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1 Introduction

These notes are not intended to be a complete introduction to the art of programming in Prolog. There are
many good books available that cover the content of this module, and there is no point in duplicating the
authors’ efforts. The recommended text book is:

[Clocksin & Mellish 94] A good basic introductory text.
Other books that may be useful include:

[Bratko 90] An introductory book that leans heavily towards Al applications. It is more chatty than
Clocksin and Mellish, but has the major disadvantage of frequently using a poor programming style;

[O’Keefe 90] A book for people who are well acquainted with Prolog; have done a fair chunk of program-
ming; and were wondering what more there was to know;*

[Ross 89] A good book for advanced programmers. It contains lots of useful ideas about how to tackle
substantial programming problems;

[Shoham 94] Good on Al applications of Prolog for those with a knowledge of the basics;

[Sterling & Shapiro 94] Possibly the best general Prolog book around, but definitely not an introduction,
especially if you don’t have much programming experience.

1.1 Software

There are many different implementations of Prolog available, each slightly different. Fortunately there is
a language core that is provided by most implementations (implementations you may come across include
Quintus, SICstus, Arity, LPA MacProlog and NIP, among others). The standard implementation for this
module is SICStus Prolog 3, which is available on departmental machines by typing si cst us.

2 How Do You Learn A Programming Language?

Artificial Intelligence is a rapidly changing field. It is constantly borrowing from the latest technologies and
being applied to new areas. As a result of this it is impossible to predict what language you may ultimately
end up writing Al programs in — new ones will certainly come along and old ones will change. Even the
major high level languages used in Al (Prolog and Lisp) are being continually upgraded and released in
slightly different versions, for different machines and computer architectures. For example, whereas Prolog
was designed years ago in Edinburgh? to run on DEC-10 mainframe computers, you can now get versions
of Prolog which run on a small PC or Macintosh and other versions which run on giant, massively parallel
architectures.

As a result of this, the most important skill for Al programmers is not knowledge of a particular lan-
guage, but the ability to learn new programming languages quickly, effectively and quite possibly often!
This is not an innate talent; it is a skill that can be learned. Useful approaches include the following:

e Getting the gist of a language before you begin. Some of the questions you might want to ask,
together with possible answers, are:

What sort of language is this? A logic programming language, an imperative language, an object
oriented language, a high-level language, a low-level language, compiled, interpreted;

What sorts of things can it do for me? Pattern matching, searching, efficient data structures, good
interface tools etc.;

What is the main control mechanism?

1The answer is “A lot”.
2n fact it was conceived in Marseilles, though not as a general purpose programming language



2.1

What is the syntax of this language?
How are variables handled?
How do I write comments?

Using reference manuals efficiently, by guessing keywords, reading only a brief overview then using
the index, skimming to get ideas;

Finding out about debugging tools early on, before you write that huge bug-ridden program;

Starting with small programs, or bits of programs, and getting them working before you move on.
Not only does this make you feel satisfied, and reminds you that you have learnt something already;,
but it is also sound methodology. A big program that is a collection of small working programs is
much more likely to work than a huge program which has evolved in a permanently buggy form;

Thinking of simple solutions to problems, or simplifications of existing solutions. There is absolutely
no merit in a complicated or long program where a shorter or simpler one will suffice;

Talking to people who know the language. People respect honest ignorance and are usually flattered
by being asked advice (within reason!);

Looking at “good” programs and trying to see what is elegant about them: an aesthetic sense for the
language often corresponds well with either reliability, efficiency or both;

Always laying out your own programs in as clear a manner as possible, taking pride in your work,
and annotating them with comments;

Learning a little and often and in varied ways. If your program doesn’t work, write down the problem
and then leave it alone till tomorrow, think about the program away from the computer, leaf through
the most appropriate chapter in the reference book, think about how you wished it worked, make
sure you know as much as you could about the debugger ... only then return to your program;

Practising and being honest about your abilities. Don’t expect to be able to get an entire language
sussed in one day; practice a little and often and try to learn from your mistakes; give yourself a
mental pat on the back when you get things right and your program works; keep a positive but not
unrealistic attitude to your current level of ability.

Finally, and most importantly, by trying to get the feel of the language, in a very informal sense, at
a very high level. This is important as you proceed to become more familiar with the detail of the
language — it gives you a framework from which to hang things.

The gist of Prolog

Some facts about Prolog:

Prolog is a high-level logic programming language (PROgramming in LOGic);

Good at pattern matching (by unification) and searching;

Not very good for repetitive number crunching;

Excellent for language processing, rule-based expert systems, planning and other Al applications;
Uses depth-first search and backtracking to search for solutions automatically;

Best written in little chunks (modular code): indeed this is assumed in its syntax;

Uses a %to prefix commentsor /* ... */ tosurround them.

The three most important concepts in Prolog are unification, backtracking and recursion. If you under-
stand these concepts thoroughly you can probably write pretty good Prolog programs.



3 Getting Started
3.1 Starting Prolog

Prolog is an interactive programming language. This means that you can control the Prolog system by
sitting at a terminal typing in commands which the system can execute more or less immediately, giving
replies to you directly. In this respect it is like BASIC or LISP, but unlike C or Java.

On any department workstation, type

si cstus

This will start up the Prolog system, which will print a short message (stating the version of SI CSt us and
the date the system was built), and then the Prolog “prompt” (the indication that the system expects some
input) which looks like this:

| -

If you try just hitting the RETURN key (the normal end-of-line key), the prompt will be repeated, but
nothing much else will happen.

3.2 Simple goals

Prolog is sent into action by giving it a goal, which we can think of for the moment just as a simple
command. Simple Prolog commands are formed by a name (the predicate name), followed by brackets
round the data item(s) involved (the arguments). The Prolog command for simple printing iswri t e. Try
typing in, directly at the prompt, this simple program, hitting RETURN at the end:

wite('hello).

Prolog is extremely fussy about punctuation, so get it right — no spaces before the left-bracket, only single-
quote marks (apostrophes) leaning as shown, and a full-stop at the end. In executing this goal, the system
should print out

hell o
yes

followed by the system prompt again.
Prolog generally prints yes when it has successfully completed a command, and no if it fails to.

3.3 Conjoining commands

Several commands can be typed one after another, provided commas are put between them (and a full stop
after the last one). For example

wite('hello ), nl, wite('master’).

Here, nl is a built-in procedure which causes a new line to be output. Another built-in command ist ab,
which puts out a given number of spaces. Try:

wite('oh’), tab(3)
wite('what’),tab(3)
wite(’a),tab(3)

write(’ beautiful’),tab(3)
wite('nmorning’).

(For your own convenience, you can carry on typing on to another line if the list of commands is very long
- nothing will happen until the full stop is read by the system.)



4 Defining your own procedures

4.1 Consulting files

Although typing in simple goals allows you to see Prolog in action, and is the way in which you get Prolog
to execute your program once you have written it, it is not the normal way of building a program. To show
you how to write, load and test programs, we first need to digress into the use of program files.

Suppose you have thought up some Prolog procedure definitions (we shall discuss that shortly). The
next step is to write these in an ordinary text file using a suitable text editor (e.g. emacs). Let us assume
that you have made such afile, called pr ogl. pl . (Itis normal to have Prolog program filesend in “. pl ”.)

Then, inside Prolog, the goal

consul t (progl).

will cause the file to be loaded into the Prolog system (“consulted”, in Prolog terminology). Then any
definitions you have put in that file will be available, just as the basic Prolog definition of wri t e is.

If what you wrote in the file is notationally correct Prolog, the system will respond with yes to indicate
that the file has been loaded successfully (i.e. the goal consul t (pr ogl) has been achieved).

If you made mistakes in the file, there will be error messages, and you will have to go back and edit the
file before trying the consul t again.

4.2 Defining simple procedures

A simple procedure has two major parts - the head (sometimes called the “left hand side™) and the body
(sometimes called the “right hand side™). The head gives the name to the procedure, and the body is the
sequence of commands (i.e. one or more commands, separated by commas and ending with a full stop)
which constitute “obeying the procedure”. The two parts are written on either side of the special symbol

For example:

salute :-
wite('salutations,’), tab(2), wite(’' master’).

This defines a procedure whose head is
sal ute
and whose body is
wite('salutations,’), tab(2), wite(’' master’).

If we load this definition into the Prolog system using consul t (see above for details), then we can then
use sal ut e as a Prolog command.
Create a file containing the above definition. Start up SICStus. Load the procedure in (consul t). Try

typing
sal ut e.

(Remember the fullstop!). The system should carry out the body of the procedure.

Prolog procedures are often referred to as predicates or as rules. The latter name for them reflects
the idea that the left-hand side specifies how to carry out the right-hand side. We will tend to treat the
terms “procedure” and “predicate” as meaning much the same thing, but will try to avoid using “rule” as it
sometimes is taken to mean a single clause within a procedure (see below), rather than the whole procedure.



4.3 Making choices

The sal ut e example procedure has only one sequence of commands as its body. In Prolog, a rule can
have several sequences of commands in its definition — each sequence for a separate situation. That is, the
whole definition is made up of several clauses, each clause having its own head and body. When the rule
(procedure) is used, the system selects one of these definitions and uses it. The system does this selection
by searching through all the definitions (clauses) listed for that predicate until it finds one for which the
head (left-hand side) matches the current goal. (The search is done in the order you have provided the
clauses, from first to last. That may not be obvious in these very simple examples, but it soon becomes
very important in more complex predicates.)

For example, suppose we want to have a rule which greets different people in a different way. We can
do this by specifying actual values in the heads of the clauses. The system will, when trying to gr eet ,
select the clause corresponding to the name used.

greet (hami sh): -
wite(’' How are you doing, pal? ).

greet(anelia): -
wite(’How awfully nice to see you!’).

greet (mke): -
wite('H there’).

Try typing this into a file, loading it into Prolog, and invoking the rule, using different names as the ar-
gument; for the moment, stick to lower-case letters for names (no capitals!), with no punctuation in the
names. What if the gr eet rule is used for someone not named in any of these three clauses? Try it. The
system will say

no

meaning that it was unable to carry out your task, as gr eet (anast asi a) (or whatever you typed in)
did not match any of the clauses for greet. This is an illustration of an important point about Prolog — there
are two ways of Prolog not doing what you asked. If what you have typed in causes no Prolog errors, then
the system will simply print no if it is unable to fulfil the goal. If, on the other hand, your goal triggers an
error, you will get an error message about this. To see the latter, try typing in

say(’'hello).
In this case, you will get an error message:
{ EXI STENCE ERROR: say(hello): procedure user:say/1l does not exist}

This is because there is no Prolog command say, and trying to use a non-existent predicate is an error.

4.4 Adding comments to your program
The Prolog comment characters are

%

and the pair of “brackets”

/| *
*/

At the end of any line, %means the rest of the line is a comment (ignored by the Prolog system), thus:

% This defines a sinple predicate

salute :-
wite('H ,"), tab(2), wite('pal!’).



Multiple line comments can be enclosed between / * and */ , thus:

/* Predicate name : salute
Nunmber of argunents: NONE
Effects: prints a nessage

*/
salute :-

wite('H ,’), tab(2), wite('pal!’).
5 Variables

As in most programming languages, there can be named variables which take on values. Variables in Prolog
behave slightly differently from variables in many other languages, although this will not be obvious in our
simpler examples.

Any symbol which starts with a capital (upper case) letter is treated by Prolog as a variable.

5.1 Sharing information within a clause

Suppose we wanted to generalise our gr eet procedure so that it would work for any name, and would
repeat the name of the person in the printed greeting. The following would achieve this:

greet (Name) : -
wite('"Hullo, "), wite(Nanme).

Here, Nane is a variable. If we try out this clause on its own (i.e. without the earlier clauses for gr eet ),
we get this effect:

?- greet(al phonse).
Hul | o, al phonse
yes

What happens is that when Prolog tries to match the goal gr eet ( al phonse) against the stored def-
initions, it compares gr eet ( al phonse) with the head of the only available clause, the definition of
greet (Nanme). Two terms such as this match if they have the same predicate name (here, gr eet)
and the same number of arguments (here, one) and if the items in those argument positions match (here,
al phonse and Nane). A variable such as Nane can, if it has not already matched something, match any
item. So Nane matches al phonse and, as a result of this, the value al phonse becomes associated with
Nane - the variable is bound to that value.

When Prolog (having successfully matched the head of the clause against the current goal, and therefore
chosen that clause) goes on to carry out the body of the clause, any occurrences of Nane are now deemed
to be al phonse.

5.2 Clauses in order

Suppose we now construct a file (say, pr og2. pl ) which contains all the clauses for gr eet , in this order:
greet (ham sh): -
wite(’'How are you doing, pal?).

greet (anelia): -
write(’ How awfully nice to see you!’).

greet (mke): -
wite('H there’).

greet (Name) : -
wite('"Hullo, ), wite(Name).



Once we have consulted this file, we then get the following behaviour:

?- greet(ham sh).

How are you doi ng, pal?

yes

?- greet(daisy).

Hul | o, dai sy

yes

?- greet(anelia).

How awful |y nice to see you!
yes

Since Prolog searches from the top of the clauses when trying to find a match, the specific clauses at the
start are found when they are applicable, and the general clause at the end (with the variable) is reached
only when nothing else matches.

5.3 \Variables in goals

In the above example, the variable was in the predicate-definition, and the goal we supplied contained
a non-variable (a constant). It is also possible to put a variable in a goal, and have it matched against
whatever can be found in the predicate definitions. Suppose we have loaded (consulted) the file pr ogl
above, which has the three clauses for gr eet but not the clause with the variable. Then if we type a goal
which has a variable as its argument, this is what happens:

?- greet(Person).
How are you doi ng, pal?
Person = hanish ?

The system has tried to find a clause whose head matches the goal, and the first clause fulfils this re-
quirement: gr eet ( Per son) matches gr eet ( hami sh), with the variable Per son getting bound to
ham sh. Hence the first clause is selected and its body (right hand side) is performed; you can see that
this has happened, because the wr i t e message appears.

Since the variable was in a goal which came from the user (you), the Prolog interface supplies you with
information about the successful binding of the variable.
This does not happen every time a variable is bound, only when the variable is in the goal you
supplied.

5.4 Re-trying goals

In the situation just described, notice that Prolog has not printed out either yes (indicating success) or no
(for failure) — it is waiting for you to respond. If you hit RETURN, it will respond with yes to indicate
successful completion. However, the interface allows you to ask the system to see if any other bindings for
the variable are possible. To do this, type a semi-colon (that is, “; ) instead of RETURN at this stage. The
printout should now look like this:

?- greet(Person).

How are you doi ng, pal?
Person = hanish ? ;

How awful |y nice to see you!
Person = amelia ?

The system has discarded the binding it had for Per son, and moved on to see if some other clause can
be found which matches. It does succeed, and so returns to the user to ask if this is sufficient (if so, press
RETURN, and get the yes message) or whether more options should be tried. If you keep pressing the
semi-colon in response to these prompts, the complete sequence will look like this:



?- greet(Person).

How are you doi ng, pal?
Person = hamish ? ;

How awful ly nice to see you!
Person = anelia ?;

H there

Person = mke ? ;

no

Prolog tries all clauses in turn, and when the third semi-colon asks for more options, it returns the failure
message no — there are no more clauses to try. This re-trying on failure is known as backtracking, and
is a very important concept in Prolog. What we have illustrated here is an extremely simple example of
backtracking — much more complex examples will appear shortly.

Notice that we said that the system discarded the first binding it had for the variable before going on to
look for other options. This is because a variable can be bound to at most one constant (specific value) at a
time, so the variable has to become unbound before further bindings were possible.

We will sometimes use the term instantiated to describe a variable which is bound to a non-variable
(specific) and uninstantiated if it is not.

6 Tests

6.1 Success and conjunction

We have talked of a goal “failing’ or ‘succeeding’. This distinction is routinely used to get an effect which
in a conventional language would be regarded as computing the truth or falsity of some condition. For
example, Prolog has the built-in operator < which tests if one number is less than another. Try typing in
some goals using this symbol:

?- 5 < 7.

no

Here the yes/no answer (indicating success or failure) communicates what is effectively the truth of the
condition stated in the goal. If you put several tests joined by commas, Prolog will treat this as a sequence
of goals to be carried out (just as demonstrated already).

?- 3<7, 2<4, 10 < 12.
yes
Because all of these goals succeeded, the sequence as a whole succeeded. If one of the goals fails, as here:

?- 3 <7, 8<4, 10 < 15.

no



then the whole sequence fails. In this way, the normal left-to-right meaning of the comma between goals
achieves the effect of a logical ‘AND’ (conjunction): the whole sequence is true (successful) if and only if
every item in the sequence is true (successful). In fact, Prolog stops working through the sequence when
it reaches a failure, so in this example the goal 10 < 15 would not have been attempted. This makes
it slightly less like a real logical operator, as the goals which are skipped might have errors embedded in
them, but this would not come to light.

6.2 Selecting clauses using tests

So far, the system has dealt with a multi-clause rule by simply taking the first clause for which the head
matches its current task. Either a head matched (in which case the body of that clause was used, complete
with any variable settings established by the match) or it did not match (in which case that entire clause
was skipped). Further subtleties of clause selection are possible. In particular, it is possible for the system
to find a matching clause, embark upon executing the body, and then find a goal which fails. In this case,
it abandons the clause in mid-execution and resumes the search for another clause whose head matches the
current task. This arrangement allows us to introduce a finer selection process for clauses by putting a test
of some kind at the front of the body. If the test “succeeds” (i.e. turns out to be true) then the execution
proceeds; if it "fails” (i.e. turns out to be false), then the execution of that whole clause is abandoned and
the system searches for a later matching clause within the predicate definition. Suppose we want a rule
which takes two parameters (arguments) which are numbers, and prints out the bigger of the two. Using
the Prolog “less-than” symbol “<” , we can write the rule in two clauses thus:

bi gger(N, M: -
N<M wite('Bigger nunber is '),tab(1l), wite(M.

bi gger(N, M :-
M< N wite(' Bigger nunber is '), tab(1), wite(N).

bigger(N, M :-
write(’' Nunbers are the sane’).

There are several points worth a second glance here. You might think the 3rd clause should really have the
test "N=M" at the start of the body (there is an “equal” sign in Prolog, though it does not behave as simple
equality — see later). We could add that check, but it would not alter the behaviour of the rule. Remember
that the system works down through the clauses until the first one which succeeds (more accurately, the
first one where the head matches and the body doesn’t fail). The third clause will therefore be considered
by the system only if it has skipped the first two; that is, only if N is not less than M, and M is not less
than N. That leaves only the possibility that M=N. (Assuming you have invoked the procedure with two
numbers as arguments - if you use non-numbers, anything might happen!). So if the third clause is being
considered, N must be the same as M.

Just to reassure yourself that the system really does embark upon the earlier clauses and give up (in the
M = N situation), try altering the first two clauses so that they contain small printing commands to indicate
what is happening. That is:

bi gger(N, M: -
wite(’ Trying clause 1'), nl,
N<M wite(’ Bigger nunber is '),tab(1l), wite(M.

bi gger(N, M :-
wite('Trying clause 2'), nl,
M< N wite(’ Bigger nunber is '), tab(1), wite(N).

bi gger(N, M :-
wite(’ Nunbers are the sanme’), nl.

If you load up this version of the rule instead of the old one, and type in
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?- bigger(8,8).
you should get the output

Trying clause 1
Trying cl ause 2
Nunbers are the sane

yes

7 Returning results by instantiation

Although we have been using illustrative predicates which print out messages, as a simple way of showing
what was happening inside the procedures, printing is not the normal route for information to be passed
back from a procedure. Printing is useful in certain situation (warning messages, debugging, etc.) but
generally results are passed back as the values bound to variables. To demonstrate this, consider a slightly
more realistic (non-printing) version of the bi gger predicate, which we will call | ar ger .

larger(N, M M:-
N<M

larger(N, M N :-
M < N

larger(N, M M.
Inl ar ger, the chosen value becomes the value of the 3rd argument. It works as follows:

?- larger(8,3,Result).

Result = 8

yes

?- larger(2,5 Result).
Result =5

yes

?- larger(6, 6, Result).
Result = 6

yes

What happens here is that what we think of as the “input” or “initial” values are supplied as actual values
(8, 3), and the available place for putting the result is an uninstantiated (unbound) variable, Resul t . The
matching of this goal against the first clause causes N to be bound to 8, M to 3, and Result to M. That
clause then fails (as N < Mfails for N bound to 8 and M bound to 3), so the second clause is tried. This
makes the bindings as follows: N to 8, M to 3, and Result to N. The body then succeeds, and the goal is
therefore completed. Since Result is bound to N, and N is bound to 8, Result is treated as being bound to
8, which the Prolog user-interface reports as usual.
There are various relevant points about variable-matching in Prolog:

e a variable can be bound to another variable;

e if two variables are bound to each other, and one of them is (or becomes) bound to another value,
then both variables are regarded as bound to that other value;

e hence, if two variables are bound to each other, they cannot then become bound to different values
(except for other variables).

e binding between variables is symmetric, in the sense that if A is bound to B then B is bound to A.
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e any number of variables can be bound to each other, forming a whole set of variables which share
whatever one of them may become bound to;

The pattern demonstrated in | ar ger is extremely typical of the structure of a Prolog procedure, with
one (or more) of the arguments acting as the result(s). Ensuring that two variables share a binding, either
by the matching of the head or otherwise, is also very common.

8 “Facts”

(See Clocksin & Mellish 1.1, 1.2, 1.3)

8.1 Clauses without bodies

It is possible to have a Prolog clause where the right hand side (body) is empty, indicating that nothing
needs to be done. This is not as useless or as unusual as it sounds; in fact, it is an extremely common type
of clause.

Let us go back to the gr eet program that we developed earlier. Suppose that for some argument,
nast y, we wanted no action to be taken at all. You might think that we could write a clause as follows:

greet (nasty): -

That is, with an empty right-hand side. Unfortunately, this is not permitted, notationally, in Prolog. The
good news is that there is an even shorter way of writing an empty right-hand side — simply put a full-stop
right after the head (left-hand side), omitting the : - symbol:

greet (nasty).

This then allows the following interactions:
?- greet(nasty).

yes

?- greet (Anyone).

Anyone = nasty ?

yes

That is, when the system is trying to satisfy a goal, if it finds a clause whose head matches the goal, and
there is no right hand side to that clause, that counts as success.
Clauses like this are known as unit clauses.

8.2 Unit clauses as “facts”

Unit clauses are widely used in Prolog to represent basic information, including special cases, or informa-
tion that might in other languages be represented in a table. These are often known informally as facts, for
reasons which should become clear.

Although we have used simple numeric examples above, Prolog is most typically used for manipulating
symbolic data: letters, words, structures such as lists which contain other symbolic data, etc.

We will now show a simple program in which data about an imaginary family is stored, allowing goals
which ask about family relationships to be fulfilled.
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man( paul ).

man( davi d) .

man( peter).

wonman( | oui se) .

worran( hel en) .

wormran( nandy) .

wi f eof (paul , | ouise).
wi f eof (peter, helen).

sonof (paul , peter).
daught er of (peter, mandy).

We can then “query” this “database”:

?- man(peter).

yes

?- man(l oui se).

no

?- wonan( Soneone) .

Sonmeone = | oui se;

Sonmeone = hel en;

Soneone = nandy;

no

?- wifeof (paul, Hswfe).

H swife = | ouise

yes

?- wi feof (Her husband, | ouise).
Her husband = paul

yes

?- daught er of (Fat her, nandy).
Fat her = peter

yes

Notice what is happening in the two wi f eof queries. We are chosing in the first query to treat the first
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argument as the “input”, by supplying an actual value, and leaving the second argument free to be the result,
by leaving it uninstantiated. In the last of the examples, we do it the other way round. This shows that there
is nothing explicit in the predicate definitions to say what is to be an input argument and which is to be an
output result — it all depends on the information supplied in the goals, and how this affects the matching.
The Prolog user-interface chooses to print out the values for the variables that were uninstantiated in the
original goal, which gives the impression that these have some special status, but that is misleading.
Notice also that queries involving these predicates, but non-existent clauses, will give failure, as usual:

?- sonof (davi d, Son).

no

This demonstrates what is sometimes referred to as the closed world assumption in Prolog — if the system
doesn’t know something, it gives the same answer as if that item were untrue. This contrasts with queries
about unknown predicates:

?- cousin(david, Son).
{ EXI STENCE ERROR: cousi n(david, 40): procedure user:cousin/2 does not exist}

Notice that when the Prolog interface has to print out a variable, such as Son here, it uses its own
internal form, not the name in the program. These Prolog-internal variable names consist of an underscore
followed by a number. You will need to be able to keep track of this notation when you use the debugger
(below).

8.3 Facts and rules
The unit clauses (“facts™) given above can be combined with non-unit clauses such as the following:

par ent of (Personl, Person2): -
daught er of (Personl, Person2).

par ent of (Personl, Person2): -
sonof (Personl, Person2).

This allows queries like this:

?- parentof(peter, Child).
Child = nmandy

yes

?- parentof (paul, peter).

yes
?- parentof (1 oui se, peter).

no
?- parentof (Parent, peter).
Parent = paul

yes

Again, we can choose to treat either argument as the “result” by leaving it uninstantiated. Or we can leave
both uninstantiated:
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?- parentof (Parent, Child).

Child = mandy
Parent = peter

yes

Here, the peter-mandy link has been picked up first (rather than the equally valid paul-peter connection),
because the first clause of par ent - of checks the daught er of data; the fact that the sonof clauses
precede the daught er of ones is irrelevant. If we had requested backtracking (by typing a semi-colon in
response to the first result), the peter-mandy values would have been found.

9 Simple tracing

In finding out why your program does not act as you expect (a common situation, unfortunately), the spy
mechanism can be handy. If you want to watch what happens inside a particular predicate, type “spy”
with the predicate name as an argument. This will cause the system to pause when it tries this predicate,
allowing you various options to find out more.

The simplest option is to hit RETURN, which means “go on to the next step then pause there”. We will
use this in the example below.

Suppose you have loaded the | ar ger predicate given earlier. Then the following is possible:

?-  spy(larger).
{The debugger will first leap -- show ng spypoints (debug)}
{ Spypoi nt placed on user:|arger/ 3}

yes
{debug}
| ?- larger(8,9, CQutput).
+1 1 Call: larger(8,9,_195) ?
2 2 Call: 8<9 ?
2 2 Exit: 8<9 ?
+1 1 Exit: larger(8,9,9) ?
Qutput =9 ?
yes
{debug}

| ?- larger(9,8, Result).

+1 1 Call: larger(9,8,_195) ?
2 2 Call: 9<8 ?
2 2 Fail: 9<8 2
2 2 Call: 8<9 7
2 2 Exit: 8<9 ?
+1 1 Exit: larger(9,8,9) ?

Result = 9 ?

yes

To turn this off, type “nospy” with the predicate name as argument (e.g. nospy (| ar ger)).
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10 Backtracking in more detail

(See Clocksin & Mellish 1.4)

We mentioned earlier that Prolog, on failure, re-tries previous goals to see if success can be found
by choosing a different clause for some procedure. It can be useful to work through a more complicated
example of this happening, with variable bindings happening and being discarded along the way.

If we add the various “family” definitions above the following procedure:

gr andpar ent (A dPer son, Younger Person): -
par ent of (A dPerson, Anot her), parentof (Another, YoungerPerson).

we can have queries such as:

?- grandparent (paul, G andChild).
GrandChi |l d = mandy

yes

?- grandparent (G andDad, nandy).
Grandad = paul

yes

Inthe gr andpar ent procedure, a variable appears which is neither in the original goal nor in final result,
Anot her. We do not care what its value is, as long as some value can be found which allows the two
par ent goals to succeed. Suppose we give Prolog the goal gr andpar ent (A done, Youngone).
It will try to satisfy its goals as follows:

try to find GRANDPARENT val ues:

try to find PARENT val ues, with PERSONl1, PERSON2 unbound
try to find DAUGHTEROF val ues with PERSON1, PERSON2 unbound
succeed with PETER, MANDY

succeed with PERSON1 = PETER, PERSON2
(hence OLDPERSON = PETER, ANOTHER MANDY)

try to find PARENT val ues for ANOTHER = MANDY, YOUNGERPERSON unbound
try to find DAUGHTEROF val ues for PERSON1 = MANDY, PERSON2 unbound
FAI L!
try other clause of PARENT, |ooking for SONOF values with

PERSON1 = MANDY, PERSON2 unbound

MANDY

FAI L!
BACKTRACK -
reconsi der previous goal (DAUGHTEROF with PERSON1, PERSON2 unbound)
FAIL! (no other clauses for DAUGHTEROF)
try later clauses for previous goal
(PARENTCF with with PERSON1, PERSON2 unbound)
try to find SONOF val ues wi th PERSON1, PERSON2 unbound
succeed with PAUL, PETER
succeed with PERSONL = PAUL, PERSON2 = PETER
(hence COLDPERSON = PAUL, ANOTHER = PETER)
try to find PARENT val ues for ANOTHER = PETER, YOUNGERPERSON unbound
try to find DAUGHTEROF val ues for PERSON1 = PETER, PERSON2 unbound
succeed with PETER MANDY
succeed with PERSONL = PETER, PERSON2 = MANDY
(hence ANOTHER = PETER, YOUNGERPERSON = MANDY)
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succeed with OLDPERSON = PAUL, YOUNGERPERSON = MANDY
Hence OLDONE = PAUL, YOUNGONE = MANDY

For the data we have here, there is only one possibility that allows both par ent of goals to work.
The same scenario would be depicted by the tracer as follows, where we have just hit RETURN in
response to each pause.

?- spy(grandparent).
{The debugger will first leap -- show ng spypoints (debug)}
{ Spypoi nt placed on user: grandparent/ 2}

yes
{debug}
| ?- grandparent (O done, Youngone).

+ 1 Call: grandparent(_193, _221) ?
Call: parentof(_193, 485) ?
Cal | : daughterof (_193, 485) ?
Exi t: daught erof (peter, mandy) ?
Exit: parentof (peter, mandy) ?
Cal | : parentof (mandy, _221) ?
Cal | : daught er of (mandy, 221) ?
Fai | : daught er of (mandy, 221) ?
Cal |l : sonof (mandy, 221) ?

Fai | : sonof (mandy, 221) ?

Fai |l : parentof (mandy, _221) ?
Redo: parent of (peter, mandy) ?
Redo: daught er of (pet er, mandy) ?
Fai | : daughterof(_193, 485) ?
Call: sonof (_193, 485) ?

Exit: sonof (paul, peter) ?

Exit: parentof(paul, peter) ?
Call: parentof(peter, 221) ?
Cal | : daughterof (peter, _221) ?
Exi t: daught erof (peter, mandy) ?
Exit: parentof(peter, mandy) ?
Exi t: grandparent (paul , mandy) ?

P PAPOOOORARNWWWWNPOOOOOOAORANWWN PP
P NWWNNWWWWNNWWWWNNWWN

+

A done = paul,
Youngone = nandy ?

yes

11 Summary so far

A Prolog procedure (predicate) consists of one or more clauses. A clause has a head and a body; if the
body is empty, then this is a unit clause. A Prolog program is initiated by giving it a goal (query), which
may contain unbound variables. A goal is carried out by finding a clause whose head matches the goal
(possibly binding variables), and then carrying out the body, from left to right (taking account of any
variable bindings so far). Each goal in turn is treated in this way. When a goal fails (either because there
are no matching clauses left, or the built-in predicate it relies upon returns failure), the system re-tries the
preceding goal to see if that can be achieved in another way (i.e. by finding a different clause). The overall
result returned by a predicate is usually conveyed by the binding of a value to one of its originally unbound
variables.
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12 Unification and Equality

(See Clocksin & Mellish 2.4)

The process we have so far referred to as “matching” is more precisely known as unification, and we
say that two Prolog items unify if they can be matched. The unification process is central to Prolog (it is the
way in which variables acquire bindings) and we will encounter more complex examples of its workings

as we go on.
We mentioned earlier that there is an equal sign, “=" in Prolog. However, this symbol really means

“unify with” rather than “is equal to”. This means it can act as a simple comparison:

|?- b =h.

yes

| ?- a = b.

no

|?- 5 =5

yes

|? - 5 =7

no

These work because, for simple constants like a, b, 5,7, “can unify” and “are equal” give the same answer.
However, when variables are involved, the “=" sign can seem to be acting as variable-assignment, even
though it is simply carrying out unification:

| ?- Variablel = b.

Vari abl el = b?

yes

| ?- a = Vari abl e2.

Variable2 = a?

yes

| ?- Variable = b, a = Variable.
no

|?2- 5 =X

X = 5?
The failure in the third example here is because the first unification succeeds, binding Vari abl e to b,
and then the second unification fails because Var i abl e cannot then unify with (and become bound to) a.

When we come to consider more complex structures, we will see that unification is defined roughly
thus:
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Two simple items unify if either they are identical, or at least one of them is an unbound
variable, or they are variables both bound to items which unify. Two compound structures
unify if they are the same kind of structure, contain the same number of components, and each
of the corresponding components unify.

This definition is a simple example of recursion: a concept (unify) is defined for some simple “base”
case, and then defined for non-simple examples in a way which decomposes the problem into simpler parts.
We shall see more of recursion later on.

13 Arithmetic

(See Clocksin & Mellish 2.5, 2.3, 6.11)
Prolog is highly unusual amongst programming languages in that arithmetical expressions are not eval-
uated automatically when used. Suppose we type in:

| ?- 3 + 4.

You might expect the system to reply with 7 (followed by yes). However, what we get is:

{ EXI STENCE ERROR: 3+4: procedure user:(+)/2 does not exist}

Prolog does not normally treat + as a symbol meaning addition of numbers. An expression like 3 + 4 is
seen as a structure, in which the two components (3,4) are simply further data items. As a structure, it can
be manipulated using unification:

| ?2- X = 3+4.

x
1

3+4 2
| 2-V+W =3+ 4,

3,
42

\Y
w
yes

In that last example, we see an illustration of unification acting on a compound (non-simple) structure.
The two structures are of the same type (involving the + operator), have the same number of components

(2), and those components individually unify (V with 3, Wwith 4). More complicated examples allow for
structures within structures:

| ?- (3 +4) *(7+9 = (A+4) * M

A = 3,

M= 7+9 ?

yes

| ?- (3 +4) * (7+9) = (C+D * (E+F).
C =3,
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4:
71
9 ?

D
E
E

However, Prolog does have some arithmetical ability built into it. If you want an arithmetic expression
to be evaluated, the i s operator will achieve this (giving an effect similar to an assignment statement in a
conventional language):

?- Nis 3 +1.

yes
| ?- Total is (3 +4) * (7 + 9).
Total = 112 ?

yes

This does not work the other way round — if you put the unbound variable on the right of the operator, it’s
an error:

| - 6+8isM
{I NSTANTI ATION ERROR. _33 is 34 - arg 2}

The i s operator is not entirely like a conventional assignment, as it binds the variable using unification.
This means that if the variable is already bound, but the value unifies, that is acceptable:

?- Mis 6, Mis 3 * 2.
M= 6

yes

That is, the i s operator can be used to test if an existing value is equal to a calculated one.
If a variable has been bound to an expression, then i s can be used to evaluate that expression:

| ?- Calculation = (2 * 3) + (5 * 4), Value is Calculation.
Val ue = 26,

Cal cul ation = 2*3+5*4 ?

yes

Also, a variable bound to an expression, as in the above example, can then appear in another expression,
and i s will evaluate the whole thing:

| ?- Calculation = (2 * 3) + (5 * 4), Value is Calculation + 1.
Val ue = 27,
Cal cul ation = 2*3+45*4 ?
yes
Because i s uses unification, it will not work to write
| ?- Nis 24, Nis N+ 1.

expecting N to become 25 (as would happen with assignment in a traditional language). TheN is N + 1
expression fails, as the two sides of the i s do not unify — N cannot simultaneously be 24 and 25.
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14 Terminology and notation

(See Clocksin & Mellish 2.1)
The various kinds of expressions that we have encountered so far can be classified as shown in Figure 1.

TERMS

N

CONSTANTS VARIABLES STRUCTURES

with upper-case with underscore

ATOMS INTEGERS

AN

SYMBOLS STRINGS SIGNS

3 Varl M a+b
a  'Warning’ - 149 TotalOfResults

fred 'John Smith’ 414 doesntmatter  (3+2Z)* (5-Y
a_longer_symbol 45678 - (B+2)* (5-Y)
<==>
- (many more types here)

Figure 1: Types of item in Prolog

Constant atom symbols are generally used to represent specific objects, e.g. pet er, gr ouchonar X,
t he_house_on_t he_hill (underscores can be placed within a symbol to make it more readable).
Constant atom strings are also used for this purpose, when we wish to include letters or punctuation which
would not be allowed in a simple symbol, and are also used for general textual messages. Signs are usually
used where we wish to introduce our own notation, with the sign naming some “operator” (see later).
Integers represent numbers.

Variable names must start with either an upper-case letter or an underscore.

If the variable is simply the underscore, then it can match anything and never takes on a binding.

Structures are an important part of Prolog. Although the only examples so far are arithmetic expres-
sions, there are others, both built-in and user-defined; see later.

For a predicate, the number of arguments that it has is known as its arity, and a predicate with N
arguments is known as an “N-ary” predicate.

It is normal practice to refer to predicates not simply by their names (e.g. | ar ger, par ent of ) but by
their names paired with their arities: | ar ger/ 3, par ent of / 2, etc. One reason for this is that a program
may contain different predicates with the same name but different arities — | arger/ 2 and | arger/ 3
for example. Although it is not, in general, a good programming practice to have lots of similar-looking
predicates — it can lead to confusion — this freedom can be handy where there is a predicate which should
do much the same computation whatever number of arguments it gets. In particular, one of the arguments
might be optional.
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15 Lists

A widely-used type of data structure in Prolog is the list. A list is a collection, in order, of zero or more
data items. The way of writing out a list in full is with the data items separated by commas and with square
brackets enclosed them all; here is a list of four symbols:

[a, b, ¢, d]

A list can be any length, and can contain any kind of data item, even a mixture of types of data item; here
is a list of 5 assorted items:

[a, "A piece of text', 475, (a + 3) * (d - 7), _Var2]

Lists can contain be bound to variables, and can contain variables, resulting in lists being unifiable with
other lists:

| ?- [a, b, ¢, dl =[Varl, b, Var2, d].

Varl = a,

Var2 = ¢ ?

yes

| ?- [1, What, 2, X, 3] = [A b, C d, E.
A 1,

C = 2,

E = 3,

X =d,

VWat = b ?

yes

| ?- [(a+ X, (Y+Db)] =[(W+c), (d+Db)].

W= a,

X = c,

Y=d?

yes

| ?- [[X a]] =[Xa].
no

| ?- [[X a]] =[[b, Y]].
X = b,

Y = a ?

yes

This is an illustration of what we mentioned earlier about the recursive nature of unification — two structures
(such as lists) unify if they are the same type of structure, and have components which unify —and so when
there are structures within structures the unification process continues down inside the inner structures.
These inner structures can also be lists, as in the last two examples above.

A list can be empty:

22



List =[] 2
yes
| ?- [a, b] = 1.
no

Lists may seem, so far, to be flat structures, in which the first element in the sequence is as accessible
or as prominent as the last, or one in the middle. This is not the case. In a list, the first (front) element is
the most accessible, and there is then a division between that element and the rest of the list.

This can be thought of as having the following definition of a list:

The empty list, [ ], is a list.
Anything added to the front of an existing list makes a list.

Or alternatively:

The empty list, [ ], is a list.
A structure of the form [X, ...] isa list if X is any item and [...] is a list, possibly empty.

That is, a list is a recursively defined structure.
There is a special notation in Prolog to allow unification of lists in this “front-and-then-the-rest” manner.

A vertical bar “| " is used to separate the parts of a list (informally, you can think of the bar as meaning
“joined on to the front of”). For example:

| ?- [a, b, ¢, d =[XY].

X = a,

Y =[b,c,d] ?

yes

| ?- [a1 by C! d] = [xl[zl\/\”
W= [c,d],

X = a,

Z=Db?

yes

| ?- [al[bl[c|][ 111] = VWolelist.
Wolelist = [a,b,c] ?

no

16 General structures

(See Clocksin & Mellish 2.1.3, 3.1)
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16.1 Clustering items

Many programming languages have structures for clustering related pieces of information into handy
chunks. In many languages, these are called records. The nearest equivalent in Prolog is the type of
term known as a compound or complex structure. This consists of a functor (in the form of a constant) and
one or more arguments, separated by commas and surrounded by round brackets. For example:

person(’ Dave the Dude’, ’'58 Broadway', 36)

Here we have a functor person and three arguments.
Structures can be the value of variables, can have variables as their arguments (but not as their functors),
and can unify with other similar structures:

| ?- Theman = person(’ Dave the Dude’', '58 Broadway', 36).

Theman = person(’ Dave the Dude’, '58 Broadway', 36) ?

yes

| ?- person(Nane, Address, Age) = person(’ Dave the Dude’, '58 Broadway’', 36).
Age = 36,

Nane = ' Dave the Dude’,
Address = '58 Broadway' ?

yes
| ?- person(Soneone, _ , 45) = person(’Harry the Horse’, '42nd and Vine', 45).
Soneone = 'Harry the Horse' ?

yes

(The plain underscore does not receive any bindings.)

A structure may have any item as an argument, including another structure. This can be handy as it
allows the use of a functor to make it clear what sort of thing the argument is supposed to be, and to ensure
that it does not accidentally unify with some different type of value. Compare the clarity of these:

address(23, 140, 2122)

address(flat(23), streetnunber(140), postcode(2122))

Unification then works in the obvious way:

?- address(flat(23), streetnunber(140), postcode(2122))
address(flat(F), _Street, Code).

F = 23,
Code = postcode(2122) ?

yes
?- address(flat(23), streetnunber(140), postcode(2122))
addr ess(postcode(P), _Street, flat(F)).

no
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(Any variable beginning with underscore is not reported by the interface).

Structures, in contrast to records in some languages, do not have to be declared in any way. If a functor-
argument expression appears in a Prolog program in a suitable position (i.e. as the argument to something
else), then it will be treated as a structure, even if the functor has not been defined anywhere as being
intended as the label for a structure.

16.2  Arithmetic expressions as structures

The arithmetic expressions discussed earlier were actually structures, although their functors were infix
functors: they were positioned between their two arguments rather than in front of them. The Prolog
system has built-in definitions for the arithmetic symbols indicating that they are to be handled as infix
operators. However, they can also be written as conventional structures:

| ?- +(2, 3) =2 + 3.
yes

| ?- +(21 *(5!6)) = +(X, *(5! Y))

X = 2,
Y =67
yes

| ?- Result is +(2, *(5,6)).
Result = 32 ?

yes

Although it is possible to create structures with a functor which is an arithmetic operator and with several
arguments, they do not make sense to i s as evaluatable expressions:

| ?- +(2, 3, 4, 5 =X
X = +(2,3,4,5) ?
yes

| ?- Mis +(3,4,5,6).
{DOVAI N ERROR: 38 is+(3,4,5,6) - arg 2: expected expression, found +(3,4,5,6)}
16.3 Lists as structures

Lists, as described earlier, are in fact a kind of functor-argument structure, for which Prolog systems have
special notations (as shown earlier) for reading and writing purposes. Lists are held together by a functor
which prints as a simple dot or full-stop. This functor connects the first item in a list to the rest of the list.

| ?- .(a, [ ]) = [a].
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yes

Alist.

| ?- .(a, .(b, .(c, [1)))
Alist =[a,b,c] ?

yes

| ?- .(a, .(b, .(c, [1)))

[First, b, Last].

Last = c,
First = a ?

yes

| ?- .(a, .(b, .(c, [1)))

[al . (b, [c])].

yes

In the last of these examples, we have, on the right of the unification sign, mixed the three notations for
lists: vertical bar, dot-functor, and square brackets. The vertical bar separates a from some further list; that
list is formed by the dot-functor linking its two arguments, b and the list [ c] .

As long as we use them consistently, it will work, but mixing notation like this is not recommended.

17 Circularity and loops

In any programming language, it is possible to create programs which repeat indefinitely — endless loops.
Usually, this is an unwanted effect. If you suspect that your Prolog program is doing this, hit CONTROL-C
to interrupt the program. You will get the prompt:

Prolog interruption (h for help)?

Typing h (followed by RETURN) will show what options are available, typing a (followed by RETURN)
will abort the run of the program and take you back to the normal command-line user interface for Prolog.

Itis possible in Prolog to create data structures which are themselves circular. These have to be handled
with care, and are not recommended at this stage, but may occasionally be appropriate for certain tasks.
One problem with these doubly-linked items is that printing them causes an endless loop. Since the Prolog
user interface prints out the results of your top-level command, if that command instantiates a variable to a
circular (looping) structure, the interface will try to print it, cycling endlessly round the loop.

For example, the following goals (starting with uninstantiated variables) create circular structures:

?- X=X+ 1.

?-Y=1+Y.

?- B = g(B).

The printer will loop indefinitely when trying to print these. For X = X + 1., nothing will be seen,
as the printer keeps going from X to X to X without finding anything to print. For Y = 1 + Y.
the printer will print ( 1+( 1+( 1+( 1+( 1+. . . indefinitely as it cycles, and B = g( B) . will display
g(g(a(a(g(. ...

Unification in Prolog is based on a well-defined mathematical operation from formal logic, but in logic
such circular structures are not permitted: proper logical unification has a check (the occurs check) to see
that a variable is never unified with anything which contains it. Prolog, in the interests of efficiency and
being a general programming language, has omitted this check, and so permits these structures.

These few notes on circular structures have been included as a warning in case you accidentally create
some — they are not recommended for everyday use.
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