
UML FUNDAMENTALS

© 2001-2004 - Dr. Ernest Cachia

UML

Unified Modelling Language

Visualising and documenting analysis and
design effort.

• Unified because it …
– Combines main preceding OO methods (Booch by Grady

Booch, OMT by Jim Rumbaugh and OOSE by Ivar Jacobson)

• Modelling because it is …
– Primarily used for visually modelling systems. Many system

views are supported by appropriate models

• Language because …
– It offers a syntax through which to express modelled knowledge

UML Ancestry (visual)

Booch '91 OMT-1 OOSEOther

Booch '93 OMT-2

UM 0.8

UML 0.9/0.91

UML 1.0

UML 1.1
Industrialisation

S
ta

n
d

a
rd

is
a
tio

n
U

n
ific

a
tio

n

Partner's
expertise

Public
feedback

Jun-Oct'96

Sep1997

Jan 1997

June to Oct 1996

1995

F
ra

g
m

e
n
ta

ry

Further (latest) UML Evolution

1 9 9 7
(a d o p t e d b y O M G)

1 9 9 8

1 9 9 9

Q 1 2 0 0 1

Q 4 2 0 0 1

E d i t o r i a l r e v i s io n
w i t h o u t s ig n i f i c a n t

t e c h n ic a l c h a n g e s .

2 0 0 2

U M L 1 .1

U M L 1 .2

U M L 1 .3

U M L 1 .4

U M L 2 . 0
I n f r a s t r u c t u r e

U M L 2 .0

U M L 2 .0
S u p e r s t r u c t u r e

U M L 2 .0
O C L

c o m p o s i t i o n
(w h o l e - p a r t)

r e l a t i o n s h ip

d e p e n d e n c y
r e la t i o n s h i p

(L o o s e l y a d a p t e d f r o m K o b r y n , 2 0 0 1)

UML Partners

The list is quite an impressive one:

● Hewlett-Packard

● IBM

● Microsoft

● Oracle

● i-Logix

● Intelli Corp.

● MCI Systemhouse

● ObjectTime

● Unisys

● Sterling Software

● Rational Software

● ICON computing

● Platinum Technology

● and others…

and so…What is UML?

Based on the previous three slides…

• A language for capturing and expressing
knowledge

• A tool for system discovery and
development

• A tool for visual development modelling

• A set of well-founded guidelines

• A milestone generator

• A popular (therefore supported) tool

and…What UML is not!

• A visual programming language or
environment

• A database specification tool

• A development process (i.e. an SDLC)

• A panacea

• A quality guarantee

What UML can do for you
Help you to:
– Better think out and document your system before

implementing it
– “forecast” your system
– Determine islands of reusability
– Lower development costs
– Plan and analyse your logic (system behaviour)
– Make the right decisions at an early stage (before

committed to code)
– Better deploy the system for efficient memory and

processor usage
– Easier maintenance/modification on well documented

systems
– Lower maintenance costs
– Establish a communication standard
– Minimise “lead-in” costs

UML components
UML

Views

Diagrams

Model Elements

General Mechanisms

Functional Non-functional Organisational

9 diagrams
(see further on)

Symbology / notation

Adornments Notes Specifications

The Case “for” Diagrams

• Aesthetic

• Descriptive

• Compressive

• Simple

• Understandable

• Universal

• Formalise-able / Standardise-able

The Case “against” Diagrams

• Not inherent knowledge

• Easily cluttered

• Require some training

• Not necessarily revealing

• Must be liked to be accepted and used

• Effort to draw

UML diagrams
UML diagrams

Use-Case

Static Structure

State

Activity

Interaction

Implementation

Object Class

Sequence Collaboration

Component Deployment

UML Diagrams (comparative slide)

� Use-Case (relation of actors to system functions)

� Class (static class structure)

� Object (same as class - only using class instances
– i.e. objects)

� State (states of objects in a particular class)

� Sequence (Object message passing structure)

� Collaboration (same as sequence but also
shows context - i.e. objects and their relationships)

� Activity (sequential flow of activities i.e. action
states)

� Component (code structure)

� Deployment (mapping of software to hardware)

UML Diagram Philosophy

Any UML diagram:

• Depicts concepts

– as symbols

• Depicts relationships between concepts

– as directed or undirected arcs (lines)

• Depicts names

– as labels within or next to symbols and lines

The Main 4 UML Diagrams

• Use-Case

• Class

• Sequence

• State

Examples are depicted on the following

slides.

The Use-Case Diagram

The Class Diagram

The Sequence Diagram

The State Diagram

The Other 5 UML Diagrams

• Object

• Collaboration

• Activity

• Component

• Deployment

Examples are depicted on the following
slides.

The Object Diagram

The Collaboration Diagram

The Activity Diagram

The Component Diagram

The Deployment Diagram

UML Relationships

Some Points to Ponder

1. How would you justify the use of UML in any IS project
to programming personnel?

2. What is the difference between static and dynamic
UML diagrams?

3. Why does UML attempt to model systems with a heavy
emphasis on graphic notation?

4. Why does UML not restrict itself to one type of
diagram?

5. Is UML restrictive to system development? Justify your
reply.

6. A common misconception is that systems built using
UML are quality guaranteed. Discuss this issue and
present (write down) your reasoning.

Workshop Activity -7-

Try textually describing the software
controlling production of a large-scale pre-
packed food company
(weather/calendar/market controlled).

Once done, try describing the exact same
system diagrammatically.

Draw some conclusions from your work.

UML Development Model

UML DM

Requirements
Gathering

Analysis

Design

Development

Deployment

The next slides will outline the above phases

Requirements Gathering (1/2)

Determine what the client wants

• Business process elicitation
– Tool: Interview; Questionnaire; Observation;

Experience

– Product: UML Activity diagram

• Domain analysis
– Tool: Interview; Noun-Verb extraction; Observation

– Product: UML HL Class diagram; textual supporting
data

Requirements Gathering (2/2)

• System context determination
– Tool: Observation; Process walk-through

– Product: UML Deployment diagram

• System requirements elicitation
– Tool: JAD moderated session

– Product: Refined HL Class Diagram; UML Package
diagram

• Phase outcome presentation
– Tool: n/a

– Product: n/a

Analysis (1/2)

Unfold a detailed understanding of the
problem

• Determine system usage (Actor
determination)
– Tool: JAD session; User interrogation

– Product: Use-Case diagram/s

• Expand Use-Cases (Fleshing-out)
– Tool: Further user interrogation

– Product: Textual supplement to Use-Case diagrams

• Refine Class diagram
– Tool: JAD session; Observation (of JAD)

– Product: Refined Class diagram (inc. associations,
cardinalities/modalities, generalisations, etc.)

Analysis (2/2)

• State analysis
– Tool: Thought

– Product: State diagram

• Interaction analysis
– Tool: Internal experience (Use-Case + refined Class + State)

– Product: Sequence and Collaboration diagrams

• System integration analysis
– Tool: Observation; walk-through, interrogation

– Product: Detailed deployment diagram

Design (1/2)

Analysis ↔ Design (until design is completed)

• Develop and refine object diagrams
– Tool: Operation analysis

– Product: Activity diagrams

• Develop component diagrams
– Tool: Programmers; system component (and interaction)

visualisation

– Product: Component diagrams

• Start thinking about deployment
– Tool: Analysis of component structure and their

integration (from previous); external system co-
operation

– Product: Part of deployment diagram from analysis

Design (2/2)

• Prototype development (GUI)
– Tool: JAD session previous and new; previous use-case

diagrams

– Product: Screen prototypes and shots

• Testing of design
– Peer-developed test cases based on existing use-case diagrams

– Product: Test cases (scripts)

• Design documentation structure
– Tool: Designer input and document configuration tools

– Product: Document structure

Development (1/2)

Programmers’ realm – should proceed swiftly if right
effort was initially invested

• Coding
– Tool: Programmers using class, object, activity and component

diagrams

– Product: Code

• Testing
– Tool: Back-and-forth from the coding activity using the test cases

designed in the design phase

– Product: Test results

Development (2/2)

• Implement, connect and test UIs
– Tool: UI development environment; programmer interaction

– Product: Full working system

• Finalise documentation
– Tool: programmer input; inspection

– Product: Full system documentation

Deployment

Software to hardware mapping and consideration
of interacting systems

• Backup and recovery strategy
– Tool: Initial requirements; system nature considerations

– Product: Crash recovery plan

• Installation
– Tool: n/a

– Product: Deployed system

• Installation testing
– Tool: Implementation of test sequences including backup and

recovery

– Product: Final (actual) test results

Workshop Activity -8-

Internally within each team, divide up into
“client/analyst”, “object engineer”, and
“programmer/documentation specialist” and
try developing a basic DVD rental control
software system using basic UML notation
so far covered and according to UML DM.
Request trainer inspection after every
phase. Coding need only be carried out at
a highly abstract structured text or pseudo-
code level.

Use-Case Diagrams (UCDs) (1/2)

• A use-case is…
– a simplification of (a part of) a business process model

– a set of activities within a system

– presented from the point of view of the associated actors
(i.e. those actors interacting with the system)

– leading to an externally visible result

• What is the model supposed to do?
– offer a simplified and limited notation

– allow other diagrams used to support (realise) it

– combinatorial with prototypes as complementary
information

– not intended to model functional decomposition

Use-Case Diagrams (UCDs) (2/2)

Components: use-cases and actors

– a use-case must always deliver a value to an actor

– the aggregate of all use-cases is the system's
complete functionality

Goals:

– consolidate system functional requirements

– provide a development synchronisation point

– provide a basis for system testing

– provide a basic function-class/operation map

UCD Components

• The use case itself is drawn as an oval.

• The actors are drawn as little stick
figures.

• The actors are connected to the use
case with lines.

Actor symbol
UseCase1

Use-case symbol

Relationships and connectors

System boundary

System

Actor1

«extend» «include»

UML Actors

• An actor
– Is a class that forms a system boundary

– participates in a use-case

– is not within our responsibility as systems
analyst/s and/or designer/s

• Examples are
– end-users (roles)

– external systems (co-operations)

– time related events (events)

– external, passive objects (entities)

UML Actor Classification

�A primary actor uses the system's primary
functions (e.g. a bank cashier);

�A secondary actor uses the system's
secondary functions (e.g. a bank manager,
system administrator);

�An active actor initiates a use-case;

�A passive actor only participates in one or
more use-cases.

Identifying UML Actors

Ask yourself the following questions:

� Who are the system’s primary users?

� Who requires system support for daily tasks?

� Who are the system’s secondary users?

� What hardware does the system handle?

� Which other (if any) systems interact with the
system in question?

� Do any entities interacting with the system
perform multiple roles as actors?

� Which other entities (human or otherwise) might
have an interest in the system's output?

«actor»

The guy

UML Actor Notation and
Generalisation Examples

Staff

Clerical staff Academic staff Support staff

⇒

The guy

UML Use-Cases (UCs not UC
Diagrams UCDs)

Definition: "A set of sequences of actions a system
performs that yield an observable result of value to a
particular actor.“

Use-case characteristics:

� Always initiated by an actor (voluntarily or

� involuntarily);

� Must provide discernible value to an actor;

� Must form a complete conceptual function.
(conceptual completion is when the end observable value is produced)

UC Description Criteria

Use-Case Number (ID) and Name
– actors

– pre- and post-conditions

– invariants

– non-functional requirements

– Behaviour modelled as:
- activity diagram/s

- decomposition in smaller UC
diagrams

– error-handling and exceptions

– Rules modelled as:
- activity diagram/s

– services

– examples, prototypes, etc.

– open questions and contacts

– other diagrams

Use-case

Described by

UC Description Example
UC: Login authentication

� User

� Disable access - Enable access

� Logged in user = valid user

� Login delay; line security

� Behaviour modelled as:
- activity diagram/s

- decomposition in smaller UC
diagrams

� Invalid login name; interrupt entry

� Rules modelled as:
- activity diagram/s

� Log, pass prompts; authenticate

� examples, prototypes, etc.

� open questions and contacts

� other diagrams (realisations)

Example on the
next slide

Example on the slide
after the next

E.g. Collaboration
diagram (tackled

later on)

Example two
slides further on

Activity Diagram from previous

Sub-UCs to Login Example

Rules Activity Diagram Example

Consolidating UC Descriptions

Ask yourself these questions:

� Do all actors interacting with a given UC have

communication association to it?

� Are there common roles amongst actors?

� Are there UC similarities?

� Are there special cases of a UC?

� Are all system functions catered for by UCs?

UCD Relationships (1/2)

� Association relationship

� Extend relationship

� Include relationship

� Generalisation relationship

«include»

«extend»

UCD Relationships (2/2)

• Associations
• Links actors to their UCs

• Use (or include)
• Drawn from base UC to used UC, it shows inclusion of

functionality of one UC in another (used in base)

• Extend
• Drawn from extension to base UC, it extends the

meaning of UC to include optional behaviour

• Generalisation
• Drawn from specialised UC to base UC, it shows the

link of a specialised UC to a more generalised one

UCD Definition Summary

Use-Case diagrams:
• show use-cases and actors
• connected by “associations”
• refined by inheritance stereotypes

– “uses”
• re-use of a set of activities (use-cases)
• partitioning of activities
• points to the re-used use-case

– “extends”
• variation of a use-case
• points to the standard use-case

UCD Relationship Example
(1/2)

UCD Relationship Example
(2/2)

make an

interview

produce a

SRS

elicit customer

needs

«include»

«extend»

What a UCD is - and what it isn’t

� Attention focuser on the part of the business
process that is going to be supported by the IS.

� It is the end-user perspective model.

� It is goal driven

� Helps to identify system services.

� Are not used as DFDs.

� Sequences, branching, loops, rules, etc. cannot

(and should not) be directly expressed.

� Are often combined with activity diagrams, which

serve as their refinement.

UCD Case Study (1/3)

Vending Machine

• After client interview the following system
scenarios were identified:

• A customer buys a product

• The supplier restocks the machine

• The supplier collects money from the machine

• On the basis of these scenarios, the following
three actors can be identified:

• Customer; Supplier; Collector

UCD Case Study (2/3)

UCD Case Study (3/3)

� Introducing annotations (notes) and constraints.

Testing UCs

�Verification
– Confirmation of correct development according to

system requirements.

�Validation (only when working parts become
available)

– Confirmation of correct system functionality
according to end-user needs.

�Walking the UC
– This is basically, interchangeable role play by the

system developers.

Workshop Activity -9-

Create a simple UCD (i.e. no “uses” or “extends”
relationships) for a course registration system
described as follows:

“The course registration system should

allow students to register for and drop

courses. The system’s administrator should

be able to add and delete courses from the

system as well as to cancel planned

courses. If a planned course is cancelled

the relevant instructor should be notified

through the system.”

(Loosely adapted from Lee, 2002)

Workshop Activity -10-

Create a UCD showing UC relationships (i.e. with
“uses” or “extends” relationships and any actor
generalisations) for an automated medical
appointment system described as follows:

“The appointment system should allow new

or existing patients to make medical

appointments according to doctor-

controlled availability schedules.

Medical Centre management should be able

to view current schedule information.”

(Loosely adapted from Dennis, 2002)

The UML Class Diagram

• Is a static diagram (describes system
structure)
– Combines a number of model elements:

• Classes

• Attributes

• Operations (methods)

• Associations

• Aggregations

• Compositions

• Generalisations

A UML Class

Name

Attributes

Operations

Properties of class diagrams:
- Static model;
- Models structure and behaviour;
- Used as a basis for other diagrams;
- Easily converted to an object diagram.

Determining Classes (1/2)

● Is there data that requires storage,
transformation or analysis?

● Are there external systems interacting with the
one in question?

● Are any class libraries or components being use
(from manufacturers, other colleagues or past
projects)?

●Does the system handle any devices?

●Does the system model organisational
structures?

● Analyse all actor roles.

Determining Classes (2/2)

• Textual Analysis (based on Dennis, 2002)

• A common or improper noun implies a class

• A proper noun or direct reference implies an object (instance of a
class)

• A collective noun implies a class made up of groups of objects from
another class

• An adjective implies an attribute

• A “doing” verb implies an operation

• A “being” verb implies a classification relationship between an
object and its class

• A “having” verb implies an aggregation or association relationship

• A transitive verb implies an operation

• An intransitive verb implies an exception

• A predicate or descriptive verb phrase implies an operation

• An adverb implies an attribute of a relationship or an operation

UML Class Attributes (1/2)

� Very system dependent
� Describe characteristics of objects belonging to

that class
� Can be informative - or confusing
� Has a definite type

– Primitive (Boolean, integer, real, enumerated, etc.)
– language specific
– other classes
– any user defined type

� Has different visibility, including:
– public (viewed and used from other classes)

– private (cannot be accessed from other classes)

UML Class Attributes (2/2)

• Can be given a default value

• Can be given class-scope

• Can list possible values of enumeration

• Directly implementable into most modern
programming languages with object-oriented
support (e.g. Java)

Attribute syntax:

Visibility name:type=init_value{property_string}

UML Class Attribute Examples

UNIXaccount
+ username : string
+ groupname : string
+ filesystem_size : integer
+ creation_date : date
- password : string

UNIXaccount
+ username : string
+ groupname : string = “staff"
+ filesystem_size : integer
+ creation_date : date
- password : string

Invoice
+ amount : real
+ date : date = current date
+ customer : string
+ specification : string
- administrator : string = "unspecified"
- number_of_invoices : integer

Invoice
+ amount : real
+ date : date = current date
+ customer : string
+ specification : string
- administrator : string = "unspecified"
- number_of_invoices : integer
+ status : status = unpaid { unpaid, paid }

UML Class-to-Java Example

Public class UNIXaccount
{
public string username;
public string groupname = "csai";
public int filesystem_size;
public date creation_date;
private string password;
static private integer no_of_accounts = 0
public UNIXaccount()
{
//Other initialisation
no_of_accounts++;

}
//Methods go here

};

UNIXaccount

+ username : string
+ groupname : string = “staff"
+ filesystem_size : integer
+ creation_date : date
- password : string
- no_of_accounts : integer = 0

Operations (Methods)

Figure

- x : integer = 0

- y : integer = 0

+ draw()

Public class Figure
{
private int x = 0;
private int y = 0;
public void draw()
{
//Java code for drawing figure

}
};

Figure fig1 = new Figure();
Figure fig2 = new Figure();
fig1.draw();
fig2.draw();

Constraints on Operations

report ()

BurglarAlarm

isTripped: Boolean = false

PoliceStation

1 station

*

{ if isTripped
then station.alert(self)}

alert (Alarm)

Association Examples

Person Car
Drives � **

Driver Company
car

Person Car**
Adult Company

car

Employee
Drives �1 1

DriverDriver

Person Person
Married to �

Husband Wife

Domestic
appliance

Family
member

⊳·Turns onHeater

·⊳ Cleans

Toaster Dad
⊳· Tunes

ChildRadio

Mum

Qualified and "Or" Associations

Person Car*Plates

User PID Process HostIP-addr* *

Item of
clothing

Male
person

0..*

Female
person

0..*
{or}

1

1

Ordered and Ternary Associations

Library Books*1..*
{ordered by date}

Member

{ordered by surname}
*

1..*

Person EstablishmentBank card

Client0..*

No qualified or aggregation
associations allowed in ternary.

1..*Credit card Shop1..*

Another Ternary Association
Example

PlayerT eam

Year

R eco rd

goals for
goals against
w ins
losses

goa lkeeper

∗

∗

∗

season

team

ties

Association Classes

Host

Printer
1..*

Network

Network adapter

1

*

1

QueueAdapter

Print spooler

Notary

Client Contract

Purchaser Real-estate

Computer

Association by Aggregation

Alternative Notation for
Composition Association

Car

Wheels

Body

Engine

Wiring

*

*

*

* Note that association
multiplicity is shown
within the classes

Roles in Aggregation

Zoo

Mammal Bird

Falcon

M
o

n
k
e

y

G
i ra

f fe0..* 0..* 0..*

Zoo
Monkey[0..*]: Mammal
Giraffe[0..*]: Mammal
Human[1..*]: Mammal
Falcon[0..*]: Bird
Cage[1..*]: Equipment

Equipment

H
u
m

a
n 1..* Cage 1..*

My family

Family
member

E
rn

e
s
t

F
io

n
a

My family
Ernest: Family member
Fiona: Family member

Abstract Classes

Abstract Classes and
Generalisation Example

Aircraft
{abstract}

Make
Seats
Engine type

Start() {abstract}
land() {abstract}

Jet plane

Make
Seats
Engine type

Start()
land()

Helicopter

Make
Seats
Engine type

Start()
land()

Start jet engines

Lower flaps
& landing gear

Start blades

Decrease
prop speed

Aggregation and Generalisation

Figure

{abstract}

Position: Pos

Draw() {abstract}

Group

Draw()

Polygon

Draw()

Canvas
Consists of*

Electronic

*Consists of

Line

Draw()

Circle

Draw()

Consists of *

Implementing it (e.g. in Java)
abstract public class Figure
{
abstract public void Draw();
Pos position;

}
public class Group extends Figure
{
private FigureVector consist_of;
public void Draw()
{

for (int i = 0; i < consist_of.size(), i++)
{

consist_of[i].draw();
}

}
}
public class Polygon extends Figure
{
public void Draw()
{

/* something similar to group
only using lines instead */

}
}

public class Line extends Figure
{
public void Draw()
{

/* code to draw line */
}

}
public class circle extends Figure
{
public void Draw()
{

/* code to draw circle */
}

}

Constrained Generalisations

• Overlapping
●A type of inheritance whereby sharing of common

sub-classes by other sub-classes is allowed.

• Disjoint (the default)

●The opposite of overlapping.

• Complete
●A type of inheritance whereby the existing sub-

classes are said to fully define a given super-class.
No further sub-classing may be defined.

• Incomplete (the default)
●Further sub-classes can be added later on to more

concretely specify a given super-class.

Overlapping Generalisation

Electronic
device

Radio
receiver

Monitor
unit

TV set

Amplifier

{overlapping}

Complete Generalisation

University
faculty

component

University
department

University
institute

{complete}

Person

Man Woman

{complete}

Expressing Rules in UML

• Rules are expressed using constraints and
derivations
●Constraints were mentioned earlier (e.g. or-

associations, ordered associations, inheritance
constraints, etc.)

●Derivations are rules governing how entities can
be derived (e.g. age = current date - DOB)

Example of Derived Associations

Airport Flight Aircraft

Passenger

Turbo-prop
aircraft

Jet-turbine
aircraft

Uses uses

/1 class passenger

Fixed-wing
passenger craft

Is
 o

n

Name
Surname
Age
Nationality
Destination
Ticket price
/1 class passenger

Passenger

{1 class passenger = = (Ticket price > 400)}

N.B. Relation cardinality is omitted for example clarity

/1 class passenger

Another Example of a Derived
Association

Shop Order

Customer

Processes

/bulk-buying customer

P
la

c
e
s

Wholesaler
Supplies

/supermarket

Name
Address
Owner
Category
Date of registration
Area
/Supermarket

Shop

{Supermarket = = (Area > 200 && Category = "dept")}

N.B. Relation cardinality is omitted for example clarity

Example of a Constraint
Association

Database

Organisation

Employee

E
n
try

 in

Member of

{subset}

M
a
in

ta
in

s

N.B. Relation cardinality is omitted for example clarity

Project manager of

Association Class

Class Dependencies

«friend»
ClassA ClassB

ClassC

«instantiate»

«call»

ClassD

operationZ()
«friend»

ClassD ClassE

«refine»
ClassC combines

two logical classes

Concrete Dependency Example

Co ntroller

D iagram
Elem ents

D om ain
Elem ents

G raph ics
C ore

«access»

«access»

«access»

«access»

«access»

Class Diagram Example

Element

Carbon Hydrogen

<<covalent>>

<<covalent>>C

C

C H

Instantiation of Class Diagram
(in previous slide)

:Carbon :Carbon

:Hydrogen

:Hydrogen

:Hydrogen

:Hydrogen

:Hydrogen:Hydrogen

Another Class Diagram Example

+getOrderStatus
+setOrderStatus
+getLineItems
+setLineItems
+getCreditApproved
+setCreditApproved
...

OrderBean
{abstract}

LineItem

{abstract}

Product

1

*

1

*

<<interface>>
EntityBean

CreditCard
{abstract}

Customer

MyOrder

MyLineItem

MyCreditCard

*

1

*

buyer

order

order

item

item

commodity

Try This Yourselves…

• Create a class diagram to represent a
arbitrary interconnection of computers

� Create a class diagram to represent a hierarchical
directory system in any OS

CD Case Study (1/3)

Describing the use of a word processor

A user can open a new or existing document. Text is
entered through a keyboard. A document is made up
of several pages and each page is made up of a
header, body and footer. Date, time and page number
may be added to header or footer. Document body is
made up of sentences, which are themselves made
up of words and punctuation characters. Words are
made up of letters, digits and/or special characters.
Pictures and tables may be inserted into the
document body. Tables are made up of rows and
columns and every cell in a table can contain both
text and pictures. Users can save or print documents.

CD Case Study (2/3)

� Nouns (underlined in previous) are either classes or their attributes
� Verbs (italicised in previous) are class operations
� Main handled entity: document

CD Case Study (3/3)

Some Points to Ponder
1. Give two examples to distinguish between aggregation

and composition.
2. Explain the concept of an abstract class – give one

example.
3. When do you think the use of generalisation is not

justified in model building?
4. Link in a class diagram with generalisation the classes:

“Campaign”, “Advert”, “Newspaper advert”, “Magazine
advert”, “Advert copy”, “Advert graphic”, and “Advert
photograph”.

5. Draw a class diagram for the following classes:
● Film (title; producer; length; director; genre)
● Ticket (price; adult/child; show time; film)
● Patron (name; adult/child; DOB)

6. Link the classes in (5) through message passing and
services offered for any one scenario of your choice.

Workshop Activity -11-

Draw a CD for a patient billing system.
Include only the attributes that would be
appropriate for the system’s context.

Patient (name, gender, address, ID, tel., DOB, blood type,
occupation, pass-times, adverse habits, insurance carrier,
dietary preferences)

Doctor (name, category, specialist, warrant No., preferred
sport, address, tel., DOB, weekly income, VAT No.)

Insurance carrier (date of establishment, name, registration
ID, company staff size, address, tel., contact person name)

Create two object diagrams (ODs) based
on the CD you develop.

UML Interfaces

• Interfaces are associated with supporting
model elements (package, component, class).

• Act as contact points between collaborating
model elements and/or their clusters.

• Equivalent to such programming structures as
OLE/COM or Java interfaces.

• An interface is abstractly defined.

• An interface is composed of signatures, that as
a whole, specify the behaviour of a model
element.

UML Interface Example

Political

party

Politician

Voter

Support

Membership

V
o
te

Representation

Pedestal
W

o
rk

Consider() {abstract}

Attend() {abstract}

Donate() {abstract}

Canvass() {abstract}

«interface»

Support

{abstract}

Improve() {abstract}

Fight() {abstract}

Report() {abstract}

«interface»

Work

{abstract}

L
o
b

b
y

UML Interface Specialisation

• Interfaces are subject to inheritance in the same
way as classes are. Interface inheritance can be
shown on a class diagram.

Voter
Support

Floating

voter WeakSupport

Block

voter
RegularSupport

Activist

voter StrongSupport

N.B. Only one interface is shown for example clarity

For class specifications

see next slide.

UML Interface Classes (based on

previous example)

Consider() {abstract}

«interface»

WeakSupport

{abstract}

Consider() {abstract}

Attend() {abstract}

«interface»

RegularSupport

{abstract}

Consider() {abstract}

Attend() {abstract}

Donate() {abstract}

Canvass() {abstract}

«interface»

StrongSupport

{abstract}

Please note, that whether regular support should include
either party activity attendance or the donation of funds
(or indeed both) is something of which I haven't the
vaguest idea. It is, however, irrelevant to this example.

UML Packages

• Can be considered as a general purpose
grouping mechanism (as opposed to a regular
UML diagram)

• May be used to group different types of model
elements

• Model elements in a package (group) are taken
to be related semantically

• Packages can only be related by dependencies,
refinements, or generalisations

• Any one modelling element can be located in
only one package (i.e. Packages cannot share
model elements)

Examples of UML Packages and
their Logical Grouping

Subsystem A External view of a UML package named "Subsystem A"

(out of UML, packages are referred to as a subsystems)

Subsystem A

Subsystem B
Subsystem C

Subsystem D

Expanded view of "Subsystem A"

showing that it groups together

three other packages named

"Subsystem B/C/D". Note, that

the name of an expanded

package is indicated in the

package tab. This is another way

of showing composed

aggregation.

Package tab

Examples of Relationships between
UML Packages

Subsystem A

Subsystem B Subsystem C

Subsystem D

Subsystem E Subsystem F

Subsystem G

Subsystem B is dependent on C

while Subsystem D is dependent

on both B and G. Subsystems E

and F are specialised from the

generalisation Subsystem D. All

packages are within Subsystem A

except for Subsystem G.

Examples of UML Package
Importation

A

B C::D

D

C

E

In the above example, package “B” is dependant on the

Imported package “D” from package “C”.

Even Packages have Faces!

Publishes package behaviour
Same symbol as for a class interface
Classes within the given package then
implement the particular interface

A

B C

A

B

Packaging Steps

1. Set the context

2. Cluster classes together based on
shared relationships

3. Model clustered classes as a package

4. Identify dependency relationships
amongst packages

5. Place dependency relationships between
packages

Workshop Activity -12-
Package and dependency-link the classes in the
following system:

Assuming that an automated medical appointment system is to
be partitioned as:

• HCI layer

• Problem Definition layer

• Data Management layer

Furthermore, system classes are identified as:
• Patient UI

• Appointment UI

• Patient management

• Appointment management

• Patient data management

• Appointment data management

• Patient DB

• Appointment DB

Workshop Activity -13-

Package the UCs of a HL UCD
modelling the functionality of an
Internet Banking system. The system
may be real or hypothetical. Include
dependency relationships in your
diagram.

• Usually associated to classes and define their
behaviour according to the current state of their
objects and affecting events.

• Events are taken to be messages, condition

flags, errors or the passage of time.

• UML state diagrams contain at least one starting

point and one end point . However the

latter can be more than one.

• States can have internal variables and activities

associated with them. This information can be

hidden to reduce diagram complexity.

UML State Diagrams

Examples of UML State Diagrams

Off On

Broken

Power
supplied

External
impact

Bulb
discarded

New bulb
fitted

Life time
exceeded

Waiting

Registering

Casting

Writing

Deciding

Polling station
open

On the
move

Call

Booth
free

Details
correct

Ballot paper
complete

Arrive
at booth

Decision taken

Arrive at ballot box

Ballot cast

Vote cast

Ballot paper
issued

“Compartments” of a UML State

Name

State variables
(optional)

Activities

Standard Events in “Activity
Compartment”

• Entry
• Specify actions to be taken on entry into the

given state (e.g. Assignment to an attribute or
sending a message, etc.)

• Exit
• Specify actions to be taken on exit from the

given state (e.g. Run housekeeping program or
send message informing of termination, etc.)

• Do
• Specify actions to be taken while in the given

state (e.g. Processing data, polling, etc.)

Example of Activity Syntax

login

Login_time = current_time

entry/type "login"
exit/send (username, password)
do/get username
do/get password
help/display help

Note, that actions while in a state, are an on-going process, while events

associated with a transition are stimuli to the triggering of that transition.

Therefore, it is possible that events on transitions act as interrupts to

on-going processes in any given state.

Auto-Triggering of Transitions

• Events can be associated to UML
transitions

• UML transitions can be left "event-less"

• If "event-less", then transition triggering in
UML becomes dependent on internal state
actions

• An "event-less" UML transition will auto-
trigger when all its associated internal
actions get executed.

Auto-Triggering Examples

Boot

do/run bios

program

Starting OS

do/load OS

Starting

applications

do/load

applications

Select

station

do/read

programme

Tune

radio

do/turn

knob

Listen to

programme

entry/sit

down

UML State Transitions

Full transition syntax is as follows:

event-signature'['guard-condition']/'action-expression'^'send-clause

event-

name'('parameter',',...')'

parameter-name':'type-expression,...

destination-expression'.'destination-event-name'('argument','...')'

The "destination-expression" evaluates to an object or a set of objec

UML Event-Signature Examples

Print_request(pupu:string)

draw(f:figure, c:colour)

redraw

message_received

go_up(floor)

ready

reach_end(section:text_part)

Event-Signature Usage Example

On first floor

Moving up

do/moving to floor

Moving to

first floor

Idle

Moving down

do/moving to floor

Go_up (floor)

Arrived
Go_up (floor)

Go_down (floor)

Arrived

Time-out

Arrived

Activate

UML Guard-Conditions

Is a Boolean expression

Is associated with a UML transition

Is 'AND-ed' with the event-signature (if
present)

Control whether a given transition will trigger
or not

Examples include:

[t = 15s]

[retries > 3]

withdrawal(amount) [balance >= amount]

read (buff:char) [buff_elements > 0]

Guard-Condition Usage Example

On first floor

Moving up

do/moving to floor

Moving to

first floor

Idle

timer = 0

do/increase timer

Moving down

do/moving to floor

Go_up (floor)

Arrived
Go_up (floor)

Go_down (floor)

Arrived

[timer = time-out]

Arrived

Activate

UML Action-Expressions

• Action-expressions execute when a transition
happens

• Not to be confused with internal activities in the
activity compartment of a UML state

• Must use parameters existing within the object
being modelled by the given state diagram or
parameters existing within the associated event-
signature

• Zero, one or more action-expressions can be
listed per transition using the "/" symbol as
delimiter. In the case of more than one, execution
is from left to right.

Action-Expression Usage Example

On first floor

Moving up

do/moving to floor

Idle

timer = 0

do/increase timer

Moving down

do/moving to floor

Go_up (floor)

Arrived
Go_up (floor)

Go_down (floor)

[timer = time-out]/go_down (first floor)

Arrived

Activate

Note, the

"moving to first

floor" state is

now rdundant

Multiple Action-Expressions

• Must all appear on the transition arc

• Must be separated by the "/" character

• Are taken to execute in sequence from left
to right

• Transition containing only action-
expressions are possible (i.e. With no
event-signatures and guard-conditions)

• Nested action-expressions are not allowed

• Recursive action-expressions are not
allowed

Examples of Multiple Action-
Expressions

Receiving packet

packet_cnt ++

entry/init buffer

do/get packet

do/send ack

exit/send ok

Processing packet

ok_packet_cnt ++

entry/init arrays

do/fill data array

do/fill header array

exit/send ok Inc() / separate_parts(data) / length (data)

The Send-Clause

• Also a form of action(-expression)

• Explicitly designed syntax to show
message passing

• The destination of the message could be
an object or a set of objects

• The destination object can be the object
described by the state-diagram itself

Send-Clause Examples

Other examples:
out_of_paper() ^indicator.light()
request_withdrawal(amount) / show_amount() ^account.debit(amount)
left_mouse_btn_down(location) / colour := pick_colour(location)
^pen.set(colour)

Idle

timer = 0

do/increase timer

On first floor
[timer = time-out] / go_down(first_floor)

Idle

timer = 0

do/increase timer
On first floor

[timer = time-out] ^ self.go_down(first_floor)

Equivalent transitions

UML Events

UML defines four categories of events:

• A condition becoming true (i.e. A Boolean
condition and shown as guard-condition)

• Receipt of an explicit signal, itself an object, from
another object (i.e. A message and shown as an
event-signature)

• Receipt of a call on an operation by another
object (or by the object itself) (i.e. Also a form of
message and also shown as an event-signature)

• Passage of a designated period of time (i.e. Time
calculation and shown as a time-expression)

Relationship of Events to Class
Operations

Display

do/display

current time

Activate Set hours

do/display

hours

Set minutes

do/display

minutes

mode_btn mode_btn

mode_btn

Inc / hours := hours + 1 Inc / hours := minutes + 1

Digital_watch

Activate()
De-activate()
mode_btn()
inc()

Class

De-activate

State Diagram

Example of Signal Class
Structuring and Polymorphism

«signal»

Input

{abstract}

Device : Device

Time : Time

«signal»

Mouse

{abstract}

Device : Device

Time : Time

«signal»

Keyboard

Character : Char

Up : Boolean

Down : Boolean

Send

do/send(input)
Idle

Input

Done

«signal»

Right_btn

«signal»

Left_btn

In this example, the input signal in the

state diagram on the right could take

the form of any concrete class in the

class hierarchy on the left (i.e. Keyboard,

Right_btn and Left_btn).

Java implementation of a UML
State Diagram (1/3)

Dis pla y

do/dis pla y
curre nt time

S e t hours

do/dis pla y
hours

S e t minute s

do/dis pla y
minute s

mode _btn mode _btn

mode _btn

Inc / hours := hours + 1 modulo 24 Inc / hours := minute s + 1 modulo 60

State Watch

Watch

mode_btn

Inc

«frie nd»

Me thods

Us e d only to
hold s ta te va lue s Digital_display

«frie nd»

Java implementation of a UML
State Diagram (2/3)

Public class State

{

 public final int Display = 1;

 public final int Set_hours = 2;

 public final int Set_minutes = 3;

 public int value;

}

public class Watch

{

 private State state = new State();

 private Digital_display LCD = new Digital_display();

 public Watch()

 {

 state.value = State.Display;

 LCD.display_time();

 }

 public void mode_btn()

 {

 // Cycle through actions depending on current state (see next slide)

 }

 public void inc()

 {

 // Update corresponding LCD segments (see next slide)

 }

Pleas e note , tha t the class Digita l_display
is omitted to keep the example 's code
shorter and more to the point.

Java implementation of a UML
State Diagram (3/3)

// Cycle through actions depending on

// current state (from previous slide)

Public void mode_btn()

{

 switch (state.value)

 {

 case State.Display :

 LCD.display_time();

 state.value = State.Set_hours;

 break;

 case State.Set_hours :

 LCD.display_hours();

 state.value = State.Set_minutes;

 break;

 case State.minutes :

 LCD.display_minutes();

 state.value = State.Display;

 break;

 }

}

// Update corresponding LCD segments

// (from previous slide)

Public void inc()

{

 switch (state.value)

 {

 case State.Display :

 ;

 break;

 case State.Set_hours :

 LCD.inc_hours();

 break;

 case State.minutes :

 LCD.inc_minutes();

 break;

 }

}

Messaging between UML State
Diagrams

• Used to communicate operations or
messages between state diagrams

• Can be implemented by action-
expressions (as described earlier) or by
dashed arrows

• The Dashed arrows can originate from
either a specific state diagram transition
or from the state diagram as a whole

• The target state diagram MUST contain
the appropriate event-signatures to
"catch" any sent messages

Examples of UML State Diagram
Messaging (1/2)

I/O Processor

Network adapter

Rece iving
direct

Rece iving and
buffe ring

Ack()

no_ack()

Idle Proces s ing

Sig() / Ack()

Intr() / no_ack()

Dumping
buffe r

Ack()

Empty_s ig()

no_ack()

Examples of UML State Diagram
Messaging (2/2)

Remote Control

CD Player

Off Idle

Off()

On()

Off On

Off()

On()

P la ying

P la y()

Off()

S top()

P la y()

S top()

UML Sub-States

A mechanism for nesting states

Take the form of "and-sub-states" or "or-sub-states

Tape_winding

Re-winding Fast-forward

Example of an
or-sub-state

Examples of "or" and "and" sub-
states
Flight_mode

Take-off Cruise

Example of an

or-sub-state

Approach

Video_playback

Forward Backward

Example of an

and-sub-state

Normal Fast

Usage Example of the UML History
Indicator (1/2)

Civil-service_career

Clerk
Executive

officer

Administrative

officer

Administrative

assistant

Registration

procedures

Campaign

duties

Result

analysis

enter_politics()

H

[result = negative] / take_up_post()

[result = negative] / resume_career()

Usage Example of the UML History
Indicator (2/2)

Install_software

OS Restart_OS

Disk_error

entry/Fix disk

do/Show question dialog

do/Ask alternative

Low_memory

entry/Show question dialog

do/Ask alternative

Disk_error()

H

[alternative = stop]

[alternative = continue]

Restart()

Start install

shield

Install

entry/Ask install

questions

do/Install software

self.Restart()

Restart()

Create()

[alternative = try_again]

out_of_memory()

[alternative = stop]

Workshop Activity -14-

A class named “campaign” is textually described
as follows:

“Once a campaign is established, it is assigned a manager and
staff. Authorisation in the form of a signed contract and an
authorisation code is required to kick-off an established
campaign. Once a campaign is started it is noted as active. On
completion of an active campaign, accountability is carried out
in the form of preparation of final statements. Once payment is
received in full, a campaign is considered paid, is archived and
any assigned personnel is released. If payment is only effected
in part, the campaign is not considered paid but rather simply
completed. If any payments were effected in advance of
campaign completion and are in excess of the final payment
request, a refund should be issued.

Draw a UML state diagram for the above system.

Workshop Activity -15-

One of the states in Workshop Activity -
14- will probably be “Active” or
“CampaignActive”. Produce a nested
state diagram for this state.

UML Sequence Diagrams

• Used to show object interaction

• Interaction takes the form of messages

• Can only model single-scenario situations

• Message type is one of the interaction types
(i.e. synchronous, simple, etc. – see next slide)

• Sequence diagrams should be read starting
from the top downwards

• Sequence diagrams highlight control focus in
objects (i.e. object activation)

• Sequence diagrams can be either of
“instance” or of “generic” form

Components of a UML Sequence
Diagram

Object:Class

Object name

and “lifeline”

Operation

duration
(activation)

Call (synchronisation) message

Independent (asynchronous) messageControl (acknowledgement) message

Undefined type (uncommitted) message

Types of Interaction
• Simple

● Shows a control message without any particular details (often, but
not solely, used as acknowledgement to messages)

• Synchronous
● Shows an operation call message. Assumes that the called object

operation must terminate before the caller can proceed. Could
include implicit return.

• Asynchronous
● Indicates independent process execution. No explicit "return-to-

caller" action. Used mainly in real-time concurrent systems.

• Uncommitted
● Shows a message of undetermined type. Can be either synchronous

or asynchronous.

• Synchronous with immediate acknowledgement

● Indicates a combination of simple and synchronous and indicates
that an immediate reply happens. (Strictly, not purely UML notation)

UML Sequence Diagram Example

:ErrDialogWin:Input Win :ErrHelpWin

Invalid_data(data)

Button_press(help)

Button_press(ok)

Button_press(ok)

Input(data)

R
ead

 th
is w

ay
T

im
e flo

w

Guidelines for Building a UML
Sequence Diagram

1. Set the context (i.e. scope the system)

2. Identify participating objects

3. Draw arbitrary lifelines for each class

4. Draw the duration of the objects on the
class lifeline

5. Insert the object messages from top to
bottom of diagram (time-based)

6. Check the diagram for completeness

Iteration Conditions in UML
Sequence Diagrams

Iteration condition controlled message syntax:
[continuationCondition]*operation(parameter)

An example…

: p o lle r : h o s t: lo g in S e s s io n

[f o r a ll h o s t s] * re q F re e H o s t ()

re q S t a t u s H o s t 1 ()

[h o s t 1 N o t F re e] re q S t a t u s H o s t 2 ()

[h o s t 2 N o t F re e] re q S t a t u s H o s t 3 ()

Recursion Modelling in UML
Sequence Diagrams

Recursion is always carried out by call
(synchronous) messaging and is represented in UML
sequence diagrams as follows:

:F rac talis er

[for all in tegers in range] * c alc F rac t(int)

:F orm at ter

c alc F rac t (int)

getF rac ta l()

Recursion Example in UML
Sequence Diagrams
: C o m p u t e r : d r i l lC o n t ro l le r : D r il le r

lo a d F i le (f i le)

D r i l l (c o o rd)

in i t S e q ()

m o v e (o f f s e t)

f in a lS e q ()

[w h i le n o t E O F] * D r il l(c o o rd)

Try this yourself…

Draw up a sequence diagram modelling the
case when an advert campaign manager
retrieves the details of a particular client’s
advertising campaign and lists the details of
a particular advert from the campaign. The
sequence diagram should also show the
case when a new advert is created. Only call
messages (synchronous) should be used in
this example and use any iteration conditions
as you deem necessary.

Objects to use: “CampainManager”, “Client”,
“Campaign”, and “Advert”

A Solution to Previous Slide

new Ad:Adv ert

:C lient :C am paign :Adv ert

getC lien tN am e()

[F or a ll c lien t 's c am paigns] * getC am paignD eta ils ()

lis tAdv erts ()

addN ew Adv ert ()

[F or a ll adv erts in c am paign] *getAdv ertD etails ()

Adv ert ()

:C am paignM anager

lis tC am paigns ()

Try this too…

Create a sequence diagram modelling the
behaviour of a PCB drilling machine. The
machine will drill holes in a PCB of given
dimensions at a set of given co-ordinates.
Co-ordinates are given as a list, which
must contain at least one set of co-
ordinates. Drilling stops when the end of
the list is reached or when a user
interrupts the process.

A Solution to Previous Slide
: C o m p u t e r : d r i l lC o n t ro l le r : D r il le r

lo a d F ile (f i le)

D r il l(c o o rd)

in it S e q ()

m o v e (o f f s e t)

f in a lS e q ()

[w h i le n o t E O F] * D r il l(c o o rd)

Object Destruction in UML

:C am paign :Advert

lis tAdverts ()

[for all adverts]*getAdvertD etails ()

rem oveAdvert()

delete()

X

Using Labels in UML Sequence
Diagrams (1/2)

:BootManager:Computer :OS1

Boot()

Load()

Kernel_down()

Activate()

{max a-b = 8s}

a

b

c
d

{max c-d = 1s}

Example of labels specifying
time constraints. The boot
manager will wait 8 seconds
and then boot OS1.

Using Labels in UML Sequence
Diagrams (2/2)

:port:Controller :printer

Req()

Query()

Status()

Request()

Send message Req() to

port until status() from

printer is “data_ready”

Ack()Example of labels specifying

iteration. The controller

queries in a cyclic manner the

port for data from the printer.

Other Message Type Examples in
UML Sequence Diagram

: d a t a F a r m e r : P r o c e s s o r
d a t a I n p u t (im a g e D a t a)

in i t P r o c ()

s t a r t G e t 1 ()

: d a t a R e c e iv e r

s t a r t F a r m ()

s t a r t G e t 2 ()

s t a r t G e t 3 ()

s t a r t G e t 4 ()

in i t I n p u t S e q ()

Some Points to Ponder

1. Compare the following term-pairs:
State – Behaviour

Class – Object

Action – Activity

Use-case – Scenario

Method – Message

2. Do lifelines always continue down the entire page of a
sequence diagram? Explain.

3. What is meant by focus of control in sequence
diagrams?

4. What are the essential parts of a sequence diagram
message? Give one concrete example.

5. How do synchronous and asynchronous messages
differ? Give one concrete example of each case.

Workshop Activity -16-

Assuming that a microwave oven is analysed as the following
objects:

• Oven

• Light

• Emission tube

• Timer

The main actions associated with the microwave oven are as
follows:

• Opening the door

• Closing the door

• Using the control button

• Completion of the prescribed cooking interval

Create a sequence diagram for the following scenario:
– Open the door, insert the food, close the door set the 1-minute

timer, wait for cooking to complete, open the door and retrieve the
food.

Create a state diagram for the above scenario.

UML Collaboration Diagram

• Show interactions between collaborating
(interacting) objects.

• A bit like a cross between a class and a

sequence diagram (object diagram with

msgs)

• Are mainly a design tool

• Collaboration diagrams are not time-ordered

• Can serve as basis for a sequence diagram

• Like sequence diagrams, collaboration

diagrams employ message passing.

Basic Components of a UML
Collaboration Diagram

Object1:ClassA

service

Service:
Sequence-number:[condition]:message(parameter)

A return value can be shown as an assigned “:=“ expression

Sequence-number is a decimalised value (e.g. 1, 1.3, 2.3.1, etc.)

Collaboration Diagram Messages

Syntax is:
predecessor guard sequence return-value:=signature

Comma-separated list
of message path
numbers

A condition
clause

An integer (sometimes
with a trailing letter)
followed by a
recurrence

Variable

An operation
call

Examples of Collaboration Diagram
Messages

1:display()

[mode=display]1.2.1:redraw()

[balance > 0]5:debit(amount)

2*[n:=1..m]curr:=nextSeq(n)

2.3[x<0]:doodle()

3.1[y=>]:write()

1.1a,1.1b:doMore()

2.2a,2.2b/3:playback()

Predefined Stereotyped Links in
Collaboration Diagrams

• Global
• (link role) Instance is available as a name known throughout the system

• Local
• (link role) Instance is available as a local variable in an operation

• Parameter
• (link role) Instance is available as a parameter in an operation

• Self
• (link role) Object can send messages to itself

• Vote
• (group of messages) Return value is chosen by majority vote of all

returned values from a given collection

• Broadcast
• (group of messages) No message ordering in given group

Collaboration Diagram Object
Lifeline Predefined Stereotypes

• New

– Object created during a collaboration

• Destroyed

– Object destroyed during a collaboration

• Transient

– Object created and destroyed during the

same collaboration

UML Collaboration Diagram
Example

:Computer

1:Print(ps_file)

:printServer :Printer
[printerFree]1.1:Print(ps_file)

Print(ps_file)

UML Collaboration Diagram
Example with Return-Value

:Calculator

1*[z:=1..n]:Prim:=nextPrime(prim)

:primModule

calcPrime(n)

Try This Yourself…

• Explain in plain English, what the following
collaboration diagram depicts:

:mainWindow
:customer

{new}

:customerWindow

{transient}

[free memory]1:Create()

3.1:Update(data)

2:Create()
3:Show(customer)

NewCustomer()

{parameter}

…and This One Too Please…

:Button :elevatorControl

:Call {new}

1:getElevator(floor_id)

1.2:Create())

2:next_job=getJob()

Push()

{parameter} job

:Queue

job

1.1*[all queues]:len:=length() {broadcast}

1.3:invoke(job)

:Elevator
{local} next_job

Example of Asynchronous
Collaboration Diagram

ernest:person
kickback()

domestic:coffeeMaker

main:CDplayer

makeCoffee()

play()

ready()

Steps in Building a UML
Collaboration Diagram

1. Set the context

2. Identify which objects and which
associations between them participate in
the collaboration

3. Draw the classes/objects and link them

4. Insert the messages

5. Validate the diagram

Workshop Activity -17-

Assuming the following 4 classes:
• CampaignDialogue

• Client

• Campaign

• Advert

Produce a collaboration diagram modelling
the addition of a new advert to an existing
campaign. Stereotypes need not be used.

UML Component Diagrams

• Models parts of software and their inter-
dependencies

• Represents code structure

• Are generally implemented in physical
terms as “files”

• Come as either “source”, “binary”, or
“executable” components

• ONLY executable type components can
be instantiated

Predefined Component Diagram
Stereotypes

• File
– Usually a source code file

• Binary / Library
– Usually a compiled segment directly linkable into other

compilations

• Executable
– Usually a directly executable module

• Table
– Usually a database table

• Page
– Usually a Web page

• Document
– Usually a documentation file (as opposed to compilable code)

Example of a UML Component
Diagram

Example of Source Code
Dependencies

<<page>>

home.html

<<file>>

aProg.java

<<document>>

aProg.doc

<<document>>

anotherProg.doc

<<file>>

anotherProg.java

Runtime Component Example

<<library>>

comms.dll

<<library>>

graphics.dll

<<library>>

dbgate.dll

<<executable>>

viewer.exe

UML Deployment Diagrams

• Models the run-time architecture
(topology) of:

• Processors

• Devices

• Software components

• Is ultimately traceable to initial
requirements

Topology

node

Software

component

Classes, objects,

Collab., etc.

Use-case

requirement

Stereotype Examples in
Deployment Diagrams

<<printer>>

HP LaserJet 5MP

<<router>>

Cisco X2000

<<carController>>

SAAB 9-5

Navigator

Communication Associations in
Deployment Diagrams

NEC PowerMate

i-Select VL4

PC:ClientA

Dell Dimension

2350 PC:ClientB

Silicon Graphics

O2:Server

VAX:DB Server*

*

*

*

* *

<<TCP/IP>>

<<TCP/IP>>

<<DecNet>>

Component Support in UML
Deployment Diagrams

NEC Server

UNIX Transaction

server sub-system

<<supports>>

Object Allocation in Deployment
Diagrams

Controller:MicrowaveOvenSystem

Guard.exe

Thermometer

controller

<<process>>

Supervisor

Bold object border indicates active object

(i.e. <<process>> or <<thread>>)

Object Transferability in
Deployment Diagrams

NEC Server:MainServer

TransactionServ.exe

transf

T1:updateThread

Supervisor

dbobj

callobj

myMachine:ClientPC

ClientProg,exe

transf

<<becomes>>

Deployment Diagrams in the form
of Class Diagrams

The End

THANK YOU ALL FOR YOUR TIME
AND EFFORT

