
Getting Started with XML: A
Manual and Workshop

Eric Lease Morgan

Getting Started with XML: A Manual and Workshop
by Eric Lease Morgan

This manual is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as pub-
lished by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This manual is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied war-
ranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public License along with this manual if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Special thanks go to David Cherry, a long-time friend, who provided the drawings. Lori Bowen Ayre deserves a round of applause
for providing editorial support. Infopeople are the folks who sponsored the whole thing. Roy Tennant helped with proofreading.
Thank you! --ELM

For possibly more up-to-date information see the Getting Started With XML home page
[http://infomotions.com/musings/getting-started/] .

Editions:

1. The first public release of this document was dated Saturday, February 22, 2003.

2. The second edition was dated Monday, April 21, 2003 (Dingus Day).

3. This is the third edition of this document, Sunday, October 26, 2003 (getting ready for MCN).

4. This is the fourth edition of this document, Tuesday, 27, 2004 (Shining a LAMP on XML 'n Monterey).

http://infomotions.com/musings/getting-started/

Table of Contents
Preface .. vii

About the book ... vii
About the author .. viii
Disclaimer .. viii

I. General introduction to XML .. 1
1. Introduction .. 3

What is XML and why should I care? ... 3
2. A gentle introduction to XML markup ... 6

XML syntax ... 6
XML documents always have one and only one root element 6
Element names are case-sensitive ... 7
Elements are always closed ... 7
Elements must be correctly nested .. 7
Elements' attributes must always be quoted .. 8
There are only five entities defined by default ... 8
Namespaces ... 8
XML semantics .. 9
Exercise - Checking XML syntax ... 10

3. Creating your own markup .. 11
Purpose and components .. 11
Exercise - Creating your own XML mark up .. 13

4. Document type definitions ... 15
Defining XML vocabularies with DTDs .. 15
Names and numbers of elements .. 16
PCDATA .. 17
Sequences .. 17
Putting it all together ... 17
Exercise - Writing a simple DTD ... 19
Exercise - Validating against a system DTD ... 20
Exercise - Fixing an XML document by hand ... 20

II. Stylesheets with CSS & XSLT ... 22
5. Rendering XML with cascading style sheets ... 24

Introduction ... 24
display .. 25
margin .. 26
text-indent ... 26
text-align ... 26
list-style .. 26
font-family .. 27
font-size .. 27
font-style ... 27
font-weight .. 27
Putting it together .. 28
Tables ... 29
Exercise - Displaying XML Using CSS ... 30

6. Transforming XML with XSLT .. 32
Introduction ... 32
A few XSLT elements .. 32
Exercise - Hello, World .. 33
Exercise - XML to text ... 34
Exercise - XML to text, redux ... 36
Exercise - Transform an XML document into XHTML 37
Yet another example .. 40

iv

Exercise - Transform an XML document with an XSLT stylesheet 42
Displaying tabular data ... 42
Manipulating XML data ... 44
Using XSLT to create other types of text files ... 46
Exercise - XML to XHTML .. 47
Exercise - Displaying TEI files in your browser .. 47
Exercise - Transform MODS into XHTML .. 48

III. Specific XML vocabularies .. 49
7. XHTML .. 51

Introduction ... 51
Exercise - Writing an XHTML document .. 54
Exercise - Convert MARC to XHTML .. 55
Exercise - Tranform MARCXML-like (SFX) to XHTML 55

8. MARCXML ... 56
About MARCXML ... 56
Exercise - Convert MARC to MARCXML ... 58
Exercise - Validating schema ... 58

9. MODS ... 59
About MODS ... 59
Exercise - Transform MARCXML to MODS ... 60
Exercise - Transform MARCXML to MODS, redux .. 60

10. EAD .. 62
Introduction ... 62
Example .. 63

11. CIMI XML Schema for SPECTRUM .. 67
Introduction ... 67
Exercise - Updating and validating an XML file with an XML schema 69

12. RDF .. 70
Introduction ... 70
Exercise .. 72
Exercise - Transform MARCXML to RDF ... 73

13. TEI ... 74
Introduction ... 74
A few elements ... 74
Exercise .. 77
Exercise - Transform TEI to HTML .. 78

14. DocBook .. 79
Introduction ... 79
Processing with XSLT ... 82
Exercise - Make this manual .. 84

IV. LAMP ... 86
15. XML and MySQL .. 88

About XML and MySQL .. 88
Exercise - Transform MODS to SQL .. 88
Getting XML output from MySQL ... 89

16. XML and Perl ... 93
A simple XSLT transformer .. 93
Batch processing ... 94
A bit about DOM and SAX ... 95

17. Indexing and searching XML with swish-e .. 98
About swish-e .. 98
Exercises ... 99

Indexing XHTML ... 99
Indexing other XML formats ... 102

18. Apache .. 104
About Apache .. 104
CGI interfaces to XML indexes ... 105

Simple XHTML files ... 105

Getting Started with XML: A Manual and
Workshop

v

Improving display of search results ... 106
Modern browsers and XML search results ... 108
Transforming raw XML on the fly .. 108

V. Appendices .. 110
A. Harvesting metadata with OAI-PMH .. 112

What is the Open Archives Initiative? ... 112
The Problem .. 112
The Solution .. 113
Verbs .. 113
Responses -- the XML stream .. 115
An Example ... 117
Exercise - Making CIMI Schema data available via OAI-PMH 118
Exercise - Making MARCXML data available via OAI 119
Conclusion .. 120

B. An Introduction to the Search/Retrieve URL Service (SRU) 121
Introduction ... 121
The Problems SRW and SRU are Intended to Solve 121
SRW and SRU as Web Services ... 122
Explain ... 122
Scan ... 123
SearchRetieve .. 124
A Sample Application: Journal Locator ... 125
SRW/U and OAI-PMH .. 129
OCKHAM ... 129
Summary ... 131
Acknowledgements ... 131
References ... 131

C. Selected readings .. 132
XML in general .. 132
Cascading Style Sheets ... 132
XSLT ... 132
DocBook ... 132
XHTML .. 133
RDF ... 133
EAD ... 133
TEI .. 133
OAI-PMH ... 133

Getting Started with XML: A Manual and
Workshop

vi

Preface
About the book

Designed for librarians and library staff, this workshop introduces participants to the extensible markup
language (XML) through numerous library examples, demonstrations, and structured hands-on exer-
cises. Through this process you will be able to evaluate the uses of XML for making your library's data
and information more accessible to people as well as computers. Examples include adding value to elec-
tronic texts, creating archival finding aids, and implementing standards compliant Web pages. By the
end of the manual you will have acquired a thorough introduction to XML and be able to: 1) list seven
rules governing the syntax of XML documents, 2) create your very own XML markup language, 3)
write XML documents using a plain text editor and validate them using a Web browser, 4) apply page
layout and typographical techniques to XML documents using cascading style sheets, 5) create simple
XML documents using a number of standard XML vocabularies important to libraries such as XHTML,
TEI, and EAD, and finally, 6) articulate why XML is important for libraries.

Hilights of the manual include:

• Demonstrations of the use of XML in libraries to create, store, and disseminate electronic texts,
archival finding aids, and Web pages

• Teaching seven simple rules for creating valid XML documents

• Practicing with the combined use of cascading style sheets and XML documents to display data and
information in a Web browser

• Practicing with the use of XHTML and learning how it can make your website more accessible to all
types of people as well as Internet robots and spiders

• Demonstrating how Web pages can be programmatically created using XSLT allowing libraries to
transform XML documents into other types of documents

• Enhancing electronic texts with the use of the TEI markup allowing libraries to add value to digit-
ized documents

• Writing archival finding aids using EAD thus enabling libraries to unambiguously share special col-
lection information with people and other institutions

• Using LAMP-esque open source software (Linux, Apache, MySQL, Perl) to manipulate and provide
access to XML content .

The manual is divided into the following chapters/sections:

1. What is XML and why should I care?

2. A gentle introduction to XML markup

3. Creating your own markup

4. Rendering XML with cascading stylesheets

5. Transforming XML with XSL

6. Validating XML with DTDs

vii

7. Introduction to selected XML languages: XHTML, TEI, DocBook, RDF, etc.

8. XML and MySQL, Perl, swish-e, and Apache.

9. Web services (OAI and SRU)

10. Selected reading list

About the author
Professionally speaking, Eric Lease Morgan is a librarian first and a computer user second. His goal is to
discover new ways to use computers to provide better library services and ultimately increase useful
knowledge and understanding.

During the day Eric is the Head of the Digital Access and Information Architecture Department at the
University Libraries of Notre Dame. As such he and Team DAIAD help the Libraries do stuff digital. In
the evening and on the weekends Eric spends much of his time doing more library work but under the
ruberic of Infomotions, Inc. While wearing this hat Eric writes computer programs, provides consulting
services, and maintains his infomotions.com domain where his photo gallery, Alex Catalogue of Elec-
tronic Texts, and Musing on Information are the showcases.

Eric has a BA in Philosophy from Bethany College, Bethany, WV (1982). He has an MIS from Drexel
University (1987). He had been writting software since 1978 and been giving it away at least a decade
before the term "open source" was coined. In 1998, Eric helped develop and popularize the idea of
MyLibrary, a user-driven, customizable interface to collections of library services and content -- a
portal.

Recognized numersous times by his peers, Eric won the 1991 Meckler Computers in Libraries Grand
Prize and was runner-up in 1990, received three Apple Library of Tomorrow (ALOT) grants, won the
2002 Bowker/Ulrich Serials Librarianship Award, was designated as one of the "Top Librarian Person-
alities on the Web" in a 2002 issue of Searcher Magazine, was deemed a "2002 Mover & Shaker" in
Library Journal, and won the the 2004 LITA HiTech Award for excellent communication and contribu-
tions to the profession.

In his copious spare time, Eric can be seen playing disc (frisbee) golf and folding defective floppy disks
into intricate origami flora and fauna.

Disclaimer
This workbook has grown larger and larger over the past couple of years. Through the process it has lost
some of its coherency. I know there are spelling and gramatical errors. The whole thing is in need of a
good editor. If you enjoy editing, and if you have some understanding of DocBook, then don't hesitate to
"apply within".

Eric Lease Morgan (eric_morgan@infomotions.com [mailto:eric_morgan@infomotions.com])

Preface

viii

mailto:eric_morgan@infomotions.com

Part I. General introduction to XML

Table of Contents
1. Introduction .. 3

What is XML and why should I care? ... 3
2. A gentle introduction to XML markup ... 6

XML syntax ... 6
XML documents always have one and only one root element 6
Element names are case-sensitive ... 7
Elements are always closed ... 7
Elements must be correctly nested .. 7
Elements' attributes must always be quoted .. 8
There are only five entities defined by default ... 8
Namespaces ... 8
XML semantics .. 9
Exercise - Checking XML syntax ... 10

3. Creating your own markup .. 11
Purpose and components .. 11
Exercise - Creating your own XML mark up .. 13

4. Document type definitions ... 15
Defining XML vocabularies with DTDs .. 15
Names and numbers of elements .. 16
PCDATA .. 17
Sequences .. 17
Putting it all together ... 17
Exercise - Writing a simple DTD ... 19
Exercise - Validating against a system DTD ... 20
Exercise - Fixing an XML document by hand ... 20

ii

Chapter 1. Introduction

What is XML and why should I care?
In a sentence, the eXtensible Markup Language (XML) is an open standard providing the means to share
data and information between computers and computer programs as unambiguously as possible. Once
transmitted, it is up to the receiving computer program to interpret the data for some useful purpose thus
turning the data into information. Sometimes the data will be rendered as HTML. Other times it might
be used to update and/or query a database. Originally intended as a means for Web publishing, the ad-
vantages of XML have proven useful for things never intended to be rendered as Web pages.

Think of XML as if it represented tab-delimited text files on steroids. Tab-delimited text files are very
human readable. They are easy to import into word processors, databases, and spreadsheet applications.
Once imported, their simple structure make their content relative easy to manipulate. Tab-delimited text
files are even cross-platform and operating system independent (as long as you can get around the car-
riage-return/linefeed differences between Windows, Macintosh, and Unix computers). See the following
example

Amanda 10 dog brown
Blake 12 dog blue
Jack 3 cat black
Loosey 1 cat brown
Stop 5 pig brown
Tilly 14 cat silver

The problem with tab-delimited text files are two-fold. First, the meaning of each tab-delimited values
are not explicitly articulated. In order to know what each value is suppose to represent it is necessary to
be given (or be told ahead of time) some sort of map or context for the data. Second and more import-
antly, tab-delimited text files can only represent a very simple data structure, a data structure analogous
to a simple matrix of rows and columns. Put another way, tab-delimited text files are exactly like flat file
databases. There is no easy, standardized way of representing data in a hierarchial fashion.

Much like tab-delimited text files, XML files are very human readable since they are allowed to contain
only Unicode characters -- a considerably extended version of the original ASCII character code set. Ad-

3

ditionally, XML files are operating system and application independent with the added benefit of mak-
ing carriage-return/linefeed sequences almost a non-issue.

Unlike tab-delimited files, XML files explicitly state the meaning of each value in the file. Very little is
left up to guesswork. Each element's value is explicitly described. XML turns data into information. The
tab-delimited file from Figure 1.1 is simply an organized list of words and numbers. They have no con-
text and therefore they only represent data. On the other hand, the words and numbers in XML files are
given value and context, and therefore are transformed from data to information. Furthermore, it is very
easy to create hierarchial data structures using XML. Figure 1.2 illustrates these concepts. Without very
much examination, it becomes apparent the data represents a list of pets, specifically, six pets, and each
pet has a name, age, type, and color. Was that as apparent in the previous example?

<pets>
<pet>
<name>Tilly</name>
<age>14</age>
<type>cat</type>
<color>silver</color>
</pet>
<pet>
<name>Amanda</name>
<age>10</age>
<type>dog</type>
<color>brown</color>
</pet>
<pet>
<name>Jack</name>
<age>3</age>
<type>cat</type>
<color>black</color>
</pet>
<pet>
<name>Blake</name>
<age>12</age>
<type>dog</type>
<color>blue</color>
</pet>
<pet>
<name>Loosey</name>
<age>1</age>
<type>cat</type>
<color>brown</color>
</pet>
<pet>
<name>Stop</name>
<age>5</age>
<type>pig</type>
<color>brown</color>
</pet>

</pets>

As the world's production economies move more and more towards service economies, the stuff of busi-
ness becomes more tied to data and information. Similarly, libraries are becoming less about books and
more about the ideas and concepts manifested in the books. In both of these spheres of influence there
needs to be a way to move data and information around efficiently and effectively. XML data shared
between computers and computer programs via the hypertext transfer protocol represents an evolving
method to facilitate this sharing, a method generically called Web Services.

Introduction

4

For example, an XML markup called RSS (Rich Site Summary) is increasingly used to syndicate lists of
uniform resource locators (URL's) representing news stories found on websites. RDF (Resource De-
scription Framework) is an XML markup used to encapsulate meta data about content found at the end
of URL's. TEI (Text Encoding Initiative) and TEILite are both an SGML and well as an XML markup
used to explicitly give value to things found in literary works. Similarly, another XML language called
DocBook is increasingly used to markup computer-related books or articles. The Open Archives Initiat-
ive Protocol for Metadata Harvesting (OAI-PMH) uses XML to gather meta data about the content
found at remote Internet sites.

As information professionals, it behooves us to learn how to exploit the capabilities of XML, because
XML is a tool making it easy to unambiguously and as platform independently as possible communicate
information in a globally networked environment. Isn't that what librarianship and information science is
all about?

Introduction

5

Chapter 2. A gentle introduction to
XML markup

XML syntax
XML documents have syntactic and semantic structures. The syntax (think spelling and punctuation) is
made up of a minimum of rules such as but not limited to:

1. XML documents always have one and only one root element

2. Element names are case-sensitive

3. Elements are always closed

4. Elements must be correctly nested

5. Elements' attributes must always be quoted

6. There are only five entities defined by default (<, >, &, ", and ')

7. When necessary, namespaces must be employed to eliminate vocabulary clashes.

Each of these rules are described in more detail below.

XML documents always have one and only one
root element

The structure of an XML document is a tree structure where there is one trunk and optionally many
branches. The single trunk represents the root element of the XML document. Consider the following,
overly simplified, HTML document, Figure 2.1:

6

<html>
<head>
<title>Hello, World</title>
</head>
<body>
<p>Hello, World</p>
</body>
</html>

This document structure should look familiar to you. It is a valid XML document, and it only contains a
single root element, namely html. There are then two branches to the document, head and body.

Element names are case-sensitive
Element names, the basic vocabulary of XML documents, are case-sensitive. In Figure 2.1 there are five
elements: html, head, title, body, and p. Since each element's name is case-sensitive, the element html
does not equal HTML, nor does it equal HTmL or Html. The same is true for the other elements.

Elements are always closed
Each element is denoted by opening and closing brackets, the less than sign (<) and greater than sign
(>), respectively. XML elements are rarely empty; they are usually used to provide some sort of mean-
ing or context to some data, and consequently, XML elements usually surround data. Each of the ele-
ments is Figure 2.1 are opened and closed. For example, the title of the document is denoted with the
<title> and </title> elements and the only paragraph of the document is denoted with <p> and </p> ele-
ments. An opened element does not contain the initial forward slash but closing elements do.

Sometimes elements can be empty such as the break tag in XHTML. In such cases the element is opened
and closed at the same time, and it is encoded like this:
.

Elements must be correctly nested
Consecutive XML elements may not be opened and then closed without closing the elements that were
opened last first. Doing so is called improper nesting. Take the following incorrect encoding of an
XHTML paragraph:

<p>This is a test. This is a test of the
Emergency Broadcast System.</p>

In the example above the em and strong elements are opened, but the em element is closed before the
strong element. Since the strong element was opened after the em element it must be closed before the
em element. Here is correct markup:

<p>This is a test. This is a test of the
Emergency Broadcast System.</p>

A gentle introduction to XML markup

7

Elements' attributes must always be quoted
XML element are often qualified using attributes. For example, an integer might be marked up as a
length and the length element might be qualified to denote feet as the unit of measure. For example:
<length unit='feet'>5</length>. The attribute is named unit, and it's value is always quoted. It does not
matter whether or not it is quoted with an apostrophe (') or a double quote (").

There are only five entities defined by default
Certain characters in XML documents have special significance, specifically, the less than (<), greater
than (>), and ampersand (&) characters. The first two characters are used to delimit the existence of ele-
ment names. The ampersand is used to delimit the display of special characters commonly known as en-
tities; they ampersand character is the "escape" character. Consequently, if you want to display any of
these three characters in your XML documents, then you must express them in their entity form:

• to display the & character type &

• to display the < character type <

• to display the > character type >

XML processors, computer programs that render XML documents, should be able interpret these char-
acters without the characters being previously defined.

There are two other characters that can be represented as entity references:

• to display the ' character optionally type '

• to display the " character optionally type "

Namespaces
The concept of a "namespace" is used to avoid clashes in XML vocabularies.

Remember, the X in XML stands for extensible. This means you are allowed to create your own XML
vocabulary. There is no centralized authority to dictate what all the valid vocabularies are and how they
are used. Fine, but with so many XML vocabularies there are bound to be similarities between them. For
example, it is quite likely that different vocabularies will want some sort of date element. Others will
want a name or description element. In each of these vocabularies the values expected to be stored in
date, name, or description elements may be different. How to tell the difference? Namespaces.

Namespaces have a one-to-one relationship with a URI (Universal Resource Identifier), and namespace
attributes defined with URIs can be inserted into XML elements to denote how an element is to be used.
Namespace attributes always begin with "xmlns". Namespace attributes are always end with some sort
of identifier call the "local part". These two things are always delimited by a colon and finally equated
with a URI. For example, a conventional namespace defining the Dublin Core namespace is written as:

xmlns:dc="http://purl.org/dc/elements/1.1/"

where:

A gentle introduction to XML markup

8

• xmln denotes a namespace

• dc denotes the name of the namespace, the local part

• http://purl.org/dc/elements/1.1/ is a unique identifier (URI)

This whole namespace thing become very useful when an XML document uses two or more XML
vocabularies. For example, it is entirely possible (if not necessary) to have more than one vocabulary in
RDF streams. There is one vocabulary used to describe the RDF structure, and there is another vocabu-
lary used to describe the metadata. The example below is a case in point:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description rdf:about="http://www.AcronymFinder.com/">
<dc:title>Acronym Finder</dc:title>
<dc:description>The Acronym Finder is a world wide
web (WWW) searchable database of more than 169,000
abbreviations and acronyms about computers,
technology, telecommunications, and military acronyms
and abbreviations.</dc:description>

<dc:subject>
<rdf:Bag>
<rdf:li>Astronomy</rdf:li>
<rdf:li>Literature</rdf:li>
<rdf:li>Mathematics</rdf:li>
<rdf:li>Music</rdf:li>
<rdf:li>Philosophy</rdf:li>

</rdf:Bag>
</dc:subject>

</rdf:Description>
</rdf:RDF>

Here you have two vocabularies going on. One is defined as rdf and assocaited with the URI ht-
tp://www.w3.org/1999/02/22-rdf-syntax-ns#. The second one is defined as dc and associated with ht-
tp://purl.org/dc/elements/1.1/. The namespace local parts are then associated with various elements a
needed.

One final note. URI are simply unique identifiers. They often take the shape of URLs, but need not point
to anything accessible over the Web. They are just strings of text.

XML semantics
The semantics of an XML document (think grammar) is an articulation of what XML elements can exist
in a file, their relationship(s) to each other, and their meaning. Ironically, this is the really hard part
about XML and has manifested itself as a multitude of XML "languages" such as: RSS, RDF, TEILite,
DocBook, XMLMARC, EAD, XSL, etc. In the following, valid, XML file there are a number of XML
elements. It is these elements that give the data value and meaning:

<catalog>
<work type='prose' date='1906'>
<title>The Gift Of The Magi</title>
<author>O Henry</author>

A gentle introduction to XML markup

9

</work>
<work type='poem' date='1845'>
<title>The Raven</title>
<author>Edgar Allen Poe</author>
</work>
<work type='play' date='1601'>
<title>Hamlet</title>
<author>William Shakespeare</author>
</work>
</catalog>

Exercise - Checking XML syntax
In this exercise you will learn to identify syntactical errors in XML files.

1. Examine the following file. Circle all of it's syntactical errors, and write in the corrections.

<name>Oyster Soup</name>
<author>Eric Lease Morgan</author>
<copyright holder=Eric Lease Morgan>© 2003</copyright>
<ingredients>
<list>
<item>1 stalk of celery
<item>1 onion
<item>2 tablespoons of butter
<item>2 cups of oysters and their liquor
<item>2 cups of half & half
</list>
</ingredients>
<process>
<P>Begin by sauteing the celery and onions in butter until soft.
Add oysters, oyster liquor, and cream. Heat until the oysters float.
Serve in warm bowls.</p>
<p><i>Yummy!</p></i>
</process>

A. Check for one and only one root element. Is there a root element?

B. Check for quoted attribute values. Are the attributes quoted?

C. Check for invalid use of entities. There are two errors in the file.

D. Check for properly opened and closed element tags. Five elements are not closed.

E. Check for properly nested elements. Two elements are not nested correctly.

F. Check for case-sensitive element naming. One element is not correctly cased.

A gentle introduction to XML markup

10

Chapter 3. Creating your own markup

Purpose and components
The "X" in XML stands for extensible. By this the creators of XML mean it should be easy to create
one's own markup -- a vocabulary or language intended to describe a set of data/information. The key to
creating an XML mark up language is to first articulate what the documents will be used for, and second
the ability to specify the essential components of a document and assign them elements. The process of
creating an XML mark up is similar to the process of designing a database application. You must ask
yourself what data you will need and create places for that data to be saved.

Creating a markup for a letter serves as an excellent example:

December 11, 2002

Melvile Dewey
Columbia University
New York, NY

Dear Melvile,

I have been reading your ideas concering the nature of
librarianship, and I find them very intriguing. I would love the
opportunity to discuss with you the role of the card catalog in today's
libraries considering the advent to World Wide Web. Specifically, how
are things like Google and Amazon.com changing our patrons' expectations
of library services? Mr. Cutter and I will be discussing these ideas at
the next Annual Meeting, and we are available at the follow dates/times:

* Monday, 2-4
* Tuesday, 3-5
* Thursday, 1-3

We hope you can join us.

Sincerely, S. R. Ranganathan

11

As you read the letter you notice sections common to many letters. By analyzing these sections it is pos-
sible to create a list of XML elements. For example, the letter contains a date, a block of text describing
the addressee, a greeting, one or more paragraphs of text, a list, and a closing statement. Upon closer ex-
amination, some of your sections have subsections. For example, the addressee has a name, a first ad-
dress line, and a second address line. Further, the body of the letter might have some sort of emphasis.

The division into smaller and smaller subsections could go all the way down to individual words. Where
to stop? Only create elements for pieces of data you are going to use. If you never need to know the city
or state of your addressee, then don't create an element for them. Ask yourself, what is the purpose of
the document? What sort of information do you want to hilight from its content? If you wanted to create
lists of all the cities you sent letters to, then you will need to demarcate the values for city. If you need to
extract each and every sentence from your document, then you will have to demarcate them as well.
Otherwise, save yourself the time and energy and keep it simple.

Once you have articulated the parts of the document you want to mark up you have to give them names.
XML element names can contain standard English letters A - Z and a - z as well as integers 0 - 9. They
can also contain non-English letters and three punctuation characters: underscore (_), hyphen (-), and
period (.). Element names may not contain white space (blanks, tabs, return characters), nor other punc-
tuation marks. Play it save. Use letters.

Now it is time to actually create a few elements. Based on the previous discussion. We could create a set
of element names such as this:

• letter

• date

• addressee

• name

• address_one

• address_two

• greeting

• paragraph

• italics

• list

• item

• closing

Using these elements as a framework, it is possible to mark up the text in the following manner:

<letter>

<date>December 11, 2002</date>

<addressee>
<name>Melvile Dewey</name>
<address_one>Columbia University</address_one>

Creating your own markup

12

<address_two>New York, NY</address_two>
</addressee>

<greeting>Dear Melvile,</greeting>

<paragraph>
I have been reading your ideas concerning nature of librarianship, and
<italics>I find them very intriguing</italics>. I would love the
opportunity to discuss with you the role of the card catalog in today's
libraries considering the advent to World Wide Web. Specifically, how
are things like Google and Amazon.com changing our patrons' expectations
of library services? Mr. Cutter and I will be discussing these ideas at
the next Annual Meeting, and we are available at the follow dates/times:
</paragraph>

<list>
<item>Monday, 2-4</item>
<item>Tuesday, 3-5</item>
<item>Thursday, 1-3</item>
</list>

<paragraph>We hope you can join us.</paragraph>

<closing>Sincerely, S. R. Ranganathan</closing>

</letter>

Exercise - Creating your own XML mark up
In this exercise you will create your own XML markup, a markup describing a simple letter.

1. Consider the following letter.

February 3, 2003

American Library Association
15 Huron Street
Chicago, IL 12304

To Whom It May Concern:

It has come to my attention that the Association no longer wants
to spend money on posters of famous people advocating reading.
What is wrong with you guys! Don't you know that reading is
FUNdamental? These posters really get me and my patrons going. I
thought they were great.

Please consider re-instating the posters.

Sincerely, B. Ig Reeder

2. As a group, decide what elements to use to mark up the letter as an XML file.

Creating your own markup

13

A. What can our root element be?

B. What sections make up the letter? What element names can we give these sections?

C. Some of the sections, such as the address, greeting, and saluation have sub-sections. What
should we call these sub-sections?

D. Use a pen or pencil to mark up the letter above using the elements decided upon.

3. Mark up the letter as an XML document, and validate its syntax using a Web browser.

A. Use NotePad to open the file named ala.txt on the distributed CD.

B. Add the root element to the beginning and ending of the file.

C. Mark up each section and sub-section of the letter with the element names decided upon.

D. Save the file with the name ala.xml.

E. Open ala.xml in your Web browser, and fix any errors that it may report. If there are no errors,
then congratulations, you have marked up your first XML document.

Creating your own markup

14

Chapter 4. Document type definitions

Defining XML vocabularies with DTDs
Creating your own XML mark up is all well and good, but if you want to share your documents with
other people you will need to communicate to these other people the vocabulary your XML documents
understand. This is the semantic part of XML documents -- what elements do your XML files contain
and how are the elements related to each other? These semantic relationships are created using Docu-
ment Type Definitions (DTD) and/or XML Schemas. DTDs are legacy implementations from the SGML
world. They are more commonly used than the newer, XML-based, XML Schemas. This section
provides an overview for creating DTDs.

DTDs can exist inside an XML document or outside an XML document. If they reside in an XML docu-
ment, then they begin with a DOCTYPE declaration followed by the name of the XML document's root
element and finally a list of all the elements and how they are related to each other. Here is a simple
DTD for embedded in the pets.xml file itself:

<!DOCTYPE pets [
<!ELEMENT pets (pet+)>
<!ELEMENT pet (name, age, type, color)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT age (#PCDATA)>
<!ELEMENT type (#PCDATA)>
<!ELEMENT color (#PCDATA)>
]>

<pets>
<pet>
<name>Tilly</name>
<age>14</age>
<type>cat</type>
<color>silver</color>
</pet>
<pet>
<name>Amanda</name>
<age>10</age>
<type>dog</type>
<color>brown</color>
</pet>
<pet>

15

<name>Jack</name>
<age>3</age>
<type>cat</type>
<color>black</color>
</pet>
<pet>
<name>Blake</name>
<age>12</age>
<type>dog</type>
<color>blue</color>
</pet>
<pet>
<name>Loosey</name>
<age>1</age>
<type>cat</type>
<color>brown</color>
</pet>
<pet>
<name>Stop</name>
<age>5</age>
<type>pig</type>
<color>brown</color>
</pet>
</pets>

More commonly, DTDs reside outside an XML document since they are intended to be used by many
XML files. In this case, the DOCTYPE declaration includes a pointer to a file where the XML elements
are described.

<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd">

Whether or not the DTD is internal or external, a list of XML elements needs to be articulated. Each
item on the list will look something like !ELEMENT pets (pet+) where "!ELEMENT" denotes an ele-
ment, "pets" is the element being defined, and "(pet+)" is the definition. The definitions are the difficult
part. There are many different types of values the definitions can include, and only a few of them are de-
scribed here.

Names and numbers of elements
First of all, the definitions can include the names of other elements. In our example above, the first de-
claration defines and element called pets and it is allowed to include just on other element, pet. Simil-
arly, the element defined as pet is allowed to contain four other elements: name, age, type, and color.
Each element is qualified by how many times it can occur in the XML document. This is done with the
asterisk (*), question mark (?), and plus sign (+) symbols. Each of these symbols have a specific mean-
ing:

• asterisk (*) - The element may appear zero or more times

• question mark (?) - The element may appear zero or one time, only

• plus sign (+) - The element appears at least once if not more times

Document type definitions

16

If an element is not qualified with one of these symbols, then the element can appear once and only
once. Consequently, in the example above, since pets is defined to contain the element pet, and the pet
element is qualified with a plus sign, there must be at least one pet element within the pets element.

PCDATA
There is another value for element definitions you need to know, #PCDATA. This stands for parsed
character data, and it is used to denote content that contains only text, text without markup.

Sequences
Finally, it is entirely possible that an element will contain multiple, sub elements. When strung together,
this list of multiple elements is called a sequence, and they can be grouped together in the following
ways:

• comma (,) is used to denote the expected order of the elements in the XML file

• parentheses (()) are used to group elements together

• vertical bar (|) is used to denote a Boolean union relationship between the elements.

Putting it all together
Walking through the DTD for pets.xml we see that:

1. The root element of the document should is pets.

2. The root element, pets, contains at least one pet element.

3. Each pet element can contain one and only one name, age, type, and color element, in that order.

4. The elements name, age, type, and color are to contain plain text, no mark up.

Below is a DTD for the letter in a previous example.

<!ELEMENT letter (date, addressee, greeting, (paragraph+ | list+)*, closing)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT addressee (name, address_one, address_two)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address_one (#PCDATA)>
<!ELEMENT address_two (#PCDATA)>
<!ELEMENT greeting (#PCDATA)>
<!ELEMENT paragraph (#PCDATA | italics)*>
<!ELEMENT italics (#PCDATA)>
<!ELEMENT list (item+)>
<!ELEMENT item (#PCDATA)>
<!ELEMENT closing (#PCDATA)>

This example is a bit more complicated. Walking through it we see that:

Document type definitions

17

1. The letter element contains one date element, one adressee element, one greeting element, at least
one paragraph or at least one list element, and one closing element.

2. The date element contains plain o' text, no markup.

3. The addressee element contains one and only one name, address_one, and address_two element, in
that order.

4. The name, address_one, address_two, and greeting elements contain text, no markup.

5. The paragraph element can contain plain text or the italics element.

6. The italics element contains plain, non-marked up, text.

7. The list element contains at least one item element.

8. The item and closing elements contain plain text.

To include this DTD in our XML file, we must create pointer to the DTD, and since the DTD is local to
our environment, and not a standard, the pointer should be included in the XML document looking like
this:

<!DOCTYPE letter SYSTEM "letter.dtd">
<letter>
<date>
December 11, 2002
</date>
<addressee>
<name>
Melvile Dewey
</name>
<address_one>
Columbia University
</address_one>
<address_two>
New York, NY
</address_two>
</addressee>
<greeting>
Dear Melvile,

</greeting>
<paragraph>
I have been reading your ideas concerning nature of librarianship,
and <italics>I find them very intriguing</italics>. I would love
the opportunity to discuss with you the role of the card catalog
in today's libraries considering the advent to World Wide Web.
Specifically, how are things like Google and Amazon.com changing
our patrons' expectations of library services? Mr. Cutter and I
will be discussing these ideas at the next Annual Meeting, and we
are available at the follow dates/times:
</paragraph>
<list>
<item>
Monday, 2-4
</item>
<item>
Tuesday, 3-5
</item>
<item>

Document type definitions

18

Thursday, 1-3
</item>
</list>
<paragraph>
We hope you can join us.

</paragraph>
<closing>
Sincerely, S. R. Ranganathan

</closing>
</letter>

By feeding this XML to an XML processor, the XML processor should know that the element named
letter is the root of the XML file, and the XML file can be validated using a local, non-standardized
DTD file named letter.dtd.

Exercise - Writing a simple DTD
In this exercise your knowledge of DTDs will be sharpened by examining an existing DTD, and then
you will write your own DTD.

1. Consider the DTD describing the content of the catalog.xml file, below, and on the back of this pa-
per write the answers the following questions:

<!ELEMENT catalog (caption, structure, work+)>
<!ELEMENT caption (#PCDATA)>
<!ELEMENT structure (title, author, type, date)>
<!ELEMENT work (title, author, type, date)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT type (#PCDATA)>
<!ELEMENT date (#PCDATA)>

A. How many elements can the catalog element contain, and what are they?

B. How many works can any one catalog.xml file contain?

C. Can marked up text be included in the title element? Explain why or why not.

D. If this DTD is intended to be a locally developed DTD, and intended to be accessed from out-
side the XML document, how would you write the DTD declaration appearing in the XML
file?

2. Create an internal DTD for the file ala.xml, and validate the resulting XML file.

A. Open ala.xml in NotePad.

B. Add an internal document type declaration to the top of the file, <!DOCTYPE letter []>.

C. Between the square brackets ([]), enter the beginings of an element declaration for each ele-

Document type definitions

19

ment needed to be defined (i.e. letter, date, address, greeting, etc.). For example, type
<!ELEMENT para ()> for the paragraph element between the square brackets.

D. For each element define its content by listing either other element names or #PCDATA, de-
pending on how the XML file is structured. Don't forget to append either a plus sign (+), an
asterisk (*), or a question mark (?) to denote the number of times an element or list of ele-
ments may appear in the XML file.

E. Save ala.xml.

F. Select and copy the entire contents of ala.xml to the clipboard.

G. Open your Web browser, and validate your XML file by using a validation form
[http://www.stg.brown.edu/service/xmlvalid/] .

Exercise - Validating against a system DTD
In this exercise you will use xmllint to validate a locally defined (system) DTD. While using a remote
service such as the one mentioned above is easy, it really behooves you to be more self-reliant than that.

1. Install xmllint. Xmllint is a validation program written against a set of C libraries called libxml2
and libxslt. Installing these libraries on Unix follows the normal installation processes: download,
unzip, untar, configure, make, and install. On Windows is it much easier to download the pre-
compiled binaries making sure you download the necessary .dll files. All of these files have been
saved in a directory on the CD called libxml. Simply copy this directory to your C drive and/or add
the libxml directory to your PATH environment variable. Once done you should be able to enter
xmllint and xsltproc from the command line and see lot's of help text.

2. Open a command prompt and change directories to the getting-started directory of the workshop's
distribution.

3. Validate letter.xml against letter.dtd using this command: xmllint --dtdvalid letter.dtd letter.xml .
If everything goes well you should see a stream of XML without any errors. If you want to repress
the stream of XML then add --noout: xmllint --noout --dtdvalid letter.dtd letter.xml .

To good to be true? Change something about letter.xml to make it invalid, and try validating it again to
demonstrate that xmllint is working correctly.

Exercise - Fixing an XML document by hand
If you have not had the joy of trying to fix an XML file based on the output of xmllint, then here is your
chance. In this exercise you will make an XML document validate against a DTD.

1. Browse the content of the directory xml-data/ead/broken/. It contains sets of well-formed XML
documents that validated against an older version of an EAD (Encoded Archival Description) DTD.

2. Open an EAD file in your favorite text editor, say ncw.xml. Notice its structure. At first glance, es-
pecially to the uninitiated, the file seems innocuous.

3. Open a command prompt and change directories to the root of the workshop's distribtuion.

Document type definitions

20

http://www.stg.brown.edu/service/xmlvalid/

4. Validate ncw.xml against the latest version of the EAD DTD supplied on the CD: xmllint --noout -
-dtdvalid dtds/ead/ead.dtd xml-data/ead/broken/ncw.xml . You should get output looking
something like this:

xml-data/ead/broken/ncw.xml:5: element eadheader: validity error : Syntax of value
for attribute langencoding of eadheader is not valid

xml-data/ead/broken/ncw.xml:21: element archdesc: validity error : Element archdesc
content does not follow the DTD, expecting (runner* , did , (accessrestrict | accruals |
acqinfo | altformavail | appraisal | arrangement | bibliography | bioghist | controlaccess
| custodhist | descgrp | fileplan | index | odd | originalsloc | otherfindaid | phystech |
prefercite | processinfo | relatedmaterial | scopecontent | separatedmaterial | userestrict |
dsc | dao | daogrp | note)*), got (did admininfo scopecontent bioghist controlaccess
dsc)

xml-data/ead/broken/ncw.xml:21: element archdesc: validity error : No declaration for
attribute langmaterial of element archdesc

xml-data/ead/broken/ncw.xml:21: element archdesc: validity error : No declaration for
attribute legalstatus of element archdesc

xml-data/ead/broken/ncw.xml:35: element admininfo: validity error : No declaration
for element admininfo

Document xml-data/ead/broken/ncw.xml does not validate against dtds/ead/ead.dtd

Yuck!

5. You can make the document validate by opening up ncw.xml in your text editor and then:

a. deleting the space in the langencoding attribute of the eadheader element

b. deleting the admininfo element and all of its children

c. deleting the langmaterial name/value from the archdesc element

d. deleting the legalstatus name/value from the archdesc element

6. Save your changes, and validate the document again.

Document type definitions

21

Part II. Stylesheets with CSS &
XSLT

Table of Contents
5. Rendering XML with cascading style sheets ... 24

Introduction ... 24
display .. 25
margin .. 26
text-indent ... 26
text-align ... 26
list-style .. 26
font-family .. 27
font-size .. 27
font-style ... 27
font-weight .. 27
Putting it together .. 28
Tables ... 29
Exercise - Displaying XML Using CSS ... 30

6. Transforming XML with XSLT .. 32
Introduction ... 32
A few XSLT elements .. 32
Exercise - Hello, World .. 33
Exercise - XML to text ... 34
Exercise - XML to text, redux ... 36
Exercise - Transform an XML document into XHTML 37
Yet another example .. 40
Exercise - Transform an XML document with an XSLT stylesheet 42
Displaying tabular data ... 42
Manipulating XML data ... 44
Using XSLT to create other types of text files ... 46
Exercise - XML to XHTML .. 47
Exercise - Displaying TEI files in your browser .. 47
Exercise - Transform MODS into XHTML .. 48

xxiii

Chapter 5. Rendering XML with
cascading style sheets

Introduction
Cascading style sheets (CSS) represent a method for rendering XML files into a more human presenta-
tion. CSS files exemplify a method for separating presentation from content.

CSS have three components: layout, typography, and color. By associating an XML file with a CSS file
and processing them with a Web browser, it is possible to display the content of the XML file in an aes-
thetically pleasing manner.

CSS files are made up of sets of things called selectors and declarations. Each selector in a CSS file cor-
responds to an element in an XML file. Each selector is then made of up declarations -- standardized
name/value pairs -- denoting how the content of XML elements are to be displayed. They look
something like this: note { display: block; }.

Here is a very simple XML document describing a note:

<?xml-stylesheet type="text/css" href="note.css"?>
<note>
<para>Notes are very brief documents.</para>
<para>They do not contain very much content.</para>
</note>

The first thing you will notice about the XML document is the addition of the very first line, an XML
processing instruction. This particular instruction tells the application reading the XML file to render it
using a CSS file named note.css. The balance of the XML file should be familiar to you.

If I wanted to display the contents of the note such that each paragraph were separated by a blank line,
then the CSS file might look like this:

24

note { display: block; }
para { display: block; margin-bottom: 1em; }

In this CSS file there are two selectors corresponding to each of the elements in the XML file: note and
para. Each selector is associated with one or more name/value pairs (declarations) describing how the
content of the elements are to be displayed. Each name is separated from the value by a colon (:), the
name/value pairs are separated from each other by a semicolon (;), and all the declarations associated
with a selector are grouped together with curly braces({}).

Opening note.xml in a relatively modern Web browser should result in something looking like this:

Be forewarned. Not all web browsers support CSS similarly. (What a surprise!) In general, you will get
minimal performance from Netscape Navigator 4.7 and Internet Explorer 5.0. Much better implementa-
tions of CSS are built into Mozilla 1.0 and Internet Explorer 6.0. Your milage will vary.

The key to using CSS files is knowing how to create the name/value pair declarations. For a compre-
hensive list of these name/value pairs see the World Wide Web Consortium's description of CSS
[http://www.w3.org/TR/REC-CSS2/propidx.html] . A number of them are described below.

display
The display property is used to denote whether or not an element is to be displayed, and if so, how but
only in a very general way. The most important values for display are: inline, block, list-item, or none.
Inline is the default value. This means the content of the element will not include a line break after the
content; the content will be displayed as a line of text. Giving display a value of block does create line
breaks after the content of the element. Think of blocks as if they were paragraphs. The list-item value is
like block, but it also indents the text just a bit. The use of none means the content will not be displayed;
the content is hidden. Examples include:

• display: none;

• display: inline;

Rendering XML with cascading style sheets

25

http://www.w3.org/TR/REC-CSS2/propidx.html

• display: block;

• display: list-item;

margin
The margin property is used to denote the size of white space surrounding blocks of text. Values can be
denoted in terms of percentages (%), pixels (px), or traditional typographic conventions such as the em
unit (em). When the simple margin property is given a value, the value is assigned to the top, bottom,
left, and right margins simultaneously. It is possible to specify specific margins using the margin-top,
margin-bottom, margin-left, and margin-right properties. Examples include:

• margin: 5%;

• margin: 10px;

• margin-top: 2em;

• margin-left: 85%;

• margin-right: 50px;

• margin-bottom: 1em;

text-indent
Like the margin property, the text-indent property can take percentages, pixels, or typographic units for
values. This property is used to denote how particular lines in blocks of text are indented. For example:

• text-indent: 2em;

• text-indent: 3%;

text-align
Common values for text-align are right, left, center, and justify. They are used to line up the text within
a block of text. These values operate in the same way your word processor aligns text. For example:

• text-align: right;

• text-align: left;

• text-align: center;

• text-align: justify;

list-style

Rendering XML with cascading style sheets

26

Bulleted lists are easy to read and used frequently in today's writing styles. If you want to create a list,
then you will want to use first use the selector display: list-item for the list in general, and then
something like disc, circle, square, or decimal for the list-style value. For example:

• list-style: circle;

• list-style: square;

• list-style: disc;

• list-style: decimal;

font-family
Associate font-family with a selector if you want to describe what font to render the XML in. Values in-
clude the names of fonts as well as a number of generic font families such as serif or sans-serif. Font
family names containing more than one word should be enclosed in quotes. Examples:

• font-family: helvetica;

• font-family: times, serif;

• font-family: 'cosmic cartoon', sans-serif;

font-size
The sizes of fonts can be denoted with exact point sized as well as relative sizes such as small, x-small,
or large. For example:

• font-size: 12pt;

• font-size: small;

• font-size: x-small;

• font-size: large;

• font-size: xx-large;

font-style
Usual values for font-style are normal or italic denoting how the text is displayed as in:

• font-style: normal;

• font-style: italic;

font-weight

Rendering XML with cascading style sheets

27

This is used to denote whether or not the font is displayed in bold text or not. Typical values for font-
weight are normal and bold:

• font-weight: normal;

• font-weight: bold;

Putting it together
Below is a CSS file intended to be applied against the letter.xml file previously illustrated. Notice how
each element in the XML file has a corresponding selector in the CSS file. In order to tell your Web
browser to use this CSS file, you will have to add the xml-stylesheet processing instruction
(<?xml-stylesheet type="text/css" href="letter.css" ?>) to the top of letter.xml.

letter {
display: block;
margin: 5%;
}

date, addressee {
display: block;
margin-bottom: 1em;
}

name, address_one, address_two { display: block; }

greeting, list {
display: block;
margin-bottom: 1em;
}

paragraph {
display: block;
margin-bottom: 1em;
text-indent: 1em;
}

italics {
display: inline;
font-style: italic;
}

list { display: block; }

item {
display: list-item;
list-style: inside;
text-indent: 2em;
}

closing {
display: block;
margin-top: 3em;
text-align: right;
}

Rendering XML with cascading style sheets

28

Once rendered the resulting XML file should look something like this:

Tables
Tables are two-dimensional lists; they are a matrix of rows and columns. A very simple list of books (a
catalog) lends itself to a tabled layout since each book (work) in the list has a number of qualities such
as title, author, type, and date. Each work represents a row, and the title, author, type, and date represent
columns.

Here is an XML file representing a simple, rudimentary catalog. Notice the XML processing instruction
directing any XML processor to render the content of the file using the CSS file catalog.css:

<?xml-stylesheet href='catalog.css' type='text/css'?>
<catalog>
<caption>This is my personal catalog.</caption>
<structure>
<title>Title</title>
<author>Author</author>
<type>Type</type>
<date>Date</date>
</structure>
<work>
<title>The Gift Of The Magi</title>
<author>O Henry</author>

Rendering XML with cascading style sheets

29

<type>prose</type>
<date>1906</date>
</work>
<work>
<title>The Raven</title>
<author>Edgar Allen Poe</author>
<type>prose</type>
<date>1845</date>
</work>
<work>
<title>Hamlet</title>
<author>William Shakespeare</author>
<type>prose</type>
<date>1601</date>
</work>
</catalog>

CSS provides support for tables, but again, present-day browsers do not render tables equally well. To
create a table you must you must learn at least three new values for an element's display value:

1. display: table;

2. display: table-row;

3. display: table-cell;

Using the catalog example above, display: table will be associated with the catalog element, display: ta-
ble-row will be associated with the work element, and display: table-cell will be associated with the title,
author, type, and date elements.

Additionally, you might want to use these values to make your tables more complete as well as more ac-
cessible:

1. display: table-caption;

2. display: table-header-group;

Table-caption is used to give an overall description of the table. Table-header-group is used to denote
the labels for the column headings.

Exercise - Displaying XML Using CSS
In this exercise you will learn how to write a CSS file and use it to render an XML file.

1. Create a CSS file intended to render the file named ala.xml created in a previous exercise.

A. Open ala.xml in NotePad.

B. Add the XML processing instruction <?xml-stylesheet href="ala.css" type="text/css"?> to the
top of the file. Save it.

Rendering XML with cascading style sheets

30

C. Create a new, empty file in NotePad, and save it as ala.css.

D. In ala.css, list each XML element in ala.xml on a line by itself.

E. Assign each element a display selector with a value of block (ex. para { display: block; }).

F. Open ala.xml in your Web browser to check your progress.

G. Add a blank line between each of the letter's sections by adding a margin-bottom: 1em to each
section's selector (ex. para { display: block; margin-bottom: 1em; }).

H. Open ala.xml in your Web browser to check on your progress.

I. Change the display selector within the salutation so its sub-element is displayed as inline text,
not a block (ex. salutation { display: inline; }).

J. Open ala.xml in your Web browser to check on your progress.

2. Indent the paragraphs by adding text-indent: 2em; to the para element. The final result should look
something like this:

Rendering XML with cascading style sheets

31

Chapter 6. Transforming XML with
XSLT

Introduction
Besides CSS files, there is another method for transforming XML documents into something more hu-
man readable. Its called eXtensible Stylesheet Language: Transormation (XSLT). XSLT is a program-
ming language implemented as an XML semantic. Like CSS, you first write/create an XML file, you
then write an XSLT file and use a computer program to combine the two to make a third file. The third
file can be any plain text file including another XML file, a narrative text, or even a set of sophisticated
commands such as structured query language (SQL) queries intended to be applied against a relational
database application.

Unlike CSS or XHTML, XSLT is a programming language. It is complete with input parameters, condi-
tional processing, and function calls. Unlike most programming languages, XSLT is declarative and not
procedural. This means parts of the computer program are executed as particular characteristics of the
data are met and less in a linear top to bottom fashion. This also means it is not possible to change the
value of variables once they have been defined.

There are a number of XSLT processors available for various Java, Perl, and operating-system specific
platforms:

• Xerces and Xalan [http://xml.apache.org/] - Java-based implementations

• xsltproc [http://xmlsoft.org/XSLT/xsltproc2.html] - A binary application built using a number of C
libraries, and also comes with a program named xmllint used to validate XML documents

• Sablotron [http://www.gingerall.com/charlie/ga/xml/p_sab.xml] - Another binary distribution built
using C++ libraries and has both a Perl and a Python API

• Saxon [http://saxon.sourceforge.net/] - another Java implementation

A few XSLT elements

32

http://xml.apache.org/
http://xmlsoft.org/XSLT/xsltproc2.html
http://www.gingerall.com/charlie/ga/xml/p_sab.xml
http://saxon.sourceforge.net/

XSLT is a programming language in the form of an XML file. Therefore, each of the commands is an
XML element, and commands are qualified using XML attributes. Here is a simple list of some of those
commands:

• stylesheet - This is the root of all XSLT files. It requires attributes defining the XSLT namespace
and version number. This is pretty much the standard XSLT stylesheet definition: <xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">.

• output - This is used to denote what type of text file will be created as output and whether or not it
requires indentation and/or a DTD specification. For example, this use of output tells the XSLT pro-
cessor to indent the output to make the resulting text easier to read: <xsl:output indent="yes" />.

• template - This command is used to match/search for a particular part of an XML file. It requires an
attribute named match and is used to denote what branch of the XML tree to process. For example,
this use of template identifies all the things in the root element of the XML input file: <xsl:template
match="/">.

• value-of - Used to output the result of the required attribute named select which defines exactly what
to output. In this example, the XSLT processor will output the value of a letter's date element:
<xsl:value-of select="/letter/date/" />.

• apply-templates - Searches the current XSLT file for a template named in the command's select
statement or outputs the content of the current node of the XML file if there is no corresponding
template. Here the apply-templates command tells the processor to find templates in the current
XSLT file matching paragraph or list elements: <xsl:apply-templates select="paragraph | list" />.

• Besides XSLT commands (elements), XSLT files can contain plain text and/or XML markup. When
this plain text or markup is encountered, the XSLT processor is expected to simply output these val-
ues. This is what allows us to create XHTML output. The processor reads an XML file as well as the
XSLT file. As it reads the XSLT file it processes the XSLT commands or outputs the values of the
non-XSLT commands resulting in another XML file or some other plain text file.

Exercise - Hello, World
In this exercise you will transform the simpliest of XML documents using XSLT.

Here is a very simple XML document:

<content>Hello, World!</content>

Our goal is to transform this document into a plain text output. To do that we will use this XSLT
stylesheet:

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<!-- plain o' text -->
<xsl:output method='text'/>

<!-- match the root element -->

Transforming XML with XSLT

33

<xsl:template match="/content">

<!-- output the contents of content and a line-feed -->
<xsl:value-of select='.'/>
<xsl:text>
</xsl:text>

<!-- clean up -->
</xsl:template>

</xsl:stylesheet>

This is what the stylesheet does:

1. Defines itself as an XML file

2. Defines itself as an XSLT stylesheet

3. Defines the output format as plain text

4. Looks for the root element, content.

5. Outputs the value of the root element

6. Outputs a line-feed character

7. Closes the opened elements

Give the stylesheet a try:

1. Opening a command prompt.

2. Change directories to the getting-started directory of the workshop's directory.

3. Transform the hello-world.xml file: xsltproc hello-world.xsl hello-world.xml .

Exercise - XML to text
In a previous exercise you created a letter (ala.xml) using our own mark up. We will now use XSLT to
transform it to plain text file.

As review, open ala.xml. Not too complicated.

To create a plain text version of this file, we will use the following stylesheet:

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<!-- plain o' text -->
<xsl:output method='text'/>

<!-- let's get started -->

Transforming XML with XSLT

34

<xsl:template match="/letter">

<!-- date -->
<xsl:text>
</xsl:text>
<xsl:value-of select='normalize-space(date)'/>
<xsl:text>

</xsl:text>

<!-- address -->
<xsl:value-of select='normalize-space(addressee/name)'/>
<xsl:text>
</xsl:text>
<xsl:value-of select='normalize-space(addressee/address_one)'/>
<xsl:text>
</xsl:text>
<xsl:value-of select='normalize-space(addressee/address_two)'/>
<xsl:text>

</xsl:text>

<!-- greeting -->
<xsl:value-of select='normalize-space(greeting)'/>
<xsl:text>

</xsl:text>

<!-- paragraphs -->
<xsl:for-each select='paragraph'>
<xsl:value-of select='normalize-space(.)'/>
<xsl:text>

</xsl:text>

</xsl:for-each>

<!-- closing -->
<xsl:value-of select='normalize-space(closing)'/>
<xsl:text>

</xsl:text>

</xsl:template>

</xsl:stylesheet>

Here is how the stylesheet works:

1. Like before, the file is denoted as an XML file and specifically an XSLT stylesheet.

2. Like before, output is defined as plain o' text.

3. The root of the XML to be transformed is located.

4. The stylesheet outputs a line feed, outputs the value of the date element while removing extraneous
white space, and outputs two more line feeds.

5. The stylesheet continues in this fashion for the address and greeting elements.

6. The stylesheet loops through each paragraph element, normalizes the content it finds, and ouputs
line feeds after each one.

7. The stylesheet finishes by reading the closing element, and then closing all opened elements.

Try using the stylesheet:

1. Open a command prompt and change directories to the getting-started directory.

2. Transform the document: xsltproc ala2txt.xsl ala.xml .

Transforming XML with XSLT

35

Exercise - XML to text, redux
In this exercise you will learn how to make XSLT file a bit more modular and less like CSS files.

Many of the elements of the file ala.xml where intended to be processed similarly. Computer program-
mers don't like to do the same thing over and over again. The want to code it once and leave it at that.

Note the following stylesheet:

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<!-- plain ol' text; get rid of some white space -->
<xsl:output method='text'/>
<xsl:strip-space elements='*'/>

<!-- let's get started -->
<xsl:template match="/letter">

<!-- add a line-feed for formatting's sake -->
<xsl:text>
</xsl:text>

<!-- do the work -->
<xsl:apply-templates/>

</xsl:template>

<!-- trap all the various elements -->
<xsl:template match='date | address_two | greeting | paragraph | closing'>
<xsl:value-of select='normalize-space(.)'/>
<xsl:text>

</xsl:text>

</xsl:template>

<xsl:template match='name | address_one'>
<xsl:value-of select='normalize-space(.)'/>
<xsl:text>
</xsl:text>

</xsl:template>

<xsl:template match='list'>
<xsl:apply-templates/>
<xsl:text>
</xsl:text>

</xsl:template>

<xsl:template match='item'>

<!-- insert a tab, an asterisk, and a space for formatting -->
<xsl:text>	* </xsl:text>
<xsl:value-of select='normalize-space(.)'/>
<xsl:text>
</xsl:text>

</xsl:template>

</xsl:stylesheet>

It works very much like the previous examples but with a number of exceptions:

Transforming XML with XSLT

36

1. The use of the strip-space eliminates extraneous spaces within elements

2. The use of apply-templatges is very important. When this element is encountered the XSLT pro-
cessor transverses the XML input for elements. When it finds them the processor looks for a match-
ing template containing the current element. If it finds a matching template, then processing is done
within the template element. Otherwise the element's content is output.

3. Notice how the date, address_two, greeting, paragraph, and closing elements are all processed the
same.

4. Notice how the name and adress_one elements are processed the same

5. The list and item elements are a bit tricky. The list element is first trapped and then the item ele-
ment is rendered. Processing then returns to the template for list elements and a simple line feed is
output

Transform letter.xml with letter2text.xsl:

1. Open a command prompt to the getting-started directory of the workbook's CD.

2. Transform letter.xml: xsltproc letter2txt.xsl letter.xml .

Exercise - Transform an XML document into
XHTML

Below is our first XSLT/XHTML example. Designed to be applied against the file named letter.xml, it
will output a valid XHTML file. You can see this in action by using an XSLT processor named xsltproc.
Assuming all the necessary files exist in the same directory, the xstlproc command is xsltproc -o let-
ter.html letter2html.xsl letter.xml .

<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<!-- letter2html.xsl; an XSL file -->

<!-- define the output as an XML file, specficially, an XHTML file -->
<xsl:output
method="xml"
omit-xml-declaration="no"
indent="yes"
doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"
doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" />

<!-- start at the root of the file, letter -->
<xsl:template match="letter">

<!-- output an XHTML root element -->
<html>

<!-- open the XHTML's head element -->
<head>

<!-- output a title element with the addressee's name -->

Transforming XML with XSLT

37

<title><xsl:value-of select="addressee/name"/></title>

<!-- close the head element -->
</head>

<!-- open the body tag and give it some style -->
<body style="margin: 5%">

<!-- find various templates in the XSLT file with their
associated values -->

<xsl:apply-templates select="date"/>
<xsl:apply-templates select="addressee"/>
<xsl:apply-templates select="greeting"/>
<xsl:apply-templates select="paragraph | list" />
<xsl:apply-templates select="closing"/>

<!-- close the body tag -->
</body>

<!-- close the XHTML file -->
</html>

</xsl:template>

<!-- date -->
<xsl:template match="date">

<!-- output a paragraph tag and the content of the current
node, date -->

<p><xsl:apply-templates/></p>

</xsl:template>

<!-- addressee -->
<xsl:template match="addressee">

<!-- open a paragraph -->
<p>

<!-- output the content of letter.xml's name, address_one,
and address_two elements, as well a couple br tags -->

<xsl:value-of select="name"/>

<xsl:value-of select="address_one"/>

<xsl:value-of select="address_two"/>

<!-- close the paragraph -->
</p>

</xsl:template>

<!-- each of the following templates operate exactly like the
date template -->

<!-- greeting -->
<xsl:template match="greeting">
<p>
<xsl:apply-templates/>
</p>
</xsl:template>

<!-- paragraph -->
<xsl:template match="paragraph">
<p style="text-indent: 1em">
<xsl:apply-templates/>

Transforming XML with XSLT

38

</p>
</xsl:template>

<!-- closing -->
<xsl:template match="closing">
<p style="margin-top: 3em; text-align: right">
<xsl:apply-templates/>
</p>
</xsl:template>

<!-- italics -->
<xsl:template match='italics'>
<i>
<xsl:apply-templates/>
</i>
</xsl:template>

<!-- list -->
<xsl:template match='list'>

<xsl:apply-templates/>

</xsl:template>

<!-- item -->
<xsl:template match='item'>

<xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

The end result should look something like this:

Transforming XML with XSLT

39

Admittedly, the example above looks rather complicated and truthfully functions exactly like our CSS
files. At the same time, displaying the letter.xml file with CSS requires a modern browser. If the let-
ter2html.xsl file were incorporated into a Web server, then Web browser's would not need to understand
CSS. Given the example above, there is not a compelling reason to use XSLT, yet.

Yet another example
Here is yet another example of transforming an XML document into an HTML document. The XSLT
file below is intended to convert a CIMI Schema document (an XML vocabulary used to describe ob-
jects in museum collections) into an HTML file. Once processed, this XSLT file will:

1. output an HTML declaration

2. find the root of the CIMI Schema document

3. output the beginnings of an HTML document

4. loop through all the object elements of the CIMI Schema document outputing an unordered list of
hypertext links pointing to a set of images

5. output the end of an HTML document

<?xml version="1.0"?>

Transforming XML with XSLT

40

<!-- cimi2html.xsl - convert a CIMI Schema document into a rudimentary HTML file -->
<!-- Eric Lease Morgan (emorgan@nd.edu) - October 20, 2003 -->

<!-- lots o' credit goes to Stephen Yearl of Yale who helped with XSL weirdness! -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:c="http://www.cimi.org/wg/xml_spectrum/Schema-v1.5"
version="1.0">

<!-- output an HTML header -->
<xsl:output method='html'
doctype-public='-//W3C//DTD XHTML 1.0 Transitional//EN'
doctype-system='http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd'
indent='no' />

<!-- find the root of the input -->
<xsl:template match="/">

<!-- start the XHTML output -->
<html>
<body>
<h1>Water Collection</h1>

<!-- find all the Schemas object -->
<xsl:apply-templates />

</body>
</html>
</xsl:template>

<!-- trap the objects of the file -->
<xsl:template match="//c:object">

<!-- extract the parts of the object we desire and format them -->

<a>
<xsl:attribute name='href'>
<xsl:value-of select='./c:reproduction/c:location' />
</xsl:attribute>
<xsl:value-of select='./c:identification/c:object-title/c:title' />
 -
<xsl:value-of select='./c:identification/c:comments' />
(Collected by
<xsl:value-of select='./c:acquisition/c:source/c:source/c:person/c:name/c:forename' />
<xsl:value-of select='./c:acquisition/c:source/c:source/c:person/c:name/c:surname' />
on
<xsl:value-of select='./c:acquisition/c:accession-date/c:year' />
-
<xsl:value-of select='./c:acquisition/c:accession-date/c:month' />
-
<xsl:value-of select='./c:acquisition/c:accession-date/c:day' />
.)

</xsl:template>

</xsl:stylesheet>

Transforming XML with XSLT

41

Exercise - Transform an XML document with an
XSLT stylesheet

In this exercise you will transform an XML document using XSLT.

1. Create a directory on your computer's desktop.

2. Copy all the *.dll files from the CD to your newly created directory.

3. Copy all the *.exe files from the CD to your newly created directory.

4. Copy cimi2html.xsl and water.xml from the CD to your newly created directory.

5. Open a new terminal window by running cmd.exe from the Start menu's Run command.

6. Change directories to your newly created directory.

7. Transform the XML document into an HTML document using this command: xsltproc -o wa-
ter.html cimi2html.xsl water.xml .

8. Open the newly created file named water.html in your Web browser.

9. In this part of the exercise you will change the content of the output.

10. Open cimi2html.xsl in your text editor.

11. Add a signature as a footer; insert <p> Brought to you by [yourname]. </p> after the element
of the XSLT file.

12. Process the XML again: xsltproc -o water.html cimi2html.xsl water.xml .

13. Open and/or reload the output, water.html, in your browser.

14. Go to Step #2 and make some other changes until you get tired.

Displaying tabular data
Here is an other example of an XSLT file used to render an XML file. This example renders our cata-
log.xml file. It too functions very much like a plain o' CSS file. You can transform it using xsltproc like
this: xsltproc -o catalog.html catalog2html.xsl catalog.xml .

<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<!-- catalog2html.xsl -->

<xsl:output
method="xml"
omit-xml-declaration="no"
indent="yes"
doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"
doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" />

Transforming XML with XSLT

42

<!-- catalog -->
<xsl:template match="catalog">
<html>
<head>
<title><xsl:value-of select="caption"/></title>
</head>
<body>
<table>
<xsl:apply-templates select="caption"/>
<xsl:apply-templates select="structure"/>
<xsl:apply-templates select="work"/>
</table>
</body>
</html>
</xsl:template>

<!-- caption -->
<xsl:template match="caption">
<caption style="text-align: center; margin-bottom: 1em">
<xsl:value-of select="."/>
</caption>
</xsl:template>

<!-- structure -->
<xsl:template match="structure">
<thead style="font-weight: bold">
<tr><xsl:apply-templates/></tr>
</thead>
</xsl:template>

<!-- work -->
<xsl:template match="work">
<tr><xsl:apply-templates/></tr>
</xsl:template>

<!-- title -->
<xsl:template match="title">
<td style="text-align: right; padding: 3px"><xsl:value-of select="."/></td>
</xsl:template>

<!-- author, type, or date -->
<xsl:template match="author | type | date">
<td><xsl:value-of select="."/></td>
</xsl:template>

</xsl:stylesheet>

Again, the end result should look something like this:

Transforming XML with XSLT

43

Manipulating XML data
CSS files, just like the XSLT files above, process the XML input from top to bottom. This technique
does not take advantage of the programmatic characteristics of XSLT. The next example does. First of
all, the next example takes input, namely a value to sort by. Second, this XSLT file takes advantage of a
few function calls such as count, sum and sort. Herein lies an important distinction between CSS and
XSLT. CSS is intended for display, only. XSLT can be used to display XML content. It can be used to
manipulate content as well.

In this example, calculations are done on our list of pets. First of all, a count of the number of pets is dis-
played as well as their average age. Second, the list of pets can be sorted by their name, age, type, or col-
or. To see this in action, try the following command: xsltproc -o pets.html --stringparam sortby age
pets2html.xsl pets.xml . Different output can be gotten by changing the sortby value to name, color, or
type. What happens if an invalid sortby value is passed to the XSLT file? What happens to the output if
no --stringparam values are passed? Why?

<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<!-- pets2html.xsl -->

<xsl:output
method="xml"
omit-xml-declaration="no"
indent="yes"
doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"
doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" />

<!-- get an input parameter and save it to the variable named
sortby; use name by default -->

<xsl:param name="sortby" select="'name'"/>

<!-- pets -->
<xsl:template match="pets">

<html>
<head>
<title>Pets</title>
</head>
<body style="margin: 5%">

Transforming XML with XSLT

44

<h1>Pets</h1>

<!-- use the count function to determine the number of pets -->
Total number of pets: <xsl:value-of select="count(pet)"/>

<!-- calculate the average age of the pets by using the sum
and count functions, as well as the div operator -->

Average age of pets: <xsl:value-of select="sum(pet/age) div count(pet)"/>

<p>Pets sorted by: <xsl:value-of select="$sortby"/></p>
<table>
<thead>
<tr>
<td style="text-align: right; font-weight: bold">Name</td>
<td style="text-align: right; font-weight: bold">Age</td>
<td style="font-weight: bold">Type</td>
<td style="font-weight: bold">Color</td>
</tr>
</thead>
<xsl:apply-templates select="pet">

<!-- sort the pets by a particular sub element ($sortby); tricky! -->
<xsl:sort select="*[name()=$sortby]"/>
</xsl:apply-templates>
</table>
</body>
</html>
</xsl:template>

<!-- pet -->
<xsl:template match="pet">
<tr><xsl:apply-templates/></tr>
</xsl:template>

<!-- name -->
<xsl:template match="name">
<td style="text-align: right"><xsl:value-of select="."/></td>
</xsl:template>

<!-- age -->
<xsl:template match="age">
<td style="text-align: right"><xsl:value-of select="."/></td>
</xsl:template>

<!-- type or color -->
<xsl:template match="type | color">
<td><xsl:value-of select="."/></td>
</xsl:template>

</xsl:stylesheet>

Here some same output:

Transforming XML with XSLT

45

Using XSLT to create other types of text files
This final example uses the pets.xml file, again. This time the XSLT file is used to create another type of
output, namely a very simple set of SQL statements. The point of this example is to illustrate how the
pets.xml file can be repurposed. Once for display, and once for storage. Use this command to see the
result: xsltproc -o pets.sql pets2sql.xsl pets.xml . What could you do to make the output prettier?

<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<!-- pets2sql.xsl -->

<!-- create plain o' text output -->
<xsl:output method="text" />

<!-- find each each pet -->
<xsl:template match="pets">

<!-- loop through each pet -->
<xsl:for-each select="pet">

<!-- output an SQL INSERT statement for the pet -->
INSERT INTO pets (name, age, type, color)
WITH VALUES ('<xsl:value-of select="name" />',
'<xsl:value-of select="age" />',
'<xsl:value-of select="type" />',
'<xsl:value-of select="color" />');

Transforming XML with XSLT

46

</xsl:for-each>

</xsl:template>
</xsl:stylesheet>

SQL created by the XSLT file above looks like this:

INSERT INTO pets (name, age, type, color) WITH VALUES ('Tilly', '14', 'cat', 'silver');
INSERT INTO pets (name, age, type, color) WITH VALUES ('Amanda', '10', 'dog', 'brown');
INSERT INTO pets (name, age, type, color) WITH VALUES ('Jack', '3', 'cat', 'black');
INSERT INTO pets (name, age, type, color) WITH VALUES ('Blake', '12', 'dog', 'blue');
INSERT INTO pets (name, age, type, color) WITH VALUES ('Loosey', '1', 'cat', 'brown');
INSERT INTO pets (name, age, type, color) WITH VALUES ('Stop', '5', 'pig', 'brown');

This file could then be feed to a relational database program that understands SQL and populate a table
with data.

This section barely scratched the surface of XSLT. It is an entire programming language unto itself and
much of the promise of XML lies in the exploitation of XSLT to generate various types of output be it
output for Web browsers, databases, or input for other computer programs.

Exercise - XML to XHTML
[INSERT letter2xhtml.xsl HERE]

Exercise - Displaying TEI files in your browser
In this exercise you will learn how to use your Web browser to transform and display XML data using
TEI files as examples. This exercise assumes you are using a rather modern browser such as a newer
version of Mozilla, Firefox, or Internet Explorer since these browsers have XSLT transformation capab-
ility built-in.

1. Open the XSLT stylesheet xslt/tei2html.xsl in your Web browser. Notice how it initializes a valid
XHTML DTD declaration as well as provides the framework for rich metadata in the head element.
Notice how the content of the body is created by searching the document for div1 tags to build a ta-
ble of contents. Finally, notice how the balance of the body's content is created by trapping a lim-
ited number of TEI elements and transforming them into HTML.

2. Open a TEI file, say xml-data/tei/machiavelli-prince-1081003648.xml in your Web browser. It
should display the raw XML data.

3. Open xml-data/tei/machiavelli-prince-1081003648.xml in your favorite text editor and make the
following text the second XML processing instruction in the file: <?xml-stylesheet type='text/xsl'
href='../../xslt/tei2html.xsl'?>. In other words insert the processing instruction before the beginning
of the DTD declaration. Save the edited file.

4. Open, again, xml-data/tei/machiavelli-prince-1081003648.xml in your Web browser. If all goes
well, then you should see nicely rendered text that is more human readable than the raw XML. This

Transforming XML with XSLT

47

happens because your Web browser read the XML file. Learned that it needed an XSLT file for
transformation. Retrieved the XSLT file. Combined the XSLT file with the raw XML, and dis-
played the results.

Exercise - Transform MODS into XHTML
MODS is an XML bibliographic vocabulary; it is very similar to MARC. In this exercise you will trans-
form a set of MODS data into individual XHTML files.

1. Open xml-data/mods/single/catalog.xml in your favorite text editor. Examine the element names
and take notice how they are similar to the fields of standard bibliographic data sets.

2. Open xslt/mods2xhtml.xsl in your favorite text editor or Web browser. Notice how the stylesheet
declaration imports a namespace called mods. Notice how the namespace prefixes all of the MODS
element names. Notice how the parameter named filename is assigned a value from the MODS re-
cord. Notice the use of xsl:document element/command. It is used to define where output files will
be saved. Finally, notice how the XSLT tries create rich and valid XHTML.

3. Open a command prompt and change to the root of the workbook's distribution.

4. Transform a set of MODS records into a set of XHTML files with the following command: xsltproc
xslt/mods2xhtml.xsl xml-data/mods/single/catalog.xml.

5. Lastly, open the folder/directory named xml-data/xhtml/mods2xhtml. You should see sets of
numbered files, and each file is a valid XHTML file containing bibliographic information from the
catalog.xml.

6. As an extra exercise, use xmllint to validate the structure and syntax of one or more of the XHTML
files.

Transforming XML with XSLT

48

Part III. Specific XML vocabularies

Table of Contents
7. XHTML .. 51

Introduction ... 51
Exercise - Writing an XHTML document .. 54
Exercise - Convert MARC to XHTML .. 55
Exercise - Tranform MARCXML-like (SFX) to XHTML 55

8. MARCXML ... 56
About MARCXML ... 56
Exercise - Convert MARC to MARCXML ... 58
Exercise - Validating schema ... 58

9. MODS ... 59
About MODS ... 59
Exercise - Transform MARCXML to MODS ... 60
Exercise - Transform MARCXML to MODS, redux .. 60

10. EAD .. 62
Introduction ... 62
Example .. 63

11. CIMI XML Schema for SPECTRUM .. 67
Introduction ... 67
Exercise - Updating and validating an XML file with an XML schema 69

12. RDF .. 70
Introduction ... 70
Exercise .. 72
Exercise - Transform MARCXML to RDF ... 73

13. TEI ... 74
Introduction ... 74
A few elements ... 74
Exercise .. 77
Exercise - Transform TEI to HTML .. 78

14. DocBook .. 79
Introduction ... 79
Processing with XSLT ... 82
Exercise - Make this manual .. 84

l

Chapter 7. XHTML

Introduction
XHTML a pure XML implementation of HTML. Therefore the six rules of XML syntax apply: there is
one root element, element names are case-sensitive (lower-case), elements must be closed, elements
must be correctly nested, attributes must be quoted, and the special characters must be encoded as entit-
ies. There are a few XHTML DTDs ranging from a very strict version allowing no stylistic tags or tables
to a much more lenient version where such things are simply not encouraged. XHTML documents re-
quire a DOCTYPE declaration at the beginning of the file in order to specify what version of XHTML
follows. So, the following things apply:

• Your document must have one and only one html element.

• All elements are to be lower-case

• Empty elements such as hr and br must be closed as in <hr /> and

• Attributes must be quoted as in

• You can not improperly next elements

• The <, >, and & characters must be encoded as entities

XHTML has four of "common" attributes, attributes common to any XHTML element. These attributes
are:

1. id - used to identify a unique location in a file

2. title - used to give a human-readable label to an element

3. style - a place older for CSS style information

4. class - used to give an element label usually used for CSS purposes

51

By liberally using these common attributes and assigning them meaningful values it is possible to com-
pletely separate content from presentation and at the same time create accessible documents, documents
that should be readable by all types of people as well as computers.

Stylistic elements are discouraged in an effort to further separate content from presentation. When styl-
izing is necessary you are encouraged to make liberal use of CSS. Your CSS specification can reside in
either an external file, embedded in the head of the XHTML document, or specified within each
XHTML element using the style attribute.

Tables are a part of XHTML, and they are intended to be used to display tabular data. Using tables for
layout is discouraged. Instead, by using the div and span element, in combination with CSS file, blocks
of text within XHTML documents can be positioned on the screen.

Below is a simple XHTML file and CSS file representing a home page. Graphic design is handled by the
CSS file, and even when the CSS file is not used the display is not really that bad.

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>A simple home page</title>
<link rel="stylesheet" href="home.css" type="text/css" />
</head>
<body>
<div class="menu">
<h3 class="label">Links</h3>
<a href="http://infomotions.com/travel/" title="Travel
logs">Travel logs

<a href="http://infomotions.com/musings/" title="Musings on
Information">Musings on Information

<a href="http://infomotions.com/" title="Infomotions home
page">About us

</div>
<div class="content">
<h1>A simple home page</h1>
<p>

This is a simple home page illustrating the use of
XHTMLversion 1.0.

</p>
<p>

<img src="water.jpg" alt="Atlantic Ocean" width="120"
height="160" align="right" hspace="5" vspace="3" />XHTML is
not a whole lot different from HTML. It includes all of the
usual tags such as the anchor tag for hypertext references
(links) and images. Tables are still a part of the
specification, but they are not necessarily intended for
formatting purposes.

</p>
<p>

The transition from HTML to XHTML is simple as long as you
keep in mind a number of things. First, make sure you take
into account the six rules for XML syntax. Second, shy away
from using stylistic tags (elements) such as bold, italics,
and especially font. Third, make liberal use of the div and
span elements. When used in conjunction with CSS files, you
will be able to easily position and format entire blocks of

XHTML

52

text on the screen.
</p>
<hr />
<p class="footer">

Author: Eric Lease Morgan <eric_morgan@
infomotions.com>

Date: 2003-01-19

URL: ./home.html

</p>

</div>
</body>
</html>

h1, h2, h3, h4, h5, h6 {
font-family: helvetica, sans-serif;

}

p {
font-family: times, serif;
font-size: large;
}

p.footer {
font-size: small;
}

div.menu {
position: absolute;
margin-right: 82%;
text-align: right;
font-size: small;
}

div.content {
position: absolute;
margin-left: 22%;
margin-right: 3%;;
}

a:hover {
color: red;
background-color: yellow;
}

Rendering these files in your CSS-aware Web browers should display something ike this:

XHTML

53

Exercise - Writing an XHTML document
In this exercise you will experiment marking up a document using a standard DTD, specifically,
XHTML.

1. Mark up ala.txt as an XHTML document.

A. Open ala.txt in NotePad.

B. Save the file as ala.html.

C. Add the XML declaration to the top of file file, <?xml version="1.0"?>.

D. Add the document type declaration, <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

E. Add the opening and closing html elements (i.e. <html>).

F. Add an opening and closing head and body sections (i.e. <head>, <body>).

G. Add a title element to the head section (i.e. <title>).

H. Add a link element pointing to the location where your CSS file will be (i.e. <link
rel="stylesheet" href="ala.css" type="text/css" />).

I. Using only the p and br elements, mark up the body of the letter making sure to properly open
and close each element (i.e. <p> ,
).

J. Save your file, again, and view it in your Web browser.

XHTML

54

K. Create a new empty file in NotePad, and save it as ala.css.

L. Add only two selectors to the CSS file, each for a different implementation of the p element
(i.e. p { font-family: times, serif; font-size: large } and p.salutation { text-align: right }).

M. Add the common attribute "class" to the last paragraph of your letter giving it a value of sa-
lutation (i.e. <p class="salutation">).

N. Save your file, again, and view it in your Web browser.

Exercise - Convert MARC to XHTML
As you know, MARC is a data structure/file format used to bibliographically describe the many things
in libraries. It is also the format used to record authority information as well as holdings. In this exercise
you will convert MARC data into a rudimentary XHTML file format.

1. Using your text editor, open the file named marc/single/catalog.marc. Notice the standard format
for MARC. Very compact. Very efficient in terms of disc space. Designed for sequencial read ac-
cess from tape drives. Not very human readable. For example, what is the title of the first record?

2. Install Perl. (This process is more completely described in a later section of the workbook. Altern-
atively, you may be able to simply copy the Perl directory from the CD to the C drive of your Win-
dows computer.)

3. Install MARC::Record. MARC::Record is the Perl module to use when reading and writing MARC
data. If you are using Unix, then you should be able to sudo cpan and then install MARC::Record at
the cpan prompt. Under Windows you can use ppm and then enter install MARC::Record.

4. Open the file named bin/marc2xhtml.pl in your text editor. Notice how it includes the necessary
Perl modules, reads the command line input, initializes a constant, and finally loops through each
MARC record from the input in order to output XHTML files. It does this by selectively reading
data from each record and stuffing the resulting values into meta elments of the XHTML file's
head.

5. Open a command prompt and change directories to the workbook's root.

6. Convert some MARC records by issuing this command: perl bin/marc2xhtml.pl /get-
ting-started/marc/single/catalog.marc /getting-started/xhtml/marc2xhtml/. Be forewarned. You
must enter full and complete paths as input. Otherwise the script will get confused.

When done, you should see sets of XHTML files in the output directory. Open one or more using your
Web browser. As an extra exercise, use xmllint to validate selected files from the output.

Exercise - Tranform MARCXML-like (SFX) to
XHTML

[INSERT sfx2html.xsl HERE]

XHTML

55

Chapter 8. MARCXML
About MARCXML

MARCXML is vocabulary supporting a "roundtrip" conversion of MARC data to XML. MARCXML
has a place for each and every MARC bibliograhic field, indicator, subfield, and well as the MARC
leader. It is entirely possible to convert a MARC record (or file of MARC records) into a MARCXML
file (or file of MARCXML records). Similarly, it is entirely possible to go from a MARCXML file to a
MARC file. In neither case will any data be lost in translation. Thus, it is supports "roundtrip" conver-
sions.

Below is a MARC record describing a book. Hard carriage returns have been added for display pur-
poses:

00707cam 22002411
450000100080000000500170000800800410002503500210006690600450008701000170
013203500180014904000270016705000150019410000270020924500210023626000510
025730000110030850400300031965100210034998500210037099100430039109900310
0434 6459314 19980421192420.0 721031s1944 nyu b 000 0 eng
9(DLC) 44008235 a7 bcbc coclcrpl du encip f19 gy-gencatlg a
44008235 a(OCoLC)480984 aDLC cODaWU dOCoLC dDLC 00 aF1226 b.S8 1
aStrode, Hudson, d1893- 10 aTimeless Mexico. aNew York, bHarcourt,
Brace and company c[1944] a436 p. aBibliography: p. 425-430.
0 aMexico xHistory. eOCLC REPLACEMENT bc-GenColl hF1226 i.S8 tCopy
1 wOCLCREP astrode-timeless-1071960935

Here is exactly the same data represented as MARCXML:

<?xml version="1.0" encoding="UTF-8"?>
<collection xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.loc.gov/MARC21/slim
http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd"

xmlns="http://www.loc.gov/MARC21/slim">
<record>
<leader>00707cam 22002411 4500</leader>
<controlfield tag="001">6459314</controlfield>
<controlfield tag="005">19980421192420.0</controlfield>
<controlfield tag="008">721031s1944 nyu b 000 0 eng </controlfield>
<datafield tag="035" ind1=" " ind2=" ">
<subfield code="9">(DLC) 44008235</subfield>

</datafield>
<datafield tag="906" ind1=" " ind2=" ">
<subfield code="a">7</subfield>
<subfield code="b">cbc</subfield>
<subfield code="c">oclcrpl</subfield>
<subfield code="d">u</subfield>
<subfield code="e">ncip</subfield>
<subfield code="f">19</subfield>
<subfield code="g">y-gencatlg</subfield>

</datafield>
<datafield tag="010" ind1=" " ind2=" ">
<subfield code="a"> 44008235 </subfield>

</datafield>

56

<datafield tag="035" ind1=" " ind2=" ">
<subfield code="a">(OCoLC)480984</subfield>

</datafield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">DLC</subfield>
<subfield code="c">ODaWU</subfield>
<subfield code="d">OCoLC</subfield>
<subfield code="d">DLC</subfield>

</datafield>
<datafield tag="050" ind1="0" ind2="0">
<subfield code="a">F1226</subfield>
<subfield code="b">.S8</subfield>

</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="a">Strode, Hudson,</subfield>
<subfield code="d">1893-</subfield>

</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Timeless Mexico.</subfield>

</datafield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="a">New York,</subfield>
<subfield code="b">Harcourt, Brace and company</subfield>
<subfield code="c">[1944]</subfield>

</datafield>
<datafield tag="300" ind1=" " ind2=" ">
<subfield code="a">436 p.</subfield>

</datafield>
<datafield tag="504" ind1=" " ind2=" ">
<subfield code="a">Bibliography: p. 425-430.</subfield>

</datafield>
<datafield tag="651" ind1=" " ind2="0">
<subfield code="a">Mexico</subfield>
<subfield code="x">History.</subfield>

</datafield>
<datafield tag="985" ind1=" " ind2=" ">
<subfield code="e">OCLC REPLACEMENT</subfield>

</datafield>
<datafield tag="991" ind1=" " ind2=" ">
<subfield code="b">c-GenColl</subfield>
<subfield code="h">F1226</subfield>
<subfield code="i">.S8</subfield>
<subfield code="t">Copy 1</subfield>
<subfield code="w">OCLCREP</subfield>

</datafield>
<datafield tag="099" ind1=" " ind2=" ">
<subfield code="a">strode-timeless-1071960935</subfield>

</datafield>
</record>

</collection>

Yes, the MARC record is much more compact, and the MARCXML file is much more verbose. On the
other hand, the MARCXML file is much easier to read by humans as well as computers. To prove the
point, look at the MARC record and ask yourself, "What is the title of this book?". Now ask the same
question of the MARCXML file. Hmmm...

More importantly, there are many more tools enabling the manipulation of XML data structures than
MARC data structures. Despite the fact that MARC was born in the mid-1960's, there is an overwhelm-
ing desire by information professionals to repurpose XML data as opposed to MARC data. This is why
"MARC must die". It is a data structure that has outlived its usefulness. The information contained in a

MARCXML

57

MARC records is extraordinarily valuable, but the way the encoding scheme, while academically inter-
esting, is archane.

Exercise - Convert MARC to MARCXML
In this exercise you will convert a MARC data file into a single MARCXML file.

1. Install MARC::File::XML. Using Windows you can use ppm and then install MARC::File::XML.
Using Unix you can sudo cpan and then install MARC::File::XML at the cpan prompt.

2. After installation a file named marc2xml will be installed in your path, but it is provided in the bin
directory for ease-of-use. Open bin/marc2xml.pl in your editor and notice how short the code is.

3. Open a command prompt and change directories to the workbook's root.

4. Enter this command: perl bin/marc2xml.pl marc/single/catalog.marc | more . Notice how the
output is a stream of MARCXML data.

5. Enter the command again, but this time pipe the output to a file: perl bin/marc2xml.pl marc/
single/catalog.marc > xml-data/marcxml/single/catalog.xml . Open xml-
data/marcxml/single/catalog.xml in your Web browser or editor to verify that the process worked.
As an extra exercise, use xmllint to validate the output.

Exercise - Validating schema
In this exercise you will validate MARCXML data against a schema.

1. Open dtds/marcxml/MARC21slim.xsd in your text editor or Web browser. This file is schema. Its
purpose is to define the shape and structure of XML documents in the same way DTDs define
shape and structure. Schema files are XML files which make them easier to work with than DTDs.
They also provide the means for more granular element and attribute definitions. For example, an
data can be specified to be in a YYYY-MM-DD format. DTDs do not offer this sort of flexibility.
MARC21slim.xsd is used to define the shape of MARCXML files.

2. Open a comand prompt and change to the root of the workshop's directory.

3. Validate the file you created in the previous exercise with this command: xmllint --noout --schema
dtds/marcxml/MARC21slim.xsd xml-data/marcxml/single/catalog.xml . The result should be
"xml-data/marcxml/single/catalog.xml validates".

Based on the author's experience, xmllint's support of schema is not nearly as strong as its support for
DTDs. Using xmllint to validate other XML files using schema produces unusual results. Your mileage
will vary.

MARCXML

58

Chapter 9. MODS
About MODS

"MODS" in an acronym for Metadata Object Description Schema. It is a bibliographic schema with lib-
rary applications in mind. Its elements are a subset of MARC 21 (and therefore MARCXML). It is de-
signed to be more human-friendly than MARC 21 relying on language-based element names as opposed
to numeric codes. Instead of denoting a title the code 245 in MARC/MARCXML it is called "title" in
MODS. In short, it is a schema designed to build on the good work of MARC and traditional cataloging,
and at the same time it is designed to meet the needs of today's environment. Below is a MODS repres-
entation of the MARC/MARCXML data from the previous chapter.

<mods xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.loc.gov/mods/v3" version="3.0"
xsi:schemaLocation="http://www.loc.gov/mods/v3
http://www.loc.gov/standards/mods/v3/mods-3-0.xsd">

<titleInfo>
<title>Timeless Mexico</title>

</titleInfo>
<name type="personal">
<namePart xmlns:xlink="http://www.w3.org/1999/xlink">Strode, Hudson</namePart>
<namePart type="date">1893-</namePart>
<role>
<roleTerm authority="marcrelator" type="text">creator</roleTerm>

</role>
</name>
<typeOfResource xmlns:xlink="http://www.w3.org/1999/xlink">text</typeOfResource>
<genre authority="marc">bibliography</genre>
<originInfo xmlns:xlink="http://www.w3.org/1999/xlink">
<place>
<placeTerm type="code" authority="marccountry">nyu</placeTerm>

</place>
<place>
<placeTerm type="text">New York</placeTerm>

</place>
<publisher>Harcourt, Brace and company</publisher>
<dateIssued>[1944]</dateIssued>
<dateIssued encoding="marc">1944</dateIssued>
<issuance>monographic</issuance>

</originInfo>
<language>
<languageTerm authority="iso639-2b" type="code">eng</languageTerm>

</language>
<physicalDescription>
<form authority="marcform">print</form>
<extent>436 p.</extent>

</physicalDescription>
<note>Bibliography: p. 425-430.</note>
<subject xmlns:xlink="http://www.w3.org/1999/xlink" authority="lcsh">
<geographic>Mexico</geographic>
<topic>History</topic>

</subject>
<classification authority="lcc">F1226 .S8</classification>
<identifier type="lccn">44008235</identifier>
<recordInfo xmlns:xlink="http://www.w3.org/1999/xlink">
<recordContentSource authority="marcorg">DLC</recordContentSource>
<recordCreationDate encoding="marc">721031</recordCreationDate>
<recordChangeDate encoding="iso8601">19980421192420.0</recordChangeDate>

59

<recordIdentifier>6459314</recordIdentifier>
</recordInfo>

</mods>

Exercise - Transform MARCXML to MODS
In this exercise you will transform a MARCXML file into a MODS file.

1. Open xslt/MARC21slim2MODS3.xsl in your text editor or Web browse. This file is available at the
Library of Congress's MARCXML website, and probably the longest and most complicated XSLT
stylesheet in the workbook.

2. Open a command prompt and change directories to the workbook's root.

3. Transform a MARCXML file into a MODS file using this command: xsltproc xslt/
MARC21slim2MODS3.xsl xml-data/marcxml/single/catalog.xml . The result should be streams
of XML.

4. Transform the data again, but this time save it to a file: xsltproc xslt/MARC21slim2MODS3.xsl
xml-data/marcxml/single/catalog.xml > xml-data/mods/single/catalog.xml . The advantage of
this file, just like the advantage of MARC files and MARCXML files, is all your data is on a single
file. As such it is easy to transport from computer to computer.

Exercise - Transform MARCXML to MODS, re-
dux

In this exercise you will transform a single MARCXML file containing many MARCXML records into
a set of many individual MODS files. You will find these individual files easier to index.

1. In your text editor, open xslt/marcxml2mods.xsl. This is an altered version of the stylesheet used in
the previous exercise. It has been altered in such a way to loop through records in a MARCXML
file and save them as individual files. This is done through the xsl:for-each, xsl:param, and
xsl:document elements/commands. Notice the hard-coded href attribute of the xsl:document ele-
ment:

<xsl:for-each select="marc:collection/marc:record">
<xsl:param name="filename" select='marc:datafield[@tag="099"]/marc:subfield[@code="a"]' />
<xsl:document method="html" href='xml-data/mods/many/{$filename}.xml'>
<mods version="3.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.loc.gov/mods/v3
http://www.loc.gov/standards/mods/v3/mods-3-0.xsd">

<xsl:call-template name="marcRecord"/>
</mods>

</xsl:document>
</xsl:for-each>

MODS

60

2. Open up a command prompt, and change directories to the workbook's root directory.

3. Transform MARCXML data into sets of MODS files: xsltproc xslt/marcxml2mods.xsl xml-
data/marcxml/single/catalog.xml .

4. Open up the directory xml-data/mods/many/ and browse its contents. You should see sets of
MODS files. These files will be fodder for later exercises.

MODS

61

Chapter 10. EAD

Introduction
EAD stands for Encoded Archival Description, and it is an SGML/XML vocabulary used to markup
archival finding aids. Like TEI it has its roots deep in SGML, and like TEI has only recently become
XML compliant.

As you may or may not know, finding aids are formal descriptions of things usually found in institution-
al archives. These things are not limited to manuscripts, notes, letters, and published and published
works of individuals or groups but increasingly include computer programs and data, film, video, sound
recordings, and realia. Because of the volume of individual materials in these archives, items in the
archives are usually not described individually but as collections. Furthermore, items are usually not or-
ganized by subject but more likely by date since the chronological order things were created embodies
the development of the collections' ideas. Because of these characteristics, items in archives are usually
not described using MARC and increasingly described using EAD.

According to the EAD DTD, there are only a few elements necessary to create a valid EAD document,
but creating an EAD document with just these elements would not constitute a very good finding aid.
Consequently, the EAD Application Guidelines suggest the following elements:

• ead - the root of an EAD document

• eadheader - a container for meta data about the EAD document

• eadid - a unique code for the EAD document

• filedesc - a container for the bibliographic description of the EAD document

• titlestmt - a container for things like author and title of the EAD document

• titleproper - the title of the EAD document

• author - the names of individuals or group who created the EAD document

• publicationstmt - a container for publication information

• publisher - the name of the party distributing the EAD document

62

• date - a date

• profiledecs - a container bundling information about the EAD encoding procedure

• creation - a place to put the names of persons or places about the EAD encoding procedure

• langusage - a list of the languages represented in the EAD document

• language - an element denoting a specific language

• archdesc - a container for the bulk of an EAD finding aid; the place were an archival item is de-
scribed

• did - a container for an individual descriptive unit

• repository - the institution or agency responsible for providing the intellectual access to the material

• corpname - a name identify a corporate identity

• origination - the name of a person or group responsible for the assembly of the materials in the col-
lection

• persname - a personal name

• famname - a family name

• unittitle - a title of described materials

• unitdate - the creation year, month, and day of the described materials

• physdesc - a container for describing the physical characteristics of a collection

• unitid - a unique reference number -- control number -- for the described material

• abstract - a narrative summary describing the materials

• bioghist - a concise history or chronology placing the materials in context

• scopecontent - a summary describing the range of topic covered in the materials

• controlaccess - a container used to denote controlled vocabulary terms in other collections or indexes

• dsc - a container bundling hierarchical groups of other sub-items in the collection

• c - a container describing logical section of the described material

• container - usually an integer used in conjunction with a number of attributes denoting the physical
extent of the described materials

Whew!

Example
Here is an EAD file. Can you figure out what it is?

<ead>

EAD

63

<eadheader>
<eadid>
ELM001
</eadid>
<filedesc>
<titlestmt>
<titleproper>
The Eric Lease Morgan Collection
</titleproper>
<author>
Created by Eric Lease Morgan
</author>
</titlestmt>
<publicationstmt>
<publisher>
Infomotions, Inc.
</publisher>
<date>
20030218
</date>
</publicationstmt>
<profiledesc>
<creation>
This file was created using a plain text editor.
</creation>
<langusage>
This file contains only one language,
<language>
English
</language>
.
</langusage>
</profiledesc>
</filedesc>
</eadheader>
<archdesc level='otherlevel'>
<did>
<repository>
<corpname>
Infomotions, Inc.
</corpname>
</repository>
<origination>
<persname>
Eric Lease Morgan
</persname>
</origination>
<unittitle>
Papers
</unittitle>
<unitdate>
1980-2001
</unitdate>
<physdesc>
A collection of four boxes of mostly 8.5 x 11 inch pieces of
paper kept in my garage.
</physdesc>
<unitid>
B0001
</unitid>
<abstract>
Over the years I have kept various things I have written.
This collection includes many of those papers. I'm sure they
will add the body of knowledge when I'm gone.

EAD

64

</abstract>
</did>
<biohist>
<p>
Eric was born in Lancaster, PA. He went to college in
Bethany, WV. He lived in Charlotte and Raleigh, NC for
fifteen years. He now lives in South Bend, IN.
</p>
</biohist>
<scopecontent>
<p>
This collection consists of prepublished works, photographs,
drawings, and significant email messages kept over the years.
</p>
</scopecontent>
<controlaccess>
<p>
It is unlikely there are any controlled vocabulary terms in
other systems where similar materials can be located.
</p>
</controlaccess>
<dsc type='othertype'>
<c level='otherlevel'>
<did>
<container type='box'>
1
</container>
<unittitle>
Box 1
</unittitle>
<unitdate>
1980-1984
</unitdate>
</did>
<did>
<container type='box'>
1
</container>
<unittitle>
Box 2
</unittitle>
<unitdate>
1985-1995
</unitdate>
</did>
<did>
<container type='box'>
1
</container>
<unittitle>
Box 3
</unittitle>
<unitdate>
1995-1998
</unitdate>
</did>
<did>
<container type='box'>
1
</container>
<unittitle>
Box 4
</unittitle>
<unitdate>

EAD

65

1999-2001
</unitdate>
</did>
</c>
</dsc>
</archdesc>
</ead>

EAD

66

Chapter 11. CIMI XML Schema for
SPECTRUM
Introduction

CIMI (formerly known as the Consortium for the Computer Interchange of Museum Information) is an
organization assisting the museum community build and adopt standards in an effort to improve the
sharing of data and information. To this end, CIMI undertook a study to explore and adapt an XML
schema called SPECTRUM from an organization called mda in the United Kingdom. The result is the
CIMI XML Schema for SPECTRUM. As described on the CIMI website:

The CIMI XML Schema will enable museums to encode rich descriptive information
relating to museum objects, including associated information about people, places and
events surrounding the history of museum objects, as well as information about their
management and use within museums. The CIMI XML Schema will be useful for mi-
grating data, the sharing of information between applications, and as an interchange
format of OAI (Open Archives Initiative) metadata harvesting.

The root element of a CIMI Schema file is the interchange element, and within the interchange element
are one or more record elements. Each record element is made up of a data element and a metadata ele-
ment, and the data elements are described with address, object, organisation, people, person, or place
elements. Consequently, a skeleton CIMI Schema document consisting of a single record might look
like this:

<interchange xmlns="http://www.cimi.org/wg/xml_spectrum/Schema-v1.5">
<record>
<data>
<address />
<object />
<organisation />
<people />
<person />
<place />
</data>
<metadata />
</record>
</interchange>

Through the liberal use of the remaining elements of the schema, museums ought to be able to track and
record characteristics of their collections, objects in their collections, and exhibits.

Just for fun, below is a valid CIMI XML Schema document breifly describing a collection of my own,
my water collection. (Yes, I collect water. In fact, I have about 150 waters from all over the world.)

<?xml version="1.0"?>
<interchange xmlns="http://www.cimi.org/wg/xml_spectrum/Schema-v1.5">
<record>
<data>

67

<object>
<acquisition>
<accession-date>
<day>04</day>
<month>04</month>
<year>2002</year>
</accession-date>
<source>
<source>
<person>
<name>
<forename>Eric</forename>
<initials>L.</initials>
<surname>Morgan</surname>
</name>
</person>
</source>
</source>
</acquisition>
<description>
<material>water and rocks in a blue glass bottle</material>
</description>
<identification>
<comments>This water was collected by my family and me when
we went to Wales and stayed in a castle.</comments>
<object-number>brides-bay</object-number>
<object-title>
<title>St. Bride's Bay at Newgale (Roch Castle), Wales</title>
</object-title>
</identification>
<reproduction>
<location>http://infomotions.com/gallery/water/Images/1.jpg</location>
<type>image/jpeg</type>
</reproduction>
</object>
</data>
<metadata/>
</record>
<record>
<data>
<object>
<acquisition>
<accession-date>
<day>02</day>
<month>06</month>
<year>2002</year>
</accession-date>
<source>
<source>
<person>
<name>
<forename>Eric</forename>
<initials>L.</initials>
<surname>Morgan</surname>
</name>
</person>
</source>
</source>
</acquisition>
<description>
<material>water and rocks in a plastic bottle</material>
</description>
<identification>
<comments>On our way out into the sea in Wales, I

CIMI XML Schema for SPECTRUM

68

collected this water.</comments>
<object-number>whitsands-bay</object-number>
<object-title>
<title>Whitesand Bay at St. David's, Wales</title>
</object-title>
</identification>
<reproduction>
<location>http://infomotions.com/gallery/water/Images/0.jpg</location>
<type>image/jpeg</type>
</reproduction>
</object>
</data>
<metadata/>
</record>
</interchange>

Exercise - Updating and validating an XML file
with an XML schema

In this exercise you will validate an XML file against an XML schema, and then you will edit the XML
document.

1. Create a new directory on your computer's desktop.

2. Copy all the *.dll files from the CD to your newly created directory.

3. Copy all the *.exe files from the CD to your newly created directory.

4. Copy all the *.xsd files from the CD to your newly created directory.

5. Save the file named water.xml to the newly created directory.

6. Open a new terminal window by running cmd.exe from the Start menu's Run command.

7. Validate water.xml using xmllint program: xmllint --schema schema-v1.5.xsd water.xml .

8. Open the water.xml in your text editor.

9. Copy the entire contents of one of the file's record elements.

10. Add an additional record to the XML file by pasting the contents of the clipboard after the last re-
cord element.

11. Change the values of the record's forename, initials, and surname.

12. Change the value of record's comments and object-number.

13. Validate your edits by running the xmllint program again.

14. If errors occur, then read the error messages and try to fix the problem(s). Otherwise, add some
more records to the file, read the XSD file and try to add some data to the metadata elements of wa-
ter.xml, or run the xmllint program without any command line options to learn more about what
xmllint can do.

CIMI XML Schema for SPECTRUM

69

Chapter 12. RDF

Introduction
The Resource Description Framework (RDF) is a proposal for consistently encoding metadata in an
XML syntax. The grand idea behind RDF is the creation of the Semantic Web. If everybody were to cre-
ate RDF describing their content, then computers would be able to find relationships between documents
that humans would not necessarily discover on their own. At first glance, the syntax will seem a bit
overwhelming, but it is not that difficult. Really.

RDF is very much like the idea of encoding meta data in the meta tags of HTML documents. Using the
HTML model, meta tags first define a name for the meta tag, say, title. Next, the content attribute of the
HTML meta tag is the value for the title, such as Gone With The Wind. For example, the following meta
tag may appear in an HTML document: <meta name="title" content="Gone With The Wind"/>. These
name/value pairs are intended to describe the HTML document where they are encoded. HTML docu-
ments have URL's. These three things, the name, the value, and the URL form what's called, in RDF
parlance, a triplet. RDF is all about creating these triplets; it is all about creating name/value pairs and
using them to describe the content at URLs.

It is not uncommon to take advantage of the Dublin Core in the creation of these name/value pairs in
RDF files. The Dublin Core provides a truly standard set of element names used to describe Internet re-
sources. The fifteen core element names are:

1. title

2. creator

3. subject

4. description

5. publisher

6. contributor

7. date

70

8. type

9. format

10. identifier

11. source

12. language

13. relation

14. coverage

15. rights

By incorporating an RDF document type declaration as well as the RDF and Dublin Core name spaces
into an XML document, it is possible to describe content residing at remote URLs in a standardized
way. The valid RDF file below describes three websites using a few Dublin Core elements for the name/
value pairs. Once you get past the document type declaration and namespace definitions, the only con-
fusing part of the file is the rdf:Bag element. This particular element is intended to include lists of simil-
ar items. In this case, a list of subject terms.

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF PUBLIC "-//DUBLIN CORE//DCMES DTD 2002/07/31//EN"
"http://dublincore.org/documents/2002/07/31/dcmes-xml/dcmes-xml-dtd.dtd">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description rdf:about="http://www.AcronymFinder.com/">
<dc:title>Acronym Finder</dc:title>
<dc:description>The Acronym Finder is a world wide
web (WWW) searchable database of more than 169,000
abbreviations and acronyms about computers,
technology, telecommunications, and military acronyms
and abbreviations.</dc:description>
<dc:subject>
<rdf:Bag>
<rdf:li>Astronomy</rdf:li>
<rdf:li>Literature</rdf:li>
<rdf:li>Mathematics</rdf:li>
<rdf:li>Music</rdf:li>
<rdf:li>Philosophy</rdf:li>
</rdf:Bag>
</dc:subject>
</rdf:Description>

<rdf:Description rdf:about="http://dewey.library.nd.edu/eresources/astronomy.html">
<dc:title>All Astronomy resources</dc:title>
<dc:description>This is a list of all the astronomy
resources in the system.</dc:description>
<dc:subject>
<rdf:Bag>
<rdf:li>Astronomy</rdf:li>
<rdf:li>Mathematics</rdf:li>
</rdf:Bag>
</dc:subject>
</rdf:Description>

RDF

71

<rdf:Description rdf:about="http://dewey.library.nd.edu/eresources/literature.html">
<dc:title>All Literature resources</dc:title>
<dc:description>This is a list of all the literature
resources in the system.</dc:description>
<dc:subject>
<rdf:Bag>
<rdf:li>Literature</rdf:li>
<rdf:li>Philosophy</rdf:li>
</rdf:Bag>
</dc:subject>
</rdf:Description>

</rdf:RDF>

RDF encodings are intended to be embedded in other XML files or exist as stand alone documents. For
example, RDF encodings could be embedded in the notesStmt element of TEI files and provide a stand-
ardized way to describe the files' content. Sets of TEI files could be read by computers and a catalog
could be created accordingly. Unfortunately this doesn't always work because things like the TEI DTD
don't support the addition of RDF data. Even though the TEI file might be syntactically valid, the se-
mantic described by the DTD does not take into account RDF. To include RDF data in HTML/XHTML
documents, it is suggested by the standard to include a link element in the HTML file's header pointing
to the RDF description, something like this: <link rel="meta" type="application/rdf+xml"
href="myfile.rdf" />. A computer program could then follow the href attribute in order to read the RDF
file.

Exercise

1. In this exercise you will expose the characteristics of Internet documents using RDF.

A. Open the file named rdf.xml in NotePad.

B. Select the entire contents of the file and copy it to the clipboard.

C. Point your Web browser to the RDF Validator [http://www.w3.org/RDF/Validator/] .

D. Paste the copied text into the textarea and submit the form.

E. Examine the resulting graph, and it should look something like this:

RDF

72

http://www.w3.org/RDF/Validator/

F. Using rdf.xml as a template, delete all but one of the rdf:Descriptions, and edit the remaining
rdf:Description to describe your library's home page.

G. Repeat Steps #2 through #5.

Exercise - Transform MARCXML to RDF
[INSERT MARC21slim2RDFDC.xsl HERE]

RDF

73

Chapter 13. TEI

Introduction
TEI, the Text Encoding Initiative, is a grand daddy of markup languages. Starting its life as SGML and
relatively recently becoming XML compliant, TEI is most often used by the humanities community to
mark up literary works such as poems and prose. Many times these communities digitally scan original
documents, convert the documents into text using optical character recognition techniques, correct the
errors, and mark up the resulting text in TEI. Ideally a scholar would have on hand an original copy of a
book or manuscript along side a digital version in TEI. Using these two things in combination the schol-
ar would be able to very thoroughly analyse the text and create new knowledge.

The TEI DTD is very rich and verbose. It contains elements for every literary figure (paragraphs, stanza,
chapters, footnotes, etc.). Since TEI documents are, for the most part, intended to replicate as closely as
possible original documents, the DTD contains markup to denote the location of things like page breaks
and line numbers in the original text. There is markup for cross references and hyperlinks. There is even
markup for editorial commentary, interpretation, and analysis. The DTD so verbose that some TEI ex-
perts suggest using only parts of the DTD. In practice, many institutions using the TEI DTD use what is
commonly called TEILite, a pared down version of the DTD containing the definitions of elements of
use to most people.

A few elements
Providing anything more than the briefest of TEI introductions is beyond the scope of this text. This sec-
tion outlines the most minimal of TEI elements and how TEI documents can be processed using XML
tools.

The simplest of TEI documents contains header (teiHeader) and text sections. The teiHeader section
contains a number of sub elements used to provide meta data about the document. The text section is
further divided into three more sections (front, body, and back). Here is a list of the major TEI elements
and brief descriptions of each:

• TEI.2 - the root element of a TEILite document

• teiHeader - a container for the meta data of a TEI document

74

• fileDesc - a mandatory sub element of teiHeader describing the TEI file

• titleStmt - a place holder for the author and title of a work

• title - the title of the document being encoded

• author - the author of the document being encoded

• publicationStmt - free text describing how the document is being published

• sourceDesc - a statement describing where the text was derived

• text - the element where the text of the document is stored

• front - denotes the front matter of a book or manuscript

• body - the meat of the matter, the book or manuscript itself

• back - the back matter of a book or manuscript

• date - a date

• p - a paragraph

• lg - a line group intended for things like poems

• l - a line in a line group

Using the elements above is it possible to create a perfectly valid, but rather brain-dead, TEI document,
such as the following:

<TEI.2>

<teiHeader>
<fileDesc>
<titleStmt>
<title>Getting Started with XML</title>
<author>Eric Lease Morgan</author>
</titleStmt>
<publicationStmt><p>Originally published in <date>March
2003</date> for an Infopeople workshop.</p></publicationStmt>
<sourceDesc><p>There was no original source; this document was
born digital.</p></sourceDesc>
</fileDesc>
</teiHeader>

<text>

<front></front>

<body>

<p>
Getting Started with XML is a workshop and manual providing an
overview of XML and how it can be applied in libraries. This
particular example illustrates how a TEI document can be
created. For example, since TEI is often used to markup poetry,
the following example is apropos:
</p>

TEI

75

<lg>
<l>There lives a young girl in Lancaster town,</l>
<l>Whose hair is a shiny pale green.</l>
<l>She lives at the bottom of Morgan's farm pond,</l>
<l>So she's really too hard to be seen.</l>

</lg>

</body>

<back></back>

</text>

</TEI.2>

TEI files have historically been created and then indexed/rendered with a set of middleware programs
such as XPAT. With the increasing availability of XML technologies such as CSS and XSLT, a number
of stylesheets have become available. The official TEI website offers links a few of these things, and the
XSLT stylesheets work quite well.

Assuming you were to save the TEI text above with the filename getting.xml, you would be able to cre-
ate a very nice XHTML document using the XSLT stylesheets and xstlproc like this: xsltproc tei-
stylesheets/teihtml.xsl tei-getting.xml .

Here some same output:

TEI

76

Be forewarned. The XSL stylesheet is configured in such a way to always save documents with the file
name index.html even if you specify the -o option. You will have to edit the file named teixsl-
html/teihtml-param.xsl to season your XHTML output to taste.

Exercise
In this exercise you will render a TEI file using CSS and XSLT.

1. Render a TEI file using CSS

A. Open the file named tei.xml in NoteTab.

B. Add the following XML processing instruction to the top of the file: <?xml-stylesheet
type='text/css' href='tei-dancer.css'?>

C. Save the file.

D. Open tei.xml in your Web browser. Enjoy.

E. Change the value of href in tei.xml's XML processing instruction to tei-oucs.css.

F. Save the file.

G. Open tei.xml in your Web browser. Again, enjoy.

TEI

77

2. Transform the TEI file into XHTML

A. Run the following command: xsltproc teixsl-html/teihtml.xsl tei.xml

B. Open the resulting index.html file in your Web browser. Interesting.

C. Edit the file named tei-stylesheets/teihtml-param.xsl and change the value of institution from
Oxford University Computing Services to your name.

D. Save teixsl-html/teihtml-param.xsl.

E. Repeat Steps #1 and #2. Cool!

Exercise - Transform TEI to HTML
In this exercise you will transform one or more TEI files into rudimentary HTML files.

1. Browse the contents of the xml-data/tei directory. There you will find sets of valid TEI files ulti-
mately destined for the author's Alex Catalogue of Electronic Texts.

2. Open the XSTL stylesheet at xslt/tei2html.xsl. It is a relatively uncomplicated stylesheet outputting
a standard HTML DTD declaration, a full head element, table of contents, and simply formatted
body elements. Probably the trickiest aspect of the stylesheet is the way it uses the TEI rend attrib-
ute to display HTML p elements.

3. Open up a command prompt and change to the root of the workshop's directory.

4. Transform Mark Twain's A Connecticut Yankee In King Arthurs Court using xsltproc: xsltproc -o
twain.html xslt/tei2html.xsl xml-data/tei/twain-connecticut-1081310767.xml .

5. The results should be a file named twain.html in the root of the workshop's directory. Open it in
your browser and then view the source.

TEI

78

Chapter 14. DocBook

Introduction
DocBook is a DTD designed for marking up computer-related documents. The DTD has been evolving
for more than a decade and its roots stem from the O'Reilly publishers, the publishers of many com-
puter-related manuals. Like XHTML and TEI, DocBook is intended to mark up narrative texts, but Doc-
Book includes a number of elements specific to its computer-related theme. Some of these elements in-
clude things like screenshot, programlisting, and command.

There are a wide range of basic documents types in DocBook. The most commonly used are book and
article. Book documents can contain things like a preface, chapters, and appendices. These things can be
further subdivided into sections containing paragraphs, lists, figures, examples, and program listings.
(This manual/workbook has been marked up as a DocBook book file.) Articles are very much like books
but don't contain chapters.

In order to create a valid DocBook file, the file must contain a document type declaration identifying the
version of DocBook being employed. Since the DocBook DTD is evolving, there are many different de-
clarations. Here is a declaration for an article using version 4.2 of the DTD:

<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd">

Here is a listing of some of the more commonly used elements in a DocBook article:

• article - the root element

• articleinfo - a container used to contain meta data about the article

• author - a container for creator information

• firstname - the first name of an author

79

• surname - the last name of an author

• email - an email address

• pubdate - the date when the article is/was published

• abstract - a narrative description of the article

• title - an element used often throughout the article and book types assigning headings to containers

• such as articles, books, sections, examples, figures, etc.

• section - a generic part of a book or article

• para - a paragraph

• command - used to denote a computer command, usually entered from at the command line

• figure - a container usually an image

• graphic - the place holder for an image

• ulink - a hypertext reference

• programlisting - a whole or part of a computer program

• orderedlist - a numbered for lettered list

• itemizedlist - a bulleted list

• listitem - an item in either an orderedlist or a itemized list

Using some of the tags above, the following example DocBook article was created.

<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd">

<article>
<articleinfo>
<author>
<firstname>
Eric

</firstname>
<surname>
Morgan

</surname>
</author>
<title>MyLibrary: A Database-Driven Website System for Libraries</title>
<pubdate>
February, 2003

</pubdate>
<abstract>
<para>
This article describes a database-driven website
application for libraries called MyLibrary.

</para>
</abstract>

</articleinfo>
<section>
<title>Introduction</title>

DocBook

80

<para>
This article describes a database-driven website
application for libraries called MyLibrary.

</para>
</section>
<section>
<title>More than a pretty face</title>
<para>
MyLibrary has its roots in a customizable interface to
collections of library information resources. As the
application has matured, it has become a system for
creating and managing a library's website by manifesting
the ideas of information architecture. Specifically, the
MyLibrary system provides the means for a library to create
things like:

</para>
<itemizedlist>
<listitem>
<para>
top down site maps

</para>
</listitem>
<listitem>
<para>
bottom-up site indexes

</para>
</listitem>
<listitem>
<para>
controlled vocabularies

</para>
</listitem>
<listitem>
<para>
a means for power searching

</para>
</listitem>
<listitem>
<para>
browsable lists of resources

</para>
</listitem>
<listitem>
<para>
optional, user-specified customizable interfaces

</para>
</listitem>

</itemizedlist>
<para>
From the command line you see if your MyLibrary installation
is working correctly by issuing the following command:
<command>
./mylibrary.pl

</command>
. The result should be a stream of HTML intended for a Web browser.

</para>
<para>
For more information about MyLibrary, see:
<ulink url="http://dewey.library.nd.edu/mylibrary/">
http://dewey.library.nd.edu/mylibrary/

</ulink>
.

</para>
</section>

DocBook

81

</article>

Processing with XSLT
One of the very nice things about DocBook is its support. There are various XSLT stylesheets available
for DocBook allowing you to use your favorite XSLT processor to transform your DocBook files into
things like XHTML, HTML, PDF, Unix man pages, Windows help files, or even PowerPoint-like slides.
For example, you could use a command like this to transform the above DocBook file into HTML: xslt-
proc -o docbook-article.html docbook-stylesheets/html/docbook.xsl docbook-article.xml . The res-
ult is an HTML file named docbook-article.html looking something like this in an Web browser.

DocBook

82

Alternatively, you can create PDF documents from the DocBook files by using something like FOP and
the appropriate XSLT stylesheet. For example, this command might create your PDF document: fop.sh -
xml docbook-article.xml -xsl /docbook/stylesheets/fo/docbook.xsl docbook-article.pdf . The result is
a PDF document looking something like this:

DocBook

83

While the look and feel of the resulting HTML and PDF documents may not be exactly what you want,
you can always created your own XSLT stylesheets using the ones provided by the DocBook com-
munity as a template.

Exercise - Make this manual
This workbook has been marked up using DocBook version 4.2. Given the workbook's raw source files,

DocBook

84

sets of XSLT stylesheets, xmllint, and xsltproc you can validate and recreate an XHTML version of the
text. Here's how:

1. Open handout/getting-started.xml in your text editor. Notice how the file is declared as a DocBook
version 4.2 document. Notice how each of the workbook's chapters are defined as entities.

2. Open a command prompt and change directories to the handout directory of the workbook's distri-
bution.

3. Validate the document: xmllint --noout --valid getting-started.xml . You should get no errors.

4. Change directories to xslt/docbook-xsl-1.65.1 and browse the contents of the xhtml subdirectory.
There you will find docbook.xsl, the root of the XSLT instructions for creating XHTML output.

5. Change directories back to the handbook directory.

6. Transform the raw DocBook files into XHTML: xsltproc -o getting-started.html
../xslt/docbook-xsl-1.65.1/xhtml/docbook.xsl getting-started.xml

7. The result should be a file named getting-started.html in the handbook directory. Open the file in
your Web browser.

If your system has make (or nmake on Windows) installed, then you should be able to "make" the vari-
ous versions of this work with simple commands such as: 1) make check , 2) make html , and 3) make
xhtml . If you have FOP installed (a processor for creating PDF documents from XML input), then you
could do make pdf and make all as well. These things are facilitated through the file called Makefile.
It's a whole lot easier to use make commands than typing long xsltproc commands.

DocBook

85

Part IV. LAMP

Table of Contents
15. XML and MySQL .. 88

About XML and MySQL .. 88
Exercise - Transform MODS to SQL .. 88
Getting XML output from MySQL ... 89

16. XML and Perl ... 93
A simple XSLT transformer .. 93
Batch processing ... 94
A bit about DOM and SAX ... 95

17. Indexing and searching XML with swish-e .. 98
About swish-e .. 98
Exercises ... 99
Indexing XHTML ... 99
Indexing other XML formats ... 102

18. Apache .. 104
About Apache .. 104
CGI interfaces to XML indexes ... 105
Simple XHTML files ... 105
Improving display of search results ... 106
Modern browsers and XML search results ... 108
Transforming raw XML on the fly .. 108

lxxxvii

Chapter 15. XML and MySQL
About XML and MySQL

MySQL is a relational database application, pure and simple. Billed as "The World's Most Popular Open
Source Database" MySQL certainly has a wide support in the Internet community. Many people think
MySQL can't be very good because it is free, especially Oracle database administrators. True, it does not
have all the features of Oracle, nor does it require a specially trained person to keep it up and running. A
part of the LAMP suite, MySQL compiles easily on a multitude of platforms. It comes as a pre-compiled
binary for Windows. It has been used to manage millions of records and gigabytes of data. Fast and ro-
bust, it supports the majority of people's relational database needs. With version 4.0 it supports proced-
ures and triggers, features long desired by people who wanted "a real relational database application".
For the purposes of this workbook, the simple XML functionality introduced in 4.0 is more important.

Installing and running a stand alone MySQL server on a Windows computer is relative easy:

1. download the distribution

2. unpack it into its own directory

3. run the Setup application using the default settings

4. open a command prompt

5. start the server (c:\mysql\bin\mysqld --standalone)

Installing MySQL on a Unix/Linux host is a bit more involved but pretty much follows the normal open
source distribution method:

1. download

2. unzip

3. untar

4. ./configure

5. make

6. sudo make install

7. set up the server's root password

8. initialize the server's necessary databases

Exercise - Transform MODS to SQL
In this exercise you will transform a file containing MODS records into an SQL file.

1. Open xml-data/mods/single/catalog.xml in your Web browser or text editor. Notice how it a set of
MODS records with human-readable element names denoting bibliograhic fields.

88

2. Open xslt/mods2sql.xsl in your Web browser or text editor. Notice how it outputs plain text. Notice
how it outputs SQL commands to create a database table called items. Notice how it loops through
each MODS record selectively extracting Dublin Core-like elements and putting them into SQL in-
sert statements.

3. Open a command prompt and change to the root of the workshop's distribution.

4. Use xsltproc to transform the MODS data into SQL and save it to a file: xsltproc xslt/mod2sql.xsl
xml-data/mods/single/catalog/catalog.xml > sql/catalog/catalog.sql .

5. When xsltproc is finished, open sql/catalog/catalog.sql to see the fruits of your labors. You should
see oodles of SQL insert statements.

Getting XML output from MySQL
Given some input you will be able to extract data in a rudimentary XML flavor. Begin by creating a new
database called catalog using the mysqladmin command: mysqladmin -p root create catalog .

Using data created from the previous exercise you should now be able to fill this new database with con-
tent using the mysql client. First, change directories to the root level of this workbook's distribution, and
then run this command: mysql -u root catalog < sql/catalog/catalog.sql .

You should now be able to see the fruits of your labors by running the mysql client again and exploring
your new database. First, connect to the newly populated database: mysql -u root catalog . Once con-
nected run the following SQL commands at the prompt to see what happened and what is in the data-
base:

• show databases;

• use catalog;

• show tables;

• explain items;

• select title from items;

• select title from items order by sort_title;

• select count(id) as 'number of records' from items;

• select title, creator from items limit 1, 10;

• select concat(title, ' ', responsibility) as 'title/author list' from items limit 1, 10;

• select title from items where title like '%blues%';

When finished, quit the mysql client by entering \q at the mysql prompt.

MySQL provides the ability to dump the content of a database in an XML form. To do this you use the
mysqldump command with the --xml option. Something like this should work: mysqldump --xml -u
root catalog . The output will look something like this:

<?xml version="1.0"?>

XML and MySQL

89

<mysqldump>
<database name="catalog">
<table name="items">
<row>
<field name="id">1</field>
<field name="creator">Abraham, Gerald</field>
<field name="title">The concise Oxford history of music</field>
<field name="sort_title">concise Oxford history of music</field>
<field name="subjects">Music; History and criticism;</field>
<field name="publisher">Oxford University Press</field>
<field name="date">1979</field>
<field name="call_number">ML160 .A27</field>
<field name="extent">968 p. : ill., music ; 26 cm.</field>
<field name="notes">Includes index. Bibliography: p. 864-912.</field>
<field name="responsibility">Gerald Abraham.</field>

</row>
<!-- many, many rows deleted here. -->
<row>
<field name="id">567</field>
<field name="creator">Zicree, Marc Scott.</field>
<field name="title">The twilight zone companion</field>
<field name="sort_title">twilight zone companion</field>
<field name="subjects"></field>
<field name="publisher">Silman-James Press</field>
<field name="date">1992</field>
<field name="call_number">PN1992.77.T87 Z52 1992</field>
<field name="extent">p. cm.</field>
<field name="notes">by Marc Scott Zicree. Includes index.</field>
<field name="responsibility">by Marc Scott Zicree.</field>

</row>
</table>

</database>
</mysqldump>

While pretty vanilla, the output is a perfect representation of the database's content. Using XSLT it
would be possible to reformat all or parts of this output into other textual representations.

The catalog database is a flat file. It contains only a single set of rows and columns. As such it does not
provide the means to save redundant data very well. For example, each item in the catalog may have
multiple authors as well as multiple subjects. These individual authors and subjects may appear in mul-
tiple items. In relational database parlance, this is called a many-to-many relationship. In order to more
efficiently represent this condition relational database applications support the creation of multiple tables
within a single database. In this case, one table could contain information about items. Another could
contain authors. A third could contain subjects. Finally, there could be "join" tables containing unique
identifiers from the other tables facilitating relationships between them. The process of defining these
relationships is called "normalization".

A true relational database is included in this workshop's distribution. The database is a small part of the
author's water collection. ("Yes, I collect water.") Each water in the collection was collected by one or
more persons, and each person may have collected many waters. Thus, the water collection includes at
least one many-to-many relationship. Each water is uniquely identified with an ID, title, date, a short
blurb, and a JPEG image. Each item is then "joined" to one or more collectors through a related table.
Finally, the entire collection is described with a single metadata record. The database's entity relation-
ship diagram looks like this:

XML and MySQL

90

To explore this database and MySQL's ability to export XML, you need to create the database and fill it
with content. Again, change directories to the root of the workshop's distribution and run these MySQL
commands:

1. mysqladmin -u root create waters

2. mysql -u root waters < sql/water-collection/water-collection.sql

Next, use your favorite text editor to open and read the various .sql files in the sql/water-collection dir-
ectory. The statements in these files are a bit more complicated than the previous examples. This is be-
cause of the relational nature of the database.

Finally, use the mysql client with the --xml option to query the waters database and print XML reports.
It is easier if you change directories the water-collection directory first and then:

• mysql --xml -u root waters < get-collectors-01.sql

• mysql --xml -u root waters < get-collectors-02.sql

• mysql --xml -u root waters < get-collectors-03.sql

• mysql --xml -u root waters < get-collectors-04.sql

• mysql --xml -u root waters < get-waters-01.sql

• mysql --xml -u root waters < get-waters-02.sql

XML and MySQL

91

• mysql --xml -u root waters < get-waters-03.sql

• mysql --xml -u root waters < get-waters-04.sql

• mysql --xml -u root waters < get-waters-and-collectors-01.sql

• mysql --xml -u root waters < get-waters-and-collectors-02.sql

• mysql --xml -u root waters < get-waters-and-collectors-03.sql

As before, it is possible save the output of these commands to text files and manipulate them using
XSLT.

Databases, especially relational databases, are the electronic tool to use to manage lists of things. Lists
of employees. Lists of books. Lists of Internet resources. Relational databases are not well suited for
managing the content of narrative texts such as the content of books or journal articles. Yes, it is good
for describing books and journals, but not managing the book's content itself. It is too difficult to create
descrete parts of books. Chapters? Sections? Paragraphs? Sentences? Words? Databases are good at
managing lists of things because they excel at the ability of editing specific aspects of a list.

In the form of a report XML is a pretty good way to represent the content of a database, but it does not
lend itself very well to editing. There are a few "native XML databases" available supporting querying
and updating of XML documents as a whole. A good example is Sleepycat Software's Berkeley
DBXML, but few of these native databases seem to be taking the XML world by storm. Time will tell
whether or not XML documents can be manipulated in the same way relational database content is ma-
nipulated, but right now XML seems to be firmly planted more as a reporting format as opposed to a
format for repeated editing.

XML and MySQL

92

Chapter 16. XML and Perl
There is no doubt about it, XSLT is programming language. It is a language enabling you to read XML
and output text, whether it be in the form of XML or not. But computing tasks involve more than the
output of text. There are databases, outside applications and data sets, hardware, and of course human
interfaces to take into account. In the big scheme of things XSLT provides limited functionality. There is
the need for more all-inclusive programming techniques. The use of Perl is such a techique. It is an ex-
cellent scripting language that can glue together the necessary components for a more complete solution.
Without getting involved in any programming religious wars, this section outlines a few examples of
how you can use Perl to manipulate XML.

A simple XSLT transformer
The functions in libxml2 and libxslt, the C libraries underlying xmllint and xsltproc, have been made
available to Perl scripts through two modules: XML::LibXML and XML::LibXSLT. Considering this it
is possible to create the Perl equivelent of xsltproc. Here is the outline of such an application. It is saved
in the workshop's distribution as bin/xsltproc.pl:

#!/usr/bin/perl

require the necessary modules
use strict;
use XML::LibXML;
use XML::LibXSLT;

get input
my $xslt_file = $ARGV[0];
my $xml_file = $ARGV[1];

initialize
my $parser = XML::LibXML->new;
my $xslt = XML::LibXSLT->new;

parse the input files
my $style = $parser->parse_file($xslt_file);
my $doc = $parser->parse_file($xml_file);

validate stylesheet
my $stylesheet = $xslt->parse_stylesheet($style);

transform the source file
my $results = $stylesheet->transform($doc);

print the result to STDOUT
print $stylesheet->output_string($results);

done
exit;

Here is how the program works:

1. The necessary modules (XML::LibXML and XML::LibXSLT) are "included" in the script.

2. An XSLT stylesheet file name and an XML data file name are read from the command line.

93

3. XML and XSLT parser objects are initialized.

4. Both of the input files are parsed.

5. The stylesheet is validated.

6. The XML file is transformed using the stylesheet.

7. The transformed document is sent to STDOUT.

8. The program quits.

Give xsltproc.pl a go using the source XSLT and XML data files supplied with the workshop's distribu-
tion. From the root of the workshop distribution, examples might include:

• bin/xsltproc.pl xslt/letter2xhtml.xsl getting-started/letter.xml

• bin/xsltproc.pl xslt/tei2html.xsl xml-data/tei/poe-cask-1072537129.xml

• bin/xsltproc.pl xslt/mods2xhtml-nosave.xsl xml-
data/mods/many/adler-development-1072276659.xml

Batch processing
Sometimes it will be necessary to read many XML documents to create the desired result. This is not
very easy using pure XSLT, but Perl can come to the rescue. Title-index.pl is a program that reads all of
the TEI files in a given directory, extracts the title and author information from each file, and creates an
title/author index. The heart of the program is a subroutine called process_files:

sub process_files {

get the name of the found file
my $file = $File::Find::name;

make sure it has the correct extension
next if ($file !~ m/\.xml$/);

parse the file and extract the necessary data; s o s l o w !
print "Processing $file... \n";
my $doc = $parser->parse_file($file);
my $root = $doc->getDocumentElement;
my @header = $root->findnodes('teiHeader');

extract the desired data
my $author = $header[0]->findvalue('fileDesc/titleStmt/author');
my $title = $header[0]->findvalue('fileDesc/titleStmt/title');

save it
push @all_items, ({author=>$author, title=>$title, file=>$file});

}

After all the files in the given directory are processed and the @all_items array has been filled, execu-

XML and Perl

94

tion returns to the main program where each item in @all_items is read, re-formatted, and sent to
STDOUT. Output looks like this:

• Cash boy by Alger Horatio, Jr. (1834-1899) - /xml-data/tei/alger-cash-1072580839.xml

• Cast upon the breakers by Alger Horatio, Jr. (1834-1899) - /xml-data/tei/alger-cast-1072723382.xml

• My watch: An instructive little tale by Twain, Mark (1835-1910) - /
xml-data/tei/twain-my-1072419743.xml

• New crime: Legislation needed by Twain, Mark (1835-1910) - /
xml-data/tei/twain-new-1072420178.xml

• Niagara by Twain, Mark (1835-1910) - /xml-data/tei/twain-niagara-1079905834.xml

Give title-index.pl a try against the set of TEI data supplied with the workshop. Be forewarned. You
must supply the full path to the TEI directory. Otherwise the script will get confused. An example in-
cludes: bin/title-index.pl /lamp/xml-data/tei/ .

A bit about DOM and SAX
XML is a predicable data structure. After all, that is the whole point. The XML may reside as a file. It
may reside in computer memory. It may be manifested as a stream of bits coming over an Internet con-
nection. In any case, the data needs to be read by the computer and something needs to be done with it.
The process, the reading of of the data by the computer is called parsing, and the Internet community has
articulated two standardized ways to facilitate processing. One is called DOM and the other is called
SAX.

DOM (Document Object Model) views XML as a tree-like data structure. XML has a single root. "Re-
member the six simple rules regarding XML files?" From that root grow innumerable branches, limbs,
twigs, and leaves -- elements, sub-elements, sub-sub-elements, and ultimately data. DOM provides a
standard set of object oriented methods for accessing sections, subsections, or any other specific part of
XML. The method getDocumentElement, in the previous example, is a DOM method used to return all
of the data from the root element. Other methods include but are certainly not limited to:

• createDocument - initialize an XML document

• setDocumentElement - create the root of an XML document

• createElement - add an element to an XML document

• createAttribute - add an attribute to an element

• getAttribute - returns the value of an attribute

Since the DOM has been articulated, many programming languages and programming libraries have im-
plemented it. XML::LibXML is one example. There are advantages and disadvantages to DOM. On the
down side, DOM implementations require the entire XML data, file, or stream to be read into memory
before processing can begin. This can cause huge memory requirements for the computer. On the other
hand DOM processing allows the programmer to jump from section to section of XML with relative
ease.

SAX (Simple API for XML) is an event-based parser. SAX reads XML data element by element watch-
ing them open and close. As they do, "events" are called and computer programs read the data and pro-

XML and Perl

95

cess it accordingly. As a data structure, XML is a FILO (First In, Last Out) stack, and as the parser
makes it way through the stack computing tasks take place. SAX has the advantage over DOM in that it
is not memory intensive. Its primary disadvantage is the lack of moving around the data structure. There
really aren't very many events a SAX program needs to trap:

• start_document - triggered when the document is opened

• end_document - triggered when the document is closed

• start_element - triggered as an element is opened

• end_element - triggered as an element is closed

• characters - triggered as after an element is opened but before it is closed

Below is a rudimentary Perl SAX script reading any URL pointing to XML data. While the data is being
read it will output what elements are opened, closed, and their content.

#!/usr/bin/perl

use strict;
use XML::SAX::ParserFactory;

my $handler = MyHandler->new();
my $parser = XML::SAX::ParserFactory->parser(Handler => $handler);

$parser->parse_uri($ARGV[0]);

exit;

package MyHandler;

sub new {
my $type = shift;
return bless {}, $type;

}

sub start_element {
my ($self, $element) = @_;
print "Starting element $element->{Name}\n";

}

sub end_element {
my ($self, $element) = @_;
print "Ending element $element->{Name}\n";

}

sub characters {
my ($self, $characters) = @_;
print "characters: $characters->{Data}\n";

}

1;

A program from the workbook's distribution (fix-ead.pl) uses SAX to read many files from a directory
and convert them to a version of EAD/XML that validates against the latest version of the EAD DTD.

XML and Perl

96

Use your favorite text editor to open fix-ead.pl. Notice how it combines the process_files subroutine of
the previous example with the SAX event-driven parser to loop through a set of files in one directory,
reading the files' data, setting and unsetting flags, and outputting results to a second directory. Fix the
EAD files in xml-data/ead/broken and save them to xml-data/ead/fixed using this command: bin/
fix-ead.pl /lamp/xml-data/ead/broken/ /lamp/xml-data/ead/fixed/ . Use xmllint to selectively validate
the newly created EAD files against the workbook's version of the EAD DTD.

XML and Perl

97

Chapter 17. Indexing and searching
XML with swish-e
About swish-e

Indexing is one half of the information retrieval coin. The other half being databases. This section out-
lines how to use swish-e to index, search, and retrieve XML files.

Swish-e is an uncomplicated indexer/search engine that works on Unix/Linux computers as well as Win-
dows. Once built you feed the swish-e binary a configuration file and/or a set of command line switches
to index content. This content can be individual files on a file system, files retrieved by crawling a web-
site, or a stream of content from another application such as a database.

The indexing half of swish-e is able to index plain text files (including XML data) or data structured as
HTML-like streams. Using supplied plug-ins swish-e can index some binary files such as Microsoft
Word and Excel documents and PDF documents. The plug-ins work by converting the documents into
plain text files and streaming these conversions to the indexer. Searches against these kinds of indexes
return pointers to the originals and thus facilitate retrieval. The indexes created by swish-e are portable
from file system to file system.

The same binary that creates the indexes can be used to search them. Swish-e supports relevance rank-
ing, Boolean operations, right-hand truncation, field searching, and nested queries. Later versions of
swish-e come with C, Perl, and PHP APIs allowing developers to create stand alone applications or CGI
interfaces to their indexes.

Swish-e is not perfect. For example, searches against indexes return only properties of located items
(such as title, author, abstract, etc.) and pointers to original documents. It is very difficult to return only
parts of a particular document, say paragraph number three of a TEI file. Without a lot of intervention,
swish-e does not support exact field matching so queries like "title=time" will return Time, Time
Magazine, as well as Time and Time Again. Lastly, and probably most importantly, the swish-e indexer
does not support Unicode very well. The two-byte nature of Unicode characters confuses the indexer.

Swish-e is an unsung hero. It's inherently open nature allows for the creation of some very smart search
engines supporting things like spelling correction, thesaurus intervention, and "best bet" implementa-
tions. Of all the different types of information services librarians provide, access to indexes is one of the
biggest ones. With swish-e librarians could create their own indexes and rely on commercial biblio-
graphic indexers less and less.

Installing swish-e is almost a trivial matter. On Unix/Linux systems you simply:

1. download the archive

2. unzip it

3. untar it

4. change into the distribution's directory

5. configure (./configure)

6. make

7. test (make check)

98

8. install (sudo make install)

For best results, it is a good idea have previously installed the libxml2 family of C libraries. To install
the Perl module you change to the Perl directory and enter the usual commands for installing modules:

1. perl Makefile.PL

2. make

3. make test

4. sudo make install

Installation on Windows is just as easy. Download the distribution, run the resulting .exe file, and the in-
staller will do the rest. Be careful. It is a good idea to use the installer's defaults since applications using
swish-e will need access to the necessary dynamically linked library (dll) files. These dll files need to be
in your PATH environment variable. If you have previously installed Perl, the installer will install the
modules as well as the swish-e application.

After installation, you will have local access to the voluminous documentation, not to mention the
HTML-based documentation in the distribution's html directory:

• swish-e -h

• man swish-e

• man SWISH-CONFIG

• man SWISH-RUN

• man SWISH-FAQ

• man SWISH-LIBRARY

• perldoc SWISH::API

Exercises
These exercises demonstrate how to create and search simple indexes of XML documents. The exercises
build on earlier exercises in this workbook by using the data created in those exercises.

Indexing XHTML
Swish-e excels at indexing rich and well-structured HTML files. In a previous exercise sets of XHTML
files were created from MARC records. They were saved in the xml-data/xhtml/marc2xhtml directory.
Open any one of these files in your text editor and notice the structure of each of their head elements,
such as this one (line have been hard-wrapped for readability):

<head>
<title>Biology, psychology, and medicine</title>
<meta name="id" content="adler-biology-1072276585"/>

Indexing and searching XML with swish-e

99

<meta name="brief" content="Biology, psychology, and medicine,
by Moritmer J. Adler and V. J. McGill. Pref.
by Franz Alexander."/>

<meta name="author" content="Adler, Mortimer Jerome, 1902-"/>
<meta name="year" content="1963"/>
<meta name="title" content="Biology, psychology, and medicine"/>
<meta name="publisher" content="Chicago, Encyclopedia Britannica [1963]"/>
<meta name="pagination" content="xx, 395 p. illus. 22 cm."/>
<meta name="note" content="Bibliography: p. 385-395."/>
<meta name="subject" content="Biology Outlines, syllabi, etc.

Psychology Outlines, syllabi, etc. Mind and body."/>
</head>

Each meta element is comprised of name and content attributes. By configuring the swish-e indexing
process to look at these attribute pairs you can make each of them field searchable. When this function-
ality is combined with the free text indexing against the document's body element swish-e indexes be-
come very useful.

Swish-e supports many command-line arguments for indexing, but it is usually much easier to write a
configuration file instead. Below is a configuration file (swish-indexes/xhtml.cfg) for indexing the con-
tent of the marc2xhtml directory:

IndexDir xml-data/xhtml/marc2xhtml
IndexFile swish-indexes/xhtml.idx
IndexOnly .html
MetaNames id brief author year title publisher pagination note subject
PropertyNames id brief author year title publisher pagination note subject

Each line denotes a characteristic of the indexing process:

• where is the data (the marc2xhtml directory)

• what is the location and name of the resulting index (xhtml.idx)

• what files should be indexes (only .html files)

• what meta data fields should be indexed (all of them)

• what meta data fields should be available for display (all of them)

Here's how to create your first index:

1. Edit the path statements in xhtml.cfg to suit your operating system. For example, on Windows you
might have to change xml-data/xhtml/marc2xhtml to xml-data\xhtml\marc2xhtml.

2. Open a terminal session on your computer, change to the root level of the workshop's distribution
directory and run swish-e with this command: swish-e -c swish-indexes/xhtml.cfg .

Indexing and searching XML with swish-e

100

$ swish-e -c swish-indexes/xhtml.cfg
Indexing Data Source: "File-System"
Indexing "xml-data/xhtml/marc2xhtml"
Removing very common words...
no words removed.
Writing main index...
Sorting words ...
Sorting 10,687 words alphabetically
Writing header ...
Writing index entries ...
Writing word text: Complete
Writing word hash: Complete
Writing word data: Complete

10,687 unique words indexed.
13 properties sorted.
567 files indexed. 996,001 total bytes. 112,581 total words.
Elapsed time: 00:00:04 CPU time: 00:00:04
Indexing done!

You can now search your newly created index. For example, search for origami: swish-e -f swish-in-
dexes/xhtml.idx -w origami . This particular example only has two parts:

• -f denotes what index to search

• -w denotes the query

The search results will look a lot like this:

$ swish-e -f swish-indexes/xhtml.idx -w origami
SWISH format: 2.4.2
Search words: origami
Removed stopwords:
Number of hits: 7
Search time: 0.002 seconds
Run time: 0.046 seconds
1000 xml-data/xhtml/marc2xhtml/kawai-colorful-1071929621.html "Colorful origami" 1633
962 xml-data/xhtml/marc2xhtml/gross-origami-1071930127.html "Origami" 1939
962 xml-data/xhtml/marc2xhtml/montroll-origami-1071930205.html "Origami sea life" 1658
916 xml-data/xhtml/marc2xhtml/lang-complete-1071929822.html "Complete book of origami" 1847
916 xml-data/xhtml/marc2xhtml/honda-world-1071930499.html "World of origami" 1369
916 xml-data/xhtml/marc2xhtml/engel-folding-1072054962.html "Folding the universe" 1509
866 xml-data/xhtml/marc2xhtml/honda-how-1071929753.html "How to make origami" 1496

The last few lines of the output are divided into four parts:

1. the relevance score

2. the pointer to the file matching the query

3. the title of the file

4. the size of the file

Indexing and searching XML with swish-e

101

If you have Lynx, a text-based browser, then you should be able to run Lynx and point it to one of the
files in the results like this: lynx xml-data/xhtml/marc2xhtml/honda-how-1071929753.html . Altern-
atively you could open any of the files in your graphical browser.

Swish-e supports a bevy of search operations including all the expected Boolean operations, phrase
searching, field searching, right-hand truncation (implemented using a "*"), and nested queries. Con-
sequently, all of the following swish-e queries are valid:

• swish-e -f swish-indexes/xhtml.idx -w origami

• swish-e -f swish-indexes/xhtml.idx -w origami and colorful

• swish-e -f swish-indexes/xhtml.idx -w "colorful origami"

• swish-e -f swish-indexes/xhtml.idx -w title=origami

• swish-e -f swish-indexes/xhtml.idx -w author=honda

Using the -p command line option you can alter the output to include the properties denoted in your con-
figuration file. Thus the following command, swish-e -f swish-indexes/xhtml.idx -w author=honda -p
pagination , will display the pagination as well as the default information (again, lines have been hard-
wrapped for readability):

$ swish-e -f swish-indexes/xhtml.idx -w author=honda -p pagination
SWISH format: 2.4.2
Search words: author=honda
Removed stopwords:
Number of hits: 2
Search time: 0.001 seconds
Run time: 0.045 seconds
1000 xml-data/xhtml/marc2xhtml/honda-world-1071930499.html "World of origami" 1369

"xii, 13-264 p. illus. (some col.) 31 cm."
1000 xml-data/xhtml/marc2xhtml/honda-how-1071929753.html "How to make origami" 1496

"37 p. col. illus. (part fold. mounted) 26 cm.

Indexing other XML formats
Indexing and searching other XML formats is very similar to indexing XHTML. First you create your
content. Then you write a swish-e configuration file. Third, you index content. Fourth, you search. Last,
you retrieve while optionally transforming your XML for display.

Let's index a set of MODS files. Open any of the MODS files in the xml-data/mods/many directory.
Take note of the element names. Open swish-indexes/mods.cfg and take note of the MetaNames and
PropertyNames directives. Notice how swishtitle has been added to the MetaNames directive. Swishtitle
is a meta data value you get for free with swish-e, but in order for it to be searchable in your index you
sometimes need to specifically include it in the configuration file. Index the MODS data with the com-
mand swish-e -c swish-indexes/mods.cfg , and give the following searches a whirl:

• swish-e -f swish-indexes/mods.idx -w title=cannery

• swish-e -f swish-indexes/mods.idx -w love -p title

Indexing and searching XML with swish-e

102

• swish-e -f swish-indexes/mods.idx -w origami -p swishtitle

Like the output of the XHTML searching process, swish-e returns a pointer (file name) to documents
matching your query. Unfortunately, XML files are not always very human readable, but using XSL you
can transform the documents into something else. Consequently, you could manually pass parts of
search results to xsltproc with a stylesheet, transform the document, and view it with something like this:
xsltproc xslt/mods2xhtml-nosave.xsl xml-data/mods/many/piper-folk-1074964323.xml > res-
ults.html; lynx results.html

Swish-e can search multiple files with a single query by designating multiple index locations with the -f
option. This is increasingly useful if the multiple files have similar MetaNames and PropertyNames val-
ues. Index the TEI data with the following command: swish-e -c swish-indexes/tei.cfg . Then search the
index. Your queries can be much richer since the TEI files contain much more data:

• swish-e -f swish-indexes/tei.idx -w love

• swish-e -f swish-indexes/tei.idx -w love and war

• swish-e -f swish-indexes/tei.idx -w love and war and art

• swish-e -f swish-indexes/tei.idx -w love and war and art and science

Additional use of the -f and -p options produces broader results:

• swish-e -f swish-indexes/tei.idx swish-indexes/xhtml.idx swish-indexes/mods.idx -w love and -p
title

• swish-e -f swish-indexes/tei.idx swish-indexes/xhtml.idx swish-indexes/mods.idx -w art and sci-
ence -p title

As an extra exercise, index the set of "broken" EAD files using the ead.cfg file, and then search the res-
ulting index while displaying the "scopecontent" in the output.

Indexing techniques and the use of relational databases are two sides of the same information retrieval
coin. Relational databases are great tools especially for editing and maintaining data. While search is
part of their equation, it is incumbered by complicated syntax and the lack of easy full text queries as
well as relevance ranking. Indexing techniques, such as the ones implemented by swish-e, make search
easy at the expense the inability to update the underlying data. By learning to combine the strengths of
both relational database applications with indexes information providers can facilitate more powerful in-
formation retrieval systems.

Indexing and searching XML with swish-e

103

Chapter 18. Apache
About Apache

Apache is the most popular Web (HTTP) server on the Internet and a standard open source piece of soft-
ware. It's name doesn't really have anything to do with American Indians. Instead, it's name comes from
the way it is built. It is "a patchy" server, meaning that it is made up of many modular parts to create a
coherent whole. This design philosophy has made the application very extensible. For example, there are
the core modules that make up the server's ability to listen for connections, retrieve files, and return
them to the requesting client (the "user agent" in HTTP parlance). There are other modules dealing with
logging transactions and CGI (common gateway interface) scripting. Other modules allow you to rewrite
incoming requests, manage email, implement the little-used HTTP PUT method, write other modules in
Perl, or transform XML files using XSLT. Apache is currently at version 2.0, but for some reason many
people are still using the 1.3 series.

Installing Apache is similar to installing Perl or Swish. For Windows you:

1. download the distribution

2. run the installer

3. open a command prompt

4. navigate to the Apache directory

5. start the server with c:\apache\apache.exe --standalone

On Unix/Linux you:

1. download the distribution

2. unzip it

3. untar it

4. ./configure

5. make

6. sudo make install

7. start the server (/usr/local/apache/bin/apachectl start)

Being "a patchy" server, Apache is very extensible. Mod_perl is such an extension. It allows Perl pro-
grammers to write scripts to handle low level HTTP server functions. One of these scripts (actually a set
of scripts) is called AxKit, an XSLT transformation engine. AxKit allows content providers to save
XML files on their servers, have them associated with XSLT stylesheets, and have the XML files trans-
formed on the fly by the stylesheets before they are sent to the user-agent for display.

Installing mod_perl and AxKit are beyond the scope of this workbook, but the author's water collection
has been implemented as an AxKit service. The entire user end of the system is made up of two files (an
XML data file and an XSLT stylesheet) plus a set of JPEG images. No CGI scripts. As the Apache serv-
er receives requests the query strings are read and passed on to the stylesheet. The stylesheet reads the

104

name/value pairs of the query string, branches accordingly, and transforms parts of the XML data into
HTML, which is returned to the Web browser.

CGI interfaces to XML indexes
In a previous section of the workbook you learned how to create and search simple indexes of XML
files. In this section various techniques for making these indexes searchable on the Web will be demon-
strated.

Simple XHTML files
Swish-e comes with a Perl module called SWISH::API providing a means to search swish-e indexes
through Perl scripts and without the need of the swish-e binary. By combining the standard Perl CGI
module with SWISH::API it you can make your swish-e indexes available on the Web. The program
cgi-bin/xhtml.cgi implements this idea. The heart of the program is a subroutine called search:

the heart of the matter
sub search {

get the result page
$html .= &results;

open the index
my $swish = SWISH::API->new($INDEX);

create a search object
my $search = $swish->New_Search_Object;

set the sort order
$search->SetSort('title');

search
my $results = $search->Execute($input->param('query'));

get the number of titles found
$number_of_hits = $results->Hits;

initialize the hit list
$hit_list .= '';

process each hit
while (my $result = $results->NextResult) {

get the results
my $detail = $result->Property ('swishdocpath');
my $brief = $result->Property ('brief');

$hit_list .= "$brief (detailed view)";

}

finish the hit list
$hit_list .= '';

}

It works by:

Apache

105

1. updating a globally defined HTML scalar

2. opening the index ($INDEX) previously defined

3. creating a swish-e search object

4. setting the sort order

5. reading the query from the query string and searches

6. getting the number of returned hits

7. initializing a hit list

8. looping through each hit pulling out the desired properties for display

9. closing the hits list

The trickiest part of the routine is the definition of $detail. This variable holds the path to the found item
(swishdocpath). By creating a hot link using this variable the user of the index is able to view the full re-
cord.

To see how this works in real life:

1. Install Apache.

2. Edit Apache's httpd.conf file.

3. Start Apache.

4. Copy the xml-data/xhtml/marc2xhtml directory to Apache's htdocs directory.

5. Copy cgi-bin/xhtml.cgi to the htdocs directory.

6. Copy swish-indexes/xhtml.cfg to the htdocs directory.

7. Edit xhtml.cfg so IndexDir points to marc2xhtml (IndexDir marc2xhtml).

8. Edit xhtml.cfg so IndexFile outputs to xhtml.idx (IndexFile xhtml.idx).

9. Index marc2xhtml (swish-e -c xhtml.cfg).

10. Edit xhtml.cgi's first line so it points to Perl (Unix: #!/usr/bin/perl or Windows: #!c:\perl\bin\perl).

11. Open a command prompt and run xhtml.cgi from the command line. It should return a stream of
XHTML.

12. Finally, open your Web browser and point it to xhtml.cgi.

(If you have gotten this far, the breath a sigh of relief. That was the most complicated exercise, and it is
all downhill from here.)

Improving display of search results
The search results of the XHTML index were rudimentary. In this exercise you will see how the swish-e
properties (and therefore XML elements) can be displayed in greater detail. Mods.cgi implements this

Apache

106

idea. It is just like the previous example except for part of the while loop in the search subroutine:

process each hit
while (my $result = $results->NextResult) {

get the results
my $detail = $result->Property ('swishdocpath');
my $title = $result->Property ('title');
my $author = $result->Property ('namePart');
my $extent = $result->Property ('extent');
my $note = $result->Property ('note');
my $topic = $result->Property ('topic');
my $publisher = $result->Property ('publisher');
my $date = $result->Property ('dateIssued');

$hit_list .= "$title (full record)

<small>author: $author</small>
<small>extent: $extent</small>
<small>note: $note</small>
<small>topic: $topic</small>
<small>publisher: $publisher</small>
<small>date: $date</small>

";

}

As you can see, many of the index's properties are read from each result. These properties are then
marked up in a number of unordered lists. Like before, the swishdocpath property is hyperlinked to
provide access to the original document.

Give this script a whirl by:

1. Copying the xml-data/mods/many directory to Apache's htdocs directory.

2. Copy cgi-bin/mods.cgi to the htdocs directory.

3. Copy swish-indexes/mods.cfg to the htdocs directory.

4. Edit mods.cfg so IndexDir points to many (IndexDir many).

5. Edit mods.cfg so IndexFile outputs to mods.idx (IndexFile mods.idx).

6. Index the contents of many (swish-e -c mods.cfg).

7. Edit mods.cgi's first line so it points to Perl.

8. Open a command prompt and run mods.cgi from the command line. It should return a stream of
XHTML.

9. Finally, open your Web browser and point it to mods.cgi.

Apache

107

Modern browsers and XML search results
Notice how the links in the previous exercise returned raw XML. This is because no stylesheet informa-
tion was associated with the XML. This can be overcome by inserting an XML processing instruction
into each XML file and indexing the files. Using the "fixed" EAD data from a previous exercise you can
see this work accomplished though a CGI script called cgi-bin/ead.cgi:

1. Copy the xml-data/ead/fixed directory to Apache's htdocs directory.

2. Copy cgi-bin/ead.cgi to the htdocs directory.

3. Copy swish-indexes/ead.cfg to the htdocs directory.

4. Edit ead.cfg so IndexDir points to many (IndexDir fixed).

5. Edit ead.cfg so IndexFile outputs to ead.idx (IndexFile ead.idx).

6. Index the contents of fixed (swish-e -c ead.cfg).

7. Edit ead.cgi's first line so it points to Perl.

8. Open a command prompt and run ead.cgi from the command line. It should return a stream of
XHTML.

9. Finally, open a modern Web browser and point it to ead.cgi.

Transforming raw XML on the fly
You can not always rely on the end user having a modern browser. This is why it might be necessary to
transform your raw XML into HTML before it is sent to the user-agent. This can be done by inserting a
second CGI script into the hot link of the full document. This second script is really xsltproc.pl wrapped
in a CGI interface. Open cgi-bin/xsltproc.cgi to see.

Xsltproc.cgi is incorporated into tei.cgi's search results loop:

process each hit
while (my $result = $results->NextResult) {

get the results
my $detail = $result->Property ('swishdocpath');
my $title = $result->Property ('title');
my $author = $result->Property ('author');
$hit_list .= "$author / $title

(full record)";

}

In this loop:

a few properties are read from the index

the hitlist is hotlinked to the full record using the global variables $XSLTPROC and $STYLE

Apache

108

Here's how to make it work:

1. Copy the xml-data/tei directory to Apache's htdocs directory.

2. Copy cgi-bin/xsltproc.cgi to the htdocs directory.

3. Copy cgi-bin/tei.cgi to the htdocs directory.

4. Copy swish-indexes/tei.cfg to the htdocs directory.

5. Edit tei.cfg so IndexDir points to tei (IndexDir tei).

6. Edit tei.cfg so IndexFile outputs to tei.idx (IndexFile tei.idx).

7. Index the contents of tei (swish-e -c tei.cfg).

8. Edit tei.cgi's first line so it points to Perl.

9. Edit xsltproc.cgi's first line so it points to Perl.

10. Open a command prompt and run tei.cgi from the command line. It should return a stream of
XHTML.

11. Finally, open any Web browser and point it to tei.cgi.

If all goes well you should see pointers to the full text of your documents as well as be able to read the
full texts on your screen.

Whew!

Apache

109

Part V. Appendices

Table of Contents
A. Harvesting metadata with OAI-PMH .. 112

What is the Open Archives Initiative? ... 112
The Problem .. 112
The Solution .. 113
Verbs .. 113
Responses -- the XML stream .. 115
An Example ... 117
Exercise - Making CIMI Schema data available via OAI-PMH 118
Exercise - Making MARCXML data available via OAI 119
Conclusion .. 120

B. An Introduction to the Search/Retrieve URL Service (SRU) .. 121
Introduction ... 121
The Problems SRW and SRU are Intended to Solve 121
SRW and SRU as Web Services ... 122
Explain ... 122
Scan ... 123
SearchRetieve .. 124
A Sample Application: Journal Locator ... 125
SRW/U and OAI-PMH .. 129
OCKHAM ... 129
Summary ... 131
Acknowledgements ... 131
References ... 131

C. Selected readings .. 132
XML in general .. 132
Cascading Style Sheets ... 132
XSLT ... 132
DocBook ... 132
XHTML .. 133
RDF ... 133
EAD ... 133
TEI .. 133
OAI-PMH ... 133

cxi

Appendix A. Harvesting metadata with
OAI-PMH

Note: This is a pre-edited version of a previously published article, Eric Lease Morgan "What is the
Open Archives Initiative?" interChange: Newsletter of the International SGML/XML User's Group
8(2):June 2002, pgs. 18-22.

The article describes the intent of the Open Archives Initiative and illustrates a way to implement ver-
sion 1.1 of the protocol. As of this writing, the protocol has been renamed to the Open Archives Initiat-
ive-Protocol for Metadata Harvesting, and it is now at version 2.0. Don't let this dissuade you from read-
ing this section. The majority of it is still quite valid.

What is the Open Archives Initiative?
In a sentence, the Open Archives Initiative (OAI) is a protocol built on top of HTTP designed to distrib-
ute, gather, and federate meta data. The protocol is expressed in XML. This article describes the prob-
lems the OAI is trying to address and outlines how the OAI system is intended to work. By the end of
the article you will be more educated about the OAI and hopefully become inspired to implement your
own OAI repository or even become a service provider. The conical home page for the Open Archives
Initiative is http://www.openarchives.org/ [http://www.openarchives.org/] .

The Problem
Simply stated, the problem is, "How do I identify and locate the information I need?"

We all seem to be drinking from the proverbial fire hose and suffering from at least a little bit of inform-
ation overload. Using Internet search engines to find the information we need and desire literally return
thousands of hits. Items in these search results are often times inadequately described making the selec-
tion of particular returned items a hit or miss proposition. Bibliographic databases -- indexes of schol-
arly, formally published journal and magazine literature -- overwhelm the user with too many input op-
tions and rarely return the full-text of identified articles. Instead, these databases leave the user with a
citation requiring a trip to the library where they will have to navigate a physically large space and hope
the article is on the shelf.

From a content provider's point of view, the problem can be stated conversely, "How do I make people
aware of the data and information I disseminate?"

There are many people, content providers, who have information to share to people who really need it.

112

http://www.openarchives.org/

Collecting, organizing, and maintaining the information is only half the battle. Without access these pro-
cesses are meaningless. Additionally, there may be sets of content providers who have sets of informa-
tion with something in common such as subject matter (literature, mathematics, gardening), file format
(images, texts, sounds), or community (a library, a business, user group). These sets of people may want
to co-operate by assimilating information about their content together into a single-source search engine
and therefore save the time of the user by reducing the number of databases people have to search as
well as provide access to the provider's content.

The Solution
The OAI addresses the problems outlined above by articulating a method -- a protocol built on top of
HTTP -- for sharing meta data buried in Internet-accessible databases. The protocol defines two entities
and the language whereby these two entities communicate. The first entity is called a "data provider" or
a "repository". For example, a data provider may have a collection of digital images. Each of these im-
ages may be described with a set of qualities: title, accession number, data, resolution, narrative descrip-
tion, etc. Alternatively, a data provider may be a pre-print archive -- a collection of pre-published pa-
pers, and therefore each of the items in the archive could be described using title, author, data, summary,
and possibly subject heading. Another example could be a list of people, experts in field of study. The
qualities describing this collection may be name, email address, postal address, telephone number, and
institutional affiliation.

Thus, the purpose of the first OAI entity -- the data provider -- is to expose the qualities of its collection
-- the meta data -- to a second entity, a "service provider". The purpose of the service provider is to har-
vest the meta data from one or more data providers in turn creating a some sort of value-added utility.
This utility is undefined by the protocol but could include things such as a printed directory, a federated
index available for searching, a mirror of a data provider, a current awareness service, syndicated news
feeds, etc.

In summary, the OAI defines two entities (data provider and service provider) and a protocol for these
two entities to share meta data between themselves. The balance of this article describes the protocol in
greater detail.

Verbs
The OAI protocol consists of only a few "verbs" (think "commands"), and a set of standardized XML re-
sponses. All of the verbs are communicated from the service provider to a data provider via an HTTP re-
quest. They are a set of one or more name/value pairs embedded in a URL (as in the GET method) or
encoded in the HTTP header (as in the POST method). Most of the verbs can be qualified with addition-
al name/value pairs. The simplest verb is "Identify", and a real example of how this might be passed to a
data provider via the GET method includes the following:

http://www.infomotions.com/alex/oai/?verb=Identify
[http://www.infomotions.com/alex/oai/?verb=Identify]

The example above assumes there is some sort of OAI-aware application saved as the default executable
in the /alex/oai directory of the www.infomotions.com host. This application takes the name/value pair,
verb=Identify, as input and outputs an XML stream confirming itself as an OAI data provider.

Other verbs work in a similar manner but may include a number of qualifiers in the form of additional
name/value pairs. For example, the following verb requests a record, in the Dublin Core meta data
format, describing Mark Twain's The Prince And The Pauper:

ht-
tp://www.infomotions.com/alex/oai/?verb=GetRecord&metadataPrefix=oai_dc&identifier=twain-prince
-30
[http://www.infomotions.com/alex/oai/?verb=GetRecord&metadataPrefix=oai_dc&identifier=twain-pri

Harvesting metadata with OAI-PMH

113

http://www.infomotions.com/alex/oai/?verb=Identify
http://www.infomotions.com/alex/oai/?verb=GetRecord&metadataPrefix=oai_dc&identifier=twain-prince-30
http://www.infomotions.com/alex/oai/?verb=GetRecord&metadataPrefix=oai_dc&identifier=twain-prince-30
http://www.infomotions.com/alex/oai/?verb=GetRecord&metadataPrefix=oai_dc&identifier=twain-prince-30

nce-30]

Again, the default application in the /alex/oai directory takes the value of the GET request as input and
outputs a reply in the form of an XML stream.

All six of the protocol's verbs are enumerated and very briefly described below:

1. Identify - This verb is used to verify that a particular service is an OAI repository. The reply to an
Identify command includes things like the name of the service, a URL where the services can be
reached, the version number of the protocol the repository supports, and the email address to con-
tact for more information. This is by far the easiest verb. Example:

http://www.infomotions.com/alex/oai/?verb=Identify
[http://www.infomotions.com/alex/oai/?verb=Identify]

2. ListMetadataFormats - Meta data takes on many formats, and this command queries the repository
for a list of meta data formats the repository supports. In order to be OAI compliant, a repository
must at least support the Dublin Core. (For more information about the Dublin Core meta data
format see http://dublin.or/ and http://www.iso.or/standards/resources/Z39-85.pdf.) Example:

http://www.infomotions.com/alex/oai/?verb=ListMetadataFormats
[http://www.infomotions.com/alex/oai/?verb=ListMetadataFormats]

3. List sets - The data contained in a repository may not necessarily be homogeneous since it might
contain information about more than one topic or saved in more than one format. Therefore the
verb List sets is used to communicate a list of topic or collections of data in a repository. It is quite
possible that a repository has no sets, and consequently a reply would be contain no set informa-
tion. Example:

http://www.infomotions.com/alex/oai/?verb=ListSets
[http://www.infomotions.com/alex/oai/?verb=ListSets]

4. ListIdentifiers - It is assumed each item in a repository is associated with some sort of unique key --
an identifier. This verb requests a lists of the identifiers from a repository. Since this list can be
quite long, and since the information in a repository may or may not significantly change over time,
this command can take a number optional qualifiers including a resumption token, date ranges, or
set specifications. In short, this command asks a repository, "What items do you have?" Example:

http://www.infomotions.com/alex/oai/?verb=ListIdentifiers
[http://www.infomotions.com/alex/oai/?verb=ListIdentifiers]

5. GetRecord - This verb provides the means of retrieving information about specific meta data re-
cords given a specific identifier. It requires two qualifiers: 1) the name of an identifier, and 2) name
of the meta data format the data is expected to be encoded in. The result will be a description of an
item in the repository. Example:

ht-
tp://www.infomotions.com/alex/oai/?verb=GetRecord&metadataPrefix=oai_dc&identifier=twain-n
ew-36
[http://www.infomotions.com/alex/oai/?verb=GetRecord&metadataPrefix=oai_dc&identifier=twai
n-new-36]

6. ListRecords - This command is a more generalized version of GetRecord. It allows a service pro-
vider to retrieve data from a repository without knowing specific identifiers. Instead this command
allows the contents of a repository to be dumped en masse. This command can take a number of
qualifiers too specifying data ranges or set specifications. This verb has one required qualifier, a
meta data specification. Example:

http://www.infomotions.com/alex/oai/?verb=ListRecords&metadataPrefix=oai_dc

Harvesting metadata with OAI-PMH

114

http://www.infomotions.com/alex/oai/?verb=Identify
http://www.infomotions.com/alex/oai/?verb=ListMetadataFormats
http://www.infomotions.com/alex/oai/?verb=ListSets
http://www.infomotions.com/alex/oai/?verb=ListIdentifiers
http://www.infomotions.com/alex/oai/?verb=GetRecord&metadataPrefix=oai_dc&identifier=twain-new-36
http://www.infomotions.com/alex/oai/?verb=GetRecord&metadataPrefix=oai_dc&identifier=twain-new-36
http://www.infomotions.com/alex/oai/?verb=GetRecord&metadataPrefix=oai_dc&identifier=twain-new-36
http://www.infomotions.com/alex/oai/?verb=ListRecords&metadataPrefix=oai_dc

[http://www.infomotions.com/alex/oai/?verb=ListRecords&metadataPrefix=oai_dc]

Responses -- the XML stream
Upon receiving any one of the verbs outlined above it is the responsibility of the repository to reply in
the form of an XML stream, and since this communication is happening on top of the HTTP protocol,
the HTTP header's content-type must be text/xml. Error codes are passed via the HTTP status-code.

All responses have a similar format. They begin with an XML declaration. The root of the XML stream
always echoes the name of the verb sent in the request as well as a listing of name spaces and schema.
This is followed by a date stamp and an echoing of the original request.

For each of the verbs there are a number of different XML elements expected in the response. For ex-
ample, the Identify verb requires the elements: repositoryName, baseURL, protocolVersion, and ad-
minEmail. Below is very simple but valid reply to the Identify verb:

<?xml version="1.0" encoding="UTF-8" ?>
<Identify
xmlns="http://www.openarchives.org/OAI/1.0/OAI_Identify"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xsi:schemaLocation="http://www.openarchives.org/OAI/1.0/OAI_Identify
http://www.openarchives.org/OAI/1.0/OAI_Identify.xsd">

<responseDate>2002-02-16T09:40:35-7:00</responseDate>
<requestURL>http://www.infomotions.com/alex/oai/index.php?verb=Identify</requestURL>

<!-- Identify-specific content -->
<repositoryName>Alex Catalogue of Electronic Texts</repositoryName>
<baseURL>http://www.infomotions.com/alex/</baseURL>
<protocolVersion>1.0</protocolVersion>
<adminEmail>eric_morgan@infomotions.com</adminEmail>
</Identify>

The output of the ListMetadataFormats verb requires information about what meta data formats are sup-
ported by the repository. Therefore, the response of a ListMetadataFormats request includes a metadata-
Format element with a number of children: metadataPrefix, schema, metadataNamespece. Here is an ex-
ample:

<?xml version="1.0" encoding="UTF-8" ?>
<ListMetadataFormats
xmlns="http://www.openarchives.org/OAI/1.0/OAI_ListMetadataFormats"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xsi:schemaLocation="http://www.openarchives.org/OAI/1.0/OAI_ListMetadataFormats
http://www.openarchives.org/OAI/1.0/OAI_ListMetadataFormats.xsd">

<responseDate>2002-02-16T09:51:49-7:00</responseDate>
<requestURL>http://www.infomotions.com/alex/oai/index.php?verb=ListMetadataFormats</requestURL>

<!-- ListMetadataFormats-specific content -->
<metadataFormat>
<metadataPrefix>oai_dc</metadataPrefix>
<schema>http://www.openarchives.org/OAI/dc.xsd</schema>
<metadataNamespace>http://purl.org/dc/elements/1.1/</metadataNamespace>

Harvesting metadata with OAI-PMH

115

</metadataFormat>

</ListMetadataFormats>

About the simplest example can be illustrated with the ListIdentifiers verb. A response to this command
might look something like this where, besides the standard output, there is a single additional XML ele-
ment, identifier:

<?xml version="1.0" encoding="UTF-8" ?>
<ListIdentifiers
xmlns="http://www.openarchives.org/OAI/1.0/OAI_ListIdentifiers"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xsi:schemaLocation="http://www.openarchives.org/OAI/1.0/OAI_ListIdentifiers
http://www.openarchives.org/OAI/1.0/OAI_ListIdentifiers.xsd">

<responseDate>2002-02-16T10:03:09-7:00</responseDate>
<requestURL>http://www.infomotions.com/alex/oai/index.php?verb=ListIdentifiers</requestURL>

<!-- ListIdentifiers-specific content -->
<identifier>twain-30-44</identifier>
<identifier>twain-adventures-27</identifier>
<identifier>twain-adventures-28</identifier>
<identifier>twain-connecticut-31</identifier>
<identifier>twain-extracts-32</identifier>
</ListIdentifiers>

The last example shows a response to the GetRecord verb. It includes much more information than the
previous examples, because it represents the real meat of the matter. XML elements include the record
element and all the necessary children of a record as specified by the meta data format:

<?xml version="1.0" encoding="UTF-8" ?>
<GetRecord
xmlns="http://www.openarchives.org/OAI/1.0/OAI_GetRecord"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xsi:schemaLocation="http://www.openarchives.org/OAI/1.0/OAI_GetRecord
http://www.openarchives.org/OAI/1.0/OAI_GetRecord.xsd">

<responseDate>2002-02-16T10:09:35-7:00</responseDate>
<requestURL>http://www.infomotions.com/alex/oai/index.php?verb=GetRecord&metadataPrefix=oai_dc&identifier=twain-tom-40</requestURL>

<!-- GetRecord-specific content -->
<record>

<header>
<identifier>twain-tom-40</identifier>
<datestamp>1999</datestamp>
</header>

<metadata>

<!-- Dublin Core metadata -->
<dc xmlns="http://purl.org/dc/elements/1.1/"

xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

Harvesting metadata with OAI-PMH

116

xsi:schemaLocation="http://purl.org/dc/elements/1.1/
http://www.openarchives.org/OAI/dc.xsd">

<creator>Twain, Mark</creator>
<title>Tom Sawyer, Detective</title>
<date>1903</date>
<identifier>http://www.infomotions.com/etexts/literature/american/1900-/twain-tom-40.txt</identifier>
<rights>This document is in the public domain.</rights>
<language>en-US</language>
<type>text</type>
<format>text/plain</format>
<relation>http://www.infomotions.com/alex/</relation>
<relation>http://www.infomotions.com/alex/cgi-bin/concordance.pl?cmd=selectConcordance&bookcode=twain-tom-40</relation>
<relation>http://www.infomotions.com/alex/cgi-bin/configure-ebook.pl?handle=twain-tom-40</relation>
<relation>http://www.infomotions.com/alex/cgi-bin/pdf.pl?handle=twain-tom-40</relation>
<contributor>Morgan, Eric Lease</contributor>
<contributor>Infomotions, Inc.</contributor>

</dc>

</metadata>

</record>

</GetRecord>

An Example
In an afternoon I created the very beginnings of an OAI data provider application using PHP. The source
code to this application is available at http://www.infomotions.com/alex/oai/alex-oai-1.0.tar.gz. Below is
a snippet of code implementing the ListIdentifiers verb. When this verb is trapped ListIdentifiers.php
queries the system's underlying (MySQL) database for a list of keys and outputs the list as per the
defined protocol:

<?php

begin the response
echo '<ListIdentifiers
xmlns="http://www.openarchives.org/OAI/1.0/OAI_ListIdentifiers"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xsi:schemaLocation="http://www.openarchives.org/OAI/1.0/OAI_ListIdentifiers
http://www.openarchives.org/OAI/1.0/OAI_ListIdentifiers.xsd">';
echo '<responseDate>'. RESPONSEDATE . '</responseDate>';
echo '<requestURL>' . REQUESTURL . '</requestURL>';

create an sql query and execute it
$sql = "SELECT filename
FROM titles
WHERE filename like 'twain%'
ORDER BY filename";
$rows = mysql_db_query (DATABASE, $sql);
checkResults();

process each found record
while ($r = mysql_fetch_array($rows)) {

display it

Harvesting metadata with OAI-PMH

117

echo '<identifier>' . $r["filename"] . '</identifier>';

}

finish the response
echo '</ListIdentifiers>';

?>

Exercise - Making CIMI Schema data available
via OAI-PMH

Given the necessary computer infrastructure, in this exercise you will make the data in from a small
CIMI Schema XML for SPECTRUM file available via OAI-PMH.

A. Transform CIMI data into files

1. Open the file named water.xml in your favorite text editor, such as Notepad. The schema
(CIMI Schema for SPECTRUM) used to define the contents of water.xml is designed to de-
scribe, inventory, and chronical the items in museum collections. Notice the structure of the
file as well as the elements used to mark-up its content.

2. Create a directory on your computer's desktop.

3. Copy all the *.dll files from the CD to your newly created directory.

4. Copy all the *.exe files from the CD to your newly created directory.

5. Copy cimi2oaidc.xsl and water.xml from the CD to your newly created directory.

6. Open a new terminal window by running cmd.exe from the Start menu's Run command.

7. Change directories to your newly created directory.

8. Transform water.xml into a set of XML files very easily read by OAI-PMH harvesters bye us-
ing this command: xsltproc cimi2oaidc.xsl water.xml .

9. Open any of the newly created files in your favorite text editor and notice how it contains
Dublin Core metadata transformed from the original CIMI data.

B. Install OAI scripts

1. Assuming that Perl, a scripting language, is already installed on your computer, copy the dir-
ectory named oai from the CD to your newly created directory on the desktop.

2. Copy all the newly created XML files from the first part of this exercise into the directory
named data found in the newly created oai directory.

3. Change directories to the newly created CIMI directory, open the file named config.xml in
your text editor, change the value of adminEmail, and save the changes.

Harvesting metadata with OAI-PMH

118

4. Run the Perl script named oai.pl and give the script input such as verb=Identify,
verb=ListSets, verb=GetRecord&identifier=oai:water:brides-bay&metadataPrefix=oai_dc, or
verb=ListRecords&metadataPrefix=oai_dc. The output should be standard OAI-PMH XML
streams. You're more than half way there.

C. Make scripts available via the Web

1. Assuming a Web server is installed on your computer, copy the oai directory to a place where
its contents can be read by the server.

2. Open your Web browser and try opening a connection to the oai.pl script. The URL will look
something like this: http://www.example.edu/cgi-bin/oai/oai.pl.

3. Try additional URLs but this time include the verbs from the second part of this exercise,
above. You should see good o' XML streams in the form of OAI-PMH responses.

4. Use the Open Archives Initiative - Repository Explorer at ht-
tp://oai.dlib.vt.edu/cgi-bin/Explorer/oai2.0/testoai to test your newly created OAI repository,
and congratulations, you have made a set of data available via OAI-PMH.

Exercise - Making MARCXML data available via
OAI

As an extra exercise transform MARCXML data into simple OAI files and make them available via the
OAI protocol. This exercise is based on the previous exercise.

1. Use your text editor to open xslt/MARC21slim2OAIDC.xsl. This stylesheet was created by the
good folks at the Library of Congress.

2. Use xsltproc to use the stylesheet to transform a previously created MARCXML file: xsltproc xslt/
MARC21slim2OAIDC.xsl xml-data/marc/many/milne-when-1071456632.xml . The output will
be a simple OAI stream in Dublin Core data.

3. Use xsltproc to save a number of file transformations to the data directory of the oai directory of the
previous exercise. For example:

• xsltproc xslt/MARC21slim2OAIDC.xsl xml-data/marc/many/milne-when-1071456632.xml
> /oai/data/milne-when-1071456632.xml

• xsltproc xslt/MARC21slim2OAIDC.xsl xml-
data/marc/many/mumford-herman-1072061308.xml > /
oai/data/mumford-herman-1072061308.xml

• xsltproc xslt/MARC21slim2OAIDC.xsl xml-
data/marc/many/feiler-making-1074959890.xml > /oai/data/feiler-making-1074959890.xml

• xsltproc xslt/MARC21slim2OAIDC.xsl xml-
data/marc/many/willinger-red-1072543737.xml > /oai/data/willinger-red-1072543737.xml

Harvesting metadata with OAI-PMH

119

4. Use the Repository Explorer from the previous exercise to see your newly created data.

Conclusion
This article outlined the intended purpose of the Open Archives Initiative (OAI) protocol coupled with a
few examples. Given this introduction you may very well now be able to read the specifications and be-
come a data provider. A more serious challenge includes becoming a service provider, and while Google
may provide excellent searching mechanisms for the Internet as a whole, services implementing OAI
can provide more specialized ways of exposing the "hidden Web".

Harvesting metadata with OAI-PMH

120

Appendix B. An Introduction to the
Search/Retrieve URL Service (SRU)

Note: This is a pre-edited version of an article appearing in Ariadne. It describes sibling Web Service
protocols designed to define a standard form for Internet search queries as well as the structure of the re-
sponses.

Introduction
This article is an introduction to the "brother and sister" Web Service protocols named Search/Retrieve
Web Service (SRW) and Search/Retrieve URL Service (SRU) with an emphasis on the later. More spe-
cifically, the article outlines the problems SRW/U are intended to solve, the similarities and differences
between SRW and SRU, the complimentary nature of the protocols with OAI-PMH, and how SRU is
being employed in a sponsored NSF (National Science Foundation) grant called OCKHAM to facilitate
an alerting service. The article is seasoned with a bit of XML and Perl code to illustrate the points. The
canonical home page describing SRW/U [1] is also a useful starting point.

The Problems SRW and SRU are Intended to
Solve

SRW and SRU are intended to define a standard form for Internet search queries as well as the structure
of the responses. The shape of existing queries illustrates the problem. The following URLs are searches
for 'dogs and cats' against three popular Internet search engines:

• http://www.google.com/search?hl=en&ie=ISO-8859-1&q=dogs+and+cats&btnG=Google+Search

• http://search.yahoo.com/search?fr=fp-pull-web-t&p=dogs+and+cats

• http://search.msn.com/results.aspx?FORM=MSNH&q=dogs%20and%20cats

Even though the queries are the same, the syntax implementing the queries is different. What is worse is
the structure of the responses. Each response not only contains search results but lots of formatting as
well. SRW and SRU address these shortcomings by specifying the syntax for queries and results. Such
specifications open up Internet-accessible search functions and allow for the creation of tools to explore
the content of the 'hidden Web' more effectively. SRW/U allow people and HTTP user agents to query

121

Internet databases more seamlessly without the need of more expensive and complicated meta-search
protocols.

SRW and SRU as Web Services
SRW/U are Web Services-based protocols for querying Internet indexes or databases and returning
search results. Web Services essentially come in two flavours: REST (Representational State Transfer)
and SOAP (Simple Object Access Protocol). A "REST-ful" Web Service usually encodes commands
from a client to a server in the query string of a URL. Each name/value pair of the query string specifies
a set of input parameters for the server. Once received, the server parses these name/value pairs, does
some processing using them as input, and returns the results as an XML stream. The shape of the query
string as well as the shape of the XML stream are dictated by the protocol. By definition, the communic-
ation process between the client and the server is facilitated over an HTTP connection.

OAI-PMH is an excellent example of a REST-ful Web Service. While OAI 'verbs' can be encoded as
POST requests in an HTTP header, they are usually implemented as GET requests. These verbs act as
commands for the OAI data repository which responds to them with a specific XML schema. "SOAP-
ful" Web Services work in a similar manner, except the name/value pairs of SOAP requests are encoded
in an XML SOAP 'envelope'. Similarly, SOAP servers return responses using the SOAP XML vocabu-
lary. The biggest difference between REST-ful Web Services and SOAP requests is the transport mech-
anism. REST-ful Web Services are always transmitted via HTTP. SOAP requests and responses can be
used by many other transport mechanisms including email, SSH (Secure Shell), telnet, as well as HTTP.

Web Services essentially send requests for information from a client to a server. The server reads the in-
put, processes it, and returns the results as an XML stream back to the client. REST-ful Web Services
encode the input usually in the shape of URLs. SOAP requests are marked up in a SOAP XML vocabu-
lary. REST-ful Web Services return XML streams of varying shapes. SOAP Web Services return SOAP
XML streams. Many people think implementing REST-ful Web Service is easier because it is simpler to
implement and requires less overhead. SOAP is more robust and can be implemented in a larger number
of networked environments.

SRW is a SOAP-ful Web Service. SRU is a REST-ful Web service. Despite the differences in imple-
mentation, they are really very similar since they both define a similar set of commands (known as "oper-
ations") and responses. Where OAI-PMH defines six 'verbs', SRW/U support three 'operations': explain,
scan, and searchRetrieve. Like OAI, each operation is qualified with one or more additional name/value
pairs.

Explain
Explain operations are requests sent by clients as a way of learning about the server's database/index as
well as its functionality. At a minimum, responses to explain operations return the location of the data-
base, a description of what the database contains, and what features of the protocol the server supports.
Implemented in SRU, empty query strings on a URL are interpreted as an explain operation. When ex-
plicitly stated, a version parameter must be present. Therefore, at a minimum, explain operations can be
implemented in one of two ways:

• http://example.org/

• http://example.org/?operation=explain&version=1.1

An example SRU response from an explain operation might look like the text below. It denotes:

• the server supports version 1.1 of the protocol

An Introduction to the Search/Retrieve URL
Service (SRU)

122

• records in this response are encoded in a specific DTD and records are encoded as XML within the
entire XML stream

• the server can be found at a specific location

• the database is (very) briefly described

• the database supports only title searching

• the database returns records using Dublin Core

• the system will return no more than 9999 records at one time

<explainResponse>
<version>1.1</version>
<record>
<recordSchema>http://explain.z3950.org/dtd/2.0/</recordSchema>
<recordPacking>xml</recordPacking>
<recordData>
<explain>
<serverInfo>
<host>example.org</host>
<port>80</port>
<database>/</database>

</serverInfo>
<databaseInfo>
<title>An example SRU service</title>
<description lang='en' primary='true'>
This is an example SRU service.

</description>
</databaseInfo>
<indexInfo>
<set identifier='info:srw/cql-context-set/1/dc-v1.1' name='dc' />
<index>
<title>title</title>
<map>
<name set='dc'>title</name>

</map>
</index>

</indexInfo>
<schemaInfo>
<schema identifier='info:srw/schema/1/dc-v1.1'
sort='false' name='dc'>
<title>Dublin Core</title>

</schema>
</schemaInfo>
<configInfo>
<default type='numberOfRecords'>9999</default>

</configInfo>
</explain>
</recordData>

</record>
</explainResponse>
</section>

Scan

An Introduction to the Search/Retrieve URL
Service (SRU)

123

Scan operations list and enumerate the terms found in the remote database's index. Clients send scan re-
quests and servers return lists of terms. The process is akin to browsing a back-of-the-book index where
a person looks up a term in the back of a book and 'scans' the entries surrounding the term. At a minim-
um, scan operations must include a scan clause (scanClause) and a version number parameter. The scan
clause contains the term to look for in the index. A rudimentary request and response follow:

http://example.org/?operation=scan&scanClause=dog&version=1.1

<scanResponse>
<version>1.1</version>
<terms>
<term>
<value>doesn't</value>
<numberOfRecords>1</numberOfRecords>

</term>
<term>
<value>dog</value>
<numberOfRecords>1</numberOfRecords>

</term>
<term>
<value>dogs</value>
<numberOfRecords>2</numberOfRecords>

</term>
</terms>

</scanResponse>
</section>

SearchRetieve
SearchRetrieve operations are the heart of the matter. They provide the means to query the remote data-
base and return search results. Queries must be articulated using the Common Query Language (CQL)
[2]. These queries can range from simple free text searches to complex Boolean operations with nested
queries and proximity qualifications.

Servers do not have to implement every aspect of CQL, but they have to know how to return diagnostic
messages when something is requested but not supported. The results of searchRetrieve operations can
be returned in any number of formats, as specified via explain operations. Examples might include struc-
tured but plain text streams or data marked up in XML vocabularies such as Dublin Core, MARCXML,
MODS (Metadata Object Description Schema), etc. Below is a simple request for documents matching
the free text query 'dogs':

http://example.org/?operation=searchRetrieve&query=dog&version=1.1

In this case, the server returns three (3) hits and by default includes Dublin Core title and identifier ele-
ments. The record itself is marked up in some flavor of XML as opposed to being encapsulated as a
string embedded the XML:

<searchRetrieveResponse>
<version>1.1</version>
<numberOfRecords>3</numberOfRecords>
<records>
<record>
<recordSchema>info:srw/schema/1/dc-v1.1</recordSchema>

An Introduction to the Search/Retrieve URL
Service (SRU)

124

<recordPacking>xml</recordPacking>
<recordData>
<dc>
<title>The bottom dog</title>
<identifier>http://example.org/bottom.html</identifier>

</dc>
</recordData>

</record>
<record>
<recordSchema>info:srw/schema/1/dc-v1.1</recordSchema>
<recordPacking>xml</recordPacking>
<recordData>
<dc>
<title>Dog world</title>
<identifier>http://example.org/dog.html</identifier>

</dc>
</recordData>

</record>
<record>
<recordSchema>info:srw/schema/1/dc-v1.1</recordSchema>
<recordPacking>xml</recordPacking>
<recordData>
<dc>
<title>My Life as a Dog</title>
<identifier>http://example.org/my.html</identifier>

</dc>
</recordData>

</record>
</records>

</searchRetrieveResponse>

A Sample Application: Journal Locator
In an attempt to learn more about SRU, the author created a simple SRU interface to an index of journal
titles, holdings, and locations. Like many academic libraries, the University Libraries of Notre Dame
subscribe to physical and electronic journals. Many of the electronic journals are accessible through ag-
gregated indexes such as Ebscohost Academic Search Elite. Since the content of these aggregated in-
dexes is in a constant state of flux, it is notoriously difficult to use traditional catalogueuing techniques
to describe journal holdings. Consequently, the Libraries support the finding of journal titles through its
catalogue as well as through tools/services such as SFX (Special Effects) and SerialsSolutions. Unfortu-
nately, when patrons ask the question "Does the library have access to journal...?", they need to consult
two indexes: the catalogue and an interface to SFX.

Journal Locator is an example application intended to resolve this problem by combining the holdings in
the catalogue with the holdings in SFX into a single search interface. By searching this combined index,
patrons are presented with a list of journal titles, holding statements, and locations where the titles can
be found. The whole thing is analogous to those large computer printouts created in the early to mid-
1980s listing a library's journal holdings. Here is the process for creating Journal Locator:

1. dump sets of MARC records encoded as serials from the catalogue

2. transform the MARC records into sets of simple XHTML files

3. dump sets of SFX records as an XML file

4. transform the XML file into more sets of simple XHTML files

An Introduction to the Search/Retrieve URL
Service (SRU)

125

5. index all the XHTML files

6. provide an SRU interface to search the index

Here at the Notre Dame we use scripts written against a Perl module called MARC::Record [3] to con-
vert MARC data into XHTML. We use xsltproc [4] to transform XML output from SFX into more
XHTML. We use swish-e [5] to index the XHTML, and finally, we use a locally written Perl script to
implement an SRU interface to the index. The interface is pretty much the basic vanilla flavour, i.e. sup-
porting only explain and searchResponse operations. It returns raw XML with an associated XSLT
(Extensible Stylesheet Language Transformations) stylesheet, and consequently the interface assumes
the patron is using a relatively modern browser with a built-in XSLT processor. Journal Locator is not a
production service.

A rudimentary SRU explain operation returns an explain response. The response is expected to be trans-
formed by the XSLT stylesheet specified in the output into an XHTML form. Queries submitted through
the form are sent to the server as SRU searchRetrieve operations. Once the query string of the URL is
parsed by the server, the search statement is passed on to a subroutine. This routine searches the index,
formats the results, and returns them accordingly. An example SRU searchRetrieve request may include:

http://dewey.library.nd.edu/morgan/sru/search.cgi?operation=searchRetrieve&query=dog&version=1.1

Here is an abbreviated version of the search subroutine in the Perl script. Notice how it searches the in-
dex, initialises the XML output, loops through each search result, closes all the necessary elements, and
returns the result:

sub search {

get the input
my ($query, $style) = @_;

open the index
my $swish = SWISH::API->new($INDEX);

create a search object
my $search = $swish->New_Search_Object;

do the work
my $results = $search->Execute($query);

get the number of hits
my $hits = $results->Hits;

begin formatting the response
my $response = "<?xml version='1.0' ?>\n";
$response .= "<?xml-stylesheet type='text/xsl' href='$style' ?>\n";
$response .= "<searchRetrieveResponse>\n";
$response .= "<version>1.1</version>\n";
$response .= "<numberOfRecords>$hits</numberOfRecords>\n";

check for hits
if ($hits) {

process each found record
$response .= "<records>\n";
my $p = 0;
while (my $record = $results->NextResult) {

$response .= "<record>\n";
$response .= "<recordSchema>" .

An Introduction to the Search/Retrieve URL
Service (SRU)

126

"info:srw/schema/1/dc-v1.1</recordSchema>\n";
$response .= "<recordPacking>xml</recordPacking>\n";
$response .= "<recordData>\n";
$response .= "<dc>\n";
$response .= "<title>" .

&escape_entities($record->Property('title')) .
"</title>\n";

check for and process uri
if ($record->Property ('url')) {

$response .= "<identifier>" .
&escape_entities($record->Property('url')) .
"</identifier>\n"

}

get and process holdings
my $holding = $record->Property ('holding');
my @holdings = split (/\|/, $holding);
foreach my $h (@holdings) {

$response .= '<coverage>' . &escape_entities($h) . "</coverage>\n"

}

clean up
$response .= "</dc>\n";
$response .= "</recordData>\n";
$response .= "</record>\n";

increment the pointer and check
$p++;
last if ($input->param('maximumRecords') == $p);

}

close records
$response .= "</records>\n";

}

close response
$response .= "</searchRetrieveResponse>\n";

return it
return $response;

}

The result is an XML stream looking much like this:

<?xml version='1.0' ?>
<?xml-stylesheet type='text/xsl' href='etc/search.xsl' ?>
<searchRetrieveResponse>
<version>1.1</version>
<numberOfRecords>2</numberOfRecords>
<records>

An Introduction to the Search/Retrieve URL
Service (SRU)

127

<record>
<recordSchema>info:srw/schema/1/dc-v1.1</recordSchema>
<recordPacking>xml</recordPacking>
<recordData>
<dc>
<title>The bottom dog</title>
<coverage>
Microforms [Lower Level HESB] General Collection
Microfilm 3639 v.1:no.1 (1917:Oct. 20)-v.1:no.5
(1917:Nov. 17)

</coverage>
</dc>

</recordData>
</record>
<record>
<recordSchema>info:srw/schema/1/dc-v1.1</recordSchema>
<recordPacking>xml</recordPacking>
<recordData>
<dc>
<title>Dog world</title>
<identifier>
http://sfx.nd.edu:8889/ndu_local?genre=article&amp;
sid=ND:ejl_loc&amp;issn=0012-4893

</identifier>
<coverage>
EBSCO MasterFILE Premier:Full Text
(Availability: from 1998)

</coverage>
</dc>

</recordData>
</record>

</records>
</searchRetrieveResponse>

A nifty feature of SRW/U is the optional specification of an XSLT stylesheet by the user agent for trans-
forming the XML output. If a stylesheet is not specified, then the server can specify a stylesheet. This is
how the Journal Locator is implemented. The XML is returned and transformed using the stylesheet
defined in the second line of the output, the XML processing instruction pointing to 'etc/search.xsl'. Here
is the part of that stylesheet rendering the XML into an ordered list of titles, holdings, and locations:

<xsl:for-each select='//dc'>

<xsl:value-of select='title' />

<xsl:for-each select='coverage'>
<xsl:choose>
<xsl:when test='../identifier'>
<li class='holding'>
<a>
<xsl:attribute name='href'>
<xsl:value-of select='../identifier' />

</xsl:attribute>
<xsl:value-of select='.' />

</xsl:when>
<xsl:otherwise>

An Introduction to the Search/Retrieve URL
Service (SRU)

128

<li class='holding'>
<xsl:value-of select='.' />

</xsl:otherwise>

</xsl:choose>
</xsl:for-each>

</xsl:for-each>

Another nifty feature of SRW/U is the use of 'extra data parameters'. These parameters, always prefixed
with x- in an SRU URL, allow implementers to add additional functionality to their applications. The
author has used this option to create an x-suggest feature. By turning 'x-suggest' on (x-suggest=1), the
system will examine the number of hits returned from a query and attempt to suggest additional searches
ready for execution. For example, if the number of hits returned from a search is zero (0), then the ap-
plication will create alternative searches analogous to Google's popular Did You Mean? service by look-
ing up the user's search terms in a dictionary. If the number of hits is greater than twenty-five (25), then
the application will help users limit their search by suggesting alternative searches such as title searches
or phrase searches.

The next steps for Journal Locator are ambiguous. One one hand the integrated library system may be
able to support this functionality some time soon, but the solution will be expensive and quite likely not
exactly what we desire. On the other hand, a locally written solution will cost less in terms of cash out-
lays, but ongoing support may be an issue. In any event, Journal Locator provided a suitable venue for
SRU exploration.

SRW/U and OAI-PMH
SRW/U and OAI-PMH are complementary protocols. They have similar goals, namely, the retrieval of
metadata from remote hosts, but each provides functionality that the other does not. Both protocols have
similar 'about' functions. SRW/U's explain operation and OAI-PMH's identify verb both return charac-
teristics describing the properties of the remote service.

Both protocols have a sort of "browse" functionality. SRW/U has its scan function and OAI-PMH has
ListSets. Scan is like browsing a book's back-of-the-book index. ListSets is similar to reading a book's
table of contents.

SRW/U and OAI differ the most when it comes to retrieval. SRW/U provides a much more granular ap-
proach (precision) at the expense of constructing complex CQL queries. OAI-PMH is stronger on recall
allowing a person to harvest the sum total of data a repository has to offer using a combination of the
ListRecords and GetRecords verbs. This is implemented at the expense of gathering unwanted informa-
tion.

If a set of data were exposed via SRW/U as well as OAI-PMH, then SRW/U would be the tool to use if
a person wanted to extract only data crossing predefined sets. OAI-PMH would be more apropos if the
person wanted to get everything or predefined subsets of the data.

OCKHAM
There is a plan to use SRU as a means to implement an alerting service in a sponsored NSF grant called
OCKHAM [6]. The OCKHAM Project is lead by Martin Halbert (Emory University), Ed Fox (Virginia
Tech), Jeremey Frumkin (Oregon State), and the author. The goals of OCKHAM are three-fold:

An Introduction to the Search/Retrieve URL
Service (SRU)

129

• To articulate and draft a reference model describing digital library services

• To propose a number of light-weight protocols along the lines of OAI-PMH as a means to facilitate

• digital library services

• To implement a select number of digital library services exemplifying the use of the protocols

OCKHAM proposes a number of initial services to be implemented:

• a registry service

• an alerting service

• a browsing service

• a pathfinder service

• a search service

• a metadata conversion service

• a cataloguing service

Notre Dame is taking the lead in developing the alerting service -- a sort of current awareness applica-
tion allowing people to be kept abreast of newly available materials on the Internet. This is how the ser-
vice will work:

1. An institution (read 'library'), will create a list of OAI data repositories (URLs) containing informa-
tion useful to its clientele.

2. These URLs will be fed to an OAI harvester and the harvested information will be centrally stored.
Only a limited amount of information will be retained, namely information that is no older than
what the hosting institution defines as 'new.'

3. One or more sets of MARC records will be harvested from library catalogues and saved to the cent-
ral store as well. Again, only lists of 'new' items will be retained. As additional data is harvested the
older data is removed.

4. Users will be given the opportunity to create searches against the centralised store. These searches
will be saved on behalf of the user and executed on a regular basis with the results returned via
email, a Web page, an RSS feed, and/or some other format.

5. Repeat.

SRU URL's will be the format of the saved searches outlined in Step 4 above. These URLs will be con-
structed through an interface allowing the user to qualify their searches with things like author names,
titles, subject terms, free text terms or phrases, locations, and/or physical formats. By saving user pro-
files in the form of SRU URLs, patrons will be able to apply their profiles to other SRU-accessible in-
dexes simply by changing the host and path specifications.

The goal is to promote the use of SRU URLs as a way of interfacing with alerting services as unambigu-
ously and as openly as possible.

An Introduction to the Search/Retrieve URL
Service (SRU)

130

Summary
SRW and SRU are "brother and sister" standardised Web Service-based protocols for accomplishing the
task of querying Internet-accessible databases and returning search results. If index providers were to
expose their services via SRW and/or SRU, then the content of the 'hidden Web' would become more
accessible and there would be less of a need to constantly re-invent the interfaces to these indexes.

Acknowledgements
The author would like to thank the people on the ZNG mailing list for their assistance. They were in-
valuable during the learning process. Special thanks goes to Ralph Levan of OCLC who helped clarify
the meaning and purpose of XML packing.

References

1. The home page for SRW/U is http://www.loc.gov/z3950/agency/zing/srw/.

2. CQL is fully described at http://www.loc.gov/z3950/agency/zing/cql/.

3. The home page of MARC::Record is http://marc.sourceforge.net/.

4. Xsltproc is an application written against two C libraries called libxml and libxslt described at ht-
tp://xmlsoft.org/.

5. Swish-e is an indexer/search engine application with a C as well as a Perl interface. See: ht-
tp://swish-e.org/.

6. The canonical URL of OCKHAM is http://ockham.org/.

An Introduction to the Search/Retrieve URL
Service (SRU)

131

Appendix C. Selected readings
This is as short list of selected books and websites that can be used to suppliment your knowledge of
XML.

XML in general

1. XML in a Nutshell by Elliotte Rusty Harold - A great overview of XML.

2. XML for the World Wide Web by Elizabeth Castro - A step-by-step introduction to many things
XML. Very visual.

3. XML From the Inside Out [http://www.xml.com/] - A nice site filled with XML articles.

4. XML Tutorial [http://www.w3schools.com/xml/] - Test your skills with XML here.

5. DTD Tutorial [http://www.w3schools.com/dtd/] - Learn more about DTDs at this site.

6. Extensible Markup Language (XML) [http://www.w3.org/XML/] - The canonical home page for
XML.

7. STG XML Validation Form [http://www.stg.brown.edu/service/xmlvalid/] - Check to see of your
XML is correct here.

Cascading Style Sheets

1. Cascading Style Sheets, designing for the Web by Håkon Wium Lie - One of the more authoritative
books on CSS.

2. Cascading Style Sheets [http://www.w3.org/Style/CSS/] - The cononical home page of CSS.

3. W3C CSS Validation Service [http://jigsaw.w3.org/css-validator/] - Check your CSS files here.

4. CSS Tutorial [http://www.w3schools.com/css/] - Test your knowledge of CSS with this tutorial.

XSLT

1. XSLT Programmer's Reference by Michael Kay - The most authoritative reference for XSLT

2. Extensible Stylesheet Language (XSL) [http://www.w3.org/Style/XSL/] - The cononical homepage
for XSLT

3. XSL Tutorial [http://www.w3schools.com/xsl/] - These your XSLT skill here.

DocBook

1. DocDocBook, the definitive guide by Norman Walsh - A bit dated, but the best printed manual

132

http://www.xml.com/
http://www.w3schools.com/xml/
http://www.w3schools.com/dtd/
http://www.w3.org/XML/
http://www.stg.brown.edu/service/xmlvalid/
http://www.w3.org/Style/CSS/
http://jigsaw.w3.org/css-validator/
http://www.w3schools.com/css/
http://www.w3.org/Style/XSL/
http://www.w3schools.com/xsl/

about DocBook.

2. DocBook Open Repository [http://docbook.sourceforge.net/] - The best place to begin exploring
the Web for DocBook materials.

XHTML

1. Special Edition Using HTML and XHTML by Molly E. Holzchlag - A great overview of XHTML.

2. HyperText Markup Language (HTML) Home Page [http://www.w3.org/MarkUp/] - The cononical
home page for HTML.

3. MarkUp Validation Service [http://validator.w3.org/] - Check your HTML markup here.

RDF

1. Resource Description Framework (RDF) [http://www.w3.org/RDF/] - The cononical home page for
RDF.

2. RDF Validation Service [http://www.w3.org/RDF/Validator/] - Validate your RDF files here.

3. Dublin Core Metadata Initiative [http://www.dublincore.org/] - The official home page for the Dub-
lin Core.

4. Semantic Web Activity [http://www.w3.org/2000/01/sw/] - Describes the purpose and goal of the
Semantic Web.

EAD

1. Encoded Archival Description (EAD) [http://www.loc.gov/ead/] - The cononical home page for
EAD

2. EAD Cookbook [http://jefferson.village.virginia.edu/ead/cookbookhelp.html] - A great instruction
manual for things EAD.

TEI

1. TEI Website [http://www.tei-c.org/] - The official home page of TEI.

2. TEI Lite [http://www.tei-c.org/Lite/] - A thorough description of TEI Lite.

3. TEI Stylesheets [http://www.tei-c.org/Stylesheets/] - A short list of CSS and XSLT stylesheets for
TEI

Selected readings

133

http://docbook.sourceforge.net/
http://www.w3.org/MarkUp/
http://validator.w3.org/
http://www.w3.org/RDF/
http://www.w3.org/RDF/Validator/
http://www.dublincore.org/
http://www.w3.org/2000/01/sw/
http://www.loc.gov/ead/
http://jefferson.village.virginia.edu/ead/cookbookhelp.html
http://www.tei-c.org/
http://www.tei-c.org/Lite/
http://www.tei-c.org/Stylesheets/

OAI-PMH

1. Open Archives Initiative [http://www.openarchives.org/] - The cononcial home page for OAI-
PMH.

Selected readings

134

http://www.openarchives.org/

