
Introduction to Python for
Computational Science and

Engineering

Hans Fangohr

Apr 14, 2024

CONTENTS

1 Introduction 3
1.1 Computational Modelling . 3
1.2 Why Python for scientific computing? . 5
1.3 Python version . 7
1.4 These documents . 8
1.5 Your feedback . 9

2 A powerful calculator 11
2.1 Python prompt and Read-Eval-Print Loop (REPL) . 11
2.2 Calculator . 11
2.3 Integer division . 13
2.4 Mathematical functions . 14
2.5 Variables . 16
2.6 Impossible equations . 18

3 Data Types and Data Structures 21
3.1 What type is it? . 21
3.2 Numbers . 21
3.3 Sequences . 24
3.4 Passing arguments to functions . 37
3.5 Equality and Identity/Sameness . 43

4 Introspection 47
4.1 dir . 47
4.2 type . 51
4.3 isinstance . 51
4.4 help . 52
4.5 Docstrings . 59

5 Input and Output 61
5.1 Printing to standard output (normally the screen) . 61
5.2 Reading and writing files . 67
5.3 Further reading . 69

6 Control Flow 71
6.1 Basics . 71
6.2 If-then-else . 74
6.3 For loop . 75
6.4 While loop . 75
6.5 Relational operators (comparisons) in if and while statements . 76
6.6 Exceptions . 77

i

7 Functions and modules 81
7.1 Introduction . 81
7.2 Using functions . 81
7.3 Defining functions . 82
7.4 Default values and optional parameters . 84
7.5 Modules . 85
7.6 Further Reading . 89

8 Functional tools 91
8.1 Anonymous functions . 91
8.2 Map . 92
8.3 Filter . 93
8.4 List comprehension . 94
8.5 Reduce . 95
8.6 Why not just use for-loops? . 98
8.7 Speed . 98
8.8 The %%timeit magic . 100

9 Common tasks 103
9.1 Many ways to compute a series . 103
9.2 Sorting . 106

10 From Matlab to Python 109
10.1 Important commands . 109

11 Python shells 111
11.1 IDLE . 111
11.2 Python (command line) . 111
11.3 Interactive Python (IPython) . 111
11.4 Spyder . 113
11.5 Editors . 113

12 Symbolic computation 115
12.1 SymPy . 115
12.2 Related tools . 133

13 Numerical Computation 135
13.1 Numbers and numbers . 135

14 Numerical Python (numpy): arrays 143
14.1 Numpy introduction . 143

15 Visualising Data 151
15.1 Matplotlib – plotting y=f(x), (and a bit more) . 151
15.2 The pylab interface . 158
15.3 The matplotlib.pyplot interface . 165
15.4 Visual Python . 173
15.5 Visualising higher dimensional data (VTK) . 177
15.6 Further tools and developments . 179
15.7 Jupyter Notebooks . 182

16 Numerical Methods using Python (scipy) 183
16.1 Overview . 183
16.2 SciPy . 183
16.3 Numerical integration . 185

ii

16.4 Solving Ordinary Differential Equations (ODEs) . 187
16.5 Root finding . 197
16.6 Interpolation . 199
16.7 Curve fitting . 200
16.8 Fourier transforms . 203
16.9 Optimisation . 204
16.10 Other numerical methods . 206
16.11 scipy.io: Scipy-input output . 207

17 Pandas - Data Science with Python 209
17.1 Motivational example (Series) . 209
17.2 Pandas Series . 211
17.3 Create Series from list . 217
17.4 Plotting data . 217
17.5 Missing values . 220
17.6 Series data access: explicit and implicit (loc and iloc) . 221
17.7 Data Frame . 224
17.8 Example: European population 2017 . 228
17.9 Further reading . 240

18 Python packages and environments 241
18.1 Introduction . 241
18.2 Python virtual environments . 242
18.3 Python Package Index (PyPI) . 244
18.4 Anaconda . 253
18.5 Managing many different environments - pyenv . 255

19 Where to go from here? 257
19.1 Advanced programming . 257
19.2 Compiled programming language . 257
19.3 Testing . 257
19.4 Simulation models . 258
19.5 Software engineering for research codes . 258
19.6 Data and visualisation . 258
19.7 Version control . 258
19.8 Parallel execution . 258
19.9 Acknowledgements . 258

20 Change history 261

iii

iv

Introduction to Python for Computational Science and Engineering

The content of this book is distributed into chapters, using one Jupyter Notebook for each chapter.
You can read the book in different formats: html, pdf, or you can use the myBinder environment, in which you can read
the text and execute the examples in a browser (without having to install Python locally) using one Jupyter notebook per
chapter, as mentioned above.
If you have not used the Jupyter Notebook before, please read the section “First steps with Jupyter Notebook” below
before you proceed.
First steps with Jupyter Notebook

1. Navigating the notebook
When you open a notebook, you will find that you can move a highlighted block (with a blue line at the left) with
the cursor keys to move up and down. This block highlights a cell. (You can also use the mouse to select a cell.)
This is called the Command mode.

2. Executing code
If you want to execute a cell (for example one that contains some Python code), you can press Shift+ENTER. If
the cell creates some output, it will be displayed below the cell. (You may not notice if it just updates output that
was displayed before, in particular if the new output is the same as the old output.)

3. Editing code
If you want to change the code in the currently highlighted cell, you need to press ENTER. You have now entered
the Editing mode, and the content of the cell can be edited. If you have completed your changes, and you want to
execute them, use the Shift+ENTER short cut.
Note that you can also edit blocks of text (or go into edit mode for a text cell unintentionally). Just press
Shift+ENTER to render the text again, and go back into command mode.

Warning: Changes on myBinder are temporary

If you use this text book interactively on the myBinder service, then you have been given a temporary resource in the
cloud to execute the code examples. The changes you have made to the notebook will be lost when your session ends
(which is when you close the window, or the patience of the service has expired). Thus, the interactive exploration of
the notebooks is good to help learn Python, computing and data science, but you should not attempt to write any code in
these notebooks that you want to re-use the next day or later.
Comments? Questions?

For feedback, corrections, and questions please refer to the home page (https://github.com/fangohr/introduction-to-
python-for-computational-science-and-engineering/blob/master/Readme.md) of the book. You can also find the most
recent versions there.
Enjoy!

CONTENTS 1

https://github.com/fangohr/introduction-to-python-for-computational-science-and-engineering/blob/master/Readme.md
https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/
https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/book.pdf
https://mybinder.org/v2/gh/fangohr/introduction-to-python-for-computational-science-and-engineering/master?urlpath=tree/book/index.ipynb
https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Notebook%20Basics.html#Command-mode
https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Notebook%20Basics.html#Edit-mode
https://github.com/fangohr/introduction-to-python-for-computational-science-and-engineering/blob/master/Readme.md
https://github.com/fangohr/introduction-to-python-for-computational-science-and-engineering/blob/master/Readme.md

Introduction to Python for Computational Science and Engineering

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

This text summarises a number of core ideas relevant to Computational Engineering and Scientific Computing using
Python. The emphasis is on introducing some basic Python (programming) concepts that are relevant for numerical
algorithms. The later chapters touch upon numerical libraries such as numpy and scipy each of which deserves much
more space than provided here. We aim to enable the reader to learn independently how to use other functionality of
these libraries using the available documentation (online and through the packages itself).

1.1 Computational Modelling

1.1.1 Introduction

Increasingly, processes and systems are researched or developed through computer simulations: new aircraft prototypes
such as for the recent A380 are first designed and tested virtually through computer simulations. With the ever increasing
computational power available through supercomputers, clusters of computers and even desktop and laptop machines,
this trend is likely to continue.
Computer simulations are routinely used in fundamental research to help understand experimental measurements, and
to replace – for example – growth and fabrication of expensive samples/experiments where possible. In an industrial
context, product and device design can often be done much more cost effectively if carried out virtually through simulation
rather than through building and testing prototypes. This is in particular so in areas where samples are expensive such
as nanoscience (where it is expensive to create small things) and aerospace industry (where it is expensive to build large
things). There are also situations where certain experiments can only be carried out virtually (ranging from astrophysics to
study of effects of large scale nuclear or chemical accidents). Computational modelling, including use of computational
tools to post-process, analyse and visualise data, has been used in engineering, physics and chemistry for many decades
but is becoming more important due to the cheap availability of computational resources. Computational Modelling is
also starting to play a more important role in studies of biological systems, the economy, archeology, medicine, health
care, and many other domains.

1.1.2 Computational Modelling

To study a process with a computer simulation we distinguish two steps: the first one is to develop a model of the real
system. When studying the motion of a small object, such as a penny, say, under the influence of gravity, we may be
able to ignore friction of air: our model — which might only consider the gravitational force and the penny’s inertia, i.e.
𝑎(𝑡) = 𝐹/𝑚 = −9.81m/s2 — is an approximation of the real system. The model will normally allow us to express
the behaviour of the system (in some approximated form) through mathematical equations, which often involve ordinary
differential equations (ODEs) or partial differential equatons (PDEs).
In the natural sciences such as physics, chemistry and related engineering, it is often not so difficult to find a suitable
model, although the resulting equations tend to be very difficult to solve, and can in most cases not be solved analytically
at all.

3

Introduction to Python for Computational Science and Engineering

On the other hand, in subjects that are not as well described through a mathematical framework and depend on behaviour
of objects whose actions are impossible to predict deterministically (such as humans), it is much more difficult to find a
good model to describe reality. As a rule of thumb, in these disciplines the resulting equations are easier to solve, but
they are harder to find and the validity of a model needs to be questioned much more. Typical examples are attempts to
simulate the economy, the use of global resources, the behaviour of a panicking crowd, etc.
So far, we have just discussed the development of models to describe reality, and using these models does not necessarily
involve any computers or numerical work at all. In fact, if a model’s equation can be solved analytically, then one should
do this and write down the solution to the equation.
In practice, hardly any model equations of systems of interest can be solved analytically, and this is where the computer
comes in: using numerical methods, we can at least study the model for a particular set of boundary conditions. For the
example considered above, we may not be able to easily see from a numerical solution that the penny’s velocity under the
influence of gravity will change linearly with time (which we can read easily from the analytical solution that is available
for this simple system: 𝑣(𝑡) = 𝑡 ⋅ 9.81m/s2 + 𝑣0)).
The numerical solution that can be computed using a computer would consist of data that shows how the velocity changes
over time for a particular initial velocity v0 (v0 is a boundary condition here). The computer program would report a long
lists of two numbers keeping the (i) value of time ti for which a particular (ii) value of the velocity vi has been computed.
By plotting all vi against ti, or by fitting a curve through the data, we may be able to understand the trend from the data
(which we can just see from the analytical solution of course).
It is clearly desirable to find an analytical solutions wherever possible but the number of problems where this is possible
is small. Usually, the obtaining numerical result of a computer simulation is very useful (despite the shortcomings of the
numerical results in comparison to an analytical expression) because it is the only possible way to study the system at all.
The name computational modelling derives from the two steps: (i) modelling, i.e. finding a model description of a real
system, and (ii) solving the resulting model equations using computational methods because this is the only way the
equations can be solved at all.

1.1.3 Programming to support computational modelling

A large number of packages exist that provide computational modelling capabilities. If these satisfy the research or
design needs, and any data processing and visualisation is appropriately supported through existing tools, one can carry
out computational modelling studies without any deeper programming knowledge.
In a research environment – both in academia and research on new products/ideas/… in industry – one often reaches a
point where existing packages will not be able to perform a required simulation task, or where more can be learned from
analysing existing data in news ways etc.
At that point, programming skills are required. It is also generally useful to have a broad understanding of the building
blocks of software and basic ideas of software engineering as we use more and more devices that are software-controlled.
It is often forgotten that there is nothing the computer can do that we as humans cannot do. The computer can do it much
faster, though, and also with making far fewer mistakes. There is thus no magic in computations a computer carries out:
they could have been done by humans, and – in fact – were for many years (see for example Wikipedia entry on Human
Computer).
Understanding how to build a computer simulation comes roughly down to: (i) finding the model (often this means finding
the right equations), (ii) knowing how to solve these equations numerically, (ii) to implement the methods to compute
these solutions (this is the programming bit).

4 Chapter 1. Introduction

https://en.wikipedia.org/wiki/Human_computer
https://en.wikipedia.org/wiki/Human_computer

Introduction to Python for Computational Science and Engineering

1.2 Why Python for scientific computing?

The design focus on the Python language is on productivity and code readability, for example through:
• Interactive python console
• Very clear, readable syntax through whitespace indentation
• Strong introspection capabilities
• Full modularity, supporting hierarchical packages
• Exception-based error handling
• Dynamic data types & automatic memory management

As Python is an interpreted language, and it runs many times slower than compiled code, one might ask why anybody should
consider such a ’slow’ language for computer simulations?

There are two replies to this criticism:
1. Implementation time versus execution time: It is not the execution time alone that contributes to the cost of a com-

putational project: one also needs to consider the cost of the development and maintenance work.
In the early days of scientific computing (say in the 1960/70/80), compute time was so expensive that it made perfect
sense to invest many person months of a programmer’s time to improve the performance of a calculation by a few percent.
Nowadays, however, the CPU cycles have become much cheaper than the programmer’s time. For research codes which
often run only a small number of times (before the researchers move on to the next problem), it may be economic to
accept that the code runs only at 25% of the expected possible speed if this saves, say, a month of a researcher’s (or
programmers) time. For example: if the execution time of the piece of code is 10 hours, and one can predict that it will
run about 100 times, then the total execution time is approximately 1000 hours. It would be great if this could be reduced
to 25% and one could save 750 (CPU) hours. On the other hand, is an extra wait (about a month) and the cost of 750
CPU hours worth investing one month of a person’s time [who could do something else while the calculation is running]?
Often, the answer is not.
Code readability & maintenance - short code, fewer bugs: A related issue is that a research code is not only used for one
project, but carries on to be used again and again, evolves, grows, bifurcates etc. In this case, it is often justified to invest
more time to make the code fast. At the same time, a significant amount of programmer time will go into (i) introducing
the required changes, (ii) testing them even before work on speed optimisation of the changed version can start. To be
able to maintain, extend and modify a code in often unforeseen ways, it can only be helpful to use a language that is easy
to read and of great expressive power.

2. Well-written Python code can be very fast if time critical parts in executed through compiled language.
Typically, less than 5% percent of the code base of a simulation project need more than 95% of the execution time.
As long as these calculations are done very efficiently, one doesn’t need to worry about all other parts of the code
as the overall time their execution takes is insignificant.
The compute intense part of the program should to be tuned to reach optimal performance. Python offers a number
of options.

• For example, thenumpy Python extension provides a Python interface to the compiled and efficient LAPACK
libraries that are the quasi-standard in numerical linear algebra. If the problems under study can be formulated
such that eventually large systems of algebraic equations have to be solved, or eigenvalues computed, etc, then
the compiled code in the LAPACK library can be used (through the Python-numpy package). At this stage,
the calculations are carried out with the same performance of Fortran/C as it is essentially Fortran/C code
that is used. Matlab, by the way, exploits exactly this: the Matlab scripting language is very slow (about 10
time slower than Python), but Matlab gains its power from delegating the matix operation to the compiled
LAPACK libraries.

1.2. Why Python for scientific computing? 5

Introduction to Python for Computational Science and Engineering

• Existing numerical C/Fortran libraries can be interfaced to be usable from within Python (using for example
Swig, Boost.Python and Cython).

• Python can be extended through compiled languages if the computationally demanding part of the problem
is algorithmically non-standard and no existing libraries can be used.

Commonly used are C, Fortran and C++ to implement fast extensions.
• We list some tools that are used to use compiled code from Python:

– The scipy.weave extension is useful if just a short expression needs to be expressed in C.
– The Cython interface is growing in popularity to (i) semi-automatically declare variable types in Python
code, to translate that code to C (automatically) and to then use the compiled C code from Python.
Cython is also used to quickly wrap an existing C library with an interface so the C library can be used
from Python.

– Boost.Python is specialised for wrapping C++ code in Python.
The conclusion is that Python is “fast enough” for most computational tasks, and that its user friendly high-level language
often makes up for reduced speed in comparison to compiled lower-level languages. Combining Python with tailor-written
compiled code for the performance critical parts of the code, results in virtually optimal speed in most cases.

1.2.1 Optimisation strategies

We generally understand reduction of execution time when discussing “code optimisation” in the context of computational
modelling, and we essentially like to carry out the required calculations as fast as possible. (Sometimes we need to reduce
the amount of RAM, the amount of data input output to disk or the network.) At the same time, we need to make sure
that we do not invest inappropriate amounts of programming time to achieve this speed up: as always there needs to be a
balance between the programmers’ time and the improvement we can gain from this.

1.2.2 Get it right first, then make it fast

To write fast code effectively, we note that the right order is to (i) first write a program that carries out the correct
calculation. For this, choose a language/approach that allows you to write the code quickly and make it work quickly —
regardless of execution speed. Then (ii) either change the program or re-write it from scratch in the same language to
make the execution faster. During the process, keep comparing results with the slow version written first to make sure the
optimisation does not introduce errors. (Once we are familiar with the concept of regression tests, they should be used
here to compare the new and hopefully faster code with the original code.)
A common pattern in Python is to start writing pure Python code, then start using Python libraries that use compiled code
internally (such as the fast arrays Numpy provides, and routines from scipy that go back to established numerical codes
such as ODEPACK, LAPACK and others). If required, one can – after careful profiling – start to replace parts of the
Python code with a compiled language such as C and Fortran to improve execution speed further (as discussed above).

1.2.3 Prototyping in Python

It turns out that – even if a particular code has to be written in, say, C++ – it is (often) more time efficient to prototype
the code in Python, and once an appropriate design (and class structure) has been found, to translate the code to C++.

6 Chapter 1. Introduction

Introduction to Python for Computational Science and Engineering

1.2.4 Literature

While this text starts with an introduction of (some aspects of) the basic Python programming language, you may find -
depending on your prior experience - that you need to refer to secondary sources to fully understand some ideas.
We repeatedly refer to the following documents:

• Allen Downey, Think Python. Available online in html and pdf at https://www.greenteapress.com/thinkpython/
thinkpython.html, or from Amazon.

• The Python documentation https://www.python.org/doc/, and:
• The Python tutorial (https://docs.python.org/3/tutorial/)

You may also find the following links useful:
• The numpy home page (https://numpy.org/)
• The scipy home page (https://www.scipy.org/)
• The matplotlib home page (https://matplotlib.org/).
• The Python style guide (https://www.python.org/dev/peps/pep-0008/

1.2.5 Recorded video lectures on Python for beginners

Do you like to listen/follow lectures? There is a series of 24 lectures titled Introduction to Computer Science and
Programming delivered by Eric Grimsom and John Guttag from the MIT available at https://ocw.mit.edu/courses/
electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/
This is aimed at students with little or no programming experience. It aims to provide students with an understanding
of the role computation can play in solving problems. It also aims to help students, regardless of their major, to feel
justifiably confident of their ability to write small programs that allow them to accomplish useful goals.
An more recent collection of topic specific (and shorter) tutorial videos is available from Socratica .

1.2.6 Python tutor mailing list

There is also a Python tutor mailing list (https://mail.python.org/mailman/listinfo/tutor) where beginners are welcome to
ask questions regarding Python. Both using the archives and posting your own queries (or in fact helping others) may help
with understanding the language. Use the normal mailing list etiquette (i.e. be polite, concise, etc). You may want to
read https://www.freebsd.org/doc/en/articles/mailing-list-faq/etiquette.html for some guidance on how to ask questions
on mailing lists.

1.3 Python version

There are two version of the Python language out there: Python 2.x and Python 3.x. They are (slightly) different — the
changes in Python 3.x were introduced to address shortcomings in the design of the language that were identified since
Python’s inception. A decision was made that some incompatibility should be accepted to achieve the higher goal of a
better language for the future.
For scientific computation, it is crucial to make use of numerical libraries such as numpy, scipy and the plotting package
matplotlib.
All of these are now available for Python 3, and we will use Python 3.x in this book.

1.3. Python version 7

https://www.greenteapress.com/thinkpython/thinkpython.html
https://www.greenteapress.com/thinkpython/thinkpython.html
https://www.python.org/doc/
https://docs.python.org/3/tutorial/
https://numpy.org/
https://www.scipy.org/
https://matplotlib.org/
https://www.python.org/dev/peps/pep-0008/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/
https://www.youtube.com/playlist?list=PLi01XoE8jYohWFPpC17Z-wWhPOSuh8Er-
https://www.youtube.com/c/Socratica
https://mail.python.org/mailman/listinfo/tutor
https://www.freebsd.org/doc/en/articles/mailing-list-faq/etiquette.html
https://numpy.org/
https://www.scipy.org
https://matplotlib.org/

Introduction to Python for Computational Science and Engineering

However, there is a lot of code still in use that was written for Python 2, and it’s useful to be aware of the differences.
The most prominent example is that in Python 2.x, the print command is special, whereas in Python 3 it is an ordinary
function. For example, in Python 2.7, we can write:

print "Hello World"

where as in Python 3, this would cause a SyntaxError. The right way to use print in Python 3 would be as a function,
i.e.

print("Hello World")

Hello World

See Chapter 5: Input and Output for further details.
Fortunately, the function notation (i.e. with the parantheses) is also allowed in Python 2.7, so our examples should execute
in Python 3.x and Python 2.7. (There are other differences.)

1.4 These documents

This material has been converted from Latex to a set of Jupyter Notebooks, making it possible to interact with the
examples. You can run any code block with an In []: prompt by clicking on it and pressing shift-enter, or by clicking
the button in the toolbar.
Code blocks can be recognised (in the html and pdf version of this book) by having coloured items (to emphasise the
syntactic role). For example:

for i in range(3):
print("Hello")

Hello
Hello
Hello

The output (here Hello repeated on three lines) that is produced by the code block, is shown below the code block and
not coloured.

1.4.1 The %%file magic

We use some features in the notebook that are worth being aware of at this point: a cell starting with the special command
%%file FILENAME will create (or override) a file with name FILENAME that contains the content that is shown in
the cell below.
For example

%%file hello.txt
This is the content of the file hello.txt

Overwriting hello.txt

8 Chapter 1. Introduction

https://jupyter.org

Introduction to Python for Computational Science and Engineering

To confirm the file has been written and contains, we use some Python commands (which you are not expected to under-
stand at this point):

with open("hello.txt") as f:
print(f.read())

This is the content of the file hello.txt

1.4.2 The ! to execute shell commands

If we want to run a shell command, we can type it and preceed it by the ! character. Here is an example: first we create
a file that contains a Python hello world program, then we execute it:

%%file hello.py
print("Hello World")

Overwriting hello.py

!python hello.py

Hello World

1.4.3 The #NBVAL tags

In some cells, you will find tags like #NBVAL_SKIP, #NBVAL_IGNORE_OUTPUT and
#NBVAL_RAISES_EXCEPTION. You can ignore these.
(We use them to be able to automatically execute all notebooks to check that the output produced is the same as
what is stored in the notebook. This is an advanced topic of testing, and you can read more about NBVAL at
https://github.com/computationalmodelling/nbval).
See Chapter 11 for more information on Jupyter and other Python interfaces.

1.5 Your feedback

is desired. If you find anything wrong in this text, or have suggestions how to change or extend it, please feel free to
contact Hans at hans.fangohr@xfel.eu .
If you find a URL that is not working (or pointing to the wrong material), please let Hans know as well. As the content
of the Internet is changing rapidly, it is difficult to keep up with these changes without feedback.

1.5. Your feedback 9

https://app.circleci.com/pipelines/github/fangohr/introduction-to-python-for-computational-science-and-engineering

Introduction to Python for Computational Science and Engineering

10 Chapter 1. Introduction

CHAPTER

TWO

A POWERFUL CALCULATOR

2.1 Python prompt and Read-Eval-Print Loop (REPL)

Python is an interpreted language. We can collect sequences of commands into text files and save this to file as a Python
program. It is convention that these files have the file extension “.py”, for example hello.py.
We can also enter individual commands at the Python prompt which are immediately evaluated and carried out by the
Python interpreter. This is very useful for the programmer/learner to understand how to use certain commands (often
before one puts these commands together in a longer Python program). Python’s role can be described as Reading the
command, Evaluating it, Printing the evaluated value and repeating (Loop) the cycle – this is the origin of the REPL
abbreviation.
Python comes with a basic terminal prompt; you may see examples from this with >>> marking the input:

>>> 2 + 2
4

We are using a more powerful REPL interface, the Jupyter Notebook. Blocks of code appear with an In prompt next to
them:

4 + 5

9

To edit the code, click inside the code area. You should get a green border around it. To run it, press Shift-Enter.

2.2 Calculator

Basic operations such as addition (+), subtraction (-), multiplication (*), division (/) and exponentiation (**) work
(mostly) as expected:

10 + 10000

10010

42 - 1.5

11

Introduction to Python for Computational Science and Engineering

40.5

47 * 11

517

10 / 0.5

20.0

2**2 # Exponentiation ('to the power of') is **, NOT ^

4

2**3

8

2**4

16

2 + 2

4

This is a comment
2 + 2

4

2 + 2 # and a comment on the same line as code

4

and, using the fact that 𝑛√𝑥 = 𝑥1/𝑛, we can compute the
√

3 = 1.732050 … using **:

3**0.5

1.7320508075688772

Parenthesis can be used for grouping:

12 Chapter 2. A powerful calculator

Introduction to Python for Computational Science and Engineering

2 * 10 + 5

25

2 * (10 + 5)

30

2.3 Integer division

In Python 3, division works as you’d expect:

15/6

2.5

In Python 2, however, 15/6 will give you 2.
This phenomenon is known (in many programming languages, including C) as integer division: because we provide two
integer numbers (15 and 6) to the division operator (/), the assumption is that we seek a return value of type integer.
The mathematically correct answer is (the floating point number) 2.5. (→ numerical data types in Chapter 13.)
The convention for integer division is to truncate the fractional digits and to return the integer part only (i.e. 2 in this
example). It is also called “floor division”.

2.3.1 How to avoid integer division

There are two ways to avoid the problem of integer division:
1. Use Python 3 style division: this is available even in Python 2 with a special import statement:

>>> from __future__ import division
>>> 15/6
2.5

If you want to use thefrom __future__ import division feature in a python program, it would normally
be included at the beginning of the file.

2. Alternatively, if we ensure that at least one number (numerator or denominator) is of type float (or complex), the
division operator will return a floating point number. This can be done by writing 15. instead of 15, of by forcing
conversion of the number to a float, i.e. use float(15) instead of 15:

>>> 15./6
2.5
>>> float(15)/6
2.5
>>> 15/6.
2.5
>>> 15/float(6)

(continues on next page)

2.3. Integer division 13

Introduction to Python for Computational Science and Engineering

(continued from previous page)

2.5
>>> 15./6.
2.5

If we really want integer division, we can use //: 1//2 returns 0, in both Python 2 and 3.

2.3.2 Why should I care about this division problem?

Integer division can result in surprising bugs: suppose you are writing code to compute the mean value m = (x + y)/2 of
two numbers x and y. The first attempt of writing this may read:

m = (x + y) / 2

Suppose this is tested with x = 0.5, y = 0.5, then the line above computes the correct answers m = 0.5 (because0.5 +
0.5 = 1.0, i.e. a 1.0 is a floating point number, and thus 1.0/2 evaluates to 0.5). Or we could use x = 10, y = 30,
and because 10 + 30 = 40 and 40/2 evaluates to 20, we get the correct answer m = 20. However, if the integers
x = 0 and y = 1 would come up, then the code returns m = 0 (because 0 + 1 = 1 and 1/2 evaluates to 0) whereas
m = 0.5 would have been the right answer.
We have many possibilities to change the line of code above to work safely, including these three versions:

m = (x + y) / 2.0

m = float(x + y) / 2

m = (x + y) * 0.5

This integer division behaviour is common amongst most programming languages (including the important ones C, C++
and Fortran), and it is important to be aware of the issue.

2.4 Mathematical functions

Because Python is a general purpose programming language, commonly used mathematical functions such as sin, cos,
exp, log and many others are located in the mathematics module with name math. We can make use of this as soon as
we import the math module:

import math
math.exp(1.0)

2.718281828459045

Using the dir function, we can see the directory of objects available in the math module:

NBVAL_IGNORE_OUTPUT
dir(math)

['__doc__',
'__loader__',
'__name__',

(continues on next page)

14 Chapter 2. A powerful calculator

Introduction to Python for Computational Science and Engineering

(continued from previous page)

'__package__',
'__spec__',
'acos',
'acosh',
'asin',
'asinh',
'atan',
'atan2',
'atanh',
'cbrt',
'ceil',
'comb',
'copysign',
'cos',
'cosh',
'degrees',
'dist',
'e',
'erf',
'erfc',
'exp',
'exp2',
'expm1',
'fabs',
'factorial',
'floor',
'fmod',
'frexp',
'fsum',
'gamma',
'gcd',
'hypot',
'inf',
'isclose',
'isfinite',
'isinf',
'isnan',
'isqrt',
'lcm',
'ldexp',
'lgamma',
'log',
'log10',
'log1p',
'log2',
'modf',
'nan',
'nextafter',
'perm',
'pi',
'pow',
'prod',
'radians',
'remainder',
'sin',
'sinh',

(continues on next page)

2.4. Mathematical functions 15

Introduction to Python for Computational Science and Engineering

(continued from previous page)

'sqrt',
'tan',
'tanh',
'tau',
'trunc',
'ulp']

As usual, the help function can provide more information about the module (help(math)) on individual objects:

NBVAL_IGNORE_OUTPUT
help(math.exp)

Help on built-in function exp in module math:

exp(x, /)
Return e raised to the power of x.

The mathematics module defines to constants π and e:

math.pi

3.141592653589793

math.e

2.718281828459045

math.cos(math.pi)

-1.0

math.log(math.e)

1.0

2.5 Variables

A variable can be used to store a certain value or object. In Python, all numbers (and everything else, including functions,
modules and files) are objects. A variable is created through assignement:

x = 0.5

Once the variable x has been created through assignment of 0.5 in this example, we can make use of it:

x*3

16 Chapter 2. A powerful calculator

Introduction to Python for Computational Science and Engineering

1.5

x**2

0.25

y = 111
y + 222

333

A variable is overriden if a new value is assigned:

y = 0.7
math.sin(y) ** 2 + math.cos(y) ** 2

1.0

The equal sign (’=’) is used to assign a value to a variable.

width = 20
height = 5 * 9
width * height

900

A value can be assigned to several variables simultaneously:

x = y = z = 0 # initialise x, y and z with 0
x

0

y

0

z

0

Variables must be created (assigned a value) before they can be used, or an error will occur:

NBVAL_RAISES_EXCEPTION
try to access an undefined variable:
n

2.5. Variables 17

Introduction to Python for Computational Science and Engineering

NameError Traceback (most recent call last)
Cell In[32], line 3

1 # NBVAL_RAISES_EXCEPTION
2 # try to access an undefined variable:

----> 3 n

NameError: name 'n' is not defined

In interactive mode, the last printed expression is assigned to the variable _. This means that when you are using Python
as a desk calculator, it is somewhat easier to continue calculations, for example:

tax = 12.5 / 100
price = 100.50
price * tax

12.5625

price + _

113.0625

This variable should be treated as read-only by the user. Don’t explicitly assign a value to it — you would create an
independent local variable with the same name masking the built-in variable with its magic behavior.

2.5.1 Terminology

Strictly speaking, the following happens when we write

x = 0.5

First, Python creates the object 0.5. Everything in Python is an object, and so is the floating point number 0.5. This
object is stored somewhere in memory. Next, Python binds a name to the object. The name is x, and we often refer
casually to x as a variable, an object, or even the value 0.5. However, technically, x is a name that is bound to the object
0.5. Another way to say this is that x is a reference to the object.
While it is often sufficient to think about assigning 0.5 to a variable x, there are situations where we need to remember
what actually happens. In particular, when we pass references to objects to functions, we need to realise that the function
may operate on the object (rather than a copy of the object). This is discussed in more detail in the next chapter.

2.6 Impossible equations

In computer programs we often find statements like

x = x + 1

If we read this as an equation as we are use to from mathematics, x = x + 1 we could subtract x on both sides, to find that
0 = 1. We know this is not true, so something is wrong here.
The answer is that “equations“ in computer codes are not equations but assignments. They always have to be read in the
following way two-step way:

18 Chapter 2. A powerful calculator

Introduction to Python for Computational Science and Engineering

1. Evaluate the value on the right hand side of the equal sign
2. Assign this value to the variable name shown on the left hand side. (In Python: bind the name on the left hand side

to the object shown on the right hand side.)
Some computer science literature uses the following notation to express assignments and to avoid the confusion with
mathematical equations:

𝑥 ← 𝑥 + 1

Let’s apply our two-step rule to the assignment x = x + 1 given above:
1. Evaluate the value on the right hand side of the equal sign: for this we need to know what the current value of x is.

Let’s assume x is currently 4. In that case, the right hand side x+1 evaluates to 5.
2. Assign this value (i.e. 5) to the variable name shown on the left hand side x.

Let’s confirm with the Python prompt that this is the correct interpretation:

x = 4
x = x + 1
x

5

2.6.1 The += notation

Because it is a quite a common operation to increase a variable x by some fixed amount c, we can write

x += c

instead of

x = x + c

Our initial example above could thus have been written

x = 4
x += 1
x

5

The same operators are defined for multiplication with a constant (*=), subtraction of a constant (-=) and division by a
constant (/=).
Note that the order of + and = matters:

x += 1

will increase the variable x by one where as

x =+ 1

will assign the value +1 to the variable x.

2.6. Impossible equations 19

Introduction to Python for Computational Science and Engineering

20 Chapter 2. A powerful calculator

CHAPTER

THREE

DATA TYPES AND DATA STRUCTURES

3.1 What type is it?

Python knows different data types. To find the type of a variable, use the type() function:

a = 45
type(a)

int

b = 'This is a string'
type(b)

str

c = 2 + 1j
type(c)

complex

d = [1, 3, 56]
type(d)

list

3.2 Numbers

Further information
• Informal introduction to numbers. Python tutorial, section 3.1.1
• Python Library Reference: formal overview of numeric types, https://docs.python.org/3.8/library/stdtypes.html#
numeric-types-int-float-complex

• Think Python, Sec 2.1
The in-built numerical types are integers and floating point numbers (see floating point numbers) and complex floating
point numbers (complex numbers).

21

https://docs.python.org/3/tutorial/introduction.html#using-python-as-a-calculator
https://docs.python.org/3.8/library/stdtypes.html#numeric-types-int-float-complex
https://docs.python.org/3.8/library/stdtypes.html#numeric-types-int-float-complex
https://www.greenteapress.com/thinkpython/html/book003.html

Introduction to Python for Computational Science and Engineering

3.2.1 Integers

We have seen the use of integer numbers already in Chapter 2. Be aware of integer division problems (02 A Powerful
Calculator, Integer Division).
If we need to convert string containing an integer number to an integer we can use int() function:

a = '34' # a is a string containing the characters 3 and 4
x = int(a) # x is in integer number

The function int() will also convert floating point numbers to integers:

int(7.0)

7

int(7.9)

7

Note than int will truncate any non-integer part of a floating point number. To round an floating point number to an
integer, use the round() command:

round(7.9)

8

3.2.2 Integer limits

Integers in Python 3 are unlimited; Python will automatically assign more memory as needed as the numbers get bigger.
This means we can calculate very large numbers with no special steps.

35**42

70934557307860443711736098025989133248003781773149967193603515625

In many other programming languages, such as C and FORTRAN, integers are a fixed size—most frequently 4 bytes,
which allows 232 different values—but different types are available with different sizes. For numbers that fit into these
limits, calculations can be faster, but you may need to check that the numbers don’t go beyond the limits. Calculating a
number beyond the limits is called integer overflow, and may produce bizarre results.
Even in Python, we need to be aware of this when we use numpy (see Chapter 14). Numpy uses integers with a fixed size,
because it stores many of them together and needs to calculate with them efficiently. Numpy data types include a range
of integer types named for their size, so e.g. int16 is a 16-bit integer, with 216 possible values.
Integer types can also be signed or unsigned. Signed integers allow positive or negative values, unsigned integers only
allow positive ones. For instance:

• uint16 (unsigned) ranges from 0 to 216 − 1
• int16 (signed) ranges from −215 to 215 − 1

22 Chapter 3. Data Types and Data Structures

https://numpy.org/doc/stable/user/basics.types.html

Introduction to Python for Computational Science and Engineering

3.2.3 Floating Point numbers

A string containing a floating point number can be converted into a floating point number using the float() command:

a = '35.342'
b = float(a)
b

35.342

type(b)

float

3.2.4 Complex numbers

Python (as Fortran and Matlab) has built-in complex numbers. Here are some examples how to use these:

x = 1 + 3j
x

(1+3j)

abs(x) # computes the absolute value

3.1622776601683795

x.imag

3.0

x.real

1.0

x * x

(-8+6j)

x * x.conjugate()

(10+0j)

3.2. Numbers 23

Introduction to Python for Computational Science and Engineering

3 * x

(3+9j)

Note that if you want to perform more complicated operations (such as taking the square root, etc) you have to use the
cmath module (Complex MATHematics):

import cmath
cmath.sqrt(x)

(1.442615274452683+1.0397782600555705j)

3.2.5 Functions applicable to all types of numbers

The abs() function returns the absolute value of a number (also called modulus):

a = -45.463
abs(a)

45.463

Note that abs() also works for complex numbers (see above).

3.3 Sequences

Strings, lists and tuples are sequences. They can be indexed and sliced in the same way.
Tuples and strings are “immutable” (which basically means we can’t change individual elements within the tuple, and we
cannot change individual characters within a string) whereas lists are “mutable” (.i.e we can change elements in a list.)
Sequences share the following operations

• a[i] returns i-th element of a
• a[i:j] returns elements i up to j-1
• len(a) returns number of elements in sequence
• min(a) returns smallest value in sequence
• max(a) returns largest value in sequence
• x in a returns True if x is element in a
• a + b concatenates a and b
• n * a creates n copies of sequence a

24 Chapter 3. Data Types and Data Structures

Introduction to Python for Computational Science and Engineering

3.3.1 Sequence type 1: String

Further information
• Introduction to strings, Python tutorial 3.1.2

A string is a (immutable) sequence of characters. A string can be defined using single quotes:

a = 'Hello World'

double quotes:

a = "Hello World"

or triple quotes of either kind

a = """Hello World"""
a = '''Hello World'''

The type of a string is str and the empty string is given by "":

a = "Hello World"
type(a)

str

b = ""
type(b)

str

type("Hello World")

str

type("")

str

The number of characters in a string (that is its length) can be obtained using the len()-function:

a = "Hello Moon"
len(a)

10

a = 'test'
len(a)

3.3. Sequences 25

https://docs.python.org/3/tutorial/introduction.html#strings

Introduction to Python for Computational Science and Engineering

4

len('another test')

12

You can combine (“concatenate”) two strings using the + operator:

'Hello ' + 'World'

'Hello World'

Strings have a number of useful methods, including for example upper() which returns the string in upper case:

a = "This is a test sentence."
a.upper()

'THIS IS A TEST SENTENCE.'

A list of available string methods can be found in the Python reference documentation. If a Python prompt is available,
one should use the dir and help function to retrieve this information, i.e. dir() provides the list of methods, help
can be used to learn about each method.
A particularly useful method is split() which converts a string into a list of strings:

a = "This is a test sentence."
a.split()

['This', 'is', 'a', 'test', 'sentence.']

The split()method will separate the string where it findswhite space. White space means any character that is printed
as white space, such as one space or several spaces or a tab.
By passing a separator character to the split() method, a string can split into different parts. Suppose, for example,
we would like to obtain a list of complete sentences:

a = "The dog is hungry. The cat is bored. The snake is awake."
a.split(".")

['The dog is hungry', ' The cat is bored', ' The snake is awake', '']

The opposite string method to split is join which can be used as follows:

a = "The dog is hungry. The cat is bored. The snake is awake."
s = a.split('.')
s

['The dog is hungry', ' The cat is bored', ' The snake is awake', '']

26 Chapter 3. Data Types and Data Structures

Introduction to Python for Computational Science and Engineering

".".join(s)

'The dog is hungry. The cat is bored. The snake is awake.'

" STOP".join(s)

'The dog is hungry STOP The cat is bored STOP The snake is awake STOP'

3.3.2 Sequence type 2: List

Further information
• Introduction to Lists, Python tutorial, section 3.1.4

A list is a sequence of objects. The objects can be of any type, for example integers:

a = [34, 12, 54]

or strings:

a = ['dog', 'cat', 'mouse']

An empty list is presented by []:

a = []

The type is list:

type(a)

list

type([])

list

As with strings, the number of elements in a list can be obtained using the len() function:

a = ['dog', 'cat', 'mouse']
len(a)

3

It is also possible to mix different types in the same list:

a = [123, 'duck', -42, 17, 0, 'elephant']

In Python a list is an object. It is therefor possible for a list to contain other lists (because a list keeps a sequence of
objects):

3.3. Sequences 27

https://docs.python.org/3/tutorial/introduction.html#lists

Introduction to Python for Computational Science and Engineering

a = [1, 4, 56, [5, 3, 1], 300, 400]

You can combine (“concatenate”) two lists using the + operator:

[3, 4, 5] + [34, 35, 100]

[3, 4, 5, 34, 35, 100]

Or you can add one object to the end of a list using the append() method:

a = [34, 56, 23]
a.append(42)
a

[34, 56, 23, 42]

You can delete an object from a list by calling the remove() method and passing the object to delete. For example:

a = [34, 56, 23, 42]
a.remove(56)
a

[34, 23, 42]

The range() command

A special type of list is frequently required (often together with for-loops) and therefor a command exists to generate
that list: the range(n) command generates integers starting from 0 and going up to but not including n. Here are a few
examples:

list(range(3))

[0, 1, 2]

list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

This command is often used with for loops. For example, to print the numbers 02,12,22,32,…,102, the following program
can be used:

for i in range(11):
print(i ** 2)

0
1
4
9

(continues on next page)

28 Chapter 3. Data Types and Data Structures

Introduction to Python for Computational Science and Engineering

(continued from previous page)

16
25
36
49
64
81
100

The range command takes an optional parameter for the beginning of the integer sequence (start) and another optional
parameter for the step size. This is often written asrange([start],stop,[step])where the arguments in square
brackets (i.e. start and step) are optional. Here are some examples:

list(range(3, 10)) # start=3

[3, 4, 5, 6, 7, 8, 9]

list(range(3, 10, 2)) # start=3, step=2

[3, 5, 7, 9]

list(range(10, 0, -1)) # start=10,step=-1

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

Why are we calling list(range())?
In Python 3, range() generates the numbers on demand. When you use range() in a for loop, this is more efficient,
because it doesn’t take up memory with a list of numbers. Passing it to list() forces it to generate all of its numbers,
so we can see what it does.
To get the same efficient behaviour in Python 2, use xrange() instead of range().

3.3.3 Sequence type 3: Tuples

A tuple is a (immutable) sequence of objects. Tuples are very similar in behaviour to lists with the exception that they
cannot be modified (i.e. are immutable).
For example, the objects in a sequence can be of any type:

a = (12, 13, 'dog')
a

(12, 13, 'dog')

a[0]

12

The parentheses are not necessary to define a tuple: just a sequence of objects separated by commas is sufficient to define
a tuple:

3.3. Sequences 29

Introduction to Python for Computational Science and Engineering

a = 100, 200, 'duck'
a

(100, 200, 'duck')

although it is good practice to include the paranthesis where it helps to show that tuple is defined.
Tuples can also be used to make two assignments at the same time:

x, y = 10, 20
x

10

y

20

This can be used to swap to objects within one line. For example

x = 1
y = 2
x, y = y, x
x

2

y

1

The empty tuple is given by ()

t = ()
len(t)

0

type(t)

tuple

The notation for a tuple containing one value may seem a bit odd at first:

t = (42,)
type(t)

30 Chapter 3. Data Types and Data Structures

Introduction to Python for Computational Science and Engineering

tuple

len(t)

1

The extra comma is required to distinguish (42,) from (42) where in the latter case the parenthesis would be read as
defining operator precedence: (42) simplifies to 42 which is just a number:

t = (42)
type(t)

int

This example shows the immutability of a tuple:

a = (12, 13, 'dog')
a[0]

12

NBVAL_RAISES_EXCEPTION
a[0] = 1

TypeError Traceback (most recent call last)
Cell In[68], line 2

1 # NBVAL_RAISES_EXCEPTION
----> 2 a[0] = 1

TypeError: 'tuple' object does not support item assignment

The immutability is the main difference between a tuple and a list (the latter being mutable). We should use tuples when
we don’t want the content to change.
Note that Python functions that return more than one value, return these in tuples (which makes sense because you don’t
want these values be changed).

3.3.4 Indexing sequences

Further information
• Introduction to strings and indexing in Python tutorial, section 3.1.2, the relevant section is starting after strings
have been introduced.

Individual objects in lists can be accessed by using the index of the object and square brackets ([and]):

a = ['dog', 'cat', 'mouse']
a[0]

3.3. Sequences 31

https://docs.python.org/3/tutorial/introduction.html#strings

Introduction to Python for Computational Science and Engineering

'dog'

a[1]

'cat'

a[2]

'mouse'

Note that Python (like C but unlike Fortran and unlike Matlab) starts counting indices from zero!
Python provides a handy shortcut to retrieve the last element in a list: for this one uses the index “-1” where the minus
indicates that it is one element from the back of the list. Similarly, the index “-2” will return the 2nd last element:

a = ['dog', 'cat', 'mouse']
a[-1]

'mouse'

a[-2]

'cat'

If you prefer, you can think of the index a[-1] to be a shorthand notation for a[len(a) - 1].
Remember that strings (like lists) are also a sequence type and can be indexed in the same way:

a = "Hello World!"
a[0]

'H'

a[1]

'e'

a[10]

'd'

a[-1]

'!'

32 Chapter 3. Data Types and Data Structures

Introduction to Python for Computational Science and Engineering

a[-2]

'd'

3.3.5 Slicing sequences

Further information
• Introduction to strings, indexing and slicing in Python tutorial, section 3.1.2

Slicing of sequences can be used to retrieve more than one element. For example:

a = "Hello World!"
a[0:3]

'Hel'

By writing a[0:3] we request the first 3 elements starting from element 0. Similarly:

a[1:4]

'ell'

a[0:2]

'He'

a[0:6]

'Hello '

We can use negative indices to refer to the end of the sequence:

a[0:-1]

'Hello World'

It is also possible to leave out the start or the end index and this will return all elements up to the beginning or the end of
the sequence. Here are some examples to make this clearer:

a = "Hello World!"
a[:5]

'Hello'

a[5:]

3.3. Sequences 33

https://docs.python.org/3/tutorial/introduction.html#strings

Introduction to Python for Computational Science and Engineering

' World!'

a[-2:]

'd!'

a[:]

'Hello World!'

Note that a[:] will generate a copy of a. The use of indices in slicing is by some people experienced as counter intuitive.
If you feel uncomfortable with slicing, have a look at this quotation from the Python tutorial (section 3.1.2):

The best way to remember how slices work is to think of the indices as pointing between characters, with
the left edge of the first character numbered 0. Then the right edge of the last character of a string of 5
characters has index 5, for example:

+---+---+---+---+---+
| H | e | l | l | o |
+---+---+---+---+---+
0 1 2 3 4 5 <-- use for SLICING
-5 -4 -3 -2 -1 <-- use for SLICING

from the end

The first row of numbers gives the position of the slicing indices 0…5 in the string; the second row gives the
corresponding negative indices. The slice from i to j consists of all characters between the edges labelled i
and j, respectively.

So the important statement is that for slicing we should think of indices pointing between characters.
For indexing it is better to think of the indices referring to characters. Here is a little graph summarising these rules:

0 1 2 3 4 <-- use for INDEXING
-5 -4 -3 -2 -1 <-- use for INDEXING

+---+---+---+---+---+ from the end
| H | e | l | l | o |
+---+---+---+---+---+
0 1 2 3 4 5 <-- use for SLICING

-5 -4 -3 -2 -1 <-- use for SLICING
from the end

If you are not sure what the right index is, it is always a good technique to play around with a small example at the Python
prompt to test things before or while you write your program.

34 Chapter 3. Data Types and Data Structures

https://docs.python.org/3/tutorial/introduction.html#strings

Introduction to Python for Computational Science and Engineering

3.3.6 Dictionaries

Dictionaries are also called “associative arrays” and “hash tables”. Dictionaries are unordered sets of key-value pairs.
An empty dictionary can be created using curly braces:

d = {}

Keyword-value pairs can be added like this:

d['today'] = '22 deg C' # 'today' is the keyword

d['yesterday'] = '19 deg C'

d.keys() returns a list of all keys:

d.keys()

dict_keys(['today', 'yesterday'])

We can retrieve values by using the keyword as the index:

d['today']

'22 deg C'

Other ways of populating a dictionary if the data is known at creation time are:

d2 = {2:4, 3:9, 4:16, 5:25}
d2

{2: 4, 3: 9, 4: 16, 5: 25}

d3 = dict(a=1, b=2, c=3)
d3

{'a': 1, 'b': 2, 'c': 3}

The function dict() creates an empty dictionary.
Other useful dictionary methods include values(), items() and get(). You can use in to check for the presence
of values.

d.values()

dict_values(['22 deg C', '19 deg C'])

d.items()

3.3. Sequences 35

Introduction to Python for Computational Science and Engineering

dict_items([('today', '22 deg C'), ('yesterday', '19 deg C')])

d.get('today','unknown')

'22 deg C'

d.get('tomorrow','unknown')

'unknown'

'today' in d

True

'tomorrow' in d

False

The method get(key,default) will provide the value for a given key if that key exists, otherwise it will return the
default object.
Here is a more complex example:

NBVAL_IGNORE_OUTPUT
order = {} # create empty dictionary

#add orders as they come in
order['Peter'] = 'Pint of bitter'
order['Paul'] = 'Half pint of Hoegarden'
order['Mary'] = 'Gin Tonic'

#deliver order at bar
for person in order.keys():

print(person, "requests", order[person])

Peter requests Pint of bitter
Paul requests Half pint of Hoegarden
Mary requests Gin Tonic

Some more technicalities:
• The keyword can be any (immutable) Python object. This includes:

– numbers
– strings
– tuples.

• dictionaries are very fast in retrieving values (when given the key)
An other example to demonstrate an advantage of using dictionaries over pairs of lists:

36 Chapter 3. Data Types and Data Structures

Introduction to Python for Computational Science and Engineering

NBVAL_IGNORE_OUTPUT
dic = {} #create empty dictionary

dic["Hans"] = "room 1033" #fill dictionary
dic["Andy C"] = "room 1031" #"Andy C" is key
dic["Ken"] = "room 1027" #"room 1027" is value

for key in dic.keys():
print(key, "works in", dic[key])

Hans works in room 1033
Andy C works in room 1031
Ken works in room 1027

Without dictionary:

people = ["Hans","Andy C","Ken"]
rooms = ["room 1033","room 1031","room 1027"]

#possible inconsistency here since we have two lists
if not len(people) == len(rooms):

raise RuntimeError("people and rooms differ in length")

for i in range(len(rooms)):
print(people[i],"works in",rooms[i])

Hans works in room 1033
Andy C works in room 1031
Ken works in room 1027

3.4 Passing arguments to functions

This section contains some more advanced ideas and makes use of concepts that are only later introduced in this text. The
section may be more easily accessible at a later stage.
When objects are passed to a function, Python always passes (the value of) the reference to the object to the function.
Effectively this is calling a function by reference, although one could refer to it as calling by value (of the reference).
We review argument passing by value and reference before discussing the situation in Python in more detail.

3.4.1 Call by value

One might expect that if we pass an object by value to a function, that modifications of that value inside the function will
not affect the object (because we don’t pass the object itself, but only its value, which is a copy). Here is an example of
this behaviour (in C):

#include <stdio.h>

void pass_by_value(int m) {
printf("in pass_by_value: received m=%d\n",m);
m=42;

(continues on next page)

3.4. Passing arguments to functions 37

Introduction to Python for Computational Science and Engineering

(continued from previous page)

printf("in pass_by_value: changed to m=%d\n",m);
}

int main(void) {
int global_m = 1;
printf("global_m=%d\n",global_m);
pass_by_value(global_m);
printf("global_m=%d\n",global_m);
return 0;

}

together with the corresponding output:

global_m=1
in pass_by_value: received m=1
in pass_by_value: changed to m=42
global_m=1

The value 1 of the global variable global_m is not modified when the function pass_by_value changes its input
argument to 42.

3.4.2 Call by reference

Calling a function by reference, on the other hand, means that the object given to a function is a reference to the object.
This means that the function will see the same object as in the calling code (because they are referencing the same object:
we can think of the reference as a pointer to the place in memory where the object is located). Any changes acting on the
object inside the function, will then be visible in the object at the calling level (because the function does actually operate
on the same object, not a copy of it).
Here is one example showing this using pointers in C:

#include <stdio.h>

void pass_by_reference(int *m) {
printf("in pass_by_reference: received m=%d\n",*m);
*m=42;
printf("in pass_by_reference: changed to m=%d\n",*m);

}

int main(void) {
int global_m = 1;
printf("global_m=%d\n",global_m);
pass_by_reference(&global_m);
printf("global_m=%d\n",global_m);
return 0;

}

together with the corresponding output:

global_m=1
in pass_by_reference: received m=1
in pass_by_reference: changed to m=42
global_m=42

38 Chapter 3. Data Types and Data Structures

Introduction to Python for Computational Science and Engineering

C++ provides the ability to pass arguments as references by adding an ampersand in front of the argument name in the
function definition:

#include <stdio.h>

void pass_by_reference(int &m) {
printf("in pass_by_reference: received m=%d\n",m);
m=42;
printf("in pass_by_reference: changed to m=%d\n",m);

}

int main(void) {
int global_m = 1;
printf("global_m=%d\n",global_m);
pass_by_reference(global_m);
printf("global_m=%d\n",global_m);
return 0;

}

together with the corresponding output:

global_m=1
in pass_by_reference: received m=1
in pass_by_reference: changed to m=42
global_m=42

3.4.3 Argument passing in Python

In Python, objects are passed as the value of a reference (think pointer) to the object. Depending on the way the reference
is used in the function and depending on the type of object it references, this can result in pass-by-reference behaviour
(where any changes to the object received as a function argument, are immediately reflected in the calling level).
Here are three examples to discuss this. We start by passing a list to a function which iterates through all elements in the
sequence and doubles the value of each element:

def double_the_values(l):
print("in double_the_values: l = %s" % l)
for i in range(len(l)):

l[i] = l[i] * 2
print("in double_the_values: changed l to l = %s" % l)

l_global = [0, 1, 2, 3, 10]
print("In main: s=%s" % l_global)
double_the_values(l_global)
print("In main: s=%s" % l_global)

In main: s=[0, 1, 2, 3, 10]
in double_the_values: l = [0, 1, 2, 3, 10]
in double_the_values: changed l to l = [0, 2, 4, 6, 20]
In main: s=[0, 2, 4, 6, 20]

The variable l is a reference to the list object. The line l[i] = l[i] * 2 first evaluates the right-hand side and reads
the element with index i, then multiplies this by two. A reference to this new object is then stored in the list object l at
position with index i. We have thus modified the list object, that is referenced through l.

3.4. Passing arguments to functions 39

Introduction to Python for Computational Science and Engineering

The reference to the list object does never change: the line l[i] = l[i] * 2 changes the elements l[i] of the list
l but never changes the reference l for the list. Thus both the function and calling level are operating on the same object
through the references l and global_l, respectively.
In contrast, here is an example where do not modify the elements of the list within the function: which produces this
output:

def double_the_list(l):
print("in double_the_list: l = %s" % l)
l = l + l
print("in double_the_list: changed l to l = %s" % l)

l_global = "Hello"
print("In main: l=%s" % l_global)
double_the_list(l_global)
print("In main: l=%s" % l_global)

In main: l=Hello
in double_the_list: l = Hello
in double_the_list: changed l to l = HelloHello
In main: l=Hello

What happens here is that during the evaluation of l = l + l a new object is created that holds l + l, and that we
then bind the name l to it. In the process, we lose the references to the list object l that was given to the function (and
thus we do not change the list object given to the function).
Finally, let’s look at which produces this output:

def double_the_value(l):
print("in double_the_value: l = %s" % l)
l = 2 * l
print("in double_the_values: changed l to l = %s" % l)

l_global = 42
print("In main: s=%s" % l_global)
double_the_value(l_global)
print("In main: s=%s" % l_global)

In main: s=42
in double_the_value: l = 42
in double_the_values: changed l to l = 84
In main: s=42

In this example, we also double the value (from 42 to 84) within the function. However, when we bind the object 84 to
the python name l (that is the line l = l * 2) we have created a new object (84), and we bind the new object to l.
In the process, we lose the reference to the object 42 within the function. This does not affect the object 42 itself, nor the
reference l_global to it.
In summary, Python’s behaviour of passing arguments to a function may appear to vary (if we view it from the pass by
value versus pass by reference point of view). However, it is always call by value, where the value is a reference to the
object in question, and the behaviour can be explained through the same reasoning in every case.

40 Chapter 3. Data Types and Data Structures

Introduction to Python for Computational Science and Engineering

3.4.4 Performance considerations

Call by value function calls require copying of the value before it is passed to the function. From a performance point of
view (both execution time and memory requirements), this can be an expensive process if the value is large. (Imagine the
value is a numpy.array object which could be several Megabytes or Gigabytes in size.)
One generally prefers call by reference for large data objects as in this case only a pointer to the data objects is passed,
independent of the actual size of the object, and thus this is generally faster than call-by-value.
Python’s approach of (effectively) calling by reference is thus efficient. However, we need to be careful that our function
do not modify the data they have been given where this is undesired.

3.4.5 Inadvertent modification of data

Generally, a function should not modify the data given as input to it.
For example, the following code demonstrates the attempt to determine the maximum value of a list, and – inadvertently
– modifies the list in the process:

def mymax(s): # demonstrating side effect
if len(s) == 0:

raise ValueError('mymax() arg is an empty sequence')
elif len(s) == 1:

return s[0]
else:

for i in range(1, len(s)):
if s[i] < s[i - 1]:

s[i] = s[i - 1]
return s[len(s) - 1]

s = [-45, 3, 6, 2, -1]
print("in main before caling mymax(s): s=%s" % s)
print("mymax(s)=%s" % mymax(s))
print("in main after calling mymax(s): s=%s" % s)

in main before caling mymax(s): s=[-45, 3, 6, 2, -1]
mymax(s)=6
in main after calling mymax(s): s=[-45, 3, 6, 6, 6]

The user of the mymax() function would not expect that the input argument is modified when the function executes. We
should generally avoid this. There are several ways to find better solutions to the given problem:

• In this particular case, we could use the Python in-built functionmax() to obtain themaximum value of a sequence.
• If we felt we need to stick to storing temporary values inside the list [this is actually not necessary], we could create
a copy of the incoming list s first, and then proceed with the algorithm (see below on Copying objects).

• Use another algorithm which uses an extra temporary variable rather than abusing the list for this. For example:
• We could pass a tuple (instead of a list) to the function: a tuple is immutable and can thus never be modified (this
would result in an exception being raised when the function tries to write to elements in the tuple).

3.4. Passing arguments to functions 41

Introduction to Python for Computational Science and Engineering

3.4.6 Copying objects

Python provides the id() function which returns an integer number that is unique for each object. (In the current
CPython implementation, this is the memory address.) We can use this to identify whether two objects are the same.
To copy a sequence object (including lists), we can slice it, i.e. if a is a list, then a[:] will return a copy of a. Here is a
demonstration:

a = list(range(10))
a

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

b = a
b[0] = 42
a # changing b changes a

[42, 1, 2, 3, 4, 5, 6, 7, 8, 9]

NBVAL_IGNORE_OUTPUT
id(a)

140195263471296

NBVAL_IGNORE_OUTPUT
id(b)

140195263471296

NBVAL_IGNORE_OUTPUT
c = a[:]
id(c) # c is a different object

140195523088768

c[0] = 100
a # changing c does not affect a

[42, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Python’s standard library provides the copy module, which provides copy functions that can be used to create copies of
objects. We could have used import copy; c = copy.deepcopy(a) instead of c = a[:].

42 Chapter 3. Data Types and Data Structures

Introduction to Python for Computational Science and Engineering

3.5 Equality and Identity/Sameness

A related question concerns the equality of objects.

3.5.1 Equality

The operators <, >, ==, >=, <=, and != compare the values of two objects. The objects need not have the same type.
For example:

a = 1.0; b = 1
type(a)

float

type(b)

int

a == b

True

So the == operator checks whether the values of two objects are equal.

3.5.2 Identity / Sameness

To see check whether two objects a and b are the same (i.e. a and b are references to the same place in memory), we
can use the is operator (continued from example above):

a is b

False

Of course they are different here, as they are not of the same type.
We can also ask the id function which, according to the documentation string in Python 2.7 “Returns the identity of an
object. This is guaranteed to be unique among simultaneously existing objects. (Hint: it’s the object’s memory address.)”

NBVAL_IGNORE_OUTPUT
id(a)

140195523039280

NBVAL_IGNORE_OUTPUT
id(b)

3.5. Equality and Identity/Sameness 43

Introduction to Python for Computational Science and Engineering

10861192

which shows that a and b are stored in different places in memory.

3.5.3 Example: Equality and identity

We close with an example involving lists:

x = [0, 1, 2]
y = x
x == y

True

x is y

True

NBVAL_IGNORE_OUTPUT
id(x)

140195265280064

NBVAL_IGNORE_OUTPUT
id(y)

140195265280064

Here, x and y are references to the same piece of memory, they are thus identical and the is operator confirms this. The
important point to remember is that line 2 (y=x) creates a new reference y to the same list object that x is a reference
for.
Accordingly, we can change elements of x, and y will change simultaneously as both x and y refer to the same object:

x

[0, 1, 2]

y

[0, 1, 2]

x is y

True

44 Chapter 3. Data Types and Data Structures

Introduction to Python for Computational Science and Engineering

x[0] = 100
y

[100, 1, 2]

x

[100, 1, 2]

In contrast, if we use z=x[:] (instead of z=x) to create a new name z, then the slicing operation x[:] will actually
create a copy of the list x, and the new reference z will point to the copy. The value of x and z is equal, but x and z are
not the same object (they are not identical):

x

[100, 1, 2]

z = x[:] # create copy of x before assigning to z
z == x # same value

True

z is x # are not the same object

False

NBVAL_IGNORE_OUTPUT
id(z) # confirm by looking at ids

140195263608512

NBVAL_IGNORE_OUTPUT
id(x)

140195265280064

x

[100, 1, 2]

z

[100, 1, 2]

Consequently, we can change x without changing z, for example (continued)

3.5. Equality and Identity/Sameness 45

Introduction to Python for Computational Science and Engineering

x[0] = 42
x

[42, 1, 2]

z

[100, 1, 2]

46 Chapter 3. Data Types and Data Structures

CHAPTER

FOUR

INTROSPECTION

A Python code can ask and answer questions about itself and the objects it is manipulating.

4.1 dir

dir() is a built-in function which returns a list of all the names belonging to some namespace.
• If no arguments are passed to dir (i.e. dir()), it inspects the namespace in which it was called.
• If dir is given an argument (i.e. dir(<object>), then it inspects the namespace of the object which it was
passed.

For example:

NBVAL_IGNORE_OUTPUT
apples = ['Cox', 'Braeburn', 'Jazz']
dir(apples)

['__add__',
'__class__',
'__contains__',
'__delattr__',
'__delitem__',
'__dir__',
'__doc__',
'__eq__',
'__format__',
'__ge__',
'__getattribute__',
'__getitem__',
'__gt__',
'__hash__',
'__iadd__',
'__imul__',
'__init__',
'__init_subclass__',
'__iter__',
'__le__',
'__len__',
'__lt__',
'__mul__',
'__ne__',

(continues on next page)

47

Introduction to Python for Computational Science and Engineering

(continued from previous page)

'__new__',
'__reduce__',
'__reduce_ex__',
'__repr__',
'__reversed__',
'__rmul__',
'__setattr__',
'__setitem__',
'__sizeof__',
'__str__',
'__subclasshook__',
'append',
'clear',
'copy',
'count',
'extend',
'index',
'insert',
'pop',
'remove',
'reverse',
'sort']

NBVAL_IGNORE_OUTPUT
dir()

['In',
'Out',
'_',
'_1',
'__',
'___',
'__builtin__',
'__builtins__',
'__doc__',
'__loader__',
'__name__',
'__package__',
'__spec__',
'_dh',
'_i',
'_i1',
'_i2',
'_ih',
'_ii',
'_iii',
'_oh',
'apples',
'exit',
'get_ipython',
'quit']

NBVAL_IGNORE_OUTPUT
name = "Peter"

(continues on next page)

48 Chapter 4. Introspection

Introduction to Python for Computational Science and Engineering

(continued from previous page)

dir(name)

['__add__',
'__class__',
'__contains__',
'__delattr__',
'__dir__',
'__doc__',
'__eq__',
'__format__',
'__ge__',
'__getattribute__',
'__getitem__',
'__getnewargs__',
'__gt__',
'__hash__',
'__init__',
'__init_subclass__',
'__iter__',
'__le__',
'__len__',
'__lt__',
'__mod__',
'__mul__',
'__ne__',
'__new__',
'__reduce__',
'__reduce_ex__',
'__repr__',
'__rmod__',
'__rmul__',
'__setattr__',
'__sizeof__',
'__str__',
'__subclasshook__',
'capitalize',
'casefold',
'center',
'count',
'encode',
'endswith',
'expandtabs',
'find',
'format',
'format_map',
'index',
'isalnum',
'isalpha',
'isdecimal',
'isdigit',
'isidentifier',
'islower',
'isnumeric',
'isprintable',
'isspace',
'istitle',

(continues on next page)

4.1. dir 49

Introduction to Python for Computational Science and Engineering

(continued from previous page)

'isupper',
'join',
'ljust',
'lower',
'lstrip',
'maketrans',
'partition',
'replace',
'rfind',
'rindex',
'rjust',
'rpartition',
'rsplit',
'rstrip',
'split',
'splitlines',
'startswith',
'strip',
'swapcase',
'title',
'translate',
'upper',
'zfill']

4.1.1 Magic names

You will find many names which both start and end with a double underscore (e.g. __name__). These are called magic
names. Functions with magic names provide the implementation of particular python functionality.
For example, the application of the str to an object a, i.e. str(a), will – internally – result in the method a.
__str__() being called. This method __str__ generally needs to return a string. The idea is that the __str__()
method should be defined for all objects (including those that derive from new classes that a programmer may create) so
that all objects (independent of their type or class) can be printed using the str() function. The actual conversion of
some object x to the string is then done via the object specific method x.__str__().
We can demonstrate this by creating a class my_intwhich inherits from the Python’s integer base class, and overrides the
__str__method. (It requires more Python knowledge than provided up to this point in the text to be able to understand
this example.)

class my_int(int):
"""Inherited from int"""
def __str__(self):

"""Tailored str representation of my int"""
return "my_int: %s" % (int.__str__(self))

a = my_int(3)
b = int(4) # equivalent to b = 4
print("a * b = ", a * b)
print("Type a = ", type(a), "str(a) = ", str(a))
print("Type b = ", type(b), "str(b) = ", str(b))

a * b = 12
Type a = <class '__main__.my_int'> str(a) = my_int: 3
Type b = <class 'int'> str(b) = 4

50 Chapter 4. Introspection

Introduction to Python for Computational Science and Engineering

Further Reading
See → Python documentation, Data Model

4.2 type

The type(<object>)command returns the type of an object:

type(1)

int

type(1.0)

float

type("Python")

str

import math
type(math)

module

type(math.sin)

builtin_function_or_method

4.3 isinstance

isinstance(<object>, <typespec>) returns True if the given object is an instance of the given type, or any
of its superclasses. Use help(isinstance) for the full syntax.

isinstance(2,int)

True

isinstance(2.,int)

False

4.2. type 51

https://docs.python.org/3/reference/datamodel.html

Introduction to Python for Computational Science and Engineering

isinstance(a,int) # a is an instance of my_int

True

type(a)

__main__.my_int

4.4 help

• The help(<object>) function will report the docstring (magic attritube with name __doc__) of the object
that it is given, sometimes complemented with additional information. In the case of functions, help will also
show the list of arguments that the function accepts (but it cannot provide the return value).

• help() starts an interactive help environment.
• It is common to use the help command a lot to remind oneself of the syntax and semantic of commands.

help(isinstance)

Help on built-in function isinstance in module builtins:

isinstance(obj, class_or_tuple, /)
Return whether an object is an instance of a class or of a subclass thereof.

A tuple, as in ``isinstance(x, (A, B, ...))``, may be given as the target to
check against. This is equivalent to ``isinstance(x, A) or isinstance(x, B)
or ...`` etc.

NBVAL_IGNORE_OUTPUT
import math
help(math.sin)

Help on built-in function sin in module math:

sin(...)
sin(x)

Return the sine of x (measured in radians).

NBVAL_IGNORE_OUTPUT
help(math)

Help on module math:

NAME
math

(continues on next page)

52 Chapter 4. Introspection

Introduction to Python for Computational Science and Engineering

(continued from previous page)

MODULE REFERENCE
https://docs.python.org/3.6/library/math

The following documentation is automatically generated from the Python
source files. It may be incomplete, incorrect or include features that
are considered implementation detail and may vary between Python
implementations. When in doubt, consult the module reference at the
location listed above.

DESCRIPTION
This module is always available. It provides access to the
mathematical functions defined by the C standard.

FUNCTIONS
acos(...)

acos(x)

Return the arc cosine (measured in radians) of x.

acosh(...)
acosh(x)

Return the inverse hyperbolic cosine of x.

asin(...)
asin(x)

Return the arc sine (measured in radians) of x.

asinh(...)
asinh(x)

Return the inverse hyperbolic sine of x.

atan(...)
atan(x)

Return the arc tangent (measured in radians) of x.

atan2(...)
atan2(y, x)

Return the arc tangent (measured in radians) of y/x.
Unlike atan(y/x), the signs of both x and y are considered.

atanh(...)
atanh(x)

Return the inverse hyperbolic tangent of x.

ceil(...)
ceil(x)

Return the ceiling of x as an Integral.
This is the smallest integer >= x.

(continues on next page)

4.4. help 53

Introduction to Python for Computational Science and Engineering

(continued from previous page)

copysign(...)
copysign(x, y)

Return a float with the magnitude (absolute value) of x but the sign
of y. On platforms that support signed zeros, copysign(1.0, -0.0)
returns -1.0.

cos(...)
cos(x)

Return the cosine of x (measured in radians).

cosh(...)
cosh(x)

Return the hyperbolic cosine of x.

degrees(...)
degrees(x)

Convert angle x from radians to degrees.

erf(...)
erf(x)

Error function at x.

erfc(...)
erfc(x)

Complementary error function at x.

exp(...)
exp(x)

Return e raised to the power of x.

expm1(...)
expm1(x)

Return exp(x)-1.
This function avoids the loss of precision involved in the direct␣

↪evaluation of exp(x)-1 for small x.

fabs(...)
fabs(x)

Return the absolute value of the float x.

factorial(...)
factorial(x) -> Integral

Find x!. Raise a ValueError if x is negative or non-integral.

floor(...)
floor(x)

(continues on next page)

54 Chapter 4. Introspection

Introduction to Python for Computational Science and Engineering

(continued from previous page)

Return the floor of x as an Integral.
This is the largest integer <= x.

fmod(...)
fmod(x, y)

Return fmod(x, y), according to platform C. x % y may differ.

frexp(...)
frexp(x)

Return the mantissa and exponent of x, as pair (m, e).
m is a float and e is an int, such that x = m * 2.**e.
If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.

fsum(...)
fsum(iterable)

Return an accurate floating point sum of values in the iterable.
Assumes IEEE-754 floating point arithmetic.

gamma(...)
gamma(x)

Gamma function at x.

gcd(...)
gcd(x, y) -> int
greatest common divisor of x and y

hypot(...)
hypot(x, y)

Return the Euclidean distance, sqrt(x*x + y*y).

isclose(...)
isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0) -> bool

Determine whether two floating point numbers are close in value.

rel_tol
maximum difference for being considered "close", relative to the
magnitude of the input values

abs_tol
maximum difference for being considered "close", regardless of the
magnitude of the input values

Return True if a is close in value to b, and False otherwise.

For the values to be considered close, the difference between them
must be smaller than at least one of the tolerances.

-inf, inf and NaN behave similarly to the IEEE 754 Standard. That
is, NaN is not close to anything, even itself. inf and -inf are
only close to themselves.

(continues on next page)

4.4. help 55

Introduction to Python for Computational Science and Engineering

(continued from previous page)

isfinite(...)
isfinite(x) -> bool

Return True if x is neither an infinity nor a NaN, and False otherwise.

isinf(...)
isinf(x) -> bool

Return True if x is a positive or negative infinity, and False otherwise.

isnan(...)
isnan(x) -> bool

Return True if x is a NaN (not a number), and False otherwise.

ldexp(...)
ldexp(x, i)

Return x * (2**i).

lgamma(...)
lgamma(x)

Natural logarithm of absolute value of Gamma function at x.

log(...)
log(x[, base])

Return the logarithm of x to the given base.
If the base not specified, returns the natural logarithm (base e) of x.

log10(...)
log10(x)

Return the base 10 logarithm of x.

log1p(...)
log1p(x)

Return the natural logarithm of 1+x (base e).
The result is computed in a way which is accurate for x near zero.

log2(...)
log2(x)

Return the base 2 logarithm of x.

modf(...)
modf(x)

Return the fractional and integer parts of x. Both results carry the sign
of x and are floats.

pow(...)
pow(x, y)

(continues on next page)

56 Chapter 4. Introspection

Introduction to Python for Computational Science and Engineering

(continued from previous page)

Return x**y (x to the power of y).

radians(...)
radians(x)

Convert angle x from degrees to radians.

sin(...)
sin(x)

Return the sine of x (measured in radians).

sinh(...)
sinh(x)

Return the hyperbolic sine of x.

sqrt(...)
sqrt(x)

Return the square root of x.

tan(...)
tan(x)

Return the tangent of x (measured in radians).

tanh(...)
tanh(x)

Return the hyperbolic tangent of x.

trunc(...)
trunc(x:Real) -> Integral

Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic␣
↪method.

DATA
e = 2.718281828459045
inf = inf
nan = nan
pi = 3.141592653589793
tau = 6.283185307179586

FILE
/Users/fangohr/anaconda3/lib/python3.6/lib-dynload/math.cpython-36m-darwin.so

The help function needs to be given the name of an object (which must exist in the current name space). For example
help(math.sqrt) will not work if the math module has not been imported before.

NBVAL_IGNORE_OUTPUT
help(math.sqrt)

4.4. help 57

Introduction to Python for Computational Science and Engineering

Help on built-in function sqrt in module math:

sqrt(...)
sqrt(x)

Return the square root of x.

NBVAL_IGNORE_OUTPUT
import math
help(math.sqrt)

Help on built-in function sqrt in module math:

sqrt(...)
sqrt(x)

Return the square root of x.

Instead of importing the module, we could also have given the string of math.sqrt to the help function, i.e.:

NBVAL_IGNORE_OUTPUT
help('math.sqrt')

Help on built-in function sqrt in math:

math.sqrt = sqrt(...)
sqrt(x)

Return the square root of x.

help is a function which gives information about the object which is passed as its argument. Most things in Python
(classes, functions, modules, etc.) are objects, and therefor can be passed to help. There are, however, some things on
which you might like to ask for help, which are not existing Python objects. In such cases it is often possible to pass a
string containing the name of the thing or concept to help, for example

• help(’modules’) will generate a list of all modules which can be imported into the current interpreter. Note
that help(modules) (note absence of quotes) will result in a NameError (unless you are unlucky enough to have a
variable called modules floating around, in which case you will get help on whatever that variable happens to refer
to.)

• help(’some_module’), where some_module is a module which has not been imported yet (and therefor isn’t
an object yet), will give you that module’s help information.

• help(’some_keyword’): For example and, if or print (i.e. help(’and’), help(’if’) and
help(’print’)). These are special words recognized by Python: they are not objects and thus cannot be
passed as arguments to help. Passing the name of the keyword as a string to help works, but only if you have
Python’s HTML documentation installed, and the interpreter has been made aware of its location by setting the
environment variable PYTHONDOCS.

58 Chapter 4. Introspection

Introduction to Python for Computational Science and Engineering

4.5 Docstrings

The command help(<object>) accesses the documentation strings of objects.
Any literal string apparing as the first item in the definition of a class, function, method or module, is taken to be its
docstring.
help includes the docstring in the information it displays about the object.
In addition to the docstring it may display some other information, for example, in the case of functions, it displays the
function’s signature.
The docstring is stored in the object’s __doc__ attribute.

NBVAL_IGNORE_OUTPUT
help(math.sin)

Help on built-in function sin in module math:

sin(...)
sin(x)

Return the sine of x (measured in radians).

NBVAL_IGNORE_OUTPUT
print(math.sin.__doc__)

sin(x)

Return the sine of x (measured in radians).

For user-defined functions, classes, types, modules, …), one should always provide a docstring.
Documenting a user-provided function:

def power2and3(x):
"""Returns the tuple (x**2, x**3)"""
return x**2 ,x**3

power2and3(2)

(4, 8)

power2and3(4.5)

(20.25, 91.125)

power2and3(0+1j)

((-1+0j), (-0-1j))

4.5. Docstrings 59

Introduction to Python for Computational Science and Engineering

help(power2and3)

Help on function power2and3 in module __main__:

power2and3(x)
Returns the tuple (x**2, x**3)

print(power2and3.__doc__)

Returns the tuple (x**2, x**3)

60 Chapter 4. Introspection

CHAPTER

FIVE

INPUT AND OUTPUT

In this section, we describe printing, which includes the use of the print function, the old-style % format specifiers and
the new style {} format specifiers.

5.1 Printing to standard output (normally the screen)

The print function is the most commonly used command to print information to the “standard output device” which is
normally the screen.
There are two modes to use print.

5.1.1 Simple print

The easiest way to use the print command is to list the variables to be printed, separated by comma. Here are a few
examples:

a = 10
b = 'test text'
print(a)

10

print(b)

test text

print(a, b)

10 test text

print("The answer is", a)

The answer is 10

print("The answer is", a, "and the string contains", b)

61

Introduction to Python for Computational Science and Engineering

The answer is 10 and the string contains test text

print("The answer is", a, "and the string reads", b)

The answer is 10 and the string reads test text

Python adds a space between every object that is being printed.
Python prints a new line after every print call. To suppress that, use the end= parameter:

print("Printing in line one", end='')
print("...still printing in line one.")

Printing in line one...still printing in line one.

5.1.2 Formatted printing

The more sophisticated way of formatting output uses a syntax very similar to Matlab’s fprintf (and therefor also
similar to C’s printf).
The overall structure is that there is a string containing format specifiers, followed by a percentage sign and a tuple that
contains the variables to be printed in place of the format specifiers.

print("a = %d b = %d" % (10,20))

a = 10 b = 20

A string can contain format identifiers (such as %f to format as a float, %d to format as an integer, and %s to format as a
string):

from math import pi
print("Pi = %5.2f" % pi)

Pi = 3.14

print("Pi = %10.3f" % pi)

Pi = 3.142

print("Pi = %10.8f" % pi)

Pi = 3.14159265

print("Pi = %d" % pi)

Pi = 3

62 Chapter 5. Input and Output

Introduction to Python for Computational Science and Engineering

The format specifier of type %W.Df means that a Float should be printed with a total Width of W characters and D digits
behind the Decimal point. (This is identical to Matlab and C, for example.)
To print more than one object, provide multiple format specifiers and list several objects in the tuple:

print("Pi = %f, 142*pi = %f and pi^2 = %f." % (pi,142*pi,pi**2))

Pi = 3.141593, 142*pi = 446.106157 and pi^2 = 9.869604.

Note that the conversion of a format specifier and a tuple of variables into string does not rely on the print command:

from math import pi
"pi = %f" % pi

'pi = 3.141593'

This means that we can convert objects into strings whereever we need, and we can decide to print the strings later – there
is no need to couple the formatting closely to the code that does the printing.
Overview of commonly used format specifiers using the astronomical unit as an example:

AU = 149597870700 # astronomical unit [m]
"%f" % AU # line 1 in table

'149597870700.000000'

specifier style Example output for AU
%f floating point 149597870700.000000
%e exponential notation 1.495979e+11
%g shorter of %e or %f 1.49598e+11
%d integer 149597870700
%s str() 149597870700
%r repr() 149597870700L

5.1.3 “str” and “__str__”

All objects in Python should provide a method __str__ which returns a nice string representation of the object. This
method a.__str__() is called when we apply the str function to object a:

a = 3.14
a.__str__()

'3.14'

str(a)

'3.14'

The str function is extremely convenient as it allows us to print more complicated objects, such as

5.1. Printing to standard output (normally the screen) 63

Introduction to Python for Computational Science and Engineering

b = [3, 4.2, ['apple', 'banana'], (0, 1)]
str(b)

"[3, 4.2, ['apple', 'banana'], (0, 1)]"

The way Python prints this is that it uses the __str__ method of the list object. This will print the opening square
bracket [and then call the __str__ method of the first object, i.e. the integer 3. This will produce 3. Then the list
object’s __str__ method prints the comma , and moves on to call the __str__ method of the next element in the
list (i.e. 4.2) to print itself. This way any composite object can be represented as a string by asking the objects it holds
to convert themselves to strings.
The string method of object x is called implicitly, when we

• use the “%s” format specifier to print x
• pass the object x directly to the print command:

print(b)

[3, 4.2, ['apple', 'banana'], (0, 1)]

print("%s" % b)

[3, 4.2, ['apple', 'banana'], (0, 1)]

5.1.4 “repr” and “__repr__”

A second function, repr, should convert a given object into a string presentation so that this string can be used to re-
created the object using the eval function. The repr function will generally provide a more detailed string than str.
Applying repr to the object x will attempt to call x.__repr__().

from math import pi as a1
str(a1)

'3.141592653589793'

repr(a1)

'3.141592653589793'

number_as_string = repr(a1)
a2 = eval(number_as_string) # evaluate string
a2

3.141592653589793

a2-a1 # -> repr is exact representation

64 Chapter 5. Input and Output

Introduction to Python for Computational Science and Engineering

0.0

a1-eval(repr(a1))

0.0

a1-eval(str(a1)) # -> str has lost a few digits

0.0

We can convert an object to its str() or repr presentation using the format specifiers %s and %r, respectively.

import math
"%s" % math.pi

'3.141592653589793'

"%r" % math.pi

'3.141592653589793'

5.1.5 New-style string formatting

A new system of built-in formatting allows more flexibility for complex cases, at the cost of being a bit longer.
Basic ideas in examples:

"{} needs {} pints".format('Peter', 4) # insert values in order

'Peter needs 4 pints'

"{0} needs {1} pints".format('Peter', 4) # index which element

'Peter needs 4 pints'

"{1} needs {0} pints".format('Peter', 4)

'4 needs Peter pints'

"{name} needs {number} pints".format(# reference element to
name='Peter', # print by name
number=4

)

5.1. Printing to standard output (normally the screen) 65

Introduction to Python for Computational Science and Engineering

'Peter needs 4 pints'

"Pi is approximately {:f}.".format(math.pi) # can use old-style format options␣
↪for float

'Pi is approximately 3.141593.'

"Pi is approximately {:.2f}.".format(math.pi) # and precision

'Pi is approximately 3.14.'

"Pi is approximately {:6.2f}.".format(math.pi) # and width

'Pi is approximately 3.14.'

This is a powerful and elegant way of string formatting, which is gradually being used more.
Further information

• Examples https://docs.python.org/3/library/string.html#format-examples
• Python Enhancement Proposal 3101
• Python library String Formatting Operations
• Introduction to Fancier Output Formatting, Python tutorial, section 7.1

5.1.6 Changes from Python 2 to Python 3: print

One (maybe the most obvious) change going from Python 2 to Python 3 is that the print command loses its special
status. In Python 2, we could print “Hello World” using:

print "Hello world" # valid in Python 2.x

Effectively, we call the function print with the argument Hello World. All other functions in Python are called
such that the argument is enclosed in parentheses, i.e.

print("Hello World") # valid in Python 3.x

Hello World

This is the new convention required in Python 3 (and allowed for recent version of Python 2.x.)
Everything we have learned about formatting strings using the percentage operator still works the same way:

import math
a = math.pi
"my pi = %f" % a # string formatting

'my pi = 3.141593'

66 Chapter 5. Input and Output

https://docs.python.org/3/library/string.html#format-examples
https://www.python.org/dev/peps/pep-3101/
https://docs.python.org/3/library/string.html#formatstrings
https://docs.python.org/3/tutorial/inputoutput.html

Introduction to Python for Computational Science and Engineering

print("my pi = %f" % a) # valid print in 2.7 and 3.x

my pi = 3.141593

"Short pi = %.2f, longer pi = %.12f." % (a, a)

'Short pi = 3.14, longer pi = 3.141592653590.'

print("Short pi = %.2f, longer pi = %.12f." % (a, a))

Short pi = 3.14, longer pi = 3.141592653590.

print("Short pi = %.2f, longer pi = %.12f." % (a, a))

Short pi = 3.14, longer pi = 3.141592653590.

1. Write a file
out_file = open("test.txt", "w") #'w' stands for Writing
out_file.write("Writing text to file. This is the first line.\n"+\

"And the second line.")
out_file.close() #close the file

2. Read a file
in_file = open("test.txt", "r") #'r' stands for Reading
text = in_file.read() #read complete file into

#string variable text
in_file.close() #close the file

3. Display data
print(text)

Writing text to file. This is the first line.
And the second line.

5.2 Reading and writing files

Here is a program that
1. writes some text to a file with name test.txt,
2. and then reads the text again and
3. prints it to the screen.

The data stored in the file test.txt is:

Writing text to file. This is the first line.
And the second line.

5.2. Reading and writing files 67

Introduction to Python for Computational Science and Engineering

In more detail, you have opened a file with the open command, and assigned this open file object to the variable
out_file. We have then written data to the file using the out_file.write method. Note that in the example
above, we have given a string to the write method. We can, of course, use all the formatting that we have discussed
before—see formatted printing and new style formatting. For example, to write this file with name table table.txt
we can use this Python program It is good practice to close() files when we have finished reading and writing. If a
Python program is left in a controlled way (i.e. not through a power cut or an unlikely bug deep in the Python language
or the operating system) then it will close all open files as soon as the file objects are destroyed. However, closing them
actively as soon as possible is better style.

5.2.1 File reading examples

We use a file named myfile.txt containing the following 3 lines of text for the examples below:

This is the first line.
This is the second line.
This is a third and last line.

f = open('myfile.txt', 'w')
f.write('This is the first line.\n'

'This is the second line.\n'
'This is a third and last line.')

f.close()

fileobject.read()

The fileobject.read() method reads the whole file, and returns it as one string (including new line characters).

f = open('myfile.txt', 'r')
f.read()

'This is the first line.\nThis is the second line.\nThis is a third and last line.'

f.close()

fileobject.readlines()

The fileobject.readlines() method returns a list of strings, where each element of the list corresponds to one
line in the string:

f = open('myfile.txt', 'r')
f.readlines()

['This is the first line.\n',
'This is the second line.\n',
'This is a third and last line.']

f.close()

This is often used to iterate over the lines, and to do something with each line. For example:

68 Chapter 5. Input and Output

Introduction to Python for Computational Science and Engineering

f = open('myfile.txt', 'r')
for line in f.readlines():

print("%d characters" % len(line))
f.close()

24 characters
25 characters
30 characters

Note that this will read the complete file into a list of strings when the readlines() method is called. This is no
problem if we know that the file is small and will fit into the machine’s memory.
If so, we can also close the file before we process the data, i.e.:

f = open('myfile.txt', 'r')
lines = f.readlines()
f.close()
for line in lines:

print("%d characters" % len(line))

24 characters
25 characters
30 characters

Iterating over lines (file object)

There is a neater possibility to read a file line by line which (i) will only read one line at a time (and is thus suitable for
large files as well) and (ii) results in more compact code:

f = open('myfile.txt', 'r')
for line in f:

print("%d characters" % len(line))
f.close()

24 characters
25 characters
30 characters

Here, the file handler f acts as in iterator and will return the next line in every subsequent iteration of the for-loop until
the end of the file is reached (and then the for-loop is terminated).

5.3 Further reading

Methods of File objects, Tutorial, Section 7.2.1

5.3. Further reading 69

https://docs.python.org/3/tutorial/inputoutput.html#methods-of-file-objects

Introduction to Python for Computational Science and Engineering

70 Chapter 5. Input and Output

CHAPTER

SIX

CONTROL FLOW

6.1 Basics

For a given file with a python program, the python interpreter will start at the top and then process the file. We demonstrate
this with a simple program, for example:

def f(x):
"""function that computes and returns x*x"""
return x * x

print("Main program starts here")
print("4 * 4 = %s" % f(4))
print("In last line of program -- bye")

Main program starts here
4 * 4 = 16
In last line of program -- bye

The basic rule is that commands in a file (or function or any sequence of commands) is processed from top to bottom. If
several commands are given in the same line (separated by ;), then these are processed from left to right (although it is
discouraged to have multiple statements per line to maintain good readability of the code.)
In this example, the interpreter starts at the top (line 1). It finds the def keyword and remembers for the future that the
function f is defined here. (It will not yet execute the function body, i.e. line 3 – this only happens when we call the
function.) The interpreter can see from the indentation where the body of the function stops: the indentation in line 5
is different from that of the first line in the function body (line2), and thus the function body has ended, and execution
should carry on with that line. (Empty lines do not matter for this analysis.)
In line 5 the interpreter will print the output Main program starts here. Then line 6 is executed. This contains
the expression f(4) which will call the function f(x) which is defined in line 1 where x will take the value 4. [Actually
x is a reference to the object 4.] The function f is then executed and computes and returns 4*4 in line 3. This value
16 is used in line 6 to replace f(4) and then the string representation %s of the object 16 is printed as part of the print
command in line 6.
The interpreter then moves on to line 7 before the program ends.
We will now learn about different possibilities to direct this control flow further.

71

Introduction to Python for Computational Science and Engineering

6.1.1 Conditionals

The python values True and False are special inbuilt objects:

a = True
print(a)

True

type(a)

bool

b = False
print(b)

False

type(b)

bool

We can operate with these two logical values using boolean logic, for example the logical and operation (and):

True and True #logical and operation

True

True and False

False

False and True

False

True and True

True

c = a and b
print(c)

False

There is also logical or (or) and the negation (not):

72 Chapter 6. Control Flow

Introduction to Python for Computational Science and Engineering

True or False

True

not True

False

not False

True

True and not False

True

In computer code, we often need to evaluate some expression that is either true or false (sometimes called a “predicate”).
For example:

x = 30 # assign 30 to x
x > 15 # is x greater than 15

True

x > 42

False

x == 30 # is x the same as 30?

True

x == 42

False

not x == 42 # is x not the same as 42?

True

x != 42 # is x not the same as 42?

6.1. Basics 73

Introduction to Python for Computational Science and Engineering

True

x > 30 # is x greater than 30?

False

x >= 30 # is x greater than or equal to 30?

True

6.2 If-then-else

Further information
• Introduction to If-then in Python tutorial, section 4.1

The if statement allows conditional execution of code, for example:

a = 34
if a > 0:

print("a is positive")

a is positive

The if-statement can also have an else branch which is executed if the condition is wrong:

a = 34
if a > 0:

print("a is positive")
else:

print("a is non-positive (i.e. negative or zero)")

a is positive

Finally, there is the elif (read as “else if”) keyword that allows checking for several (exclusive) possibilities:

a = 17
if a == 0:

print("a is zero")
elif a < 0:

print("a is negative")
else:

print("a is positive")

a is positive

74 Chapter 6. Control Flow

https://docs.python.org/3/tutorial/controlflow.html#if-statements

Introduction to Python for Computational Science and Engineering

6.3 For loop

Further information
• Introduction to for-loops in Python tutorial, section 4.2

The for-loop allows to iterate over a sequence (this could be a string or a list, for example). Here is an example:

for animal in ['dog','cat','mouse']:
print(animal, animal.upper())

dog DOG
cat CAT
mouse MOUSE

Together with the range() command (03 Data Types Structures, The Range Command), one can iterate over increasing
integers:

for i in range(5,10):
print(i)

5
6
7
8
9

6.4 While loop

The while keyword allows to repeat an operation while a condition is true. Suppose we’d like to know for how many
years we have to keep 100 pounds on a savings account to reach 200 pounds simply due to annual payment of interest at
a rate of 5%. Here is a program to compute that this will take 15 years:

mymoney = 100 # in GBP
rate = 1.05 # 5% interest
years = 0
while mymoney < 200: # repeat until 20 pounds reached

mymoney = mymoney * rate
years = years + 1

print('We need', years, 'years to reach', mymoney, 'pounds.')

6.3. For loop 75

https://docs.python.org/3/tutorial/controlflow.html#for-statements

Introduction to Python for Computational Science and Engineering

We need 15 years to reach 207.89281794113688 pounds.

6.5 Relational operators (comparisons) in if and while statements

The general form of if statements and while loops is the same: following the keyword if or while, there is a
condition followed by a colon. In the next line, a new (and thus indented!) block of commands starts that is executed if
the condition is True).
For example, the condition could be equality of two variables a1 and a2 which is expressed as a1==a2:

a1 = 42
a2 = 42
if a1 == a2:

print("a1 and a2 are the same")

a1 and a2 are the same

Another example is to test whether a1 and a2 are not the same. For this, we have two possibilities. Option number 1
uses the inequality operator !=:

if a1 != a2:
print("a1 and a2 are different")

Option two uses the keyword not in front of the condition:

if not a1 == a2:
print("a1 and a2 are different")

Comparisons for “greater” (>), “smaller” (<) and “greater equal” (>=) and “smaller equal” (<=) are straightforward.
Finally, we can use the logical operators “and” and “or” to combine conditions:

if a > 10 and b > 20:
print("A is greater than 10 and b is greater than 20")

if a > 10 or b < -5:
print("Either a is greater than 10, or "

"b is smaller than -5, or both.")

Either a is greater than 10, or b is smaller than -5, or both.

Use the Python prompt to experiment with these comparisons and logical expressions. For example:

T = -12.5
if T < -20:

print("very cold")

if T < -10:
print("quite cold")

quite cold

76 Chapter 6. Control Flow

Introduction to Python for Computational Science and Engineering

T < -20

False

T < -10

True

6.6 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error when an attempt is made to execute it.
Errors detected during execution are called exceptions and are not necessarily fatal: exceptions can be caught and dealt
with within the program. Most exceptions are not handled by programs, however, and result in error messages as shown
here

NBVAL_RAISES_EXCEPTION
10 * (1/0)

ZeroDivisionError Traceback (most recent call last)
Cell In[36], line 2

1 # NBVAL_RAISES_EXCEPTION
----> 2 10 * (1/0)

ZeroDivisionError: division by zero

NBVAL_RAISES_EXCEPTION
4 + spam*3

NameError Traceback (most recent call last)
Cell In[37], line 2

1 # NBVAL_RAISES_EXCEPTION
----> 2 4 + spam*3

NameError: name 'spam' is not defined

NBVAL_SKIP
'2' + 2

TypeError Traceback (most recent call last)
Cell In[38], line 2

1 # NBVAL_SKIP
----> 2 '2' + 2

TypeError: can only concatenate str (not "int") to str

6.6. Exceptions 77

Introduction to Python for Computational Science and Engineering

Schematic exception catching with all options

try:
code body
pass

except ArithmeticError:
what to do if arithmetic error
pass

except IndexError as the_exception:
the_exception refers to the exeption in this block
pass

except:
what to do for ANY other exception
pass

else: # optional
what to do if no exception raised
pass

try:
code body
pass

finally:
what to do ALWAYS
pass

Starting with Python 2.5, you can use the with statement to simplify the writing of code for some prede-
fined functions, in particular the open function to open files: see https://docs.python.org/3/tutorial/errors.html#
predefined-clean-up-actions.
Example: We try to open a file that does not exist, and Python will raise an exception of type FileNotFoundError
because the file cannot be found:

NBVAL_RAISES_EXCEPTION
f = open("filenamethatdoesnotexist", "r")

FileNotFoundError Traceback (most recent call last)
Cell In[40], line 2

1 # NBVAL_RAISES_EXCEPTION
----> 2 f = open("filenamethatdoesnotexist", "r")

File /opt/venv/lib/python3.11/site-packages/IPython/core/interactiveshell.py:324,␣
↪in _modified_open(file, *args, **kwargs)

317 if file in {0, 1, 2}:
318 raise ValueError(
319 f"IPython won't let you open fd={file} by default "
320 "as it is likely to crash IPython. If you know what you are doing,

↪"
321 "you can use builtins' open."
322)

--> 324 return io_open(file, *args, **kwargs)

FileNotFoundError: [Errno 2] No such file or directory: 'filenamethatdoesnotexist'

If we were writing an application with a userinterface where the user has to type or select a filename, we would not want
to application to stop if the file does not exist. Instead, we need to catch this exception and act accordingly (for example
by informing the user that a file with this filename does not exist and ask whether they want to try another file name).

78 Chapter 6. Control Flow

https://docs.python.org/3/tutorial/errors.html#predefined-clean-up-actions
https://docs.python.org/3/tutorial/errors.html#predefined-clean-up-actions

Introduction to Python for Computational Science and Engineering

Here is the skeleton for catching this exception:

try:
f = open("filenamethatdoesnotexist","r")

except FileNotFoundError:
print("Could not open that file")

Could not open that file

There is a lot more to be said about exceptions and their use in larger programs. Start reading Python Tutorial Chapter 8:
Errors and Exceptions if you are interested.

6.6.1 Raising Exceptions

Raising exception is also referred to as ’throwing an exception’.
Possibilities of raising an Exception

• raise OverflowError

• raise OverflowError, "Bath is full" (Old style, now discouraged)
• raise OverflowError("Bath is full")

• e = OverflowError("Bath is full"); raise e

Exception hierarchy

The standard exceptions are organized in an inheritance hierarchy e.g. OverflowError is a subclass of ArithmeticError
(not BathroomError); this can be seen when looking at help(’exceptions’) for example.
You can derive your own exceptions from any of the standard ones. It is good style to have each module define its own
base exception.

6.6.2 Creating our own exceptions

• You can and should derive your own exceptions from the built-in Exception.
• To see what built-in exceptions exist, look in the module exceptions (try help(’exceptions’)), or go to
https://docs.python.org/3/library/exceptions.html#bltin-exceptions.

6.6.3 LBYL vs EAFP

• LBYL (Look Before You Leap) vs
• EAFP (Easier to ask forgiveness than permission)

numerator = 7
denominator = 0

Example for LBYL:

6.6. Exceptions 79

https://docs.python.org/3/tutorial/errors.html#errors-and-exceptions
https://docs.python.org/3/tutorial/errors.html#errors-and-exceptions
https://docs.python.org/3/library/exceptions.html#bltin-exceptions

Introduction to Python for Computational Science and Engineering

if denominator == 0:
print("Oops")

else:
print(numerator/denominator)

Oops

Easier to Ask for Forgiveness than Permission:

try:
print(numerator/denominator)

except ZeroDivisionError:
print("Oops")

Oops

The Python documentation says about EAFP:
Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of
valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is
characterized by the presence of many try and except statements. The technique contrasts with the LBYL
style common to many other languages such as C.

Source: https://docs.python.org/3/glossary.html#term-eafp
The Python documentation says about LBYL:

Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with the EAFP approach and is characterized by the presence of many if statements.
In a multi-threaded environment, the LBYL approach can risk introducing a race condition between “the
looking” and “the leaping”. For example, the code, if key in mapping: return mapping[key] can fail if
another thread removes key from mapping after the test, but before the lookup. This issue can be solved with
locks or by using the EAFP approach.

Source: https://docs.python.org/3/glossary.html#term-lbyl
EAFP is the Pythonic way.

80 Chapter 6. Control Flow

https://docs.python.org/3/glossary.html#term-eafp
https://docs.python.org/3/glossary.html#term-lbyl

CHAPTER

SEVEN

FUNCTIONS AND MODULES

7.1 Introduction

Functions allow us to group a number of statements into a logical block. We communicate with a function through a
clearly defined interface, providing certain parameters to the function, and receiving some information back. Apart from
this interface, we generally do not how exactly a function does the work to obtain the value it returns
For example the function math.sqrt: we do not know how exactly it computes the square root, but we know about the
interface: if we pass x into the function, it will return (an approximation of) √𝑥.
This abstraction is a useful thing: it is a common technique in engineering to break down a system into smaller (black-
box) components that all work together through well defined interfaces, but which do not need to know about the internal
realisations of each other’s functionality. In fact, not having to care about these implementation details can help to have
a clearer view of the system composed of many of these components.
Functions provide the basic building blocks of functionality in larger programs (and computer simulations), and help to
control the inherent complexity of the process.
We can group functions together into a Python module (see modules), and in this way create our own libraries of func-
tionality.

7.2 Using functions

The word “function” has different meanings in mathematics and programming. In programming it refers to a named
sequence of operations that perform a computation. For example, the function sqrt() which is defined in the math
module computes the square root of a given value:

from math import sqrt
sqrt(4)

2.0

The value we pass to the function sqrt is 4 in this example. This value is called the argument of the function. A function
may have more than one argument.
The function returns the value 2.0 (the result of its computation) to the “calling context”. This value is called the return
value of the function.
It is common to say that a function takes an argument and returns a result or return value.
Common confusion about printing and returning values

81

Introduction to Python for Computational Science and Engineering

It is a common beginner’s mistake to confuse the printing of values with returning values. In the following example it is
hard to see whether the function math.sin returns a value or whether it prints the value:

import math
math.sin(2)

0.9092974268256817

We import the math module, and call the math.sin function with an argument of 2. The math.sin(2) call will
actually return the value 0.909... not print it. However, because we have not assigned the return value to a variable,
the Python prompt will print the returned object.
The following alternative sequence works only if the value is returned:

x = math.sin(2)
print(x)

0.9092974268256817

The return value of the function call math.sin(2) is assigned to the variable x, and x is printed in the next line.
Generally, functions should execute “silently” (i.e. not print anything) and report the result of their computation through
the return value.
Part of the confusion about printed versus return values at the Python prompt comes from the Python prompt printing
(a representation) of returned objects if the returned objects are not assigned. Generally, seeing the returned objects is
exactly what we want (as we normally care about the returned object), just when learning Python this may cause mild
confusion about functions returning values or printing values.
Further information

• Think Python has a gentle introduction to functions (on which the previous paragraph is based) in chapter 3 (Func-
tions) and chapter 6 (Fruitful functions).

7.3 Defining functions

The generic format of a function definitions:

def my_function(arg1, arg2, ..., argn):
"""Optional docstring."""

Implementation of the function

return result # optional

this is not part of the function
some_command

Allen Downey’s terminology (in his book Think Python) of fruitful and fruitless functions distinguishes between functions
that return a value, and those that do not return a value. The distinction refers to whether a function provides a return
value (=fruitful) or whether the function does not explicitly return a value (=fruitless). If a function does not make use
of the return statement, we tend to say that the function returns nothing (whereas in reality in will always return the
None object when it terminates – even if the return statement is missing).
For example, the function greeting will print “Hello World” when called (and is fruitless as it does not return a value).

82 Chapter 7. Functions and modules

https://www.greenteapress.com/thinkpython/html/book004.html
https://www.greenteapress.com/thinkpython/html/book004.html
https://www.greenteapress.com/thinkpython/html/book007.html
https://www.greenteapress.com/thinkpython/html/index.html

Introduction to Python for Computational Science and Engineering

def greeting():
print("Hello World!")

If we call that function:

greeting()

Hello World!

it prints “Hello World” to stdout, as we would expect. If we assign the return value of the function to a variable x, we can
inspect it subsequently:

x = greeting()

Hello World!

print(x)

None

and find that the greeting function has indeed returned the None object.
Another example for a function that does not return any value (that means there is no return keyword in the function)
would be:

def printpluses(n):
print(n * "+")

Generally, functions that return values are more useful as these can be used to assemble code (maybe as another function)
by combining them cleverly. Let’s look at some examples of functions that do return a value.
Suppose we need to define a function that computes the square of a given variable. The function source could be:

def square(x):
return x * x

The keyword def tells Python that we are defining a function at that point. The function takes one argument (x). The
function returns x*x which is of course 𝑥2. Here is the listing of a file that shows how the function can be defined and
used: (note that the numbers on the left are line numbers and are not part of the program)

def square(x):
return x * x

for i in range(5):
i_squared = square(i)
print(i, '*', i, '=', i_squared)

0 * 0 = 0
1 * 1 = 1
2 * 2 = 4
3 * 3 = 9
4 * 4 = 16

7.3. Defining functions 83

Introduction to Python for Computational Science and Engineering

It is worth mentioning that lines 1 and 2 define the square function whereas lines 4 to 6 are the main program.
We can define functions that take more than one argument:

import math

def hypot(x, y):
return math.sqrt(x * x + y * y)

It is also possible to return more than one argument. Here is an example of a function that converts a given string into all
characters uppercase and all characters lowercase and returns the two versions. We have included the main program to
show how this function can be called:

def upperAndLower(string):
return string.upper(), string.lower()

testword = 'Banana'

uppercase, lowercase = upperAndLower(testword)

print(testword, 'in lowercase:', lowercase,
'and in uppercase', uppercase)

Banana in lowercase: banana and in uppercase BANANA

We can define multiple Python functions in one file. Here is an example with two functions:

def returnstars(n):
return n * '*'

def print_centred_in_stars(string):
linelength = 46
starstring = returnstars((linelength - len(string)) // 2)

print(starstring + string + starstring)

print_centred_in_stars('Hello world!')

*****************Hello world!*****************

Further reading
• Python Tutorial: Section 4.6 Defining Functions

7.4 Default values and optional parameters

Python allows to define default values for function parameters. Here is an example: This program will print the following
output when executed: So how does it work? The function print_mult_table takes two arguments: n and upto.
The first argument n is a “normal” variable. The second argument upto has a default value of 10. In other words: should
the user of this function only provide one argument, then this provides the value for n and upto will default to 10. If
two arguments are provided, the first one will be for n and the second for upto (as shown in the code example above).

84 Chapter 7. Functions and modules

https://docs.python.org/3/tutorial/controlflow.html#defining-functions

Introduction to Python for Computational Science and Engineering

7.5 Modules

Modules
• Group together functionality
• Provide namespaces
• Python’s standard library contains a vast collection of modules - “Batteries Included”
• Try help(’modules’)
• Means of extending Python

7.5.1 Importing modules

import math

This will introduce the name math into the namespace in which the import command was issued. The names within the
mathmodule will not appear in the enclosing namespace: they must be accessed through the name math. For example:
math.sin.

import math, cmath

More than one module can be imported in the same statement, although the Python Style Guide recommends not to do
this. Instead, we should write

import math
import cmath

import math as mathematics

The name by which the module is known locally can be different from its “official” name. Typical uses of this are
• To avoid name clashes with existing names
• To change the name to something more manageable. For example import SimpleHTTPServer as shs.
This is discouraged for production code (as longer meaningful names make programs far more understandable
than short cryptic ones), but for interactively testing out ideas, being able to use a short synonym can make your
life much easier. Given that (imported) modules are first class objects, you can, of course, simply do shs =
SimpleHTTPServer in order to obtain the more easily typable handle on the module.

from math import sin

This will import the sin function from the math module, but it will not introduce the name math into the current
namespace. It will only introduce the name sin into the current namespace. It is possible to pull in more than one name
from the module in one go:

from math import sin, cos

Finally, let’s look at this notation:

from math import *

7.5. Modules 85

https://www.python.org/dev/peps/pep-0008/

Introduction to Python for Computational Science and Engineering

Once again, this does not introduce the namemath into the current namespace. It does however introduce all public names
of the math module into the current namespace. Broadly speaking, it is a bad idea to do this:

• Lots of new names will be dumped into the current namespace.
• Are you sure they will not clobber any names already present?
• It will be very difficult to trace where these names came from
• Having said that, some modules (including ones in the standard library, recommend that they be imported in this
way). Use with caution!

• This is fine for interactive quick and dirty testing or small calculations.

7.5.2 Creating modules

A module is in principle nothing else than a python file. We create an example of a module file which is saved in
module1.py:

%%file module1.py
def someusefulfunction():

pass

print("My name is", __name__)

Writing module1.py

We can execute this (module) file as a normal python program (for example python module1.py):

!python3 module1.py

My name is __main__

We note that the Python magic variable __name__ takes the value __main__ if the program file module1.py is
executed.
On the other hand, we can import module1.py in another file (which could have the name prog.py), for example
like this:

import module1 # in file prog.py

My name is module1

When Python comes across the import module1 statement in prog.py, it looks for the file module1.py in the
current working directory (and if it can’t find it there in all the directories in sys.path) and opens the file module1.
py. While parsing the file module1.py from top to bottom, it will add any function definitions in this file into
the module1 name space in the calling context (that is the main program in prog.py). It this example, there is
only the function someusefulfunction. Once the import process is completed, we can make use of module1.
someusefulfunction in prog.py. If Python comes across statements other than function (and class) definitions
while importing module1.py, it carries those out immediately. In this case, it will thus come across the statement
print(My name is, __name__).
Note the difference to the output if we import module1.py rather than executing it on its own: __name__ inside a
module takes the value of the module name if the file is imported.

86 Chapter 7. Functions and modules

Introduction to Python for Computational Science and Engineering

7.5.3 Use of __name__

In summary,
• __name__ is __main__ if the module file is run on its own
• __name__ is the name of the module (i.e. the module filename without the .py suffix) if the module file is
imported.

We can therefor use the following if statement in module1.py to write code that is only run when the module is
executed on its own: This is useful to keep test programs or demonstrations of the abilities of a module in this “conditional”
main program. It is common practice for any module files to have such a conditional main program which demonstrates
its capabilities.

7.5.4 Example 1

The next example shows a main program for the another file vectools.py that is used to demonstrate the capabilities
of the functions defined in that file:

%%file vectools.py
from __future__ import division
import math

import numpy as N

def norm(x):
"""returns the magnitude of a vector x"""
return math.sqrt(sum(x ** 2))

def unitvector(x):
"""returns a unit vector x/|x|. x needs to be a numpy array."""
xnorm = norm(x)
if xnorm == 0:

raise ValueError("Can't normalise vector with length 0")
return x / norm(x)

if __name__ == "__main__":
a little demo of how the functions in this module can be used:
x1 = N.array([0, 1, 2])
print("The norm of " + str(x1) + " is " + str(norm(x1)) + ".")
print("The unitvector in direction of " + str(x1) + " is " \

+ str(unitvector(x1)) + ".")

Writing vectools.py

If this file is executed using python vectools.py, then __name__==__main__ is true, and the output reads

!python3 vectools.py

The norm of [0 1 2] is 2.23606797749979.
The unitvector in direction of [0 1 2] is [0. 0.4472136 0.89442719].

7.5. Modules 87

Introduction to Python for Computational Science and Engineering

If this file is imported (i.e. used as a module) into another python file or the python prompt or in the Jupyter Notebook,
then __name__==__main__ is false, and that statement block will not be executed.
This is quite a common way to conditionally execute code in files providing library-like functions. The code that is
executed if the file is run on its own, often consists of a series of tests (to check that the file’s functions carry out the right
operations – regression tests or unit tests), or some examples of how the library functions in the file can be used.

7.5.5 Example 2

Even if a Python program is not intended to be used as a module file, it is good practice to always use a conditional main
program:

• often, it turns out later that functions in the file can be reused (and saves work then)
• this is convenient for regression testing.

Suppose an exercise is given to write a function that returns the first 5 prime numbers, and in addition to print them.
(There is of course a trivial solution to this as we know the prime numbers, and we should imagine that the required
calculation is more complex). One might be tempted to write

def primes5():
return (2, 3, 5, 7, 11)

for p in primes5():
print("%d" % p, end=' ')

2 3 5 7 11

It is better style to use a conditional main function, i.e.:

def primes5():
return (2, 3, 5, 7, 11)

if __name__=="__main__":
for p in primes5():

print("%d" % p, end=' ')

2 3 5 7 11

A purist might argue that the following is even cleaner:

def primes5():
return (2, 3, 5, 7, 11)

def main():
for p in primes5():

print("%d" % p, end=' ')

if __name__=="__main__":
main()

2 3 5 7 11

but either of the last two options is good.

88 Chapter 7. Functions and modules

Introduction to Python for Computational Science and Engineering

The example inMany ways to compute a series demonstrates this technique. Including functions with names starting with
test_ is compatible with the very useful py.test regression testing framework (see https://docs.pytest.org/en/stable//).

7.6 Further Reading

• Python Tutorial Section 6

7.6. Further Reading 89

https://docs.pytest.org/en/stable//
https://docs.python.org/3/tutorial/modules.html#modules

Introduction to Python for Computational Science and Engineering

90 Chapter 7. Functions and modules

CHAPTER

EIGHT

FUNCTIONAL TOOLS

Python provides a few in-built commands such as map, filter, reduce as well lambda (to create anonymous
functions) and list comprehension. These are typical commands from functional languages of which LISP is probably
best known.
Functional programming can be extremely powerful and one of the strengths of Python is that it allows to program using
(i) imperative/procedural programming style, (ii) object oriented style and (iii) functional style. It is the programmers
choice which tools to select from which style and how to mix them to best address a given problem.
In this chapter, we provide some examples for usage of the commands listed above.

8.1 Anonymous functions

All functions we have seen in Python so far have been defined through the def keyword, for example:

def f(x):
return x ** 2

This funtion has the name f. Once the function is defined (i.e. the Python interpreter has come across the def line), we
can call the function using its name, for example

y = f(6)

Sometimes, we need to define a function that is only used once, or we want to create a function but don’t need a name
for it (as for creating closures). In this case, this is called anonymous function as it does not have a name. In Python, the
lambda keyword can create an anonymous function.
We create a (named) function first, check it’s type and behaviour:

def f(x):
return x ** 2

f

<function __main__.f(x)>

type(f)

function

91

Introduction to Python for Computational Science and Engineering

f(10)

100

Now we do the same with an anonymous function:

lambda x: x ** 2

<function __main__.<lambda>(x)>

type(lambda x: x ** 2)

function

(lambda x: x ** 2)(10)

100

This works exactly in the same way but – as the anonymous function does not have a name – we need to define the function
(through the lambda expression) – every time we need it.
Anonymous functions can take more than one argument:

(lambda x, y: x + y)(10, 20)

30

(lambda x, y, z: (x + y) * z)(10, 20, 2)

60

We will see some examples using lambda which will clarify typical use cases.

8.2 Map

The map function lst2 = map(f, s) applies a function f to all elements in a sequence s. The result of map can
be turned into a list with the same length as s:

def f(x):
return x ** 2

lst2 = list(map(f, range(10)))
lst2

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

92 Chapter 8. Functional tools

Introduction to Python for Computational Science and Engineering

list(map(str.capitalize, ['banana', 'apple', 'orange']))

['Banana', 'Apple', 'Orange']

Often, this is combined with the anonymous function lambda:

list(map(lambda x: x ** 2, range(10)))

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

list(map(lambda s: s.capitalize(), ['banana', 'apple', 'orange']))

['Banana', 'Apple', 'Orange']

8.3 Filter

The filter function lst2 = filter(f, lst) applies the function f to all elements in a sequence s. The function
f should return True or False. This makes a list which will contain only those elements si of the sequence s for which
f(si) has returned True.

def greater_than_5(x):
if x > 5:

return True
else:

return False

list(filter(greater_than_5, range(11)))

[6, 7, 8, 9, 10]

The usage of lambda can simplify this significantly:

list(filter(lambda x: x > 5, range(11)))

[6, 7, 8, 9, 10]

known_names = ['smith', 'miller', 'bob']
list(filter(lambda name : name in known_names, \

['ago', 'smith', 'bob', 'carl']))

['smith', 'bob']

8.3. Filter 93

Introduction to Python for Computational Science and Engineering

8.4 List comprehension

List comprehensions provide a concise way to create and modify lists without resorting to use of map(), filter() and/or
lambda. The resulting list definition tends often to be clearer than lists built using those constructs. Each list comprehen-
sion consists of an expression followed by a for clause, then zero or more for or if clauses. The result will be a list
resulting from evaluating the expression in the context of the for and if clauses which follow it. If the expression would
evaluate to a tuple, it must be parenthesized.
Some examples will make this clearer:

freshfruit = [' banana', ' loganberry ', 'passion fruit ']
[weapon.strip() for weapon in freshfruit]

['banana', 'loganberry', 'passion fruit']

vec = [2, 4, 6]
[3 * x for x in vec]

[6, 12, 18]

[3 * x for x in vec if x > 3]

[12, 18]

[3 * x for x in vec if x < 2]

[]

[[x, x ** 2] for x in vec]

[[2, 4], [4, 16], [6, 36]]

We can also use list comprehension to modify the list of integers returned by the range command so that our subsequent
elements in the list increase by non-integer fractions:

[x*0.5 for x in range(10)]

[0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5]

Let’s now revisit the examples from the section on filter

[x for x in range(11) if x>5]

[6, 7, 8, 9, 10]

[name for name in ['ago','smith','bob','carl'] \
if name in known_names]

94 Chapter 8. Functional tools

Introduction to Python for Computational Science and Engineering

['smith', 'bob']

and the examples from the map section

[x ** 2 for x in range(10)]

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

[fruit.capitalize() for fruit in ['banana', 'apple', 'orange']]

['Banana', 'Apple', 'Orange']

all of which can be expressed through list comprehensions.
More details

• Python Tutorial 5.1.4 List comprehensions

8.5 Reduce

The reduce function takes a binary function f(x, y), a sequence s, and a start value a0. It then applies the function
f to the start value a0 and the first element in the sequence: a1 = f(a0, s[0]). The second element (s[1]) of
the sequence is then processed as follows: the function f is called with arguments a1 and s[1], i.e. a2 = f(a1,
s[1]). In this fashion, the whole sequence is processed. Reduce returns a single element.
This can be used, for example, to compute a sum of numbers in a sequence if the function f(x, y) returns x+y:

from functools import reduce

def add(x, y):
return x + y

reduce(add, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 0)

55

reduce(add, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 100)

155

We can modify the function add to provide some more detail about the process:

def add_verbose(x, y):
print("add(x=%s, y=%s) -> %s" % (x, y, x+y))
return x+y

reduce(add_verbose, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 0)

8.5. Reduce 95

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions

Introduction to Python for Computational Science and Engineering

add(x=0, y=1) -> 1
add(x=1, y=2) -> 3
add(x=3, y=3) -> 6
add(x=6, y=4) -> 10
add(x=10, y=5) -> 15
add(x=15, y=6) -> 21
add(x=21, y=7) -> 28
add(x=28, y=8) -> 36
add(x=36, y=9) -> 45
add(x=45, y=10) -> 55

55

It may be instructive to use an asymmetric function f, such as add_len(n, s) where s is a sequence and the
function returns n+len(s) (suggestion from Thomas Fischbacher):

def add_len(n, s):
return n + len(s)

reduce(add_len, ["This","is","a","test."],0)

12

As before, we’ll use a more verbose version of the binary function to see what is happening:

def add_len_verbose(n, s):
print("add_len(n=%d, s=%s) -> %d" % (n, s, n+len(s)))
return n+len(s)

reduce(add_len_verbose, ["This", "is", "a", "test."], 0)

add_len(n=0, s=This) -> 4
add_len(n=4, s=is) -> 6
add_len(n=6, s=a) -> 7
add_len(n=7, s=test.) -> 12

12

Another way to understand what the reduce function does is to look at the following function (kindly provided by Thomas
Fischbacher) which behaves like reduce but explains what it does:
Here is an example using the explain_reduce function:

def explain_reduce(f, xs, start=None):
"""This function behaves like reduce, but explains what it does,
step-by-step.
(Author: Thomas Fischbacher, modifications Hans Fangohr)"""
nr_xs = len(xs)
if start == None:

if nr_xs == 0:
raise ValueError("No starting value given - cannot " + \

"process empty list!")
if nr_xs == 1:

(continues on next page)

96 Chapter 8. Functional tools

Introduction to Python for Computational Science and Engineering

(continued from previous page)

print("reducing over 1-element list without starting " + \
"value: returning that element.")

return xs[0]
else:

print("reducing over list with >= 2 elements without " +\
"starting value: using the first element as a " +\
"start value.")

return explain_reduce(f, xs[1:], xs[0])
else:

s = start
for n in range(len(xs)):

x = xs[n]
print("Step %d: value-so-far=%s next-list-element=%s"\

% (n, str(s), str(x)))
s = f(s, x)

print("Done. Final result=%s" % str(s))
return s

def f(a, b):
return a + b

reduce(f, [1, 2, 3, 4, 5], 0)

15

explain_reduce(f, [1, 2, 3, 4, 5], 0)

Step 0: value-so-far=0 next-list-element=1
Step 1: value-so-far=1 next-list-element=2
Step 2: value-so-far=3 next-list-element=3
Step 3: value-so-far=6 next-list-element=4
Step 4: value-so-far=10 next-list-element=5
Done. Final result=15

15

Reduce is often combined with lambda:

reduce(lambda x, y: x + y, [1, 2, 3, 4, 5], 0)

15

There is also the operator module which provides standard Python operators as functions. For example, the function
operator.__add__(a,b) is executed when Python evaluates code such as a+b. These are generally faster than
lambda expressions. We could write the example above as

import operator
reduce(operator.__add__, [1, 2, 3, 4, 5], 0)

15

8.5. Reduce 97

Introduction to Python for Computational Science and Engineering

Use help(’operator’) to see the complete list of operator functions.

8.6 Why not just use for-loops?

Let’s compare the example introduced at the beginning of the chapter written (i) using a for-loop and (ii) list comprehen-
sion. Again, we want to compute the numbers 02, 12, 22, 32, … up to (n − 1)2 for a given n.
Implementation (i) using a for-loop with n=10:

y = []
for i in range(10):

y.append(i**2)

Implementation (ii) using list comprehension:

y = [x**2 for x in range(10)]

or using map:

y = map(lambda x: x**2, range(10))

The versions using list comprehension and map fit into one line of code whereas the for-loop needs 3. This example shows
that functional code result in very concise expressions. Typically, the number of mistakes a programmer makes is per line
of code written, so the fewer lines of code we have, the fewer bugs we need to find.
Often programmers find that initially the list-processing tools introduced in this chapter seem less intuitive than using
for-loops to process every element in a list individually, but that – over time – they come to value a more functional
programming style.

8.7 Speed

The functional tools described in this chapter can also be faster than using explicit (for or while) loops over list elements.
The program list_comprehension_speed.py below computes
𝑠𝑢𝑚_𝑖 = 0𝑁−1𝑖2 for a large value of N using 4 different methods and records execution time:

• Method 1: for-loop (with pre-allocated list, storing of i2 in list, then using in-built sum function)
• Method 2: for-loop without list (updating sum as the for-loop progresses)
• Method 3: using list comprehension
• Method 4: using numpy. (Numpy is covered in chapter 14)

Here is a possible program computing this:

NBVAL_IGNORE_OUTPUT
"""Compare calculation of \sum_i x_i^2 with
i going from zero to N-1.

We use (i) for loops and list, (ii) for-loop, (iii) list comprehension
and (iv) numpy.

We use floating numbers to avoid using Python's long int (which would

(continues on next page)

98 Chapter 8. Functional tools

Introduction to Python for Computational Science and Engineering

(continued from previous page)

be likely to make the timings less representative).
"""

import time
import numpy
N = 10000000

def timeit(f, args):
"""Given a function f and a tuple args containing
the arguments for f, this function calls f(*args),
and measures and returns the execution time in
seconds.

Return value is tuple: entry 0 is the time,
entry 1 is the return value of f."""

starttime = time.time()
y = f(*args) # use tuple args as input arguments
endtime = time.time()
return endtime - starttime, y

def forloop1(N):
s = 0
for i in range(N):

s += float(i) * float(i)
return s

def forloop2(N):
y = [0] * N
for i in range(N):

y[i] = float(i) ** 2
return sum(y)

def listcomp(N):
return sum([float(x) * x for x in range(N)])

def numpy_(N):
return numpy.sum(numpy.arange(0, N, dtype='d') ** 2)

main program starts
timings = []
print("N =", N)
forloop1_time, f1_res = timeit(forloop1, (N,))
timings.append(forloop1_time)
print("for-loop1: {:5.3f}s".format(forloop1_time))
forloop2_time, f2_res = timeit(forloop2, (N,))
timings.append(forloop2_time)
print("for-loop2: {:5.3f}s".format(forloop2_time))
listcomp_time, lc_res = timeit(listcomp, (N,))
timings.append(listcomp_time)
print("listcomp : {:5.3f}s".format(listcomp_time))

(continues on next page)

8.7. Speed 99

Introduction to Python for Computational Science and Engineering

(continued from previous page)

numpy_time, n_res = timeit(numpy_, (N,))
timings.append(numpy_time)
print("numpy : {:5.3f}s".format(numpy_time))

ensure that different methods provide identical results
assert f1_res == f2_res
assert f1_res == lc_res

Allow a bit of difference for the numpy calculation
numpy.testing.assert_approx_equal(f1_res, n_res)

print("Slowest method is {:.1f} times slower than the fastest method."
.format(max(timings)/min(timings)))

N = 10000000

for-loop1: 0.647s

for-loop2: 0.978s

listcomp : 0.703s
numpy : 0.020s
Slowest method is 48.7 times slower than the fastest method.

The actual execution performance depends on the computer. The relative performance may depend on versions of Python
and its support libraries (such as numpy) we use.
With the current version (python 3.6, numpy 1.11, on a x84machine running OSX), we see that methods 1 and 2 (for-loop
without list and with pre-allocated list) are slowest, somewhat closely followed by the slightly faster list comprehension.
The fastest method is number 4 (using numpy).

8.8 The %%timeit magic

If we are using IPython as our shell (or a cell in a Jupyter notebook running a python kernel), there is a much more
sophisticated way to measure timings that what is done above: if a cell starts with %%timeit, then IPython will run the
commands in that cell repeatedly and obtain (averaged) timings. This particularly useful for timing of commands that
execute relatively quickly.
Let’s compare a list comprehension with an explicit loop using the timeit magic:

%%timeit
y = [x**2 for x in range(100)]

3.72 µs ± 56.3 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)

%%timeit
y = []
for x in range(100):

y.append(x**2)

100 Chapter 8. Functional tools

Introduction to Python for Computational Science and Engineering

3.82 µs ± 9.57 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)

8.8. The %%timeit magic 101

Introduction to Python for Computational Science and Engineering

102 Chapter 8. Functional tools

CHAPTER

NINE

COMMON TASKS

Here we provide a selection of small example programs addressing some common tasks and just providing some more
Python code that can be read if seeking inspiration how to address a given problem.

9.1 Many ways to compute a series

As an example, we compute the sum of odd numbers in different ways.

def compute_sum1(n):
"""computes and returns the sum of 2,4,6, ..., m
where m is the largest even number smaller than n.

For example, with n = 7, we compute 0+2+4+6 = 12.

This implementation uses a variable 'mysum' that is
increased in every iteration of the for-loop."""

mysum = 0
for i in range(0, n, 2):

mysum = mysum + i
return mysum

def compute_sum2(n):
"""computes and returns ...

This implementation uses a while-loop:
"""

counter = 0
mysum = 0
while counter < n:

mysum = mysum + counter
counter = counter + 2

return mysum

def compute_sum3(n, startfrom=0):
"""computes and returns ...

This is a recursive implementation:"""

(continues on next page)

103

Introduction to Python for Computational Science and Engineering

(continued from previous page)

if n <= startfrom:
return 0

else:
return startfrom + compute_sum3(n, startfrom + 2)

def compute_sum4a(n):
"""A functional approach ... this seems to be
the shortest and most concise code.
"""
return sum(range(0, n, 2))

from functools import reduce
def compute_sum4b(n):

"""A functional approach ... not making use of 'sum' which
happens to exist and is of course convenient here.
"""
return reduce(lambda a, b: a + b, range(0, n, 2))

def compute_sum4c(n):
"""A functional approach ... a bit faster than compute_sum4b
as we avoid using lambda.
"""
import operator
return reduce(operator.__add__, range(0, n, 2))

def compute_sum4d(n):
"""Using list comprehension."""
return sum([k for k in range(0, n, 2)])

def compute_sum4e(n):
"""Using another variation of list comprehension."""
return sum([k for k in range(0, n) if k % 2 == 0])

def compute_sum5(n):
"""Using numerical python (numpy). This is very fast
(but would only pay off if n >> 10)."""
import numpy
return numpy.sum(2 * numpy.arange(0, (n + 1) // 2))

def test_consistency():
"""Check that all compute_sum?? functions in this file produce
the same answer for all n>=2 and <N.
"""
def check_one_n(n):

"""Compare the output of compute_sum1 with all other functions
for a given n>=2. Raise AssertionError if outputs disagree."""
funcs = [compute_sum1, compute_sum2, compute_sum3,

compute_sum4a, compute_sum4b, compute_sum4c,

(continues on next page)

104 Chapter 9. Common tasks

Introduction to Python for Computational Science and Engineering

(continued from previous page)

compute_sum4d, compute_sum4e, compute_sum5]
ans1 = compute_sum1(n)
for f in funcs[1:]:

assert ans1 == f(n), "%s(n)=%d not the same as %s(n)=%d " \
% (funcs[0], funcs[0](n), f, f(n))

#main testing loop in test_consistency function
for n in range(2, 1000):

check_one_n(n)

if __name__ == "__main__":
m = 7
correct_result = 12
thisresult = compute_sum1(m)
print("this result is {}, expected to be {}".format(

thisresult, correct_result))
compare with correct result
assert thisresult == correct_result
also check all other methods
assert compute_sum2(m) == correct_result
assert compute_sum3(m) == correct_result
assert compute_sum4a(m) == correct_result
assert compute_sum4b(m) == correct_result
assert compute_sum4c(m) == correct_result
assert compute_sum4d(m) == correct_result
assert compute_sum4e(m) == correct_result
assert compute_sum5(m) == correct_result

a more systematic check for many values
test_consistency()

this result is 12, expected to be 12

All the different implementations shown above compute the same result. There are a number of things to be learned from
this:

• There are a large (probably an infinite) number of solutions for one given problem. (This means that writing
programs is a task that requires creativity!)

• These may achieve the same ’result’ (in this case computation of a number).
• Different solutions may have different characteristics. They might:

– be faster or slower
– use less or more memory
– are easier or more difficult to understand (when reading the source code)
– can be considered more or less elegant.

9.1. Many ways to compute a series 105

Introduction to Python for Computational Science and Engineering

9.2 Sorting

Suppose we need to sort a list of 2-tuples of user-ids and names, i.e.

mylist = [("fangohr", "Hans Fangohr",),
("admin", "The Administrator"),
("guest", "The Guest")]

which we want to sort in increasing order of user-ids. If there are two or more identical user-ids, they should be ordered
by the order of the names associated with these user-ids. This behaviour is just the default behaviour of sort (which goes
back to how to sequences are compared).

stuff = mylist # collect your data
stuff.sort() # sort the data in place
print(stuff) # inspect the sorted data

[('admin', 'The Administrator'), ('fangohr', 'Hans Fangohr'), ('guest', 'The Guest
↪')]

Sequences are compared by initially comparing the first elements only. If they differ, then a decision is reached on the
basis of those elements only. If the elements are equal, only then are the next elements in the sequence compared … and
so on, until a difference is found, or we run out of elements. For example:

(2,0) > (1,0)

True

(2,1) > (1,3)

True

(2,1) > (2,1)

False

(2,2) > (2,1)

True

It is also possible to do:

stuff = sorted(stuff)

Where the list is not particularly large, it is generally advisable to use the sorted function (which returns a sorted copy
of the list) over the sort method of a list (which changes the list into sorted order of elements, and returns None).
However, what if the data we have is stored such that in each tuple in the list, the name comes first, followed by the id,
i.e.:

106 Chapter 9. Common tasks

Introduction to Python for Computational Science and Engineering

mylist2 = [("Hans Fangohr", "fangohr"),
("The Administrator", "admin"),
("The Guest", "guest")]

We want to sort with the id as the primary key. The first approach to do this is to change the order of mylist2 to that
of mylist, and use sort as shown above.
The second, neater approach relies on being able to decypher the cryptic help for the sorted function. list.sort()
has the same options, but its help is less helpful.

NBVAL_IGNORE_OUTPUT
help(sorted)

Help on built-in function sorted in module builtins:

sorted(iterable, /, *, key=None, reverse=False)
Return a new list containing all items from the iterable in ascending order.

A custom key function can be supplied to customize the sort order, and the
reverse flag can be set to request the result in descending order.

You should notice that sorted and list.sort have two keyword parameters. The first of these is called key. You
can use this to supply a key function, which will be used to transform the items for sort to compare.
Let’s illustrate this in the context of our exercise, by assuming that we have stored a list of pairs like this

pair = name, id

(i.e. as in mylist2) and that we want to sort according to id and ignore name. We can achieve this by writing a function
that retrieves only the second element of the pair it receives:

def my_key(pair):
return pair[1]

mylist2.sort(key=my_key)

This also works with an anonymous function:

mylist2.sort(key=lambda p: p[1])

9.2.1 Efficiency

The key function will be called exactly once for every element in the list. This is much more efficient than calling a
function on every comparison (which was how you customised sorting in older versions of Python). But if you have a
large list to sort, the overhead of calling a Python function (which is relatively large compared to the C function overhead)
might be noticeable.
If efficiency is really important (and you have proven that a significant proportion of time is spent in these functions) then
you have the option of re-coding them in C (or another low-level language).

9.2. Sorting 107

Introduction to Python for Computational Science and Engineering

108 Chapter 9. Common tasks

CHAPTER

TEN

FROM MATLAB TO PYTHON

10.1 Important commands

10.1.1 The for-loop

Matlab:

for i = 1:10
disp(i)

end

Matlab requires the end key-word at the end of the block belonging to the for-loop.
Python:

for i in range(1,11):
print(i)

1
2
3
4
5
6
7
8
9
10

Python requires a colon (“:”) at the of the for-line. (This is important and often forgotten when you have programmed
in Matlab before.) Python requires the commands to be executed within the for-loop to be indented.

109

Introduction to Python for Computational Science and Engineering

10.1.2 The if-then statement

Matlab:

if a==0
disp('a is zero')

elseif a<0
disp('a is negative')

elseif a==42
disp('a is 42')

else
disp('a is positive')

end

Matlab requires the end key-word at the very end of the block belonging to the for-loop.
Python:

a = -5

if a==0:
print('a is zero')

elif a<0:
print('a is negative')

elif a==42:
print('a is 42')

else:
print('a is positive')

a is negative

Python requires a colon (“:”) after every condition (i.e. at the of the lines starting with if, elif, else. Python requires
the commands to be executed within each part of the if-then-else statement to be indented.

10.1.3 Indexing

Matlab’s indexing of matrices and vectors starts a 1 (similar to Fortran), whereas Python’s indexing starts at 0 (similar to
C).

10.1.4 Matrices

In Matlab, every object is a matrix. In Python, there is a specialised extension library called numpy (see Sec. [cha:numer-
pyth-numpy]) which provides the array object which in turns provides the corresponding functionality. Similar to
Matlab, the numpy object is actually based on binary libraries and execution there very fast.
There is a dedicated introduction to numpy for Matlab users available at https://numpy.org/doc/stable/user/
numpy-for-matlab-users.html.

110 Chapter 10. From Matlab to Python

https://numpy.org/doc/stable/user/numpy-for-matlab-users.html
https://numpy.org/doc/stable/user/numpy-for-matlab-users.html

CHAPTER

ELEVEN

PYTHON SHELLS

11.1 IDLE

IDLE comes with every Python distribution and is a useful tool for everyday programming. Its editor provides syntax
highlighting.
There are two reasons why you might want to use another Python shell, for example:

• While working with the Python prompt, you like auto-completion of variable names, filenames and commands. In
that case IPython is your tool of choice (see below). IPython does not provide an editor, but you can carry on using
the IDLE editor to edit files, or any other editor you like.

IPython provides a number of nice features for the more experienced Python programmer, including convenient profiling
of code (see https://ipython.org/).
Recently, some auto-completion has been added to Idle as well (press tab after having typed the first few letters of object
names and keywords).

11.2 Python (command line)

This is the most basic face of the Python shell. It is very similar to the Python prompt in IDLE but there are no menus to
click on and no facilities to edit files.

11.3 Interactive Python (IPython)

11.3.1 IPython console

IPython is an improved version of the Python command line. It is a valuable tool and worth exploring it’s capabilities (see
https://ipython.org/ipython-doc/stable/interactive/qtconsole.html)
You will find the following features very useful:

• auto completion Suppose you want to type a = range(10). Instead of typing all the letters, just type a =
ra and the press the “Tab” key. Ipython will now show all the possible commands (and variable names) that start
with ra. If you type a third letter, here n and press “Tab” again, Ipython will auto complete and append ge
automatically. This works also for variable names and modules.

• To obtain help on a command, we can use Python’s help command. For example: help(range). Ipython
provides a shortcut. To achieve the same, it is sufficient to just type the command followed by a question mark:
range?

111

https://ipython.org/
https://ipython.org/ipython-doc/stable/interactive/qtconsole.html

Introduction to Python for Computational Science and Engineering

• You can relatively easily navigate directories on your computer. For example,
– !dir lists the content of the current directory (same as ls)
– pwd shows the current working directory
– cd allows to change directories

• In general, using an exclamation mark before the command will pass the command to the shell (not to the Python
interpreter).

• You can execute Python programs from ipython using %run. Suppose you have a file
`hello.py` in the current directory. You can then execute it by typing:
%run hello

Note that this differs from executing a python program in IDLE: IDLE restarts the Python interpreter session and thus
deletes all existing objects before the execution starts. This is not the case with the run command in ipython (and neither
when executing chunks of Python code from Emacs using the Emacs Python mode). In particular this can be very useful
if one needs to setup a few objects which are needed to test the code one is working on. Using ipython’s run or Emacs
instead of IDLE allows to keep these objects in the interpreter session and to only update the function/classes/… etc that
are being developed.

• allows multi-line editing of command history
• provides on-the-fly syntax highlighting
• displays doc-strings on-the-fly
• can inline matplotlib figures (activate mode with if started with %matplotlib inline)
• %load loads file from disk or form URL for editing
• %timeit measures execution time for a given statement
• …and a lot more.
• Read more at https://ipython.org/ipython-doc/dev/interactive/qtconsole.html

If you have access to this shell, you may want to consider it as your default Python prompt.

11.3.2 Jupyter Notebook

The Jupyter Notebook (formerly IPython Notebook) allows you to execute, store, load, re-execute a sequence of Python
commands, and to include explanatory text, images and other media in between.
This is a recent and exciting development that has the potential to develop into a tool of great significance, for example
for

• documenting calculations and data processing
• support learning and teaching of

– Python itself
– statistical methods
– general data post-processing
– …

• documentation new code
• automatic regression testing by re-running ipython notebook and comparing stored output with computed output

Further reading

112 Chapter 11. Python shells

https://ipython.org/ipython-doc/dev/interactive/qtconsole.html

Introduction to Python for Computational Science and Engineering

• Jupyter Notebook (https://jupyter-notebook.readthedocs.io/en/latest/).
• IPython (https://ipython.org).

11.4 Spyder

Spyder is the Scientific PYthon Development EnviRonment: a powerful interactive development environment for the
Python language with advanced editing, interactive testing, debugging and introspection features and a numerical com-
puting environment thanks to the support of IPython (enhanced interactive Python interpreter) and popular Python li-
braries such as NumPy (linear algebra), SciPy (signal and image processing) or matplotlib (interactive 2D/3D plotting).
See https://www.spyder-ide.org/ for more.
Some important features of Spyder:

• Within Spyder, the IPython console is the default Python interpreter, and
• code in the editor can be fully or partially be executed in this buffer.
• The editor supports automatic checking for Python erros using pyflakes, and
• the editor warns (if desired) if the code formatting deviates from the PEP8 style guide.
• The Ipython Debugger can be activated, and
• a profiler is provided.
• An object explorer shows documentation for functions, methods etc on the fly and a
• variable explorer displays names, size and values for numerical variables.

Spyder is currently (as of 2014) on the way to develop into a powerful and robust multi-platform integrated environment
for Python development, with particular emphasis on Python for scientific computing and engineering.

11.5 Editors

All major editors that are used for programming, provide Python modes (such as Emacs, Vim, Sublime Text), some
Integrated Development Enviroments (IDEs) come with their own editor (Spyder, Eclipse). Which of these is best, is
partly a matter of choice.
For beginners, Spyder seems a sensible choice as it provides an IDE, allows execution of chunks of code in an interpreter
session and is easy to pick up.

11.4. Spyder 113

https://jupyter-notebook.readthedocs.io/en/latest/
https://ipython.org
https://www.spyder-ide.org/

Introduction to Python for Computational Science and Engineering

114 Chapter 11. Python shells

CHAPTER

TWELVE

SYMBOLIC COMPUTATION

12.1 SymPy

In this section, we introduce some basic functionality of the SymPy (SYMbolic Python) library. In contrast to numerical
computation (involving numbers), in symbolic calculation we are processing and transforming generic variables.
The SymPy home page is https://www.sympy.org/, and provides the full (and up-to-date) documentation for this library.
Symbolic calculation is very slow compared to floating point operation (see for example [symbolic calculation for dec-
imals](13 Numeric Computation, Symbolic Calculation)), and thus generally not for direct simulation. However, it is
a powerful tool to support the preparation of code and symbolic work. Occasionally, we use symbolic operations in
simulations to work out the most efficient numerical code, before that is executed.

12.1.1 Output

Before we start using sympy, we’ll call init_printing. This tells sympy to display expressions in a nicer format.

import sympy
sympy.init_printing(use_latex='mathjax')

12.1.2 Symbols

Before we can carry out any symbolic operations, we need to create symbolic variables using SymPy’s Symbol function:

from sympy import Symbol
x = Symbol('x')
type(x)

sympy.core.symbol.Symbol

y = Symbol('y')
2 * x - x

𝑥

115

https://www.sympy.org/

Introduction to Python for Computational Science and Engineering

x + y + x + 10*y

2𝑥 + 11𝑦

y + x - y + 10

𝑥 + 10

We can abbreviate the creation of multiple symbolic variables using the symbols function. For example, to create the
symbolic variables x, y and z, we can use

import sympy
x, y, z = sympy.symbols('x,y,z')
x + 2*y + 3*z - x

2𝑦 + 3𝑧

Once we have completed our term manipulation, we sometimes like to insert numbers for variables. This can be done
using the subs method.

from sympy import symbols
x, y = symbols('x,y')
x + 2*y

𝑥 + 2𝑦

x + 2*y.subs(x, 10)

𝑥 + 2𝑦

(x + 2*y).subs(x, 10)

2𝑦 + 10

(x + 2*y).subs(x, 10).subs(y, 3)

16

116 Chapter 12. Symbolic computation

Introduction to Python for Computational Science and Engineering

(x + 2*y).subs({x:10, y:3})

16

We can also substitute a symbolic variable for another one such as in this example where y is replaced with x before we
substitute x with the number 2.

myterm = 3*x + y**2
myterm

3𝑥 + 𝑦2

myterm.subs(x, y)

𝑦2 + 3𝑦

myterm.subs(x, y).subs(y, 2)

10

From this point onward, some of the code fragments and examples we present will assume that the required symbols have
already been defined. If you try an example and SymPy gives a message like NameError: name ’x’ is not
defined it is probably because you need to define the symbol using one of the methods above.

12.1.3 isympy

The isympy executable is a wrapper around ipython which creates the symbolic (real) variables x, y and z, the symbolic
integer variables k, m and n and the symbolic function variables f, g and h, and imports all objects from the SymPy
toplevel.
This is convenient to figure out new features or experimenting interactively

$> isympy
Python 2.6.5 console for SymPy 0.6.7

These commands were executed:
>>> from __future__ import division
>>> from sympy import *
>>> x, y, z = symbols('xyz')
>>> k, m, n = symbols('kmn', integer=True)
>>> f, g, h = map(Function, 'fgh')

Documentation can be found at https://www.sympy.org/

In [1]:

12.1. SymPy 117

Introduction to Python for Computational Science and Engineering

12.1.4 Numeric types

SymPy has the numeric types Rational and RealNumber. The Rational class represents a rational number as a
pair of two integers: the numerator and the denominator, so Rational(1,2) represents 1/2, Rational(5,2)
represents 5/2 and so on.

from sympy import Rational

a = Rational(1, 10)
a

1
10

b = Rational(45, 67)
b

45
67

a * b

9
134

a - b

−383
670

a + b

517
670

Note that the Rational class works with rational expressions exactly. This is in contrast to Python’s standard float data
type which uses floating point representation to approximate (rational) numbers.
We can convert the sympy.Rational type into a Python floating point variable using float or the evalf method
of the Rational object. The evalf method can take an argument that specifies how many digits should be computed for
the floating point approximation (not all of those may be used by Python’s floating point type of course).

c = Rational(2, 3)
c

2
3

118 Chapter 12. Symbolic computation

Introduction to Python for Computational Science and Engineering

float(c)

0.666666666666667

c.evalf()

0.666666666666667

c.evalf(50)

0.6667

12.1.5 Differentiation and Integration

SymPy is capable of carrying out differentiation and integration of many functions:

from sympy import Symbol, exp, sin, sqrt, diff
x = Symbol('x')
y = Symbol('y')
diff(sin(x), x)

cos (𝑥)

diff(sin(x), y)

0

diff(10 + 3*x + 4*y + 10*x**2 + x**9, x)

9𝑥8 + 20𝑥 + 3

diff(10 + 3*x + 4*y + 10*x**2 + x**9, y)

4

12.1. SymPy 119

Introduction to Python for Computational Science and Engineering

diff(10 + 3*x + 4*y + 10*x**2 + x**9, x).subs(x,1)

32

diff(10 + 3*x + 4*y + 10*x**2 + x**9, x).subs(x,1.5)

263.66015625

diff(exp(x), x)

𝑒𝑥

diff(exp(-x ** 2 / 2), x)

−𝑥𝑒− 𝑥2
2

The SymPy diff() function takes a minimum of two arguments: the function to be differentiated and the variable with
respect to which the differentiation is performed. Higher derivatives may be calculated by specifying additional variables,
or by adding an optional integer argument:

diff(3*x**4, x)

12𝑥3

diff(3*x**4, x, x, x)

72𝑥

diff(3*x**4, x, 3)

72𝑥

diff(3*x**4*y**7, x, 2, y, 2)

1512𝑥2𝑦5

120 Chapter 12. Symbolic computation

Introduction to Python for Computational Science and Engineering

diff(diff(3*x**4*y**7, x, x), y, y)

1512𝑥2𝑦5

At times, SymPy may return a result in an unfamiliar form. If, for example, you wish to use SymPy to check that you
differentiated something correctly, a technique that might be of use is to subtract the SymPy result from your result, and
check that the answer is zero.
Taking the simple example of a multiquadric radial basis function, 𝜙(𝑟) =

√
𝑟2 + 𝜎2 with 𝑟 = √𝑥2 + 𝑦2 and σ a

constant, we can verify that the first derivative in x is 𝜕𝜙/𝜕𝑥 = 𝑥/
√

𝑟2 + 𝜎2.
In this example, we first ask SymPy to print the derivative. See that it is printed in a different form to our trial derivative,
but the subtraction verifies that they are identical:

r = sqrt(x**2 + y**2)
sigma = Symbol('σ')
def phi(x,y,sigma):

return sqrt(x**2 + y**2 + sigma**2)

mydfdx= x / sqrt(r**2 + sigma**2)
print(diff(phi(x, y, sigma), x))

x/sqrt(x**2 + y**2 + σ**2)

print(mydfdx - diff(phi(x, y, sigma), x))

0

Here it is trivial to tell that the expressions are identical without SymPy’s help, but inmore complicated examples theremay
be many more terms and it would become increasingly difficult, time consuming and error-prone to attempt to rearrange
our trial derivative and SymPy’s answer into the same form. It is in such cases that this subtraction technique is of most
use.
Integration uses a similar syntax. For the indefinite case, specify the function and the variable with respect to which the
integration is performed:

from sympy import integrate
integrate(x**2, x)

𝑥3

3

integrate(x**2, y)

𝑥2𝑦

12.1. SymPy 121

Introduction to Python for Computational Science and Engineering

integrate(sin(x), y)

𝑦 sin (𝑥)

integrate(sin(x), x)

− cos (𝑥)

integrate(-x*exp(-x**2/2), x)

𝑒− 𝑥2
2

We can calculate definite integrals by providing integrate()with a tuple containing the variable of interest, the lower
and the upper bounds. If several variables are specified, multiple integration is performed. When SymPy returns a result
in the Rational class, it is possible to evaluate it to a floating-point representation at any desired precision (see numeric
types).

integrate(x*2, (x, 0, 1))

1

integrate(x**2, x)

𝑥3

3
integrate(x**2, x, x)

𝑥4

12
integrate(x**2, x, x, y)

𝑥4𝑦
12

integrate(x**2, (x, 0, 2))

8
3

122 Chapter 12. Symbolic computation

Introduction to Python for Computational Science and Engineering

integrate(x**2, (x, 0, 2), (x, 0, 2), (y, 0, 1))

16
3

float(integrate(x**2, (x, 0, 2)))

2.66666666666667

type(integrate(x**2, (x, 0, 2)))

sympy.core.numbers.Rational

result_rational=integrate(x**2, (x, 0, 2))
result_rational.evalf()

2.66666666666667

result_rational.evalf(50)

2.667

12.1.6 Ordinary differential equations

SymPy has inbuilt support for solving several kinds of ordinary differential equation via its dsolve command. We need
to set up the ODE and pass it as the first argument, eq. The second argument is the function f(x) to solve for. An
optional third argument, hint, influences the method that dsolve uses: some methods are better-suited to certain
classes of ODEs, or will express the solution more simply, than others.
To set up the ODE solver, we need a way to refer to the unknown function for which we are solving, as well as its
derivatives. The Function and Derivative classes facilitate this:

from sympy import Symbol, dsolve, Function, Derivative, Eq
y = Function("y")
x = Symbol('x')
y_ = Derivative(y(x), x)
dsolve(y_ + 5*y(x), y(x))

𝑦(𝑥) = 𝐶1𝑒−5𝑥

Note how dsolve has introduced a constant of integration, C1. It will introduce as many constants as are required, and
they will all be named Cn, where n is an integer. Note also that the first argument to dsolve is taken to be equal to zero
unless we use the Eq() function to specify otherwise:

12.1. SymPy 123

Introduction to Python for Computational Science and Engineering

dsolve(y_ + 5*y(x), y(x))

𝑦(𝑥) = 𝐶1𝑒−5𝑥

dsolve(Eq(y_ + 5*y(x), 0), y(x))

𝑦(𝑥) = 𝐶1𝑒−5𝑥

dsolve(Eq(y_ + 5*y(x), 12), y(x))

𝑦(𝑥) = 𝐶1𝑒−5𝑥 + 12
5

The results from dsolve are an instance of the Equality class. This has consequences when we wish to numerically
evaluate the function and use the result elsewhere (e.g. if we wanted to plot y(x) against x), because even after using
subs() and evalf(), we still have an Equality, not any sort of scalar. The way to evaluate the function to a
number is via the rhs attribute of the Equality.
Note that, here, we use z to store the Equality returned by dsolve, even though it is an expression for a function
called y(x), to emphasise the distinction between the Equality itself and the data that it contains.

z = dsolve(y_ + 5*y(x), y(x))
z

𝑦(𝑥) = 𝐶1𝑒−5𝑥

type(z)

sympy.core.relational.Equality

z.rhs

𝐶1𝑒−5𝑥

C1=Symbol('C1')
y3 = z.subs({C1:2, x:3})
y3

𝑦(3) = 2
𝑒15

124 Chapter 12. Symbolic computation

Introduction to Python for Computational Science and Engineering

y3.evalf(10)

𝑦(3) = 6.11804641 ⋅ 10−7

y3.rhs

2
𝑒15

y3.rhs.evalf(10)

6.11804641 ⋅ 10−7

z.rhs.subs({C1:2, x:4}).evalf(10)

4.122307245 ⋅ 10−9

z.rhs.subs({C1:2, x:5}).evalf(10)

2.777588773 ⋅ 10−11

type(z.rhs.subs({C1:2, x:5}).evalf(10))

sympy.core.numbers.Float

At times, dsolvemay return too general a solution. One example is when there is a possibility that some coefficients may
be complex. If we know that, for example, they are always real and positive, we can provide dsolve this information to
avoid the solution becoming unnecessarily complicated:

from sympy import *
a, x = symbols('a,x')
f = Function('f')
dsolve(Derivative(f(x), x, 2) + a**4*f(x), f(x))

𝑓(𝑥) = 𝐶1𝑒−𝑖𝑎2𝑥 + 𝐶2𝑒𝑖𝑎2𝑥

a = Symbol('a',real=True,positive=True)
dsolve(Derivative(f(x), x, 2)+a**4*f(x), f(x))

𝑓(𝑥) = 𝐶1 sin (𝑎2𝑥) + 𝐶2 cos (𝑎2𝑥)

12.1. SymPy 125

Introduction to Python for Computational Science and Engineering

12.1.7 Series expansions and plotting

It is possible to expand many SymPy expressions as Taylor series. The series method makes this straightforward. At
minimum, we must specify the expression and the variable in which to expand it. Optionally, we can also specify the point
around which to expand, the maximum term number, and the direction of the expansion (try help(Basic.series)
for more information).

from sympy import *
x = Symbol('x')
sin(x).series(x, 0)

𝑥 − 𝑥3

6 + 𝑥5

120 + 𝑂 (𝑥6)

series(sin(x), x, 0)

𝑥 − 𝑥3

6 + 𝑥5

120 + 𝑂 (𝑥6)

NBVAL_IGNORE_OUTPUT
cos(x).series(x, 0.5, 10)

1.11729533119247 − 0.438791280945186 (𝑥 − 0.5)2 + 0.0799042564340338 (𝑥 − 0.5)3 + 0.0365659400787655 (𝑥 − 0.5)4 − 0.00399521282170169 (𝑥 − 0.5)5 − 0.00121886466929218 (𝑥 − 0.5)6 + 9.51241148024212 ⋅ 10−5 (𝑥 − 0.5)7 + 2.17654405230747 ⋅ 10−5 (𝑥 − 0.5)8 − 1.32116826114474 ⋅ 10−6 (𝑥 − 0.5)9 − 0.479425538604203𝑥 + 𝑂 ((𝑥 − 1
2)

10
; 𝑥 → 1

2)

In some cases, especially for numerical evaluation and plotting the results, it is necessary to remove the trailing O(n)
term:

NBVAL_IGNORE_OUTPUT
cos(x).series(x, 0.5, 10).removeO()

−0.479425538604203𝑥 − 1.32116826114474 ⋅ 10−6 (𝑥 − 0.5)9 + 2.17654405230747 ⋅ 10−5 (𝑥 − 0.5)8 + 9.51241148024212 ⋅ 10−5 (𝑥 − 0.5)7 − 0.00121886466929218 (𝑥 − 0.5)6 − 0.00399521282170169 (𝑥 − 0.5)5 + 0.0365659400787655 (𝑥 − 0.5)4 + 0.0799042564340338 (𝑥 − 0.5)3 − 0.438791280945186 (𝑥 − 0.5)2 + 1.11729533119247

SymPy provides two inbuilt plotting functions, Plot() from thesympy.plottingmodule, andplot fromsympy.
mpmath.visualization. At the time of writing, these functions lack the ability to add a key to the plot, whichmeans
they are unsuitable for most of our needs. Should you wish to use them nevertheless, their help() text is useful.
For most of our purposes, Matplotlib should be the plotting tool of choice. The details are in chapter [cha:visualisingdata].
Here we furnish just one example of how to plot the results of a SymPy computation.

%matplotlib inline

from sympy import sin,series,Symbol
import pylab
x = Symbol('x')
s10 = sin(x).series(x,0,10).removeO()

(continues on next page)

126 Chapter 12. Symbolic computation

Introduction to Python for Computational Science and Engineering

(continued from previous page)

s20 = sin(x).series(x,0,20).removeO()
s = sin(x)
xx = []
y10 = []
y20 = []
y = []
for i in range(1000):
xx.append(i / 100.0)
y10.append(float(s10.subs({x:i/100.0})))
y20.append(float(s20.subs({x:i/100.0})))
y.append(float(s.subs({x:i/100.0})))

pylab.figure()

<Figure size 640x480 with 0 Axes>

<Figure size 640x480 with 0 Axes>

pylab.plot(xx, y10, label='O(10)')
pylab.plot(xx, y20, label='O(20)')
pylab.plot(xx, y, label='sin(x)')

pylab.axis([0, 10, -4, 4])
pylab.xlabel('x')
pylab.ylabel('f(x)')

pylab.legend()

<matplotlib.legend.Legend at 0x7f027c60cb10>

12.1. SymPy 127

Introduction to Python for Computational Science and Engineering

12.1.8 Linear equations and matrix inversion

SymPy has a Matrix class and associated functions that allow the symbolic solution of systems of linear equations
(and, of course, we can obtain numerical answers with subs() and evalf()). We shall consider the example of the
following simple pair of linear equations:

3𝑥 + 7𝑦 = 12𝑧
4𝑥 − 2𝑦 = 5𝑧

Wemaywrite this system in the form𝐴 ⃗𝑥 = ⃗𝑏 (multiplyA by ⃗𝑥 if you want to verify that we recover the original equations),
where

𝐴 = (3 7
4 −2) , ⃗𝑥 = (𝑥

𝑦) , ⃗𝑏 = (12𝑧
5𝑧) .

Here we included a symbol, z, on the right-hand side to demonstrate that symbols will be propagated into the solution.
In many cases we would have z = 1, but there may still be benefit to using SymPy over a numerical solver even when the
solution contains no symbols because of its ability to return exact fractions rather than approximate floats.
One strategy to solve for ⃗𝑥 is to invert the matrix A and pre-multiply, i.e. 𝐴−1𝐴 ⃗𝑥 = ⃗𝑥 = 𝐴−1 ⃗𝑏. SymPy’s Matrix class
has an inv() method that allows us to find the inverse, and * performs matrix multiplication for us, when appropriate:

from sympy import symbols,Matrix
x, y, z = symbols('x,y,z')
A = Matrix(([3, 7], [4, -2]))
A

128 Chapter 12. Symbolic computation

Introduction to Python for Computational Science and Engineering

[3 7
4 −2]

A.inv()

[
1

17
7

342
17 − 3

34
]

b = Matrix((12*z,5*z))
b

[12𝑧
5𝑧]

x = A.inv()*b
x

[
59𝑧
3433𝑧
34

]

x.subs({z:3.3}).evalf(4)

[5.726
3.203]

type(x)

sympy.matrices.dense.MutableDenseMatrix

An alternative method of solving the same problem is to construct the system as a matrix in augmented form; that is the
form obtained by appending the columns of (in our example) A and ⃗𝑏 together. The augmented matrix is[1]:

(𝐴| ⃗𝑏) = (3 7 12𝑧
4 −2 5𝑧) ,

and as before we construct this as a SymPy Matrix object, but in this case we pass it to the
solve_linear_system() function:

from sympy import Matrix, symbols, solve_linear_system
x, y, z = symbols('x,y,z')
system = Matrix(([3, 7, 12*z],[4, -2, 5*z]))
system

[3 7 12𝑧
4 −2 5𝑧]

12.1. SymPy 129

Introduction to Python for Computational Science and Engineering

sol = solve_linear_system(system,x,y)
sol

{𝑥 ∶ 59𝑧
34 , 𝑦 ∶ 33𝑧

34 }

type(sol)

dict

NBVAL_IGNORE_OUTPUT
for k in sol.keys():

print(k,'=',sol[k].subs({z:3.3}).evalf(4))

x = 5.726
y = 3.203

A third option is the solve() method, whose arguments include the individual symbolic equations, rather than any
matrices. Like dsolve() (see ODEs), solve() expects either expressions which it will assume equal to zero, or
Equality objects, which we can conveniently create with Eq():

from sympy import symbols,solve,Eq
x, y, z = symbols('x,y,z')
solve((Eq(3*x+7*y,12*z), Eq(4*x-2*y,5*z)), x, y)

{𝑥 ∶ 59𝑧
34 , 𝑦 ∶ 33𝑧

34 }

solve((3*x+7*y-12*z, 4*x-2*y-5*z), x, y)

{𝑥 ∶ 59𝑧
34 , 𝑦 ∶ 33𝑧

34 }

For more information, see help(solve) and help(solve_linear_system).

12.1.9 Non linear equations

Let’s solve a simple equation such as 𝑥  =  𝑥2. There are two obvious solutions: x = 0 and x = 1. How can we ask
Sympy to compute these for us?

import sympy
x, y, z = sympy.symbols('x, y, z') # create some symbols
eq = x - x ** 2 # define the equation

sympy.solve(eq, x) # solve eq = 0

130 Chapter 12. Symbolic computation

Introduction to Python for Computational Science and Engineering

[0, 1]

The solve() function expects an expression that as meant to be solve so that it evaluates to zero. For our example, we
rewrite
x = x2 as x − x2 = 0 and then pass this to the solve function.
Let’s repeat the same for the equation: x = x3 and solve

eq = x - x ** 3 # define the equation
sympy.solve(eq, x) # solve eq = 0

[−1, 0, 1]

12.1.10 Output: LaTeX interface and pretty-printing

As is the case with many computer algebra systems, SymPy has the ability to format its output as LaTeX code, for easy
inclusion into documents.
At the start of this chapter, we called:

sympy.init_printing()

Sympy detected that it was in Jupyter, and enabled Latex output. The Jupyter Notebook supports (some) Latex, so this
gives us the nicely formatted output above.
We can also see the plain text output from Sympy, and the raw Latex code it creates:

print(series(1/(x+y), y, 0, 3))

y**2/x**3 - y/x**2 + 1/x + O(y**3)

print(latex(series(1/(x+y), y, 0, 3)))

\frac{y^{2}}{x^{3}} - \frac{y}{x^{2}} + \frac{1}{x} + O\left(y^{3}\right)

print(latex(series(1/(x+y), y, 0, 3), mode='inline'))

$\frac{y^{2}}{x^{3}} - \frac{y}{x^{2}} + 1 / x + O\left(y^{3}\right)$

Be aware that in its default mode, latex() outputs code that requires the amsmath package to be loaded via a \
backslashusepackage{amsmath} command in the document preamble.
SymPy also supports a “pretty print” (pprint()) output routine, which produces better-formatted text output than the
default printing routine, as illustrated below. Note features such as the subscripts for array elements whose names are of
the form T_n, the italicised constant e, vertically-centred dots for multiplication, and the nicely-formed matrix borders
and fractions.

12.1. SymPy 131

Introduction to Python for Computational Science and Engineering

Finally, SymPy offers preview(), which displays rendered output on screen (check help(preview) for details).

12.1.11 Automatic generation of C code

A strong point of many symbolic libraries is that they can convert the symbolic expressions to C-code (or other code) that
can subsequently be compiled for high execution speed. Here is an example that demonstrates this:

from sympy import *
from sympy.utilities.codegen import codegen
x = Symbol('x')
sin(x).series(x, 0, 6)

𝑥 − 𝑥3

6 + 𝑥5

120 + 𝑂 (𝑥6)

NBVAL_IGNORE_OUTPUT
print(codegen(("taylor_sine",sin(x).series(x,0,6)), language='C')[0][1])

/**
* Code generated with SymPy 1.12 *
* *
* See http://www.sympy.org/ for more information. *
* *
* This file is part of 'project' *
**/

#include "taylor_sine.h"
#include <math.h>

(continues on next page)

132 Chapter 12. Symbolic computation

Introduction to Python for Computational Science and Engineering

(continued from previous page)

double taylor_sine(double x) {

double taylor_sine_result;
taylor_sine_result = x - 1.0/6.0*pow(x, 3) + (1.0/120.0)*pow(x, 5) + O(x**6);
return taylor_sine_result;

}

12.2 Related tools

It is worth noting that the SAGE initiative https://www.sagemath.org/ is trying to “create a viable free open source alter-
native to Magma, Maple, Mathematica and Matlab.” and includes the SymPy library among many others. Its symbolic
capabilities are more powerful than SymPy’s, and SAGE, but the SymPy features will already cover many of the needs
arising in science and engineering. SAGE includes the computer algebra system Maxima, which is also available stan-
dalone from https://doc.sagemath.org/html/en/reference/interfaces/sage/interfaces/maxima_abstract.html.

12.2. Related tools 133

https://www.sagemath.org/
https://doc.sagemath.org/html/en/reference/interfaces/sage/interfaces/maxima_abstract.html

Introduction to Python for Computational Science and Engineering

134 Chapter 12. Symbolic computation

CHAPTER

THIRTEEN

NUMERICAL COMPUTATION

13.1 Numbers and numbers

We have already seen (03 Data Types Structures, Numbers) that Python knows different types of numbers:
• floating point numbers such as 3.14
• integers such as 42
• complex numbers such as 3.14 + 1j

13.1.1 Limitations of number types

Limitations of ints

Mathematics provides the infinite set of natural numbers ℕ = {1, 2, 3, …}. Because the computer has finite size, it is
impossible to represent all of these numbers in the computer. Instead, only a small subset of numbers is represented.
The int-type can (usually[3]) represent numbers between -2147483648 and +2147483647 and corresponds to 4 bytes
(that’s 4*8 bit, and 232 = 4294967296 which is the range from -2147483648 and +2147483647).
You can imagine that the hardware uses a table like this to encode integers using bits (suppose for simplicity we use only
8 bits for this):

natural number bit-representation
0 00000000
1 00000001
2 00000010
3 00000011
4 00000100
5 00000101
⋮ ⋮
254 11111110
255 11111111

Using 8 bit we can represent 256 natural numbers (for example from 0 to 255) because we have 28 = 256 different ways
of combining eight 0s and 1s.
We could also use a slightly different table to describe 256 integer numbers ranging, for example, from -127 to +128.
This is in principle how integers are represented in the computer. Depending on the number of bytes used, only integer
numbers between a minimum and a maximum value can be represented. On today’s hardware, it is common to use

135

Introduction to Python for Computational Science and Engineering

4 or 8 bytes to represent one integer, which leads exactly to the minimum and maximum values of -2147483648 and
+2147483647 as shown above for 4 bytes, and +9223372036854775807 as the maximum integer for 8 bytes (that’s
≈9.2 ⋅ 1018).

Limitations of floats

The floating point numbers in a computer are not the same as the mathematical floating point numbers. (This is exactly
the same as the (mathematical) integer numbers not being the same as the integer numbers in a computer: only a subset
of the infinite set of integer numbers can be represented by the int data type as shown in Numbers and numbers). So
how are floating point numbers represented in the computer?

• Any real number x can be written as x = a ⋅ 10b where a is the mantissa and b the exponent.
• Examples:

x a b
123.45 = 1.23456 ⋅ 102 1.23456 2
1000000 = 1.0 ⋅ 106 1.00000 6
0.0000024 = 2.4 ⋅ 10-6 2.40000 -6

• Therefore, we can use 2 integers to encode one floating point number!
x = a ⋅ 10b

• Following (roughly) the IEEE-754 standard, one uses 8 bytes for one float x: these 64 bits are split as
– 10 bit for the exponent b and
– 54 bit for the mantissa a.

This results in
• largest possible float ≈10308 (quality measure for b)
• smallest possible (positive) float ≈10−308 (quality measure for b)
• distance between 1.0 and next larger number ≈10−16 (quality measure for a)

Note that this is in principle how floating point numbers are stored (it is actually a bit more complicated).

Limitations of complex numbers

The complex number type has essentially the same limitations as the float data type (see limitations of floats) because
a complex number consists of two floats: one represents the real part, the other one the imaginary part.

…are these number types of practical value?

In practice, we do not usually find numbers in our daily life that exceed 10300 (this is a number with 300 zeros!), and
therefore the floating point numbers cover the range of numbers we usually need.
However, be warned that in scientific computation small and large numbers are used which may (often in intermediate
results) exceed the range of floating point numbers.

• Imagine for example, that we have to take the fourth power of the constant ℏ = 1.0545716 ⋅ 10−34kgm2/s:
• ℏ4 = 1.2368136958909421 ⋅ 10−136k**g4m8/s4 which is “halfway” to our representable smallest positive float of
the order of 10−308.

136 Chapter 13. Numerical Computation

Introduction to Python for Computational Science and Engineering

If there is any danger that we might exceed the range of the floating point numbers, we have to rescale our equations so
that (ideally) all numbers are of order unity. Rescaling our equations so that all relevant numbers are approximately 1
is also useful in debugging our code: if numbers much greater or smaller than 1 appear, this may be an indication of an
error.

13.1.2 Using floating point numbers (carelessly)

We know already that we need to take care that our floating point values do not exceed the range of floating point numbers
that can be represented in the computer.
There is another complication due to the way floating point numbers have to be represented internally: not all floating
point numbers can be represented exactly in the computer. The number 1.0 can be represented exactly but the numbers
0.1, 0.2 and 0.3 cannot:

'%.20f' % 1.0

'1.00000000000000000000'

'%.20f' % 0.1

'0.10000000000000000555'

'%.20f' % 0.2

'0.20000000000000001110'

'%.20f' % 0.3

'0.29999999999999998890'

Instead, the floating point number “nearest” to the real number is chosen.
This can cause problems. Suppose we need a loop where x takes values 0.1, 0.2, 0.3, …, 0.9, 1.0. We might be tempted
to write something like this:

x = 0.0
while not x == 1.0:

x = x + 0.1
print (" x =%19.17f" % (x))

However, this loop will never terminate. Here are the first 11 lines of output of the program:

x=0.10000000000000001
x=0.20000000000000001
x=0.30000000000000004
x=0.40000000000000002
x= 0.5
x=0.59999999999999998
x=0.69999999999999996
x=0.79999999999999993

(continues on next page)

13.1. Numbers and numbers 137

Introduction to Python for Computational Science and Engineering

(continued from previous page)

x=0.89999999999999991
x=0.99999999999999989
x=1.09999999999999987

Because the variable x never takes exactly the value 1.0, the while loop will continue forever.
Thus: Never compare two floating point numbers for equality.

13.1.3 Using floating point numbers carefully 1

There are a number of alternative ways to solve this problem. For example, we can compare the distance between two
floating point numbers:

x = 0.0
while abs(x - 1.0) > 1e-8:

x = x + 0.1
print (" x =%19.17f" % (x))

x =0.10000000000000001
x =0.20000000000000001
x =0.30000000000000004
x =0.40000000000000002
x =0.50000000000000000
x =0.59999999999999998
x =0.69999999999999996
x =0.79999999999999993
x =0.89999999999999991
x =0.99999999999999989

13.1.4 Using floating point numbers carefully 2

Alternatively, we can (for this example) iterate over a sequence of integers and compute the floating point number from
the integer:

for i in range (1 , 11):
x = i * 0.1
print(" x =%19.17f" % (x))

x =0.10000000000000001
x =0.20000000000000001
x =0.30000000000000004
x =0.40000000000000002
x =0.50000000000000000
x =0.60000000000000009
x =0.70000000000000007
x =0.80000000000000004
x =0.90000000000000002
x =1.00000000000000000

138 Chapter 13. Numerical Computation

Introduction to Python for Computational Science and Engineering

x=0.10000000000000001
x=0.20000000000000001
x=0.30000000000000004
x=0.40000000000000002
x= 0.5
x=0.60000000000000009
x=0.70000000000000007
x=0.80000000000000004
x=0.90000000000000002
x= 1

If we compare this with the output from the program in Using floating point numbers (carelessly), we can see
that the floating point numbers differ. This means that – in a numerical calculation – it is not true that
0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 = 1.0.

13.1.5 Symbolic calculation

Using the sympy package we have arbitrary precision. Using sympy.Rational, we can define the fraction 1/10 exactly
symbolically. Adding this 10 times will lead exactly to the value 1, as demonstrated by this script

from sympy import Rational
dx = Rational (1 ,10)
x = 0
while x != 1.0:

x = x + dx
print("Current x=%4s = %3.1f " % (x , x . evalf ()))
print(" Reached x=%s " % x)

Current x=1/10 = 0.1
Reached x=1/10

Current x= 1/5 = 0.2
Reached x=1/5

Current x=3/10 = 0.3
Reached x=3/10

Current x= 2/5 = 0.4
Reached x=2/5

Current x= 1/2 = 0.5
Reached x=1/2

Current x= 3/5 = 0.6
Reached x=3/5

Current x=7/10 = 0.7
Reached x=7/10

Current x= 4/5 = 0.8
Reached x=4/5

Current x=9/10 = 0.9
Reached x=9/10

Current x= 1 = 1.0
Reached x=1

However, this symbolic calculation is much slower as it is done through software rather than the CPU-based floating point
operations. The next program approximates the relative performances:

NBVAL_IGNORE_OUTPUT
from sympy import Rational

(continues on next page)

13.1. Numbers and numbers 139

Introduction to Python for Computational Science and Engineering

(continued from previous page)

dx_symbolic = Rational (1 ,10)
dx = 0.1

def loop_sympy (n):
x = 0
for i in range(n):

x = x + dx_symbolic
return x

def loop_float(n):
x =0
for i in range(n):

x = x + dx
return x

def time_this (f, n):
import time
starttime = time.time()
result = f(n)
stoptime = time.time()
print(" deviation is %16.15g" % (n * dx_symbolic - result))
return stoptime - starttime

n = 100000
print("loop using float dx:")
time_float = time_this(loop_float, n)
print("float loop n=%d takes %6.5f seconds" % (n, time_float))
print("loop using sympy symbolic dx:")
time_sympy = time_this (loop_sympy, n)
print("sympy loop n =% d takes %6.5f seconds" % (n , time_sympy))
print("Symbolic loop is a factor %.1f slower." % (time_sympy / time_float))

loop using float dx:
deviation is -1.88483681995422e-08

float loop n=100000 takes 0.00235 seconds
loop using sympy symbolic dx:
deviation is 0

sympy loop n = 100000 takes 0.19528 seconds
Symbolic loop is a factor 83.2 slower.

This is of course an artificial example: we have added the symbolic code to demonstrate that these round off errors
originate from the approximative representation of floating point numbers in the hardware (and thus programming lan-
guages). We can, in principle, avoid these complications by computing using symbolic expressions, but this is in practice
too slow.[4]

140 Chapter 13. Numerical Computation

Introduction to Python for Computational Science and Engineering

13.1.6 Summary

In summary, we have learned that
• floating point numbers and integers used in numeric computation are generally quite different from “mathematical
numbers” (symbolic calculations are exact and use the “mathematical numbers”):

– there is a maximum number and a minimum number that can be represented (for both integers and floating
point numbers)

– within this range, not every floating point number can be represented in the computer.
• We deal with this limitation by:

– never comparing two floating point numbers for equality (instead we compute the absolute value of the dif-
ference)

– use of algorithms that are stable (this means that small deviations from correct numbers can be corrected by
the algorithm. We have not yet shown any such examples this document.)

• Note that there is a lot more to be said about numerical and algorithmic tricks and methods to make numeric
computation as accurate as possible but this is outside the scope of this section.

13.1.7 Exercise: infinite or finite loop

1. What does the following piece of code compute? Will the loop ever finish? Why?

eps = 1.0
while 1.0 + eps > 1.0:

eps = eps / 2.0
print(eps)

13.1. Numbers and numbers 141

Introduction to Python for Computational Science and Engineering

142 Chapter 13. Numerical Computation

CHAPTER

FOURTEEN

NUMERICAL PYTHON (NUMPY): ARRAYS

14.1 Numpy introduction

The NumPy package (read as NUMerical PYthon) provides access to
• a new data structure called arrays which allow
• efficient vector and matrix operations. It also provides
• a number of linear algebra operations (such as solving of systems of linear equations, computation of Eigenvectors
and Eigenvalues).

14.1.1 History

Some background information: There are two other implementations that provide nearly the same functionality as NumPy.
These are called “Numeric” and “numarray”:

• Numeric was the first provision of a set of numerical methods (similar to Matlab) for Python. It evolved from a
PhD project.

• Numarray is a re-implementation of Numeric with certain improvements (but for our purposes both Numeric and
Numarray behave virtually identical).

• Early in 2006 it was decided tomerge the best aspects of Numeric andNumarray into the Scientific Python (scipy)
package and to provide (a hopefully “final”) array data type under the module name “NumPy”.

We will use in the following materials the “NumPy” package as provided by (new) SciPy. If for some reason this doesn’t
work for you, chances are that your SciPy is too old. In that case, you will find that either “Numeric” or “numarray” is
installed and should provide nearly the same capabilities.[5]

14.1.2 Arrays

We introduce a new data type (provided by NumPy) which is called “array”. An array appears to be very similar to a
list but an array can keep only elements of the same type (whereas a list can mix different kinds of objects). This means
arrays are more efficient to store (because we don’t need to store the type for every element). It also makes arrays the data
structure of choice for numerical calculations where we often deal with vectors and matricies.
Vectors and matrices (and matrices with more than two indices) are all called “arrays” in NumPy.

143

Introduction to Python for Computational Science and Engineering

Vectors (1d-arrays)

The data structure we will need most often is a vector. Here are a few examples of how we can generate one:
• Conversion of a list (or tuple) into an array using numpy.array:

import numpy as np
x = np.array([0, 0.5, 1, 1.5])
print(x)

[0. 0.5 1. 1.5]

• Creation of a vector using “ArrayRANGE”:

x = np.arange(0, 2, 0.5)
print(x)

[0. 0.5 1. 1.5]

• Creation of vector with zeros

x = np.zeros(4)
print(x)

[0. 0. 0. 0.]

Once the array is established, we can set and retrieve individual values. For example:

x = np.zeros(4)
x[0] = 3.4
x[2] = 4
print(x)
print(x[0])
print(x[0:-1])

[3.4 0. 4. 0.]
3.4
[3.4 0. 4.]

Note that once we have a vector we can perform calculations on every element in the vector with a single statement:

x = np.arange(0, 2, 0.5)
print(x)
print(x + 10)
print(x ** 2)
print(np.sin(x))

[0. 0.5 1. 1.5]
[10. 10.5 11. 11.5]
[0. 0.25 1. 2.25]
[0. 0.47942554 0.84147098 0.99749499]

144 Chapter 14. Numerical Python (numpy): arrays

Introduction to Python for Computational Science and Engineering

Matrices (2d-arrays)

Here are two ways to create a 2d-array:
• By converting a list of lists (or tuples) into an array:

x = np.array([[1, 2, 3], [4, 5, 6]])
x

array([[1, 2, 3],
[4, 5, 6]])

• Using the zeros method to create a matrix with 5 rows and 4 columns

x = np.zeros((5, 4))
x

array([[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]])

The “shape” of a matrix can be queried like this (here we have 2 rows and 3 columns):

x = np.array([[1, 2, 3], [4, 5, 6]])
print(x)
x.shape

[[1 2 3]
[4 5 6]]

(2, 3)

Individual elements can be accessed and set using this syntax:

x = np.array([[1, 2, 3], [4, 5, 6]])
x[0, 0]

1

x[0, 1]

2

x[0, 2]

3

14.1. Numpy introduction 145

Introduction to Python for Computational Science and Engineering

x[1, 0]

4

x[:, 0]

array([1, 4])

x[0,:]

array([1, 2, 3])

14.1.3 Convert from array to list or tuple

To create an array back to a list or tuple, we can use the standard python functions list(s) and tuple(s) which
take a sequence s as the input argument and return a list and tuple, respectively:

a = np.array([1, 4, 10])
a

array([1, 4, 10])

list(a)

[1, 4, 10]

tuple(a)

(1, 4, 10)

14.1.4 Standard Linear Algebra operations

Maxtrix multiplication

Two arrays can be multiplied in the usual linear-algebra way using numpy.matrixmultiply. Here is an example:

import numpy as np
import numpy.random
A = numpy.random.rand(5, 5) # generates a random 5 by 5 matrix
x = numpy.random.rand(5) # generates a 5-element vector
b = np.dot(A, x) # multiply matrix A with vector x

146 Chapter 14. Numerical Python (numpy): arrays

Introduction to Python for Computational Science and Engineering

Solving systems of linear equations

To solve a system of equations Ax = b that is given in matrix form (i.e A is a matrix and x and b are vectors where A and
b are known and we want to find the unknown vector x), we can use the linear algebra package (linalg) of numpy:

import numpy.linalg as LA
x = LA.solve(A, b)

Computing Eigenvectors and Eigenvalues

Here is a small example that computes the [trivial] Eigenvectors and Eigenvalues (eig) of the unity matrix (eye)):

import numpy
import numpy.linalg as LA
A = numpy.eye(3) #'eye'->I->1 (ones on the diagonal)
print(A)

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

evalues, evectors = LA.eig(A)
print(evalues)

[1. 1. 1.]

print(evectors)

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

Note that each of these commands provides its own documentation. For example, help(LA.eig) will tell you all
about the eigenvector and eigenvalue function (once you have imported numpy.linalg as LA).

Curve fitting of polynomials

Let’s assume we have x-y data to which we like to fit a curve (to minimise the least square deviation of the fit from the
data).
Numpy provides the routine polyfit(x,y,n) (which is similar to Matlab’s polyfit function which takes a list x
of x-values for data points, a list y of y-values of the same data points and a desired order of the polynomial that will be
determined to fit the data in the least-square sense as well as possible.

%matplotlib inline
import numpy as np

demo curve fitting : xdata and ydata are input data
xdata = np.array([0.0 , 1.0 , 2.0 , 3.0 , 4.0 , 5.0])
ydata = np.array([0.0 , 0.8 , 0.9 , 0.1 , -0.8 , -1.0])

(continues on next page)

14.1. Numpy introduction 147

Introduction to Python for Computational Science and Engineering

(continued from previous page)

now do fit for cubic (order = 3) polynomial
z = np.polyfit(xdata, ydata, 3)

z is an array of coefficients , highest first , i . e .
X^3 X^2 X 0
z = array ([0.08703704 , -0.81349206 , 1.69312169 , -0.03968254])
It is convenient to use ‘poly1d‘ objects for dealing with polynomials:
p = np.poly1d(z) # creates a polynomial function p from coefficients

and p can be evaluated for all x then .

create plot
xs = [0.1 * i for i in range (50)]
ys = [p(x) for x in xs] # evaluate p(x) for all x in list xs

import pylab
pylab.plot(xdata, ydata, 'o', label='data')
pylab.plot(xs, ys, label='fitted curve')
pylab.ylabel('y')
pylab.xlabel('x')

Text(0.5, 0, 'x')

This shows the fitted curve (solid line) together with the precise computed data points.

148 Chapter 14. Numerical Python (numpy): arrays

Introduction to Python for Computational Science and Engineering

14.1.5 More numpy examples…

…can be found here: https://numpy.org/doc/stable/reference/routines.html

14.1.6 Numpy for Matlab users

There is a dedicated webpage that explains Numpy from the perspective of a (experienced) Matlab user at
https://numpy.org/doc/stable/user/numpy-for-matlab-users.html.

14.1. Numpy introduction 149

https://numpy.org/doc/stable/reference/routines.html

Introduction to Python for Computational Science and Engineering

150 Chapter 14. Numerical Python (numpy): arrays

CHAPTER

FIFTEEN

VISUALISING DATA

The purpose of scientific computation is insight not numbers: To understand the meaning of the (many) numbers we
compute, we often need postprocessing, statistical analysis and graphical visualisation of our data. The following sections
describe

• Matplotlib/Pylab — a tool to generate high quality graphs of the type y = f(x) (and a bit more)
– the pylab interface
– the pyplot interface

We also touch on:
• Visual Python — a tool to quickly generate animations of time dependent processes taking place in 3d space.
• Tools to store and visualise vtk files

We close with a short outlook on
• Further tools and developments discussing other tools and emerging approaches for data visualisation and analysis.

15.1 Matplotlib – plotting y=f(x), (and a bit more)

The Python library Matplotlib is a python 2D plotting library which produces publication quality figures in a variety of
hardcopy formats and interactive environments. Matplotlib tries to make easy things easy and hard things possible. You
can generate plots, histograms, power spectra, bar charts, errorcharts, scatterplots, etc, with just a few lines of code.
For more detailed information, check these links

• A very nice introduction in the object oriented Matplotlib interface, and summary of all important ways
of changing style, figure size, linewidth, etc. This is a useful reference: https://github.com/jrjohansson/
scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb

• Matplotlib tutorial
• Matplotlib home page
• Extended thumbnail gallery of examples https://matplotlib.org/stable/gallery/index.html

151

https://github.com/jrjohansson/scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb
https://github.com/jrjohansson/scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb
https://matplotlib.org/stable/tutorials/index
https://matplotlib.org

Introduction to Python for Computational Science and Engineering

15.1.1 Matplotlib and Pylab

The Matplotlib package provides an object oriented plotting library under the name space matplotlib.pyplot.
The pylab interface is provided through the Matplotlib package. Internally it uses matplotlib.pyplot function-
ality but imitates the (state-driven) Matlab plotting interface.
The pylab interface is slightly more convenient to use for simple plots, and matplotlib.pyplot gives far more
detailed control over how plots are created. If you routinely need to produce figures, we suggest to learn about the object
oriented matplotlib.pyplot interface (instead of the pylab interface).
This chapter focusses on the Pylab interface, but also provides examples for the object-oriented matplotlib.pyplot
interface.
An excellent introduction and overview of the matplotlib.pyplot plotting interface is available in https://github.
com/jrjohansson/scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb.
For the purpose of this book and the Jupyterbook package, we use some settings to create a svg file for the html version
of the book, and a high-resolution png file for the pdf version:

%matplotlib inline
settings for jupyter book: svg for html version, high-resolution png for pdf
import matplotlib_inline
matplotlib_inline.backend_inline.set_matplotlib_formats('svg', 'png')
import matplotlib as mpl
mpl.rcParams['figure.dpi'] = 400

15.1.2 First example

The pyplot interface

The recommended way of using Matplotlib in a simple example is shown here:

example 1 a
import numpy as np # get access to fast arrays
import matplotlib.pyplot as plt # the plotting functions

x = np.arange(-3.14, 3.14, 0.01) # create x-data
y = np.sin(x) # compute y-data
plt.plot(x, y) # create plot

[<matplotlib.lines.Line2D at 0x7fc840326890>]

152 Chapter 15. Visualising Data

https://github.com/jrjohansson/scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb
https://github.com/jrjohansson/scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb
https://jupyterbook.org

Introduction to Python for Computational Science and Engineering

15.1.3 How to import matplotlib, pylab, pyplot, numpy and all that

The submodule matplotlib.pyplot provides an object oriented interface to the plotting library. Many of the
examples in the matplotlib documentation follow the import convention to import matplotlib.pyplot as plt and
numpy as np. It is of the user’s decision whether to import the numpy library under the name np (as often done
in matplotlib examples) or N as occasionally done in this text (and in the early days when the predecessor of numpy
was called “Numeric”) or any other name you like. Similarly, it is a matter of taste whether the plotting submodule
(matplotlib.pyplot) is imported as plt as is done in the matplotlib documentation or plot (which could be
argued is slightly clearer) etc.
As always a balance has to be struck between personal preferences and consistency with common practice in choosing
these name. Consistency with common use is more important if the code is likely to be used by others or published.

The Pylab interface

We introduce the pylab interface by translating the example 1a above to the following example 1b (which is identical
in functionality to the example 1a and will create the same plot):

example 1b
import pylab
import numpy as np

x = np.arange (-3.14, 3.14, 0.01)
y = np.sin(x)

pylab.plot(x, y)

15.1. Matplotlib – plotting y=f(x), (and a bit more) 153

Introduction to Python for Computational Science and Engineering

[<matplotlib.lines.Line2D at 0x7fc84029b550>]

Plotting nearly always needs arrays of numerical data and it is for this reason that the numpy module is used a lot: it
provides fast and memory efficient array handling for Python (see chapter 14). The pylab interface has taken this a step
further and automatically imports all objects from numpy into the pylab name space:
Because the numpy.arange and numpy.sin objects have already been imported into the pylab namespace, we
could also write it as example 1c:

example 1c
import pylab as p

x = p.arange(-3.14, 3.14, 0.01)
y = p.sin(x)

p.plot(x, y)

[<matplotlib.lines.Line2D at 0x7fc84011b950>]

154 Chapter 15. Visualising Data

Introduction to Python for Computational Science and Engineering

If we really want to cut down on characters to type, we could also important all the objects (*) from the pylab conve-
nience module into our current namespace, and rewrite the code as example 1d:

example 1 d
from pylab import * # not generally recommended

okay for interactive testing

x = arange(-3.14, 3.14, 0.01)
y = sin(x)
plot(x, y)
show()

15.1. Matplotlib – plotting y=f(x), (and a bit more) 155

Introduction to Python for Computational Science and Engineering

This can be extremely convenient, but comes with a big health warning:
• While using from pylab import * is acceptable at the command prompt to interactively create plots and
analyse data, this should never be used in any plotting scripts.

• The pylab toplevel provides over 800 different objects which are all imported into the global name space when
running from pylab import *. This is not good practice, and could conflict with other objects that exist
already or are created later.

• As a rule of thumb: do never use from somewhere import * in programs we save. This may be okay at
the command prompt for interactive data exploration.

15.1.4 IPython’s inline mode

Within the Jupyter Notebook or Qtconsole (see the Python shells notebook) we can use the %matplotlib inline
magic command to make further plots appear within our console or notebook. To force pop up windows instead, use
%matplotlib qt.
If you enjoy the pylab interface, then you maybe interested in the %pylab magic, which will not only switch to inline
plotting but also automatically execute from pylab import *.

156 Chapter 15. Visualising Data

Introduction to Python for Computational Science and Engineering

15.1.5 Saving the figure to a file

Once you have created the figure (using the plot command) and added any labels, legends etc, you have two options to
save the plot.

1. You can display the figure (using show) and interactively save it by clicking on the disk icon. (This does not work
with inline plots as the icons are not available.)

2. You can (without displaying the figure) save it directly from your Python code. The command to use is savefig.
The format is determined by the extension of the file name you provide. Here is an example (pylabsavefig.
py) which saves a figure into different files.

saving figure files with the pylab interface
import pylab
import numpy as np

x = np.arange(-3.14, 3.14, 0.01)
y = np.sin(x)

pylab.plot(x, y, label='sin(x)')
pylab.savefig('myplot.png') # saves png file
pylab.savefig('myplot.svg') # saves svg file
pylab.savefig('myplot.eps') # saves svg file
pylab.savefig('myplot.pdf') # saves pdf file
pylab.close()

A note on file formats:
The pdf, eps and svg file formats are vector file formats which means that one can zoom into the image without loosing
quality (lines will still be sharp). File formats such as png (and jpg, gif, tif, bmp) save the image in form of a bitmap
(i.e. a matrix of colour values) and will appear blurry or pixelated when zooming in (or when printed in high resolution).
Accordingly, choose a vector file format where you can, and use the bitmap (png for example) if there are no other
options. Choose the eps or pdf file format if you plan to include the figure in a Latex document – depending on whether
you want to compile it using latex (needs eps) or pdflatex (can use pdf [better] or png). If the version of MS Word
(or other text processing software you use) can handle pdf files, it is better to use pdf than png for that.

saving figure files with the pyplot interface
from matplotlib import pyplot as plt
import numpy as np

x = np.arange(-3.14, 3.14, 0.01)
y = np.sin(x)

fig, ax = plt.subplots()
ax.plot(x, y, label='sin(x)')
fig.savefig('myplot.png') # saves png file
fig.savefig('myplot.svg') # saves svg file
fig.savefig('myplot.eps') # saves svg file
fig.savefig('myplot.pdf') # saves pdf file
plt.close(fig)

15.1. Matplotlib – plotting y=f(x), (and a bit more) 157

Introduction to Python for Computational Science and Engineering

15.2 The pylab interface

15.2.1 Fine tuning your plot

Matplotlib allows us to fine tune our plots in great detail. Here is an example:

import pylab
import numpy as N

x = N.arange(-3.14, 3.14, 0.01)
y1 = N.sin(x)
y2 = N.cos(x)
pylab.figure(figsize =(5 , 5))
pylab.plot(x, y1, label='sin(x)')
pylab.plot(x, y2, label='cos(x)')
pylab.legend()
pylab.axis([-2, 2, -1, 1])
pylab.grid()
pylab.xlabel('x')
pylab.title('This is the title of the graph')

Text(0.5, 1.0, 'This is the title of the graph')

showing some other useful commands:

158 Chapter 15. Visualising Data

Introduction to Python for Computational Science and Engineering

• figure(figsize=(5, 5)) sets the figure size to 5inch by 5inch
• plot(x, y1, label=’sin(x)’) The “label” keyword defines the name of this line. The line label will be
shown in the legend if the legend() command is used later.

• Note that calling the plot command repeatedly, allows you to overlay a number of curves.
• axis([-2, 2, -1, 1]) This fixes the displayed area to go from xmin=-2 to xmax=2 in x-direction, and
from ymin=-1 to ymax=1 in y-direction

• legend() This command will display a legend with the labels as defined in the plot command. Try
help(pylab.legend) to learn more about the placement of the legend.

• grid() This command will display a grid on the backdrop.
• xlabel(’...’) and ylabel(’...’) allow labelling the axes.

Note further than you can chose different line styles, line thicknesses, symbols and colours for the data to be plotted. (The
syntax is very similar to MATLAB.) For example:

• plot(x, y, ’og’) will plot circles (o) in green (g)
• plot(x, y, ’-r’) will plot a line (-) in red (r)
• plot(x, y, ’-b’, linewidth=2) will plot a blue line (b) with two two pixel thickness linewidth=2
which is twice as wide as the default.

• plot(x, y, ’-’, alpha=0.5) will plot a semi-transparent line (b).
The full list of options can be found when typing help(pylab.plot) at the Python prompt. Because this documen-
tation is so useful, we repeat parts of it here:

plot(*args, **kwargs)
Plot lines and/or markers to the
:class:`~matplotlib.axes.Axes`. *args* is a variable length
argument, allowing for multiple *x*, *y* pairs with an
optional format string. For example, each of the following is
legal::

plot(x, y) # plot x and y using default line style and color
plot(x, y, 'bo') # plot x and y using blue circle markers
plot(y) # plot y using x as index array 0..N-1
plot(y, 'r+') # ditto, but with red plusses

If *x* and/or *y* is 2-dimensional, then the corresponding columns
will be plotted.

An arbitrary number of *x*, *y*, *fmt* groups can be
specified, as in::

a.plot(x1, y1, 'g^', x2, y2, 'g-')

Return value is a list of lines that were added.

The following format string characters are accepted to control
the line style or marker:

================ ===============================
character description
================ ===============================
'-' solid line style

(continues on next page)

15.2. The pylab interface 159

Introduction to Python for Computational Science and Engineering

(continued from previous page)

'--' dashed line style
'-.' dash-dot line style
':' dotted line style
'.' point marker
',' pixel marker
'o' circle marker
'v' triangle_down marker
'^' triangle_up marker
'<' triangle_left marker
'>' triangle_right marker
'1' tri_down marker
'2' tri_up marker
'3' tri_left marker
'4' tri_right marker
's' square marker
'p' pentagon marker
'*' star marker
'h' hexagon1 marker
'H' hexagon2 marker
'+' plus marker
'x' x marker
'D' diamond marker
'd' thin_diamond marker
'|' vline marker
'_' hline marker
================ ===============================

The following color abbreviations are supported:

========== ========
character color
========== ========
'b' blue
'g' green
'r' red
'c' cyan
'm' magenta
'y' yellow
'k' black
'w' white
========== ========

In addition, you can specify colors in many weird and
wonderful ways, including full names (``'green'``), hex
strings (``'#008000'``), RGB or RGBA tuples (``(0,1,0,1)``) or
grayscale intensities as a string (``'0.8'``). Of these, the
string specifications can be used in place of a ``fmt`` group,
but the tuple forms can be used only as ``kwargs``.

Line styles and colors are combined in a single format string, as in
``'bo'`` for blue circles.

The *kwargs* can be used to set line properties (any property that has
a ``set_*`` method). You can use this to set a line label (for auto
legends), linewidth, anitialising, marker face color, etc. Here is an
example::

(continues on next page)

160 Chapter 15. Visualising Data

Introduction to Python for Computational Science and Engineering

(continued from previous page)

plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2)
plot([1,2,3], [1,4,9], 'rs', label='line 2')
axis([0, 4, 0, 10])
legend()

If you make multiple lines with one plot command, the kwargs
apply to all those lines, e.g.::

plot(x1, y1, x2, y2, antialised=False)

Neither line will be antialiased.

You do not need to use format strings, which are just
abbreviations. All of the line properties can be controlled
by keyword arguments. For example, you can set the color,
marker, linestyle, and markercolor with::

plot(x, y, color='green', linestyle='dashed', marker='o',
markerfacecolor='blue', markersize=12). See
:class:`~matplotlib.lines.Line2D` for details.

The use of different line styles and thicknesses is particularly useful when colour cannot be used to distinguish lines (for
example when graph will be used in document that is to be printed in black and white only).

15.2.2 Plotting more than one curve

There are three different methods to display more than one curve.

Two (or more) curves in one graph

By calling the plot command repeatedly, more than one curve can be drawn in the same graph. Example:

import numpy as np
t = np.arange(0, 2*np.pi, 0.01)

import pylab
pylab.plot(t, np.sin(t), label='sin(t)')
pylab.plot(t, np.cos(t), label='cos(t)')
pylab.legend()

<matplotlib.legend.Legend at 0x7fc82c917890>

15.2. The pylab interface 161

Introduction to Python for Computational Science and Engineering

Two (or more graphs) in one figure window

The pylab.subplot command allows to arrange several graphs within one figure window. The general syntax is

subplot(numRows, numCols, plotNum)

For example, to arrange 4 graphs in a 2-by-2 matrix, and to select the first graph for the next plot command, one can use:

subplot(2, 2, 1)

Here is a complete example plotting the sine and cosine curves in two graphs that are aligned underneath each other within
the same window:

import numpy as np
t = np.arange (0, 2*np.pi, 0.01)

import pylab

pylab.subplot(2, 1, 1)
pylab.plot(t, np.sin(t))
pylab.xlabel('t')
pylab.ylabel('sin(t)')

pylab.subplot(2, 1, 2)
pylab.plot(t, np.cos(t))
pylab.xlabel('t')
pylab.ylabel('cos(t)');

162 Chapter 15. Visualising Data

Introduction to Python for Computational Science and Engineering

Two (or more) figure windows

import pylab
pylab.figure(1)
pylab.plot(range(10), 'o')

pylab.figure(2)
pylab.plot(range(100), 'x')

[<matplotlib.lines.Line2D at 0x7fc82c819810>]

15.2. The pylab interface 163

Introduction to Python for Computational Science and Engineering

Note that you can use pylab.close() to close one, some or all figure windows (use help(pylab.close) to
learn more). The closing of figures is not relevant for inline plots, but for plots that appear in pop-up windows, those
windows will be closed when the figure is closed.

164 Chapter 15. Visualising Data

Introduction to Python for Computational Science and Engineering

15.2.3 Interactive mode

Pylab can be run in two modes:
• non-interactive (this is the default)
• interactive.

In non-interactive mode, no plots will be displayed until the show() command has been issued. In this mode, the
show() command should be the last statement of your program.
In interactive mode, plots will be immediately displayed after the plot command has been issued.
One can switch the interactive mode on using pylab.ion() and off using pylab.ioff(). IPython’s %mat-
plotlib magic also enables interactive mode.
If you use Jupyter notebooks with inline plots, then this feature is not so relevant.

15.3 The matplotlib.pyplot interface

This is the recommended way to use matplotlib for producing publication quality plots, or anything that needs some
fine tuning: the object oriented approach of the pyplot interface makes it generally easier to tailor the plots that the
state-driven pylab interface.
The central two commands to create pyplot figures are:

1. Create a figure object, and one (or more) axes objects within the figure.
2. Create some drawing inside the axes object.

Here is an example:

import numpy as np
import matplotlib.pyplot as plt

xs = np.linspace(0, 10, 100)
ys = np.sin(xs)

fig, ax = plt.subplots()
ax.plot(xs, ys)

[<matplotlib.lines.Line2D at 0x7fc82c882290>]

15.3. The matplotlib.pyplot interface 165

Introduction to Python for Computational Science and Engineering

Below is a more complete example. We can see that the object oriented nature, for example the ax object, makes it
possible to target our formatting instructions to that ax object. This becomes particularly useful if we have more than
one axes object in the same figure.

import numpy as np
import matplotlib.pyplot as plt

xs = np.linspace(0, 10, 100)
ys = np.sin(xs)

fig, ax = plt.subplots(figsize=(6, 4))
ax.plot(xs, ys, 'x-', linewidth=2, color='orange')

ax.grid('on')
ax.set_xlabel('x')
ax.set_ylabel('y=f(x)')
fig.savefig("pyplot-demo2.pdf")

166 Chapter 15. Visualising Data

Introduction to Python for Computational Science and Engineering

15.3.1 Histograms

The program below demonstrates how to create histograms from statistical data with matplotlib.

import matplotlib.pyplot as plt
import numpy as np
import scipy.stats

create the data
mu, sigma = 100, 15
x = mu + sigma*np.random.randn(10000)

create the figure and axes objects
fig, ax = plt.subplots()

the histogram of the data
n, bins, patches = ax.hist(x, 50, density=1, facecolor='green', alpha=0.75)

add a 'best fit' line
y = scipy.stats.norm.pdf(bins, mu, sigma)
l = ax.plot(bins, y, 'r--', linewidth=1)

annotate the plot
ax.set_xlabel('Smarts')
ax.set_ylabel('Probability')
ax.set_title(r'$\mathrm{Histogram\ of\ IQ:}\ \mu=100,\ \sigma=15$')
ax.axis([40, 160, 0, 0.03])
ax.grid(True)

15.3. The matplotlib.pyplot interface 167

Introduction to Python for Computational Science and Engineering

Do not try to understand every single command in this file: some are rather specialised and have not been covered in this
text. The intention is to provide a few examples to show what can – in principle – be done with Matplotlib. If you need a
plot like this, the expectation is that you will need to experiment and possibly learn a bit more about Matplotlib.

15.3.2 Visualising matrix data

The program below demonstrates how to create a bitmap-plot of the entries of a matrix.

import numpy as np
import matplotlib.pyplot as plt

Helper function (from https://github.com/matplotlib/matplotlib/blob/master/lib/
↪matplotlib/mlab.py

as of August 2018)
def bivariate_normal(X, Y, sigmax=1.0, sigmay=1.0,

mux=0.0, muy=0.0, sigmaxy=0.0):
"""
Bivariate Gaussian distribution for equal shape *X*, *Y*.
See `bivariate normal
<https://mathworld.wolfram.com/BivariateNormalDistribution.html>`_
at mathworld.
"""
Xmu = X - mux
Ymu = Y - muy

rho = sigmaxy / (sigmax*sigmay)

(continues on next page)

168 Chapter 15. Visualising Data

Introduction to Python for Computational Science and Engineering

(continued from previous page)

z = Xmu**2 / sigmax**2 + Ymu**2 / sigmay**2 - 2*rho*Xmu*Ymu/(sigmax*sigmay)
denom = 2*np.pi*sigmax*sigmay*np.sqrt(1-rho**2)
return np.exp(-z/(2*(1-rho**2))) / denom

create matrix Z that contains some interesting data
delta = 0.1
x = y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z = bivariate_normal(X, Y, 3.0, 1.0, 0.0, 0.0)

display the 'raw' matrix data of Z in one set of axis
fig, axes = plt.subplots(ncols=2)
ax0, ax1 = axes
ax0.imshow(Z, interpolation='nearest')
ax0.set_title("no interpolation")

display the data interpolated in other set of axis
im = ax1.imshow(Z, interpolation='bilinear')
ax1.set_title("with bi-linear interpolation")

fig.suptitle("imshow example")
fig.savefig("pylabimshow.pdf")

To use different colourmaps, wemake use of thematplotlib.cmmodule (where cm stands for ColourMap). The code
below demonstrates how we can select colourmaps from the set of already provided maps, and how we can modify them
(here by reducing the number of colours in the map). The last example mimics the behaviour of the more sophisticated
contour command that also comes with matplotlib.

import numpy as np

(continues on next page)

15.3. The matplotlib.pyplot interface 169

Introduction to Python for Computational Science and Engineering

(continued from previous page)

import matplotlib.pyplot as plt
import matplotlib.cm as cm # Colour map submodule

create matrix Z that contains some data interesting data
delta = 0.025
x = y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z = bivariate_normal(X, Y, 3.0, 1.0, 0.0, 0.0)

Create a matrix of axes with 2 rows and 3 columns
fig, axes = plt.subplots(nrows=2, ncols=3)

ax = axes[0, 0]
ax.imshow(Z, cmap=cm.viridis) # viridis colourmap
ax.set_title("colourmap jet")

ax = axes[0, 1]
ax.imshow(Z, cmap=cm.viridis_r) # reverse viridis colourmap
ax.set_title("colourmap jet_r")

ax = axes[0, 2]
ax.imshow(Z, cmap=cm.gray)
ax.set_title("colourmap gray")

ax = axes[1, 0]
ax.imshow(Z, cmap=cm.hsv)
ax.set_title("colourmap hsv") # this one is periodic

ax = axes[1, 1]
ax.imshow(Z, cmap=cm.plasma)
ax.set_title("colourmap plasma")

ax = axes[1, 2]
make isolines by reducing number of colours to 10
mycmap = cm.get_cmap('viridis', 10) # 10 discrete colors
ax.imshow(Z, cmap=mycmap)
ax.set_title("colourmap viridis\n(10 colours only)")
fig.tight_layout() # avoid overlap of titles and axis labels
fig.savefig("pylabimshowcm.pdf")

/tmp/ipykernel_234/332518464.py:36: MatplotlibDeprecationWarning: The get_cmap␣
↪function was deprecated in Matplotlib 3.7 and will be removed two minor releases␣
↪later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_
↪cmap(obj)`` instead.
mycmap = cm.get_cmap('viridis', 10) # 10 discrete colors

170 Chapter 15. Visualising Data

Introduction to Python for Computational Science and Engineering

15.3.3 What colour map to choose?

It is a non-trivial question which colour map one should use. There is a useful discussion as part of the matplotlib
documentation.
By default a ‘perceptually uniform’ colourmap is a good choice: the perception of the colours follows the values we try to
represent. Examples are “viridis”, “plasma”, “inferno”, “magma”, “cividis”.
This is a complex topic in its own right.

15.3. The matplotlib.pyplot interface 171

https://matplotlib.org/stable/tutorials/colors/colormaps.html
https://matplotlib.org/stable/tutorials/colors/colormaps.html
https://matplotlib.org/stable/tutorials/colors/colormaps.html#sequential

Introduction to Python for Computational Science and Engineering

15.3.4 Plots of z = f (x, y) and other features of Matplotlib

Matplotlib has a large number of features and can create all the standard (1d and 2d) plots such as histograms, pie charts,
scatter plots, 2d-intensity plots (i.e. z = f(x, y)) and contour lines) and much more. The figure below shows such an
example ([contour_demo.py] (https://matplotlib.org/stable/gallery/images_contours_and_fields/contour_demo.html)).

Some support for 3d plots is also available: https://matplotlib.org/stable/gallery/index.html#d-plotting

15.3.5 How to learn how to use Matplotlib?

A common strategy is to scan the examples at https://matplotlib.org/stable/gallery to find a plot similar to the desired one,
and then to modify the given example code. In the process, it may be worth learning more about the commands used in
the example through reading the documentation.

172 Chapter 15. Visualising Data

https://matplotlib.org/stable/gallery/index.html

Introduction to Python for Computational Science and Engineering

15.4 Visual Python

Visual Python is a Python module that makes it fairly easy to create and animate three-dimensional scenes.
Further information:

• The Visual Python home page
• The Visual Python documentation (explaining all objects with all their parameters)

Short videos introducing Visual Python:
• Shawn Weatherford, Jeff Polak (students of Ruth Chabay): https://www.youtube.com/vpythonvideos

15.4.1 Basics, rotating and zooming

Here is an example showing how to create a red and a blue sphere at two different positions together with a flat box
(vpythondemo1.py):

import visual
sphere1 = visual.sphere(pos=[0, 0, 0], color=visual.color.blue)
sphere2 = visual.sphere(pos=[5, 0, 0], color=visual.color.red, radius=2)
base = visual.box(pos=(0, -2, 0), length=8, height=0.1, width=10)

Once you have created such a visual python scene, you can
• rotate the scene by pressing the right mouse button and moving the mouse
• zoom in and out by pressing the middle mouse button (this could be the wheel) and moving the mouse up and down.
(On some (Windows?) installations, one has to press the left and the right mouse button simultaneously and then
move the move the mouse up and down to zoom.)

15.4. Visual Python 173

https://www.youtube.com/vpythonvideos

Introduction to Python for Computational Science and Engineering

15.4.2 Setting the frame rate for animations

A particular strength of Visual Python is its ability to display time-dependent data:
• A very useful command is the rate() command which ensures that a loop is only executed at a certain frame
rate. Here is an example printing exactly two “Hello World”s per second (vpythondemo2.py):

import visual

for i in range(10):
visual.rate(2)
print("Hello World (0.5 seconds per line)")

• All Visual Python objects (such as the spheres and the box in the example above) have a .pos attribute which
contains the position (of the centre of the object [sphere,box] or one end of the object [cylinder,helix]). Here is an
example showing a sphere moving up and down (vpythondemo3.py):

import visual, math

ball = visual.sphere()
box = visual.box(pos=[0,-1,0], width=4, length=4, height=0.5)

#tell visual not to automatically scale the image
visual.scene.autoscale = False

for i in range(1000):
t = i*0.1
y = math.sin(t)

#update the ball's position
ball.pos = [0, y, 0]

#ensure we have only 24 frames per second
visual.rate(24)

174 Chapter 15. Visualising Data

Introduction to Python for Computational Science and Engineering

15.4.3 Tracking trajectories

You can track the trajectory of an object using a “curve”. The basic idea is to append positions to that curve object as
demonstrated in this example (vpythondemo4.py):

import visual, math

ball = visual.sphere()
box = visual.box(pos=[0,-1,0], width=4, length=4, height=0.5)
trace=visual.curve(radius=0.2, color=visual.color.green)

for i in range(1000):
t = i*0.1
y = math.sin(t)

#update the ball's position
ball.pos = [t, y, 0]

trace.append(ball.pos)

#ensure we have only 24 frames per second
visual.rate(24)

15.4. Visual Python 175

Introduction to Python for Computational Science and Engineering

As with most visual Python objects, you can specify the colour of the curve (also per appended element!) and the radius.

15.4.4 Connecting objects (Cylinders, springs, …)

Cylinders and helices can be used to “connect” two objects. In addition to the pos attribute (which stores the position of
one end of the object), there is also an axis attribute which stores the vector pointing from pos to the other end of the
object. Here is an example showing this for a cylinder: (vpythondemo5py):

import visual, math

ball1 = visual.sphere(pos = (0,0,0), radius=2)
ball2 = visual.sphere(pos = (5,0,0), radius=2)
connection = visual.cylinder(pos = ball1.pos, \

axis = ball2.pos - ball1.pos)

for t in range(100):
#move ball2
ball2.pos = (-t,math.sin(t),math.cos(t))

#keep cylinder connection between ball1 and ball2
connection.axis = ball2.pos - ball1.pos

visual.rate(24)

176 Chapter 15. Visualising Data

Introduction to Python for Computational Science and Engineering

15.4.5 3d vision

If you have access to “anaglyphic” (i.e. colored) glasses (best red-cyan but red-green or red-blue works as well), then you
can switch visual python into this stereo mode by adding these two lines to the beginning of your program:

visual.scene.stereo='redcyan'
visual.scene.stereodepth=1

Note the effect of the stereodepth parameter:
• stereodepth=0: 3d scene “inside” the screen (default)
• stereodepth=1: 3d scene at screen surface (this often looks best)
• stereodepth=2: 3d scene sticking out of the screen

15.5 Visualising higher dimensional data (VTK)

Often, we need to understand data defined at 3d positions in space. The data itself is often a scalar field (such as tem-
perature) or a 3d vector (such as velocity or magnetic field), or occasionally a tensor. For example for a 3d-vector field f
defined in 3d-space (⃗𝑓(⃗𝑥) where ⃗𝑥 ∈ 𝐼𝑅3 and ⃗𝑓(⃗𝑥) ∈ 𝐼𝑅3) we could draw a 3d-arrow at every (grid) point in space. It is
common for these data sets to be time dependent.
The probably most commonly used library in Science and Engineering to visualise such data sets is probably VTK, the
Visualisation ToolKit (https://vtk.org). This is a substantial C++ library with interfaces to high level languages, including
Python.
One can either call these routines directly from Python code, or write the data to disk in a format that the VTK library
can read (so called vtk data files), and then use stand-alone programme such as Mayavi, ParaView and VisIt to read these

15.5. Visualising higher dimensional data (VTK) 177

https://vtk.org

Introduction to Python for Computational Science and Engineering

data files and manipulate them (ofter with a GUI). All three of these are using the VTK library internally, and can read
vtk data files.
These package is very well suited to visualise static and timedependent 2d and 3d-fields (scalar, vector and tensor fields).
Two examples are shown below.
They can be used as a stand-alone executables with a GUI to visualise VTK files. It can also be scripted from a Python
program, or used interactively from a Python session.

15.5.1 Mayavi, Paraview, Visit

• Mayavi Home page http://code.enthought.com/pages/mayavi-project.html
• Paraview Home page https://www.paraview.org
• VisIt Home page https://wci.llnl.gov/simulation/computer-codes/visit/

178 Chapter 15. Visualising Data

http://code.enthought.com/pages/mayavi-project.html
https://www.paraview.org
https://wci.llnl.gov/simulation/computer-codes/visit/

Introduction to Python for Computational Science and Engineering

Two examples from MayaVi visualisations.

15.5.2 Writing vtk files from Python (pyvtk)

A small but powerful Python library is pyvtk available at https://github.com/pearu/pyvtk. This allows to create vtk files
from Python data structures very easily.
Given a finite element mesh or a finite difference data set in Python, one can use pyvtk to write such data into files, and
then use one of the visualisation applications listed above to load the vtk files and to display and investigate them.

15.6 Further tools and developments

In addition to matplotlib, there are a number of other libraries with similar or related visualisation functionality.
Plotly.py and Bokeh – together with the veteran of python-based plotting matplotlib – form the basis for many tools
that provide visualisation skills.
A beautiful summary and categorisation of these and other libraries is available at https://pyviz.org.

15.6. Further tools and developments 179

https://plot.ly/python
https://bokeh.org
https://pyviz.org/tools.html

Introduction to Python for Computational Science and Engineering

15.6.1 Exploiting self-describing data for visualisation

Some libraries, such as Pandas (see alsoChapter on Pandas), Xarray, and holoviewsmake use of the idea of self-describing
data to simplify the visualisation: while the data in a numpy array is ‘just’ a (multidimensional) matrix of data points, these
libraries can store metadata – such as headings and coordinates – associated with these data points. We also talked about
annotated or labelled data to describe the presence of such metadata.
What is the benefit of having this meta-data available? An xarray, for example, may store a 2d-array (like a numpy array)
but have the metadata store that one dimension refers to the x-position and the other direction to time. The x-array object
provides convenience methods to select and plot the data in the xarray.

15.6.2 The future of data visualisation

I would speculate that increasingly we will be using high-level plotting tools (such as pandas, xarray, holoviews) to explore
data interactively.
We can see a trend in data analysis libraries that data objects can be converted to such high-level annotated data objecs (such
as European XFEL’s extra-data tools which can return a labelled xarray object). Other projects combine the metadata
with the data in custom made objects to then provide convenience methods (such as Ubermag’s discretisedfield object).
Will we still need to learn the basics, such as the matplotlib.pyplot interface? Probably yes: the very least to fine
tune the plots provided by these high level libraries:

15.6.3 Fine-tuning matplotlib plots that are generated by high level frame works

We show one example where pandas – as a representative for a high-level framework that can create plots – creates the
plot, but we use pyplot commands to tailor the resulting plot.
Let’s define the pandas data series first (it is not importat to understand the details of this now):

import pandas as pd
s = pd.Series(data=[10, 20, 1], index=['bananas', 'oranges', 'potatoes'])
s

bananas 10
oranges 20
potatoes 1
dtype: int64

We can use a convenience method from pandas to create a plot of the data series:

s.plot.bar()

<Axes: >

180 Chapter 15. Visualising Data

http://pandas.pydata.org
http://xarray.pydata.org
https://holoviews.org
https://extra-data.readthedocs.io
http://ubermag.github.io

Introduction to Python for Computational Science and Engineering

Note how the bar chart is labelled appropriately: the metadata (here the labels ‘bananas’, ‘oranges’ and ‘potatoes’) have
been used to label the x-axis in the plot.
If we want to change this plot, the following strategy works, and is supported by other high-level frameworks as well:

• create an axes (and figure) object
• pass the axes object to the high level plotting framework
• use the axes object (and figure) to finetune the plot

The following example shows how to add a title, customise the labelling of the y-axis, and add a grid to the plot, and
change the size of the figure to be 10 inches by 3 inches:

import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(10, 3))

s.plot.bar(ax=ax, color='orange')
ax.set_title("Current stock")
ax.set_yticks(range(0, 21, 4));
ax.grid('on')

15.6. Further tools and developments 181

Introduction to Python for Computational Science and Engineering

15.7 Jupyter Notebooks

The Jupyter Notebook has become a central tool for interactive data exploration and data analysis. I would go so far to
say that most data scientists will see the Jupyter notebook as the default place to start a data exploration, analysis and
machine learning project.
Why is this so? The combination of annotation, code snippets, inlined results from computation or visualisation and the
automatic logging of these steps in a notebook file can be of great use for research and development activities. A slightly
longer summary is available here.
Some recent publications on the topic:

• Brian Granger, Fernando Pérez. Jupyter: Thinking and Storytelling With Code and Data, Computing in Science &
Engineering, vol. 23, no. 2, pp. 7-14, 1 March-April 2021, doi: 10.1109/MCSE.2021.3059263 Authorea preprint
(2021)

• Hans Fangohr, Marijan Beg, et al, Data exploration and analysis with Jupyter notebooks, Proceedings of the
17th International Conference on Accelerator and Large Experimental Physics Control Systems ICALEPCS2019,
TUCPR02, doi: 10.18429/JACoW-ICALEPCS2019-TUCPR02 (pdf) (2020)

• Marijan Beg; Juliette Belin; Thomas Kluyver; Alexander Konovalov; Min Ragan-Kelley; Nicolas Thiery; Hans
Fangohr. Using Jupyter for Reproducible Scientific Workflows in Computing in Science & Engineering, vol. 23, no.
2, pp. 36-46, 1 March-April 2021, doi: 10.1109/MCSE.2021.3052101 arXiv preprint (2021)

182 Chapter 15. Visualising Data

https://jupyter.org
https://fangohr.github.io/blog/jupyter-for-computational-science-and-data-science.html
https://doi.org/10.1109/MCSE.2021.3059263
https://www.authorea.com/users/394563/articles/508007-jupyter-thinking-and-storytelling-with-code-and-data
http://accelconf.web.cern.ch/icalepcs2019/doi/JACoW-ICALEPCS2019-TUCPR02.html
https://jacow.org/icalepcs2019/papers/tucpr02.pdf
https://ieeexplore.ieee.org/document/9325550
https://arxiv.org/abs/2102.09562

CHAPTER

SIXTEEN

NUMERICAL METHODS USING PYTHON (SCIPY)

16.1 Overview

The core Python language (including the standard libraries) provide enough functionality to carry out computational
research tasks. However, there are dedicated (third-party) Python libraries that provide extended functionality which

• provide numerical tools for frequently occurring tasks
• which are convenient to use
• and are more efficient in terms of CPU time and memory requirements than using the code Python functionality
alone.

We list three such modules in particular:
• The numpy module provides a data type specialised for “number crunching” of vectors and matrices (this is the
array type provided by “numpy” as introduced in 14-numpy.ipynb), and linear algebra tools.

• The matplotlib package (also knows as pylab) provides plotting and visualisation capabilities (see 15-
visualising-data.ipynb) and the

• scipy package (SCIentific PYthon) which provides a multitude of numerical algorithms and which is introduced
in this chapter.

Many of the numerical algorithms available through scipy and numpy are provided by established compiled libraries
which are often written in Fortran or C. They will thus execute much faster than pure Python code (which is interpreted).
As a rule of thumb, we expect compiled code to be two orders of magnitude faster than pure Python code.
You can use the help function for each numerical method to find out more about the source of the implementation.

16.2 SciPy

Scipy provides many scientific computing functions and is generally complementary to the the functionality of numpy.
First we need to import scipy:

import scipy

The scipy package provides information about its own structure when we use the help command:

help(scipy)

The output is very long, so we’re showing just a part of it here:

183

Introduction to Python for Computational Science and Engineering

cluster --- Vector Quantization / Kmeans
fft --- Discrete Fourier transforms
fftpack --- Legacy discrete Fourier transforms
integrate --- Integration routines
interpolate --- Interpolation Tools
io --- Data input and output
linalg --- Linear algebra routines
linalg.blas --- Wrappers to BLAS library
linalg.lapack --- Wrappers to LAPACK library
misc --- Various utilities that don't have

another home.
ndimage --- n-dimensional image package
odr --- Orthogonal Distance Regression
optimize --- Optimization Tools
signal --- Signal Processing Tools
signal.windows --- Window functions
sparse --- Sparse Matrices
sparse.linalg --- Sparse Linear Algebra
sparse.linalg.dsolve --- Linear Solvers
sparse.linalg.dsolve.umfpack --- :Interface to the UMFPACK library:

Conjugate Gradient Method (LOBPCG)
sparse.linalg.eigen --- Sparse Eigenvalue Solvers
sparse.linalg.eigen.lobpcg --- Locally Optimal Block Preconditioned

Conjugate Gradient Method (LOBPCG)
spatial --- Spatial data structures and algorithms
special --- Special functions
stats --- Statistical Functions

If we are looking for an algorithm to integrate a function, we might explore the integrate package:

import scipy.integrate

scipy.integrate?

produces:

===
Integration and ODEs (:mod:`scipy.integrate`)
===

.. currentmodule:: scipy.integrate

Integrating functions, given function object
==

.. autosummary::
:toctree: generated/

quad -- General purpose integration
quad_vec -- General purpose integration of vector-valued functions
dblquad -- General purpose double integration
tplquad -- General purpose triple integration
nquad -- General purpose n-dimensional integration
fixed_quad -- Integrate func(x) using Gaussian quadrature of order n
quadrature -- Integrate with given tolerance using Gaussian quadrature
romberg -- Integrate func using Romberg integration

(continues on next page)

184 Chapter 16. Numerical Methods using Python (scipy)

Introduction to Python for Computational Science and Engineering

(continued from previous page)

quad_explain -- Print information for use of quad
newton_cotes -- Weights and error coefficient for Newton-Cotes integration
IntegrationWarning -- Warning on issues during integration

Integrating functions, given fixed samples
==

.. autosummary::
:toctree: generated/

trapz -- Use trapezoidal rule to compute integral.
cumtrapz -- Use trapezoidal rule to cumulatively compute integral.
simps -- Use Simpson's rule to compute integral from samples.
romb -- Use Romberg Integration to compute integral from

-- (2**k + 1) evenly-spaced samples.

.. seealso::

:mod:`scipy.special` for orthogonal polynomials (special) for Gaussian
quadrature roots and weights for other weighting factors and regions.

Solving initial value problems for ODE systems
==

The solvers are implemented as individual classes which can be used directly
(low-level usage) or through a convenience function.

.. autosummary::
:toctree: generated/

solve_ivp -- Convenient function for ODE integration.
RK23 -- Explicit Runge-Kutta solver of order 3(2).
RK45 -- Explicit Runge-Kutta solver of order 5(4).
DOP853 -- Explicit Runge-Kutta solver of order 8.
Radau -- Implicit Runge-Kutta solver of order 5.
BDF -- Implicit multi-step variable order (1 to 5) solver.
LSODA -- LSODA solver from ODEPACK Fortran package.
OdeSolver -- Base class for ODE solvers.
DenseOutput -- Local interpolant for computing a dense output.
OdeSolution -- Class which represents a continuous ODE solution.

The following sections show examples which demonstrate how to employ the algorithms provided by scipy.

16.3 Numerical integration

Scientific Python provides a number of integration routines. A general purpose tool to solve integrals I of the kind

𝐼 = ∫
𝑏

𝑎
𝑓(𝑥)d𝑥

is provided by the quad() function of the scipy.integrate module.
It takes as input arguments the function f(x) to be integrated (the “integrand”), and the lower and upper limits a and b. It
returns two values (in a tuple): the first one is the computed results and the second one is an estimation of the numerical
error of that result.

16.3. Numerical integration 185

Introduction to Python for Computational Science and Engineering

Here is an example: which produces this output:

NBVAL_IGNORE_OUTPUT
from math import cos, exp, pi
from scipy.integrate import quad

function we want to integrate
def f(x):

return exp(cos(-2 * x * pi)) + 3.2

call quad to integrate f from -2 to 2
res, err = quad(f, -2, 2)

print("The numerical result is {:f} (+-{:g})"
.format(res, err))

The numerical result is 17.864264 (+-1.55117e-11)

Note that quad() takes optional parameters epsabs and epsrel to increase or decrease the accuracy of its compu-
tation. (Use help(quad) to learn more.) The default values are epsabs=1.5e-8 and epsrel=1.5e-8. For the
next exercise, the default values are sufficient.

16.3.1 Exercise: integrate a function

1. Using scipy’squad function, write a program that solves the following integral numerically: 𝐼  =   ∫1
0 cos(2𝜋𝑥)𝑑𝑥.

2. Find the analytical integral and compare it with the numerical solution.
3. Why is it important to have an estimate of the accuracy (or the error) of the numerical integral?

16.3.2 Exercise: plot before you integrate

It is good practice to plot the integrand function to check whether it is “well behaved” before you attempt to integrate.
Singularities (i.e. 𝑥 values where the 𝑓(𝑥) tends towards minus or plus infinity) or other irregular behaviour (such as
𝑓(𝑥) = sin(1

𝑥) close to 𝑥  =  0 are difficult to handle numerically.
1. Write a function with name plotquad which takes the same arguments as the quad command (i.e. 𝑓 , 𝑎 and 𝑏)

and which
• (i) creates a plot of the integrand 𝑓(𝑥) and
• (ii) computes the integral numerically using the quad function. The return values should be as for the quad
function.

%matplotlib inline
settings for jupyter book: svg for html version, high-resolution png for pdf
import matplotlib_inline
matplotlib_inline.backend_inline.set_matplotlib_formats('svg', 'png')
from IPython.display import set_matplotlib_formats
set_matplotlib_formats('svg', 'png')
import matplotlib as mpl
mpl.rcParams['figure.dpi'] = 400

186 Chapter 16. Numerical Methods using Python (scipy)

Introduction to Python for Computational Science and Engineering

16.4 Solving Ordinary Differential Equations (ODEs)

To solve an ordinary differential equation of the type $ d𝑦d𝑡 (𝑡) = 𝑓(𝑡, 𝑦)$
with a given 𝑦(𝑡0) = 𝑦0, we can use scipy’s solve_ivp function. Here is a (self explaining) example program
(usesolve_ivp.py) to find

𝑦(𝑡) for 𝑡 ∈ [0, 2]

given this differential equation: $ d𝑦d𝑡 (𝑡) = −2𝑦𝑡 with 𝑦(0) = 1.$

from scipy.integrate import solve_ivp
import numpy as np

def f(t, y):
"""this is the rhs of the ODE to integrate, i.e. dy/dt=f(y,t)"""
return -2 * y * t

y0 = [1] # initial value y0=y(t0)
t0 = 0 # integration limits for t: start at t0=0
tf = 2 # and finish at tf=2

sol = solve_ivp(fun=f, t_span=[t0, tf], y0=y0) # computation of SOLution

import pylab # plotting of results
pylab.plot(sol.t, sol.y[0], 'o-')
pylab.xlabel('t'); pylab.ylabel('y(t)')

Text(0, 0.5, 'y(t)')

16.4. Solving Ordinary Differential Equations (ODEs) 187

Introduction to Python for Computational Science and Engineering

We have not given the solve_ivp command any guidance for which values of 𝑡 we would like to know the solution
𝑦(𝑡): we have only specified that 𝑡0 = 0 and that we would like to know the solution between 𝑡0 = 0 and 𝑡𝑦 = 2. The
solver itself has determined the number of required function evaluations, and returns the corresponding values in sol.t
and sol.y[0].
We can obtain more data points in a number of ways:

1. Increase the default error tolerance. The relative tolerance (rtol) and absolute tolerance (atol) default to 1e-3
each. If we increase them, we typically enforce the use of a larger number of intermediate points:

sol = solve_ivp(fun=f, t_span=[t0, tf], y0=y0, atol=1e-8, rtol=1e-8)

pylab.plot(sol.t, sol.y[0], '.')
pylab.xlabel('t'); pylab.ylabel('y(t)')

Text(0, 0.5, 'y(t)')

188 Chapter 16. Numerical Methods using Python (scipy)

Introduction to Python for Computational Science and Engineering

2. We can also prescribe the precise locations for which we like to know the solutions 𝑦(𝑡):

y0 = [1] # initial value
t0 = 0 # integration limits for t
tf = 2
ts = np.linspace(t0, tf, 100) # 100 points between t0 and tf

sol = solve_ivp(fun=f, t_span=[t0, tf], y0=y0, t_eval=ts)

pylab.plot(sol.t, sol.y[0], '.')
pylab.xlabel('t'); pylab.ylabel('y(t)')

Text(0, 0.5, 'y(t)')

16.4. Solving Ordinary Differential Equations (ODEs) 189

Introduction to Python for Computational Science and Engineering

If we use t_eval - and thus request values of the solution at particular points - solve_ivp will not generally change
the way it computes the solution, but rather use interpolation to map the way it has internally computed the solution to
the values of t for which we would like to know the solution. There is thus no (significant) computational penalty if we
use t_eval to get smoother looking plots.
The solve_ivp command returns a OdeResult object, which we have called sol in the example above.

type(sol)

scipy.integrate._ivp.ivp.OdeResult

We have already seen that the solution can be found in sol.y and sol.t:

type(sol.t)

numpy.ndarray

sol.t.shape

(100,)

type(sol.y)

190 Chapter 16. Numerical Methods using Python (scipy)

Introduction to Python for Computational Science and Engineering

numpy.ndarray

sol.y.shape

(1, 100)

Because solve_ivp is designed to integrate systems of ordinary differential equations, sol.y is a matrix, where each
row contains the values for one degree of freedom. In our simple example above, we only have one degree of freedom
(𝑦). This is the reason, why we had to use sol.y[0] to access the solution values.
Other interesting attributes of the OdeResult object are the number of function evaluations that were necessary (where
the function is the function f which computes the right hand side of the ODE).

sol.nfev

68

There is also a human-readable string, providing - for this example - a re-assuring message:

sol.message

'The solver successfully reached the end of the integration interval.'

A machine readable status is available in the sol.status attribute (0 is good):

sol.status

0

The solve_ivp command takes a number of optional parameters - we have already seen atol and rtol to change
the default error tolerance of the integration. We can use the help command to explore these. The help string also
explains the attributes of the solution object OdeResult in more detail:

help(scipy.integrate.solve_ivp)

will show:

Help on function solve_ivp in module scipy.integrate._ivp.ivp:

solve_ivp(fun, t_span, y0, method='RK45', t_eval=None, dense_output=False,␣
↪events=None, vectorized=False, args=None, **options)

Solve an initial value problem for a system of ODEs.

This function numerically integrates a system of ordinary differential
equations given an initial value::

dy / dt = f(t, y)
y(t0) = y0

Here t is a 1-D independent variable (time), y(t) is an
N-D vector-valued function (state), and an N-D

(continues on next page)

16.4. Solving Ordinary Differential Equations (ODEs) 191

Introduction to Python for Computational Science and Engineering

(continued from previous page)

vector-valued function f(t, y) determines the differential equations.
The goal is to find y(t) approximately satisfying the differential
equations, given an initial value y(t0)=y0.

Some of the solvers support integration in the complex domain, but note
that for stiff ODE solvers, the right-hand side must be
complex-differentiable (satisfy Cauchy-Riemann equations [11]_).
To solve a problem in the complex domain, pass y0 with a complex data type.
Another option always available is to rewrite your problem for real and
imaginary parts separately.

Parameters

fun : callable

Right-hand side of the system. The calling signature is ``fun(t, y)``.
Here `t` is a scalar, and there are two options for the ndarray `y`:
It can either have shape (n,); then `fun` must return array_like with
shape (n,). Alternatively, it can have shape (n, k); then `fun`
must return an array_like with shape (n, k), i.e., each column
corresponds to a single column in `y`. The choice between the two
options is determined by `vectorized` argument (see below). The
vectorized implementation allows a faster approximation of the Jacobian
by finite differences (required for stiff solvers).

t_span : 2-tuple of floats
Interval of integration (t0, tf). The solver starts with t=t0 and
integrates until it reaches t=tf.

y0 : array_like, shape (n,)
Initial state. For problems in the complex domain, pass `y0` with a
complex data type (even if the initial value is purely real).

method : string or `OdeSolver`, optional
Integration method to use:

* 'RK45' (default): Explicit Runge-Kutta method of order 5(4) [1]_.
The error is controlled assuming accuracy of the fourth-order
method, but steps are taken using the fifth-order accurate
formula (local extrapolation is done). A quartic interpolation
polynomial is used for the dense output [2]_. Can be applied in
the complex domain.

* 'RK23': Explicit Runge-Kutta method of order 3(2) [3]_. The error
is controlled assuming accuracy of the second-order method, but
steps are taken using the third-order accurate formula (local
extrapolation is done). A cubic Hermite polynomial is used for the
dense output. Can be applied in the complex domain.

* 'DOP853': Explicit Runge-Kutta method of order 8 [13]_.
Python implementation of the "DOP853" algorithm originally
written in Fortran [14]_. A 7-th order interpolation polynomial
accurate to 7-th order is used for the dense output.
Can be applied in the complex domain.

* 'Radau': Implicit Runge-Kutta method of the Radau IIA family of
order 5 [4]_. The error is controlled with a third-order accurate
embedded formula. A cubic polynomial which satisfies the
collocation conditions is used for the dense output.

* 'BDF': Implicit multi-step variable-order (1 to 5) method based
on a backward differentiation formula for the derivative
approximation [5]_. The implementation follows the one described
in [6]_. A quasi-constant step scheme is used and accuracy is

(continues on next page)

192 Chapter 16. Numerical Methods using Python (scipy)

Introduction to Python for Computational Science and Engineering

(continued from previous page)

enhanced using the NDF modification. Can be applied in the
complex domain.

* 'LSODA': Adams/BDF method with automatic stiffness detection and
switching [7]_, [8]_. This is a wrapper of the Fortran solver
from ODEPACK.

Explicit Runge-Kutta methods ('RK23', 'RK45', 'DOP853') should be used
for non-stiff problems and implicit methods ('Radau', 'BDF') for
stiff problems [9]_. Among Runge-Kutta methods, 'DOP853' is recommended
for solving with high precision (low values of `rtol` and `atol`).

If not sure, first try to run 'RK45'. If it makes unusually many
iterations, diverges, or fails, your problem is likely to be stiff and
you should use 'Radau' or 'BDF'. 'LSODA' can also be a good universal
choice, but it might be somewhat less convenient to work with as it
wraps old Fortran code.

You can also pass an arbitrary class derived from `OdeSolver` which
implements the solver.

t_eval : array_like or None, optional
Times at which to store the computed solution, must be sorted and lie
within `t_span`. If None (default), use points selected by the solver.

dense_output : bool, optional
Whether to compute a continuous solution. Default is False.

events : callable, or list of callables, optional
Events to track. If None (default), no events will be tracked.
Each event occurs at the zeros of a continuous function of time and
state. Each function must have the signature ``event(t, y)`` and return
a float. The solver will find an accurate value of `t` at which
``event(t, y(t)) = 0`` using a root-finding algorithm. By default, all
zeros will be found. The solver looks for a sign change over each step,
so if multiple zero crossings occur within one step, events may be
missed. Additionally each `event` function might have the following
attributes:

terminal: bool, optional
Whether to terminate integration if this event occurs.
Implicitly False if not assigned.

direction: float, optional
Direction of a zero crossing. If `direction` is positive,
`event` will only trigger when going from negative to positive,
and vice versa if `direction` is negative. If 0, then either
direction will trigger event. Implicitly 0 if not assigned.

You can assign attributes like ``event.terminal = True`` to any
function in Python.

vectorized : bool, optional
Whether `fun` is implemented in a vectorized fashion. Default is False.

args : tuple, optional
Additional arguments to pass to the user-defined functions. If given,
the additional arguments are passed to all user-defined functions.
So if, for example, `fun` has the signature ``fun(t, y, a, b, c)``,
then `jac` (if given) and any event functions must have the same
signature, and `args` must be a tuple of length 3.

options
Options passed to a chosen solver. All options available for already

(continues on next page)

16.4. Solving Ordinary Differential Equations (ODEs) 193

Introduction to Python for Computational Science and Engineering

(continued from previous page)

implemented solvers are listed below.
first_step : float or None, optional

Initial step size. Default is `None` which means that the algorithm
should choose.

max_step : float, optional
Maximum allowed step size. Default is np.inf, i.e., the step size is not
bounded and determined solely by the solver.

rtol, atol : float or array_like, optional
Relative and absolute tolerances. The solver keeps the local error
estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
relative accuracy (number of correct digits). But if a component of `y`
is approximately below `atol`, the error only needs to fall within
the same `atol` threshold, and the number of correct digits is not
guaranteed. If components of y have different scales, it might be
beneficial to set different `atol` values for different components by
passing array_like with shape (n,) for `atol`. Default values are
1e-3 for `rtol` and 1e-6 for `atol`.

jac : array_like, sparse_matrix, callable or None, optional
Jacobian matrix of the right-hand side of the system with respect
to y, required by the 'Radau', 'BDF' and 'LSODA' method. The
Jacobian matrix has shape (n, n) and its element (i, j) is equal to
``d f_i / d y_j``. There are three ways to define the Jacobian:

* If array_like or sparse_matrix, the Jacobian is assumed to
be constant. Not supported by 'LSODA'.

* If callable, the Jacobian is assumed to depend on both
t and y; it will be called as ``jac(t, y)``, as necessary.
For 'Radau' and 'BDF' methods, the return value might be a
sparse matrix.

* If None (default), the Jacobian will be approximated by
finite differences.

It is generally recommended to provide the Jacobian rather than
relying on a finite-difference approximation.

jac_sparsity : array_like, sparse matrix or None, optional
Defines a sparsity structure of the Jacobian matrix for a finite-
difference approximation. Its shape must be (n, n). This argument
is ignored if `jac` is not `None`. If the Jacobian has only few
non-zero elements in *each* row, providing the sparsity structure
will greatly speed up the computations [10]_. A zero entry means that
a corresponding element in the Jacobian is always zero. If None
(default), the Jacobian is assumed to be dense.
Not supported by 'LSODA', see `lband` and `uband` instead.

lband, uband : int or None, optional
Parameters defining the bandwidth of the Jacobian for the 'LSODA'
method, i.e., ``jac[i, j] != 0 only for i - lband <= j <= i + uband``.
Default is None. Setting these requires your jac routine to return the
Jacobian in the packed format: the returned array must have ``n``
columns and ``uband + lband + 1`` rows in which Jacobian diagonals are
written. Specifically ``jac_packed[uband + i - j , j] = jac[i, j]``.
The same format is used in `scipy.linalg.solve_banded` (check for an
illustration). These parameters can be also used with ``jac=None`` to
reduce the number of Jacobian elements estimated by finite differences.

min_step : float, optional
The minimum allowed step size for 'LSODA' method.
By default `min_step` is zero.

(continues on next page)

194 Chapter 16. Numerical Methods using Python (scipy)

Introduction to Python for Computational Science and Engineering

(continued from previous page)

Returns

Bunch object with the following fields defined:
t : ndarray, shape (n_points,)

Time points.
y : ndarray, shape (n, n_points)

Values of the solution at `t`.
sol : `OdeSolution` or None

Found solution as `OdeSolution` instance; None if `dense_output` was
set to False.

t_events : list of ndarray or None
Contains for each event type a list of arrays at which an event of
that type event was detected. None if `events` was None.

y_events : list of ndarray or None
For each value of `t_events`, the corresponding value of the solution.
None if `events` was None.

nfev : int
Number of evaluations of the right-hand side.

njev : int
Number of evaluations of the Jacobian.

nlu : int
Number of LU decompositions.

status : int
Reason for algorithm termination:

* -1: Integration step failed.
* 0: The solver successfully reached the end of `tspan`.
* 1: A termination event occurred.

message : string
Human-readable description of the termination reason.

success : bool
True if the solver reached the interval end or a termination event
occurred (``status >= 0``).

16.4.1 Systems of coupled ODEs

We want to show one example of two first-order ODEs that are coupled. This helps to understand why the initial value
y0 in the above example had to be provided in a list ([y0]) and why the solution is sol.y[0] rather than just sol.y.
We use the Predator and prey example. Let

• 𝑝1(𝑡) be the number of rabbits and
• 𝑝2(𝑡) be the number of foxes at a given time 𝑡

To compute the time dependence of 𝑝1 and 𝑝2:
• Assume that rabbits proliferate at a rate 𝑎. Per unit time a number 𝑎𝑝1 of rabbits are born.
• Assume that the number of rabbits is reduced by collisions with foxes: per unit time 𝑐𝑝1𝑝2 rabbits are eaten.
• Assume that birth rate of foxes depends only on food intake in form of rabbits.
• Assume that foxes die a natural death at a rate 𝑏.

16.4. Solving Ordinary Differential Equations (ODEs) 195

http://www.scholarpedia.org/article/Predator-prey_model

Introduction to Python for Computational Science and Engineering

We put this together into the system of coupled ordinary differential equations: \begin{eqnarray} \label{eq:predprey}
\frac{d p_1}{dt} &=& a p_1 - c p_1 p_2\nonumber\ \frac{d p_1}{dt} &=& c p_1 p_2 - b p_2\nonumber \end{eqnarray}
We use the following parameters:

• rabbit birth rate 𝑎 = 0.7
• rabbit-fox-collision rate 𝑐 = 0.007
• fox death rate 𝑏 = 1

We want to solve this for 𝑝1(𝑡0) = 70 and 𝑝2(𝑡0) = 50 as initial values, starting at 𝑡0 = 0 for 30 units of time.

import pylab
import numpy as np
from scipy.integrate import solve_ivp

def rhs(t, y):
a = 0.7
c = 0.007
b = 1
p1 = y[0]
p2 = y[1]

dp1dt = a * p1 - c * p1 * p2
dp2dt = c * p1 * p2 - b * p2

return [dp1dt, dp2dt]

p0 = [70, 50] # initial condition
t0 = 0
tfinal = 30
ts = np.linspace(t0, tfinal, 200)

sol = solve_ivp(rhs, [t0, tfinal], p0, t_eval=ts)

p1 = sol.y[0]
p2 = sol.y[1]

pylab.plot(sol.t, p1, label='rabbits')
pylab.plot(sol.t, p2, '-og', label='foxes')
pylab.legend()
pylab.xlabel('t')
pylab.savefig('predprey.pdf')
pylab.savefig('predprey.png')

196 Chapter 16. Numerical Methods using Python (scipy)

Introduction to Python for Computational Science and Engineering

16.5 Root finding

If you try to find a 𝑥 such that $𝑓(𝑥) = 0𝑡ℎ𝑒𝑛𝑡ℎ𝑖𝑠𝑖𝑠𝑐𝑎𝑙𝑙𝑒𝑑 ∗ 𝑟𝑜𝑜𝑡𝑓𝑖𝑛𝑑𝑖𝑛𝑔 ∗
.𝑁𝑜𝑡𝑒𝑡ℎ𝑎𝑡𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠𝑙𝑖𝑘𝑒g(x)=h(x)𝑓𝑎𝑙𝑙𝑖𝑛𝑡ℎ𝑖𝑠𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑎𝑠𝑦𝑜𝑢𝑐𝑎𝑛𝑟𝑒𝑤𝑟𝑖𝑡𝑒𝑡ℎ𝑒𝑚𝑎𝑠f(x)=g(x)−h(x)=0$.
A number of root finding tools are available in scipy’s optimize module.

16.5.1 Root finding using the bisection method

First we introduce the bisect algorithm which is (i) robust and (ii) slow but conceptually very simple.
Suppose we need to compute the roots of f(x)=x3 − 2x2. This function has a (double) root at x = 0 (this is trivial to
see) and another root which is located between x = 1.5 (where f(1.5)= − 1.125) and x = 3 (where f(3)=9). It is pretty
straightforward to see that this other root is located at x = 2. Here is a program that determines this root numerically:

from scipy.optimize import bisect

def f(x):
"""returns f(x)=x^3-2x^2. Has roots at
x=0 (double root) and x=2"""
return x ** 3 - 2 * x ** 2

main program starts here
x = bisect(f, 1.5, 3, xtol=1e-6)

(continues on next page)

16.5. Root finding 197

Introduction to Python for Computational Science and Engineering

(continued from previous page)

print("The root x is approximately x=%14.12g,\n"
"the error is less than 1e-6." % (x))

print("The exact error is %g." % (2 - x))

The root x is approximately x= 2.00000023842,
the error is less than 1e-6.
The exact error is -2.38419e-07.

The bisect() method takes three compulsory arguments: (i) the function f(x), (ii) a lower limit a (for which we
have chosen 1.5 in our example) and (ii) an upper limit b (for which we have chosen 3). The optional parameter xtol
determines the maximum error of the method.
One of the requirements of the bisection method is that the interval [a, b] has to be chosen such that the function is either
positive at a and negative at b, or that the function is negative at a and postive at b. In other words: a and b have to enclose
a root.

16.5.2 Exercise: root finding using the bisect method

1. Write a programwith name sqrttwo.py to determine an approximation of
√

2 by finding a root x of the function
𝑓(𝑥) = 2  −  𝑥2 using the bisection algorithm. Choose a tolerance for the approximation of the root of 10−8.

2. Document your choice of the initial bracket [𝑎,  𝑏] for the root: which values have you chosen for a and for b and
why?

3. Study the results:
• Which value for the root x does the bisection algorithm return?
• Compute the value of

𝑠𝑞𝑟𝑡2 using math.sqrt(2) and compare this with the approximation of the root. How big is the absolute
error of x? How does this compare with xtol?

16.5.3 Root finding using the fsolve funcion

A (often) better (in the sense of “more efficient”) algorithm than the bisection algorithm is implemented in the general
purpose fsolve() function for root finding of (multidimensional) functions. This algorithm needs only one starting
point close to the suspected location of the root (but is not garanteed to converge).
Here is an example:

from scipy.optimize import fsolve

def f(x):
return x ** 3 - 2 * x ** 2

x = fsolve(f, 3) # one root is at x=2.0

print("The root x is approximately x=%21.19g" % x)
print("The exact error is %g." % (2 - x))

The root x is approximately x= 2.000000000000006661
The exact error is -6.66134e-15.

198 Chapter 16. Numerical Methods using Python (scipy)

Introduction to Python for Computational Science and Engineering

/tmp/ipykernel_264/1678381742.py:8: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
print("The root x is approximately x=%21.19g" % x)

/tmp/ipykernel_264/1678381742.py:9: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
print("The exact error is %g." % (2 - x))

The return value[6] of fsolve is a numpy array of length n for a root finding problem with n variables. In the example
above, we have n = 1.

16.6 Interpolation

Given a set of N points (𝑥𝑖,  𝑦𝑖) with 𝑖  =  1,  2,  …𝑁 , we sometimes need a function ̂𝑓(𝑥) which returns 𝑦𝑖  =  𝑓(𝑥𝑖)
where 𝑥 == 𝑥𝑖, and which in addition provides some interpolation of the data (𝑥𝑖,  𝑦𝑖) for all 𝑥.
The function y0 = scipy.interpolate.interp1d(x,y,kind=’nearest’) does this interpolation based
on splines of varying order. Note that the function interp1d returns a function y0 which will then interpolate the x-y
data for any given 𝑥 when called as 𝑦0(𝑥).
The code below demonstrates this, and shows the different interpolation kinds.

import numpy as np
import scipy.interpolate
import pylab

def create_data(n):
"""Given an integer n, returns n data points
x and values y as a numpy.array."""
xmax = 5.
x = np.linspace(0, xmax, n)
y = - x**2
#make x-data somewhat irregular
y += 1.5 * np.random.normal(size=len(x))
return x, y

#main program
n = 10
x, y = create_data(n)

#use finer and regular mesh for plot
xfine = np.linspace(0.1, 4.9, n * 100)
#interpolate with piecewise constant function (p=0)
y0 = scipy.interpolate.interp1d(x, y, kind='nearest')
#interpolate with piecewise linear func (p=1)
y1 = scipy.interpolate.interp1d(x, y, kind='linear')
#interpolate with piecewise constant func (p=2)
y2 = scipy.interpolate.interp1d(x, y, kind='quadratic')

pylab.plot(x, y, 'o', label='data point')
pylab.plot(xfine, y0(xfine), label='nearest')

(continues on next page)

16.6. Interpolation 199

Introduction to Python for Computational Science and Engineering

(continued from previous page)

pylab.plot(xfine, y1(xfine), label='linear')
pylab.plot(xfine, y2(xfine), label='cubic')
pylab.legend()
pylab.xlabel('x')

Text(0.5, 0, 'x')

16.7 Curve fitting

We have already seen in the numpy chapter that we can fit polynomial functions through a data set using the numpy.
polyfit function. Here, we introduce a more generic curve fitting algorithm.
Scipy provides a somewhat generic function (based on the Levenburg-Marquardt algorithm)through scipy.
optimize.curve_fit to fit a given (Python) function to a given data set. The assumption is that we have been
given a set of data with points 𝑥1,  𝑥2,  …𝑥𝑁 and with corresponding function values 𝑦𝑖 and a dependence of 𝑦𝑖 on 𝑥𝑖
such that 𝑦𝑖 = 𝑓(𝑥𝑖, ⃗𝑝). We want to determine the parameter vector ⃗𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑘) so that 𝑟, the sum of the
residuals, is as small as possible:

𝑟 =
𝑁

∑
𝑖=1

(𝑦𝑖 − 𝑓(𝑥𝑖, ⃗𝑝))2

Curve fitting is of particular use if the data is noisy: for a given 𝑥𝑖 and 𝑦𝑖 = 𝑓(𝑥𝑖, ⃗𝑝) we have a (unknown) error term 𝜖𝑖
so that 𝑦𝑖 = 𝑓(𝑥𝑖, ⃗𝑝) + 𝜖𝑖.
We use the following example to clarify this: $𝑓(𝑥, ⃗𝑝) = 𝑎 exp(−𝑏𝑥) + 𝑐, i.e. ⃗𝑝 = a,b,c$

200 Chapter 16. Numerical Methods using Python (scipy)

Introduction to Python for Computational Science and Engineering

NBVAL_IGNORE_OUTPUT
import numpy as np
from scipy.optimize import curve_fit

def f(x, a, b, c):
"""Fit function y=f(x,p) with parameters p=(a,b,c). """
return a * np.exp(- b * x) + c

#create fake data
x = np.linspace(0, 4, 50)
y = f(x, a=2.5, b=1.3, c=0.5)
#add noise
yi = y + 0.2 * np.random.normal(size=len(x))

#call curve fit function
popt, pcov = curve_fit(f, x, yi)
a, b, c = popt
print("Optimal parameters are a=%g, b=%g, and c=%g" % (a, b, c))

#plotting
import pylab
yfitted = f(x, *popt) # equivalent to f(x, popt[0], popt[1], popt[2])
pylab.plot(x, yi, 'o', label='data y_i')
pylab.plot(x, yfitted, '-', label='fit $f(x_i)$')
pylab.xlabel('x')
pylab.legend()

Optimal parameters are a=2.60173, b=1.1264, and c=0.445222

<matplotlib.legend.Legend at 0x7f5f1848b250>

16.7. Curve fitting 201

Introduction to Python for Computational Science and Engineering

Note that in the source code above we define the fitting function 𝑦  =  𝑓(𝑥) through Python code. We can thus fit (nearly)
arbitrary functions using the curve_fit method.
The curve_fit function returns a tuple popt, pcov. The first entry popt contains a tuple of the OPTimal Pa-
rameters (in the sense that these minimise equation ([eq:1]). The second entry contains the covariance matrix for all
parameters. The diagonals provide the variance of the parameter estimations.
For the curve fitting process to work, the Levenburg-Marquardt algorithm needs to start the fitting process with initial
guesses for the final parameters. If these are not specified (as in the example above), the value “1.0“ is used for the initial
guess.
If the algorithm fails to fit a function to data (even though the function describes the data reasonably), we need to give
the algorithm better estimates for the initial parameters. For the example shown above, we could give the estimates to the
curve_fit function by changing the line

popt, pcov = curve_fit(f, x, yi)

to

popt, pcov = curve_fit(f, x, yi, p0=(2, 1, 0.6))

if our initial guesses would be a = 2, b = 1 and c = 0.6. Once we take the algorithm “roughly in the right area” in
parameter space, the fitting usually works well.

202 Chapter 16. Numerical Methods using Python (scipy)

Introduction to Python for Computational Science and Engineering

16.8 Fourier transforms

In the next example, we create a signal as a superposition of a 50 Hz and 70 Hz sine wave (with a slight phase shift
between them). We then Fourier transform the signal and plot the absolute value of the (complex) discrete Fourier
transform coefficients against frequency, and expect to see peaks at 50Hz and 70Hz.

import scipy.fft
import numpy as np
import matplotlib.pyplot as plt
pi = np.pi

signal_length = 0.5 # [seconds]
sample_rate = 500 # sampling rate [Hz]
dt = 1. / sample_rate # time between two samples [s]

df = 1 / signal_length # frequency between points in
in frequency domain [Hz]

t = np.arange(0, signal_length, dt) # the time vector
n_t = len(t) # length of time vector

create signal
y = np.sin(2*pi*50*t) + np.sin(2*pi*70*t+pi/4)

compute Fourier transform
f = scipy.fft.fft(y)

work out meaningful frequencies in Fourier transform
freqs = df * np.arange(0, (n_t-1)/2., dtype='d') # 'd'=double precision float
n_freq = len(freqs)

plot input data y against time
plt.subplot(2, 1, 1)
plt.plot(t, y, label='input data')
plt.xlabel('time [s]')
plt.ylabel('signal')

#plot frequency spectrum
plt.subplot(2, 1, 2)
plt.plot(freqs, abs(f[0:n_freq]),

label='abs(fourier transform)')
plt.xlabel('frequency [Hz]')
plt.ylabel('abs(DFT(signal))');

16.8. Fourier transforms 203

Introduction to Python for Computational Science and Engineering

The lower plot shows the discrete Fourier transform computed from the data shown in the upper plot.

16.9 Optimisation

Often we need to find the maximum or minimum of a particular function f(x) where f is a scalar function but x could
be a vector. Typical applications are the minimisation of entities such as cost, risk and error, or the maximisation of
productivity, efficiency and profit. Optimisation routines typically provide a method to minimise a given function: if we
need to maximise f(x) we create a new function g(x) that reverses the sign of f, i.e. g(x)= − f(x) and we minimise g(x).
Below, we provide an example showing (i) the definition of the test function and (ii) the call of the scipy.optimize.
fmin function which takes as argument a function f to minimise and an initial value x0 from which to start the search
for the minimum, and which returns the value of x for which f(x) is (locally) minimised. Typically, the search for the
minimum is a local search, i.e. the algorithm follows the local gradient. We repeat the search for the minimum for two
values (x0 = 1.0 and x0 = 2.0, respectively) to demonstrate that depending on the starting value we may find different
minimar of the function f.
The majority of the commands (after the two calls to fmin) in the file fmin1.py creates the plot of the function, the
start points for the searches and the minima obtained:

from numpy import arange, cos, exp
from scipy.optimize import fmin
import pylab

def f(x):
return cos(x) - 3 * exp(-(x - 0.2) ** 2)

(continues on next page)

204 Chapter 16. Numerical Methods using Python (scipy)

Introduction to Python for Computational Science and Engineering

(continued from previous page)

find minima of f(x),
starting from 1.0 and 2.0 respectively
minimum1 = fmin(f, 1.0)
print("Start search at x=1., minimum is", minimum1)
minimum2 = fmin(f, 2.0)
print("Start search at x=2., minimum is", minimum2)

plot function
x = arange(-10, 10, 0.1)
y = f(x)
pylab.plot(x, y, label='$\cos(x)-3e^{-(x-0.2)^2}$')
pylab.xlabel('x')
pylab.grid()
pylab.axis([-5, 5, -2.2, 0.5])

add minimum1 to plot
pylab.plot(minimum1, f(minimum1), 'vr',

label='minimum 1')
add start1 to plot
pylab.plot(1.0, f(1.0), 'or', label='start 1')

add minimum2 to plot
pylab.plot(minimum2,f(minimum2),'vg',\

label='minimum 2')
add start2 to plot
pylab.plot(2.0,f(2.0),'og',label='start 2')

pylab.legend(loc='lower left')

Optimization terminated successfully.
Current function value: -2.023866
Iterations: 16
Function evaluations: 32

Start search at x=1., minimum is [0.23964844]
Optimization terminated successfully.

Current function value: -1.000529
Iterations: 16
Function evaluations: 32

Start search at x=2., minimum is [3.13847656]

<matplotlib.legend.Legend at 0x7f5f18167810>

16.9. Optimisation 205

Introduction to Python for Computational Science and Engineering

Calling the fmin function will produce some diagnostic output, which you can also see above.
Return value of fmin
Note that the return value from the fmin function is a numpy array which – for the example above – contains only
one number as we have only one parameter (here x) to vary. In general, fmin can be used to find the minimum in a
higher-dimensional parameter space if there are several parameters. In that case, the numpy array would contain those
parameters that minimise the objective function. The objective function 𝑓(𝑥) has to return a scalar even if there are more
parameters, i.e. even if 𝑥 is a vector as in 𝑓(x).

16.10 Other numerical methods

Scientific Python and Numpy provide access to a large number of other numerical algorithms including function in-
terpolation, Fourier transforms, optimisation, special functions (such as Bessel functions), signal processing and filters,
random number generation, and more. Start to explore scipy’s and numpy’s capabilities using the help function and
the documentation provided on the web.

206 Chapter 16. Numerical Methods using Python (scipy)

Introduction to Python for Computational Science and Engineering

16.11 scipy.io: Scipy-input output

Scipy provides routines to read and write Matlab mat files. Here is an example where we create a Matlab compatible file
storing a (1x11) matrix, and then read this data into a numpy array from Python using the scipy Input-Output library:
First we create a mat file in Octave (Octave is [mostly] compatible with Matlab):

octave:1> a=-1:0.5:4
a =
Columns 1 through 6:

-1.0000 -0.5000 0.0000 0.5000 1.0000 1.5000
Columns 7 through 11:

2.0000 2.5000 3.0000 3.5000 4.0000
octave:2> save -6 octave_a.mat a %save as version 6

Then we load this array within python:

from scipy.io import loadmat
mat_contents = loadmat('static/data/octave_a.mat')

mat_contents

{'__header__': b'MATLAB 5.0 MAT-file Platform: posix, Created on: Mon Aug 8␣
↪12:21:36 2016',
'__version__': '1.0',
'__globals__': [],
'a': array([[-1. , -0.5, 0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4.]])}

mat_contents['a']

array([[-1. , -0.5, 0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4.]])

The function loadmat returns a dictionary: the key for each item in the dictionary is a string which is the name of that
array when it was saved in Matlab. The key is the actual array.
A Matlab matrix file can hold several arrays. Each of those is presented by one key-value pair in the dictionary.
Let’s save two arrays from Python to demonstrate that:

import scipy.io
import numpy as np

create two numpy arrays
a = np.linspace(0, 50, 11)
b = np.ones((4, 4))

save as mat-file
create dictionary for savemat
tmp_d = {'a': a,

'b': b}
scipy.io.savemat('data.mat', tmp_d)

This program creates the file data.mat, which we can subsequently read using Matlab or here Octave:

16.11. scipy.io: Scipy-input output 207

Introduction to Python for Computational Science and Engineering

HAL47:code fangohr$ octave
GNU Octave, version 3.2.4
Copyright (C) 2009 John W. Eaton and others.
<snip>

octave:1> whos
Variables in the current scope:

Attr Name Size Bytes Class
==== ==== ==== ===== =====

ans 1x11 92 cell

Total is 11 elements using 92 bytes

octave:2> load data.mat
octave:3> whos
Variables in the current scope:

Attr Name Size Bytes Class
==== ==== ==== ===== =====

a 11x1 88 double
ans 1x11 92 cell
b 4x4 128 double

Total is 38 elements using 308 bytes

octave:4> a
a =

0
5

10
15
20
25
30
35
40
45
50

octave:5> b
b =

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

Note that there are other functions to read from and write to in formats as used by IDL, Netcdf and other formats in
scipy.io.
More → see Scipy tutorial.

208 Chapter 16. Numerical Methods using Python (scipy)

https://docs.scipy.org/doc/scipy/reference/io.html

CHAPTER

SEVENTEEN

PANDAS - DATA SCIENCE WITH PYTHON

Numpy and numpy arrays are our tool of choice for numeric data that resembles vectors, matrices (and higher dimensional
tensors).
Where data is gathered from experiments, and in particular where we want to extract meaning from the combination of
different data sources, and where data is often incomplete, the pandas library offers a number of useful tools (and has
become a standard tool for data scientists).
In this section, we introduce the basics of Pandas.
In particular, we introduce the two key data types in Pandas: the Series and the DataFrame objects.
By convention, the pandas library is imported under the name pd (the same way that numpy is imported under the
name np:

import pandas as pd

17.1 Motivational example (Series)

Imagine we are working on software for a greengrocer or supermarket, and need to track the number of apples (10),
oranges(3) and bananas (22) that are available in the supermarket.
We could use a python list (or a numpy array) to track these numbers:

stock = [10, 3, 22]

However, we would need to remember separately that the entries are in the order of apples, oranges, and bananas. This
could be achieved through a second list:

stocklabels = ['apple', 'orange', 'banana']

assert len(stocklabels) == len(stock) # check labels and
stock are consistent

for label, count in zip(stocklabels, stock):
print(f'{label:10s} : {count:4d}')

apple : 10
orange : 3
banana : 22

209

Introduction to Python for Computational Science and Engineering

The above 2-list solution is a little awkward in two ways: firstly, we have use two lists to describe one set of data (and
thus need to be carefuly to update them simulatenously, for example), and secondly, the access to the data given a label is
inconvenient: We need to find the index of the label with one list, then use this as the index to the other list, for example

index = stocklabels.index('banana')
bananas = stock[index]
print(f"There are {bananas} bananas [index={index}].")

There are 22 bananas [index=2].

Wehave come across similar examples in the section on dictionaries, and indeed a dictionary is a more convenient solution:

stock_dic = {'apple': 10,
'orange': 3,
'banana': 22}

The keys of the dictionary contain the stock labels and the values contain the actual values:

stock_dic.keys()

dict_keys(['apple', 'orange', 'banana'])

stock_dic.values()

dict_values([10, 3, 22])

To retrieve (or change) the value for apple, we use apple as the key and retrieve the value through the dictionary’s
indexing notation:

stock_dic['apple']

10

And we can summarise the stock as follows:

for label in stock_dic:
print(f'{label:10s} : {stock_dic[label]:4d}')

apple : 10
orange : 3
banana : 22

This is a vast improvement over the 2-lists solution: (i) we only maintain one structure, which contains a value for every
key - so we don’t need to check that the lists have the same length. (ii) we can access individual elements through the
label (using it as a key for the dictionary).
The Pandas Series object address the requirements above. It is similar to a dictionary, but with improvements for the
given problem:

• the order of the items is maintained
• the values have to have the same type (higher execution performance)

210 Chapter 17. Pandas - Data Science with Python

Introduction to Python for Computational Science and Engineering

• a (large) number of convenience functionality, for example to deal with missing data, time series, sorting, plotting,
and more

17.2 Pandas Series

17.2.1 Stock example - Series

We can create a Series object - for example - from a dictionary:

stock = pd.Series({'apple': 10,
'orange': 3,
'banana': 22})

The default presentation shows the entries one per row, with the label on the left, and the value on the right.

type(stock)

pandas.core.series.Series

stock

apple 10
orange 3
banana 22
dtype: int64

The items on the left are referred to as the index of the Series, and are available as the index attribute of the series
object:

stock.index

Index(['apple', 'orange', 'banana'], dtype='object')

type(stock.index)

pandas.core.indexes.base.Index

We can also access the list of values for each item, using the values attribute:

stock.values

array([10, 3, 22])

Regarding data access, the Series object behaves like a dictionary:

stock['apple']

17.2. Pandas Series 211

Introduction to Python for Computational Science and Engineering

10

stock['potato'] = 101 # adding more values
stock['cucumber'] = 1

print(stock)

apple 10
orange 3
banana 22
potato 101
cucumber 1
dtype: int64

stock

apple 10
orange 3
banana 22
potato 101
cucumber 1
dtype: int64

We can plot the data as a bar chart:

%matplotlib inline
settings for Jupyter book: svg for html version, high-resolution png for pdf
import matplotlib
import matplotlib_inline
matplotlib_inline.backend_inline.set_matplotlib_formats('svg', 'png')
matplotlib.rcParams['figure.dpi'] = 400

stock.plot(kind='bar')

<Axes: >

212 Chapter 17. Pandas - Data Science with Python

Introduction to Python for Computational Science and Engineering

We can sort the data according to the values in the Series (and then plot to visualise):

stock.sort_values().plot(kind='bar')

<Axes: >

17.2. Pandas Series 213

Introduction to Python for Computational Science and Engineering

Or sort the index to get alphabetical order of our fruit and vegetables:

stock.sort_index().plot(kind='bar')

<Axes: >

214 Chapter 17. Pandas - Data Science with Python

Introduction to Python for Computational Science and Engineering

The Series object has a number of numerical methods available, including mean and sum:

stock.sum()

137

stock.mean()

27.4

It also behaves like a sequence in that the len function returns the number of data points in the Series object:

len(stock)

5

17.2. Pandas Series 215

Introduction to Python for Computational Science and Engineering

17.2.2 memory usage

For larger data sets, it might be important to know how many bytes storing the Series costs. The bytes required to store
the actual series data are available as

stock.nbytes

40

or from the underlying numpy array directly:

stock.values.nbytes

40

It is 40 bytes, because we have 5 elements stored as int64 (each needing 8 bytes):

stock.dtype

dtype('int64')

The Series object needs additional memory. This can be queried using:

stock.memory_usage()

252

17.2.3 Statistics

A number of statistical descriptors of the data in the stock Series object is available using describe():

stock.describe()

count 5.000000
mean 27.400000
std 41.955929
min 1.000000
25% 3.000000
50% 10.000000
75% 22.000000
max 101.000000
dtype: float64

As usual, the documentation strings provide documentation (help(stock.describe)), and the pandas home page
(https://pandas.pydata.org) provides links to the Pandas documentation.

216 Chapter 17. Pandas - Data Science with Python

Introduction to Python for Computational Science and Engineering

17.3 Create Series from list

In the example above, we showed how to create a Series from a dictionary where the keys of the dictionary entries served
as the index for the Series object.
We can also create a Series from a list, an provide an additional index:

stock = pd.Series([10, 3, 22], index=['apple', 'orange', 'banana'])

stock

apple 10
orange 3
banana 22
dtype: int64

If we omit the index argument, the Series will assume an integer index:

stock = pd.Series([10, 3, 22])

stock

0 10
1 3
2 22
dtype: int64

However, an index can be added subsequently:

stock.index = ['apple', 'orange', 'banana']

stock

apple 10
orange 3
banana 22
dtype: int64

17.4 Plotting data

Commonly used plots are easily accessible via the plot() method of the Series object. We have seen a bar plot above
already. The Series.plot() method accepts an argument kind such as kind="bar", but there is an equivalent
method Series.plot.bar() available.
Further examples:

stock.plot.pie()

17.3. Create Series from list 217

Introduction to Python for Computational Science and Engineering

<Axes: >

To tailor the plot, we can either get the axis object and modify it subsequently:

ax = stock.plot.pie()
ax.set_aspect(1)
ax.set_ylabel(None);
ax.set_title(None);

218 Chapter 17. Pandas - Data Science with Python

Introduction to Python for Computational Science and Engineering

import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 1, figsize=(9, 3))
stock.plot.bar(ax=ax)
ax.set_title("Current stock");

We can also retrieve the data from the series and drive the plotting “manually” ourselves:

import matplotlib.pyplot as plt

names = list(stock.index) # conversion to list not necessary
values = list(stock.values) # conversion to list not necessary

(continues on next page)

17.4. Plotting data 219

Introduction to Python for Computational Science and Engineering

(continued from previous page)

fig, ax = plt.subplots(1, 1, figsize=(9, 3))
ax.bar(names, values)
ax.set_title('Stock');

17.5 Missing values

“Real” data sets tend to be incomplete. Dealing with missing values is an important topic in data science. The agreement
in Pandas is that the special floating point value “NaN” (standing for Not a Number) represents missing data points. For
example, if we have a table for the stock, but we don’t know the value for apple, we would replace it with NaN.
The special Nan value in Python can be created using float('nan') or using numpy.nan if the numpy module is
imported.

stock['apple'] = float('nan')

stock

apple NaN
orange 3.0
banana 22.0
dtype: float64

Note that the dtype of the stock Series object has changed from int64 to float64 when we assigned NaN to
apple: the whole series has been converted to float, because NaN is only defined for floating point numbers.
(There is a proposal to create a NaN object as part of pandas - this would overcome the above limitation.)
Assume we need to calculate how many items of stock we have in total using the sum function:

stock.values

array([nan, 3., 22.])

A common situation is that we have an incomplete Series or DataFrame (which are multiple Series with the same index)
and we want to process with our analysis, but treat the missing values in a special way.

220 Chapter 17. Pandas - Data Science with Python

Introduction to Python for Computational Science and Engineering

stock.sum()

25.0

The above example sum shows that NaN values are simply ignored, which can be convenient.
We can also ‘tidy up’ the Series object, by removing all entries that have a NaN value:

stock.dropna()

orange 3.0
banana 22.0
dtype: float64

17.6 Series data access: explicit and implicit (loc and iloc)

stock = pd.Series({'apple': 10,
'orange': 3,
'banana': 22,
'cucumber' : 1,
'potato' : 110})

stock

apple 10
orange 3
banana 22
cucumber 1
potato 110
dtype: int64

17.6.1 Indexing

We can access single values through their index as if the stock Series object would be a dictionary:

stock['banana']

22

There is an equivalent and recommended way of using this retrieval using the loc (for LOCation?) attribute:

stock.loc['banana']

22

For convenience, pandas also (!) allows us to use integer indexing into the Series object. This is called implicit indexing
as the series Object doesn’t use integers as the index, but the name of the fruits.

17.6. Series data access: explicit and implicit (loc and iloc) 221

Introduction to Python for Computational Science and Engineering

For example, we can also retrieve the value for banana through its implicit index 2, because it is in row 3 of the Series
object (which would need index 2 as we start counting from 0):

stock[2]

/tmp/ipykernel_293/4060357290.py:1: FutureWarning: Series.__getitem__ treating␣
↪keys as positions is deprecated. In a future version, integer keys will always␣
↪be treated as labels (consistent with DataFrame behavior). To access a value by␣
↪position, use `ser.iloc[pos]`
stock[2]

22

In this example, this works fine and seems convenient, but can become very confusing if the actual index of the object
consists of integers. For that reason, the explicit (and recommended way) of using the indirect indexing is through the
iloc (ImplicitLOCation) attribute:

stock.iloc[2]

22

17.6.2 Slicing

stock

apple 10
orange 3
banana 22
cucumber 1
potato 110
dtype: int64

We can also slice the Series:

stock['orange':'potato']

orange 3
banana 22
cucumber 1
potato 110
dtype: int64

Or skip every second entry:

stock['orange':'potato':2]

orange 3
cucumber 1
dtype: int64

222 Chapter 17. Pandas - Data Science with Python

Introduction to Python for Computational Science and Engineering

17.6.3 Data manipulation

Numerical operations on the series object can be carried for all data values at the same time inthe same way that numpy
arrays are processed:

stock - stock.mean()

apple -19.2
orange -26.2
banana -7.2
cucumber -28.2
potato 80.8
dtype: float64

import numpy as np

np.sqrt(stock)

apple 3.162278
orange 1.732051
banana 4.690416
cucumber 1.000000
potato 10.488088
dtype: float64

Where preferred, we can extract the numpy array and work with that:

data = stock.values

type(data)

numpy.ndarray

data - data.mean()

array([-19.2, -26.2, -7.2, -28.2, 80.8])

17.6.4 Import and Export

Pandas (and its objects Series and DataFrame) support export to and import from a number of useful formats.
For example, we can write a Series object into a comma separated value file:

stock.to_csv('stock.csv', header=False)

#NBVAL_IGNORE_OUTPUT
!cat stock.csv

17.6. Series data access: explicit and implicit (loc and iloc) 223

Introduction to Python for Computational Science and Engineering

apple,10
orange,3
banana,22
cucumber,1
potato,110

We can also create a LaTeX representation of the table:

stock.to_latex()

'\\begin{tabular}{lr}\n\\toprule\n & 0 \\\\\n\\midrule\napple & 10 \\\\\norange &␣
↪3 \\\\\nbanana & 22 \\\\\ncucumber & 1 \\\\\npotato & 110 \\\\\n\\bottomrule\n\\
↪end{tabular}\n'

We’ll come back to reading from files in the DataFrame section.

17.7 Data Frame

17.7.1 Stock Example - DataFrame

After having introduced the Series object above, we will focus on the second important type in pandas: the
DataFrame.
As a first description, we could say that the DataFrame is similar to a (2d) spreadsheet: it contains rows and columns.
The series object we have studied above is a special case of the DataFrame, where the DataFrame has only one
column.
We’ll continue with our stock example:

stock

apple 10
orange 3
banana 22
cucumber 1
potato 110
dtype: int64

In addition to tracking how many objects of each type we have stocked, we have a second Series object that provides the
price per item at which the item is sold:

price = pd.Series({'apple': 0.55, 'banana': 0.50, 'cucumber' : 0.99, 'potato' : 0.17,
↪'orange': 1.76})

price

apple 0.55
banana 0.50
cucumber 0.99
potato 0.17
orange 1.76
dtype: float64

224 Chapter 17. Pandas - Data Science with Python

Introduction to Python for Computational Science and Engineering

The DataFrame object allows us to treat the two series together. In fact, a convenient way to create the DataFrame
object is to combine a number of series as follows:

shop = pd.DataFrame({'stock' : stock, 'price' : price})
shop

stock price
apple 10 0.55
banana 22 0.50
cucumber 1 0.99
orange 3 1.76
potato 110 0.17

Because both Series objects had the same index elements, our data is nicely aligned in the DataFrame with name
shop, even though the data was stored in different order in the price and stock.
If one Series is missing a data point, pandas will insert a NaN entry into that field:

price2 = price.copy()

price2['grapefruit'] = 1.99
price2

apple 0.55
banana 0.50
cucumber 0.99
potato 0.17
orange 1.76
grapefruit 1.99
dtype: float64

pd.DataFrame({'stock' : stock, 'price' : price2})

stock price
apple 10.0 0.55
banana 22.0 0.50
cucumber 1.0 0.99
grapefruit NaN 1.99
orange 3.0 1.76
potato 110.0 0.17

17.7.2 Accessing data in a DataFramea

shop

stock price
apple 10 0.55
banana 22 0.50
cucumber 1 0.99
orange 3 1.76
potato 110 0.17

17.7. Data Frame 225

Introduction to Python for Computational Science and Engineering

The data frame has an index which is the same for all columns, and shown in bold in the left most column. We can also
ask for it:

shop.index

Index(['apple', 'banana', 'cucumber', 'orange', 'potato'], dtype='object')

Each column has name (here stock and price):

shop.columns

Index(['stock', 'price'], dtype='object')

17.7.3 Extracting columns of data

Using the column names, we can extract one column into a Series object using the index operator ([]):

shop['stock']

apple 10
banana 22
cucumber 1
orange 3
potato 110
Name: stock, dtype: int64

shop['price']

apple 0.55
banana 0.50
cucumber 0.99
orange 1.76
potato 0.17
Name: price, dtype: float64

17.7.4 Extracting rows of data

We have two options of extracting a row of data.
First, explicit indexing using the label of the index in that row:

shop.loc['apple'] # single row is returned as series

stock 10.00
price 0.55
Name: apple, dtype: float64

shop.loc['banana':'cucumber'] # multiple rows are returned as DataFrame

226 Chapter 17. Pandas - Data Science with Python

Introduction to Python for Computational Science and Engineering

stock price
banana 22 0.50
cucumber 1 0.99

Second, we can use the implicit indexing (as for Series objects):

shop.iloc[0]

stock 10.00
price 0.55
Name: apple, dtype: float64

shop.iloc[1:3]

stock price
banana 22 0.50
cucumber 1 0.99

Warning
Note that there are some inconsistencies here: the explicit slicing with index labels (such as .
loc['banana':'cucumber']) is inclusive of cucumber, whereas in the implicit slicing (such as .iloc[1:3])
the row with index 3 is not included.
The behaviour of .loc is convenient and a good design choice if labels such as strings in our stock example are used.
The behaviour of .iloc is reflecting the normal Python behaviour.
It is thus understandable how we have arrived at the situation.

17.7.5 Data manipulation with shop

The real strength of the DataFrames is that we can continue to process the data conveniently.
For example, we could work out the financial value of the items we have in stock, and add this as an extra column:

shop['value'] = shop['price'] * shop['stock']
shop

stock price value
apple 10 0.55 5.50
banana 22 0.50 11.00
cucumber 1 0.99 0.99
orange 3 1.76 5.28
potato 110 0.17 18.70

Of course we can compute the sum, for example, to estimate the value of the total stock:

shop['value'].sum()

41.47

If, for whatever reason, we want to swap columns with rows, we can transpose the data frame like a numpy array:

17.7. Data Frame 227

Introduction to Python for Computational Science and Engineering

shop.transpose()

apple banana cucumber orange potato
stock 10.00 22.0 1.00 3.00 110.00
price 0.55 0.5 0.99 1.76 0.17
value 5.50 11.0 0.99 5.28 18.70

17.8 Example: European population 2017

Here is a second example to demonstrate some use cases of pandas DataFrames.
First, we get the data. It is originally from EUROSTAT (reference “demo_gind”)

#NBVAL_IGNORE_OUTPUT
!wget https://fangohr.github.io/data/eurostat/population2017/eu-pop-2017.csv

--2024-04-14 10:28:17-- https://fangohr.github.io/data/eurostat/population2017/eu-
↪pop-2017.csv

Resolving fangohr.github.io (fangohr.github.io)... 185.199.108.153, 185.199.109.
↪153, 185.199.111.153, ...

Connecting to fangohr.github.io (fangohr.github.io)|185.199.108.153|:443...␣
↪connected.

HTTP request sent, awaiting response...

200 OK
Length: 1087 (1.1K) [text/csv]
Saving to: ‘eu-pop-2017.csv’

eu-pop-2017.csv 0%[] 0 --.-KB/s
eu-pop-2017.csv 100%[===================>] 1.06K --.-KB/s in 0s

2024-04-14 10:28:17 (66.2 MB/s) - ‘eu-pop-2017.csv’ saved [1087/1087]

The data source is a comma-separated-value file (CSV), which looks like this:

#NBVAL_IGNORE_OUTPUT
!head eu-pop-2017.csv

geo,pop17,pop18,births,deaths
Belgium ,11351727,11413058,119690,109666
Bulgaria,7101859,7050034,63955,109791
Czechia,10578820,10610055,114405,111443
Denmark,5748769,5781190,61397,53261
Germany,82521653,82850000,785000,933000
Estonia ,1315634,1319133,13784,15543
Ireland,4784383,4838259,62084,30324
Greece,10768193,10738868,88523,124530
Spain,46527039,46659302,390024,421269

228 Chapter 17. Pandas - Data Science with Python

Introduction to Python for Computational Science and Engineering

Pandas has very strong support of reading files from different formats, including MS Excel, CSV, HDF5 and others. Each
reading routine has a number of options to tailor the process.
Many data science projects leave the data in their original files, and use a few lines of Python code to import it.

df = pd.read_csv('eu-pop-2017.csv')

df

geo pop17 pop18 births deaths
0 Belgium 11351727 11413058 119690 109666
1 Bulgaria 7101859 7050034 63955 109791
2 Czechia 10578820 10610055 114405 111443
3 Denmark 5748769 5781190 61397 53261
4 Germany 82521653 82850000 785000 933000
5 Estonia 1315634 1319133 13784 15543
6 Ireland 4784383 4838259 62084 30324
7 Greece 10768193 10738868 88523 124530
8 Spain 46527039 46659302 390024 421269
9 France 66989083 67221943 767691 603141
10 Croatia 4154212 4105493 36556 53477
11 Italy 60589445 60483973 458151 649061
12 Cyprus 854802 864236 9229 5997
13 Latvia 1950116 1934379 20828 28757
14 Lithuania 2847904 2808901 28696 40142
15 Luxembourg 590667 602005 6174 4263
16 Hungary 9797561 9778371 94646 131877
17 Malta 460297 475701 4319 3571
18 Netherlands 17081507 17181084 169200 150027
19 Austria 8772865 8822267 87633 83270
20 Poland 37972964 37976687 401982 402852
21 Portugal 10309573 10291027 86154 109586
22 Romania 19644350 19523621 189474 260599
23 Slovenia 2065895 2066880 20241 20509
24 Slovakia 5435343 5443120 57969 53914
25 Finland 5503297 5513130 50321 53722
26 Sweden 9995153 10120242 115416 91972
27 United Kingdom 65808573 66238007 755043 607172

We look at the dataframe as it is, and use the ‘head()’ command which will only show the first 5 lines of data:

df.head()

geo pop17 pop18 births deaths
0 Belgium 11351727 11413058 119690 109666
1 Bulgaria 7101859 7050034 63955 109791
2 Czechia 10578820 10610055 114405 111443
3 Denmark 5748769 5781190 61397 53261
4 Germany 82521653 82850000 785000 933000

The meaning of the colums, we have to get from metada information. In this case, we have the following description of
the data:

• geo: the country in question
• pop17: the population count of that country as of 1 January 2017

17.8. Example: European population 2017 229

Introduction to Python for Computational Science and Engineering

• pop18: the population count of that country as of 1 January 2018
• births: the number of (live) births in the country during the year 2017
• deaths: the number of deaths in that country during the year 2017

The data is provided for all of the 28 European Union members (as of 2017).
We want to use the country as the country name as the index. We can achieve this either with

df2 = df.set_index('geo')

df2.head()

pop17 pop18 births deaths
geo
Belgium 11351727 11413058 119690 109666
Bulgaria 7101859 7050034 63955 109791
Czechia 10578820 10610055 114405 111443
Denmark 5748769 5781190 61397 53261
Germany 82521653 82850000 785000 933000

Note that we cannot change the index in a given DataFrame, so the set_index() method returns a new DataFrame.
(This happens for many operations.)
An as alternative, we can also modify the import statement to already indicate which column we want to use as the index:

df = pd.read_csv('eu-pop-2017.csv', index_col="geo")

df.head()

pop17 pop18 births deaths
geo
Belgium 11351727 11413058 119690 109666
Bulgaria 7101859 7050034 63955 109791
Czechia 10578820 10610055 114405 111443
Denmark 5748769 5781190 61397 53261
Germany 82521653 82850000 785000 933000

We explore the data by plotting some of it:

df.plot(kind='bar', y='pop17')

<Axes: xlabel='geo'>

230 Chapter 17. Pandas - Data Science with Python

Introduction to Python for Computational Science and Engineering

The above shows the population as of 1 Jan 2017.
We’ll try to improve this in two ways:

• we want to count population in millions. We can do this by dividing all the data by 106.
• it would be interesting to sort the countries in order of size for this plot.

df_millions = df / 1e6

df_millions['pop17'].sort_values(ascending=False).plot(kind='bar')

<Axes: xlabel='geo'>

17.8. Example: European population 2017 231

Introduction to Python for Computational Science and Engineering

The example above selects one column from the data frame (['pop17') and that returns a Series object. Then we
sort this Series object using sort_values() according to the values (that’s the number of poeple in each country),
then we plot this.
Alternatively, we could also create a plot for the whole data frame, but say that the pop17 is the column for sorting, and
that we want to plot only the column with pop17:

df_millions.sort_values(by='pop17').plot(kind='bar', y='pop17')

<Axes: xlabel='geo'>

232 Chapter 17. Pandas - Data Science with Python

Introduction to Python for Computational Science and Engineering

We can also plot more than one column at the same time:

ax = df_millions.sort_values(by='pop17').plot(kind='bar', y=['pop17', 'pop18'])

17.8. Example: European population 2017 233

Introduction to Python for Computational Science and Engineering

We can also fine tune the plot with the usual matplotlib commands:

ax = df_millions.sort_values(by='pop17').plot(kind='bar', y='pop17', figsize=(10, 4))
ax.set_ylabel("population 2017 [in millions]")
ax.grid()
ax.set_xlabel(None); # get rid of default label for x-axis ('geo')

234 Chapter 17. Pandas - Data Science with Python

Introduction to Python for Computational Science and Engineering

Based on the number of births and deaths, we can compute change in population for each country for 2017. This is
sometimes called the “natural-change”:

df['natural-change'] = df['births'] - df['deaths']

df['natural-change'].sort_values()

geo
Italy -190910
Germany -148000
Romania -71125
Bulgaria -45836
Hungary -37231
Greece -36007
Spain -31245
Portugal -23432
Croatia -16921
Lithuania -11446
Latvia -7929
Finland -3401
Estonia -1759
Poland -870
Slovenia -268
Malta 748
Luxembourg 1911
Czechia 2962
Cyprus 3232
Slovakia 4055
Austria 4363
Denmark 8136
Belgium 10024
Netherlands 19173
Sweden 23444
Ireland 31760

(continues on next page)

17.8. Example: European population 2017 235

Introduction to Python for Computational Science and Engineering

(continued from previous page)

United Kingdom 147871
France 164550
Name: natural-change, dtype: int64

From this, we can see that the population change due to births and deaths in Italy and Germany is decreasing most in
absolute terms.
To relate this to the overall size of the population, one often uses rates per year and per 1000 people in the country, such
as the birth rate per 1000 inhabitants [1] (and death rate accordingly):
[1] https://en.wikipedia.org/wiki/Birth_rate

df['birth-rate'] = df['births'] / df['pop17'] * 1000
df['death-rate'] = df['deaths'] / df['pop17'] * 1000
df['natural-change-rate'] = df['natural-change'] / df['pop17'] * 1000

df.head()

pop17 pop18 births deaths natural-change birth-rate \
geo
Belgium 11351727 11413058 119690 109666 10024 10.543770
Bulgaria 7101859 7050034 63955 109791 -45836 9.005389
Czechia 10578820 10610055 114405 111443 2962 10.814533
Denmark 5748769 5781190 61397 53261 8136 10.680026
Germany 82521653 82850000 785000 933000 -148000 9.512655

death-rate natural-change-rate
geo
Belgium 9.660733 0.883037
Bulgaria 15.459473 -6.454085
Czechia 10.534540 0.279993
Denmark 9.264766 1.415260
Germany 11.306123 -1.793469

We can now look at the natural rate of change of population for each country, which is normalised by the population in
that country.

ax = df.sort_values(by='natural-change-rate').plot(kind='bar', y='natural-change-rate
↪', figsize=(10, 4))

ax.set_title("Natural change due to births and deaths per 1000 in 2017");

236 Chapter 17. Pandas - Data Science with Python

Introduction to Python for Computational Science and Engineering

We can show the data together with the underlying birth and death rate data:

tmp = df.sort_values(by='natural-change-rate')

fig, axes = plt.subplots(2, 1, figsize=(12, 6))

tmp.plot(kind='bar', y=['natural-change-rate'], sharex=True, ax=axes[0])
axes[0].set_title("Population change per 1000 in 2017")
tmp.plot(kind='bar', y=['death-rate', 'birth-rate'], sharex=True, ax=axes[1])

<Axes: xlabel='geo'>

17.8. Example: European population 2017 237

Introduction to Python for Computational Science and Engineering

We haven’t used the information we have about the population on 1 January 2018 yet.
Let’s first look at the absolute changes in the population based on the (census?) data from 1 Jan 2017 and 1 Jan 2018:

df['change'] = df['pop18'] - df['pop17']

ax = df.sort_values(by='change').plot(y='change', kind='bar')
ax.set_title("Total change in population per country in 2017");

238 Chapter 17. Pandas - Data Science with Python

Introduction to Python for Computational Science and Engineering

With that information, we can estimate migration. (It is important to note that this estimated number will also absorb all
inaccuracies or changes of the data gathering method, in the original data described as “statistical adjustment”.)

df['migration'] = df['change'] - df['natural-change']

df.head()

pop17 pop18 births deaths natural-change birth-rate \
geo
Belgium 11351727 11413058 119690 109666 10024 10.543770
Bulgaria 7101859 7050034 63955 109791 -45836 9.005389
Czechia 10578820 10610055 114405 111443 2962 10.814533
Denmark 5748769 5781190 61397 53261 8136 10.680026
Germany 82521653 82850000 785000 933000 -148000 9.512655

death-rate natural-change-rate change migration
geo
Belgium 9.660733 0.883037 61331 51307
Bulgaria 15.459473 -6.454085 -51825 -5989

(continues on next page)

17.8. Example: European population 2017 239

Introduction to Python for Computational Science and Engineering

(continued from previous page)

Czechia 10.534540 0.279993 31235 28273
Denmark 9.264766 1.415260 32421 24285
Germany 11.306123 -1.793469 328347 476347

Let’s plot the total change of the population per country in the top subfigure, and the contribution from natural changes
and migration in the lower subfigure:

tmp = df.sort_values(by='change')
fig, axes = plt.subplots(2, 1, figsize=(12, 6))

tmp.plot(kind='bar', y=['change'], sharex=True, ax=axes[0])
axes[0].set_title("Population changes in 2017")
axes[0].legend(['total change of population (migration + natural change due to deaths␣

↪and births'])
tmp.plot(kind='bar', y=['migration', 'natural-change'], sharex=True, ax=axes[1])
axes[1].legend(['Migration', "natural change due to deaths and births"])
axes[1].set_xlabel(None);

17.9 Further reading

There is a lot more to say about Pandas. The following resources may be useful but there are countless others available:
• Further reading on [], .loc[] and .iloc[] from Ted Petrou as a Jupyter Notebook and blog entry.
• Jake VanderPlas: Python Data Science Handbook online

240 Chapter 17. Pandas - Data Science with Python

https://github.com/tdpetrou/Learn-Pandas/blob/master/Selecting%20Subsets/01%20Selecting%20Subsets%20with%20%5B%20%5D%2C%20.loc%20and%20.iloc.ipynb
https://medium.com/dunder-data/selecting-subsets-of-data-in-pandas-6fcd0170be9c
https://jakevdp.github.io/PythonDataScienceHandbook/

CHAPTER

EIGHTEEN

PYTHON PACKAGES AND ENVIRONMENTS

18.1 Introduction

This chapter provides an introduction to installing python packages and using python environments.
In the first part of the chapter you will learn how to

• search the database of Python packages
• install Python packages from the Python Packaging Index (PyPI)
• create virtual Python environments to separate different projects

In the second part, we provide additional information for users of the Anaconda distribution, in particular
• using environments within conda
• installing packages with conda
• interplay between conda and pip

We mention pyenv as an advanced tool at the very end.
This chapter does not comment on the creation of Python packages.

18.1.1 Shell commands in the Jupyter notebook

This chapter is written in a Jupyter notebook. This can be helpful for the reader as the notebook can be executed, and so
the command can be replayed and varied easily.
In this particular chapter, we have lots of interaction with the shell of the operating system, and need to know two things:

1. We use the exclamation mark (!) to tell Jupyter to send the following command to the shell (rather than interpret
in the Python environment of this notebook). Here is an example:

!date

Wed Jan 5 11:55:11 CET 2022

2. If we modify shell variables (such as the PATH), these are only set within the same cell. This will lead to repitition
of some commands. This is mildly annoying (and will not be the case if the same commands are used outside the
Jupyter Notebook).
Here is an example to illustrate the issue: First we set a variable value and then we display it:

241

Introduction to Python for Computational Science and Engineering

!export NEW_VAR="test" && echo $NEW_VAR

test

The && operator instructs the shell to carry out the command to the right of && if the command on the left succeeded.
Repeating the “echo” command, we find the variable is not defined anymore:

!echo $NEW_VAR

So if we want to make use of those variable values, we need to repeat the setting of them:

!export NEW_VAR="test" && echo "The value of NEW_VAR is $NEW_VAR."

The value of NEW_VAR is test.

We need to make use of this when activiting virtual environments (below).

18.1.2 Prerequisits

We assume that you have already python installed on your system. (And we assume that you are using Python3.) If you
haven’t got Python 3 yet, then either install the Anaconda distribution, follow the instructions of the Hitchhiker’s Guide
to Python or take some other action.
Check that you have python installed:

!python --version

Python 3.9.7

We also assume you have a somewhat recent Python version (3.8 and above).
The commands below are tested for Linux andOSX operating system. If you use windows, please check the corresponding
commands from here: https://packaging.python.org/en/latest/tutorials/installing-packages/

18.2 Python virtual environments

Before we install packages (be it our own or those from somebody else), we should create a new virtual environment. This
is good practice because

• we can delete it when we don’t need it any more
• we can not break other projects using python we may be working on
• we have no constraints about versions of particular libraries (it could be that one application needs version 2.x of a
library and another application needs the version 1.8: if the two applications are installed in different environments,
then this is no problem)

242 Chapter 18. Python packages and environments

https://fangohr.github.io/blog/installation-of-python-spyder-numpy-sympy-scipy-pytest-matplotlib-via-anaconda.html
https://docs.python-guide.org/starting/installation/#installation
https://docs.python-guide.org/starting/installation/#installation

Introduction to Python for Computational Science and Engineering

18.2.1 Creating virtual enviroments

We can create a virtual environment using this command

!python -m venv myvirtualenv

This command creates a subdirectory with name myvirtualenv in the current directory which contains the new virtual
environment:

!ls -dl myvirtualenv/

drwxr-xr-x 6 fangohr staff 192 Jan 5 11:55 myvirtualenv/

The virtual environment will use the same Python interpreter that we have used above when creating it. On Linux/OSX
system, we can find out which interpreter this is by using the which command:

!which python

/Users/fangohr/anaconda3/bin/python

If the basics are sufficient for you, you can skip to the next section about activating a virtual environment.
We also be more specific, and choose a particular Python interpreter when using the -m venv command to force use
of a particular python version. On a Mac (OSX), if python3 was installed via brew, there is a python executable in
/usr/local/bin/python3. To force creation of a virtual environment using this interpreter, we could use

/usr/local/bin/python3 -m venv myvirtualenv

There is no need to know what is happening inside this folder, but as we are curious, we’ll have a very brief look anyway:

!ls myvirtualenv/

bin include lib pyvenv.cfg

The pyvenv.cfg file contains information about the Python interpreter we are using

!cat myvirtualenv/pyvenv.cfg

home = /Users/fangohr/anaconda3/bin
include-system-site-packages = false
version = 3.9.7

Out of interest, we can check the total Disk Usage of that subdirectory:

!du -hs myvirtualenv/

15M myvirtualenv/

To use this virtual environment, we need to activate it:

18.2. Python virtual environments 243

Introduction to Python for Computational Science and Engineering

18.2.2 Activating a virtual environment

To activate the virtual environment, we need to know in which folder it is installed (in our case in myvirtualenv).
On Linux and OSX, we run the following shell command:

!source myvirtualenv/bin/activate

This changes the PATH variable, which the operating system uses search for the python executable: it puts the directory
that contains the python interpreter in our virtual enviromnent to the beginning of the PATH valiabl. We can check that
this works, by using the which command again:

!source myvirtualenv/bin/activate && which python

/Users/fangohr/git/introduction-to-python-for-computational-science-and-
↪engineering/book/myvirtualenv/bin/python

(As outlined in the introduction, the repitition of the activate command is only necessary because we work from a
Notebook here: if you go through these steps in a shell, you can ignore this, and write which python straight away.)

18.2.3 Using the virtual environment

Once we have activated the virtual enviroment, we can use it as we would use the default Python environment provided
on the system.
For example to install some Python packages.

18.2.4 Name of the virtual environment

We have used myvirtualenv as the name of the virtual environment. In general, the name can be chosen freely.
Commonly used names include env or venv. Ocasionally, the environment is installed in a hidden subdirectory (such
as .env or .venv).
We have not used the venv name for pedagogical to avoid confusion with the venv module.

18.3 Python Package Index (PyPI)

The Python Package Index provides a searchable web interface (https://pypi.org) that provides all Python packages reg-
istered with PyPI.
PyPI is the standard way of distributing (open source) python packages, and commonly used in science and engineering
as well.

244 Chapter 18. Python packages and environments

Introduction to Python for Computational Science and Engineering

18.3.1 Installing packages with pip

The command to install one or more of these package is pip. We will activate our virtual environment and install some
example packages:

!source myvirtualenv/bin/activate && pip install cowsay

Collecting cowsay
Using cached cowsay-4.0-py2.py3-none-any.whl (24 kB)

Installing collected packages: cowsay
Successfully installed cowsay-4.0
WARNING: You are using pip version 21.2.3; however, version 21.3.1 is available.
You should consider upgrading via the '/Users/fangohr/git/introduction-to-python-

↪for-computational-science-and-engineering/book/myvirtualenv/bin/python -m pip␣
↪install --upgrade pip' command.

As we get a warning that suggests to upgrade the pip package itself, we shall follow the instructions and run the recom-
mended command:

!source myvirtualenv/bin/activate && pip install --upgrade pip

Requirement already satisfied: pip in ./myvirtualenv/lib/python3.9/site-packages␣
↪(21.2.3)

Collecting pip
Using cached pip-21.3.1-py3-none-any.whl (1.7 MB)

Installing collected packages: pip
Attempting uninstall: pip

Found existing installation: pip 21.2.3
Uninstalling pip-21.2.3:
Successfully uninstalled pip-21.2.3

Successfully installed pip-21.3.1

!source myvirtualenv/bin/activate && cowsay Hellooo World

| Hellooo World |
=============

\
\
^__^
(oo)_______
(__)\)\/\

||----w |
|| ||

We can confirm the list of packages we have installed (together with their version number) using pip list:

!source myvirtualenv/bin/activate && pip list

Package Version
---------- -------
cowsay 4.0

(continues on next page)

18.3. Python Package Index (PyPI) 245

Introduction to Python for Computational Science and Engineering

(continued from previous page)

pip 21.3.1
setuptools 57.4.0

18.3.2 Learn more about an installed package using pip show

Once a package is installed, we can use pip show to learn more about it:

!source myvirtualenv/bin/activate && pip show cowsay

Name: cowsay
Version: 4.0
Summary: The famous cowsay for GNU/Linux is now available for python
Home-page: https://github.com/VaasuDevanS/cowsay-python
Author: Vaasudevan Srinivasan
Author-email: vaasuceg.96@gmail.com
License: GNU-GPL
Location: /Users/fangohr/git/introduction-to-python-for-computational-science-and-

↪engineering/book/myvirtualenv/lib/python3.9/site-packages
Requires:
Required-by:

For packages that are not installed yet, we need to search https://pypi.org to learn more about them. This includes the list
of available packages (under “release history”).
(There are command line tools such as pip-search that can help to find package names, but they do not provide the same
depth of information as the web page [at the time of writing]).

18.3.3 Uninstalling packages with pip

(The -y is short for yes and tells pip uninstall not to ask for confirmation if cowsay should be uninstalled.)

!source myvirtualenv/bin/activate && pip uninstall -y cowsay

Found existing installation: cowsay 4.0
Uninstalling cowsay-4.0:
Successfully uninstalled cowsay-4.0

!source myvirtualenv/bin/activate && pip list

Package Version
---------- -------
pip 21.3.1
setuptools 57.4.0

246 Chapter 18. Python packages and environments

https://pypi.org/project/pip-search/

Introduction to Python for Computational Science and Engineering

18.3.4 Installing packages with additional dependencies

As a second example, we’ll install the wikipedia package. We will see that it needs additional python packages as
dependencies, which will be installed automatically:

!source myvirtualenv/bin/activate && pip install wikipedia

Collecting wikipedia
Using cached wikipedia-1.4.0.tar.gz (27 kB)
Preparing metadata (setup.py) ... ?25ldone

?25hCollecting beautifulsoup4
Using cached beautifulsoup4-4.10.0-py3-none-any.whl (97 kB)

Collecting requests<3.0.0,>=2.0.0
Using cached requests-2.27.0-py2.py3-none-any.whl (63 kB)

Collecting idna<4,>=2.5
Using cached idna-3.3-py3-none-any.whl (61 kB)

Collecting charset-normalizer~=2.0.0
Using cached charset_normalizer-2.0.10-py3-none-any.whl (39 kB)

Collecting urllib3<1.27,>=1.21.1
Using cached urllib3-1.26.7-py2.py3-none-any.whl (138 kB)

Collecting certifi>=2017.4.17
Using cached certifi-2021.10.8-py2.py3-none-any.whl (149 kB)

Collecting soupsieve>1.2
Using cached soupsieve-2.3.1-py3-none-any.whl (37 kB)

Using legacy 'setup.py install' for wikipedia, since package 'wheel' is not␣
↪installed.

Installing collected packages: urllib3, soupsieve, idna, charset-normalizer,␣
↪certifi, requests, beautifulsoup4, wikipedia

Running setup.py install for wikipedia ... ?25ldone
?25hSuccessfully installed beautifulsoup4-4.10.0 certifi-2021.10.8 charset-

↪normalizer-2.0.10 idna-3.3 requests-2.27.0 soupsieve-2.3.1 urllib3-1.26.7␣
↪wikipedia-1.4.0

!source myvirtualenv/bin/activate && python -c "import wikipedia; print(wikipedia.
↪summary('cowsay'))"

cowsay is a program that generates ASCII art pictures of a cow with a message. It␣
↪can also generate pictures using pre-made images of other animals, such as Tux␣
↪the Penguin, the Linux mascot. It is written in Perl. There is also a related␣
↪program called cowthink, with cows with thought bubbles rather than speech␣
↪bubbles. .cow files for cowsay exist which are able to produce different␣
↪variants of "cows", with different kinds of "eyes", and so forth. It is␣
↪sometimes used on IRC, desktop screenshots, and in software documentation. It is␣
↪more or less a joke within hacker culture, but has been around long enough that␣
↪its use is rather widespread. In 2007, it was highlighted as a Debian package of␣
↪the day.

It is worth noting that if we uninstall wikipedia, the dependencies that wikipedia needs (such as beautiful-
soup4) are not uninstalled:

!source myvirtualenv/bin/activate && pip uninstall -y wikipedia

Found existing installation: wikipedia 1.4.0
Uninstalling wikipedia-1.4.0:

(continues on next page)

18.3. Python Package Index (PyPI) 247

Introduction to Python for Computational Science and Engineering

(continued from previous page)

Successfully uninstalled wikipedia-1.4.0

!source myvirtualenv/bin/activate && pip list

Package Version
------------------ ---------
beautifulsoup4 4.10.0
certifi 2021.10.8
charset-normalizer 2.0.10
idna 3.3
pip 21.3.1
requests 2.27.0
setuptools 57.4.0
soupsieve 2.3.1
urllib3 1.26.7

This can lead to an accumulation of (partly unneeded) python packages. Also for this reason, it is good practice to create
a virtual environment from scratch when startinga new project, and to discard it afterwards.

18.3.5 Installing particular versions with pip

Occasionally, we need to install a particular version of a package. For example, imagine we need version 2.0 of cowsay.
In that case, we can use the == operator to specify this requirement:

!source myvirtualenv/bin/activate && pip install cowsay==3.0

Collecting cowsay==3.0
Using cached cowsay-3.0-py2.py3-none-any.whl (19 kB)

Installing collected packages: cowsay
Successfully installed cowsay-3.0

!source myvirtualenv/bin/activate && cowsay --version

3.0

18.3.6 Upgrading a pip-installed package

!source myvirtualenv/bin/activate && pip install -U cowsay

Requirement already satisfied: cowsay in ./myvirtualenv/lib/python3.9/site-
↪packages (3.0)

Collecting cowsay
Using cached cowsay-4.0-py2.py3-none-any.whl (24 kB)

Installing collected packages: cowsay
Attempting uninstall: cowsay

Found existing installation: cowsay 3.0
Uninstalling cowsay-3.0:

(continues on next page)

248 Chapter 18. Python packages and environments

Introduction to Python for Computational Science and Engineering

(continued from previous page)

Successfully uninstalled cowsay-3.0
Successfully installed cowsay-4.0

!source myvirtualenv/bin/activate && cowsay --version

4.0

Let’s remove cowsay again:

!source myvirtualenv/bin/activate && pip uninstall -y cowsay

Found existing installation: cowsay 4.0
Uninstalling cowsay-4.0:
Successfully uninstalled cowsay-4.0

18.3.7 Installing a package from github

If we want to install the latest development version of the (Python) cowsay package, we have two options.
The first option is to pip install directly from the github. The github repository is at
https://github.com/VaasuDevanS/cowsay-python

!source myvirtualenv/bin/activate && pip install git+https://github.com/VaasuDevanS/
↪cowsay-python.git

Collecting git+https://github.com/VaasuDevanS/cowsay-python.git
Cloning https://github.com/VaasuDevanS/cowsay-python.git to /private/var/folders/

↪wc/d1lyft3x2jn29b6yffrzh4vw0000gq/T/pip-req-build-7gxyjbt6
Running command git clone --filter=blob:none -q https://github.com/VaasuDevanS/

↪cowsay-python.git /private/var/folders/wc/d1lyft3x2jn29b6yffrzh4vw0000gq/T/pip-
↪req-build-7gxyjbt6
Resolved https://github.com/VaasuDevanS/cowsay-python.git to commit␣

↪767c09425d813b80d67cdebba02ce387ca2eb4e8
Preparing metadata (setup.py) ... ?25ldone

?25hUsing legacy 'setup.py install' for cowsay, since package 'wheel' is not␣
↪installed.

Installing collected packages: cowsay
Running setup.py install for cowsay ... ?25ldone

?25hSuccessfully installed cowsay-4.0

!source myvirtualenv/bin/activate && cowsay --version

4.0

!source myvirtualenv/bin/activate && pip uninstall -y cowsay

Found existing installation: cowsay 4.0
Uninstalling cowsay-4.0:
Successfully uninstalled cowsay-4.0

18.3. Python Package Index (PyPI) 249

Introduction to Python for Computational Science and Engineering

The second option is to clone the git repository to our local machine, and then to install the package from that
local directory:

!cd /tmp && git clone https://github.com/VaasuDevanS/cowsay-python.git

Cloning into 'cowsay-python'...
remote: Enumerating objects: 170, done.
remote: Counting objects: 100% (82/82), done.
remote: Compressing objects: 100% (40/40), done.
remote: Total 170 (delta 41), reused 77 (delta 40), pack-reused 88
Receiving objects: 100% (170/170), 79.19 KiB | 772.00 KiB/s, done.
Resolving deltas: 100% (72/72), done.

!source myvirtualenv/bin/activate && cd /tmp/cowsay-python && pip install .

Processing /private/tmp/cowsay-python
Preparing metadata (setup.py) ... ?25ldone

?25hUsing legacy 'setup.py install' for cowsay, since package 'wheel' is not␣
↪installed.

Installing collected packages: cowsay
Running setup.py install for cowsay ... ?25ldone

?25hSuccessfully installed cowsay-4.0

!source myvirtualenv/bin/activate && cowsay --version

4.0

18.3.8 Pip install a user-editable package from a local directory

This example carries on from the git clone example above.
If we pip-install python packages, these are normally installed in the directory tree in the virtual environment. For example:

!ls myvirtualenv/lib/python3.*/site-packages/cowsay

__init__.py __pycache__ main.py
__main__.py characters.py test.py

If we intend to edit the python files in the package (for example because we want to develop it further, or explore it), and
we want those edits to be visible in the ‘installed’ package, we can ask pip to carry out an editable install using the
-e flag:

!source myvirtualenv/bin/activate && pip uninstall -y cowsay

Found existing installation: cowsay 4.0
Uninstalling cowsay-4.0:
Successfully uninstalled cowsay-4.0

!source myvirtualenv/bin/activate && cd /tmp/cowsay-python && pip install -e .

250 Chapter 18. Python packages and environments

Introduction to Python for Computational Science and Engineering

Obtaining file:///private/tmp/cowsay-python
Preparing metadata (setup.py) ... ?25ldone

?25hInstalling collected packages: cowsay
Running setup.py develop for cowsay

Successfully installed cowsay-4.0

In this case, only a link to our local package is created:

!ls -l myvirtualenv/lib/python3.*/site-packages/cowsay*

-rw-r--r-- 1 fangohr staff 28 Jan 5 11:55 myvirtualenv/lib/python3.9/site-
↪packages/cowsay.egg-link

!cat myvirtualenv/lib/python3.*/site-packages/cowsay*

/private/tmp/cowsay-python
.

18.3.9 Advance pip use: freeze, -r requirements.txt and creating repro-
ducible environments

If you want to record (and later re-use) a combination of python packages with their specific version numbers, you can use
the pip freeze command to provide such a list.

!source myvirtualenv/bin/activate && pip freeze

beautifulsoup4==4.10.0
certifi==2021.10.8
charset-normalizer==2.0.10
-e git+https://github.com/VaasuDevanS/cowsay-python.

↪git@767c09425d813b80d67cdebba02ce387ca2eb4e8#egg=cowsay
idna==3.3
requests==2.27.0
soupsieve==2.3.1
urllib3==1.26.7

We can re-direct the output into a file (which by convention is called requirements.txt):

!source myvirtualenv/bin/activate && pip freeze > requirements.txt

!cat requirements.txt

beautifulsoup4==4.10.0
certifi==2021.10.8
charset-normalizer==2.0.10
-e git+https://github.com/VaasuDevanS/cowsay-python.

↪git@767c09425d813b80d67cdebba02ce387ca2eb4e8#egg=cowsay
idna==3.3
requests==2.27.0

(continues on next page)

18.3. Python Package Index (PyPI) 251

Introduction to Python for Computational Science and Engineering

(continued from previous page)

soupsieve==2.3.1
urllib3==1.26.7

We can now create a new virtual environment, and install all the packages listed in the requirements.txt file into
this new virtual environment:

!python -m venv myvirtualenv-copy

!source myvirtualenv-copy/bin/activate && pip install -r requirements.txt

Obtaining cowsay from git+https://github.com/VaasuDevanS/cowsay-python.
↪git@767c09425d813b80d67cdebba02ce387ca2eb4e8#egg=cowsay (from -r requirements.
↪txt (line 4))
Cloning https://github.com/VaasuDevanS/cowsay-python.git (to revision␣

↪767c09425d813b80d67cdebba02ce387ca2eb4e8) to ./myvirtualenv-copy/src/cowsay
Running command git clone -q https://github.com/VaasuDevanS/cowsay-python.git /

↪Users/fangohr/git/introduction-to-python-for-computational-science-and-
↪engineering/book/myvirtualenv-copy/src/cowsay
Running command git rev-parse -q --verify 'sha^

↪767c09425d813b80d67cdebba02ce387ca2eb4e8'
Running command git fetch -q https://github.com/VaasuDevanS/cowsay-python.git␣

↪767c09425d813b80d67cdebba02ce387ca2eb4e8
Resolved https://github.com/VaasuDevanS/cowsay-python.git to commit␣

↪767c09425d813b80d67cdebba02ce387ca2eb4e8
Collecting beautifulsoup4==4.10.0
Using cached beautifulsoup4-4.10.0-py3-none-any.whl (97 kB)

Collecting certifi==2021.10.8
Using cached certifi-2021.10.8-py2.py3-none-any.whl (149 kB)

Collecting charset-normalizer==2.0.10
Using cached charset_normalizer-2.0.10-py3-none-any.whl (39 kB)

Collecting idna==3.3
Using cached idna-3.3-py3-none-any.whl (61 kB)

Collecting requests==2.27.0
Using cached requests-2.27.0-py2.py3-none-any.whl (63 kB)

Collecting soupsieve==2.3.1
Using cached soupsieve-2.3.1-py3-none-any.whl (37 kB)

Collecting urllib3==1.26.7
Using cached urllib3-1.26.7-py2.py3-none-any.whl (138 kB)

Installing collected packages: urllib3, soupsieve, idna, charset-normalizer,␣
↪certifi, requests, cowsay, beautifulsoup4
Running setup.py develop for cowsay

Successfully installed beautifulsoup4-4.10.0 certifi-2021.10.8 charset-normalizer-
↪2.0.10 cowsay-4.0 idna-3.3 requests-2.27.0 soupsieve-2.3.1 urllib3-1.26.7

WARNING: You are using pip version 21.2.3; however, version 21.3.1 is available.
You should consider upgrading via the '/Users/fangohr/git/introduction-to-python-

↪for-computational-science-and-engineering/book/myvirtualenv-copy/bin/python -m␣
↪pip install --upgrade pip' command.

It is good practice to use the freeze command to store the list of packages and versions required for important projects
(including those such as scientific publications, reports, theses), and the requirements.txt file should be archived
together with the data and software.
It is even better practice if the creation of the virtual enviroment is done in a scripted way (based on a requirements.
txt file which should be part of the archived [and version-controlled] files of the analysis), and before all the required
processing/simulation/analysis is in that environment.

252 Chapter 18. Python packages and environments

Introduction to Python for Computational Science and Engineering

In practice, achieving full and guaranteed reproducibility is difficult. There are a variety of problems that could occur,
such as for example the disappearance of the pypi.org service. How to achieve full reproducibility is an active research
area, and deserves a separate chapter or book.
In any case, recording the Python packages used is a very good first step.

18.3.10 Deactivate a virtual environment

To de-activate a virtual enviroment, use the deactivate command.

!source myvirtualenv/bin/activate && deactivate && which python

/Users/fangohr/anaconda3/bin/python

18.3.11 Deleting a virtual enviroment

To completely remove the virtual environment, we can delete the subfolder in which it was installed:

!rm -rf myvirtualenv

18.3.12 Further reading

• Installing Python packages: https://packaging.python.org/en/latest/tutorials/installing-packages
• venv module documentation: https://docs.python.org/3/library/venv.html

18.4 Anaconda

18.4.1 Introduction

The Anaconda software distribution brings its own packaging, which is controlled through the conda command.
Anaconda is well known as a Python distribution, but is in no way limited to Python packages: it is a generic package
manager. Together with the community-run conda-forge project, there is a multitude of packages available. A particular
bonus of the the conda packages is that they can be provided for the three major operating systems is use (Linux, OSX,
Windows).
Conda provides conda packages for some Python packages that are available from the Python Package Index (PyPI).
One thus needs to ask: should I install a package using the conda command (conda install spyder) or through
pip (pip install spyder). See below for the answer.
conda provides its own (conda) environments (see https://docs.conda.io/projects/conda/en/latest/user-
guide/tasks/manage-environments.html). They show many similarities with our (basic) discussion of (Python)
virtual environments. We have no space to discuss the conda environments further here.
The following comments are meant to be helpful for those who have installed their Python interpreter through anaconda.
If you are not using Anaconda, you can ignore this section.

18.4. Anaconda 253

http://conda-forge.org

Introduction to Python for Computational Science and Engineering

18.4.2 Can I use Python virtual environments when using the anaconda distribu-
tion?

This can be done and is a good way to create virtual environments. (All the examples above in this chapter use the Python3
interpreter from an anaconda installation on an OSX system).

18.4.3 Should I install a python package through conda or pip?

The typical scenario is that one installs Anaconda, and most Python packages needed are available: somewhat standard
tools such as numpy, scipy, matplotlib, pandas, jupyter, ipython and spyder already come with the
anaconda distribution. Then some package is missing that needs to be installed additionally.
For example, the package xarray: this can be installed through conda or through pip.
Experience-based rough guidance is as follows if working within an anaconda installation of Python:

• avoid mixing pip installs with conda installs
• if conda can install the required packages, then use that
• if conda cannot install the required packages, we have to use pip. In that case:

– install the requirements that need to come from conda (if any)
– then install the desired packages through pip
– after having used pip, do not use conda again to install more packages.
The reason for this is that conda and pip cannot interact perfectly, and so the changes that one package
manager made, maybe overriden or accidentally repeated slightly differently by the other one.

A more detailed discussion is available on the Anaconda blog.

18.4.4 Can I create a conda environment, and then create python virtual environ-
ments from this?

Yes.
This is also an option to install different Python versions.
For example: create a conda (!) environment providing Python 3.8:

conda create -y -n python38 python=3.8

Then
conda activate python38

and then create a virtual environment using
python -m venv myvirtualenv38

254 Chapter 18. Python packages and environments

https://www.anaconda.com/blog/using-pip-in-a-conda-environment

Introduction to Python for Computational Science and Engineering

18.5 Managing many different environments - pyenv

If you use many different python environments, posssibly with different interpreter versions, you may want to learn about
pyenv (home page at https://github.com/pyenv/pyenv).
Pyenv can install a multitude of python interpreters, create virtual environments for each of those. It is further possible to
define an a per-directory basis which environment should be used in that directory. This is convenient when using different
enviroments for different projects, as one does not need to manually activate the virtual environments.
Tidy up: remove files created in this section

!rm -rf /tmp/cowsay-python
!rm -rf myvirtualenv-copy
!rm -f requirements.txt

18.5. Managing many different environments - pyenv 255

Introduction to Python for Computational Science and Engineering

256 Chapter 18. Python packages and environments

CHAPTER

NINETEEN

WHERE TO GO FROM HERE?

Learning a programming language is the first step towards becoming a computationalist who advances science and engi-
neering through computational modelling and simulation.
We list some additional skills that can be very beneficial for day-to-day computational science work, but is of course not
exhaustive.

19.1 Advanced programming

This text has put emphasis on providing a robust foundation in terms of programming, covering control flow, data struc-
tures and elements from function and procedural programming. We have not touch Object Orientation in great detail,
nor have we discussed some of Python’s more advanced features such as iterators, and decorators, type hinting, nor many
of the fantastic (standard) libraries available.

19.2 Compiled programming language

When performance starts to be the highest priority, we may need to use compiled code, and likely embed this in a Python
code to carry out the computational that are the performance bottle neck.
Fortran, C and C++ are sensible choices here; maybe Rust in the near future.
We may also need to learn how to integrate the compiled code with Python using tools such as Cython, Boost, Ctypes
and Swig.
With the rise of GPUs as cheap and powerful compute resources, it is likely we want to drive computation carried out on
the GPU. This can be done through GPU-specific libraries and languages (CUDA and OpenCL, for example). For some
use cases, it may be sufficient to use frameworks that translate computational work from a higher level language (ideally
as high as Python) to the GPUs.

19.3 Testing

Good software development is supported by a range of unit and system tests that can be run routinely to check that the
code works correctly. Tools such as pytest, doctest and others are invaluable, and we should at least learn at least how to
use pytest for automated tests.

257

Introduction to Python for Computational Science and Engineering

19.4 Simulation models

A number of standard simulation tools such as Monte Carlo, Molecular Dynamics, lattice based models, agents, finite
difference and finite element models are commonly used to solve particular simulation challenges – it is useful to have at
least a broad overview of these.

19.5 Software engineering for research codes

Research codes bring particular challenges: the requirements may change during the run time of the project, we need
great flexibility yet reproducibility. A number of techniques are available to support effectively, including version control
(see below), automatic tests and continous integration.

19.6 Data and visualisation

Dealing with large amounts of data, processing and visualising it can be a challenge. Fundamental knowledge of database
design, 3d visualisation and modern data processing tools such as the Pandas and xarray Python package help with this.
For interactive 3d visualisation VTK remains an important tool, although WebGL starts to be an interesting alternative.

19.7 Version control

Using a version control tool, such as git, should be a standard approach and improves code writing effectiveness signifi-
cantly, helps with working in teams, and - maybe most importantly - supports reproducibility of computational results.

19.8 Parallel execution

Parallel execution of code is a way to make it run orders of magnitude faster. This could be using MPI for inter-node
communication or OpenMP for intra-node parallelisation or a hybrid mode bringing both together.
The recent rise of GPU computing provides yet another avenue of parallelisation.

19.9 Acknowledgements

Big thanks go to
• Marc Molinari for carefully proof reading this manuscript around 2007.
• Neil O’Brien for contributing to the SymPy section.
• Jacek Generowicz for introducing me to Python in the last millennium, and for kindly sharing countless ideas from
his excellent Python course.

• EPSRC (GR/T09156/01 and EP/G03690X/1) and the European Union (OpenDreamKit Horizon 2020 European
Research Infrastructures project, #676541) for support.

• Students and other readers who have provided feedback and pointed out typos and errors etc.
• Thomas Kluyver who helped to translate the Python 2 LaTeX based document into Python 3 Jupyter Notebooks
and provided the machinery to create html and pdf versions. automatically (via his bookbook package).

258 Chapter 19. Where to go from here?

https://github.com/takluyver/bookbook

Introduction to Python for Computational Science and Engineering

• Robert Rosca who helped to create html and pdf files after using jupyterbook was released (2020).
[1] the vertical line is to show the division between the original components only; mathematically, the augmented matrix
behaves like any other 2 × 3 matrix, and we code it in SymPy as we would any other.
[2] from the help(preview) documentation: “Currently this depends on pexpect, which is not available for windows.”
[3] The exact value for the upper limit is availabe in sys.maxint.
[4] We add for completeness, that a C-program (or C++ of Fortran) that executes the same loop will be about 100 times
faster than the python float loop, and thus about 100*200 = 20000 faster than the symbolic loop.
[5] In this text, we usually import numpy under the name N like this: import numpy as N. If you don’t have numpy
on your machine, you can substitute this line by import Numeric as N or import numarray as N.
[6] Historical note: this has changed from scipy version 0.7 to 0.8. Before 0.8, the return value was a float if a one-
dimensional problem was to solve.

19.9. Acknowledgements 259

https://jupyterbook.org

Introduction to Python for Computational Science and Engineering

260 Chapter 19. Where to go from here?

CHAPTER

TWENTY

CHANGE HISTORY

Since 2022
• 3 Jan 2022: review visualisation chapter

• 4 Jan 2022: change from odeint to solve_ivp in scipy chapter

• 5 Jan 2022: adding new section virtual environments and pip

261

	Introduction
	Computational Modelling
	Introduction
	Computational Modelling
	Programming to support computational modelling

	Why Python for scientific computing?
	Optimisation strategies
	Get it right first, then make it fast
	Prototyping in Python
	Literature
	Recorded video lectures on Python for beginners
	Python tutor mailing list

	Python version
	These documents
	The %%file magic
	The ! to execute shell commands
	The #NBVAL tags

	Your feedback

	A powerful calculator
	Python prompt and Read-Eval-Print Loop (REPL)
	Calculator
	Integer division
	How to avoid integer division
	Why should I care about this division problem?

	Mathematical functions
	Variables
	Terminology

	Impossible equations
	The += notation

	Data Types and Data Structures
	What type is it?
	Numbers
	Integers
	Integer limits
	Floating Point numbers
	Complex numbers
	Functions applicable to all types of numbers

	Sequences
	Sequence type 1: String
	Sequence type 2: List
	The range() command

	Sequence type 3: Tuples
	Indexing sequences
	Slicing sequences
	Dictionaries

	Passing arguments to functions
	Call by value
	Call by reference
	Argument passing in Python
	Performance considerations
	Inadvertent modification of data
	Copying objects

	Equality and Identity/Sameness
	Equality
	Identity / Sameness
	Example: Equality and identity

	Introspection
	dir
	Magic names

	type
	isinstance
	help
	Docstrings

	Input and Output
	Printing to standard output (normally the screen)
	Simple print
	Formatted printing
	“str” and “__str__”
	“repr” and “__repr__”
	New-style string formatting
	Changes from Python 2 to Python 3: print

	Reading and writing files
	File reading examples
	fileobject.read()
	fileobject.readlines()
	Iterating over lines (file object)

	Further reading

	Control Flow
	Basics
	Conditionals

	If-then-else
	For loop
	While loop
	Relational operators (comparisons) in if and while statements
	Exceptions
	Raising Exceptions
	Exception hierarchy

	Creating our own exceptions
	LBYL vs EAFP

	Functions and modules
	Introduction
	Using functions
	Defining functions
	Default values and optional parameters
	Modules
	Importing modules
	Creating modules
	Use of __name__
	Example 1
	Example 2

	Further Reading

	Functional tools
	Anonymous functions
	Map
	Filter
	List comprehension
	Reduce
	Why not just use for-loops?
	Speed
	The %%timeit magic

	Common tasks
	Many ways to compute a series
	Sorting
	Efficiency

	From Matlab to Python
	Important commands
	The for-loop
	The if-then statement
	Indexing
	Matrices

	Python shells
	IDLE
	Python (command line)
	Interactive Python (IPython)
	IPython console
	Jupyter Notebook

	Spyder
	Editors

	Symbolic computation
	SymPy
	Output
	Symbols
	isympy
	Numeric types
	Differentiation and Integration
	Ordinary differential equations
	Series expansions and plotting
	Linear equations and matrix inversion
	Non linear equations
	Output: LaTeX interface and pretty-printing
	Automatic generation of C code

	Related tools

	Numerical Computation
	Numbers and numbers
	Limitations of number types
	Limitations of ints
	Limitations of floats
	Limitations of complex numbers
	…are these number types of practical value?

	Using floating point numbers (carelessly)
	Using floating point numbers carefully 1
	Using floating point numbers carefully 2
	Symbolic calculation
	Summary
	Exercise: infinite or finite loop

	Numerical Python (numpy): arrays
	Numpy introduction
	History
	Arrays
	Vectors (1d-arrays)
	Matrices (2d-arrays)

	Convert from array to list or tuple
	Standard Linear Algebra operations
	Maxtrix multiplication
	Solving systems of linear equations
	Computing Eigenvectors and Eigenvalues
	Curve fitting of polynomials

	More numpy examples…
	Numpy for Matlab users

	Visualising Data
	Matplotlib – plotting y=f(x), (and a bit more)
	Matplotlib and Pylab
	First example
	The pyplot interface

	How to import matplotlib, pylab, pyplot, numpy and all that
	The Pylab interface

	IPython’s inline mode
	Saving the figure to a file

	The pylab interface
	Fine tuning your plot
	Plotting more than one curve
	Two (or more) curves in one graph
	Two (or more graphs) in one figure window
	Two (or more) figure windows

	Interactive mode

	The matplotlib.pyplot interface
	Histograms
	Visualising matrix data
	What colour map to choose?
	Plots of z = f(x, y) and other features of Matplotlib
	How to learn how to use Matplotlib?

	Visual Python
	Basics, rotating and zooming
	Setting the frame rate for animations
	Tracking trajectories
	Connecting objects (Cylinders, springs, …)
	3d vision

	Visualising higher dimensional data (VTK)
	Mayavi, Paraview, Visit
	Writing vtk files from Python (pyvtk)

	Further tools and developments
	Exploiting self-describing data for visualisation
	The future of data visualisation
	Fine-tuning matplotlib plots that are generated by high level frame works

	Jupyter Notebooks

	Numerical Methods using Python (scipy)
	Overview
	SciPy
	Numerical integration
	Exercise: integrate a function
	Exercise: plot before you integrate

	Solving Ordinary Differential Equations (ODEs)
	Systems of coupled ODEs

	Root finding
	Root finding using the bisection method
	Exercise: root finding using the bisect method
	Root finding using the fsolve funcion

	Interpolation
	Curve fitting
	Fourier transforms
	Optimisation
	Other numerical methods
	scipy.io: Scipy-input output

	Pandas - Data Science with Python
	Motivational example (Series)
	Pandas Series
	Stock example - Series
	memory usage
	Statistics

	Create Series from list
	Plotting data
	Missing values
	Series data access: explicit and implicit (loc and iloc)
	Indexing
	Slicing
	Data manipulation
	Import and Export

	Data Frame
	Stock Example - DataFrame
	Accessing data in a DataFramea
	Extracting columns of data
	Extracting rows of data
	Data manipulation with shop

	Example: European population 2017
	Further reading

	Python packages and environments
	Introduction
	Shell commands in the Jupyter notebook
	Prerequisits

	Python virtual environments
	Creating virtual enviroments
	Activating a virtual environment
	Using the virtual environment
	Name of the virtual environment

	Python Package Index (PyPI)
	Installing packages with pip
	Learn more about an installed package using pip show
	Uninstalling packages with pip
	Installing packages with additional dependencies
	Installing particular versions with pip
	Upgrading a pip-installed package
	Installing a package from github
	Pip install a user-editable package from a local directory
	Advance pip use: freeze, -r requirements.txt and creating reproducible environments
	Deactivate a virtual environment
	Deleting a virtual enviroment
	Further reading

	Anaconda
	Introduction
	Can I use Python virtual environments when using the anaconda distribution?
	Should I install a python package through conda or pip?
	Can I create a conda environment, and then create python virtual environments from this?

	Managing many different environments - pyenv

	Where to go from here?
	Advanced programming
	Compiled programming language
	Testing
	Simulation models
	Software engineering for research codes
	Data and visualisation
	Version control
	Parallel execution
	Acknowledgements

	Change history

