(< (weight prey) (weight pred)))
(:method ((pred carnivore) (prey carnivore))

(< (weight prey) (* 0.5 (weight pred)))))

(defclass cat (mammal carnivore) nil)

Chapter 2: Data Types 14

(defclass canary (bird herbivore) nil)

(setf sylvester (make-instance ’cat :name "Sylvester" :weight 10))
(setf tweety (make-instance ’canary :name "Tweety" :weight 0.1))

(eats-p sylvester tweety)
(eats-p tweety sylvester)
(eats-p tweety tweety)
(eats-p sylvester sylvester)

Exercise: What builtin classes have multiple superclasses?

2.9.4 Predefined Methods

CLOS predefines a few methods that are useful to specialize.

[Function]print-object object stream
Writes the printed representation of object to stream. The implementation depen-
dent method for standard-object usually prints the class of the object. It is often
overridden to print additional useful features of the object.

[Function]initialize-instance instance &rest initargs &key &allow-other-keys
Initializes a newly created instance. The predefined method initializes instance slots
using the initargs and the :initform slot options. This primary method should
not be overridden, but it is often convenient to define :after methods to perform
additional initialization after the slots have been set up.

Examples:
(defmethod print-object ((a animal) stream)
(print-unreadable-object (a :type t)

(princ (name a) stream)))

2.10 Equality Testing

eq Checks object identity. This is appropriate also for symbols, since symbols with
the same name are the same object.

eql Checks equality of characters and numbers of the same type. Additionally, if
two objects are eq, they are also eql.

equal Checks equality of strings and lists (recursively). Additionally, if two objects
are eql, they are also equal.

= Checks numerical equality.

2.11 Data Conversion

The function coerce converts data between compatible types.
(coerce 1/42 ’float)
(coerce "Hello World" ’list)

Chapter 3: Control Structures 15

3 Control Structures

3.1 Functional Programming

3.1.1 Functions are Objects

We already know quite a bit about functions — at least, named functions.
• Named functions are defined by defun forms.
• Functions are called by evaluating a list form whose first element is the function name

— (function-name argument ...).
• The form (function function-name) can be used to obtain a function object for a

name; #’function-name is an abbreviation for (function function-name).

What can we do with function objects in Lisp?
• Functions can be bound to variables, passed as arguments, and stored in data struc-

tures, just like other Lisp objects. Functions with these abilities are often referred to
as “first class functions”.

• Functions can be called on arguments argument1 ... argumentn using the form
(funcall function argument1 ... argumentn).

• Functions can be called on arguments argument1 ... argumentn and a list of addi-
tional arguments arguments using the form (apply function argument1 ... argu-

mentn arguments).

Examples:
(member ’(a c) ’((a b) (a c) (b c)) :test #’equal)

(setf z ’(5 3 7 2))

(funcall
(if (oddp (length z))

#’first
#’second)

z)

(apply
(if (< (first z) (second z))

#’+
#’-)

z)

(defun funcall-nth (n functions arguments)
"Calls the Nth function on the Nth argument."
(funcall (nth n functions) (nth n arguments)))

Chapter 3: Control Structures 16

(funcall-nth 1
(list #’1+ #’string-upcase #’second)
(list 42 "hello world" ’(a b c)))

Exercise: Define a function (my-find-if predicate list) that returns the first element
of list which satisfies predicate, or nil if no element is satisfactory.

3.1.2 Anonymous Functions

Since function objects can be used so flexibly in Lisp, it makes sense that we should be able
to create a function without having to define a named function; that is, use a throwaway
function instead of a permanent defun. That’s what lambda is for. A “lambda expression”
can be used in place of a function name to obtain a function.

(function (lambda (x) (+ x 1)))
((lambda (x) (+ x 1)) 42)
(funcall #’(lambda (x) (+ x 1)) 42)

Note that
((lambda params . body) . args)

is equivalent to
(funcall #’(lambda params . body) . args).

In fact, the function form isn’t really necessary, because lambda is set up so that
(lambda params . body) ≡ #’(lambda params . body).

Lambda functions are actually closures, which means that they comprise not only their
code, but also their lexical environment. So they “remember” variable bindings established
at the time of their creation.

(defun make-adder (delta)
(lambda (x) (+ x delta)))

(setf f (make-adder 13))
(funcall f 42)
(funcall (make-adder 11) (funcall (make-adder 22) 33))

Exercise: Define a function (compose f g) that composes functions f and g. Assume that
f composed with g is defined as (f o g)(x) = f(g(x)). Try (funcall (compose #’char-
upcase #’code-char) 100).

3.1.3 Mapping

A very common use of a function object is calling it on each element of a list. This is
referred to as mapping. Common Lisp includes several mapping functions.

(mapcar #’(lambda (s) (string-capitalize (string s)))
’(fee fie foe fum))

(maplist #’reverse ’(a b c d e))

(mapcar #’(lambda (s n) (make-list n :initial-element s))

Chapter 3: Control Structures 17

’(a b c d e) ’(5 2 3 7 11))

(mapcan #’(lambda (s n) (make-list n :initial-element s))
’(a b c d e) ’(5 2 3 7 11))

(mapcon #’reverse ’(a b c d e))

General sequences also support mapping. (Recall that sequences are one-dimensional col-
lections, i.e., either vectors or lists.)

(map ’list #’(lambda (c) (position c "0123456789ABCDEF"))
"2BAD4BEEF")

(map ’string #’(lambda (a b) (if (char< a b) a b))
"Buckaroo" "Rawhide")

Here are examples of other useful functions on sequences. Many of these take functions as
arguments.

(count-if #’oddp ’(2 11 10 13 4 11 14 14 15) :end 5)

(setf x "Buckaroo Banzai")
(sort x #’(lambda (c d)

(let ((m (char-code c)) (n (char-code d)))
(if (oddp m)

(if (oddp n) (< m n) t)
(if (oddp n) nil (< m n))))))

;; note that SORT does destructive modification
x

(find-if
#’(lambda (c) (= (* (first c) (first c)) (second c)))
’((1 3) (3 5) (5 7) (7 9) (2 4) (4 6) (6 8)))

(position-if
#’(lambda (c) (= (* (first c) (first c)) (second c)))
’((1 3) (3 5) (5 7) (7 9) (2 4) (4 6) (6 8)))

(reduce #’expt ’(3 3 2 2))
(reduce #’list ’(a b c d e))
(reduce #’list ’(a b c d e) :initial-value ’z)
(reduce #’list ’(a b c d e) :from-end t)
(reduce #’append ’((a b) (c d) (e f g) (h) (i j k)))

3.1.4 Lambda Lists

We have noted in passing that some functions take different numbers of arguments, or take
arguments in strange ways. This section explains what’s really going on.
A lambda list is a list of parameters for a function. They are described in Common Lisp
HyperSpec section “Ordinary Lambda Lists”. So far we have only used “normal” (or

Chapter 3: Control Structures 18

required) parameters in our functions, but there are five kinds of parameters a function
might have. The syntax of a lambda list is as follows:

(var*
[&optional {var | (var [init-form [supplied-p]])}*]
[&rest var]
[&key {var | ({var | (keyword-name var)} [init-form [supplied-p]])}*

[&allow-other-keys]]
[&aux {var | (var [init-form])}*])

Required Parameters
Required parameters are the normal formal parameters you are used to. There
must be one actual argument for each required parameter, and the required
parameters are bound to the values of the actual arguments in left-to-right
order.

Optional Parameters
If there are more actual arguments than required parameters, the extras are
bound to the optional parameters in left-to-right order. If there are extra op-
tional parameters, they are bound to the value of their init-form, if it is present,
else to nil. If supplied-p is present and there is an actual argument for the
optional parameters, it is bound to t, otherwise it is bound to nil.

Rest Parameters
Using required and optional parameters, a Lisp function is restricted to a max-
imum number of actual arguments. But a &rest parameter var is bound to
a list of the values of all the actual arguments that follow the required and
optional arguments, however many.

Keyword Parameters
Keyword parameters are optional, but unlike &optional parameters, their ar-
guments may appear in any order, and any one may be supplied or omitted
independently of the others. A keyword parameter var is used in the body of
the function as you would expect, but in the function call, a keyword argument
is specified by preceding it with a symbol in the keyword package whose name
is the same as the name of the var, that is, :var .

Aux Parameters
Aux parameters are essentially just local variables with initializations.

It is unusual (and a bit difficult) to use all five kinds of parameters together. More typical
is to use required parameters with &optional and/or &rest, or to use required parameters
with keyword parameters.
Examples:

(defun extract (list &optional index &rest indices)
"Returns the elements of LIST at intervals specified by the indices.

The first INDEX gives the offset of the first element from the beginning
of the LIST. Each remaining index in indices gives the offset of the
next element from the previous element. For example,
(extract ’(0 1 2 3 4 5 6 7 8 9) 2 3 2 1) => (2 5 7 8)"

;; keep going until either list or indices exhausted

Chapter 3: Control Structures 19

(if (and list index)
;; check if first element is one we want
(if (zerop index)
(cons (first list)

;; continue with next index from indices, if available
(if indices

(apply #’extract
(rest list) (1- (first indices)) (rest indices))

nil))
(apply #’extract (rest list) (1- index) indices))

nil))

(defun group (list &key (size 1) (skip 0))
"Returns a list of groups of elements of LIST.

Each group has SIZE elements and is separated from the elements
of the previous group by SKIP elements of LIST."
(if (and list (<= size (length list)))

(cons (subseq list 0 size)
(group (subseq list (+ size skip)) :size size :skip skip))

nil))
(group ’(0 1 2 3 4 5 6 7 8 9))
(group ’(0 1 2 3 4 5 6 7 8 9) :size 3 :skip 1)
(group ’(0 1 2 3 4 5 6 7 8 9) :skip 2 :size 2)

3.2 Variables

3.2.1 Global Variables

Global variables in Lisp programs conventionally have names that begin and end with ‘*’
(e.g., ‘*package*’). As always, the number of global variables in a program should be
minimized to avoid confusion. Here are the forms that declare global variables:

[Macro]defconstant name initial-value [documentation]
Declares a global constant.

[Macro]defparameter name initial-value [documentation]
Declares a global variable.

[Macro]defvar name [initial-value [documentation]]
Like defparameter, declares a global variable. Unlike defparameter, does not assign
the initial-value to the variable if it already has a value. This is primarily useful for
customization variables, where a user may set these values before loading the system,
and the defaults will only take effect when another value is lacking.

Chapter 3: Control Structures 20

3.2.2 Local Variables

Local variables are introduced by let. For example, to avoid the repeated computation of
the first elements in my-merge1 below,

(defun my-merge1 (list1 list2 &key (test #’<))
"Merges the elements of LIST1 and LIST2 together in order.

Assumes both LIST1 and LIST2 are already in order.
Comparison is performed by calling TEST on X1 and X2,
where X1 is from LIST1 and X2 is from LIST2."

(if (and list1 list2)
(if (funcall test (first list1) (first list2))
(cons (first list1) (my-merge1 (rest list1) list2 :test test))
(cons (first list2) (my-merge1 list1 (rest list2) :test test)))

(or list1 list2)))

we introduce local variables x1 and x2.
(defun my-merge (list1 list2 &key (test #’<))

"Merges the elements of LIST1 and LIST2 together in order.
Assumes both LIST1 and LIST2 are already in order.
Comparison is performed by calling TEST on X1 and X2,
where X1 is from LIST1 and X2 is from LIST2."

(if (and list1 list2)
(let ((x1 (first list1))

(x2 (first list2)))
(if (funcall test x1 x2)

(cons x1 (my-merge (rest list1) list2 :test test))
(cons x2 (my-merge list1 (rest list2) :test test))))

(or list1 list2)))

The general form of a let expression is:
(let ((v1 e1)

(v2 e2)
...
(vn en))

expression

...)

The variables v1 through vn are bound to the results of the expressions e1 through en.
These bindings have effect throughout the body expressions. As usual, the result of the let
expression is the result of the last body expression.
Notes:
• Let bindings are lexically scoped.

(let ((x 1))
(list

(let ((x 2))
x)

(let ((x 3))
x)))

Chapter 3: Control Structures 21

• Let bindings are performed in parallel.
(let ((x 3))

(let ((x (1+ x))
(y (1+ x)))

(list x y)))

• A variant of let called let* performs the bindings sequentially.
(let ((x 3))

(let* ((x (1+ x))
(y (1+ x)))

(list x y)))

Exercise: Finish implementing mergesort by defining (mergesort list &key test). If the
list has zero or one elements, return it; otherwise split the list in half, mergesort each half,
and merge them. Use let to define any local variables you need (e.g., the midpoint of the
list). (Hint: Use (floor n 2) to get the closest integer to n/2.)

3.3 Assignment

Assignment in Lisp is handled by setf, and is much more general than in other languages.

[Macro]setf {place value}*
Assigns to each place its corresponding value, in sequential order. Returns the result
of the last assignment (i.e., the last value).

[Macro]psetf {place value}*
Assigns to each place its corresponding value, in parallel. Returns nil.

A place is a generalized reference — a form that corresponds to a location that can hold a
value. (See Common Lisp HyperSpec section “Overview of Places and Generalized Refer-
ences”.) Here are some examples of places and assignment.

;; simple variables
(defparameter *answer* 42)
(setf *answer* ’no)

;; list element accessors
(setf z ’(a b c))
(setf (first z) 1)
(setf (rest z) ’(2 3))

;; object slot accessors
(setf (weight tweety) 0.2) ; tweety starts pumping iron

Lisp style is conventionally more functional than imperative, so Lisp programmers tend to
minimize their use of setf.
Throughout this document, we have used setf to assign variables during interactions with
the Lisp interpreter. This has the effect of introducing a global variable without declaring
it. This is acceptable practice for interacting with interpreter. However, when you write

Chapter 3: Control Structures 22

more formal programs (e.g., the sort you save in a source file), always declare your global
variables. And again, try to minimize your use of global variables.
In addition to explicit assignment using setf, there are some useful macros that implicitly
perform assignments.

;; (incf place &optional (delta 1)) ≡ (setf place (+ place delta))
(setf x 42)
(incf x)
x
(decf x 3)
x

;; (pop place) ≡
;; (let ((x (car place)))
;; (setf place (cdr place))
;; x)

;; (push item place) ≡ (setf place (cons item place))
(setf z ’(a b c))
(pop z)
z
(push ’c z)
z

3.4 Conditionals

As we know, the basic conditional expression, if, is a two-branch conditional. There are
also single-branch conditionals when and unless, and a multi-branch conditional cond.

[Macro]when test expression*
Evaluates test. If the test result is true, evaluates the expressions in order, returning
the result of the last one. Otherwise returns nil.

[Macro]unless test expression*
Evaluates test. If the test result is false, evaluates the expressions in order, returning
the result of the last one. Otherwise returns nil.

[Macro]cond branch*
The form of the multi-branch conditional is:

(cond
(expression11 expression12 ...)
(expression21 expression22 ...)
...
(expressionn1 expressionn2 ...))

The expressioni1 are evaluated starting at i = 1 until one of them evaluates to a
non-null value. If so, the rest of the expressions in that group (if any) are evaluated,
and the value of the last one evaluated becomes the value of the cond. If all of the

Chapter 3: Control Structures 23

expressioni1 evaluate to nil, then the value of the cond is nil. As is often the case,
the value of a Lisp expression is the value of the last subexpression evaluated under
its control.
Most frequently, cond is thought of as a multi-branch if:

(cond
(test1 expression1 ...)
(test2 expression2 ...)
...
(testn expressionn ...))

The last test may be t, when it is to be considered the default clause.

Examples:
(defun my-elt (list index)
"Returns the INDEXth element of LIST, or nil if there isn’t one."
(cond
((endp list)
nil)
((zerop index)
(first list))
(t
(elt (rest list) (1- index)))))

Exercise: Try defining (my-position elt list &key test) to return the index of elt in
list using cond. Use the test keyword argument to compare elt to elements of list; the
default should be #’eql.

3.5 Loops

Common Lisp has one iteration macro — loop — that subsumes the kinds of iteration
constructs found in most languages (e.g., while, for, foreach).
The form of a loop is quite simple: it is a series of loop clauses.

(loop
clause1

clause2

...)

However, there are some 25 different kinds of loop clauses, so it takes a while to appreciate
all the things that loop can do. Instead of an exhaustive list, we’ll just look at some of the
most commonly used clauses.
1. Numerical iteration: for var from start [to end] [by incr]

(loop for i from 99 downto 66 by 3
do (print i))

Alternatives to the ‘to’ (or ‘upto’) limit are ‘downto’, ‘below’, and ‘above’.
2. List iteration: for var {in|on} list [by step-fun]

(loop for x in ’(a b c d e)
do (print x))

Chapter 3: Control Structures 24

(loop for x on ’(a b c d e)
do (print x))

3. General iteration: for var = init-expr [then update-exrp]

(loop
for x from 0 below 10
for y = (+ (* 3 x x) (* 2 x) 1)
do (print (list x y)))

(let ((z ’(4 2 0 1 3)))
(loop repeat 5
for prev = 0 then next
for next = (nth prev z)
do (print next)))

4. Value accumulation: {collect|append} expr [into var]

(loop for r on ’(a b c d e)
collect (length r)
append r)

Value accumulation clauses construct either a list value or a numeric value: The
‘collect’ and ‘append’ clauses construct a list value; ‘count’, ‘sum’, ‘minimize’, and
‘maximize’ construct a numeric value. Either way, the value is returned by the loop.

5. Initial-final: {initially|finally} expr*

(loop
initially (princ "testing")
repeat 10 do
(sleep 0.5)
(princ #\.)
finally (princ "done"))

Another way to return a value from the loop is using ‘finally’.
(defun my-expt (base exponent)

(loop repeat (1+ exponent)
for x = 1 then (* x base)
finally (return x)))

6. Unconditional execution: do expr*

(loop repeat 10 do (print "ha"))

7. Conditional execution:
if test

selectable-clause {and selectable-clause}*
[else

selectable-clause {and selectable-clause}*]
[end]

A selectable-clause is a value accumulation clause, or unconditional or conditional
execution clause.

(loop for x in ’(1 (2 3) 4 (5 6) 7 8)
if (listp x)

Chapter 3: Control Structures 25

sum (apply #’* x)
else
sum x)

8. Termination test: {while|until} test

Another termination test clause, which we have already seen, is repeat number .
(defun user-likes-lisp-p ()

(loop initially (princ "Do you like Lisp? ")
for x = (read)
until (member x ’(y n))
do (princ "Please type either ‘y’ or ‘n’. ")
finally (return (eq x ’y))))

Exercise: Rewrite the factorial function using loop.
Exercise: Define a function (fibonacci-table n) to return a list of the Fibonacci numbers
F[1] ... F[n].
Exercise: Implement assoc using loop. Specifically, define a function (my-assoc item
assoc-list &key test) that returns the mapping whose key is item, or nil if there isn’t
one. An association list is a list of conses (key . value). For example,

(my-assoc ’b ’((a . 1) (b . 2) (c . 3)) ⇒ (b . 2).

Chapter 4: Input/Output 26

4 Input/Output

4.1 Streams

I/O in Lisp is based on streams. A stream is a source or destination for characters or
bytes. For example, streams can be directed to or from files, strings, or the terminal.
Output functions (e.g., print and format) and input functions (e.g., read) normally take
stream arguments; although frequently the stream argument is optional. Several streams
are available when Lisp starts up, including *standard-input* and *standard-output*.
If the session is interactive, both of these are the same as *terminal-io*.
The basic output functions for streams are write-char and write-line. The basic input
functions are read-char and read-line.
File streams are created by the open function. However, it is more convenient to use the
with-open-file form, which ensures that the file is closed regardless of whether control
leaves normally or abnormally.

(with-open-file (output-stream "/tmp/drpierce.txt" ; put your name here
:direction :output)

(write-line "I like Lisp" output-stream))

(with-open-file (input-stream "/tmp/drpierce.txt" :direction :input)
(read-line input-stream))

(with-open-file (output-stream "/tmp/drpierce.txt"
:direction :output
:if-exists :supersede)

(write-line "1. Lisp" output-stream))

(with-open-file (output-stream "/tmp/drpierce.txt"
:direction :output
:if-exists :append)

(write-line "2. Prolog" output-stream)
(write-line "3. Java" output-stream)
(write-line "4. C" output-stream))

;; read lines until eof
(with-open-file (input-stream "/tmp/drpierce.txt" :direction :input)
(loop for line = (read-line input-stream nil nil)

while line
collect line))

Similarly, a string stream is usually manipulated using with-output-to-string and
with-input-from-string.

(with-output-to-string (output-stream)
(loop for c in ’(#\L #\i #\s #\p)

do (write-char c output-stream)))

Chapter 4: Input/Output 27

(with-input-from-string (input-stream "1 2 3 4 5 6 7 8 9")
(loop repeat 10 collect (read-char input-stream)))

Although the basic I/O functions are available, you will normally invoke the higher-level
capabilities of the Lisp printer and the Lisp reader. We discuss the printer (see Section 4.2
[The Printer], page 27) and reader (see Section 4.3 [The Reader], page 29) in the following
sections.

Streams are closed using close. Other stream functions include streamp, open-stream-p,
listen, peek-char, clear-input, finish-output.

4.2 The Printer

The standard entry point into the printer is the function write; and prin1, princ, print,
and pprint are wrappers for certains settings of write. The optional output stream ar-
gument of each of these functions defaults to standard output. Another useful set of print
functions is write-to-string, prin1-to-string, and princ-to-string.

(setf z
’("animal"

("mammal"
("feline" ("lion") ("tiger") ("kitty"))
("ursine" ("polar bear") ("teddy bear"))
("rodent" ("squirrel") ("bunny") ("beaver")))
("bird" ("canary") ("pigeon"))
("reptile" ("turtle") ("snake"))))

(prin1 z) ; same as (write z :escape t)
(princ z) ; same as (write z :escape nil :readably nil)
(write z :escape nil :pretty t :right-margin 40)
(write-to-string z :escape nil :pretty nil)

A more sophisticated and flexible aspect of the printer is the format function – (format
destination control-string argument...). This function consults the control-string
to determine how to format the remaining arguments (if any) and transfers the output to
destination.

If the destination is: then the output:
a stream appears on that stream
t appears on the standard output
nil is returned as a string

The control string consists of simple text, with embedded format control directives. Some
of the simpler, more commonly used directives are summarized below.

~W format as if by write; any kind of object; obey every printer control variable

~S format as if by prin1; any kind of object; "standard" format

~A format as if by princ; any kind of object; human readable ("asthetic") format

~D (or ~B, ~O, ~X) decimal (or binary, octal, hex) integer format

Chapter 4: Input/Output 28

~F (or ~E, ~G, ~$) fixed-format (or exponential, general, monetary) floating-point
format

~{control-string~}
format a list; repeatedly uses control-string to format elements of the list until
the list is exhausted

~% print a newline

~& print a newline unless already at the beginning of the line

~~ print a (single) tilde

~* ignore the corresponding argument

~newline ignore the newline and any following whitespace (allows long format control
strings to be split across multiple lines)

Many format control directives accept “arguments” — additional numbers or special charac-
ters between the ‘~’ and the directive character. For example, a common argument allowed
by many directives is a column width. See the documentation for individual directives for
details about their arguments.

;; format an invoice
(loop for (code desc quant price) in

’((42 "House" 1 110e3) (333 "Car" 2 15000.99) (7 "Candy bar" 12 1/4))
do (format t "~3,’0D ~10A ~3D @ $~10,2,,,’*F~%"

code desc quant price))

;; format an invoice again, one-liner
(format t "~:{~3,’0D ~10A ~3D @ $~10,2,,,’*F~%~}"

’((42 "House" 1 110e3) (333 "Car" 2 15000.99) (7 "Candy bar" 12 1/4)))

;; comma-separated list
(loop for i from 1 to 4 do

(format t "~{~A~^, ~}~%" (subseq ’(1 2 3 4) 0 i)))

;; comma-separated list again, but cleverer
;; (using things I didn’t mention above :-)
(loop for i from 1 to 4 do

(format t "~{~A~#[~; and ~:;, ~]~}~%" (subseq ’(1 2 3 4) 0 i)))

Exercise: Remember that CLOS objects have “unreadable” printed representations? Let’s
fix that now. Define a function (or generic function) (print-geom figure &optional
stream) to print a suitable representation for geometric figures (circles, triangles, rect-
angles). “Suitable” means a representation that will make it easy for you to define a
(read-geom &optional stream) function to reconstruct a geometric object. For example,
(circle :radius 42) might be a good representation for circles (particularly if :radius is
the initarg for the radius slot). The stream should default to *standard-output*.

Chapter 4: Input/Output 29

4.3 The Reader

The standard entry point into the reader is the function read. The function
read-from-string is also often convenient.

(with-input-from-string (input-stream "(a b c)")
(read input-stream))

(with-input-from-string (input-stream "5 (a b) 12.3 #\\c \"foo\" t")
(loop repeat (read input-stream)

do (describe (read input-stream))))

Exercise: Define (read-geom &optional stream) function to reconstruct a geometric ob-
ject from the output produced by print-geom. The stream should default to *standard-
input*. (Hint: if you used a printed representation like (circle :radius 42), then you
should be able to reconstruct the circle using (apply #’make-instance r), where r is that
list representation.

Chapter 5: Mutable Data Structures 30

5 Mutable Data Structures

5.1 Arrays

Notes:
• The syntax for arrays is #nA(rows), where n is the rank (or dimensionality) of the

array.
• Elements of an array are accessed by aref.
• Arrays can also be created using make-array.

Examples:
;; a 2-dimensional array
(setf a

#2A((0 1 2)
(1 2 3)
(2 3 4)))

(aref a 1 1)
(setf (aref a 1 1) 42)
a
;; a 3-dimensional array
;; 2 rows, 2 columns, 3 subcolumns
(setf b

(make-array ’(2 2 3) :initial-contents
’(((a b c) (d e f))

((g h i) (j k l)))))
(aref b 1 0 2)
b

5.2 Hash Tables

Notes:
• Hash tables are created by (make-hash-table &key test).
• The test may be eq, eql, equal, or equalp. The default is eql.
• Elements are accessed using (gethash key hash-table &optional default-value).

Examples:
(setf h (make-hash-table))
(setf (gethash ’a h) 1)
(setf (gethash ’b h) 2)
(gethash ’a h)

Appendix A: Exercise Solutions 31

Appendix A Exercise Solutions

This appendix contains solutions to the exercises organized by sections.

Section 2.2 [Numbers], page 5

(/ (+ 12 17) 2)
(float (/ (+ 12 17) 2))

Section 2.3 [Functions], page 5

(defun fibonacci (n)
"Returns the Nth Fibonacci number."
(if (<= n 2)

1
(+ (fibonacci (- n 1)) (fibonacci (- n 2)))))

(fibonacci 10)

Section 2.4 [Characters], page 6

(defun char-1+ (character)
"Returns the character whose code is one more than CHARACTER’s."
(code-char (1+ (char-code character))))

Section 2.5 [Strings], page 6

(defun string-1+ (string)
"Returns the string formed by adding 1 to each char-code of STRING."
(if (zerop (length string))

string
(concatenate ’string

(string (char-1+ (char string 0)))
(string-1+ (subseq string 1)))))

Section 2.8 [Lists], page 9

’((a b c) (1 2 3))
(list ’(a b c) ’(1 2 3))

(defun count-symbol (symbol list)
"Returns the number of occurrences of SYMBOL in LIST."
(if (endp list)

0
(+ (if (eq symbol (first list)) 1 0)

(count-symbol symbol (rest list)))))

Appendix A: Exercise Solutions 32

(defun my-append (list1 list2)
"Appends LIST1 and LIST2."
(if (endp list1)

list2
(cons (first list1) (append (rest list1) list2))))

Section 2.9.1 [Classes], page 11

(defclass fish (animal)
((covering :initform ’scales)))

(make-instance ’fish :name "Nemo" :weight 0.1)

Section 2.9.2 [Methods], page 13

(defclass circle ()
((radius :accessor radius :initarg :radius)))

(defclass rectangle ()
((width :accessor width :initarg :width)
(height :accessor height :initarg :height)))

(defclass triangle ()
((base :accessor base :initarg :base)
(height :accessor height :initarg :height)))

(defmethod area ((c circle))
(* pi (radius c) (radius c)))

(defmethod area ((r rectangle))
(* (width r) (height r)))

(defmethod area ((x triangle))
(* 0.5 (base x) (height x)))

Section 2.9.3 [Multiple Inheritance], page 13

From the diagram in Section 2.9.1 [Classes], page 11, vector and null.

	Basics
	Introduction
	Syntax
	Read-Eval-Print
	Evaluation
	Comments
	Running Programs

	Data Types
	Booleans
	Numbers
	Functions
	Characters
	Strings
	Symbols
	Packages
	Lists
	Objects
	Classes
	Methods
	Multiple Inheritance
	Predefined Methods

	Equality Testing
	Data Conversion

	Control Structures
	Functional Programming
	Functions are Objects
	Anonymous Functions
	Mapping
	Lambda Lists

	Variables
	Global Variables
	Local Variables

	Assignment
	Conditionals
	Loops

	Input/Output
	Streams
	The Printer
	The Reader

	Mutable Data Structures
	Arrays
	Hash Tables

	Exercise Solutions

