
119

P A R T

II. A
d

va
nc

e
d

 Tc
l

 II

Advanced Tcl

Part II describes advanced programming techniques that support sophisticated
applications. The Tcl interfaces remain simple, so you can quickly construct pow-
erful applications.

Chapter 10 describes eval, which lets you create Tcl programs on the fly.
There are tricks with using eval correctly, and a few rules of thumb to make your
life easier.

Chapter 11 describes regular expressions. This is the most powerful string
processing facility in Tcl. This chapter includes a cookbook of useful regular
expressions.

Chapter 12 describes the library and package facility used to organize your
code into reusable modules.

Chapter 13 describes introspection and debugging. Introspection provides
information about the state of the Tcl interpreter.

Chapter 14 describes namespaces that partition the global scope for vari-
ables and procedures. Namespaces help you structure large Tcl applications.

Chapter 15 describes the features that support Internationalization, includ-
ing Unicode, other character set encodings, and message catalogs.

Chapter 16 describes event-driven I/O programming. This lets you run pro-
cess pipelines in the background. It is also very useful with network socket pro-
gramming, which is the topic of Chapter 17.

Chapter 18 describes TclHttpd, a Web server built entirely in Tcl. You can
build applications on top of TclHttpd, or integrate the server into existing appli-
cations to give them a web interface. TclHttpd also supports regular Web sites.

Chapter 19 describes Safe-Tcl and using multiple Tcl interpreters. You can
create multiple Tcl interpreters for your application. If an interpreter is safe,
then you can grant it restricted functionality. This is ideal for supporting net-
work applets that are downloaded from untrusted sites.

Blank page 120

121

C H A P T E R

II. A
d

va
nc

e
d

 Tc
l

 10

Quoting Issues and Eval 10

This chapter describes explicit calls to the interpreter with the eval command.
An extra round of substitutions is performed that results in some useful
effects. The chapter describes the quoting problems with eval and the
ways to avoid them. The uplevel command evaluates commands in a
different scope. The subst command does substitutions but no
command invocation.

Dynamic evaluation makes Tcl flexible
and powerful, but it can be tricky to use properly. The basic idea is that you cre-
ate a string and then use the eval command to interpret that string as a com-
mand or a series of commands. Creating program code on the fly is easy with an
interpreted language like Tcl, and very hard, if not impossible, with a statically
compiled language like C++ or Java. There are several ways that dynamic code
evaluation is used in Tcl:

• In some cases, a simple procedure isn’t quite good enough, and you need to
glue together a command from a few different pieces and then execute the
result using eval. This often occurs with wrappers, which provide a thin
layer of functionality over existing commands.

• Callbacks are script fragments that are saved and evaluated later in
response to some event. Examples include the commands associated with
Tk buttons, fileevent I/O handlers, and after timer handlers. Callbacks
are a flexible way to link different parts of an application together.

• You can add new control structures to Tcl using the uplevel command. For
example, you can write a function that applies a command to each line in a
file or each node in a tree.

• You can have a mixture of code and data, and just process the code part with
the subst command. For example, this is useful in HTML templates
described in Chapter 18. There are also some powerful combinations of
subst and regsub described in Chapter 11.

122 Quoting Issues and Eval Chap. 10

Constructing Code with the list Command

It can be tricky to assemble a command so that it is evaluated properly by eval.
The same difficulties apply to commands like after, uplevel, and the Tk send
command, all of which have similar properties to eval, except that the command
evaluation occurs later or in a different context. Constructing commands dynam-
ically is a source of many problems. The worst part is that you can write code
that works sometimes but not others, which can be very confusing.

Use list when constructing commands.
The root of the quoting problems is the internal use of concat by eval and

similar commands to concatenate their arguments into one command string. The
concat can lose some important list structure so that arguments are not passed
through as you expect. The general strategy to avoid these problems is to use
list and lappend to explicitly form the command callback as a single, well-struc-
tured list.

The eval Command

The eval command results in another call to the Tcl interpreter. If you con-
struct a command dynamically, you must use eval to interpret it. For example,
suppose we want to construct the following command now but execute it later:

puts stdout "Hello, World!"

In this case, it is sufficient to do the following:
set cmd {puts stdout "Hello, World!"}

=> puts stdout "Hello, World!"

sometime later...

eval $cmd

=> Hello, World!

In this case, the value of cmd is passed to Tcl. All the standard grouping and sub-
stitution are done again on the value, which is a puts command.

However, suppose that part of the command is stored in a variable, but that
variable will not be defined at the time eval is used. We can artificially create
this situation like this:

set string "Hello, World!"

set cmd {puts stdout $string}

=> puts stdout $string

unset string

eval $cmd

=> can’t read "string": no such variable

In this case, the command contains $string. When this is processed by eval, the
interpreter looks for the current value of string, which is undefined. This exam-
ple is contrived, but the same problem occurs if string is a local variable, and
cmd will be evaluated later in the global scope.

A common mistake is to use double quotes to group the command. That will

Constructing Code with the list Command 123
II. A

d
va

nc
e

d
 Tc

l

let $string be substituted now. However, this works only if string has a simple
value, but it fails if the value of string contains spaces or other Tcl special char-
acters:

set cmd "puts stdout $string"

=> puts stdout Hello, World!

eval $cmd

=> bad argument "World!": should be "nonewline"

The problem is that we have lost some important structure. The identity of
$string as a single argument gets lost in the second round of parsing by eval.
The solution to this problem is to construct the command using list, as shown
in the following example:

Example 10–1 Using list to construct commands.

set string "Hello, World!"
set cmd [list puts stdout $string]
=> puts stdout {Hello, World!}
unset string
eval $cmd
=> Hello, World!

The trick is that list has formed a list containing three elements: puts,
stdout, and the value of string. The substitution of $string occurs before list
is called, and list takes care of grouping that value for us. In contrast, using
double quotes is equivalent to:

set cmd [concat puts stdout $string]

Double quotes lose list structure.
The problem here is that concat does not preserve list structure. The main

lesson is that you should use list to construct commands if they contain vari-
able values or command results that must be substituted now. If you use double
quotes, the values are substituted but you lose proper command structure. If you
use curly braces, then values are not substituted until later, which may not be in
the right context.

Commands That Concatenate Their Arguments

The uplevel, after and send commands concatenate their arguments into
a command and execute it later in a different context. The uplevel command is
described on page 130, after is described on page 218, and send is described on
page 560. Whenever I discover such a command, I put it on my danger list and
make sure I explicitly form a single command argument with list instead of let-
ting the command concat items for me. Get in the habit now:

after 100 [list doCmd $param1 $param2]

send $interp [list doCmd $param1 $param2];# Safe!

The danger here is that concat and list can result in the same thing, so

124 Quoting Issues and Eval Chap. 10

you can be led down the rosy garden path only to get errors later when values
change. The two previous examples always work. The next two work only if
param1 and param2 have values that are single list elements:

after 100 doCmd $param1 $param2

send $interp doCmd $param1 $param2;# Unsafe!

If you use other Tcl extensions that provide eval-like functionality, care-
fully check their documentation to see whether they contain commands that
concat their arguments into a command. For example, Tcl-DP, which provides a
network version of send, dp_send, also uses concat.

Commands That Use Callbacks

The general strategy of passing out a command or script to call later is a
flexible way to assemble different parts of an application, and it is widely used by
Tcl commands. Examples include commands that are called when users click on
Tk buttons, commands that are called when I/O channels have data ready, or
commands that are called when clients connect to network servers. It is also easy
to write your own procedures or C extensions that accept scripts and call them
later in response to some event.

These other callback situations may not appear to have the "concat prob-
lem" because they take a single script argument. However, as soon as you use
double quotes to group that argument, you have created the concat problem all
over again. So, all the caveats about using list to construct these commands
still apply.

Command Prefix Callbacks

There is a variation on command callbacks called a command prefix. In this
case, the command is given additional arguments when it is invoked. In other
words, you provide only part of the command, the command prefix, and the mod-
ule that invokes the callback adds additional arguments before using eval to
invoke the command.

For example, when you create a network server, you supply a procedure
that is called when a client makes a connection. That procedure is called with
three additional arguments that indicate the client’s socket, IP address, and port
number. This is described in more detail on page 227. The tricky thing is that you
can define your callback procedure to take four (or more) arguments. In this case
you specify some of the parameters when you define the callback, and then the
socket subsystem specifies the remaining arguments when it makes the callback.
The following command creates the server side of a socket:

set virtualhost www.beedub.com

socket -server [list Accept $virtualhost] 8080

However, you define the Accept procedure like this:
proc Accept {myname sock ipaddr port} { ... }

The myname parameter is set when you construct the command prefix. The

Constructing Code with the list Command 125
II. A

d
va

nc
e

d
 Tc

l

remaining parameters are set when the callback is invoked. The use of list in
this example is not strictly necessary because "we know" that virtualhost will
always be a single list element. However, using list is just a good habit when
forming callbacks, so I always write the code this way.

There are many other examples of callback arguments that are really com-
mand prefixes. Some of these include the scrolling callbacks between Tk scroll-
bars and their widgets, the command aliases used with Safe Tcl, the sorting
functions in lsort, and the completion callback used with fcopy. Example 13–6
on page 181 shows how to use eval to make callbacks from Tcl procedures.

Constructing Procedures Dynamically

The previous examples have all focused on creating single commands by
using list operations. Suppose you want to create a whole procedure dynamically.
Unfortunately, this can be particularly awkward because a procedure body is not
a simple list. Instead, it is a sequence of commands that are each lists, but they
are separated by newlines or semicolons. In turn, some of those commands may
be loops and if commands that have their own command bodies. To further com-
pound the problem, you typically have two kinds of variables in the procedure
body: some that are to be used as values when constructing the body, and some
that are to be used later when executing the procedure. The result can be very
messy.

The main trick to this problem is to use either format or regsub to process a
template for your dynamically generated procedure. If you use format, then you
can put %s into your templates where you want to insert values. You may find the
positional notation of the format string (e.g., %1$s and %2$s) useful if you need to
repeat a value in several places within your procedure body. The following exam-
ple is a procedure that generates a new version of other procedures. The new ver-
sion includes code that counts the number of times the procedure was called and
measures the time it takes to run:

Example 10–2 Generating procedures dynamically with a template.

proc TraceGen {procName} {
rename $procName $procName-orig
set arglist {}
foreach arg [info args $procName-orig] {

append arglist "\$$arg "
}
proc $procName [info args $procName-orig] [format {

global _trace_count _trace_msec
incr _trace_count(%1$s)
incr _trace_msec(%1$s) [lindex [time {

set result [%1$s-orig %2$s]
} 1] 0]
return $result

} $procName $arglist]
}

126 Quoting Issues and Eval Chap. 10

Suppose that we have a trivial procedure foo:
proc foo {x y} {

return [expr $x * $y]

}

If you run TraceGen on it and look at the results, you see this:
TraceGen foo

info body foo

=>

global _trace_count _trace_msec

incr _trace_count(foo)

incr _trace_msec(foo) [lindex [time {

set result [foo-orig $x $y]

} 1] 0]

return $result

Exploiting the concat inside eval

The previous section warns about the danger of concatenation when forming
commands. However, there are times when concatenation is done for good rea-
son. This section illustrates cases where the concat done by eval is useful in
assembling a command by concatenating multiple lists into one list. A concat is
done internally by eval when it gets more than one argument:

eval list1 list2 list3 ...

The effect of concat is to join all the lists into one list; a new level of list
structure is not added. This is useful if the lists are fragments of a command. It
is common to use this form of eval with the args construct in procedures. Use
the args parameter to pass optional arguments through to another command.
Invoke the other command with eval, and the values in $args get concatenated
onto the command properly. The special args parameter is illustrated in Example
7–2 on page 82.

Using eval in a Wrapper Procedure.

Here, we illustrate the use of eval and $args with a simple Tk example. In
Tk, the button command creates a button in the user interface. The button com-
mand can take many arguments, and commonly you simply specify the text of
the button and the Tcl command that is executed when the user clicks on the
button:

button .foo -text Foo -command foo

After a button is created, it is made visible by packing it into the display.
The pack command can also take many arguments to control screen placement.
Here, we just specify a side and let the packer take care of the rest of the details:

pack .foo -side left

Exploiting the concat inside eval 127
II. A

d
va

nc
e

d
 Tc

l

Even though there are only two Tcl commands to create a user interface
button, we will write a procedure that replaces the two commands with one. Our
first version might be:

proc PackedButton {name txt cmd} {

button $name -text $txt -command $cmd

pack $name -side left

}

This is not a very flexible procedure. The main problem is that it hides the
full power of the Tk button command, which can really take about 20 widget con-
figuration options, such as -background, -cursor, -relief, and more. They are
listed on page 391. For example, you can easily make a red button like this:

button .foo -text Foo -command foo -background red

A better version of PackedButton uses args to pass through extra configu-
ration options to the button command. The args parameter is a list of all the
extra arguments passed to the Tcl procedure. My first attempt to use $args
looked like this, but it was not correct:

proc PackedButton {name txt cmd args} {

button $name -text $txt -command $cmd $args

pack $name -side left

}

PackedButton .foo "Hello, World!" {exit} -background red

=> unknown option "-background red"

The problem is that $args is a list value, and button gets the whole list as a
single argument. Instead, button needs to get the elements of $args as individ-
ual arguments.

Use eval with $args
In this case, you can use eval because it concatenates its arguments to form

a single list before evaluation. The single list is, by definition, the same as a sin-
gle Tcl command, so the button command parses correctly. Here we give eval
two lists, which it joins into one command:

eval {button $name -text $txt -command $cmd} $args

The use of the braces in this command is discussed in more detail below. We
also generalize our procedure to take some options to the pack command. This
argument, pack, must be a list of packing options. The final version of Packed-
Button is shown in Example 10–3:

Example 10–3 Using eval with $args.

PackedButton creates and packs a button.
proc PackedButton {path txt cmd {pack {-side right}} args} {

eval {button $path -text $txt -command $cmd} $args
eval {pack $path} $pack

}

128 Quoting Issues and Eval Chap. 10

In PackedButton, both pack and args are list-valued parameters that are
used as parts of a command. The internal concat done by eval is perfect for this
situation. The simplest call to PackedButton is:

PackedButton .new "New" { New }

The quotes and curly braces are redundant in this case but are retained to
convey some type information. The quotes imply a string label, and the braces
imply a command. The pack argument takes on its default value, and the args
variable is an empty list. The two commands executed by PackedButton are:

button .new -text New -command New

pack .new -side right

PackedButton creates a horizontal stack of buttons by default. The packing
can be controlled with a packing specification:

PackedButton .save "Save" { Save $file } {-side left}

The two commands executed by PackedButton are:
button .new -text Save -command { Save $file }

pack .new -side left

The remaining arguments, if any, are passed through to the button com-
mand. This lets the caller fine-tune some of the button attributes:

PackedButton .quit Quit { Exit } {-side left -padx 5} \

-background red

The two commands executed by PackedButton are:
button .quit -text Quit -command { Exit } -background red

pack .quit -side left -padx 5

You can see a difference between the pack and args argument in the call to
PackedButton. You need to group the packing options explicitly into a single
argument. The args parameter is automatically made into a list of all remaining
arguments. In fact, if you group the extra button parameters, it will be a mis-
take:

PackedButton .quit Quit { Exit } {-side left -padx 5} \

{-background red}

=> unknown option "-background red"

Correct Quoting with eval

What about the peculiar placement of braces in PackedButton?
eval {button $path -text $txt -command $cmd} $args

By using braces, we control the number of times different parts of the com-
mand are seen by the Tcl evaluator. Without any braces, everything goes through
two rounds of substitution. The braces prevent one of those rounds. In the above
command, only $args is substituted twice. Before eval is called, the $args is
replaced with its list value. Then, eval is invoked, and it concatenates its two list
arguments into one list, which is now a properly formed command. The second
round of substitutions done by eval replaces the txt and cmd values.

Do not use double quotes with eval.

Exploiting the concat inside eval 129
II. A

d
va

nc
e

d
 Tc

l

You may be tempted to use double quotes instead of curly braces in your
uses of eval. Don’t give in! Using double quotes is, mostly likely, wrong. Suppose
the first eval command is written like this:

eval "button $path -text $txt -command $cmd $args"

Incidentally, the previous is equivalent to:
eval button $path -text $txt -command $cmd $args

These versions happen to work with the following call because txt and cmd
have one-word values with no special characters in them:

PackedButton .quit Quit { Exit }

The button command that is ultimately evaluated is:
button .quit -text Quit -command { Exit }

In the next call, an error is raised:
PackedButton .save "Save As" [list Save $file]
=> unknown option "As"

This is because the button command is this:
button .save -text Save As -command Save /a/b/c

But it should look like this instead:
button .save -text {Save As} -command {Save /a/b/c}

The problem is that the structure of the button command is now wrong.
The value of txt and cmd are substituted first, before eval is even called, and
then the whole command is parsed again. The worst part is that sometimes
using double quotes works, and sometimes it fails. The success of using double
quotes depends on the value of the parameters. When those values contain
spaces or special characters, the command gets parsed incorrectly.

Braces: the one true way to group arguments to eval.
To repeat, the safe construct is:

eval {button $path -text $txt -command $cmd} $args

The following variations are also correct. The first uses list to do quoting
automatically, and the others use backslashes or braces to prevent the extra
round of substitutions:

eval [list button $path -text $txt -command $cmd] $args
eval button \$path -text \$txt -command \$cmd $args
eval button {$path} -text {$txt} -command {$cmd} $args

Finally, here is one more incorrect approach that tries to quote by hand:
eval "button {$path} -text {$txt} -command {$cmd} $args"

The problem above is that quoting is not always done with curly braces. If a
value contains an unmatched curly brace, Tcl would have used backslashes to
quote it, and the above command would raise an error:

set blob "foo\{bar space"
=> foo{bar space
eval "puts {$blob}"
=> missing close brace
eval puts {$blob}
=> foo{bar space

130 Quoting Issues and Eval Chap. 10

The uplevel Command

The uplevel command is similar to eval, except that it evaluates a command in
a different scope than the current procedure. It is useful for defining new control
structures entirely in Tcl. The syntax for uplevel is:

uplevel ?level? command ?list1 list2 ...?

As with upvar, the level parameter is optional and defaults to 1, which
means to execute the command in the scope of the calling procedure. The other
common use of level is #0, which means to evaluate the command in the global
scope. You can count up farther than one (e.g., 2 or 3), or count down from the
global level (e.g., #1 or #2), but these cases rarely make sense.

When you specify the command argument, you must be aware of any substi-
tutions that might be performed by the Tcl interpreter before uplevel is called.
If you are entering the command directly, protect it with curly braces so that sub-
stitutions occur in the other scope. The following affects the variable x in the
caller’s scope:

uplevel {set x [expr $x + 1]}

However, the following will use the value of x in the current scope to define
the value of x in the calling scope, which is probably not what was intended:

uplevel "set x [expr $x + 1]"

If you are constructing the command dynamically, again use list. This
fragment is used later in Example 10–4:

uplevel [list foreach $args $valueList {break}]

It is common to have the command in a variable. This is the case when the
command has been passed into your new control flow procedure as an argument.
In this case, you should evaluate the command one level up. Put the level in
explicitly to avoid cases where $cmd looks like a number!

uplevel 1 $cmd

Another common scenario is reading commands from users as part of an
application. In this case, you should evaluate the command at the global scope.
Example 16–2 on page 220 illustrates this use of uplevel:

uplevel #0 $cmd

If you are assembling a command from a few different lists, such as the
args parameter, then you can use concat to form the command:

uplevel [concat $cmd $args]

The lists in $cmd and $args are concatenated into a single list, which is a
valid Tcl command. Like eval, uplevel uses concat internally if it is given extra
arguments, so you can leave out the explicit use of concat. The following com-
mands are equivalent:

uplevel [concat $cmd $args]

uplevel "$cmd $args"

uplevel $cmd $args

Example 10–4 shows list assignment using the foreach trick described on
Page 75. List assignment is useful if a command returns several values in a list.

The uplevel Command 131
II. A

d
va

nc
e

d
 Tc

l

The lassign procedure assigns the list elements to several variables. The las-
sign procedure hides the foreach trick, but it must use the uplevel command so
that the loop variables get assigned in the correct scope. The list command is
used to construct the foreach command that is executed in the caller’s scope.
This is necessary so that $variables and $values get substituted before the
command is evaluated in the other scope.

Example 10–4 lassign: list assignment with foreach.

Assign a set of variables from a list of values.
If there are more values than variables, they are returned.
If there are fewer values than variables,
the variables get the empty string.

proc lassign {valueList args} {
if {[llength $args] == 0} {

error "wrong # args: lassign list varname ?varname..?"
}
if {[llength $valueList] == 0} {

Ensure one trip through the foreach loop
set valueList [list {}]

}
uplevel 1 [list foreach $args $valueList {break}]
return [lrange $valueList [llength $args] end]

}

Example 10–5 illustrates a new control structure with the File_Process
procedure that applies a callback to each line in a file. The call to uplevel allows
the callback to be concatenated with the line to form the command. The list
command is used to quote any special characters in line, so it appears as a sin-
gle argument to the command.

Example 10–5 The File_Process procedure applies a command to each line of a file.

proc File_Process {file callback} {
set in [open $file]
while {[gets $file line] >= 0} {

uplevel 1 $callback [list $line]
}
close $in

}

What is the difference between these two commands?
uplevel 1 [list $callback $line]

uplevel 1 $callback [list $line]

The first form limits callback to be the name of the command, while the second
form allows callback to be a command prefix. Once again, what is the bug with
this version?

uplevel 1 $callback $line

132 Quoting Issues and Eval Chap. 10

The arbitrary value of $line is concatenated to the callback command, and it is
likely to be a malformed command when executed.

The subst Command

The subst command is useful when you have a mixture of Tcl commands, Tcl
variable references, and plain old data. The subst command looks through the
data for square brackets, dollar signs, and backslashes, and it does substitutions
on those. It leaves the rest of the data alone:

set a "foo bar"

subst {a=$a date=[exec date]}

=> a=foo bar date=Thu Dec 15 10:13:48 PST 1994

The subst command does not honor the quoting effect of curly braces. It
does substitutions regardless of braces:

subst {a=$a date={[exec date]}}

=> a=foo bar date={Thu Dec 15 10:15:31 PST 1994}

You can use backslashes to prevent variable and command substitution.
subst {a=\$a date=\[exec date]}

=> a=$a date=[exec date]

You can use other backslash substitutions like \uXXXX to get Unicode char-
acters, \n to get newlines, or \-newline to hide newlines.

The subst command takes flags that limit the substitutions it will perform.
The flags are -nobackslashes, -nocommands, or -novariables. You can specify
one or more of these flags before the string that needs to be substituted:

subst -novariables {a=$a date=[exec date]}

=> a=$a date=Thu Dec 15 10:15:31 PST 1994

String Processing with subst

The subst command can be used with the regsub command to do efficient,
two-step string processing. In the first step, regsub is used to rewrite an input
string into data with embedded Tcl commands. In the second step, subst or eval
replaces the Tcl commands with their result. By artfully mapping the data into
Tcl commands, you can dynamically construct a Tcl script that processes the
data. The processing is efficient because the Tcl parser and the regular expres-
sion processor have been highly tuned. Chapter 11 has several examples that use
this technique.

133

C H A P T E R

II. A
d

va
nc

e
d

 Tc
l

 11

Regular Expressions 11

This chapter describes regular expression pattern matching and string
processing based on regular expression substitutions. These features
provide the most powerful string processing facilities in Tcl. Tcl
commands described are: regexp and regsub.

Regular expressions are a formal way to
describe string patterns. They provide a powerful and compact way to specify
patterns in your data. Even better, there is a very efficient implementation of the
regular expression mechanism due to Henry Spencer. If your script does much
string processing, it is worth the effort to learn about the regexp command. Your
Tcl scripts will be compact and efficient. This chapter uses many examples to
show you the features of regular expressions.

Regular expression substitution is a mechanism that lets you rewrite a
string based on regular expression matching. The regsub command is another
powerful tool, and this chapter includes several examples that do a lot of work in
just a few Tcl commands. Stephen Uhler has shown me several ways to trans-
form input data into a Tcl script with regsub and then use subst or eval to pro-
cess the data. The idea takes a moment to get used to, but it provides a very
efficient way to process strings.

Tcl 8.1 added a new regular expression implementation that supports Uni-
code and advanced regular expressions (ARE). This implementation adds more
syntax and escapes that makes it easier to write patterns, once you learn the
new features! If you know Perl, then you are already familiar with these fea-
tures. The Tcl advanced regular expressions are almost identical to the Perl 5
regular expressions. The new features include a few very minor incompatibilities
with the regular expressions implemented in earlier versions of Tcl 8.0, but these
rarely occur in practice. The new regular expression package supports Unicode,
of course, so you can write patterns to match Japanese or Hindu documents!

134 Regular Expressions Chap. 11

When to Use Regular Expressions

Regular expressions can seem overly complex at first. They introduce their own
syntax and their own rules, and you may be tempted to use simpler commands
like string first, string range, or string match to process your strings. How-
ever, often a single regular expression command can replace a sequence of sev-
eral string commands. Any time you can replace several Tcl commands with
one, you get a performance improvement. Furthermore, the regular expression
matcher is implemented in optimized C code, so pattern matching is fast.

The regular expression matcher does more than test for a match. It also
tells you what part of your input string matches the pattern. This is useful for
picking data out of a large input string. In fact, you can capture several pieces of
data in just one match by using subexpressions. The regexp Tcl command makes
this easy by assigning the matching data to Tcl variables. If you find yourself
using string first and string range to pick out data, remember that regexp
can do it in one step instead.

The regular expression matcher is structured so that patterns are first com-
piled into an form that is efficient to match. If you use the same pattern fre-
quently, then the expensive compilation phase is done only once, and all your
matching uses the efficient form. These details are completely hidden by the Tcl
interface. If you use a pattern twice, Tcl will nearly always be able to retrieve the
compiled form of the pattern. As you can see, the regular expression matcher is
optimized for lots of heavy-duty string processing.

Avoiding a Common Problem

Group your patterns with curly braces.
One of the stumbling blocks with regular expressions is that they use some

of the same special characters as Tcl. Any pattern that contains brackets, dollar
signs, or spaces must be quoted when used in a Tcl command. In many cases you
can group the regular expression with curly braces, so Tcl pays no attention to it.
However, when using Tcl 8.0 (or earlier) you may need Tcl to do backslash substi-
tutions on part of the pattern, and then you need to worry about quoting the spe-
cial characters in the regular expression.

Advanced regular expressions eliminate this problem because backslash
substitution is now done by the regular expression engine. Previously, to get \n
to mean the newline character (or \t for tab) you had to let Tcl do the substitu-
tion. With Tcl 8.1, \n and \t inside a regular expression mean newline and tab.
In fact, there are now about 20 backslash escapes you can use in patterns. Now
more than ever, remember to group your patterns with curly braces to avoid con-
flicts between Tcl and the regular expression engine.

The patterns in the first sections of this Chapter ignore this problem. The
sample expressions in Table 11–7 on page 151 are quoted for use within Tcl
scripts. Most are quoted simply by putting the whole pattern in braces, but some
are shown without braces for comparison.

Regular Expression Syntax 135
II. A

d
va

nc
e

d
 Tc

l

Regular Expression Syntax

This section describes the basics of regular expression patterns, which are found
in all versions of Tcl. There are occasional references to features added by
advanced regular expressions, but they are covered in more detail starting on
page 138. There is enough syntax in regular expressions that there are five
tables that summarize all the options. These tables appear together starting at
page 145.

A regular expression is a sequence of the following items:

• A literal character.
• A matching character, character set, or character class.
• A repetition quantifier.
• An alternation clause.
• A subpattern grouped with parentheses.

Matching Characters

Most characters simply match themselves. The following pattern matches
an a followed by a b:

ab

The general wild-card character is the period, “.”. It matches any single
character. The following pattern matches an a followed by any character:

a.

Remember that matches can occur anywhere within a string; a pattern does
not have to match the whole string. You can change that by using anchors, which
are described on page 137.

Character Sets

The matching character can be restricted to a set of characters with the
[xyz] syntax. Any of the characters between the two brackets is allowed to
match. For example, the following matches either Hello or hello:

[Hh]ello

The matching set can be specified as a range over the character set with the
[x-y] syntax. The following matches any digit:

[0-9]

There is also the ability to specify the complement of a set. That is, the
matching character can be anything except what is in the set. This is achieved
with the [^xyz] syntax. Ranges and complements can be combined. The follow-
ing matches anything except the uppercase and lowercase letters:

[^a-zA-Z]

Using special characters in character sets.
If you want a] in your character set, put it immediately after the initial

136 Regular Expressions Chap. 11

opening bracket. You do not need to do anything special to include [in your char-
acter set. The following matches any square brackets or curly braces:

[][{}]

Most regular expression syntax characters are no longer special inside
character sets. This means you do not need to backslash anything inside a brack-
eted character set except for backslash itself. The following pattern matches sev-
eral of the syntax characters used in regular expressions:

[][+*?()|\\]

Advanced regular expressions add names and backslash escapes as short-
hand for common sets of characters like white space, alpha, alphanumeric, and
more. These are described on page 139 and listed in Table 11–3 on page 146.

Quantifiers

Repetition is specified with *, for zero or more, +, for one or more, and ?, for
zero or one. These quantifiers apply to the previous item, which is either a
matching character, a character set, or a subpattern grouped with parentheses.
The following matches a string that contains b followed by zero or more a’s:

ba*

You can group part of the pattern with parentheses and then apply a quan-
tifier to that part of the pattern. The following matches a string that has one or
more sequences of ab:

(ab)+

The pattern that matches anything, even the empty string, is:
.*

These quantifiers have a greedy matching behavior: They match as many
characters as possible. Advanced regular expressions add nongreedy matching,
which is described on page 140. For example, a pattern to match a single line
might look like this:

.*\n

However, as a greedy match, this will match all the lines in the input, end-
ing with the last newline in the input string. The following pattern matches up
through the first newline.

[^\n]*\n

We will shorten this pattern even further on page 140 by using nongreedy
quantifiers. There are also special newline sensitive modes you can turn on with
some options described on page 143.

Alternation

Alternation lets you test more than one pattern at the same time. The
matching engine is designed to be able to test multiple patterns in parallel, so
alternation is efficient. Alternation is specified with |, the pipe symbol. Another
way to match either Hello or hello is:

Regular Expression Syntax 137
II. A

d
va

nc
e

d
 Tc

l

hello|Hello

You can also write this pattern as:
(h|H)ello

or as:
[hH]ello

Anchoring a Match

By default a pattern does not have to match the whole string. There can be
unmatched characters before and after the match. You can anchor the match to
the beginning of the string by starting the pattern with ^, or to the end of the
string by ending the pattern with $. You can force the pattern to match the whole
string by using both. All strings that begin with spaces or tabs are matched with:

^[\t]+

If you have many text lines in your input, you may be tempted to think of ^
as meaning "beginning of line" instead of "beginning of string." By default, the ^
and $ anchors are relative to the whole input, and embedded newlines are
ignored. Advanced regular expressions support options that make the ^ and $
anchors line-oriented. They also add the \A and \Z anchors that always match
the beginning and end of the string, respectively.

Backslash Quoting

Use the backslash character to turn off these special characters :
. * ? + [] () ^ $ | \

For example, to match the plus character, you will need:
\+

Remember that this quoting is not necessary inside a bracketed expression
(i.e., a character set definition.) For example, to match either plus or question
mark, either of these patterns will work:

(\+|\?)

[+?]

To match a single backslash, you need two. You must do this everywhere,
even inside a bracketed expression. Or you can use \B, which was added as part
of advanced regular expressions. Both of these match a single backslash:

\\

\B

Unknown backslash sequences are an error.
Versions of Tcl before 8.1 ignored unknown backslash sequences in regular

expressions. For example, \= was just =, and \w was just w. Even \n was just n,
which was probably frustrating to many beginners trying to get a newline into
their pattern. Advanced regular expressions add backslash sequences for tab,
newline, character classes, and more. This is a convenient improvement, but in
rare cases it may change the semantics of a pattern. Usually these cases are

138 Regular Expressions Chap. 11

where an unneeded backslash suddenly takes on meaning, or causes an error
because it is unknown.

Matching Precedence

If a pattern can match several parts of a string, the matcher takes the
match that occurs earliest in the input string. Then, if there is more than one
match from that same point because of alternation in the pattern, the matcher
takes the longest possible match. The rule of thumb is: first, then longest. This
rule gets changed by nongreedy quantifiers that prefer a shorter match.

Watch out for *, which means zero or more, because zero of anything is
pretty easy to match. Suppose your pattern is:

[a-z]*

This pattern will match against 123abc, but not how you expect. Instead of
matching on the letters in the string, the pattern will match on the zero-length
substring at the very beginning of the input string! This behavior can be seen by
using the -indices option of the regexp command described on page 148. This
option tells you the location of the matching string instead of the value of the
matching string.

Capturing Subpatterns

Use parentheses to capture a subpattern. The string that matches the pat-
tern within parentheses is remembered in a matching variable, which is a Tcl
variable that gets assigned the string that matches the pattern. Using parenthe-
ses to capture subpatterns is very useful. Suppose we want to get everything
between the <td> and </td> tags in some HTML. You can use this pattern:

<td>([^<]*)</td>

The matching variable gets assigned the part of the input string that
matches the pattern inside the parentheses. You can capture many subpatterns
in one match, which makes it a very efficient way to pick apart your data. Match-
ing variables are explained in more detail on page 148 in the context of the
regexp command.

Sometimes you need to introduce parentheses but you do not care about the
match that occurs inside them. The pattern is slightly more efficient if the
matcher does not need to remember the match. Advanced regular expressions
add noncapturing parentheses with this syntax:

(?:pattern)

Advanced Regular Expressions

The syntax added by advanced regular expressions is mostly just shorthand
notation for constructs you can make with the basic syntax already described.
There are also some new features that add additional power: nongreedy quantifi-

Advanced Regular Expressions 139
II. A

d
va

nc
e

d
 Tc

l

ers, back references, look-ahead patterns, and named character classes. If you
are just starting out with regular expressions, you can ignore most of this sec-
tion, except for the one about backslash sequences. Once you master the basics,
of if you are already familiar with regular expressions in Tcl (or the UNIX vi edi-
tor or grep utility), then you may be interested in the new features of advanced
regular expressions.

Compatibility with Patterns in Tcl 8.0

Advanced regular expressions add syntax in an upward compatible way.
Old patterns continue to work with the new matcher, but advanced regular
expressions will raise errors if given to old versions of Tcl. For example, the ques-
tion mark is used in many of the new constructs, and it is artfully placed in loca-
tions that would not be legal in older versions of regular expressions. The added
syntax is summarized in Table 11–2 on page 145.

If you have unbraced patterns from older code, they are very likely to be
correct in Tcl 8.1 and later versions. For example, the following pattern picks out
everything up to the next newline. The pattern is unbraced, so Tcl substitutes
the newline character for each occurrence of \n. The square brackets are quoted
so that Tcl does not think they delimit a nested command:

regexp "(\[^\n\]+)\n" $input

The above command behaves identically when using advanced regular
expressions, although you can now also write it like this:

regexp {([^\n]+)\n} $input

The curly braces hide the brackets from the Tcl parser, so they do not need to be
escaped with backslash. This saves us two characters and looks a bit cleaner.

Backslash Escape Sequences

The most significant change in advanced regular expression syntax is back-
slash substitutions. In Tcl 8.0 and earlier, a backslash is only used to turn off
special characters such as: . + * ? []. Otherwise it was ignored. For example,
\n was simply n to the Tcl 8.0 regular expression engine. This was a source of
confusion, and it meant you could not always quote patterns in braces to hide
their special characters from Tcl’s parser. In advanced regular expressions, \n
now means the newline character to the regular expression engine, so you should
never need to let Tcl do backslash processing.

Again, always group your pattern with curly braces to avoid confusion.
Advanced regular expressions add a lot of new backslash sequences. They

are listed in Table 11–4 on page 146. Some of the more useful ones include \s,
which matches space-like characters, \w, which matches letters, digit, and the
underscore, \y, which matches the beginning or end of a word, and \B, which
matches a backslash.

140 Regular Expressions Chap. 11

Character Classes

Character classes are names for sets of characters. The named character
class syntax is valid only inside a bracketed character set. The syntax is

[:identifier:]

For example, alpha is the name for the set of uppercase and lowercase let-
ters. The following two patterns are almost the same:

[A-Za-z]

[[:alpha:]]

The difference is that the alpha character class also includes accented characters
like è. If you match data that contains nonASCII characters, the named charac-
ter classes are more general than trying to name the characters explicitly.

There are also backslash sequences that are shorthand for some of the
named character classes. The following patterns to match digits are equivalent:

[0-9]

[[:digit:]]

\d

The following patterns match space-like characters including backspace,
form feed, newline, carriage return, tag, and vertical tab:

[\b\f\n\r\t\v]

[:space:]

\s

The named character classes and the associated backslash sequence are
listed in Table 11–3 on page 146.

You can use character classes in combination with other characters or char-
acter classes inside a character set definition. The following patterns match let-
ters, digits, and underscore:

[[:digit:][:alpha:]_]

[\d[:alpha:]_]

[[:alnum:]_]

\w

Note that \d, \s and \w can be used either inside or outside character sets.
When used outside a bracketed expression, they form their own character set.
There are also \D, \S, and \W, which are the complement of \d, \s, and \w.
These escapes (i.e., \D for not-a-digit) cannot be used inside a bracketed charac-
ter set.

There are two special character classes, [[:<:] and [[:>:]], that match
the beginning and end of a word, respectively. A word is defined as one or more
characters that match \w.

Nongreedy Quantifiers

The *, +, and ? characters are quantifiers that specify repetition. By default
these match as many characters as possible, which is called greedy matching. A
nongreedy match will match as few characters as possible. You can specify non-

Advanced Regular Expressions 141
II. A

d
va

nc
e

d
 Tc

l

greedy matching by putting a question mark after these quantifiers. Consider
the pattern to match "one or more of not-a-newline followed by a newline." The
not-a-newline must be explicit with the greedy quantifier, as in:

[^\n]+\n

Otherwise, if the pattern were just
.+\n

then the "." could well match newlines, so the pattern would greedily consume
everything until the very last newline in the input. A nongreedy match would be
satisfied with the very first newline instead:

.+?\n

By using the nongreedy quantifier we’ve cut the pattern from eight charac-
ters to five. Another example that is shorter with a nongreedy quantifier is the
HTML example from page 138. The following pattern also matches everything
between <td> and </td>:

<td>(.*?)</td>

Even ? can be made nongreedy, ??, which means it prefers to match zero
instead of one. This only makes sense inside the context of a larger pattern. Send
me e-mail if you have a compelling example for it!

Bound Quantifiers

The {m,n} syntax is a quantifier that means match at least m and at most n
of the previous matching item. There are two variations on this syntax. A simple
{m} means match exactly m of the previous matching item. A {m,} means match m
or more of the previous matching item. All of these can be made nongreedy by
adding a ? after them.

Back References

A back reference is a feature you cannot easily get with basic regular
expressions. A back reference matches the value of a subpattern captured with
parentheses. If you have several sets of parentheses you can refer back to differ-
ent captured expressions with \1, \2, and so on. You count by left parentheses to
determine the reference.

For example, suppose you want to match a quoted string, where you can use
either single or double quotes. You need to use an alternation of two patterns to
match strings that are enclosed in double quotes or in single quotes:

("[^"]*"|’[^’]*’)

With a back reference, \1, the pattern becomes simpler:
(’|").*?\1

The first set of parenthesis matches the leading quote, and then the \1
refers back to that particular quote character. The nongreedy quantifier ensures
that the pattern matches up to the first occurrence of the matching quote.

142 Regular Expressions Chap. 11

Look-ahead

Look-ahead patterns are subexpressions that are matched but do not con-
sume any of the input. They act like constraints on the rest of the pattern, and
they typically occur at the end of your pattern. A positive look-ahead causes the
pattern to match if it also matches. A negative look-ahead causes the pattern to
match if it would not match. These constraints make more sense in the context of
matching variables and in regular expression substitutions done with the regsub
command. For example, the following pattern matches a filename that begins
with A and ends with .txt

^A.*\.txt$

The next version of the pattern adds parentheses to group the file name
suffix.

^A.*(\.txt)$

The parentheses are not strictly necessary, but they are introduced so that
we can compare the pattern to one that uses look-ahead. A version of the pattern
that uses look-ahead looks like this:

^A.*(?=\.txt)$

The pattern with the look-ahead constraint matches only the part of the
filename before the .txt, but only if the .txt is present. In other words, the .txt
is not consumed by the match. This is visible in the value of the matching vari-
ables used with the regexp command. It would also affect the substitutions done
in the regsub command.

There is negative look-ahead too. The following pattern matches a filename
that begins with A and does not end with .txt.

^A.*(?!\.txt)$

Writing this pattern without negative look-ahead is awkward.

Character Codes

The \nn and \mmm syntax, where n and m are digits, can also mean an 8-bit
character code corresponding to the octal value nn or mmm. This has priority over a
back reference. However, I just wouldn’t use this notation for character codes.
Instead, use the Unicode escape sequence, \unnnn, which specifies a 16-bit value.
The \xnn sequence also specifies an 8-bit character code. Unfortunately, the \x
escape consumes all hex digits after it (not just two!) and then truncates the
hexadecimal value down to 8 bits. This misfeature of \x is not considered a bug
and will probably not change even in future versions of Tcl.

The \Uyyyyyyyy syntax is reserved for 32-bit Unicode, but I don’t expect to
see that implemented anytime soon.

Collating Elements

Collating elements are characters or long names for characters that you can
use inside character sets. Currently, Tcl only has some long names for various

Advanced Regular Expressions 143
II. A

d
va

nc
e

d
 Tc

l

ASCII punctuation characters. Potentially, it could support names for every Uni-
code character, but it doesn’t because the mapping tables would be huge. This
section will briefly mention the syntax so that you can understand it if you see it.
But its usefulness is still limited.

Within a bracketed expression, the following syntax is used to specify a col-
lating element:

[.identifier.]

The identifier can be a character or a long name. The supported long names
can be found in the generic/regc_locale.c file in the Tcl source code distribu-
tion. A few examples are shown below:

[.c.]

[.#.]

[.number-sign.]

Equivalence Classes

An equivalence class is all characters that sort to the same position. This is
another feature that has limited usefulness in the current version of Tcl. In Tcl,
characters sort by their Unicode character value, so there are no equivalence
classes that contain more than one character! However, you could imagine a
character class for ’o’, ’ò’, and other accented versions of the letter o. The syntax
for equivalence classes within bracketed expressions is:

[=char=]

where char is any one of the characters in the character class. This syntax is
valid only inside a character class definition.

Newline Sensitive Matching

By default, the newline character is just an ordinary character to the
matching engine. You can make the newline character special with two options:
lineanchor and linestop. You can set these options with flags to the regexp and
regsub Tcl commands, or you can use the embedded options described later in
Table 11–5 on page 147.

The lineanchor option makes the ^ and $ anchors work relative to new-
lines. The ^ matches immediately after a newline, and $ matches immediately
before a newline. These anchors continue to match the very beginning and end of
the input, too. With or without the lineanchor option, you can use \A and \Z to
match the beginning and end of the string.

The linestop option prevents . (i.e., period) and character sets that begin
with ^ from matching a newline character. In other words, unless you explicitly
include \n in your pattern, it will not match across newlines.

144 Regular Expressions Chap. 11

Embedded Options

You can start a pattern with embedded options to turn on or off case sensi-
tivity, newline sensitivity, and expanded syntax, which is explained in the next
section. You can also switch from advanced regular expressions to a literal string,
or to older forms of regular expressions. The syntax is a leading:

(?chars)

where chars is any number of option characters. The option characters are listed
in Table 11–5 on page 147.

Expanded Syntax

Expanded syntax lets you include comments and extra white space in your
patterns. This can greatly improve the readability of complex patterns.
Expanded syntax is turned on with a regexp command option or an embedded
option.

Comments start with a # and run until the end of line. Extra white space
and comments can occur anywhere except inside bracketed expressions (i.e.,
character sets) or within multicharacter syntax elements like (?=. When you are
in expanded mode, you can turn off the comment character or include an explicit
space by preceding them with a backslash. Example 11–1 shows a pattern to
match URLs. The leading (?x) turns on expanded syntax. The whole pattern is
grouped in curly braces to hide it from Tcl. This example is considered again in
more detail in Example 11–3 on page 150:

Example 11–1 Expanded regular expressions allow comments.

regexp {(?x) # A pattern to match URLS
([^:]+): # The protocol before the initial colon
//([^:/]+) # The server name
(:([0-9]+))? # The optional port number
(/.*) # The trailing pathname

} $input

Syntax Summary 145
II. A

d
va

nc
e

d
 Tc

l

Syntax Summary

Table 11–1 summarizes the syntax of regular expressions available in all ver-
sions of Tcl:

Advanced regular expressions, which were introduced in Tcl 8.1, add more
syntax that is summarized in Table 11–2:

Table 11–1 Basic regular expression syntax.

. Matches any character.

* Matches zero or more instances of the previous pattern item.

+ Matches one or more instances of the previous pattern item.

? Matches zero or one instances of the previous pattern item.

() Groups a subpattern. The repetition and alternation operators apply to the preceding
subpattern.

| Alternation.

[] Delimit a set of characters. Ranges are specified as [x-y]. If the first character in the
set is ^, then there is a match if the remaining characters in the set are not present.

^ Anchor the pattern to the beginning of the string. Only when first.

$ Anchor the pattern to the end of the string. Only when last.

Table 11–2 Additional advanced regular expression syntax.

{m} Matches m instances of the previous pattern item.

{m}? Matches m instances of the previous pattern item. Nongreedy.

{m,} Matches m or more instances of the previous pattern item.

{m,}? Matches m or more instances of the previous pattern item. Nongreedy.

{m,n} Matches m through n instances of the previous pattern item.

{m,n}? Matches m through n instances of the previous pattern item. Nongreedy.

*? Matches zero or more instances of the previous pattern item. Nongreedy.

+? Matches one or more instances of the previous pattern item. Nongreedy.

?? Matches zero or one instances of the previous pattern item. Nongreedy.

(?:re) Groups a subpattern, re, but does not capture the result.

(?=re) Positive look-ahead. Matches the point where re begins.

(?!re) Negative look-ahead. Matches the point where re does not begin.

(?abc) Embedded options, where abc is any number of option letters listed in Table 11–5.

146 Regular Expressions Chap. 11

Table 11–3 lists the named character classes defined in advanced regular
expressions and their associated backslash sequences, if any. Character class
names are valid inside bracketed character sets with the [:class:] syntax.

Table 11–4 lists backslash sequences supported in Tcl 8.1.

\c One of many backslash escapes listed in Table 11–4.

[: :] Delimits a character class within a bracketed expression. See Table 11–3.

[. .] Delimits a collating element within a bracketed expression.

[= =] Delimits an equivalence class within a bracketed expression.

Table 11–3 Character classes.

alnum Upper and lower case letters and digits.

alpha Upper and lower case letters.

blank Space and tab.

cntrl Control characters: \u0001 through \u001F.

digit The digits zero through nine. Also \d.

graph Printing characters that are not in cntrl or space.

lower Lowercase letters.

print The same as alnum.

punct Punctuation characters.

space Space, newline, carriage return, tab, vertical tab, form feed. Also \s.

upper Uppercase letters.

xdigit Hexadecimal digits: zero through nine, a-f, A-F.

Table 11–4 Backslash escapes in regular expressions.

\a Alert, or "bell", character.

\A Matches only at the beginning of the string.

\b Backspace character, \u0008.

\B Synonym for backslash.

\cX Control-X.

\d Digits. Same as [[:digit:]]

\D Not a digit. Same as [^[:digit:]]

Table 11–2 Additional advanced regular expression syntax. (Continued)

Syntax Summary 147
II. A

d
va

nc
e

d
 Tc

l

Table 11–5 lists the embedded option characters used with the (?abc) syn-
tax.

\e Escape character, \u001B.

\f Form feed, \u000C.

\m Matches the beginning of a word.

\M Matches the end of a word.

\n Newline, \u000A.

\r Carriage return, \u000D.

\s Space. Same as [[:space:]]

\S Not a space. Same as [^[:space:]]

\t Horizontal tab, \u0009.

\uXXXX A 16-bit Unicode character code.

\v Vertical tab, \u000B.

\w Letters, digit, and underscore. Same as [[:alnum:]_]

\W Not a letter, digit, or underscore. Same as [^[:alnum:]_]

\xhh An 8-bit hexadecimal character code. Consumes all hex digits after \x.

\y Matches the beginning or end of a word.

\Y Matches a point that is not the beginning or end of a word.

\Z Matches the end of the string.

\0 NULL, \u0000

\x Where x is a digit, this is a back-reference.

\xy Where x and y are digits, either a decimal back-reference, or an 8-bit octal character
code.

\xyz Where x, y and z are digits, either a decimal back-reference or an 8-bit octal charac-
ter code.

Table 11–5 Embedded option characters used with the (?x) syntax.

b The rest of the pattern is a basic regular expression (a la vi or grep).

c Case sensitive matching. This is the default.

e The rest of the pattern is an extended regular expression (a la Tcl 8.0).

i Case insensitive matching.

m Synonym for the n option.

Table 11–4 Backslash escapes in regular expressions. (Continued)

148 Regular Expressions Chap. 11

The regexp Command

The regexp command provides direct access to the regular expression matcher.
Not only does it tell you whether a string matches a pattern, it can also extract
one or more matching substrings. The return value is 1 if some part of the string
matches the pattern; it is 0 otherwise. Its syntax is:

regexp ?flags? pattern string ?match sub1 sub2...?

The flags are described in Table 11–6:

The pattern argument is a regular expression as described earlier. If
string matches pattern, then the results of the match are stored in the vari-
ables named in the command. These match variable arguments are optional. If
present, match is set to be the part of the string that matched the pattern. The

n Newline sensitive matching . Both lineanchor and linestop mode.

p Partial newline sensitive matching. Only linestop mode.

q The rest of the pattern is a literal string.

s No newline sensitivity. This is the default.

t Tight syntax; no embedded comments. This is the default.

w Inverse partial newline-sensitive matching. Only lineanchor mode.

x Expanded syntax with embedded white space and comments.

Table 11–6 Options to the regexp command.

-nocase Lowercase characters in pattern can match either lowercase or uppercase
letters in string.

-indices The match variables each contain a pair of numbers that are in indices delimit-
ing the match within string. Otherwise, the matching string itself is copied
into the match variables.

-expanded The pattern uses the expanded syntax discussed on page 144.

-line The same as specifying both -lineanchor and -linestop.

-lineanchor Change the behavior of ^ and $ so they are line-oriented as discussed on page
143.

-linestop Change matching so that . and character classes do not match newlines as
discussed on page 143.

-about Useful for debugging. It returns information about the pattern instead of try-
ing to match it against the input.

-- Signals the end of the options. You must use this if your pattern begins with -.

Table 11–5 Embedded option characters used with the (?x) syntax. (Continued)

The regexp Command 149
II. A

d
va

nc
e

d
 Tc

l

remaining variables are set to be the substrings of string that matched the cor-
responding subpatterns in pattern. The correspondence is based on the order of
left parentheses in the pattern to avoid ambiguities that can arise from nested
subpatterns.

Example 11–2 uses regexp to pick the hostname out of the DISPLAY envi-
ronment variable, which has the form:

hostname:display.screen

Example 11–2 Using regular expressions to parse a string.

set env(DISPLAY) sage:0.1
regexp {([^:]*):} $env(DISPLAY) match host
=> 1
set match
=> sage:
set host
=> sage

The pattern involves a complementary set, [^:], to match anything except
a colon. It uses repetition, *, to repeat that zero or more times. It groups that
part into a subexpression with parentheses. The literal colon ensures that the
DISPLAY value matches the format we expect. The part of the string that matches
the complete pattern is stored into the match variable. The part that matches the
subpattern is stored into host. The whole pattern has been grouped with braces
to quote the square brackets. Without braces it would be:

regexp (\[^:\]*): $env(DISPLAY) match host

With advanced regular expressions the nongreedy quantifier *? can replace
the complementary set:

regexp (.*?): $env(DISPLAY) match host

This is quite a powerful statement, and it is efficient. If we had only had the
string command to work with, we would have needed to resort to the following,
which takes roughly twice as long to interpret:

set i [string first : $env(DISPLAY)]

if {$i >= 0} {

set host [string range $env(DISPLAY) 0 [expr $i-1]]

}

A Pattern to Match URLs

Example 11–3 demonstrates a pattern with several subpatterns that
extract the different parts of a URL. There are lots of subpatterns, and you can
determine which match variable is associated with which subpattern by counting
the left parenthesis. The pattern will be discussed in more detail after the exam-
ple:

150 Regular Expressions Chap. 11

Example 11–3 A pattern to match URLs.

set url http://www.beedub.com:80/index.html
regexp {([^:]+)://([^:/]+)(:([0-9]+))?(/.*)} $url \

match protocol x serverport path
=> 1
set match
=> http://www.beedub.com:80/index.html
set protocol
=> http
set server
=> www.beedub.com
set x
=> :80
set port
=> 80
set path
=> /index.html

Let’s look at the pattern one piece at a time. The first part looks for the pro-
tocol, which is separated by a colon from the rest of the URL. The first part of the
pattern is one or more characters that are not a colon, followed by a colon. This
matches the http: part of the URL:

[^:]+:

Using nongreedy +? quantifier, you could also write that as:
.+?:

The next part of the pattern looks for the server name, which comes after
two slashes. The server name is followed either by a colon and a port number, or
by a slash. The pattern uses a complementary set that specifies one or more
characters that are not a colon or a slash. This matches the //www.beedub.com
part of the URL:

//[^:/]+

The port number is optional, so a subpattern is delimited with parentheses
and followed by a question mark. An additional set of parentheses are added to
capture the port number without the leading colon. This matches the :80 part of
the URL:

(:([0-9]+))?

The last part of the pattern is everything else, starting with a slash. This
matches the /index.html part of the URL:

/.*

Use subpatterns to parse strings.
To make this pattern really useful, we delimit several subpatterns with

parentheses:
([^:]+)://([^:/]+)(:([0-9]+))?(/.*)

These parentheses do not change the way the pattern matches. Only the
optional port number really needs the parentheses in this example. However, the
regexp command gives us access to the strings that match these subpatterns. In

The regexp Command 151
II. A

d
va

nc
e

d
 Tc

l

one step regexp can test for a valid URL and divide it into the protocol part, the
server, the port, and the trailing path.

The parentheses around the port number include the : before the digits.
We’ve used a dummy variable that gets the : and the port number, and another
match variable that just gets the port number. By using noncapturing parenthe-
ses in advanced regular expressions, we can eliminate the unused match vari-
able. We can also replace both complementary character sets with a nongreedy
.+? match. Example 11–4 shows this variation:

Example 11–4 An advanced regular expression to match URLs.

set url http://www.beedub.com:80/book/
regexp {(.+?)://(.+?)(?::([0-9]+))?(/.*)} $url \

match protocol server port path
=> 1
set match
=> http://www.beedub.com:80/book/
set protocol
=> http
set server
=> www.beedub.com
set port
=> 80
set path
=> /book/

Sample Regular Expressions

The table in this section lists regular expressions as you would use them in
Tcl commands. Most are quoted with curly braces to turn off the special meaning
of square brackets and dollar signs. Other patterns are grouped with double
quotes and use backslash quoting because the patterns include backslash
sequences like \n and \t. In Tcl 8.0 and earlier, these must be substituted by Tcl
before the regexp command is called. In these cases, the equivalent advanced
regular expression is also shown.

Table 11–7 Sample regular expressions.

{^[yY]} Begins with y or Y, as in a Yes answer.

{^(yes|YES|Yes)$} Exactly "yes", "Yes", or "YES".

"^\[^ \t:\]+:" Begins with colon-delimited field that has no spaces or
tabs.

{^\S+:} Same as above, using \S for "not space".

"^\[\t]*$" A string of all spaces or tabs.

{(?n)^\s*$} A blank line using newline sensitive mode.

152 Regular Expressions Chap. 11

The regsub Command

The regsub command does string substitution based on pattern matching. It is
very useful for processing your data. It can perform simple tasks like replacing
sequences of spaces and tabs with a single space. It can perform complex data
transforms, too, as described in the next section. Its syntax is:

regsub ?switches? pattern string subspec varname

The regsub command returns the number of matches and replacements, or
0 if there was no match. regsub copies string to varname, replacing occurrences
of pattern with the substitution specified by subspec. If the pattern does not
match, then string is copied to varname without modification. The optional
switches include:

• -all, which means to replace all occurrences of the pattern. Otherwise, only
the first occurrence is replaced.

• The -nocase, -expanded, -line, -linestop, and -lineanchor switches are
the same as in the regexp command. They are described on page 148.

• The -- switch separates the pattern from the switches, which is necessary if
your pattern begins with a -.

"(\n|^)\[^\n\]*(\n|$)" A blank line, the hard way.

{^[A-Za-z]+$} Only letters.

{^[[:alpha:]]+$} Only letters, the Unicode way.

{[A-Za-z0-9_]+} Letters, digits, and the underscore.

{\w+} Letters, digits, and the underscore using \w.

{[][${}\\]} The set of Tcl special characters:] [$ { } \

"\[^\n\]*\n" Everything up to a newline.

{.*?\n} Everything up to a newline using nongreedy *?

{\.} A period.

{[][$^?+*()|\\]} The set of regular expression special characters:
] [$ ^ ? + * () | \

<H1>(.*?)</H1> An H1 HTML tag. The subpattern matches the string
between the tags.

<!--.*?--> HTML comments.

{[0-9a-hA-H][0-9a-hA-H]} 2 hex digits.

{[[:xdigit:]]{2}} 2 hex digits, using advanced regular expressions.

{\d{1,3}} 1 to 3 digits, using advanced regular expressions.

Table 11–7 Sample regular expressions. (Continued)

Transforming Data to Program with regsub 153
II. A

d
va

nc
e

d
 Tc

l

The replacement pattern, subspec, can contain literal characters as well as
the following special sequences:

• & is replaced with the string that matched the pattern.
• \x , where x is a number, is replaced with the string that matched the corre-

sponding subpattern in pattern. The correspondence is based on the order
of left parentheses in the pattern specification.

The following replaces a user’s home directory with a ~:
regsub ^$env(HOME)/ $pathname ~/ newpath

The following constructs a C compile command line given a filename:
set file tclIO.c

regsub {([^\.]*)\.c$} $file {cc -c & -o \1.o} ccCmd

The matching pattern captures everything before the trailing .c in the file
name. The & is replaced with the complete match, tclIO.c, and \1 is replaced
with tclIO, which matches the pattern between the parentheses. The value
assigned to ccCmd is:

cc -c tclIO.c -o tclIO.o

We could execute that with:
eval exec $ccCmd

The following replaces sequences of multiple space characters with a single
space:

regsub -all {\s+} $string " " string

It is perfectly safe to specify the same variable as the input value and the
result. Even if there is no match on the pattern, the input string is copied into
the output variable.

The regsub command can count things for us. The following command
counts the newlines in some text. In this case the substitution is not important:

set numLines [regsub -all \n $text {} ignore]

Transforming Data to Program with regsub

One of the most powerful combinations of Tcl commands is regsub and subst.
This section describes a few examples that use regsub to transform data into Tcl
commands, and then use subst to replace those commands with a new version of
the data. This technique is very efficient because it relies on two subsystems that
are written in highly optimized C code: the regular expression engine and the Tcl
parser. These examples are primarily written by Stephen Uhler.

URL Decoding

When a URL is transmitted over the network, it is encoded by replacing
special characters with a %xx sequence, where xx is the hexadecimal code for the
character. In addition, spaces are replaced with a plus (+). It would be tedious

154 Regular Expressions Chap. 11

and very inefficient to scan a URL one character at a time with Tcl statements to
undo this encoding. It would be more efficient to do this with a custom C pro-
gram, but still very tedious. Instead, a combination of regsub and subst can effi-
ciently decode the URL in just a few Tcl commands.

Replacing the + with spaces requires quoting the + because it is the one-or-
more special character in regular expressions:

regsub -all {\+} $url { } url

The %xx are replaced with a format command that will generate the right
character:

regsub -all {%([0-9a-hA-H][0-9a-hA-H])} $url \

{[format %c 0x\1]} url

The %c directive to format tells it to generate the character from a charac-
ter code number. We force a hexadecimal interpretation with a leading 0x.
Advanced regular expressions let us write the "2 hex digits" pattern a bit more
cleanly:

regsub -all {%([[:xdigit:]]{2})} $url \

{[format %c 0x\1]} url

The resulting string is passed to subst to get the format commands substi-
tuted:

set url [subst $url]

For example, if the input is %7ewelch, the result of the regsub is:
[format %c 0x7e]welch

And then subst generates:
~welch

Example 11–5 encapsulates this trick in the Url_Decode procedure.

Example 11–5 The Url_Decode procedure.

proc Url_Decode {url} {
regsub -all {\+} $url { } url
regsub -all {%([:xdigit:]]{2})} $url \

{[format %c 0x\1]} url
return [subst $url]

}

CGI Argument Parsing

Example 11–6 builds upon Url_Decode to decode the inputs to a CGI pro-
gram that processes data from an HTML form. Each form element is identified
by a name, and the value is URL encoded. All the names and encoded values are
passed to the CGI program in the following format:

name1=value1&name2=value2&name3=value3

Example 11–6 shows Cgi_List and Cgi_Query. Cgi_Query receives the form
data from the standard input or the QUERY_STRING environment variable,

Transforming Data to Program with regsub 155
II. A

d
va

nc
e

d
 Tc

l

depending on whether the form data is transmitted with a POST or GET request.
These HTTP operations are described in detail in Chapter 17. Cgi_List uses
split to get back a list of names and values, and then it decodes them with
Url_Decode. It returns a Tcl-friendly name, value list that you can either iterate
through with a foreach command, or assign to an array with array set:

Example 11–6 The Cgi_Parse and Cgi_Value procedures.

proc Cgi_List {} {
set query [Cgi_Query]
regsub -all {\+} $query { } query
set result {}
foreach {x} [split $query &=] {

lappend result [Url_Decode $x]
}
return $result

}
proc Cgi_Query {} {

global env
if {![info exists env(QUERY_STRING)] ||

[string length $env(QUERY_STRING)] == 0} {
if {[info exists env(CONTENT_LENGTH)] &&

[string length $env(CONTENT_LENGTH)] != 0} {
set query [read stdin $env(CONTENT_LENGTH)]

} else {
gets stdin query

}
set env(QUERY_STRING) $query
set env(CONTENT_LENGTH) 0

}
return $env(QUERY_STRING)

}

An HTML form can have several form elements with the same name, and
this can result in more than one value for each name. If you blindly use array
set to map the results of Cgi_List into an array, you will lose the repeated val-
ues. Example 11–7 shows Cgi_Parse and Cgi_Value that store the query data in
a global cgi array. Cgi_Parse adds list structure whenever it finds a repeated
form value. The global cgilist array keeps a record of how many times a form
value is repeated. The Cgi_Value procedure returns elements of the global cgi
array, or the empty string if the requested value is not present.

Example 11–7 Cgi_Parse and Cgi_Value store query data in the cgi array.

proc Cgi_Parse {} {
global cgi cgilist
catch {unset cgi cgilist}
set query [Cgi_Query]
regsub -all {\+} $query { } query
foreach {name value} [split $query &=] {

set name [CgiDecode $name]

156 Regular Expressions Chap. 11

if {[info exists cgilist($name)] &&
($cgilist($name) == 1)} {

Add second value and create list structure
set cgi($name) [list $cgi($name) \

[Url_Decode $value]]
} elseif {[info exists cgi($name)]} {

Add additional list elements
lappend cgi($name) [CgiDecode $value]

} else {
Add first value without list structure
set cgi($name) [CgiDecode $value]
set cgilist($name) 0 ;# May need to listify

}
incr cgilist($name)

}
return [array names cgi]

}
proc Cgi_Value {key} {

global cgi
if {[info exists cgi($key)]} {

return $cgi($key)
} else {

return {}
}

}
proc Cgi_Length {key} {

global cgilist
if {[info exist cgilist($key)]} {

return $cgilist($key)
} else {

return 0
}

}

Decoding HTML Entities

The next example is a decoder for HTML entities. In HTML, special charac-
ters are encoded as entities. If you want a literal < or > in your document, you
encode them as the entities < and >, respectively, to avoid conflict with the
<tag> syntax used in HTML. HTML syntax is briefly described in Chapter 3 on
page 32. Characters with codes above 127 such as copyright  and egrave è are
also encoded. There are named entities, such as < for < and è for è.
You can also use decimal-valued entities such as © for . Finally, the trail-
ing semicolon is optional, so < or < can both be used to encode <.

The entity decoder is similar to Url_Decode. In this case, however, we need
to be more careful with subst. The text passed to the decoder could contain spe-
cial characters like a square bracket or dollar sign. With Url_Decode we can rely
on those special characters being encoded as, for example, %24. Entity encoding is
different (do not ask me why URLs and HTML have different encoding stan-
dards), and dollar signs and square brackets are not necessarily encoded. This

Transforming Data to Program with regsub 157
II. A

d
va

nc
e

d
 Tc

l

requires an additional pass to quote these characters. This regsub puts a back-
slash in front of all the brackets, dollar signs, and backslashes.

regsub -all {[][$\\]} $text {\\&} new

The decimal encoding (e.g., ©) is also more awkward than the hexa-
decimal encoding used in URLs. We cannot force a decimal interpretation of a
number in Tcl. In particular, if the entity has a leading zero (e.g.,
) then
Tcl interprets the value (e.g., 010) as octal. The scan command is used to do a
decimal interpretation. It scans into a temporary variable, and set is used to get
that value:

regsub -all {&#([0-9][0-9]?[0-9]?);?} $new \

{[format %c [scan \1 %d tmp; set tmp]]} new

With advanced regular expressions, this could be written as follows using
bound quantifiers to specify one to three digits:

regsub -all {&#(\d{1,3});?} $new \

{[format %c [scan \1 %d tmp;set tmp]]} new

The named entities are converted with an array that maps from the entity
names to the special character. The only detail is that unknown entity names
(e.g., &foobar;) are not converted. This mapping is done inside HtmlMapEntity,
which guards against invalid entities.

regsub -all {&([a-zA-Z]+)(;?)} $new \

{[HtmlMapEntity \1 \\\2]} new

If the input text contained:
[x < y]

then the regsub would transform this into:
\[x [HtmlMapEntity lt \;] y\]

Finally, subst will result in:
[x < y]

Example 11–8 Html_DecodeEntity.

proc Html_DecodeEntity {text} {
if {![regexp & $text]} {return $text}
regsub -all {[][$\\]} $text {\\&} new
regsub -all {&#([0-9][0-9]?[0-9]?);?} $new {\

[format %c [scan \1 %d tmp;set tmp]]} new
regsub -all {&([a-zA-Z]+)(;?)} $new \

{[HtmlMapEntity \1 \\\2]} new
return [subst $new]

}
proc HtmlMapEntity {text {semi {}}} {

global htmlEntityMap
if {[info exist htmlEntityMap($text)]} {

return $htmlEntityMap($text)
} else {

return $text$semi
}

}

158 Regular Expressions Chap. 11

Some of the htmlEntityMap
array set htmlEntityMap {

lt < gt > amp &
aring \xe5 atilde \xe3
copy \xa9 ecirc \xea egrave \xe8

}

A Simple HTML Parser

The following example is the brainchild of Stephen Uhler. It uses regsub to
transform HTML into a Tcl script. When it is evaluated the script calls a proce-
dure to handle each tag in an HTML document. This provides a general frame-
work for processing HTML. Different callback procedures can be applied to the
tags to achieve different effects. For example, the html_library-0.3 package on
the CD-ROM uses Html_Parse to display HTML in a Tk text widget.

Example 11–9 Html_Parse.

proc Html_Parse {html cmd {start {}}} {

Map braces and backslashes into HTML entities
regsub -all \{ $html {\&ob;} html
regsub -all \} $html {\&cb;} html
regsub -all {\\} $html {\&bsl;} html

This pattern matches the parts of an HTML tag
set s" \t\r\n" ;# white space
set exp <(/?)(\[^$s>]+)\[$s]*(\[^>]*)>

This generates a call to cmd with HTML tag parts
\1 is the leading /, if any
\2 is the HTML tag name
\3 is the parameters to the tag, if any
The curly braces at either end group of all the text
after the HTML tag, which becomes the last arg to $cmd.
set sub "\}\n$cmd {\\2} {\\1} {\\3} \{"
regsub -all $exp $html $sub html

This balances the curly braces,
and calls $cmd with $start as a pseudo-tag
at the beginning and end of the script.
eval "$cmd {$start} {} {} {$html}"
eval "$cmd {$start} / {} {}"

}

The main regsub pattern can be written more simply with advanced regu-
lar expressions:

set exp {<(/?)(\S+?)\s*(.*?)>}

An example will help visualize the transformation. Given this HTML:

Transforming Data to Program with regsub 159
II. A

d
va

nc
e

d
 Tc

l

<Title>My Home Page</Title>
<Body bgcolor=white text=black>
<H1>My Home</H1>
This is my home page.

and a call to Html_Parse that looks like this:
Html_Parse $html {Render .text} hmstart

then the generated program is this:

Render .text {hmstart} {} {} {}
Render .text {Title} {} {} {My Home Page}
Render .text {Title} {/} {} {
}
Render .text {Body} {} {bgcolor=white text=black} {
}
Render .text {H1} {} {} {My Home}
Render .text {H1} {/} {} {
This is my }
Render .text {b} {} {} {home}
Render .text {b} {/} {} { page.
}
Render .text {hmstart} / {} {}

One overall point to make about this example is the difference between
using eval and subst with the generated script. The decoders shown in Exam-
ples 11–5 and 11–8 use subst to selectively replace encoded characters while
ignoring the rest of the text. In Html_Parse we must process all the text. The
main trick is to replace the matching text (e.g., the HTML tag) with some Tcl
code that ends in an open curly brace and starts with a close curly brace. This
effectively groups all the unmatched text.

When eval is used this way you must do something with any braces and
backslashes in the unmatched text. Otherwise, the resulting script does not
parse correctly. In this case, these special characters are encoded as HTML enti-
ties. We can afford to do this because the cmd that is called must deal with
encoded entities already. It is not possible to quote these special characters with
backslashes because all this text is inside curly braces, so no backslash substitu-
tion is performed. If you try that the backslashes will be seen by the cmd callback.

Finally, I must admit that I am always surprised that this works:
eval "$cmd {$start} {} {} {$html}"

I always forget that $start and $html are substituted in spite of the braces.
This is because double quotes are being used to group the argument, so the quot-
ing effect of braces is turned off. Try this:

set x hmstart

set y "foo {$x} bar"

=> foo {hmstart} bar

160 Regular Expressions Chap. 11

Stripping HTML Comments

The Html_Parse procedure does not correctly handle HTML comments. The
problem is that the syntax for HTML commands allows tags inside comments, so
there can be > characters inside the comment. HTML comments are also used to
hide Javascript inside pages, which can also contain >. We can fix this with a
pass that eliminates the comments.

The comment syntax is this:
<!-- HTML comment, could contain <markup> -->

Using nongreedy quantifiers, we can strip comments with a single regsub:
regsub -all <!--.*?--> $html {} html

Using only greedy quantifiers, it is awkward to match the closing --> with-
out getting stuck on embedded > characters, or without matching too much and
going all the way to the end of the last comment. Time for another trick:

regsub -all --> $html \x81 html

This replaces all the end comment sequences with a single character that is
not allowed in HTML. Now you can delete the comments like this:

regsub -all "<!--\[^\x81\]*\x81" $html {} html

Other Commands That Use Regular Expressions

Several Tcl commands use regular expressions.
• lsearch takes a -regexp flag so that you can search for list items that

match a regular expression. The lsearch command is described on page 64.
• switch takes a -regexp flag, so you can branch based on a regular expres-

sion match instead of an exact match or a string match style match. The
switch command is described on page 71.

• The Tk text widget can search its contents based on a regular expression
match. Searching in the text widget is described on page 461.

• The Expect Tcl extension can match the output of a program with regular
expressions. Expect is the subject of its own book, Exploring Expect
(O’Reilly, 1995) by Don Libes.

161

C H A P T E R

II. A
d

va
nc

e
d

 Tc
l

 12

Script Libraries and Packages 12

Collections of Tcl commands are kept in libraries and organized into packages.
Tcl automatically loads libraries as an application uses their commands.
Tcl commands discussed are: package, pkg_mkIndex,
auto_mkindex, unknown, and tcl_findLibrary.

Libraries group useful sets of Tcl proce-
dures so that they can be used by multiple applications. For example, you could
use any of the code examples that come with this book by creating a script
library and then directing your application to check in that library for missing
procedures. One way to structure a large application is to have a short main
script and a library of support scripts. The advantage of this approach is that not
all the Tcl code needs to be loaded to start the application. Applications start up
quickly, and as new features are accessed, the code that implements them is
loaded automatically.

The Tcl package facility supports version numbers and has a provide/
require model of use. Typically, each file in a library provides one package with a
particular version number. Packages also work with shared object libraries that
implement Tcl commands in compiled code, which are described in Chapter 44. A
package can be provided by a combination of script files and object files. Applica-
tions specify which packages they require and the libraries are loaded automati-
cally. The package facility is an alternative to the auto loading scheme used in
earlier versions of Tcl. You can use either mechanism, and this chapter describes
them both.

If you create a package you may wish to use the namespace facility to avoid
conflicts between procedures and global variables used in different packages.
Namespaces are the topic of Chapter 14. Before Tcl 8.0 you had to use your own
conventions to avoid conflicts. This chapter explains a simple coding convention
for large Tcl programs. I use this convention in exmh, a mail user interface that

162 Script Libraries and Packages Chap. 12

has grown from about 2,000 to over 35,000 lines of Tcl code. A majority of the
code has been contributed by the exmh user community. Such growth might not
have been possible without coding conventions.

Locating Packages: The auto_path Variable

The package facility assumes that Tcl libraries are kept in well-known directo-
ries. The list of well-known directories is kept in the auto_path Tcl variable. This
is initialized by tclsh and wish to include the Tcl script library directory, the Tk
script library directory (for wish), and the parent directory of the Tcl script
library directory. For example, on my Macintosh auto_path is a list of these three
directories:

Disk:System Folder:Extensions:Tool Command Language:tcl8.2
Disk:System Folder:Extensions:Tool Command Language
Disk:System Folder:Extensions:Tool Command Language:tk8.2

On my Windows 95 machine the auto_path lists these directories:

c:\Program Files\Tcl\lib\Tcl8.2
c:\Program Files\Tcl\lib
c:\Program Files\Tcl\lib\Tk8.2

On my UNIX workstation the auto_path lists these directories:

/usr/local/tcl/lib/tcl8.2
/usr/local/tcl/lib
/usr/local/tcl/lib/tk8.2

The package facility searches these directories and their subdirectories for
packages. The easiest way to manage your own packages is to create a directory
at the same level as the Tcl library:

/usr/local/tcl/lib/welchbook

Packages in this location, for example, will be found automatically because
the auto_path list includes /usr/local/tcl/lib. You can also add directories to
the auto_path explicitly:

lappend auto_path directory

One trick I often use is to put the directory containing the main script into
the auto_path. The following command sets this up:

lappend auto_path [file dirname [info script]]

If your code is split into bin and lib directories, then scripts in the bin
directory can add the adjacent lib directory to their auto_path with this com-
mand:

lappend auto_path \

[file join [file dirname [info script]] ../lib]

Using Packages 163
II. A

d
va

nc
e

d
 Tc

l

Using Packages

Each script file in a library declares what package it implements with the pack-
age provide command:

package provide name version

The name identifies the package, and the version has a major.minor for-
mat. The convention is that the minor version number can change and the pack-
age implementation will still be compatible. If the package changes in an
incompatible way, then the major version number should change. For example,
Chapter 17 defines several procedures that use the HTTP network protocol.
These include Http_Open, Http_Get, and Http_Validate. The file that contains
the procedures starts with this command:

package provide Http 1.0

Case is significant in package names. In particular, the package that comes
with Tcl is named http — all lowercase.

More than one file can contribute to the same package simply by specifying
the same name and version. In addition, different versions of the same package
can be kept in the same directory but in different files.

An application specifies the packages it needs with the package require
command:

package require name ?version? ?-exact?

If the version is left off, then the highest available version is loaded. Other-
wise the highest version with the same major number is loaded. For example, if
the client requires version 1.1, version 1.2 could be loaded if it exists, but ver-
sions 1.0 and 2.0 would not be loaded. You can restrict the package to a specific
version with the -exact flag. If no matching version can be found, then the pack-
age require command raises an error.

Loading Packages Automatically

The package require command depends on an index to record which files
implement which packages. The index must be maintained by you, your project
librarian, or your system administrator when packages change. The index is
computed by the pkg_mkIndex command that puts the results into the pkgIn-
dex.tcl file in each library directory. The pkg_mkIndex command takes the name
of a directory and one or more glob patterns that specify files within that direc-
tory. File name patterns are described on page 115. The syntax is:

pkg_mkIndex ?options? directory pattern ?pattern ...?

For example:
pkg_mkIndex /usr/local/lib/welchbook *.tcl

pkg_mkIndex -direct /usr/local/lib/Sybtcl *.so

The pkg_mkIndex command sources or loads all the files matched by the
pattern, detects what packages they provide, and computes the index. You
should be aware of this behavior because it works well only for libraries. If the

164 Script Libraries and Packages Chap. 12

pkg_mkIndex command hangs or starts random applications, it is because it
sourced an application file instead of a library file.

By default, the index created by pkg_mkIndex contains commands that set
up the auto_index array used to automatically load commands when they are
first used. This means that code does not get loaded when your script does a
package require. If you want the package to be loaded right away, specify the
-direct flag to pkg_mkIndex so that it creates an index file with source and load
commands. The pkg_mkIndex options are summarized in Table 12–1.

Packages Implemented in C Code

The files in a library can be either script files that define Tcl procedures or
binary files in shared library format that define Tcl commands in compiled code
(i.e., a Dynamic Link Library (DLL)). Chapter 44 describes how to implement Tcl
commands in C. There is a C API to the package facility that you use to declare
the package name for your commands. This is shown in Example 44–1 on page
608. Chapter 37 also describes the Tcl load command that is used instead of
source to link in shared libraries. The pkg_mkIndex command also handles
shared libraries:

pkg_mkIndex directory *.tcl *.so *.shlib *.dll

In this example, .so, .shlib, and .dll are file suffixes for shared libraries
on UNIX, Macintosh, and Windows systems, respectively. You can have packages
that have some of their commands implemented in C, and some implemented as
Tcl procedures. The script files and the shared library must simply declare that
they implement the same package. The pkg_mkIndex procedure will detect this
and set up the auto_index, so some commands are defined by sourcing scripts,
and some are defined by loading shared libraries.

If your file servers support more than one machine architecture, such as
Solaris and Linux systems, you probably keep the shared library files in
machine-specific directories. In this case the auto_path should also list the
machine-specific directory so that the shared libraries there can be loaded auto-
matically. If your system administrator configured the Tcl installation properly,
this should already be set up. If not, or you have your shared libraries in a non-
standard place, you must append the location to the auto_path variable.

Table 12–1 Options to the pkg_mkIndex command.

-direct Generates an index with source and load commands in it. This
results in packages being loaded directly as a result of package
require.

-load pattern Dynamically loads packages that match pattern into the slave inter-
preter used to compute the index. A common reason to need this is with
the tcbload package needed to load .tbc files compiled with
TclPro Compiler.

-verbose Displays the name of each file processed and any errors that occur.

Summary of Package Loading 165
II. A

d
va

nc
e

d
 Tc

l

Summary of Package Loading

The basic structure of package loading works like this:

• An application does a package require command. If the package is already
loaded, the command just returns the version number of the already loaded
package. If is not loaded, the following steps occur.

• The package facility checks to see if it knows about the package. If it does,
then it runs the Tcl scripts registered with the package ifneeded command.
These commands either load the package or set it up to be loaded automati-
cally when its commands are first used.

• If the package is unknown, the tclPkgUnknown procedure is called to find it.
Actually, you can specify what procedure to call to do the lookup with the
package unknown command, but the standard one is tclPkgUnknown.

• The tclPkgUnknown procedure looks through the auto_path directories and
their subdirectories for pkgIndex.tcl files. It sources those to build an
internal database of packages and version information. The pkgIndex.tcl
files contain calls to package ifneeded that specify what to do to define the
package. The standard action is to call the tclPkgSetup procedure that sets
up the auto_index so that the commands in the package will be automati-
cally loaded. If you use -direct with pkg_mkIndex, the script contains
source and load commands instead.

• The tclPkgSetup procedure defines the auto_index array to contain the cor-
rect source or load commands to define each command in the package.
Automatic loading and the auto_index array are described in more detail
later.

As you can see, there are several levels of processing involved in finding
packages. The system is flexible enough that you can change the way packages
are located and how packages are loaded. The default scenario is complicated
because it uses the delayed loading of source code that is described in the next
section. Using the -direct flag to pkg_mkIndex simplifies the situation. In any
case, it all boils down to three key steps:

• Use pkg_mkIndex to maintain your index files. Decide at this time whether
or not to use direct package loading.

• Put the appropriate package require and package provide commands in
your code.

• Ensure that your library directories, or their parent directories, are listed in
the auto_path variable.

The package Command

The package command has several operations that are used primarily by the
pkg_mkIndex procedure and the automatic loading facility. These operations are
summarized in Table 12–2.

166 Script Libraries and Packages Chap. 12

Libraries Based on the tclIndex File

You can create libraries without using the package command. The basic idea is
that a directory has a library of script files, and an index of the Tcl commands
defined in the library is kept in a tclIndex file. The drawback is that versions
are not supported and you may need to adjust the auto_path to list your library
directory. The main advantage of this approach is that this mechanism has been
part of Tcl since the earliest versions. If you currently maintain a library using
tclIndex files, it will still work.

You must generate the index that records what procedures are defined in
the library. The auto_mkindex procedure creates the index, which is stored in a
file named tclIndex that is kept in the script library directory. (Watch out for the
difference in capitalization between auto_mkindex and pkg_mkIndex!) Suppose
all the examples from this book are in the directory /usr/local/tcl/welchbook.
You can make the examples into a script library by creating the tclIndex file:

auto_mkindex /usr/local/tcl/welchbook *.tcl

You will need to update the tclIndex file if you add procedures or change
any of their names. A conservative approach to this is shown in the next exam-
ple. It is conservative because it re-creates the index if anything in the library
has changed since the tclIndex file was last generated, whether or not the
change added or removed a Tcl procedure.

Example 12–1 Maintaining a tclIndex file.

proc Library_UpdateIndex { libdir } {

Table 12–2 The package command.

package forget package Deletes registration information for package.

package ifneeded package
?command?

Queries or sets the command used to set up automatic
loading of a package.

package names Returns the set of registered packages.

package provide package
version

Declares that a script file defines commands for pack-
age with the given version.

package require package
?version? ?-exact?

Declares that a script uses package. The -exact flag
specifies that the exact version must be loaded. Other-
wise, the highest matching version is loaded.

package unknown ?command? Queries or sets the command used to locate packages.

package vcompare v1 v2 Compares version v1 and v2. Returns 0 if they are equal,
-1 if v1 is less than v2, or 1 if v1 is greater than v2.

package versions package Returns which versions of the package are registered.

package vsatisfies v1 v2 Returns 1 if v1 is greater or equal to v2 and still has the
same major version number. Otherwise returns 0.

The unknown Command 167
II. A

d
va

nc
e

d
 Tc

l

set index [file join $libdir tclIndex]
if {![file exists $index]} {

set doit 1
} else {

set age [file mtime $index]
set doit 0
Changes to directory may mean files were deleted
if {[file mtime $libdir] > $age} {

set doit 1
} else {

Check each file for modification
foreach file [glob [file join $libdir *.tcl]] {

if {[file mtime $file] > $age} {
set doit 1
break

}
}

}
}
if { $doit } {

auto_mkindex $libdir *.tcl
}

}

Tcl uses the auto_path variable to record a list of directories to search for
unknown commands. To continue our example, you can make the procedures in
the book examples available by putting this command at the beginning of your
scripts:

lappend auto_path /usr/local/tcl/welchbook

This has no effect if you have not created the tclIndex file. If you want to
be extra careful, you can call Library_UpdateIndex. This will update the index if
you add new things to the library.

lappend auto_path /usr/local/tcl/welchbook

Library_UpdateIndex /usr/local/tcl/welchbook

This will not work if there is no tclIndex file at all because Tcl won’t be
able to find the implementation of Library_UpdateIndex. Once the tclIndex has
been created for the first time, then this will ensure that any new procedures
added to the library will be installed into tclIndex. In practice, if you want this
sort of automatic update, it is wise to include something like the
Library_UpdateIndex procedure directly into your application as opposed to
loading it from the library it is supposed to be maintaining.

The unknown Command

Automatic loading of Tcl commands is implemented by the unknown command.
Whenever the Tcl interpreter encounters a command that it does not know
about, it calls the unknown command with the name of the missing command.
The unknown command is implemented in Tcl, so you are free to provide your own

168 Script Libraries and Packages Chap. 12

mechanism to handle unknown commands. This chapter describes the behavior
of the default implementation of unknown, which can be found in the init.tcl
file in the Tcl library. The location of the library is returned by the info library
command.

How Auto Loading Works

The unknown command uses an array named auto_index. One element of
the array is defined for each procedure that can be automatically loaded. The
auto_index array is initialized by the package mechanism or by tclIndex files.
The value of an auto_index element is a command that defines the procedure.
Typical commands are:

source [file join $dir bind_ui.tcl]

load [file join $dir mime.so] Mime

The $dir gets substituted with the name of the directory that contains the
library file, so the result is a source or load command that defines the missing
Tcl command. The substitution is done with eval, so you could initialize
auto_index with any commands at all. Example 12–2 is a simplified version of
the code that reads the tclIndex file.

Example 12–2 Loading a tclIndex file.

This is a simplified part of the auto_load_index procedure.
Go through auto_path from back to front.
set i [expr [llength $auto_path]-1]
for {} {$i >= 0} {incr i -1} {

set dir [lindex $auto_path $i]
if [catch {open [file join $dir tclIndex]} f] {

No index
continue

}
eval the file as a script. Because eval is
used instead of source, an extra round of
substitutions is performed and $dir gets expanded
The real code checks for errors here.
eval [read $f]
close $f

}

Disabling the Library Facility: auto_noload

If you do not want the unknown procedure to try and load procedures, you
can set the auto_noload variable to disable the mechanism:

set auto_noload anything

Auto loading is quite fast. I use it regularly on applications both large and small.
A large application will start faster if you only need to load the code necessary to
start it up. As you access more features of your application, the code will load

Interactive Conveniences 169
II. A

d
va

nc
e

d
 Tc

l

automatically. Even a small application benefits from auto loading because it
encourages you to keep commonly used code in procedure libraries.

Interactive Conveniences

The unknown command provides a few other conveniences. These are used only
when you are typing commands directly. They are disabled once execution enters
a procedure or if the Tcl shell is not being used interactively. The convenience
features are automatic execution of programs, command history, and command
abbreviation. These options are tried, in order, if a command implementation
cannot be loaded from a script library.

Auto Execute

The unknown procedure implements a second feature: automatic execution
of external programs. This makes a Tcl shell behave more like other UNIX shells
that are used to execute programs. The search for external programs is done
using the standard PATH environment variable that is used by other shells to find
programs. If you want to disable the feature all together, set the auto_noexec
variable:

set auto_noexec anything

History

The history facility described in Chapter 13 is implemented by the unknown
procedure.

Abbreviations

If you type a unique prefix of a command, unknown recognizes it and exe-
cutes the matching command for you. This is done after automatic program exe-
cution is attempted and history substitutions are performed.

Tcl Shell Library Environment

Tcl searches for its script library directory when it starts up. In early versions of
Tcl you had to compile in the correct location, set a Windows registry value, or
set the TCL_LIBRARY environment variable to the correct location. Recent ver-
sions of Tcl use a standard searching scheme to locate the script library. The
search understands the standard installation and build environments for Tcl,
and it should eliminate the need to use the TCL_LIBRARY environment vari-
able. On Windows the search for the library used to depend on registry values,
but this has also been discontinued in favor of a standard search. In summary, "it
should just work." However, this section explains how Tcl finds its script library

170 Script Libraries and Packages Chap. 12

so that you can troubleshoot problems.

Locating the Tcl Script Library

The default library location is defined when you configure the source distri-
bution, which is explained on page 642. At this time an initial value for the
auto_path variable is defined. (This default value appears in tcl_pkgPath, but
changing this variable has no effect once Tcl has started. I just pretend
tcl_pkgPath does not exist.) These values are just hints; Tcl may use other direc-
tories depending on what it finds in the file system.

When Tcl starts up, it searches for a directory that contains its init.tcl
startup script. You can short-circuit the search by defining the TCL_LIBRARY envi-
ronment variable. If this is defined, Tcl uses it only for its script library directory.
However, you should not need to define this with normal installations of Tcl 8.0.5
or later. In my environment I’m often using several different versions of Tcl for
various applications and testing purposes, so setting TCL_LIBRARY is never cor-
rect for all possibilities. If I find myself setting this environment variable, I know
something is wrong with my Tcl installations!

The standard search starts with the default value that is compiled into Tcl
(e.g., /usr/local/lib/tcl8.1.) After that, the following directories are exam-
ined for an init.tcl file. These example values assume Tcl version 8.1 and
patch level 8.1.1:

../lib/tcl8.1

../../lib/tcl8.1

../library

../../tcl8.1.1/library

../../../tcl8.1.1/library

The first two directories correspond to the standard installation directories,
while the last three correspond to the standard build environment for Tcl or Tk.
The first directory in the list that contains a valid init.tcl file becomes the Tcl
script library. This directory location is saved in the tcl_library global variable,
and it is also returned by the info library command.

The primary thing defined by init.tcl is the implementation of the
unknown procedure. It also initializes auto_path to contain $tcl_library and the
parent directory of $tcl_library. There may be additional directories added to
auto_path depending on the compiled in value of tcl_pkgPath.

tcl_findLibrary

A generalization of this search is implemented by tcl_findLibrary. This
procedure is designed for use by extensions like Tk and [incr Tcl]. Of course, Tcl
cannot use tcl_findLibrary itself because it is defined in init.tcl!

The tcl_findLibrary procedure searches relative to the location of the
main program (e.g., tclsh or wish) and assumes a standard installation or a stan-
dard build environment. It also supports an override by an environment vari-

Coding Style 171
II. A

d
va

nc
e

d
 Tc

l

able, and it takes care of sourcing an initialization script. The usage of
tcl_findLibrary is:

tcl_findLibrary base version patch script enVar varName

The base is the prefix of the script library directory name. The version is
the main version number (e.g., "8.0"). The patch is the full patch level (e.g.,
"8.0.3"). The script is the initialization script to source from the directory. The
enVar names an environment variable that can be used to override the default
search path. The varName is the name of a variable to set to name of the directory
found by tcl_findLibrary. A side effect of tcl_findLibrary is to source the
script from the directory. An example call is:

tcl_findLibrary tk 8.0 8.0.3 tk.tcl TK_LIBRARY tk_library

This call first checks to see whether TK_LIBRARY is defined in the environ-
ment. If so, it uses its value. Otherwise, it searches the following directories for a
file named tk.tcl. It sources the script and sets the tk_library variable to the
directory containing that file. The search is relative to the value returned by
info nameofexecutable:

../lib/tk8.0

../../lib/tk8.0

../library

../../tk8.0.3/library

../../../tk8.0.3/library

Tk also adds $tk_library to the end of auto_path, so the other script files
in that directory are available to the application:

lappend auto_path $tk_library

Coding Style

If you supply a package, you need to follow some simple coding conventions to
make your library easier to use by other programmers. You can use the
namespace facility introduced in Tcl 8.0. You can also use conventions to avoid
name conflicts with other library packages and the main application. This sec-
tion describes the conventions I developed before namespaces were added to Tcl.

A Module Prefix for Procedure Names

The first convention is to choose an identifying prefix for the procedures in
your package. For example, the preferences package in Chapter 42 uses Pref as
its prefix. All the procedures provided by the library begin with Pref. This con-
vention is extended to distinguish between private and exported procedures. An
exported procedure has an underscore after its prefix, and it is acceptable to call
this procedure from the main application or other library packages. Examples
include Pref_Add, Pref_Init, and Pref_Dialog. A private procedure is meant for
use only by the other procedures in the same package. Its name does not have
the underscore. Examples include PrefDialogItem and PrefXres.

172 Script Libraries and Packages Chap. 12

This naming convention precludes casual names like doit, setup, layout,
and so on. Without using namespaces, there is no way to hide procedure names,
so you must maintain the naming convention for all procedures in a package.

A Global Array for State Variables

You should use the same prefix on the global variables used by your pack-
age. You can alter the capitalization; just keep the same prefix. I capitalize proce-
dure names and use lowercase letters for variables. By sticking with the same
prefix you identify what variables belong to the package and you avoid conflict
with other packages.

Collect state in a global array.
In general, I try to use a single global array for a package. The array pro-

vides a convenient place to collect a set of related variables, much as a struct is
used in C. For example, the preferences package uses the pref array to hold all
its state information. It is also a good idea to keep the use of the array private. It
is better coding practice to provide exported procedures than to let other modules
access your data structures directly. This makes it easier to change the imple-
mentation of your package without affecting its clients.

If you do need to export a few key variables from your module, use the
underscore convention to distinguish exported variables. If you need more than
one global variable, just stick with the prefix convention to avoid conflicts.

The Official Tcl Style Guide

John Ousterhout has published two programming style guides, one for C
programming known as The Engineering Manual and one for Tcl scripts known
as The Style Guide. These describe details about file structure as well as naming
conventions for modules, procedures, and variables. The Tcl Style Guide conven-
tions use Tcl namespaces to separate packages. Namespaces automatically pro-
vide a way to avoid conflict between procedure names. Namespaces also support
collections of variables without having to use arrays for grouping.

You can find these style guides on the CD-ROM and also in ftp://
ftp.scriptics.com/pub/tcl/doc. The Engineering Manual is distributed as a
compressed tar file, engManual.tar.Z, that contains sample files as well as the
main document. The Style Guide is distributed as styleGuide.ps (or .pdf).

173

C H A P T E R

II. A
d

va
nc

e
d

 Tc
l

 13

Reflection and Debugging 13

This chapter describes commands that give you a view into the interpreter. The
history command and a simple debugger are useful during
development and debugging. The info command provides a variety of
information about the internal state of the Tcl interpreter. The time
command measures the time it takes to execute a command. Tcl
commands discussed are: clock, info, history, and time.

Reflection provides feedback to a script
about the internal state of the interpreter. This is useful in a variety of cases,
from testing to see whether a variable exists to dumping the state of the inter-
preter. The info command provides lots of different information about the inter-
preter.

The clock command is useful for formatting dates as well as parsing date
and time values. It also provides high-resolution timer information for precise
measurements.

Interactive command history is the third topic of the chapter. The history
facility can save you some typing if you spend a lot of time entering commands
interactively.

Debugging is the last topic. The old-fashioned approach of adding puts com-
mands to your code is often quite useful. For tough problems, however, a real
debugger is invaluable. The TclPro tools from Scriptics include a high quality
debugger and static code checker. The tkinspect program is an inspector that lets
you look into the state of a Tk application. It can hook up to any Tk application
dynamically, so it proves quite useful.

The clock Command

The clock command has facilities for getting the current time, formatting time
values, and scanning printed time strings to get an integer time value. The clock
command was added in Tcl 7.5. Table 13–1 summarizes the clock command:

174 Reflection and Debugging Chap. 13

The following command prints the current time:
clock format [clock seconds]

=> Sun Nov 24 14:57:04 1996

The clock seconds command returns the current time, in seconds since a
starting epoch. The clock format command formats an integer value into a date
string. It takes an optional argument that controls the format. The format
strings contains % keywords that are replaced with the year, month, day, date,
hours, minutes, and seconds, in various formats. The default string is:

%a %b %d %H:%M:%S %Z %Y

Tables 13–2 and 13–3 summarize the clock formatting strings:

Table 13–1 The clock command.

clock clicks A system-dependent high resolution counter.

clock format value ?-format
str?

Formats a clock value according to str.

clock scan string ?-base
clock? ?-gmt boolean?

Parses date string and return seconds
value. The clock value determines the date.

clock seconds Returns the current time in seconds.

Table 13–2 Clock formatting keywords.

%% Inserts a %.

%a Abbreviated weekday name (Mon, Tue, etc.).

%A Full weekday name (Monday, Tuesday, etc.).

%b Abbreviated month name (Jan, Feb, etc.).

%B Full month name.

%c Locale specific date and time (e.g., Nov 24 16:00:59 1996).

%d Day of month (01 – 31).

%H Hour in 24-hour format (00 – 23).

%I Hour in 12-hour format (01 – 12).

%j Day of year (001 – 366).

%m Month number (01 – 12).

%M Minute (00 – 59).

%p AM/PM indicator.

%S Seconds (00 – 59).

%U Week of year (00 – 52) when Sunday starts the week.

%w Weekday number (Sunday = 0).

The clock Command 175
II. A

d
va

nc
e

d
 Tc

l

The clock clicks command returns the value of the system’s highest reso-
lution clock. The units of the clicks are not defined. The main use of this com-
mand is to measure the relative time of different performance tuning trials. The
following command counts the clicks per second over 10 seconds, which will vary
from system to system:

Example 13–1 Calculating clicks per second.

set t1 [clock clicks]
after 10000 ;# See page 218
set t2 [clock clicks]
puts "[expr ($t2 - $t1)/10] Clicks/second"
=> 1001313 Clicks/second

The clock scan command parses a date string and returns a seconds value.
The command handles a variety of date formats. If you leave off the year, the cur-
rent year is assumed.

Year 2000 Compliance
Tcl implements the standard interpretation of two-digit year values, which

is that 70–99 are 1970–1999, 00–69 are 2000–2069. Versions of Tcl before 8.0 did
not properly deal with two-digit years in all cases. Note, however, that Tcl is lim-

%W Week of year (01 – 52) when Monday starts the week.

%x Locale specific date format (e.g., Feb 19 1997).

%X Locale specific time format (e.g., 20:10:13).

%y Year without century (00 – 99).

%Y Year with century (e.g. 1997).

%Z Time zone name.

Table 13–3 UNIX-specific clock formatting keywords.

%D Date as %m/%d/%y (e.g., 02/19/97).

%e Day of month (1 – 31), no leading zeros.

%h Abbreviated month name.

%n Inserts a newline.

%r Time as %I:%M:%S %p (e.g., 02:39:29 PM).

%R Time as %H:%M (e.g., 14:39).

%t Inserts a tab.

%T Time as %H:%M:%S (e.g., 14:34:29).

Table 13–2 Clock formatting keywords. (Continued)

176 Reflection and Debugging Chap. 13

ited by your system’s time epoch and the number of bits in an integer. On Win-
dows, Macintosh, and most UNIX systems, the clock epoch is January 1, 1970. A
32-bit integer can count enough seconds to reach forward into the year 2037, and
backward to the year 1903. If you try to clock scan a date outside that range, Tcl
will raise an error because the seconds counter will overflow or underflow. In this
case, Tcl is just reflecting limitations of the underlying system.

If you leave out a date, clock scan assumes the current date. You can also
use the -base option to specify a date. The following example uses the current
time as the base, which is redundant:

clock scan "10:30:44 PM" -base [clock seconds]

=> 2931690644

The date parser allows these modifiers: year, month, fortnight (two
weeks), week, day, hour, minute, second. You can put a positive or negative num-
ber in front of a modifier as a multiplier. For example:

clock format [clock scan "10:30:44 PM 1 week"]

=> Sun Dec 01 22:30:44 1996

clock format [clock scan "10:30:44 PM -1 week"]

Sun Nov 17 22:30:44 1996

You can also use tomorrow, yesterday, today, now, last, this, next, and ago,
as modifiers.

clock format [clock scan "3 years ago"]

=> Wed Nov 24 17:06:46 1993

Both clock format and clock scan take a -gmt option that uses Greenwich
Mean Time. Otherwise, the local time zone is used.

clock format [clock seconds] -gmt true

=> Sun Nov 24 09:25:29 1996

clock format [clock seconds] -gmt false

=> Sun Nov 24 17:25:34 1996

The info Command

Table 13–4 summarizes the info command. The operations are described in
more detail later.

Table 13–4 The info command.

info args procedure A list of procedure’s arguments.

info body procedure The commands in the body of procedure.

info cmdcount The number of commands executed so far.

info commands ?pattern? A list of all commands, or those matching pattern.
Includes built-ins and Tcl procedures.

info complete string True if string contains a complete Tcl command.

The info Command 177
II. A

d
va

nc
e

d
 Tc

l

Variables

There are three categories of variables: local, global, and visible. Informa-
tion about these categories is returned by the locals, globals, and vars opera-
tions, respectively. The local variables include procedure arguments as well as
locally defined variables. The global variables include all variables defined at the
global scope. The visible variables include locals, plus any variables made visible
via global or upvar commands. A pattern can be specified to limit the returned
list of variables to those that match the pattern. The pattern is interpreted
according to the rules of string match, which is described on page 48:

info globals auto*

=> auto_index auto_noexec auto_path

info default proc arg var True if arg has a default parameter value in procedure
proc. The default value is stored into var.

info exists variable True if variable is defined.

info globals ?pattern? A list of all global variables, or those matching pat-
tern.

info hostname The name of the machine. This may be the empty string if
networking is not initialized.

info level The stack level of the current procedure, or 0 for the glo-
bal scope.

info level number A list of the command and its arguments at the specified
level of the stack.

info library The pathname of the Tcl library directory.

info loaded ?interp? A list of the libraries loaded into the interpreter named
interp, which defaults to the current one.

info locals ?pattern? A list of all local variables, or those matching pattern.

info nameofexecutable The file name of the program (e.g., of tclsh or wish).

info patchlevel The release patch level for Tcl.

info procs ?pattern? A list of all Tcl procedures, or those that match pat-
tern.

info script The name of the file being processed, or the empty string.

info sharedlibextension The file name suffix of shared libraries.

info tclversion The version number of Tcl.

info vars ?pattern? A list of all visible variables, or those matching pat-
tern.

Table 13–4 The info command. (Continued)

178 Reflection and Debugging Chap. 13

Namespaces, which are the topic of the next chapter, partition global vari-
ables into different scopes. You query the variables visible in a namespace with:

info vars namespace::*

Remember that a variable may not be defined yet even though a global or
upvar command has declared it visible in the current scope. Use the info exists
command to test whether a variable or an array element is defined or not. An
example is shown on page 59.

Procedures

You can find out everything about a Tcl procedure with the args, body, and
default operations. This is illustrated in the following Proc_Show example. The
puts commands use the -nonewline flag because the newlines in the procedure
body, if any, are retained:

Example 13–2 Printing a procedure definition.

proc Proc_Show {{namepat *} {file stdout}} {
foreach proc [info procs $namepat] {

set space ""
puts -nonewline $file "proc $proc {"
foreach arg [info args $proc] {

if [info default $proc $arg value] {
puts -nonewline $file "$space{$arg $value}"

} else {
puts -nonewline $file $space$arg

}
set space " "

}

No newline needed because info body may return a
value that starts with a newline

puts -nonewline $file "} {"
puts -nonewline $file [info body $proc]
puts $file "}"

}
}

Example 13–3 is a more elaborate example of procedure introspection that
comes from the direct.tcl file, which is part of the Tcl Web Server described in
Chapter 18. This code is used to map URL requests and the associated query
data directly into Tcl procedure calls. This is discussed in more detail on page
247. The Web server collects Web form data into an array called form. Example
13–3 matches up elements of the form array with procedure arguments, and it
collects extra elements into an args parameter. If a form value is missing, then
the default argument value or the empty string is used:

The info Command 179
II. A

d
va

nc
e

d
 Tc

l

Example 13–3 Mapping form data onto procedure arguments.

cmd is the name of the procedure to invoke
form is an array containing form values

set cmdOrig $cmd
set params [info args $cmdOrig]

Match elements of the form array to parameters

foreach arg $params {
if {![info exists form($arg)]} {

if {[info default $cmdOrig $arg value]} {
lappend cmd $value

} elseif {[string compare $arg "args"] == 0} {
set needargs yes

} else {
lappend cmd {}

}
} else {

lappend cmd $form($arg)
}

}
If args is a parameter, then append the form data
that does not match other parameters as extra parameters

if {[info exists needargs]} {
foreach {name value} $valuelist {

if {[lsearch $params $name] < 0} {
lappend cmd $name $value

}
}

}
Eval the command

set code [catch $cmd result]

The info commands operation returns a list of all commands, which includes
both built-in commands defined in C and Tcl procedures. There is no operation
that just returns the list of built-in commands. Example 13–4 finds the built-in
commands by removing all the procedures from the list of commands.

Example 13–4 Finding built-in commands.

proc Command_Info {{pattern *}} {
Create a table of procedures for quick lookup

foreach p [info procs $pattern] {
set isproc($p) 1

}

Look for command not in the procedure table
set result {}

180 Reflection and Debugging Chap. 13

foreach c [info commands $pattern] {
if {![info exists isproc($c)]} {

lappend result $c
}

}
return [lsort $result]

}

The Call Stack

The info level operation returns information about the Tcl evaluation
stack, or call stack. The global level is numbered zero. A procedure called from
the global level is at level one in the call stack. A procedure it calls is at level two,
and so on. The info level command returns the current level number of the
stack if no level number is specified.

If a positive level number is specified (e.g., info level 3), then the com-
mand returns the procedure name and argument values at that level in the call
stack. If a negative level is specified, then it is relative to the current call stack.
Relative level -1 is the level of the current procedure’s caller, and relative level 0
is the current procedure. The following example prints the call stack. The
Call_trace procedure avoids printing information about itself by starting at one
less than the current call stack level:

Example 13–5 Getting a trace of the Tcl call stack.

proc Call_Trace {{file stdout}} {
puts $file "Tcl Call Trace"
for {set x [expr [info level]-1]} {$x > 0} {incr x -1} {

puts $file "$x: [info level $x]"
}

}

Command Evaluation

If you want to know how many Tcl commands are executed, use the info
cmdcount command. This counts all commands, not just top-level commands. The
counter is never reset, so you need to sample it before and after a test run if you
want to know how many commands are executed during a test.

The info complete operation figures out whether a string is a complete Tcl
command. This is useful for command interpreters that need to wait until the
user has typed in a complete Tcl command before passing it to eval. Example
13–6 defines Command_Process that gets a line of input and builds up a com-
mand. When the command is complete, the command is executed at the global
scope. Command_Process takes two callbacks as arguments. The inCmd is evalu-
ated to get the line of input, and the outCmd is evaluated to display the results.
Chapter 10 describes callbacks why the curly braces are used with eval as they
are in this example:

The info Command 181
II. A

d
va

nc
e

d
 Tc

l

Example 13–6 A procedure to read and evaluate commands.

proc Command_Process {inCmd outCmd} {
global command
append command(line) [eval $inCmd]
if [info complete $command(line)] {

set code [catch {uplevel #0 $command(line)} result]
eval $outCmd {$result $code}
set command(line) {}

}
}
proc Command_Read {{in stdin}} {

if [eof $in] {
if {$in != "stdin"} {

close $in
}
return {}

}
return [gets $in]

}
proc Command_Display {file result code} {

puts stdout $result
}
while {![eof stdin]} {

Command_Process {Command_Read stdin} \
{Command_Display stdout}

}

Scripts and the Library

The name of the current script file is returned with the info script com-
mand. For example, if you use the source command to read commands from a
file, then info script returns the name of that file if it is called during execution
of the commands in that script. This is true even if the info script command is
called from a procedure that is not defined in the script.

Use info script to find related files.
I often use info script to source or process files stored in the same direc-

tory as the script that is running. A few examples are shown in Example 13–7.

Example 13–7 Using info script to find related files.

Get the directory containing the current script.
set dir [file dirname [info script]]

Source a file in the same directory
source [file join $dir helper.tcl]

Add an adjacent script library directory to auto_path
The use of ../lib with file join is cross-platform safe.
lappend auto_path [file join $dir ../lib]

182 Reflection and Debugging Chap. 13

The pathname of the Tcl library is stored in the tcl_library variable, and
it is also returned by the info library command. While you could put scripts
into this directory, it might be better to have a separate directory and use the
script library facility described in Chapter 12. This makes it easier to deal with
new releases of Tcl and to package up your code if you want other sites to use it.

Version Numbers

Each Tcl release has a version number such as 7.4 or 8.0. This number is
returned by the info tclversion command. If you want your script to run on a
variety of Tcl releases, you may need to test the version number and take differ-
ent actions in the case of incompatibilities between releases.

The Tcl release cycle starts with one or two alpha and beta releases before
the final release, and there may even be a patch release after that. The info
patchlevel command returns a qualified version number, like 8.0b1 for the first
beta release of 8.0. We switched from using "p" (e.g., 8.0p2) to a three-level
scheme (e.g., 8.0.3) for patch releases. The patch level is zero for the final release
(e.g., 8.2.0). In general, you should be prepared for feature changes during the
beta cycle, but there should only be bug fixes in the patch releases. Another rule
of thumb is that the Tcl script interface remains quite compatible between
releases; feature additions are upward compatible.

Execution Environment

The file name of the program being executed is returned with info
nameofexecutable. This is more precise than the name in the argv0 variable,
which could be a relative name or a name found in a command directory on your
command search path. It is still possible for info nameofexecutable to return a
relative pathname if the user runs your program as ./foo, for example. The fol-
lowing construct always returns the absolute pathname of the current program.
If info nameofexecutable returns an absolute pathname, then the value of the
current directory is ignored. The pwd command is described on page 115:

file join [pwd] [info nameofexecutable]

A few operations support dynamic loading of shared libraries, which are
described in Chapter 44. The info sharedlibextension returns the file name
suffix of dynamic link libraries. The info loaded command returns a list of
libraries that have been loaded into an interpreter. Multiple interpreters are
described in Chapter 19.

Cross-Platform Support

Tcl is designed so that you can write scripts that run unchanged on UNIX, Mac-
intosh, and Windows platforms. In practice, you may need a small amount of
code that is specific to a particular platform. You can find out information about

Tracing Variable Values 183
II. A

d
va

nc
e

d
 Tc

l

the platform via the tcl_platform variable. This is an array with these elements
defined:

• tcl_platform(platform) is one of unix, macintosh, or windows.
• tcl_platform(os) identifies the operating system. Examples include MacOS,

Solaris, Linux, Win32s (Windows 3.1 with the Win32 subsystem), Windows
95, Windows NT, and SunOS.

• tcl_platform(osVersion) gives the version number of the operating sys-
tem.

• tcl_platform(machine) identifies the hardware. Examples include ppc
(Power PC), 68k (68000 family), sparc, intel, mips, and alpha.

• tcl_platform(isWrapped) indicates that the application has been wrapped
up into a single executable with TclPro Wrapper. This is not defined in nor-
mal circumstances.

• tcl_platform(user) gives the login name of the current user.
• tcl_platform(debug) indicates that Tcl was compiled with debugging sym-

bols.
• tcl_platform(thread) indicates that Tcl was compiled with thread support

enabled.
On some platforms a hostname is defined. If available, it is returned with

the info hostname command. This command may return an empty string.
One of the most significant areas affected by cross-platform portability is

the file system and the way files are named. This topic is discussed on page 103.

Tracing Variable Values

The trace command registers a command to be called whenever a variable is
accessed, modified, or unset. This form of the command is:

trace variable name ops command

The name is a Tcl variable name, which can be a simple variable, an array,
or an array element. If a whole array is traced, the trace is invoked when any ele-
ment is used according to ops. The ops argument is one or more of the letters r,
for read traces, w, for write traces, and u, for unset traces. The command is exe-
cuted when one of these events occurs. It is invoked as:

command name1 name2 op

The name1 argument is the variable or array name. The name2 argument is
the name of the array index, or null if the trace is on a simple variable. If there is
an unset trace on an entire array and the array is unset, name2 is also null. The
value of the variable is not passed to the procedure. The traced variable is one
level up the Tcl call stack. The upvar, uplevel, or global commands need to be
used to make the variable visible in the scope of command. These commands are
described in more detail in Chapter 7.

A read trace is invoked before the value of the variable is returned, so if it
changes the variable itself, the new value is returned. A write trace is called

184 Reflection and Debugging Chap. 13

after the variable is modified. The unset trace is called after the variable is
unset.

Read-Only Variables

Example 13–8 uses traces to implement a read-only variable. A variable is
modified before the trace procedure is called, so the ReadOnly variable is needed
to preserve the original value. When a variable is unset, the traces are automati-
cally removed, so the unset trace action reestablishes the trace explicitly. Note
that the upvar alias (e.g., var) cannot be used to set up the trace:

Example 13–8 Tracing variables.

proc ReadOnlyVar {varName} {
upvar 1 $varName var
global ReadOnly
set ReadOnly($varName) $var
trace variable $varName wu ReadOnlyTrace

}
proc ReadOnlyTrace { varName index op } {

global ReadOnly
upvar 1 $varName var
switch $op {

w {
set var $ReadOnly($varName)

}
u {

set var $ReadOnly($varName)
Re-establish the trace using the true name
trace variable $varName wu ReadOnlyTrace

}
}

}

This example merely overrides the new value with the saved value. Another
alternative is to raise an error with the error command. This will cause the com-
mand that modified the variable to return the error. Another common use of
trace is to update a user interface widget in response to a variable change. Sev-
eral of the Tk widgets have this feature built into them.

If more than one trace is set on a variable, then they are invoked in the
reverse order; the most recent trace is executed first. If there is a trace on an
array and on an array element, then the trace on the array is invoked first.

Creating an Array with Traces

Example 13–9 uses an array trace to dynamically create array elements:

Interactive Command History 185
II. A

d
va

nc
e

d
 Tc

l

Example 13–9 Creating array elements with array traces.

make sure variable is an array
set dynamic() {}
trace variable dynamic r FixupDynamic
proc FixupDynamic {name index op} {

upvar 1 $name dynArray
if {![info exists dynArray($index)]} {

set dynArray($index) 0
}

}

Information about traces on a variable is returned with the vinfo option:
trace vinfo dynamic

=> {r FixupDynamic}

A trace is deleted with the vdelete option, which has the same form as the
variable option. The trace in the previous example can be removed with the fol-
lowing command:

trace vdelete dynamic r FixupDynamic

Interactive Command History

The Tcl shell programs keep a log of the commands that you type by using a his-
tory facility. The log is controlled and accessed via the history command. The
history facility uses the term event to mean an entry in its history log. The events
are just commands, and they have an event ID that is their index in the log. You
can also specify an event with a negative index that counts backwards from the
end of the log. Event -1 is the previous event. Table 13–5 summarizes the Tcl
history command. In the table, event defaults to -1.

In practice you will want to take advantage of the ability to abbreviate the
history options and even the name of the history command itself. For the com-
mand, you need to type a unique prefix, and this depends on what other com-
mands are already defined. For the options, there are unique one-letter
abbreviations for all of them. For example, you could reuse the last word of the
previous command with [hist w $]. This works because a $ that is not followed
by alphanumerics or an open brace is treated as a literal $.

Several of the history operations update the history list. They remove the
actual history command and replace it with the command that resulted from
the history operation. The event and redo operations all behave in this manner.
This makes perfect sense because you would rather have the actual command in
the history, instead of the history command used to retrieve the command.

186 Reflection and Debugging Chap. 13

History Syntax

Some extra syntax is supported when running interactively to make the
history facility more convenient to use. Table 13–6 shows the special history
syntax supported by tclsh and wish.

The next example shows how some of the history operations work:

Example 13–10 Interactive history usage.

% set a 5
5
% set a [expr $a+7]
12
% history

1 set a 5
2 set a [expr $a+7]
3 history

% !2
19
% !!

Table 13–5 The history command.

history Short for history info with no count.

history add command
?exec?

Adds the command to the history list. If exec is speci-
fied, then execute the command.

history change new
?event?

Changes the command specified by event to new in the
command history.

history event ?event? Returns the command specified by event.

history info ?count? Returns a formatted history list of the last count com-
mands, or of all commands.

history keep count Limits the history to the last count commands.

history nextid Returns the number of the next event.

history redo ?event? Repeats the specified command.

Table 13–6 Special history syntax.

!! Repeats the previous command.

!n Repeats command number n.If n is negative it counts backward from the
current command. The previous command is event -1.

!prefix Repeats the last command that begins with prefix.

!pattern Repeats the last command that matches pattern.

^old^new Globally replaces old with new in the last command.

Interactive Command History 187
II. A

d
va

nc
e

d
 Tc

l

26
% ^7^13
39
% !h

1 set a 5
2 set a [expr $a+7]
3 history
4 set a [expr $a+7]
5 set a [expr $a+7]
6 set a [expr $a+13]
7 history

A Comparison to C Shell History Syntax

The history syntax shown in the previous example is simpler than the his-
tory syntax provided by the C shell. Not all of the history operations are sup-
ported with special syntax. The substitutions (using ^old^new) are performed
globally on the previous command. This is different from the quick-history of the
C shell. Instead, it is like the !:gs/old/new/ history command. So, for example,
if the example had included ^a^b in an attempt to set b to 39, an error would
have occurred because the command would have used b before it was defined:

set b [expr $b+7]

If you want to improve the history syntax, you will need to modify the
unknown command, which is where it is implemented. This command is discussed
in more detail in Chapter 12. Here is the code from the unknown command that
implements the extra history syntax. The main limitation in comparison with
the C shell history syntax is that the ! substitutions are performed only when !
is at the beginning of the command:

Example 13–11 Implementing special history syntax.

Excerpts from the standard unknown command
uplevel is used to run the command in the right context
if {$name == "!!"} {

set newcmd [history event]
} elseif {[regexp {^!(.+)$} $name dummy event]} {

set newcmd [history event $event]
} elseif {[regexp {^\^([^^]*)\^([^^]*)\^?$} $name x old new]} {

set newcmd [history event -1]
catch {regsub -all -- $old $newcmd $new newcmd}

}
if {[info exists newcmd]} {

history change $newcmd 0
return [uplevel $newcmd]

}

188 Reflection and Debugging Chap. 13

Debugging

The rapid turnaround with Tcl coding means that it is often sufficient to add a
few puts statements to your script to gain some insight about its behavior. This
solution doesn’t scale too well, however. A slight improvement is to add a Debug
procedure that can have its output controlled better. You can log the information
to a file, or turn it off completely. In a Tk application, it is simple to create a text
widget to hold the contents of the log so that you can view it from the application.
Here is a simple Debug procedure. To enable it you need to set the debug(enable)
variable. To have its output go to your terminal, set debug(file) to stderr.

Example 13–12 A Debug procedure.

proc Debug { args } {
global debug
if {![info exists debug(enabled)]} {

Default is to do nothing
return

}
puts $debug(file) [join $args " "]

}
proc DebugOn {{file {}}} {

global debug
set debug(enabled) 1
if {[string length $file] == 0} {

set debug(file) stderr
} else {

if [catch {open $file w} fileID] {
puts stderr "Cannot open $file: $fileID"
set debug(file) stderr

} else {
puts stderr "Debug info to $file"
set debug(file) $fileID

}
}

}
proc DebugOff {} {

global debug
if {[info exists debug(enabled)]} {

unset debug(enabled)
flush $debug(file)
if {$debug(file) != "stderr" &&

 $debug(file) != "stdout"} {
close $debug(file)
unset debug(file)

}
}

}

Scriptics’ TclPro 189
II. A

d
va

nc
e

d
 Tc

l

Scriptics’ TclPro

Scriptics offers a commercial development environment for Tcl called TclPro.
TclPro features an extended Tcl platform and a set of development tools. The Tcl
platform includes the popular [incr Tcl], Expect, and TclX extensions. These
extensions and Tcl/Tk are distributed in source and binary form for Windows
and a variety of UNIX platforms. There is an evaluation copy of TclPro on the
CD-ROM. The TclPro distribution includes a copy of Tcl/Tk and the extensions
that you can use for free. However, you will need to register at the Scriptics web
site to obtain an evaluation license for the TclPro development tools. Please visit
the following URL:

http://www.scriptics.com/registration/welchbook.html

The current version of TclPro contains these tools:

TclPro Debugger

TclPro Debugger provides a nice graphical user interface with all the fea-
tures you expect from a traditional debugger. You can set breakpoints, single
step, examine variables, and look at the call stack. It understands a subtle issue
that can arise from using the update command: nested call stacks. It is possible
to launch a new Tcl script as a side effect of the update command, which pushes
the current state onto the execution stack. This shows up clearly in the debugger
stack trace. It maintains project state, so it will remember breakpoint settings
and other preference items between runs. One of the most interesting features is
that it can debug remotely running applications. I use it regularly to debug Tcl
code running inside the Tcl Web Server.

TclPro Checker

TclPro Checker is a static code checker. This is a real win for large program
development. It examines every line of your program looking for syntax errors
and dubious coding practices. It has detailed knowledge of Tcl, Tk, Expect, [incr
Tcl], and TclX commands and validates your use of them. It checks that you call
Tcl procedures with the correct number of arguments, and can cross-check large
groups of Tcl files. It knows about changes between Tcl versions, and it can warn
you about old code that needs to be updated.

TclPro Compiler

TclPro Compiler is really just a reader and writer for the byte codes that
the Tcl byte-code compiler generates internally. It lets you precompile scripts and
save the results, and then load the byte-code later instead of raw source. This
provides a great way to hide your source code, if that is important to you. It turns
out to save less time than you might think, however. By the time it reads the file
from disk, decodes it, and builds the necessary Tcl data structures, it is not much
faster than reading a source file and compiling it on the fly.

190 Reflection and Debugging Chap. 13

TclPro Wrapper

TclPro Wrapper assembles a collection of Tcl scripts, data files, and a Tcl/Tk
interpreter into a single executable file. This makes distribution of your Tcl
application as easy as giving out one file. The Tcl C library has been augmented
with hooks in its file system access routines so that a wrapped application can
look inside itself for files. The rule is that if you use a relative pathname (i.e.,
lib/myfile.dat), then the wrapped application will look first inside itself for the
file. If the file is not found, or if the pathname is absolute (e.g., /usr/local/lib/
myfile.dat), then Tcl looks on your hard disk for the file. The nice thing about
TclPro Wrapper is that it handles all kinds of files, not just Tcl source files. It
works by concatenating a ZIP file onto the end of a specially prepared Tcl inter-
preter. TclPro comes with pre-built interpreters that include Expect, [incr Tcl],
and TclX, or you can build your own interpreter that contains custom C exten-
sions.

Other Tools

The Tcl community has built many interesting and useful tools to help your Tcl
development. Only two of them are mentioned below, but you can find many
more at the Scriptics Tcl Resource Center:

http://www.scriptics.com/resource/

The tkinspect Program

The tkinspect program is a Tk application that lets you look at the state of
other Tk applications. It displays procedures, variables, and the Tk widget hier-
archy. With tkinspect you can issue commands to another application in order to
change variables or test out commands. This turns out to be a very useful way to
debug Tk applications. It was written by Sam Shen and is available on the CD-
ROM. The current FTP address for this is:

ftp.neosoft.com:/pub/tcl/sorted/devel/tkinspect-5.1.6.tar.gz

The Tuba Debugger

Tuba is a debugger written purely in Tcl. It sets breakpoints by rewriting
Tcl procedures to contain extra calls to the debugger. A small amount of support
code is loaded into your application automatically, and the debugger application
can set breakpoints, watch variables, and trace execution. It was written by John
Stump and is available on the CD-ROM. The current URL for this package is:

http://www.geocities.com/SiliconValley/Ridge/2549/tuba/

The bgerror Command

When a Tcl script encounters an error during background processing, such

Performance Tuning 191
II. A

d
va

nc
e

d
 Tc

l

as handling file events or during the command associated with a button, it sig-
nals the error by calling the bgerror procedure. A default implementation dis-
plays a dialog and gives you an opportunity to view the Tcl call stack at the point
of the error. You can supply your own version of bgerror. For example, when my
exmh mail application gets an error it offers to send mail to me with a few words
of explanation from the user and a copy of the stack trace. I get interesting bug
reports from all over the world!

The bgerror command is called with one argument that is the error mes-
sage. The global variable errorInfo contains the stack trace information. There
is an example tkerror implementation in the on-line sources associated with
this book.

The tkerror Command

The bgerror command used to be called tkerror. When event processing
shifted from Tk into Tcl with Tcl 7.5 and Tk 4.1, the name tkerror was changed
to bgerror. Backwards compatibility is provided so that if tkerror is defined,
then tkerror is called instead of bgerror. I have run into problems with the com-
patibility setup and have found it more reliable to update my applications to use
bgerror instead of tkerror. If you have an application that runs under either Tk
4.0 or Tk 4.1, you can simply define both:

proc bgerror [info args tkerror] [info body tkerror]

Performance Tuning

The time command measures the execution time of a Tcl command. It takes an
optional parameter that is a repetition count:

time {set a "Hello, World!"} 1000

=> 28 microseconds per iteration

If you need the result of the command being timed, use set to capture the
result:

puts $log "command: [time {set result [command]}]"

Time stamps in a Log

Another way to gain insight into the performance of your script is to gener-
ate log records that contain time stamps. The clock seconds value is too coarse,
but you can couple it with the clock clicks value to get higher resolution mea-
surements. Use the code shown in Example 13–1 on page 175 to calibrate the
clicks per second on your system. Example 13–13 writes log records that contain
the current time and the number of clicks since the last record. There will be
occasional glitches in the clicks value when the system counter wraps around or
is reset by the system clock, but it will normally give pretty accurate results. The
Log procedure adds overhead, too, so you should take several measurements in a
tight loop to see how long each Log call takes:

192 Reflection and Debugging Chap. 13

Example 13–13 Time Stamps in log records.

proc Log {args} {
global log
if [info exists log(file)] {

set now [clock clicks]
puts $log(file) [format "%s (%d)\t%s" \

[clock format [clock seconds]] \
[expr $now - $log(last)] \
[join $args " "]]

set log(last) $now
}

}
proc Log_Open {file} {

global log
catch {close $log(file)}
set log(file) [open $file w]
set log(last) [clock clicks]

}
proc Log_Flush {} {

global log
catch {flush $log(file)}

}
proc Log_Close {} {

global log
catch {close $log(file)}
catch {unset log(file)}

}

A more advanced profile command is part of the Extended Tcl (TclX)
package, which is described in Tcl/Tk Tools (Mark Harrison, ed., O’Reilly &
Associates, Inc., 1997). The TclX profile command monitors the number of calls,
the CPU time, and the elapsed time spent in different procedures.

The Tcl Compiler

The built-in Tcl compiler improves performance in the following ways:

• Tcl scripts are converted into an internal byte-code format that is efficient to
process. The byte codes are saved so that cost of compiling is paid only the
first time you execute a procedure or loop. After that, execution proceeds
much faster. Compilation is done as needed, so unused code is never com-
piled. If you redefine a procedure, it is recompiled the next time it is exe-
cuted.

• Variables and command arguments are kept in a native format as long as
possible and converted to strings only when necessary. There are several
native types, including integers, floating point numbers, Tcl lists, byte
codes, and arrays. There are C APIs for implementing new types. Tcl is still
dynamically typed, so a variable can contain different types during its life-
time.

Performance Tuning 193
II. A

d
va

nc
e

d
 Tc

l

• Expressions and control structures are compiled into special byte codes, so
they are executed more efficiently. Because expr does its own round of sub-
stitutions, the compiler generates better code if you group expressions with
braces. This means that expressions go through only one round of substitu-
tions. The compiler can generate efficient code because it does not have to
worry about strange code like:

set subexpr {$x+$y}

expr 5 * $subexpr

The previous expression is not fully defined until runtime, so it has to be
parsed and executed each time it is used. If the expression is grouped with
braces, then the compiler knows in advance what operations will be used and can
generate byte codes to implement the expression more efficiently.

The operation of the compiler is essentially transparent to scripts, but there
are some differences in lists and expressions. These are described in Chapter 51.
With lists, the good news is that large lists are more efficient. The problem is
that lists are parsed more aggressively, so syntax errors at the end of a list will
be detected even if you access only the beginning of the list. There were also
some bugs in the code generator in the widely used Tcl 8.0p2 release. Most of
these were corner cases like unbraced expressions in if and while commands.
Most of these bugs were fixed in the 8.0.3 patch release, and the rest were
cleaned up in Tcl 8.1 with the addition of a new internal parsing package.

194 Reflection and Debugging Chap. 13

195

C H A P T E R

II. A
d

va
nc

e
d

 Tc
l

 14

Namespaces 14

Namespaces group procedures and variables into separate name spaces.
Namespaces were added in Tcl 8.0. This chapter describes the
namespace and variable commands.

Namespaces provide new scopes for pro-
cedures and global variables. Originally Tcl had one global scope for shared vari-
ables, local scopes within procedures, and one global namespace for procedures.
The single global scope for procedures and global variables can become unman-
ageable as your Tcl application grows. I describe some simple naming conven-
tions on page 171 that I have used successfully in large programs. The
namespace facility is a more elegant solution that partitions the global scope for
procedure names and global variables.

Namespaces help structure large Tcl applications, but they add complexity.
In particular, command callbacks may have to be handled specially so that they
execute in the proper namespace. You choose whether or not you need the extra
structure and learning curve of namespaces. If your applications are small, then
you can ignore the namespace facility. If you are developing library packages
that others will use, you should pick a namespace for your procedures and data
so that they will not conflict with the applications in which they are used.

Using Namespaces

Namespaces add new syntax to procedure and variable names. A double colon,
::, separates the namespace name from the variable or procedure name. You use
this syntax to reference procedures and variables in a different namespace. The
namespace import command lets you name things in other namespaces without

196 Namespaces Chap. 14

the extra syntax. Namespaces can be nested, so you can create a hierarchy of
scopes. These concepts are explained in more detail in the rest of this chapter.

One feature not provided by namespaces is any sort of protection, or a way
to enforce access controls between different namespaces. This sort of thing is
awkward, if not impossible, to provide in a dynamic language like Tcl. For exam-
ple, you are always free to use namespace eval to reach into any other
namespace. Instead of providing strict controls, namespaces are meant to pro-
vide structure that enables large scale programming.

The package facility described in Chapter 12 was designed before
namespaces. This chapter illustrates a style that ties the two facilities together,
but they are not strictly related. It is possible to create a package named A that
implements a namespace B, or to use a package without namespaces, or a
namespace without a package. However, it makes sense to use the facilities
together.

Example 14–1 repeats the random number generator from Example 7–4 on
page 85 using namespaces. The standard naming style conventions for
namespaces use lowercase:

Example 14–1 Random number generator using namespaces.

package provide random 1.0

namespace eval random {
Create a variable inside the namespace
variable seed [clock seconds]

Make the procedures visible to namespace import
namespace export init random range

Create procedures inside the namespace
proc init { value } {

variable seed
set seed $value

}
proc random {} {

variable seed
set seed [expr ($seed*9301 + 49297) % 233280]
return [expr $seed/double(233280)]

}
proc range { range } {

expr int([random]*$range)
}

}

Example 14–1 defines three procedures and a variable inside the
namespace random. From inside the namespace, you can use these procedures
and variables directly. From outside the namespace, you use the :: syntax for
namespace qualifiers. For example, the state variable is just seed within the
namespace, but you use random::seed to refer to the variable from outside the

Namespace Variables 197
II. A

d
va

nc
e

d
 Tc

l

namespace. Using the procedures looks like this:
random::random

=> 0.3993355624142661

random::range 10

=> 4

If you use a package a lot you can import its procedures. A namespace
declares what procedures can be imported with the namespace export command.
Once you import a procedure, you can use it without a qualified name:

namespace import random::random

random

=> 0.54342849794238679

Importing and exporting are described in more detail later.

Namespace Variables

The variable command defines a variable inside a namespace. It is like the set
command because it can define a value for the variable. You can declare several
namespace variables with one variable command. The general form is:

variable name ?value? ?name value? ...

If you have an array, do not assign a value in the variable command.
Instead, use regular Tcl commands after you declare the variable. You can put
any commands inside a namespace block:

namespace eval foo {
variable arr
array set arr {name value name2 value2}

}
A namespace variable is similar to a global variable because it is outside

the scope of any procedures. Procedures use the variable command or qualified
names to reference namespace variables. For example, the random procedure has
a variable command that brings the namespace variable into the current scope:

variable seed

If a procedure has a variable command that names a new variable, it is
created in the namespace when it is first set.

Watch out for conflicts with global variables.
You need to be careful when you use variables inside a namespace block. If

you declare them with a variable command, they are clearly namespace vari-
ables. However, if you forget to declare them, then they will either become
namespace variables, or latch onto an existing global variable by the same name.
Consider the following code:

namespace eval foo {
variable table
for {set i 1} {$i <= 256} {incr i} {
set table($i) [format %c $i]
}

}

198 Namespaces Chap. 14

If there is already a global variable i, then the for loop will use that vari-
able. Otherwise, it will create the foo::i variable. I found this behavior surpris-
ing, but it does make it easier to access global variables like env without first
declaring them with global inside the namespace block.

Qualified Names

A fully qualified name begins with ::, which is the name for the global
namespace. A fully qualified name unambiguously names a procedure or a vari-
able. The fully qualified name works anywhere. If you use a fully qualified vari-
able name, it is not necessary to use a global command. For example, suppose
namespace foo has a namespace variable x, and there is also a global variable x.
The global variable x can be named with this:

::x

The :: syntax does not affect variable substitutions. You can get the value
of the global variable x with $::x. Name the namespace variable x with this:

::foo::x

A partially qualified name does not have a leading ::. In this case the name
is resolved from the current namespace. For example, the following also names
the namespace variable x:

foo::x

You can use qualified names with global. Once you do this, you can access
the variable with its short name:

global ::foo::x

set x 5

Declaring variables is more efficient than using qualified names.
The Tcl byte-code compiler generates faster code when you declare

namespace and global variables. Each procedure context has its own table of
variables. The table can be accessed by a direct slot index, or by a hash table
lookup of the variable name. The hash table lookup is slower than the direct slot
access. When you use the variable or global command, then the compiler can
use a direct slot access. If you use qualified names, the compiler uses the more
general hash table lookup.

Command Lookup

A command is looked up first in the current name space. If it is not found there,
then it is looked up in the global namespace. This means that you can use all the
built-in Tcl commands inside a namespace with no special effort.

You can play games by redefining commands within a namespace. For
example, a namespace could define a procedure named set. To get the built-in
set you could use ::set, while set referred to the set defined inside namespace.
Obviously you need to be quite careful when you do this.

You can use qualified names when defining procedures. This eliminates the

Nested Namespaces 199
II. A

d
va

nc
e

d
 Tc

l

need to put the proc commands inside a namespace block. However, you still
need to use namespace eval to create the namespace before you can create proce-
dures inside it. Example 14–2 repeats the random number generator using qual-
ified names. random::init does not need a variable command because it uses a
qualified name for seed:

Example 14–2 Random number generator using qualified names.

namespace eval random {
Create a variable inside the namespace
variable seed [clock seconds]

}
Create procedures inside the namespace
proc random::init { seed } {

set ::random::seed $seed
}
proc random::random {} {

variable seed
set seed [expr ($seed*9301 + 49297) % 233280]
return [expr $seed/double(233280)]

}
proc random::range { range } {

expr int([random]*$range)
}

Nested Namespaces

Namespaces can be nested inside other namespaces. Example 14–3 shows three
namespaces that have their own specific variable x. The fully qualified names for
these variables are ::foo::x, ::bar::x, and ::bar::foo::x.

Example 14–3 Nested namespaces.

namespace eval foo {
variable x 1 ;# ::foo::x

}
namespace eval bar {

variable x 2 ;# ::bar::x
namespace eval foo {

variable x 3 ;# ::bar::foo::x
}
puts $foo::x ;# prints 3

}
puts $foo::x ;# prints 1

Partially qualified names can refer to two different objects.
In Example 14–3 the partially qualified name foo::x can reference one of

two variables depending on the current namespace. From the global scope the
name foo::x refers to the namespace variable x inside ::foo. From the ::bar

200 Namespaces Chap. 14

namespace, foo::x refers to the variable x inside ::bar::foo.
If you want to unambiguously name a variable in the current namespace,

you have two choices. The simplest is to bring the variable into scope with the
variable command:

variable x

set x something

If you need to give out the name of the variable, then you have two choices.
The most general solution is to use the namespace current command to create a
fully qualified name:

trace variable [namespace current]::x r \

[namespace current]::traceproc

However, it is simpler to just explicitly write out the namespace as in:
trace variable ::myname::x r ::myname::traceproc

The drawback of this approach is that it litters your code with references to
::myname::, which might be subject to change during program development.

Importing and Exporting Procedures

Commands can be imported from namespaces to make it easier to name them.
An imported command can be used without its namespace qualifier. Each
namespace specifies exported procedures that can be the target of an import.
Variables cannot be imported. Note that importing is only a convenience; you can
always use qualified names to access any procedure. As a matter of style, I avoid
importing names, so I know what package a command belongs to when I’m read-
ing code.

The namespace export command goes inside the namespace block, and it
specifies what procedures a namespace exports. The specification is a list of
string match patterns that are compared against the set of commands defined in
a namespace. The export list can be defined before the procedures being
exported. You can do more than one namespace export to add more procedures,
or patterns, to the export list for a namespace. Use the -clear flag if you need to
reset the export list.

namespace export ?-clear? ?pat? ?pat? ...

Only exported names appear in package indexes.
When you create the pkgIndex.tcl package index file with pkg_mkIndex,

which is described Chapter 12, you should be aware that only exported names
appear in the index. Because of this, I often resort to exporting everything. I
never plan to import the names, but I do rely on automatic code loading based on
the index files. This exports everything:

namespace export *

The namespace import command makes commands in another namespace
visible in the current namespace. An import can cause conflicts with commands
in the current namespace. The namespace import command raises an error if
there is a conflict. You can override this with the -force option. The general form

Callbacks and Namespaces 201
II. A

d
va

nc
e

d
 Tc

l

of the command is:
namespace import ?-force? namespace::pat ?namespace::pat?...

The pat is a string match type pattern that is matched against exported
commands defined in namespace. You cannot use patterns to match namespace.
The namespace can be a fully or partially qualified name of a namespace.

If you are lazy, you can import all procedures from a namespace:
namespace import random::*

The drawback of this approach is that random exports an init procedure,
which might conflict with another module you import in the same way. It is safer
to import just the procedures you plan on using:

namespace import random::random random::range

A namespace import takes a snapshot.
If the set of procedures in a namespace changes, or if its export list changes,

then this has no effect on any imports that have already occurred from that
namespace.

Callbacks and Namespaces

Commands like after, bind, and button take arguments that are Tcl scripts that
are evaluated later. These callback commands execute later in the global scope
by default. If you want a callback to be evaluated in a particular namespace, you
can construct the callback with namespace code. This command does not execute
the callback. Instead, it generates a Tcl command that will execute in the cur-
rent namespace scope when it is evaluated later. For example, suppose ::cur-
rent is the current namespace. The namespace code command determines the
current scope and adds that to the namespace inscope command it generates:

set callback [namespace code {set x 1}]

=> namespace inscope ::current {set x 1}

sometime later ...

eval $callback

When you evaluate $callback later, it executes in the ::current

namespace because of the namespace inscope command. In particular, if there is
a namespace variable ::current::x, then that variable is modified. An alterna-
tive to using namespace code is to name the variable with a qualified name:

set callback {set ::current::x 1}

The drawback of this approach is that it makes it tedious to move the code to a
different namespace.

If you need substitutions to occur on the command when you define it, use
list to construct it. Using list is discussed in more detail on pages 123 and 387.
Example 14–4 wraps up the list and the namespace inscope into the code pro-
cedure, which is handy because you almost always want to use list when con-
structing callbacks. The uplevel in code ensures that the correct namespace is
captured; you can use code anywhere:

202 Namespaces Chap. 14

Example 14–4 The code procedure to wrap callbacks.

proc code {args} {
set namespace [uplevel {namespace current}]
return [list namespace inscope $namespace $args]

}
namespace eval foo {

variable y "y value" x {}
set callback [code set x $y]
=> namespace inscope ::foo {set x {y value}}

}

The example defines a callback that will set ::foo::x to y value. If you
want to set x to the value that y has at the time of the callback, then you do not
want to do any substitutions. In that case, the original namespace code is what
you want:

set callback [namespace code {set x $y}]

=> namespace inscope ::foo {set x $y}

If the callback has additional arguments added by the caller, namespace
inscope correctly adds them. For example, the scrollbar protocol described on
page 429 adds parameters to the callback that controls a scrollbar.

Introspection

The info commands operation returns all the commands that are currently visi-
ble. It is described in more detail on page 179. You can limit the information
returned with a string match pattern. You can also include a namespace speci-
fier in the pattern to see what is visible in a namespace. Remember that global
commands and imported commands are visible, so info commands returns more
than just what is defined by the namespace. Example 14–5 uses namespace ori-
gin, which returns the original name of imported commands, to sort out the com-
mands that are really defined in a namespace:

Example 14–5 Listing commands defined by a namespace.

proc Namespace_List {{namespace {}}} {
if {[string length $namespace] == 0} {

Determine the namespace of our caller
set namespace [uplevel {namespace current}]

}
set result {}
foreach cmd [info commands ${namespace}::*] {

if {[namespace origin $cmd] == $cmd} {
lappend result $cmd

}
}
return [lsort $result]

}

The namespace Command 203
II. A

d
va

nc
e

d
 Tc

l

The namespace Command

Table 14–1 summarizes the namespace operations:

Converting Existing Packages to use Namespaces

Suppose you have an existing set of Tcl procedures that you want to wrap in a
namespace. Obviously, you start by surrounding your existing code in a
namespace eval block. However, you need to consider three things: global vari-
ables, exported procedures, and callbacks.

• Global variables remain global until you change your code to use variable
instead of global. Some variables may make sense to leave at the global
scope. Remember that the variables that Tcl defines are global, including

Table 14–1 The namespace command.

namespace current Returns the current namespace.

namespace children ?name?
?pat?

Returns names of nested namespaces. name defaults to
current namespace. pat is a string match pattern that
limits what is returned.

namespace code script Generates a namespace inscope command that will
eval script in the current namespace.

namespace delete name
?name? ...

Deletes the variables and commands from the specified
namespaces.

namespace eval name cmd
?args? ...

Concatenates args, if present, onto cmd and evaluates it
in name namespace.

namespace export ?-clear?
?pat? ?pat? ...

Adds patterns to the export list for current namespace.
Returns export list if no patterns.

namespace forget pat
?pat? ...

Undoes the import of names matching patterns.

namespace import ?-force?
pat ?pat? ...

Adds the names matching the patterns to the current
namespace.

namespace inscope name
cmd ?args? ...

Appends args, if present, onto cmd as list elements and
evaluates it in name namespace.

namespace origin cmd Returns the original name of cmd.

namespace parent ?name? Returns the parent namespace of name, or of the current
namespace.

namespace qualifiers name Returns the part of name up to the last :: in it.

namespace which ?flag?
name

Returns the fully qualified version of name. The flag is
one of -command, -variable, or -namespace.

namespace tail name Returns the last component of name.

204 Namespaces Chap. 14

env, tcl_platform, and the others listed in Table 2–2 on page 30. If you use
the upvar #0 trick described on page 86, you can adapt this to namespaces
by doing this instead:

upvar #0 [namespace current]::$instance state

• Exporting procedures makes it more convenient for users of your package. It
is not strictly necessary because they can always use qualified names to ref-
erence your procedures. An export list is a good hint about which proce-
dures are expected to be used by other packages. Remember that the export
list determines what procedures are visible in the index created by
pkg_mkIndex.

• Callbacks execute at the global scope. If you use variable traces and vari-
ables associated with Tk widgets, these are also treated as global variables.
If you want a callback to invoke a namespace procedure, or if you give out
the name of a namespace variable, then you must construct fully qualified
variable and procedure names. You can hardwire the current namespace:

button .foo -command ::myname::callback \

-textvariable ::myname::textvar

or you can use namespace current:
button .foo -command [namespace current]::callback \

-textvariable [namespace current]::textvar

[incr Tcl] Object System

The Tcl namespace facility does not provide classes and inheritance. It just pro-
vides new scopes and a way to hide procedures and variables inside a scope.
There are Tcl C APIs that support hooks in variable name and command lookup
for object systems so that they can implement classes and inheritance. By
exploiting these interfaces, various object systems can be added to Tcl as shared
libraries.

The Tcl namespace facility was proposed by Michael McLennan based on
his experiences with [incr Tcl], which is the most widely used object-oriented
extension for Tcl. [incr Tcl] provides classes, inheritance, and protected variables
and commands. If you are familiar with C++, [incr Tcl] should feel similar. A
complete treatment of [incr Tcl] is not made in this book. Tcl/Tk Tools (Mark
Harrison, O’Reilly & Associates, Inc., 1997) is an excellent source of information.
You can find a version of [incr Tcl] on the CD-ROM. The [incr Tcl] home page is:

http://www.tcltk.com/itcl/

Notes

The final section of this chapter touches on a variety of features of the
namespace facility.

Notes 205
II. A

d
va

nc
e

d
 Tc

l

Names for Widgets, Images, and Interpreters

There are a number of Tcl extensions that are not affected by the
namespaces described in this chapter, which apply only to commands and vari-
able names. For example, when you create a Tk widget, a Tcl command is also
created that corresponds to the Tk widget. This command is always created in
the global command namespace even when you create the Tk widget from inside
a namespace eval block. Other examples include Tcl interpreters, which are
described in Chapter 19, and Tk images, which are described in Chapter 38.

The variable command at the global scope

It turns out that you can use variable like the global command if your
procedures are not inside a namespace. This is consistent because it means "this
variable belongs to the current namespace," which might be the global
namespace.

Auto Loading and auto_import

The following sequence of commands can be used to import commands from
the foo package:

package require foo

namespace import foo::*

However, because of the default behavior of packages, there may not be any-
thing that matches foo::* after the package require. Instead, there are entries
in the auto_index array that will be used to load those procedures when you first
use them. The auto loading mechanism is described in Chapter 12. To account for
this, Tcl calls out to a hook procedure called auto_import. This default imple-
mentation of this procedure searches auto_index and forcibly loads any pending
procedures that match the import pattern. Packages like [incr Tcl] exploit this
hook to implement more elaborate schemes. The auto_import hook was first
introduced in Tcl 8.0.3.

Namespaces and uplevel

Namespaces affect the Tcl call frames just like procedures do. If you walk
the call stack with info level, the namespace frames are visible. This means
that you can get access to all variables with uplevel and upvar. Level #0 is still
the absolute global scope, outside any namespace or procedure. Try out
Call_Trace from Example 13–5 on page 180 on your code that uses namespaces
to see the effect.

Naming Quirks

When you name a namespace, you are allowed to have extra colons at the
end. You can also have two or more colons as the separator between namespace

206 Namespaces Chap. 14

name components. These rules make it easier to assemble names by adding to
the value returned from namespace current. These all name the same
namespace:

::foo::bar

::foo::bar::

::foo:::::::bar

The name of the global namespace can be either :: or the empty string.
This follows from the treatment of :: in namespace names.

When you name a variable or command, a trailing :: is significant. In the
following command a variable inside the ::foo::bar namespace is modified. The
variable has an empty string for its name!

set ::foo::bar:: 3

namespace eval ::foo::bar { set {} }

=> 3

If you want to embed a reference to a variable just before two colons, use a
backslash to turn off the variable name parsing before the colons:

set x xval

set y $x\::foo

=> xval::foo

Miscellaneous

You can remove names you have imported:
namespace forget random::init

You can rename imported procedures to modify their names:
rename range Range

You can even move a procedure into another namespace with rename:
rename random::init myspace::init

207

C H A P T E R

II. A
d

va
nc

e
d

 Tc
l

 15

Internationalization 15

This chapter describes features that support text processing for different
character sets such as ASCII and Japanese. Tcl can read and write data
in various character set encodings, but it processes data in a standard
character set called Unicode. Tcl has a message catalog that lets you
generate different versions of an application for different languages. Tcl
commands described are: encoding and msgcat.

Different languages use different alpha-
bets, or character sets. An encoding is a standard way to represent a character
set. Tcl hides most of the issues associated with encodings and character sets,
but you need to be aware of them when you write applications that are used in
different countries. You can also write an application using a message catalog so
that the strings you display to users can be in the language of their choice. Using
a message catalog is more work, but Tcl makes it as easy as possible.

Most of the hard work in dealing with character set encodings is done
"under the covers" by the Tcl C library. The Tcl C library underwent substantial
changes to support international character sets. Instead of using 8-bit bytes to
store characters, Tcl uses a 16-bit character set called Unicode, which is large
enough to encode the alphabets of all languages. There is also plenty of room left
over to represent special characters like ♥ and ⊗.

In spite of all the changes to support Unicode, there are few changes visible
to the Tcl script writer. Scripts written for Tcl 8.0 and earlier continue to work
fine with Tcl 8.1 and later versions. You only need to modify scripts if you want to
take advantage of the features added to support internationalization.

This chapter begins with a discussion of what a character set is and why
different codings are used to represent them. It concludes with a discussion of
message catalogs.

208 Internationalization Chap. 15

Character Sets and Encodings

If you are from the United States, you’ve probably never thought twice about
character sets. Most computers use the ASCII encoding, which has 127 charac-
ters. That is enough for the 26 letters in the English alphabet, upper case and
lower case, plus numbers, various punctuation characters, and control characters
like tab and newline. ASCII fits easily in 8-bit characters, which can represent
256 different values.

European alphabets include accented characters like è, ñ, and ä. The ISO
Latin-1 encoding is a superset of ASCII that encodes 256 characters. It shares
the ASCII encoding in values 0 through 127 and uses the "high half" of the
encoding space to represent accented characters as well as special characters
like ©. There are several ISO Latin encodings to handle different alphabets, and
these share the trick of encoding ASCII in the lower half and other characters in
the high half. You might see these encodings referred to as iso8859-1, iso8859-
2, and so on.

Asian character sets are simply too large to fit into 8-bit encodings. There
are a number of 16-bit encodings for these languages. If you work with these, you
are probably familiar with the "Big 5" or ShiftJIS encodings.

Unicode is an international standard character set encoding. There are
both 16-bit Unicode and 32-bit Unicode standards, but Tcl and just about every-
one else just use the 16-bit standard. Unicode has the important property that it
can encode all the important character sets without conflicts and overlap. By
converting all characters to the Unicode encoding, Tcl can work with different
character sets simultaneously.

The System Encoding

Computer systems are set up with a standard system encoding for their
files. If you always work with this encoding, then you can ignore character set
issues. Tcl will read files and automatically convert them from the system encod-
ing to Unicode. When Tcl writes files, it automatically converts from Unicode to
the system encoding. If you are curious, you can find out the system encoding
with:

encoding system

=> cp1252

The "cp" is short for "code page," the term that Windows uses to refer to dif-
ferent encodings. On my Unix system, the system encoding is iso8859-1.

Do not change the system encoding.
You could also change the system encoding with:

encoding system encoding

But this is not a good idea. It immediately changes how Tcl passes strings
to your operating system, and it is likely to leave Tcl in an unusable state. Tcl
automatically determines the system encoding for you. Don’t bother trying to set
it yourself.

Character Sets and Encodings 209
II. A

d
va

nc
e

d
 Tc

l

The encoding names command lists all the encodings that Tcl knows about.
The encodings are kept in files stored in the encoding directory under the Tcl
script library. They are loaded automatically the first time you use an encoding.

lsort [encoding names]

=> ascii big5 cp1250 cp1251 cp1252 cp1253 cp1254 cp1255
cp1256 cp1257 cp1258 cp437 cp737 cp775 cp850 cp852 cp855
cp857 cp860 cp861 cp862 cp863 cp864 cp865 cp866 cp869
cp874 cp932 cp936 cp949 cp950 dingbats euc-cn euc-jp euc-
kr gb12345 gb1988 gb2312 identity iso2022 iso2022-jp
iso2022-kr iso8859-1 iso8859-2 iso8859-3 iso8859-4
iso8859-5 iso8859-6 iso8859-7 iso8859-8 iso8859-9
jis0201 jis0208 jis0212 ksc5601 macCentEuro macCroatian
macCyrillic macDingbats macGreek macIceland macJapan
macRoman macRomania macThai macTurkish macUkraine
shiftjis symbol unicode utf-8

The encoding names reflect their origin. The "cp" refers to the "code pages"
that Windows uses to manage encodings. The "mac" encodings come from the
Macintosh. The "iso," "euc," "gb," and "jis" encodings come from various stan-
dards bodies.

File Encodings and fconfigure

The conversion to Unicode happens automatically in the Tcl C library.
When Tcl reads and writes files, it translates from the current system encoding
into Unicode. If you have files in different encodings, you can use the fconfigure
command to set the encoding. For example, to read a file in the standard Russian
encoding (iso8859-7):

set in [open README.russian]

fconfigure $in -encoding iso8859-7

Example 15–1 shows a simple utility I use in exmh,* a MIME-aware mail
reader. MIME has its own convention for specifying the character set encoding of
a mail message that differs slightly from Tcl’s naming convention. The procedure
launders the name and then sets the encoding. Exmh was already aware of
MIME character sets, so it could choose fonts for message display. Adding this
procedure and adding two calls to it was all I had to do to adapt exmh to Unicode.

Example 15–1 MIME character sets.and file encodings.

proc Mime_SetEncoding {file charset} {
regsub -all {(iso|jis|us)-} $charset {\1} charset
set charset [string tolower charset]
regsub usascii $charset ascii charset
fconfigure $file -encoding $charset

}

* The exmh home page is http://www.beedub.com/exmh/. It is a wonderful tool that helps me manage tons of
e-mail. It is written in Tcl/Tk, of course, and relies on the MH mail system, which limits it to UNIX.

210 Internationalization Chap. 15

Scripts in Different Encodings

If you have scripts that are not in the system encoding, then you cannot use
source to load them. However, it is easy to read the files yourself under the
proper encoding and use eval to process them. Example 15–2 adds a -encoding
flag to the source command. This is likely to become a built-in feature in future
versions of Tcl so that commands like info script will work properly:

Example 15–2 Using scripts in nonstandard encodings.

proc Source {args} {
set file [lindex $args end]
if {[llength $args] == 3 &&

[string equal -encoding [lindex $args 0]]} {
set encoding [lindex $args 1]
set in [open $file]
fconfigure $in -encoding $encoding
set script [read $in]
close $in
return [uplevel 1 $script]

} elseif {[llength $args] == 1} {
return [uplevel 1 [list source $file]]

} else {
return -code error \

"Usage: Source ?-encoding encoding? file?"
}

}

Unicode and UTF-8

UTF-8 is an encoding for Unicode. While Unicode represents all characters
with 16 bits, the UTF-8 encoding uses either 8, 16, or 24 bits to represent one
Unicode character. This variable-width encoding is useful because it uses 8 bits
to represent ASCII characters. This means that a pure ASCII string, one with
character codes all fewer than 128, is also a UTF-8 string. Tcl uses UTF-8 inter-
nally to make the transition to Unicode easier. It allows interoperability with Tcl
extensions that have not been made Unicode-aware. They can continue to pass
ASCII strings to Tcl, and Tcl will interpret them correctly.

As a Tcl script writer, you can mostly ignore UTF-8 and just think of Tcl as
being built on Unicode (i.e., full 16-bit character set support). If you write Tcl
extensions in C or C++, however, the impact of UTF-8 and Unicode is quite visi-
ble. This is explained in more detail in Chapter 44.

Tcl lets you read and write files in UTF-8 encoding or directly in Unicode.
This is useful if you need to use the same file on systems that have different sys-
tem encodings. These files might be scripts, message catalogs, or documentation.
Instead of using a particular native format, you can use Unicode or UTF-8 and
read the files the same way on any of your systems. Of course, you will have to
set the encoding properly by using fconfigure as shown earlier.

Character Sets and Encodings 211
II. A

d
va

nc
e

d
 Tc

l

The Binary Encoding

If you want to read a data file and suppress all character set transforma-
tions, use the binary encoding:

fconfigure $in -encoding binary

Under the binary encoding, Tcl reads in each 8-bit byte and stores it into
the lower half of a 16-bit Unicode character with the high half set to zero. During
binary output, Tcl writes out the lower byte of each Unicode character. You can
see that reading in binary and then writing it out doesn’t change any bits. Watch
out if you read something in one encoding and then write it out in binary. Any
information in the high byte of the Unicode character gets lost!

Tcl actually handles the binary encoding more efficiently than just
described, but logically the previous description is still accurate. As described in
Chapter 44, Tcl can manage data in several forms, not just strings. When you
read a file in binary format, Tcl stores the data as a ByteArray that is simply 8
bits of data in each byte. However, if you ask for this data as a string (e.g., with
the puts command), Tcl automatically converts from 8-bit bytes to 16-bit Uni-
code characters by setting the high byte to all zeros.

The binary command also manipulates data in ByteArray format. If you
read a file with the binary encoding and then use the binary command to process
the data, Tcl will keep the data in an efficient form.

The string command also understands the ByteArray format, so you can do
operations like string length, string range, and string index on binary data
without suffering the conversion cost from a ByteArray to a UTF-8 string.

Conversions Between Encodings

The encoding command lets you convert strings between encodings. The
encoding convertfrom command converts data in some other encoding into a
Unicode string. The encoding convertto command converts a Unicode string
into some other encoding. For example, the following two sequences of commands
are equivalent. They both read data from a file that is in Big5 encoding and con-
vert it to Unicode:

fconfigure $input -encoding gb12345

set unicode [read $input]

or
fconfigure $input -encoding binary

set unicode [encoding convertfrom gb12345 [read $input]]

In general, you can lose information when you go from Unicode to any other
encoding, so you ought to be aware of the limitations of the encodings you are
using. In particular, the binary encoding may not preserve your data if it starts
out from an arbitrary Unicode string. Similarly, an encoding like iso-8859-2
may simply not have a representation of a given Unicode character.

212 Internationalization Chap. 15

The encoding Command

Table 15–1 summarizes the encoding command:

Message Catalogs

A message catalog is a list of messages that your application will display. The
main idea is that you can maintain several catalogs, one for each language you
support. Unfortunately, you have to be explicit about using message catalogs.
Everywhere you generate output or display strings in Tk widgets, you need to
change your code to go through a message catalog. Fortunately, Tcl uses a nice
trick to make this fairly easy and to keep your code readable. Instead of using
keys like "message42" to get messages out of the catalog, Tcl just uses the strings
you would use by default. For example, instead of this code:

puts "Hello, World!"

A version that uses message catalogs looks like this:
puts [msgcat::mc "Hello, World!"]

If you have not already loaded your message catalog, or if your catalog
doesn’t contain a mapping for "Hello, World!", then msgcat::mc just returns its
argument. Actually, you can define just what happens in the case of unknown
inputs by defining your own msgcat::mcunknown procedure, but the default
behavior is quite good.

The message catalog is implemented in Tcl in the msgcat package. You need
to use package require to make it available to your scripts:

package require msgcat

In addition, all the procedures in the package begin with "mc," so you can
use namespace import to shorten their names further. I am not a big fan of
namespace import, but if you use message catalogs, you will be calling the msg-
cat::mc function a lot, so it may be worthwhile to import it:

namespace import msgcat::mc

puts [mc "Hello, World!"]

Table 15–1 The encoding command.

encoding convert-
from ?encoding?
data

Converts binary data from the specified encoding, which
defaults to the system encoding, into Unicode.

encoding convertto
?encoding? string

Converts string from Unicode into data in the encoding
format, which defaults to the system encoding.

encoding names Returns the names of known encodings.

encoding system
?encoding?

Queries or change the system encoding.

Message Catalogs 213
II. A

d
va

nc
e

d
 Tc

l

Specifying a Locale

A locale identifies a language or language dialect to use in your output. A
three-level scheme is used in the locale identifier:

language_country_dialect

The language codes are defined by the ISO-3166 standard. For example,
"en" is English and "es" is Spanish. The country codes are defined by the ISO-639
standard. For example, US is for the United States and UK is for the United
Kingdom. The dialect is up to you. The country and dialect parts are optional.
Finally, the locale specifier is case insensitive. The following examples are all
valid locale specifiers:

es
en
en_US
en_us
en_UK
en_UK_Scottish
en_uk_scottish

Users can set their initial locale with the LANG and LOCALE environment
variables. If there is no locale information in the environment, then the "c" locale
is used (i.e., the C programming language.) You can also set and query the locale
with the msgcat::mclocale procedure:

msgcat::mclocale

=> c

msgcat::mclocale en_US

The msgcat::mcpreferences procedure returns a list of the user’s locale
preferences from most specific (i.e., including the dialect) to most general (i.e.,
only the language). For example:

msgcat::mclocale en_UK_Scottish

msgcat::mcpreferences

=> en_UK_Scottish en_UK en

Managing Message Catalog Files

A message catalog is simply a Tcl source file that contains a series of msg-
cat::mcset commands that define entries in the catalog. The syntax of the msg-
cat::mcset procedure is:

msgcat::mcset locale src-string ?dest-string?

The locale is a locale description like es or en_US_Scottish. The src-
string is the string used as the key when calling msgcat::mc. The dest-string
is the result of msgcat::mc when the locale is in force.

The msgcat::mcload procedure should be used to load your message cata-
log files. It expects the files to be named according to their locale (e.g.,
en_US_Scottish.msg), and it binds the message catalog to the current
namespace.

214 Internationalization Chap. 15

The msgcat::mcload procedure loads files that match the msgcat::mcpref-
erences and have the .msg suffix. For example, with a locale of en_UK_Scottish,
msgcat::mcload would look for these files:

en_UK_Scottish.msg en_UK.msg en.msg

The standard place for message catalog files is in the msgs directory below
the directory containing a package. With this arrangement you can call msg-
cat::mcload as shown below. The use of info script to find related files is
explained on page 181.

msgcat::mcload [file join [file dirname [info script]] msgs]

The message catalog file is sourced, so it can contain any Tcl commands.
You might find it convenient to import the msgcat::mcset procedure. Be sure to
use -force with namespace import because that command might already have
been imported as a result of loading other message catalog files. Example 15–3
shows three trivial message catalog files:

Example 15–3 Three sample message catalog files.

en.msg
namespace import -force msgcat::mcset

mcset en Hello Hello_en
mcset en Goodbye Goodbye_en
mcset en String String_en
end of en.msg

en_US.msg
namespace import -force msgcat::mcset

mcset en_US Hello Hello_en_US
mcset en_US Goodbye Goodbye_en_US
end of en_US.msg

en_US_Texan.msg
namespace import -force msgcat::mcset

mcset en_US_Texan Hello Howdy!
end of en_US_Texan.msg

Assuming the files from Example 15–3 are all in the msgs directory below
your script, you can load all these files with these commands:

msgcat::mclocale en_US_Texan

msgcat::mcload [file join [file dirname [info script]] msgs]

The dialect has the highest priority:
msgcat::mc Hello

=> Howdy!

If the dialect does not specify a mapping, then the country mapping is
checked:

Message Catalogs 215
II. A

d
va

nc
e

d
 Tc

l

msgcat::mc Goodbye

=> Goodbye_en_US

Finally, the lowest priority is the language mapping:
msgcat::mc String

=> String_en

Message Catalogs and Namespaces

What happens if two different library packages have conflicting message
catalogs? Suppose the foo package contains this call:

msgcat::set fr Hello Bonjour

But the bar package contains this conflicting definition:
msgcat::mcset fr Hello Ello

What happens is that msgcat::mcset and msgcat::mc are sensitive to the
current Tcl namespace. Namespaces are described in detail in Chapter 14. If the
foo package loads its message catalog while inside the foo namespace, then any
calls to msgcat::mc from inside the foo namespace will see those definitions. In
fact, if you call msgcat::mc from inside any namespace, it will find only message
catalog definitions defined from within that namespace.

If you want to share message catalogs between namespaces, you will need
to implement your own version of msgcat::mcunknown that looks in the shared
location. Example 15–4 shows a version that looks in the global namespace
before returning the default string.

Example 15–4 Using msgcat::mcunknown to share message catalogs.

proc msgcat::mcunknown {local src} {
variable insideUnknown
if {![info exist insideUnknown]} {

Try the global namespace, being careful to note
that we are already inside this procedure.

set insideUnknown true
set result [namespace eval :: [list \

msgcat::mc $src \
]]
unset insideUnknown
return $result

} else {

Being called because the message isn’t found
in the global namespace

return $src
}

}

216 Internationalization Chap. 15

The msgcat package

Table 15–2 summarizes the msgcat package.

Table 15–2 The msgcat package

msgcat::mc src Returns the translation of src according to the current
locale and namespace.

msgcat::mclocale ?locale? Queries or set the current locale.

msgcat::mcpreferences Returns a list of locale preferences ordered from the most
specific to the most general.

msgcat::mcload directory Loads message files for the current locale from direc-
tory.

msgcat::mcset locale src
translation

Defines a mapping for the src string in locale to the
translation string.

msgcat::mcunknown locale
src

This procedure is called to resolve unknown translations.
Applications can provide their own implementations.

217

C H A P T E R

II. A
d

va
nc

e
d

 Tc
l

 16

Event-Driven Programming 16

This chapter describes event-driven programming using timers and
asynchronous I/O facilities. The after command causes Tcl commands
to occur at a time in the future, and the fileevent command registers
a command to occur in response to file input/output (I/O). Tcl commands
discussed are: after, fblocked, fconfigure, fileevent, and vwait.

Event-driven programming is used in
long-running programs like network servers and graphical user interfaces. This
chapter introduces event-driven programming in Tcl. Tcl provides an easy model
in which you register Tcl commands, and the system then calls those commands
when a particular event occurs. The after command is used to execute Tcl com-
mands at a later time, and the fileevent command is used to execute Tcl com-
mands when the system is ready for I/O. The vwait command is used to wait for
events. During the wait, Tcl automatically calls Tcl commands that are associ-
ated with different events.

The event model is also used when programming user interfaces using Tk.
Originally, event processing was associated only with Tk. The event loop moved
from Tk to Tcl in the Tcl 7.5/Tk 4.1 release.

The Tcl Event Loop

An event loop is built into Tcl. Tcl checks for events and calls out to handlers that
have been registered for different types of events. Some of the events are pro-
cessed internally to Tcl. You can register Tcl commands to be called in response
to events. There are also C APIs to event loop, which are described on page 689.
Event processing is active all the time in Tk applications. If you do not use Tk,
you can start the event loop with the vwait command as shown in Example 16–2
on page 220. The four event classes are handled in the following order:

218 Event-Driven Programming Chap. 16

• Window events. These include keystrokes and button clicks. Handlers are
set up for these automatically by the Tk widgets, and you can register win-
dow event handlers with the bind command described in Chapter 26.

• File events. The fileevent command registers handlers for these events.
• Timer events. The after command registers commands to occur at specific

times.
• Idle events. These events are processed when there is nothing else to do.

The Tk widgets use idle events to display themselves. The after idle com-
mand registers a command to run at the next idle time.

The after Command

The after command sets up commands to happen in the future. In its simplest
form, it pauses the application for a specified time, in milliseconds. The example
below waits for half a second:

after 500

During this time, the application does not process events. You can use the
vwait command as shown on page 220 to keep the Tcl event loop active during
the waiting period. The after command can register a Tcl command to occur
after a period of time, in milliseconds:

after milliseconds cmd arg arg...

The after command treats its arguments like eval; if you give it extra
arguments, it concatenates them to form a single command. If your argument
structure is important, use list to build the command. The following example
always works, no matter what the value of myvariable is:

after 500 [list puts $myvariable]

The return value of after is an identifier for the registered command. You
can cancel this command with the after cancel operation. You specify either the
identifier returned from after, or the command string. In the latter case, the
event that matches the command string exactly is canceled.

Table 16–1 summarizes the after command:

Table 16–1 The after command.

after milliseconds Pauses for milliseconds.

after ms arg ?arg...? Concatenates the args into a command and executes it after
ms milliseconds. Immediately returns an ID.

after cancel id Cancels the command registered under id.

after cancel command Cancels the registered command.

after idle command Runs command at the next idle moment.

after info ?id? Returns a list of IDs for outstanding after events, or the
command associated with id.

The fileevent Command 219
II. A

d
va

nc
e

d
 Tc

l

The fileevent Command

The fileevent command registers a procedure that is called when an I/O chan-
nel is ready for read or write events. For example, you can open a pipeline or net-
work socket for reading, and then process the data from the pipeline or socket
using a command registered with fileevent. The advantage of this approach is
that your application can do other things, like update the user interface, while
waiting for data from the pipeline or socket. Network servers use fileevent to
manage connections to many clients. You can use fileevent on stdin and std-
out, too. Using network sockets is described in Chapter 17.

The command registered with fileevent uses the regular Tcl commands to
read or write data on the I/O channel. For example, if the pipeline generates line-
oriented output, you should use gets to read a line of input. If you try and read
more data than is available, your application may block waiting for more input.
For this reason, you should read one line in your fileevent handler, assuming
the data is line-oriented. If you know the pipeline will generate data in fixed-
sized blocks, then you can use the read command to read one block.

The fconfigure command, which is described on page 221, can put a chan-
nel into nonblocking mode. This is not strictly necessary when using fileevent.
The pros and cons of nonblocking I/O are discussed later.

End of file makes a channel readable.
You should check for end of file in your read handler because it will be

called when end of file occurs. It is important to close the channel inside the han-
dler because closing the channel automatically unregisters the handler. If you
forget to close the channel, your read event handler will be called repeatedly.

Example 16–1 shows a read event handler. A pipeline is opened for reading
and its command executes in the background. The Reader command is invoked
when data is available on the pipe. When end of file is detected a variable is set,
which signals the application waiting with vwait. Otherwise, a single line of
input is read and processed. The vwait command is described on the next page.
Example 22–1 on page 316 also uses fileevent to read from a pipeline.

Example 16–1 A read event file handler.

proc Reader { pipe } {
global done
if {[eof $pipe]} {

catch {close $pipe}
set done 1
return

}
gets $pipe line
Process the line here...

}
set pipe [open "|some command"]
fileevent $pipe readable [list Reader $pipe]
vwait done

220 Event-Driven Programming Chap. 16

There can be at most one read handler and one write handler for an I/O
channel. If you register a handler and one is already registered, then the old reg-
istration is removed. If you call fileevent without a command argument, it
returns the currently registered command, or it returns the empty string if there
is none. If you register the empty string, it deletes the current file handler. Table
16–2 summarizes the fileevent command.

The vwait Command

The vwait command waits until a variable is modified. For example, you can set
variable x at a future time, and then wait for that variable to be set with vwait.

set x 0

after 500 {set x 1}

vwait x

Waiting with vwait causes Tcl to enter the event loop. Tcl will process
events until the variable x is modified. The vwait command completes when
some Tcl code runs in response to an event and modifies the variable. In this case
the event is a timer event, and the Tcl code is simply:

set x 1

In some cases vwait is used only to start the event loop. Example 16–2 sets
up a file event handler for stdin that will read and execute commands. Once this
is set up, vwait is used to enter the event loop and process commands until the
input channel is closed. The process exits at that point, so the vwait variable
Stdin(wait) is not used:

Example 16–2 Using vwait to activate the event loop.

proc Stdin_Start {prompt} {
global Stdin
set Stdin(line) ""
puts -nonewline $prompt
flush stdout
fileevent stdin readable [list StdinRead $prompt]
vwait Stdin(wait)

}
proc StdinRead {prompt} {

global Stdin
if {[eof stdin]} {

exit

Table 16–2 The fileevent command.

fileevent fileId readable
?command?

Queries or registers command to be called when
fileId is readable.

fileevent fileId writable
?command?

Queries or registers command to be called when
fileId is writable.

The fconfigure Command 221
II. A

d
va

nc
e

d
 Tc

l

}
append Stdin(line) [gets stdin]
if {[info complete $Stdin(line)]} {

catch {uplevel #0 $Stdin(line)} result
puts $result
puts -nonewline $prompt
flush stdout
set Stdin(line) {}

} else {
append Stdin(line) \n

}
}

The fconfigure Command

The fconfigure command sets and queries several properties of I/O channels.
The default settings for channels are suitable for most cases. If you do event-
driven I/O you may want to set your channel into nonblocking mode. If you han-
dle binary data, you should turn off end of line and character set translations.
You can query the channel parameters like this:

fconfigure stdin

-blocking 1 -buffering none -buffersize 4096 -encoding
iso8859-1 -eofchar {} -translation lf

Table 16–3 summarizes the properties controlled by fconfigure. They are
discussed in more detail below.

Nonblocking I/O

By default, I/O channels are blocking. A gets or read will wait until data is
available before returning. A puts may also wait if the I/O channel is not ready to

Table 16–3 I/O channel properties controlled by fconfigure.

-blocking Blocks until I/O channel is ready: 0 or 1.

-buffering Buffer mode: none, line, or full.

-buffersize Number of characters in the buffer.

-eofchar Special end of file character. Control-z (\x1a) for DOS. Null otherwise.

-encoding The character set encoding.

-error Returns the last POSIX error message associated with a channel.

-translation End of line translation: auto, lf, cr, crlf, binary.

-mode Serial devices only. Format: baud,parity,data,stop

-peername Sockets only. IP address of remote host.

-peerport Sockets only. Port number of remote host.

222 Event-Driven Programming Chap. 16

accept data. This behavior is all right if you are using disk files, which are essen-
tially always ready. If you use pipelines or network sockets, however, the block-
ing behavior can hang up your application.

The fconfigure command can set a channel into nonblocking mode. A gets
or read command may return immediately with no data. This occurs when there
is no data available on a socket or pipeline. A puts to a nonblocking channel will
accept all the data and buffer it internally. When the underlying device (i.e., a
pipeline or socket) is ready, then Tcl automatically writes out the buffered data.
Nonblocking channels are useful because your application can do something else
while waiting for the I/O channel. You can also manage several nonblocking I/O
channels at once. Nonblocking channels should be used with the fileevent com-
mand described earlier. The following command puts a channel into nonblocking
mode:

fconfigure fileID -blocking 0

It is not strictly necessary to put a channel into nonblocking mode if you use
fileevent. However, if the channel is in blocking mode, then it is still possible
for the gets or read done by your fileevent procedure to block. For example, an
I/O channel might have some data ready, but not a complete line. In this case, a
gets would block, unless the channel is nonblocking. Perhaps the best motiva-
tion for a nonblocking channel is the buffering behavior of a nonblocking puts.
You can even close a channel that has buffered data, and Tcl will automatically
write out the buffers as the channel becomes ready. For these reasons, it is com-
mon to use a nonblocking channel with fileevent. Example 16–3 shows a
fileevent handler for a nonblocking channel. As described above, the gets may
not find a complete line, in which case it doesn’t read anything and returns -1.

Example 16–3 A read event file handler for a nonblocking channel.

set pipe [open "|some command"]
fileevent $pipe readable [list Reader $pipe]
fconfigure $pipe -blocking 0
proc Reader { pipe } {

global done
if {[eof $pipe]} {

catch {close $pipe}
set done 1
return

}
if {[gets $pipe line] < 0} {

We blocked anyway because only part of a line
was available for input

} else {
Process one line

}
}
vwait done

The fconfigure Command 223
II. A

d
va

nc
e

d
 Tc

l

The fblocked Command

The fblocked command returns 1 if a channel does not have data ready.
Normally the fileevent command takes care of waiting for data, so I have seen
fblocked useful only in testing channel implementations.

Buffering

By default, Tcl buffers data, so I/O is more efficient. The underlying device
is accessed less frequently, so there is less overhead. In some cases you may want
data to be visible immediately and buffering gets in the way. The following turns
off all buffering:

fconfigure fileID -buffering none

Full buffering means that output data is accumulated until a buffer fills;
then a write is performed. For reading, Tcl attempts to read a whole buffer each
time more data is needed. The read-ahead for buffering will not block. The
-buffersize parameter controls the buffer size:

fconfigure fileID -buffering full -buffersize 8192

Line buffering is used by default on stdin and stdout. Each newline in an
output channel causes a write operation. Read buffering is the same as full buff-
ering. The following command turns on line buffering:

fconfigure fileID -buffering line

End of Line Translations

On UNIX, text lines end with a newline character (\n). On Macintosh they
end with a carriage return (\r). On Windows they end with a carriage return,
newline sequence (\r\n). Network sockets also use the carriage return, newline
sequence. By default, Tcl accepts any of these, and the line terminator can even
change within a channel. All of these different conventions are converted to the
UNIX style so that once read, text lines always end with a newline character
(\n). Both the read and gets commands do this conversion. By default, text lines
are generated in the platform-native format during output.

The default behavior is almost always what you want, but you can control
the translation with fconfigure. Table 16–4 shows settings for -translation:

Table 16–4 End of line translation modes.

binary No translation at all.

lf UNIX-style, which also means no translations.

cr Macintosh style. On input, carriage returns are converted to newlines. On out-
put, newlines are converted to carriage returns.

crlf Windows and Network style. On input, carriage return, newline is converted
to a newline. On output, a newline is converted to a carriage return, newline.

auto The default behavior. On input, all end of line conventions are converted to a
newline. Output is in native format.

224 Event-Driven Programming Chap. 16

End of File Character

In DOS file systems, there may be a Control-z character (\x1a) at the end of
a text file. By default, this character is ignored on the Windows platform if it
occurs at the end of the file, and this character is output when you close the file.
You can turn this off by specifying an empty string for the end of file character:

fconfigure fileID -eofchar {}

Serial Devices

The -mode attribute specifies the baud rate, parity mode, the number of
data bits, and the number of stop bits:

set tty [open /dev/ttya]

fconfigure $tty -mode

=> 9600,0,8,2

If you need to set additional attributes of the serial channel, you will have
to write a command in C that makes the system calls you need. If you are famil-
iar with serial devices, you know there are quite a few possibilities!

Windows has some special device names that always connect you to the
serial line devices when you use open. They are com1 through com8. The system
console is named con. The null device is nul.

UNIX has names for serial devices in /dev. The serial devices are /dev/
ttya, /dev/ttyb, and so on. The system console is /dev/console. The current
terminal is /dev/tty. The null device is /dev/null.

Macintosh needs a special command to open serial devices. This is provided
by a third-party extension that you can find at the Tcl Resource Center under:

http://www.scriptics.com/resource/software/extensions/macintosh/

Character Set Encodings

Tcl automatically converts various character set encodings into Unicode
internally. It cannot automatically detect the encoding for a file or network
socket, however, so you need to use fconfigure -encoding if you are reading
data that is not in the system’s default encoding. Character set issues are
explained in more detail in Chapter 15.

Configuring Read-Write Channels

If you have a channel that is used for both input and output, you can set the
channel parameters independently for input and output. In this case, you can
specify a two-element list for the parameter value. The first element is for the
input side of the channel, and the second element is for the output side of the
channel. If you specify only a single element, it applies to both input and output.
For example, the following command forces output end of line translations to be
crlf mode, leaves the input channel on automatic, and sets the buffer size for
both input and output:

fconfigure pipe -translation {auto crlf} -buffersize 4096

225

C H A P T E R

II. A
d

va
nc

e
d

 Tc
l

 17

Socket Programming 17

This chapter shows how to use sockets for programming network clients and
servers. Advanced I/O techniques for sockets are described, including
nonblocking I/O and control over I/O buffering. Tcl commands discussed
are: socket, fconfigure, and http::geturl.

Sockets are network communication
channels. The sockets described in this chapter use the TCP network protocol,
although you can find Tcl extensions that create sockets using other protocols.
TCP provides a reliable byte stream between two hosts connected to a network.
TCP handles all the issues about routing information across the network, and it
automatically recovers if data is lost or corrupted along the way. TCP is the basis
for other protocols like Telnet, FTP, and HTTP.

A Tcl script can use a network socket just like an open file or pipeline.
Instead of using the Tcl open command, you use the socket command to open a
socket. Then you use gets, puts, and read to transfer data. The close command
closes a network socket.

Network programming distinguishes between clients and servers. A server
is a process or program that runs for long periods of time and controls access to
some resource. For example, an FTP server governs access to files, and an HTTP
server provides access to hypertext pages on the World Wide Web. A client typi-
cally connects to the server for a limited time in order to gain access to the
resource. For example, when a Web browser fetches a hypertext page, it is acting
as a client. The extended examples in this chapter show how to program the cli-
ent side of the HTTP protocol.

The Scotty extension supports many network protocols.
The Scotty Tcl extension provides access to other network protocols like

UDP, DNS, and RPC. It also supports the SNMP network management protocol
and the MIB database associated with SNMP. Scotty is a great extension pack-

226 Socket Programming Chap. 17

age that is widely used for network management applications. Its home page is:
http://wwwsnmp.cs.utwente.nl/~schoenw/scotty/

Client Sockets
A client opens a socket by specifying the host address and port number for the
server of the socket. The host address gives the network location (i.e., which com-
puter), and the port selects a particular server from all the possible servers that
may be running on that host. For example, HTTP servers typically use port 80,
while FTP servers use port 20. The following example shows how to open a client
socket to a Web server:

set s [socket www.scriptics.com 80]

There are two forms for host names. The previous example uses a domain
name: www.scriptics.com. You can also specify raw IP addresses, which are
specified with four dot-separated integers (e.g., 128.15.115.32). A domain name
is mapped into a raw IP address by the system software, and it is almost always
a better idea to use a domain name in case the IP address assignment for the
host changes. This can happen when hosts are upgraded or they move to a differ-
ent part of the network. As of Tcl 8.2, there is no direct access from Tcl to the
DNS service that maps host names to IP addresses. You’ll need to use Scotty to
get DNS access.

Some systems also provide symbolic names for well-known port numbers.
For example, instead of using 20 for the FTP service, you can use ftp. On UNIX
systems, the well-known port numbers are listed in the file named /etc/ser-
vices.

Client Socket Options

The socket command accepts some optional arguments when opening the
client-side socket. The general form of the command is:

socket ?-async? ?-myaddr address? ?-myport myport? host port

Ordinarily the address and port on the client side are chosen automatically.
If your computer has multiple network interfaces, you can select one with the
-myaddr option. The address value can be a domain name or an IP address. If
your application needs a specific client port, it can choose one with the -myport
option. If the port is in use, the socket command will raise an error.

The -async option causes connection to happen in the background, and the
socket command returns immediately. The socket becomes writable when the
connection completes, or fails. You can use fileevent to get a callback when this
occurs. This is shown in Example 17–1. If you use the socket before the connec-
tion completes, and the socket is in blocking mode, then Tcl automatically blocks
and waits for the connection to complete. If the socket is in nonblocking mode,
attempts to use the socket return immediately. The gets and read commands
would return -1, and fblocked would return 1 in this situation.

In some cases, it can take a long time to open the connection to the server.
Usually this occurs when the server host is down, and it may take longer than

Server Sockets 227
II. A

d
va

nc
e

d
 Tc

l

you want for the connection to time out. The following example sets up a timer
with after so that you can choose your own timeout limit on the connection:

Example 17–1 Opening a client socket with a timeout.

proc Socket_Client {host port timeout} {
global connected
after $timeout {set connected timeout}
set sock [socket -async $host $port]
fileevent $sock w {set connected ok}
vwait connected
if {$connected == "timeout"} {

return -code error timeout
} else {

return $sock
}

}

Server Sockets

A TCP server socket allows multiple clients. The way this works is that the
socket command creates a listening socket, and then new sockets are created
when clients make connections to the server. Tcl takes care of all the details and
makes this easy to use. You simply specify a port number and give the socket
command a callback to execute when a client connects to your server socket. The
callback is just a Tcl command. A simple example is shown below:

Example 17–2 Opening a server socket.

set listenSocket [socket -server Accept 2540]
proc Accept {newSock addr port} {

puts "Accepted $newSock from $addr port $port"
}
vwait forever

The Accept command is the callback. With server sockets, Tcl adds addi-
tional arguments to the callback before it calls it. The arguments are the new
socket connection, and the host and port number of the remote client. In this
simple example, Accept just prints out its arguments.

The vwait command puts Tcl into its event loop so that it can do the back-
ground processing necessary to accept connections. The vwait command will
wait until the forever variable is modified, which won’t happen in this simple
example. The key point is that Tcl processes other events (e.g., network connec-
tions and other file I/O) while it waits. If you have a Tk application (e.g., wish),
then it already has an event loop to handle window system events, so you do not
need to use vwait. The Tcl event loop is discussed on page 217.

228 Socket Programming Chap. 17

Server Socket Options

By default, Tcl lets the operating system choose the network interface used
for the server socket, and you simply supply the port number. If your computer
has multiple interfaces, you may want to specify a particular one. Use the
-myaddr option for this. The general form of the command to open server sockets
is:

socket -server callback ?-myaddr address? port

The last argument to the socket command is the server’s port number. For
your own unofficial servers, you’ll need to pick port numbers higher than 1024 to
avoid conflicts with existing services. UNIX systems prevent user programs from
opening server sockets with port numbers less than 1024. If you use 0 as the port
number, then the operating system will pick the listening port number for you.
You must use fconfigure to find out what port you have:

fconfigure $sock -sockname

=> ipaddr hostname port

The Echo Service

Example 17–3 The echo service.

proc Echo_Server {port} {
global echo
set echo(main) [socket -server EchoAccept $port]

}
proc EchoAccept {sock addr port} {

global echo
puts "Accept $sock from $addr port $port"
set echo(addr,$sock) [list $addr $port]
fconfigure $sock -buffering line
fileevent $sock readable [list Echo $sock]

}
proc Echo {sock} {

global echo
if {[eof $sock] || [catch {gets $sock line}]} {

end of file or abnormal connection drop
close $sock
puts "Close $echo(addr,$sock)"
unset echo(addr,$sock)

} else {
if {[string compare $line "quit"] == 0} {

Prevent new connections.
Existing connections stay open.
close $echo(main)

}
puts $sock $line

}
}

The Echo Service 229
II. A

d
va

nc
e

d
 Tc

l

The echo server accepts connections from clients. It reads data from the cli-
ents and writes that data back. The example uses fileevent to wait for data
from the client, and it uses fconfigure to adjust the buffering behavior of the
network socket. You can use Example 17–3 as a template for more interesting
services.

The Echo_Server procedure opens the socket and saves the result in
echo(main). When this socket is closed later, the server stops accepting new con-
nections but existing connections won’t be affected. If you want to experiment
with this server, start it and wait for connections like this:

Echo_Server 2540

vwait forever

The EchoAccept procedure uses the fconfigure command to set up line
buffering. This means that each puts by the server results in a network trans-
mission to the client. The importance of this will be described in more detail
later. A complete description of the fconfigure command is given in Chapter 16.
The EchoAccept procedure uses the fileevent command to register a procedure
that handles I/O on the socket. In this example, the Echo procedure will be called
whenever the socket is readable. Note that it is not necessary to put the socket
into nonblocking mode when using the fileevent callback. The effects of non-
blocking mode are discussed on page 221.

EchoAccept saves information about each client in the echo array. This is
used only to print out a message when a client closes its connection. In a more
sophisticated server, however, you may need to keep more interesting state about
each client. The name of the socket provides a convenient handle on the client. In
this case, it is used as part of the array index.

The Echo procedure first checks to see whether the socket has been closed
by the client or there is an error when reading the socket. The if expression only
performs the gets if the eof does not return true:

if {[eof $sock] || [catch {gets $sock line}]} {

Closing the socket automatically clears the fileevent registration. If you
forget to close the socket upon the end of file condition, the Tcl event loop will
invoke your callback repeatedly. It is important to close it when you detect end of
file.

Example 17–4 A client of the echo service.

proc Echo_Client {host port} {
set s [socket $host $port]
fconfigure $s -buffering line
return $s

}
set s [Echo_Client localhost 2540]
puts $s "Hello!"
gets $s
=> Hello!

230 Socket Programming Chap. 17

In the normal case, the server simply reads a line with gets and then
writes it back to the client with puts. If the line is "quit," then the server closes
its main socket. This prevents any more connections by new clients, but it doesn’t
affect any clients that are already connected.

Example 17–4 shows a sample client of the Echo service. The main point is
to ensure that the socket is line buffered so that each puts by the client results in
a network transmission. (Or, more precisely, each newline character results in a
network transmission.) If you forget to set line buffering with fconfigure, the
client’s gets command will probably hang because the server will not get any
data; it will be stuck in buffers on the client.

Fetching a URL with HTTP

The HyperText Transport Protocol (HTTP) is the protocol used on the World
Wide Web. This section presents a procedure to fetch pages or images from a
server on the Web. Items in the Web are identified with a Universal Resource
Location (URL) that specifies a host, port, and location on the host. The basic
outline of HTTP is that a client sends a URL to a server, and the server responds
with some header information and some content data. The header information
describes the content, which can be hypertext, images, postscript, and more.

Example 17–5 Opening a connection to an HTTP server.

proc Http_Open {url} {
global http
if {![regexp -nocase {^(http://)?([^:/]+)(:([0-9])+)?(/.*)} \

$url x protocol server y port path]} {
error "bogus URL: $url"

}
if {[string length $port] == 0} {

set port 80
}
set sock [socket $server $port]
puts $sock "GET $path HTTP/1.0"
puts $sock "Host: $server"
puts $sock "User-Agent: Tcl/Tk Http_Open"
puts $sock ""
flush $sock
return $sock

}

The Http_Open procedure uses regexp to pick out the server and port from
the URL. This regular expression is described in detail on page 149. The leading
http:// is optional, and so is the port number. If the port is left off, then the
standard port 80 is used. If the regular expression matches, then a socket com-
mand opens the network connection.

The protocol begins with the client sending a line that identifies the com-

Fetching a URL with HTTP 231
II. A

d
va

nc
e

d
 Tc

l

mand (GET), the path, and the protocol version. The path is the part of the URL
after the server and port specification. The rest of the request is lines in the fol-
lowing format:

key: value

The Host identifies the server, which supports servers that implement more
than one server name. The User-Agent identifies the client program, which is
often a browser like Netscape Navigator or Internet Explorer. The key-value lines
are terminated with a blank line. This data is flushed out of the Tcl buffering
system with the flush command. The server will respond by sending the URL
contents back over the socket. This is described shortly, but first we consider
proxies.

Proxy Servers

A proxy is used to get through firewalls that many organizations set up to
isolate their network from the Internet. The proxy accepts HTTP requests from
clients inside the firewall and then forwards the requests outside the firewall. It
also relays the server’s response back to the client. The protocol is nearly the
same when using the proxy. The difference is that the complete URL is passed to
the GET command so that the proxy can locate the server. Example 17–6 uses a
proxy if one is defined:

Example 17–6 Opening a connection to an HTTP server.

Http_Proxy sets or queries the proxy
proc Http_Proxy {{new {}}} {

global http
if ![info exists http(proxy)] {

return {}
}
if {[string length $new] == 0} {

return $http(proxy):$http(proxyPort)
} else {

regexp {^([^:]+):([0-9]+)$} $new x \
http(proxy) http(proxyPort)

}
}

proc Http_Open {url {cmd GET} {query {}}} {
global http
if {![regexp -nocase {^(http://)?([^:/]+)(:([0-9])+)?(/.*)} \

$url x protocol server y port path]} {
error "bogus URL: $url"

}
if {[string length $port] == 0} {

set port 80
}
if {[info exists http(proxy)] &&

[string length $http(proxy)]} {
set sock [socket $http(proxy) $http(proxyPort)]

232 Socket Programming Chap. 17

puts $sock "$cmd http://$server:$port$path HTTP/1.0"
} else {

set sock [socket $server $port]
puts $sock "$cmd $path HTTP/1.0"

}
puts $sock "User-Agent: Tcl/Tk Http_Open"
puts $sock "Host: $server"
if {[string length $query] > 0} {

puts $sock "Content-Length: [string length $query]"
puts $sock ""
puts $sock $query

}
puts $sock ""
flush $sock
fconfigure $sock -blocking 0
return $sock

}

The HEAD Request

In Example 17–6, the Http_Open procedure takes a cmd parameter so that
the user of Http_Open can perform different operations. The GET operation
fetches the contents of a URL. The HEAD operation just fetches the description of
a URL, which is useful to validate a URL. The POST operation transmits query
data to the server (e.g., values from a form) and also fetches the contents of the
URL. All of these operations follow a similar protocol. The reply from the server
is a status line followed by lines that have key-value pairs. This format is similar
to the client’s request. The reply header is followed by content data with GET and
POST operations. Example 17–7 implements the HEAD command, which does not
involve any reply data:

Example 17–7 Http_Head validates a URL.

proc Http_Head {url} {
upvar #0 $url state
catch {unset state}
set state(sock) [Http_Open $url HEAD]
fileevent $state(sock) readable [list HttpHeader $url]
Specify the real name, not the upvar alias, to vwait
vwait $url\(status)
catch {close $state(sock)}
return $state(status)

}
proc HttpHeader {url} {

upvar #0 $url state
if {[eof $state(sock)]} {

set state(status) eof
close $state(sock)
return

}
if {[catch {gets $state(sock) line} nbytes]} {

Fetching a URL with HTTP 233
II. A

d
va

nc
e

d
 Tc

l

set state(status) error
lappend state(headers) [list error $nbytes]
close $state(sock)
return

}
if {$nbytes < 0} {

Read would block
return

} elseif {$nbytes == 0} {
Header complete
set state(status) head

} elseif {![info exists state(headers)]} {
Initial status reply from the server
set state(headers) [list http $line]

} else {
Process key-value pairs
regexp {^([^:]+): *(.*)$} $line x key value
lappend state(headers) [string tolower $key] $value

}
}

The Http_Head procedure uses Http_Open to contact the server. The
HttpHeader procedure is registered as a fileevent handler to read the server’s
reply. A global array keeps state about each operation. The URL is used in the
array name, and upvar is used to create an alias to the name (upvar is described
on page 86):

upvar #0 $url state

You cannot use the upvar alias as the variable specified to vwait. Instead,
you must use the actual name. The backslash turns off the array reference in
order to pass the name of the array element to vwait, otherwise Tcl tries to refer-
ence url as an array:

vwait $url\(status)

The HttpHeader procedure checks for special cases: end of file, an error on
the gets, or a short read on a nonblocking socket. The very first reply line con-
tains a status code from the server that is in a different format than the rest of
the header lines:

code message

The code is a three-digit numeric code. 200 is OK. Codes in the 400’s and
500’s indicate an error. The codes are explained fully in RFC 1945 that specifies
HTTP 1.0. The first line is saved with the key http:

set state(headers) [list http $line]

The rest of the header lines are parsed into key-value pairs and appended
onto state(headers). This format can be used to initialize an array:

array set header $state(headers)

When HttpHeader gets an empty line, the header is complete and it sets the
state(status) variable, which signals Http_Head. Finally, Http_Head returns
the status to its caller. The complete information about the request is still in the
global array named by the URL. Example 17–8 illustrates the use of Http_Head:

234 Socket Programming Chap. 17

Example 17–8 Using Http_Head.

set url http://www.sun.com/
set status [Http_Head $url]
=> eof
upvar #0 $url state
array set info $state(headers)
parray info
info(http) HTTP/1.0 200 OK
info(server) Apache/1.1.1
info(last-modified) Nov ...
info(content-type) text/html

The GET and POST Requests

Example 17–9 shows Http_Get, which implements the GET and POST
requests. The difference between these is that POST sends query data to the
server after the request header. Both operations get a reply from the server that
is divided into a descriptive header and the content data. The Http_Open proce-
dure sends the request and the query, if present, and reads the reply header.
Http_Get reads the content.

The descriptive header returned by the server is in the same format as the
client’s request. One of the key-value pairs returned by the server specifies the
Content-Type of the URL. The content-types come from the MIME standard,
which is described in RFC 1521. Typical content-types are:

• text/html — HyperText Markup Language (HTML), which is introduced in
Chapter 3.

• text/plain — plain text with no markup.
• image/gif — image data in GIF format.
• image/jpeg — image data in JPEG format.
• application/postscript — a postscript document.
• application/x-tcl — a Tcl program! This type is discussed in Chapter 20.

Example 17–9 Http_Get fetches the contents of a URL.

proc Http_Get {url {query {}}} {
upvar #0 $url state ;# Alias to global array
catch {unset state} ;# Aliases still valid.
if {[string length $query] > 0} {

set state(sock) [Http_Open $url POST $query]
} else {

set state(sock) [Http_Open $url GET]
}
set sock $state(sock)
fileevent $sock readable [list HttpHeader $url]

Specify the real name, not the upvar alias, to vwait
vwait $url\(status)

Fetching a URL with HTTP 235
II. A

d
va

nc
e

d
 Tc

l

set header(content-type) {}
set header(http) "500 unknown error"
array set header $state(headers)

Check return status.
200 is OK, other codes indicate a problem.
regsub "HTTP/1.. " $header(http) {} header(http)
if {![string match 2* $header(http)]} {

catch {close $sock}
if {[info exists header(location)] &&

[string match 3* $header(http)]} {
3xx is a redirection to another URL
set state(link) $header(location)
return [Http_Get $header(location) $query]

}
return -code error $header(http)

}
Set up to read the content data
switch -glob -- $header(content-type) {

text/* {
Read HTML into memory
fileevent $sock readable [list HttpGetText $url]

}
default {

Copy content data to a file
fconfigure $sock -translation binary
set state(filename) [File_TempName http]
if [catch {open $state(filename) w} out] {

set state(status) error
set state(error) $out
close $sock
return $header(content-type)

}
set state(fd) $out
fcopy $sock $out -command [list HttpCopyDone $url]

}
}
vwait $url\(status)
return $header(content-type)

}

Http_Get uses Http_Open to initiate the request, and then it looks for
errors. It handles redirection errors that occur if a URL has changed. These have
error codes that begin with 3. A common case of this error is when a user omits
the trailing slash on a URL (e.g., http://www.scriptics.com). Most servers
respond with:

302 Document has moved

Location: http://www.scriptics.com/

If the content-type is text, then Http_Get sets up a fileevent handler to
read this data into memory. The socket is in nonblocking mode, so the read han-
dler can read as much data as possible each time it is called. This is more effi-
cient than using gets to read a line at a time. The text will be stored in the

236 Socket Programming Chap. 17

state(body) variable for use by the caller of Http_Get. Example 17–10 shows
the HttpGetText fileevent handler:

Example 17–10 HttpGetText reads text URLs.

proc HttpGetText {url} {
upvar #0 $url state
if {[eof $state(sock)]} {

Content complete
set state(status) done
close $state(sock)

} elseif {[catch {read $state(sock)} block]} {
set state(status) error
lappend state(headers) [list error $block]
close $state(sock)

} else {
append state(body) $block

}
}

The content may be in binary format. This poses a problem for Tcl 7.6 and
earlier. A null character will terminate the value, so values with embedded nulls
cannot be processed safely by Tcl scripts. Tcl 8.0 supports strings and variable
values with arbitrary binary data. Example 17–9 uses fcopy to copy data from
the socket to a file without storing it in Tcl variables. This command was intro-
duced in Tcl 7.5 as unsupported0, and became fcopy in Tcl 8.0. It takes a call-
back argument that is invoked when the copy is complete. The callback gets
additional arguments that are the bytes transferred and an optional error string.
In this case, these arguments are added to the url argument specified in the
fcopy command. Example 17–11 shows the HttpCopyDone callback:

Example 17–11 HttpCopyDone is used with fcopy.

proc HttpCopyDone {url bytes {error {}}} {
upvar #0 $url state
if {[string length $error]} {

set state(status) error
lappend state(headers) [list error $error]

} else {
set state(status) ok

}
close $state(sock)
close $state(fd)

}

The user of Http_Get uses the information in the state array to determine
the status of the fetch and where to find the content. There are four cases to deal
with:

The http Package 237
II. A

d
va

nc
e

d
 Tc

l

• There was an error, which is indicated by the state(error) element.
• There was a redirection, in which case, the new URL is in state(link). The

client of Http_Get should change the URL and look at its state instead. You
can use upvar to redefine the alias for the state array:

upvar #0 $state(link) state

• There was text content. The content is in state(body).
• There was another content-type that was copied to state(filename).

The fcopy Command

The fcopy command can do a complete copy in the background. It automat-
ically sets up fileevent handlers, so you do not have to use fileevent yourself.
It also manages its buffers efficiently. The general form of the command is:

fcopy input output ?-size size? ?-command callback?

The -command argument makes fcopy work in the background. When the
copy is complete or an error occurs, the callback is invoked with one or two addi-
tional arguments: the number of bytes copied, and, in the case of an error, it is
also passed an error string:

fcopy $in $out -command [list CopyDone $in $out]

proc CopyDone {in out bytes {error {}} {

close $in ; close $out

}

With a background copy, the fcopy command transfers data from input
until end of file or size bytes have been transferred. If no -size argument is
given, then the copy goes until end of file. It is not safe to do other I/O operations
with input or output during a background fcopy. If either input or output gets
closed while the copy is in progress, the current copy is stopped. If the input is
closed, then all data already queued for output is written out.

Without a -command argument, the fcopy command reads as much as possi-
ble depending on the blocking mode of input and the optional size parameter.
Everything it reads is queued for output before fcopy returns. If output is block-
ing, then fcopy returns after the data is written out. If input is blocking, then
fcopy can block attempting to read size bytes or until end of file.

The http Package

The standard Tcl library includes an http package that is based on the code I
wrote for this chapter. This section documents the package, which has a slightly
different interface. The library version uses namespaces and combines the
Http_Get, Http_Head, and Http_Post procedures into a single http::geturl pro-
cedure. The examples in this chapter are still interesting, but you should look at
http.tcl in the Tcl library, which I also wrote. Definitely use the standard http
package for your production code.

238 Socket Programming Chap. 17

http::config

The http::config command is used to set the proxy information, time-
outs, and the User-Agent and Accept headers that are generated in the HTTP
request. You can specify the proxy host and port, or you can specify a Tcl com-
mand that is run to determine the proxy. With no arguments, http::config
returns the current settings:

http::config

=> -accept */* -proxyfilter httpProxyRequired -proxyhost
{} -proxyport {} -timeout unlimited
-useragent {Tcl http client package 2.0}

If you specify just one option, its value is returned:
http::config -proxyfilter

=> httpProxyRequired

You can set one or more options:
http::config -proxyhost webcache.eng -proxyport 8080

The default proxy filter just returns the -proxyhost and -proxyport values
if they are set. You can supply a smarter filter that picks a proxy based on the
host in the URL. The proxy filter is called with the hostname and should return
a list of two elements, the proxy host and port. If no proxy is required, return an
empty list.

The -timeout value limits the time the transaction can take. Its value is
unlimited for no timeout, or a milliseconds value. You can specify 500, for exam-
ple, to have a half-second timeout.

http::geturl

The http::geturl procedure does a GET, POST, or HEAD transaction depend-
ing on its arguments. By default, http::geturl blocks until the request com-
pletes and it returns a token that represents the transaction. As described below,
you use the token to get the results of the transaction. If you supply a -command
callback option, then http::geturl returns immediately and invokes callback
when the transaction completes. The callback is passed the token that repre-
sents the transaction. Table 17–1 lists the options to http::geturl:

Table 17–1 Options to the http::geturl command.

-blocksize num Block size when copying to a channel.

-channel fileID The fileID is an open file or socket. The URL data is copied
to this channel instead of saving it in memory.

-command callback Calls callback when the transaction completes. The token
from http::geturl is passed to callback.

-handler command Called from the event handler to read data from the URL.

The http Package 239
II. A

d
va

nc
e

d
 Tc

lFor simple applications you can simply block on the transaction:
set token [http::geturl www.beedub.com/index.html]

=> http::1

The leading http:// in the URL is optional. The return value is a token
that is also the name of a global array that contains state about the transaction.
Names like http::1 are used instead of using the URL as the array name. You
can use upvar to convert the return value from http::geturl to an array vari-
able:

upvar #0 $token state

By default, the URL data is saved in state(body). The elements of the
state array are described in Table 17–2:

A handful of access functions are provided so that you can avoid using the
state array directly. These are listed in Table 17–3:

-headers list The list specifies a set of headers that are included in the
HTTP request. The list alternates between header keys and
values.

-progress command Calls command after each block is copied to a channel. It gets
called with three parameters:
command token totalsize currentsize

-query codedstring Issues a POST request with the codedstring form data.

-timeout msec Aborts the request after msec milliseconds have elapsed.

-validate bool If bool is true, a HEAD request is made.

Table 17–2 Elements of the http::geturl state array.

body The contents of the URL.

currentsize The current number of bytes transferred.

error An explanation of why the transaction was aborted.

http The HTTP reply status.

meta A list of the keys and values in the reply header.

status The current status: pending, ok, eof, or reset.

totalsize The expected size of the returned data.

type The content type of the returned data.

url The URL of the request.

Table 17–1 Options to the http::geturl command. (Continued)

240 Socket Programming Chap. 17

You can take advantage of the asynchronous interface by specifying a com-
mand that is called when the transaction completes. The callback is passed the
token returned from http::geturl so that it can access the transaction state:

http::geturl $url -command [list Url_Display $text $url]
proc Url_Display {text url token} {

upvar #0 $token state
Display the url in text

}

You can have http::geturl copy the URL to a file or socket with the
-channel option. This is useful for downloading large files or images. In this
case, you can get a progress callback so that you can provide user feedback dur-
ing the transaction. Example 17–12 shows a simple downloading script:

Example 17–12 Downloading files with http::geturl.

#!/usr/local/tclsh8.0
if {$argc < 2} {

puts stderr "Usage: $argv0 url file"
exit 1

}
package require http
set url [lindex $argv 0]
set file [lindex $argv 1]
set out [open $file w]
proc progress {token total current} {

puts -nonewline "."
}
http::config -proxyhost webcache.eng -proxyport 8080
set token [http::geturl $url -progress progress \

-headers {Pragma no-cache} -channel $out]
close $out
Print out the return header information
puts ""
upvar #0 $token state
puts $state(http)
foreach {key value} $state(meta) {

puts "$key: $value"
}
exit 0

Table 17–3 The http support procedures.

http::data $token Returns state(body).

http::status $token Returns state(status).

http::error $token Returns state(error).

http::code $token Returns state(http).

http::wait $token Blocks until the transaction completes.

http::cleanup $token Unsets the state array named by $token.

Basic Authentication 241
II. A

d
va

nc
e

d
 Tc

l

http::formatQuery

If you specify form data with the -query option, then http::geturl does a
POST transaction. You need to encode the form data for safe transmission. The
http::formatQuery procedure takes a list of keys and values and encodes them
in x-www-url-encoded format. Pass this result as the query data:

http::formatQuery name "Brent Welch" title "Tcl Programmer"

=> name=Brent+Welch&title=Tcl+Programmer

http::reset

You can cancel an outstanding transaction with http::reset:
http::reset $token

This is done automatically when you setup a -timeout with http::config.

http::cleanup

When you are done with the data returned from http::geturl, use the
http::cleanup procedure to unset the state variable used to store the data.

Basic Authentication

Web pages are often password protected. The most common form of this uses a
protocol called Basic Authentication, which is not very strong, but easy to imple-
ment. With this scheme, the server responds to an HTTP request with a 401
error status and a Www-Authenticate header, which specifies the authentication
protocol the server wants to use. For example, the server response can contain
the following information:

HTTP/1.0 401 Authorization Required

Www-Authenticate: Basic realm="My Pages"

The realm is meant to be an authentication domain. In practice, it is used
in the string that gets displayed to the user as part of the password prompt. For
example, a Web browser will display this prompt:

Enter the password for My Pages at www.beedub.com

After getting the user name and password from the user, the Web browser
tries its HTTP request again. This time it includes an Authorization header
that contains the user name and password encoded with base64 encoding. There
is no encryption at all — anyone can decode the string, which is why this is not a
strong form of protection. The Tcl Web Server includes a base64.tcl file that has
Base64_Encode and Base64_Decode procedures. Example 17–13 illustrates the
Basic Authentication protocol. http::geturl takes a -headers option that lets
you pass additional headers in the request.

242 Socket Programming Chap. 17

Example 17–13 Basic Authentication using http::geturl.

proc BasicAuthentication {url promptProc} {
set token [http::geturl $url]
http::wait $token
if {[string match *401* [http::code $token]]} {

upvar #0 $token data

Extract the realm from the Www-Authenticate line

array set reply $data(meta)
if {[regexp {realm=(.*)} $reply(Www-Authenticate) \

x realm]} {

Call back to prompt for username, password

set answer [$promptProc $realm]
http::cleanup $token

Encode username:password and pass this in
the Authorization header

set auth [Base64_Encode \
[lindex $answer 0]:[lindex $answer 1]]

set token [http::geturl $url -headers \
[list Authorization "Basic $auth"]]

http::wait $token
}

}
return $token

}

Example 17–13 takes a promptProc argument that is the name of a proce-
dure to call to get the username and password. This procedure could display a Tk
dialog box, or prompt for user input from the terminal. In practice, you probably
already know the username and password. In this case, you can skip the initial
challenge–response steps and simply supply the Authorization header on the
first request:

http::geturl $url -headers \
[list Authorization \

"Basic [Base64_Encode $username:$password]"]

243

C H A P T E R

II. A
d

va
nc

e
d

 Tc
l

 18

TclHttpd Web Server 18

This chapter describes TclHttpd, a Web server built entirely in Tcl. The Web
server can be used as a standalone server, or it can be embedded into
applications to Web-enable them. TclHttpd provides a Tcl+HTML
template facility that is useful for maintaining site-wide look and feel, and
an application-direct URL that invokes a Tcl procedure in an application.

TclHttpd started out as about 175 lines of
Tcl that could serve up HTML pages and images. The Tcl socket and I/O com-
mands make this easy. Of course, there are lots of features in Web servers like
Apache or Netscape that were not present in the first prototype. Steve Uhler
took my prototype, refined the HTTP handling, and aimed to keep the basic
server under 250 lines. I went the other direction, setting up a modular architec-
ture, adding in features found in other Web servers, and adding some interesting
ways to connect TclHttpd to Tcl applications.

Today TclHttpd is used both as a general-purpose Web server, and as a
framework for building server applications. It implements www.scriptics.com,
including the Tcl Resource Center and Scriptics’ electronic commerce facilities. It
is also built into several commercial applications such as license servers and
mail spam filters. Instructions for setting up the TclHttpd on your platform are
given toward the end of the chapter, on page 266. It works on Unix, Windows,
and Macintosh. Using TclHttpd, you can have your own Web server up and run-
ning quickly.

This chapter provides an overview of the server and several examples of
how you can use it. The chapter is not an exhaustive reference to every feature.
Instead, it concentrates on a very useful subset of server features that I use the
most. There are references to Tcl files in the server’s implementation, which are
all found in the lib directory of the distribution. You may find it helpful to read
the code to learn more about the implementation. You can find the source on the
CD-ROM.

244 TclHttpd Web Server Chap. 18

Integrating TclHttpd with your Application

The bulk of this chapter describes the various ways you can extend the server
and integrate it into your application. TclHttpd is interesting because, as a Tcl
script, it is easy to add to your application. Suddenly your application has an
interface that is accessible to Web browsers in your company’s intranet or the
global Internet. The Web server provides several ways you can connect it to your
application:

• Static pages — As a "normal" Web server, you can serve static documents
that describe your application.

• Domain handlers — You can arrange for all URL requests in a section of
your Web site to be handled by your application. This is a very general
interface where you interpret what the URL means and what sort of pages
to return to each request. For example, http://www.scriptics.com/
resource is implemented this way. The URL past /resource selects an
index in a simple database, and the server returns a page describing the
pages under that index.

• Application-Direct URLs — This is a domain handler that maps URLs onto
Tcl procedures. The form query data that is part of the HTTP GET or POST
request is automatically mapped onto the parameters of the application-
direct procedure. The procedure simply computes the page as its return
value. This is an elegant and efficient alternative to the CGI interface. For
example, in TclHttpd the URLs under /status report various statistics
about the Web server’s operation.

• Document handlers — You can define a Tcl procedure that handles all files
of a particular type. For example, the server has a handler for CGI scripts,
HTML files, image maps, and HTML+Tcl template files.

• HTML+Tcl Templates — These are Web pages that mix Tcl and HTML
markup. The server replaces the Tcl using the subst command and returns
the result. The server can cache the result in a regular HTML file to avoid
the overhead of template processing on future requests. Templates are a
great way to maintain common look and feel to a family of Web pages, as
well as to implement more advanced dynamic HTML features like self-
checking forms.

TclHttpd Architecture

Figure 18–1 shows the basic components of the server. At the core is the
Httpd module (httpd.tcl), which implements the server side of the HTTP proto-
col. The "d" in Httpd stands for daemon, which is the name given to system serv-
ers on UNIX. This module manages network requests, dispatches them to the Url
module, and provides routines used to return the results to requests.

The Url module (url.tcl) divides the Web site into domains, which are
subtrees of the URL hierarchy provided by the server. The idea is that different
domains may have completely different implementations. For example, the Docu-

Domain Handlers 245
II. A

d
va

nc
e

d
 Tc

l

ment domain (doc.tcl) maps its URLs into files and directories on your hard
disk, while the Application-Direct domain (direct.tcl) maps URLs into Tcl pro-
cedure calls within your application. The CGI domain (cgi.tcl) maps URLs onto
other programs that compute Web pages.

Domain Handlers

You can implement new kinds of domains that provide your own interpretation of
a URL. This is the most flexible interface available to extend the Web server. You
provide a callback that is invoked to handle every request in a domain, or sub-
tree, of the URL hierarchy. The callback interprets the URL, computes the page
content, and returns the data using routines from the Httpd module.

Example 18–1 defines a simple domain that always returns the same page
to every request. The domain is registered with the Url_PrefixInstall com-
mand. The arguments to Url_PrefixInstall are the URL prefix and a callback
that is called to handle all URLs that match that prefix. In the example, all
URLs that have the prefix /simple are dispatched to the SimpleDomain proce-
dure.

Httpd

Url

Application
CGI

File

Your Application

Other
ApplicationsSystem

Direct

Fig. 18–1 The dotted box represents one application that embeds TclHttpd. Document tem-
plates and Application Direct URLs provide direct connections from an HTTP request to your
application.

TclHttpd

Templates

Documents

246 TclHttpd Web Server Chap. 18

Example 18–1 A simple URL domain.

Url_PrefixInstall /simple [list SimpleDomain /simple]

proc SimpleDomain {prefix sock suffix} {
upvar #0 Httpd$sock data

Generate page header

set html "<title>A simple page</title>\n"
append html "<h1>$prefix$suffix</h1>\n"
append html "<h1>Date and Time</h1>\n"
append html [clock format [clock seconds]]
Display query data

if {[info exist data(query)]} {
append html "<h1>Query Data</h1>\n"
append html "<table>\n"
foreach {name value} [Url_DecodeQuery $data(query)] {

append html "<tr><td>$name</td>\n"
append html "<td>$value</td></tr>\n"

}
append html "</table>\n"

}
Httpd_ReturnData $sock text/html $html

}

The SimpleDomain handler illustrates several properties of domain han-
dlers. The sock and suffix arguments to SimpleDomain are appended by
Url_Dispatch when it invokes the domain handler. The suffix parameter is the
part of the URL after the prefix. The prefix is passed in as part of the callback
definition so the domain handler can recreate the complete URL. For example, if
the server receives a request for the URL /simple/page, then the prefix is /sim-
ple, the suffix is /request.

Connection State and Query Data

The sock parameter is a handle on the socket connection to the remote cli-
ent. This variable is also used to name a state variable that the Httpd module
maintains about the connection. The name of the state array is Httpd$sock, and
SimpleDomain uses upvar to get a more convenient name for this array (i.e.,
data):

upvar #0 Httpd$sock data

An important element of the state array is the query data, data(query).
This is the information that comes from HTML forms. The query data arrives in
an encoded format, and the Url_DecodeQuery procedure is used to decode the
data into a list of names and values. Url_DecodeQuery is similar to Cgi_List
from Example 11–5 on page 154 and is a standard function provided by url.tcl.

Application Direct URLs 247
II. A

d
va

nc
e

d
 Tc

l

Returning Results

Finally, once the page has been computed, the Httpd_ReturnData procedure
is used to return the page to the client. This takes care of the HTTP protocol as
well as returning the data. There are three related procedures,
Httpd_ReturnFile, Httpd_Error, and Httpd_Redirect. These are summarized in
Table 18–1 on page 259.

Application Direct URLs

The Application Direct domain implementation provides the simplest way to
extend the Web server. It hides the details associated with query data, decoding
URL paths, and returning results. All you do is define Tcl procedures that corre-
spond to URLs. Their arguments are automatically matched up to the query data
as shown in Example 13–3 on page 179. The Tcl procedures compute a string
that is the result data, which is usually HTML. That’s all there is to it.

The Direct_Url procedure defines a URL prefix and a corresponding Tcl
command prefix. Any URL that begins with the URL prefix will be handled by a
corresponding Tcl procedure that starts with the Tcl command prefix. This is
shown in Example 18–2:

Example 18–2 Application Direct URLs.

Direct_Url /demo Demo

proc Demo {} {
return "<html><head><title>Demo page</title></head>\n\

<body><h1>Demo page</h1>\n\
What time is it?\n\
<form action=/demo/echo>\n\
Data: <input type=text name=data>\n\

\n\
<input type=submit name=echo value=’Echo Data’>\n\
</form>\n\
</body></html>"

}
proc Demo/time {{format "%H:%M:%S"}} {

return [clock format [clock seconds] -format $format]
}
proc Demo/echo {args} {

Compute a page that echoes the query data

set html "<head><title>Echo</title></head>\n"
append html "<body><table>\n"
foreach {name value} $args {

append html "<tr><td>$name</td><td>$value</td></tr>\n"
}
append html "</tr></table>\n"
return $html

}

248 TclHttpd Web Server Chap. 18

Example 18–2 defines /demo as an Application Direct URL domain that is
implemented by procedures that begin with Demo. There are just three URLs
defined:

/demo
/demo/time
/demo/echo

The /demo page displays a hypertext link to the /demo/time page and a sim-
ple form that will be handled by the /demo/echo page. This page is static, and so
there is just one return command in the procedure body. Each line of the string
ends with:

\n\

This is just a formatting trick to let me indent each line in the procedure,
but not have the line indented in the resulting string. Actually, the \-newline
will be replaced by one space, so each line will be indented one space. You can
leave those off and the page will display the same in the browser, but when you
view the page source you’ll see the indenting. Or you could not indent the lines in
the string, but then your code looks somewhat odd.

The /demo/time procedure just returns the result of clock format. It
doesn’t even bother adding <html>, <head>, or <body> tags, which you can get
away with in today’s browsers. A simple result like this is also useful if you are
using programs to fetch information via HTTP requests.

Using Query Data

The /demo/time procedure is defined with an optional format argument. If
a format value is present in the query data, then it overrides the default value
given in the procedure definition.

The /demo/echo procedure creates a table that shows its query data. Its
args parameter gets filled in with a name-value list of all query data. You can
have named parameters, named parameters with default values, and the args
parameter in your application-direct URL procedures. The server automatically
matches up incoming form values with the procedure declaration. For example,
suppose you have an application direct procedure declared like this:

proc Demo/param { a b {c cdef} args} { body }

You could create an HTML form that had elements named a, b, and c, and
specified /demo/param for the ACTION parameter of the FORM tag. Or you could
type the following into your browser to embed the query data right into the URL:

/demo/param?a=5&b=7&c=red&d=%7ewelch&e=two+words

In this case, when your procedure is called, a is 5, b is 7, c is red, and the
args parameter becomes a list of:

d ~welch e {two words}

The %7e and the + are special codes for nonalphanumeric characters in the
query data. Normally, this encoding is taken care of automatically by the Web
browser when it gets data from a form and passes it to the Web server. However,

Document Types 249
II. A

d
va

nc
e

d
 Tc

l

if you type query data directly or format URLs with complex query data in them,
then you need to think about the encoding. Use the Url_Encode procedure to
encode URLs that you put into Web pages.

If parameters are missing from the query data, they either get the default
values from the procedure definition or the empty string. Consider this example:

/demo/param?b=5

In this case a is "", b is 5, c is cdef, and args is an empty list.

Returning Other Content Types

The default content type for application direct URLs is text/html. You can
specify other content types by using a global variable with the same name as
your procedure. (Yes, this is a crude way to craft an interface.) Example 18–3
shows part of the faces.tcl file that implements an interface to a database of
picons — personal icons — that is organized by user and domain names. The
idea is that the database contains images corresponding to your e-mail corre-
spondents. The Faces_ByEmail procedure, which is not shown, looks up an
appropriate image file. The application direct procedure is Faces/byemail, and it
sets the global variable Faces/byemail to the correct value based on the file-
name extension. This value is used for the Content-Type header in the result
part of the HTTP protocol.

Example 18–3 Alternate types for Application Direct URLs.

Direct_Url /faces Faces
proc Faces/byemail {email} {

global Faces/byemail
set filename [Faces_ByEmail $email]
set Faces/byemail [Mtype $filename]
set in [open $filename]
fconfigure $in -translation binary
set X [read $in]
close $in
return $X

}

Document Types

The Document domain (doc.tcl) maps URLs onto files and directories. It pro-
vides more ways to extend the server by registering different document type han-
dlers. This occurs in a two-step process. First, the type of a file is determined by
its suffix. The mime.types file contains a map from suffixes to MIME types such as
text/html or image/gif. This map is controlled by the Mtype module in
mtype.tcl. Second, the server checks for a Tcl procedure with the appropriate
name:

Doc_mimetype

250 TclHttpd Web Server Chap. 18

The matching procedure, if any, is called to handle the URL request. The
procedure should use routines in the Httpd module to return data for the
request. If there is no matching Doc_mimetype procedure, then the default docu-
ment handler uses Httpd_ReturnFile and specifies the Content Type based on
the file extension:

Httpd_ReturnFile $sock [Mtype $path] $path

You can make up new types to support your application. Example 18–4
shows the pieces needed to create a handler for a fictitious document type appli-
cation/myjunk that is invoked to handle files with the .junk suffix. You need to
edit the mime.types file and add a document handler procedure to the server:

Example 18–4 A sample document type handler.

Add this line to mime.types
application/myjunk .junk

Define the document handler procedure
path is the name of the file on disk
suffix is part of the URL after the domain prefix
sock is the handle on the client connection

proc Doc_application/myjunk {path suffix sock} {
upvar #0 Httpd$sock data
data(url) is more useful than the suffix parameter.

Use the contents of file $path to compute a page
set contents [somefunc $path]

Determine your content type
set type text/html

Return the page
Httpd_ReturnData $sock $type $data

}

As another example, the HTML+Tcl templates use the .tml suffix that is
mapped to the application/x-tcl-template type. The TclHttpd distribution
also includes support for files with a .snmp extension that implements a tem-
plate-based Web interface to the Scotty SNMP Tcl extension.

HTML + Tcl Templates

The template system uses HTML pages that embed Tcl commands and Tcl vari-
able references. The server replaces these using the subst command and returns
the results. The server comes with a general template system, but using subst is
so easy you could create your own template system. The general template frame-
work has these components:

HTML + Tcl Templates 251
II. A

d
va

nc
e

d
 Tc

l

• Each .html file has a corresponding .tml template file. This feature is
enabled with the Doc_CheckTemplates command in the server’s configura-
tion file. Normally, the server returns the .html file unless the correspond-
ing .tml file has been modified more recently. In this case, the server
processes the template, caches the result in the .html file, and returns the
result.

• A dynamic template (e.g., a form handler) must be processed each time it is
requested. If you put the Doc_Dynamic command into your page, it turns off
the caching of the result in the .html page. The server responds to a request
for a .html page by processing the .tml page. Or you can just reference the
.tml file directly. If you do this, the server always processes the template.

• The server creates a page global Tcl variable that has context about the
page being processed. Table 18–7 lists the elements of the page array.

• The server initializes the env global Tcl variable with similar information,
but in the standard way for CGI scripts. Table 18–8 lists the elements of the
env array that are set by Cgi_SetEnv in cgi.tcl.

• The server supports per-directory ".tml" files that contain Tcl source code.
These files are designed to contain procedure definitions and variable set-
tings that are shared among pages. The name of the file is simply ".tml",
with nothing before the period. This is a standard way to hide files in
UNIX, but it can be confusing to talk about the per-directory ".tml" files
and the file.tml templates that correspond to file.html pages. The
server will source the ".tml" files in all directories leading down to the
directory containing the template file. The server compares the modify time
of these files against the template file and will process the template if these
".tml" files are newer than the cached .html file. So, by modifying the
".tml" file in the root of your URL hierarchy, you invalidate all the cached
.html files.

• The server supports a script library for the procedures called from tem-
plates. The Doc_TemplateLibrary procedure registers this directory. The
server adds the directory to its auto_path, which assumes you have a
tclIndex or pkgIndex.tcl file in the directory so that the procedures are
loaded when needed.

Where to put your Tcl Code

There are three places you can put the code of your application: directly in
your template pages, in the per-directory ".tml" files, or in the library directory.

The advantage of putting procedure definitions in the library is that they
are defined one time but executed many times. This works well with the Tcl byte-
code compiler. The disadvantage is that if you modify procedures in these files,
you have to explicitly source them into the server for these changes to take effect.
The /debug/source URL described on page 264 is handy for this chore.

The advantage of putting code into the per-directory ".tml" files is that
changes are picked up immediately with no effort on your part. The server auto-

252 TclHttpd Web Server Chap. 18

matically checks if these files are modified and sources them each time it pro-
cesses your templates. However, that code is run only one time, so the byte-code
compiler just adds overhead.

I try to put as little code as possible in my file.tml template files. It is
awkward to put lots of code there, and you cannot share procedures and variable
definitions easily with other pages. Instead, my goal is to have just procedure
calls in the template files, and put the procedure definitions elsewhere. I also
avoid putting if and foreach commands directly into the page.

Templates for Site Structure

The next few examples show a simple template system used to maintain a
common look at feel across the pages of a site. Example 18–5 shows a simple one-
level site definition that is kept in the root .tml file. This structure lists the title
and URL of each page in the site:

Example 18–5 A one-level site structure.

set site(pages) {
Home /index.html
"Ordering Computers"/ordering.html
"New Machine Setup" /setup.html
"Adding a New User" /newuser.html
"Network Addresses" /network.html

}

Each page includes two commands, SitePage and SiteFooter, that gener-
ate HTML for the navigational part of the page. Between these commands is reg-
ular HTML for the page content. Example 18–6 shows a sample template file:

Example 18–6 A HTML + Tcl template file.

[SitePage "New Machine Setup"]
This page describes the steps to take when setting up a new
computer in our environment. See
Ordering Computers
for instructions on ordering machines.

Unpack and setup the machine.
Use the Network control panel to set the IP address
and hostname.
<!-- Several steps omitted -->
Reboot for the last time.

[SiteFooter]

The SitePage procedure takes the page title as an argument. It generates
HTML to implement a standard navigational structure. Example 18–7 has a
simple implementation of SitePage:

HTML + Tcl Templates 253
II. A

d
va

nc
e

d
 Tc

l

Example 18–7 SitePage template procedure.

proc SitePage {title} {
global site
set html "<html><head><title>$title</title></head>\n"
append html "<body bgcolor=white text=black>\n"
append html "<h1>$title</h1>\n"
set sep ""
foreach {label url} $site(pages) {

append html $sep
if {[string compare $label $title] == 0} {

append html "$label"
} else {

append html "$label"
}
set sep " | "

}
return $html

}

The foreach loop that computes the simple menu of links turns out to be
useful in many places. Example 18–8 splits out the loop and uses it in the Site-
Page and SiteFooter procedures. This version of the templates creates a left col-
umn for the navigation and a right column for the page content:

Example 18–8 SiteMenu and SiteFooter template procedures.

proc SitePage {title} {
global site
set html "<html><head><title>$title</title></head>\n\

<body bgcolor=$site(bg) text=$site(fg)>\n\
<!-- Two Column Layout -->\n\
<table cellpadding=0>\n\
<tr><td>\n\
<!-- Left Column -->\n\
\n\
\n\
[SiteMenu
 $site(pages)]\n\
\n\
</td><td>\n\
<!-- Right Column -->\n\
<h1>$title</h1>\n\
<p>\n"

return $html
}
proc SiteFooter {} {

global site
set html "<p><hr>\n\

[SiteMenu | $site(pages)]\n\
</td></tr></table>\n"

return $html
}
proc SiteMenu {sep list} {

254 TclHttpd Web Server Chap. 18

global page
set s ""
set html ""
foreach {label url} $list {

if {[string compare $page(url) $url] == 0} {
append html slabel

} else {
append html "slabel"

}
set s $sep

}
return $html

}

Of course, a real site will have more elaborate graphics and probably a two-
level, three-level, or more complex tree structure that describes its structure.You
can also define a family of templates so that each page doesn’t have to fit the
same mold. Once you start using templates, it is fairly easy to change both the
template implementation and to move pages around among different sections of
your Web site.

There are many other applications for "macros" that make repetitive HTML
coding chores easy. Take, for example, the link to /ordering.html in Example
18–6. The proper label for this is already defined in $site(pages), so we could
introduce a SiteLink procedure that uses this:

Example 18–9 The SiteLink procedure.

proc SiteLink {label} {
global site
array set map $site(pages)
if {[info exist map($label)]} {

return "$label"
} else {

return $label
}

}

If your pages embed calls to SiteLink, then you can change the URL associ-
ated with the page name by changing the value of site(pages). If this is stored
in the top-level ".tml" file, the templates will automatically track the changes.

Form Handlers

HTML forms and form-handling programs go together. The form is presented to
the user on the client machine. The form handler runs on the server after the
user fills out the form and presses the submit button. The form presents input
widgets like radiobuttons, checkbuttons, selection lists, and text entry fields.
Each of these widgets is assigned a name, and each widget gets a value based on

Form Handlers 255
II. A

d
va

nc
e

d
 Tc

l

the user’s input. The form handler is a program that looks at the names and val-
ues from the form and computes the next page for the user to read.

CGI is a standard way to hook external programs to Web servers for the
purpose of processing form data. CGI has a special encoding for values so that
they can be transported safely. The encoded data is either read from standard
input or taken from the command line. The CGI program decodes the data, pro-
cesses it, and writes a new HTML page on its standard output. Chapter 3
describes writing CGI scripts in Tcl.

TclHttpd provides alternatives to CGI that are more efficient because they
are built right into the server. This eliminates the overhead that comes from run-
ning an external program to compute the page. Another advantage is that the
Web server can maintain state between client requests in Tcl variables. If you
use CGI, you must use some sort of database or file storage to maintain informa-
tion between requests.

Application Direct Handlers

The server comes with several built-in form handlers that you can use with
little effort. The /mail/forminfo URL will package up the query data and mail it
to you. You use form fields to set various mail headers, and the rest of the data is
packaged up into a Tcl-readable mail message. Example 18–10 shows a form
that uses this handler. Other built-in handlers are described starting at page
263.

Example 18–10 Mail form results with /mail/forminfo.

<form action=/mail/forminfo method=post>
<input type=hidden name=sendto value=mailreader@my.com>
<input type=hidden name=subject value="Name and Address">
<table>

<tr><td>Name</td><td><input name=name></td></tr>
<tr><td>Address</td><td><input name=addr1></td></tr>
<tr><td> </td><td><input name=addr2></td></tr>
<tr><td>City</td><td><input name=city></td></tr>
<tr><td>State</td><td><input name=state></td></tr>
<tr><td>Zip/Postal</td><td><input name=zip></td></tr>
<tr><td>Country</td><td><input name=country></td></tr>

</table>
</form>

The mail message sent by /mail/forminfo is shown in Example 18–11.

Example 18–11 Mail message sent by /mail/forminfo.

To: mailreader@my.com
Subject: Name and Address

data {
name {Joe Visitor}

256 TclHttpd Web Server Chap. 18

addr1 {Acme Company}
addr2 {100 Main Street}
city {Mountain View}
state California
zip 12345
country USA

}

It is easy to write a script that strips the headers, defines a data procedure,
and uses eval to process the message body. Whenever you send data via e-mail, if
you format it with Tcl list structure, you can process it quite easily. The basic
structure of such a mail reader procedure is shown in Example 18–12:

Example 18–12 Processing mail sent by /mail/forminfo.

Assume the mail message is on standard input

set X [read stdin]

Strip off the mail headers, when end with a blank line
if {[regsub {.*?\n\ndata} $X {data} X] != 1} {

error "Malformed mail message"
}
proc data {fields} {

foreach {name value} $fields {
Do something

}
}
Process the message. For added security, you may want
do this part in a safe interpreter.
eval $X

Template Form Handlers

The drawback of using application-direct URL form handlers is that you
must modify their Tcl implementation to change the resulting page. Another
approach is to use templates for the result page that embed a command that
handles the form data. The Mail_FormInfo procedure, for example, mails form
data. It takes no arguments. Instead, it looks in the query data for sendto and
subject values, and if they are present, it sends the rest of the data in an e-mail.
It returns an HTML comment that flags that mail was sent.

When you use templates to process form data, you need to turn off result
caching because the server must process the template each time the form is sub-
mitted. To turn off caching, embed the Doc_Dynamic command into your form
handler pages, or set the page(dynamic) variable to 1. Alternatively, you can
simply post directly to the file.tml page instead of to the file.html page.

Form Handlers 257
II. A

d
va

nc
e

d
 Tc

l

Self Posting Forms

This section illustrates a self-posting form. This is a form on a page that
posts the form data to back to the same page. The page embeds a Tcl command to
check its own form data. Once the data is correct, the page triggers a redirect to
the next page in the flow. This is a powerful technique that I use to create com-
plex page flows using templates. Of course, you need to save the form data at
each step. You can put the data in Tcl variables, use the data to control your
application, or store it into a database. TclHttpd comes with a Session module,
which is one way to manage this information. For details you should scan the
session.tcl file in the distribution.

Example 18–13 shows the Form_Simple procedure that generates a simple
self-checking form. Its arguments are a unique ID for the form, a description of
the form fields, and the URL of the next page in the flow. The field description is
a list with three elements for each field: a required flag, a form element name,
and a label to display with the form element. You can see this structure in the
template shown in Example 18–14 on page 258. The procedure does two things
at once. It computes the HTML form, and it also checks if the required fields are
present. It uses some procedures from the form module to generate form ele-
ments that retain values from the previous page. If all the required fields are
present, it discards the HTML, saves the data, and triggers a redirect by calling
Doc_Redirect.

Example 18–13 A self-checking form procedure.

proc Form_Simple {id fields nextpage} {
global page
if {![form::empty formid]} {

Incoming form values, check them
set check 1

} else {
First time through the page
set check 0

}
set html "<!-- Self-posting. Next page is $nextpage -->\n"
append html "<form action=\"$page(url)\" method=post>\n"
append html "<input type=hidden name=formid value=$id>\n"
append html "<table border=1>\n"
foreach {required key label} $fields {

append html "<tr><td>"
if {$check && $required && [form::empty $key]} {

lappend missing $label
append html "*"

}
append html "</td><td>$label</td>\n"
append html "<td><input [form::value $key]></td>\n"
append html "</tr>\n"

}
append html "</table>\n"
if {$check} {

if {![info exist missing]} {

258 TclHttpd Web Server Chap. 18

No missing fields, so advance to the next page.
In practice, you must save the existing fields
at this point before redirecting to the next page.

Doc_Redirect $nextpage
} else {

set msg "Please fill in "
append msg [join $missing ", "]
append msg ""
set html <p>$msg\n$html

}
}
append html "<input type=submit>\n</form>\n"
return $html

}

Example 18–14 shows a page template that calls Form_Simple with the
required field description.

Example 18–14 A page with a self-checking form.

<html><head>
<title>Name and Address Form</title>

</head>
<body bgcolor=white text=black>

<h1>Name and Address</h1>
Please enter your name and address.
[myform::simple nameaddr {

1 name "Name"
1 addr1 "Address"
0 addr2" "Address"
1 city "City"
0 state "State"
1 zip "Zip Code"
0 country "Country"

} nameok.html]
</body></html>

The form package

TclHttpd comes with a form package (form.tcl) that is designed to support
self-posting forms. The Form_Simple procedure uses form::empty to test if par-
ticular form values are present in the query data. For example, it tests to see
whether the formid field is present so that the procedure knows whether or not
to check for the rest of the fields. The form::value procedure is useful for con-
structing form elements on self-posting form pages. It returns:

name="name" value="value"

The value is the value of form element name based on incoming query data,
or just the empty string if the query value for name is undefined. As a result, the

Programming Reference 259
II. A

d
va

nc
e

d
 Tc

l

form can post to itself and retain values from the previous version of the page. It
is used like this:

<input type=text [form::value name]>

The form::checkvalue and form::radiovalue procedures are similar to
form::value but designed for checkbuttons and radio buttons. The
form::select procedure formats a selection list and highlights the selected val-
ues. The form::data procedure simply returns the value of a given form element.
These are summarized in Table 18–6 on page 261.

Programming Reference

This section summarizes many of the more useful functions defined by the
server. These tables are not complete, however. You are encouraged to read
through the code to learn more about the features offered by the server.

Table 18–1 summarizes the Httpd functions used when returning pages to
the client.

Table 18–2 summarizes a few useful procedures provided by the Url module
(url.tcl). The Url_DecodeQuery is used to decode query data into a Tcl-friendly
list. The Url_Encode procedure is useful when encoding values directly into
URLs. URL encoding is discussed in more detail on page 247.

Table 18–1 Httpd support procedures.

Httpd_Error sock code Returns a simple error page to the client. The code is a
numeric error code like 404 or 500.

Httpd_ReturnData sock
type data

Returns a page with Content-Type type and content
data.

Httpd_ReturnFile sock
type file

Returns a file with Content-Type type.

Httpd_Redirect newurl
sock

Generates a 302 error return with a Location of newurl.

Httpd_SelfUrl url Expands url to include the proper http://
server:port prefix to reference the current server.

Table 18–2 Url support procedures.

Url_DecodeQuery query Decodes a www-url-encoded query string and return
a name, value list.

Url_Encode value Returns value encoded according to the www-url-
encoded standard.

Url_PrefxInstall prefix
callback

Registers callback as the handler for all URLs that
begin with prefix. The callback is invoked with two
additional arguments: sock, the handle to the client, and
suffix, the part of the URL after prefix.

260 TclHttpd Web Server Chap. 18

The Doc module provides procedures for configuration and generating
responses, which are summarized in Tables 18–3 and 18–4, respectively.

The Doc module also provides procedures for cookies and redirects that are
useful in document templates. These are described in Table 18–5.

Table 18–3 Doc procedures for configuration.

Doc_Root ?directory? Sets or queries the directory that corresponds to the
root of the URL hierarchy.

Doc_AddRoot virtual
directory

Maps the file system directory into the URL subtree
starting at virtual.

Doc_ErrorPage file Specifies a file relative to the document root used as a
simple template for error messages. This is processed by
DocSubstSystem file in doc.tcl.

Doc_CheckTemplates how If how is 1, then .html files are compared against corre-
sponding .tml files and regenerated if necessary.

Doc_IndexFile pattern Registers a file name pattern that will be searched for
the default index file in directories.

Doc_NotFoundPage file Specifies a file relative to the document root used as a
simple template for page not found messages. This is pro-
cessed by DocSubstSystem file in doc.tcl.

Doc_PublicHtml dirname Defines the directory used for each users home directory.
When a URL like ~user is specified, the dirname
under their home directory is accessed.

Doc_TemplateLibrary
directory

Adds directory to the auto_path so the source
files in it are available to the server.

Doc_TemplateInterp interp Specifies an alternate interpreter in which to process doc-
ument templates (i.e., .tml files.)

Doc_Webmaster ?email? Sets or queries the email for the Webmaster.

Table 18–4 Doc procedures for generating responses.

Doc_Error sock errorInfo Generates a 500 response on sock based on the template
registered with Doc_ErrorPage. errorInfo is a
copy of the Tcl error trace after the error.

Doc_NotFound sock Generates a 404 response on sock by using the template
registered with Doc_NotFoundPage.

Doc_Subst sock file
?interp?

Performs a subst on the file and return the resulting
page on sock. interp specifies an alternate Tcl inter-
preter.

Programming Reference 261
II. A

d
va

nc
e

d
 Tc

l

Table 18–6 describes the form module that is useful for self-posting forms,
which are discussed on page 257.

Table 18–7 shows the initial elements of the page array that is defined dur-
ing the processing of a template.

Table 18–5 Doc procedures that support template processing.

Doc_Coookie name Returns the cookie name passed to the server for this
request, or the empty string if it is not present.

Doc_Dynamic Turns off caching of the HTML result. Meant to be called
from inside a page template.

Doc_IsLinkToSelf url Returns 1 if the url is a link to the current page.

Doc_Redirect newurl Raises a special error that aborts template processing and
triggers a page redirect to newurl.

Doc_SetCookie -name name
-value value -path path
-domain domain -expires
date

Sets cookie name with the given value that will be
returned to the client as part of the response. The path
and domain restrict the scope of the cooke. The date
sets an expiration date.

Table 18–6 The form package.

form::data name Returns the value of the form value name, or the empty string.

form::empty name Returns 1 if the form value name is missing or zero length.

form::value name Returns name="name" value="value", where value
comes from the query data, if any.

form::checkvalue
name value

Returns name="name" value="value" CHECKED, if
value is present in the query data for name. Otherwise, it just
returns name="name" value="value".

form::radiovalue
name value

Returns name="name" value="value" CHECKED, if the
query data for name is equal to value. Otherwise, it just
returns name="name" value="value".

form::select name
valuelist args

Generates a select form element with name name. The val-
uelist determines the option tags and values, and args are
optional parameters to the main select tag.

Table 18–7 Elements of the page array.

query The decoded query data in a name, value list.

dynamic If 1, the results of processing the template are not cached in the corresponding
.html file.

filename The file system pathname of the requested file (e.g., /usr/local/
htdocs/tclhttpd/index.html).

262 TclHttpd Web Server Chap. 18

Table 18–8 shows the elements of the env array. These are defined during
CGI requests, application-direct URL handlers, and page template processing:

template The file system pathname of the template file (e.g., /usr/local/
htdocs/tclhttpd/index.tml).

url The part of the url after the server name (e.g., /tclhttpd/index.html).

root A relative path from the template file back to the root of the URL tree. This is
useful for creating relative links between pages in different directories.

Table 18–8 Elements of the env array.

AUTH_TYPE Authentication protocol (e.g., Basic).

CONTENT_LENGTH The size of the query data.

CONTENT_TYPE The type of the query data.

DOCUMENT_ROOT File system pathname of the document root.

GATEWAY_INTERFACE Protocol version, which is CGI/1.1.

HTTP_ACCEPT The Accept headers from the request.

HTTP_AUTHORIZATION The Authorization challenge from the request.

HTTP_COOKIE The cookie from the request.

HTTP_FROM The From: header of the request.

HTTP_REFERER The Referer indicates the previous page.

HTTP_USER_AGENT An ID string for the Web browser.

PATH_INFO Extra path information after the template file.

PATH_TRANSLATED The extra path information appended to the document root.

QUERY_STRING The form query data.

REMOTE_ADDR The client’s IP address.

REMOTE_USER The remote user name specified by Basic authentication.

REQUEST_METHOD GET, POST, or HEAD.

REQUEST_URI The complete URL that was requested.

SCRIPT_NAME The name of the current file relative to the document root.

SERVER_NAME The server name, e.g., www.beedub.com.

SERVER_PORT The server’s port, e.g., 80.

SERVER_PROTOCOL The protocol (e.g., http or https).

SERVER_SOFTWARE A software version string for the server.

Table 18–7 Elements of the page array. (Continued)

Standard Application-Direct URLs 263
II. A

d
va

nc
e

d
 Tc

l

Standard Application-Direct URLs

The server has several modules that provide application-direct URLs. These
application-direct URLs lets you control the server or examine its state from any
Web browser. You can look at the implementation of these modules as examples
for your own application.

Status

The /status URL is implemented in the status.tcl file. The status mod-
ule implements the display of hit counts, document hits, and document misses
(i.e., documents not found). The Status_Url command enables the application-
direct URLs and assigns the top-level URL for the status module. The default
configuration file contains this command:

Status_Url /status

Assuming this configuration, the following URLs are implemented:

Debugging

The /debug URL is implemented in the debug.tcl file. The debug module
has several useful URLs that let you examine variable values and other internal
state. It is turned on with this command in the default configuration file:

Debug_Url /debug

Table 18–10 lists the /debug URLs. These URLs often require parameters
that you can specify directly in the URL. For example, the /debug/echo URL
echoes its query parameters:

http://yourserver:port/debug/echo?name=value&name2=val2

Table 18–9 Status application-direct URLs.

/status Main status page showing summary counters and hit count histograms.

/status/doc Shows hit counts for each page. This page lets you sort by name or hit
count, and limit files by patterns.

/status/hello A trivial URL that returns "hello".

/status/notfound Shows miss counts for URLs that users tried to fetch.

/status/size Displays an estimated size of Tcl code and Tcl data used by the TclHt-
tpd program.

/status/text This is a version of the main status page that doesn’t use the graphical
histograms of hit counts.

264 TclHttpd Web Server Chap. 18

The sample URL tree that is included in the distribution includes the file
htdocs/hacks.html. This file has several small forms that use the /debug URLs
to examine variables and source files. Example18–15 shows the implementation
of /debug/source. You can see that it limits the files to the main script library
and to the script library associated with document templates. It may seem dan-
gerous to have these facilities, but I reason that because my source directories
are under my control, it cannot hurt to reload any source files. In general, the
library scripts contain only procedure definitions and no global code that might
reset state inappropriately. In practice, the ability to tune (i.e., fix bugs) in the
running server has proven useful to me on many occasions. It lets you evolve
your application without restarting it!

Example 18–15 The /debug/source application-direct URL implementation.

proc Debug/source {source} {
global Httpd Doc
set source [file tail $source]
set dirlist $Httpd(library)
if {[info exists Doc(templateLibrary)]} {

lappend dirlist $Doc(templateLibrary)
}
foreach dir $dirlist {

set file [file join $dir $source]
if [file exists $file] {

break

Table 18–10 Debug application-direct URLs.

/debug/after Lists the outstanding after events.

/debug/dbg Connects to TclPro Debugger. This takes a host and port
parameter. You need to install prodebug.tcl from TclPro
into the server’s script library directory.

/debug/echo Echoes its query parameters. Accepts a title parameter.

/debug/errorInfo Displays the errorInfo variable along with the server’s ver-
sion number and Webmaster e-mail. Accepts title and
errorInfo arguments.

/debug/parray Displays a global array variable. The name of the variable is
specified with the aname parameter.

/debug/pvalue A more general value display function. The name of the variable
is specified with the aname parameter. This can be a variable
name, an array name, or a pattern that matches several variable
names.

/debug/raise Raises an error (to test error handling). Any parameters become
the error string.

/debug/source Sources a file from either the server’s main library directory or
the Doc_TemplateLibrary directory. The file is specified
with the source parameter.

Standard Application-Direct URLs 265
II. A

d
va

nc
e

d
 Tc

l

}
}
set error [catch {uplevel #0 [list source $file]} result]
set html "<title>Source $source</title>\n"
if {$error} {

global errorInfo
append html "<H1>Error in $source</H1>\n"
append html "<pre>$result<p>$errorInfo</pre>"

} else {
append html "<H1>Reloaded $source</H1>\n"
append html "<pre>$result</pre>"

}
return $html

}

Administration

The /admin URL is implemented in the admin.tcl file. The admin module
lets you load URL redirect tables, and it provides URLs that reset some of the
counters maintained by the server. It is turned on with this command in the
default configuration file:

Admin_Url /admin

Currently, there is only one useful admin URL. The /admin/redirect/
reload URL sources the file named redirect in the document root. This file is
expected to contain a number of Url_Redirect commands that establish URL
redirects. These are useful if you change the names of pages and want the old
names to still work.

The administration module has a limited set of application-direct URLs
because the simple application-direct mechanism doesn’t provide the right hooks
to check authentication credentials. The HTML+Tcl templates work better with
the authentication schemes.

Sending Email

The /mail URL is implemented in the mail.tcl file. The mail module
implements various form handlers that e-mail form data. Currently, it is UNIX-
specific because it uses /usr/lib/sendmail to send the mail. It is turned on with
this command in the default configuration file:

Mail_Url /mail

The application-direct URLs shown in Table 18–11 are useful form han-
dlers. You can specify them as the ACTION parameter in your <FORM> tags. The
mail module provides two Tcl procedures that are generally useful. The MailIn-
ner procedure is the one that sends mail. It is called like this:

MailInner sendto subject from type body

The sendto and from arguments are e-mail addresses. The type is the
Mime type (e.g., text/plain or text/html) and appears in a Content-Type
header. The body contains the mail message without any headers.

266 TclHttpd Web Server Chap. 18

The Mail_FormInfo procedure is designed for use in HTML+Tcl template
files. It takes no arguments but instead looks in current query data for its
parameters. It expects to find the same arguments as the /mail/forminfo direct
URL. Using a template with Mail_FormInfo gives you more control over the
result page than posting directly to /mail/forminfo, and is illustrated in Exam-
ple 18–10 on page 255.

The TclHttpd Distribution

Get the TclHttpd distribution from the CD-ROM, or find it on the Internet at:
ftp://ftp.scriptics.com/pub/tcl/httpd/

http://www.scriptics.com/tclhttpd/

Quick Start

Unpack the tar file or the zip file, and you can run the server from the
httpd.tcl script in the bin directory. On UNIX:

tclsh httpd.tcl -port 80

This command will start the Web server on the standard port (80). By
default it uses port 8015 instead. If you run it with the -help flag, it will tell you
what command line options are available. If you use wish instead of tclsh, then a
simple Tk user interface is displayed that shows how many hits the server is get-
ting.

On Windows you can double-click the httpd.tcl script to start the server. It
will use wish and display the user interface. Again it will start on port 8015. You
will need to create a shortcut that passes the -port argument, or edit the associ-
ated configuration file to change this. Configuring the server is described later.

Once you have the server running, you can connect to it from your Web
browser. Use this URL if you are running on the default (nonstandard) port:

http://hostname:8015/

Table 18–11 Application-direct URLS that e-mail form results.

/mail/bugreport Sends e-mail with the errorInfo from a server error. It takes
an email parameter for the destination address and an error-
Info parameter. Any additional arguments get included into the
message.

/mail/forminfo Sends e-mail containing form results. It requires these parame-
ters: sendto for the destination address, subject for the mail
subject, href and label for a link to display on the results
page. Any additional arguments are formatted with the Tcl list
command for easy processing by programs that read the mail.

/mail/formdata This is an older form of /mail/forminfo that doesn’t format
the data into Tcl lists. It requires only the email and subject
parameters. The rest are formatted into the message body.

Server Configuration 267
II. A

d
va

nc
e

d
 Tc

l

If you are running without a network connection, you may need to specify
127.0.0.1 for the hostname. This is the "localhost" address and will bypass the
network subsystem.

http://127.0.0.1:8015/

Inside the Distribution

The TclHttpd distribution is organized into the following directories:

• bin — This has sample start-up scripts and configuration files. The
httpd.tcl script runs the server. The tclhttpd.rc file is the standard con-
figuration file. The minihttpd.tcl file is the 250-line version. The tor-
ture.tcl file has some scripts that you can use to fetch many URLs at once
from a server.

• lib — This has all the Tcl sources. In general, each file provides a package.
You will see the package require commands partly in bin/httpd.tcl and
partly in bin/tclhttpd.rc. The idea is that only the core packages are
required by httpd.tcl, and different applications can tune what packages
are needed by adjusting the contents of tclhttpd.rc.

• htdocs — This is a sample URL tree that demonstrates the features of the
Web server. There is also some documentation there. One directory to note
is htdocs/libtml, which is the standard place to put site-specific Tcl scripts
used with the Tcl+HTML template facility.

• src — There are a few C source files for a some optional packages. These
have been precompiled for some platforms, and you can find the compiled
libraries back under lib/Binaries in platform-specific subdirectories.

Server Configuration

TclHttpd configures itself with three main steps. The first step is to process the
command line arguments described in Table 18–12. The arguments are copied
into the Config Tcl array. Anything not specified on the command line gets a
default value. The next configuration step is to source the configuration file. The
default configuration file is named tclhttpd.rc in the same directory as the
start-up script (i.e., bin/tclhttpd.rc). This file can override command line argu-
ments by setting the Config array itself. This file also has application-specific
package require commands and other Tcl commands to initialize the applica-
tion. Most of the Tcl commands used during initialization are described in the
rest of this section. The final step is to actually start up the server. This is done
back in the main httpd.tcl script. For example, to start the server for the docu-
ment tree under /usr/local/htdocs and your own e-mail address as Webmaster,
you can execute this command to start the server:

tclsh httpd.tcl -docRoot /usr/local/htdocs -webmaster welch

Alternatively, you can put these settings into a configuration file, and start
the server with that configuration file:

268 TclHttpd Web Server Chap. 18

tclsh httpd.tcl -config mytclhttpd.rc

In this case, the mytclhttpd.rc file could contain these commands to hard-
wire the document root and Webmaster e-mail. In this case, the command line
arguments cannot override these settings:

set Config(docRoot) /usr/local/htdocs

set Config(webmaster) welch

Command Line Arguments

There are several parameters you may need to set for a standard Web
server. These are shown below in Table 18–12. The command line values are
mapped into the Config array by the httpd.tcl start-up script.

Server Name and Port

The name and port parameters define how your server is known to Web
browsers. The URLs that access your server begin with:

http://name:port/

Table 18–12 Basic TclHttpd Parameters.

Parameter Command Option Config Variable

Port number. The default is
8015.

-port number Config(port)

Server name. The default is
[info hostname].

-name name Config(name)

IP address. The default is 0,
for "any address".

-ipaddr address Config(ipaddr)

Directory of the root of the
URL tree. The default is the
htdocs directory.

-docRoot directory Config(docRoot)

User ID of the TclHttpd pro-
cess. The default is 50. (UNIX
only.)

-uid uid Config(uid)

Group ID of the TclHttpd pro-
cess. The default is 100.
(UNIX only.)

-gid gid Config(gid)

Webmaster e-mail. The default
is webmaster.

-webmaster email Config(webmaster)

Configuration file. The default
is tclhttpd.rc.

-config filename Config(file)

Additional directory to add to
the auto_path.

-library directory Config(library)

Server Configuration 269
II. A

d
va

nc
e

d
 Tc

l

If the port number is 80, you can leave out the port specification. The call
that starts the server using these parameters is found in httpd.tcl as:

Httpd_Server $Config(name) $Config(port) $Config(ipaddr)

Specifying the IP address is necessary only if you have several network
interfaces (or several IP addresses assigned to one network interface) and want
the server to listen to requests on a particular network address. Otherwise, by
default, server accepts requests from any network interface.

User and Group ID

The user and group IDs are used on UNIX systems with the setuid and
setgid system calls. This lets you start the server as root, which is necessary to
listen on port 80, and then switch to a less privileged user account. If you use
Tcl+HTML templates that cache the results in HTML files, then you need to pick
an account that can write those files. Otherwise, you may want to pick a very
unprivileged account.

The setuid function is available through the TclX (Extended Tcl) id com-
mand, or through a setuid extension distributed with TclHttpd under the src
directory. If do not have either of these facilities available, then the attempt to
change user ID gracefully fails. See the README file in the src directory for
instructions on compiling and installing the extensions found there.

Webmaster Email

The Webmaster e-mail address is used for automatic error reporting in the
case of server errors. This is defined in the configuration file with the following
command:

Doc_Webmaster $Config(webmaster)

If you call Doc_Webmaster with no arguments, it returns the e-mail address
you previously defined. This is useful when generating pages that contain
mailto: URLs with the Webmaster address.

Document Root

The document root is the directory that contains the static files, templates,
CGI scripts, and so on that make up your Web site. By default the httpd.tcl script
uses the htdocs directory next to the directory containing httpd.tcl. It is worth
noting the trick used to locate this directory:

file join [file dirname [info script]] ../htdocs

The info script command returns the full name of the http.tcl script,
file dirname computes its directory, and file join finds the adjacent directory.
The path ../htdocs works with file join on any platform. The default location
of the configuration file is found in a similar way:

file join [file dirname [info script]] tclhttpd.rc

The configuration file initializes the document root with this call:

270 TclHttpd Web Server Chap. 18

Doc_Root $Config(docRoot)

If you need to find out what the document root is, you can call Doc_Root
with no arguments and it returns the directory of the document root. If you want
to add additional document trees into your Web site, you can do that with a call
like this in your configuration file:

Doc_AddRoot directory urlprefix

Other Document Settings

The Doc_IndexFile command sets a pattern used to find the index file in a
directory. The command used in the default configuration file is:

Doc_IndexFile index.{htm,html,tml,subst}

If you invent other file types with different file suffixes, you can alter this
pattern to include them. This pattern will be used by the Tcl glob command.

The Doc_PublicHtml command is used to define "home directories" on your
HTML site. If the URL begins with ~username, then the Web server will look
under the home directory of username for a particular directory. The command in
the default configuration file is:

Doc_PublicHtml public_html

For example, if my home directory is /home/welch, then the URL ~welch
maps to the directory /home/welch/public_html. If there is no Doc_PublicHtml
command, then this mapping does not occur.

You can register two special pages that are used when the server encoun-
ters an error and when a user specifies an unknown URL. The default configura-
tion file has these commands:

Doc_ErrorPage error.html

Doc_NotFoundPage notfound.html

These files are treated like templates in that they are passed through subst
in order to include the error information or the URL of the missing page. These
are pretty crude templates compared to the templates described earlier. You can
count only on the Doc and Httpd arrays being defined. Look at the
Doc_SubstSystemFile in doc.tcl for the truth about how these files are pro-
cessed.

Document Templates

The template mechanism has two main configuration options. The first
specifies an additional library directory that contains your application-specific
scripts. This lets you keep your application-specific files separate from the TclHt-
tpd implementation. The command in the default configuration file specifies the
libtml directory of the document tree:

Doc_TemplateLibrary [file join $Config(docRoot) libtml]

You can also specify an alternate Tcl interpreter in which to process the
templates. The default is to use the main interpreter, which is named {} accord-

Server Configuration 271
II. A

d
va

nc
e

d
 Tc

l

ing to the conventions described in Chapter 19.
Doc_TemplateInterp {}

Log Files

The server keeps standard format log files. The Log_SetFile command
defines the base name of the log file. The default configuration file uses this com-
mand:

Log_SetFile /tmp/log$Config(port)_

By default the server rotates the log file each night at midnight. Each day’s
log file is suffixed with the current date (e.g., /tmp/logport_990218.) The error
log, however, is not rotated, and all errors are accumulated in /tmp/

logport_error.

The log records are normally flushed every few minutes to eliminate an
extra I/O operation on each HTTP transaction. You can set this period with
Log_FlushMinutes. If minutes is 0, the log is flushed on every HTTP transaction.
The default configuration file contains:

Log_FlushMinutes 1

CGI Directories

You can register a directory that contains CGI programs with the
Cgi_Directory command. This command has the interesting effect of forcing all
files in the directory to be executed as CGI scripts, so you cannot put normal
HTML files there. The default configuration file contains:

Cgi_Directory /cgi-bin

This means that the cgi-bin directory under the document root is a CGI
directory. If you supply another argument to Cgi_Directory, then this is a file
system directory that gets mapped into the URL defined by the first argument.
You can also put CGI scripts into other directories and use the .cgi suffix to indi-
cate that they should be executed as CGI scripts.

The cgi.tcl file has some additional parameters that you can tune only by
setting some elements of the Cgi Tcl array. See the comments in the beginning of
that file for details.

Blank page 272

273

C H A P T E R

II. A
d

va
nc

e
d

 Tc
l

 19

Multiple Interpreters and
Safe-Tcl 19

This chapter describes how to create more than one Tcl interpreter in your
application. A child interpreter can be made safe so that it can execute
untrusted scripts without compromising your application or your
computer. Command aliases, hidden commands, and shared I/O
channels enable communication among interpreters. Tcl command
described is: interp.

Safe-Tcl was invented by Nathaniel
Borenstein and Marshall Rose so that they could send Tcl scripts via e-mail and
have the recipient safely execute the script without worry of viruses or other
attacks. Safe-Tcl works by removing dangerous commands like exec and open
that would let an untrusted script damage the host computer. You can think of
this restricted interpreter as a "padded cell" in which it is safe to execute
untrusted scripts. To continue the analogy, if the untrusted code wants to do any-
thing potentially unsafe, it must ask permission. This works by adding addi-
tional commands, or aliases, that are implemented by a different Tcl interpreter.
For example, a safeopen command could be implemented by limiting file space
to a temporary directory that is deleted when the untrusted code terminates.

The key concept of Safe-Tcl is that there are two Tcl interpreters in the
application, a trusted one and an untrusted (or "safe") one. The trusted inter-
preter can do anything, and it is used for the main application (e.g., the Web
browser or e-mail user interface). When the main application receives a message
containing an untrusted script, it evaluates that script in the context of the
untrusted interpreter. The restricted nature of the untrusted interpreter means
that the application is safe from attack. This model is much like user mode and
kernel mode in a multiuser operating system like UNIX or Windows/NT. In these
systems, applications run in user mode and trap into the kernel to access
resources like files and the network. The kernel implements access controls so
that users cannot read and write each other’s files, or hijack network services. In
Safe-Tcl the application implements access controls for untrusted scripts.

274 Multiple Interpreters and Safe-Tcl Chap. 19

The dual interpreter model of Safe-Tcl has been generalized in Tcl 7.5 and
made accessible to Tcl scripts. A Tcl script can create other interpreters, destroy
them, create command aliases among them, share I/O channels among them,
and evaluate scripts in them.

The interp Command

The interp command is used to create and manipulate interpreters. The inter-
preter being created is called a slave, and the interpreter that creates it is called
the master. The master has complete control over the slave. The interp com-
mand is summarized in Table 19–1.

Table 19–1 The interp command.

interp aliases slave Lists aliases that are defined in slave.

interp alias slave cmd1 Returns target command and arguments for the
alias cmd1 in slave.

interp alias slave cmd1 master
cmd2 arg ...

Defines cmd1 in slave that is an alias to cmd2 in
master with additional args.

interp create ?-safe? slave Creates an interpreter named slave.

interp delete slave Destroys interpreter slave.

interp eval slave cmd args ... Evaluates cmd and args in slave.

interp exists slave Returns 1 if slave is an interpreter, else 0.

interp expose slave cmd Exposes hidden command cmd in slave.

interp hide slave cmd Hides cmd from slave.

interp hidden slave Returns the commands hidden from slave.

interp invokehidden slave cmd
arg ...

Invokes hidden command cmd and args in
slave.

interp issafe slave Returns 1 if slave was created with -safe flag.

interp marktrusted slave Clears the issafe property of slave.

interp share master file slave Shares the I/O descriptor named file in master
with slave.

interp slaves master Returns the list of slave interpreters of master.

interp target slave cmd Returns the name of the interpreter that is the target
of alias cmd in slave.

interp transfer master file
slave

Transfers the I/O descriptor named file from
master to slave.

Creating Interpreters 275
II. A

d
va

nc
e

d
 Tc

l

Creating Interpreters

Here is a simple example that creates an interpreter, evaluates a couple of com-
mands in it, and then deletes the interpreter:

Example 19–1 Creating and deleting an interpreter.

interp create foo
=> foo
interp eval foo {set a 5}
=> 5
set sum [interp eval foo {expr $a + $a}]
=> 10
interp delete foo

In Example 19–1 the interpreter is named foo. Two commands are evalu-
ated in the foo interpreter:

set a 5

expr $a + $a

Note that curly braces are used to protect the commands from any interpre-
tation by the main interpreter. The variable a is defined in the foo interpreter
and does not conflict with variables in the main interpreter. The set of variables
and procedures in each interpreter is completely independent.

The Interpreter Hierarchy

A slave interpreter can itself create interpreters, resulting in a hierarchy.
The next examples illustrates this, and it shows how the grandparent of an
interpreter can reference the grandchild by name. The example uses interp
slaves to query the existence of child interpreters.

Example 19–2 Creating a hierarchy of interpreters.

interp create foo
=> foo
interp eval foo {interp create bar}
=> bar
interp create {foo bar2}
=> foo bar2
interp slaves
=> foo
interp slaves foo
=> bar bar2
interp delete bar
=> interpreter named "bar" not found
interp delete {foo bar}

The example creates foo, and then it creates two children of foo. The first
one is created by foo with this command:

276 Multiple Interpreters and Safe-Tcl Chap. 19

interp eval foo {interp create bar}

The second child is created by the main interpreter. In this case, the grand-
child must be named by a two-element list to indicate that it is a child of a child.
The same naming convention is used when the grandchild is deleted:

interp create {foo bar2}

interp delete {foo bar2}

The interp slaves operation returns the names of child (i.e., slave) inter-
preters. The names are relative to their parent, so the slaves of foo are reported
simply as bar and bar2. The name for the current interpreter is the empty list, or
{}. This is useful in command aliases and file sharing described later. For secu-
rity reasons, it is not possible to name the master interpreter from within the
slave.

The Interpreter Name as a Command

After interpreter slave is created, a new command is available in the main
interpreter, also called slave, that operates on the child interpreter. The follow-
ing two forms are equivalent most operations:

slave operation args ...

interp operation slave args ...

For example, the following are equivalent commands:
foo eval {set a 5}

interp eval foo {set a 5}

And so are these:
foo issafe

interp issafe foo

However, the operations delete, exists, share, slaves, target, and trans-
fer cannot be used with the per interpreter command. In particular, there is no
foo delete operation; you must use interp delete foo.

If you have a deep hierarchy of interpreters, the command corresponding to
the slave is defined only in the parent. For example, if a master creates foo, and
foo creates bar, then the master must operate on bar with the interp command.
There is no "foo bar" command defined in the master.

Use list with interp eval

The interp eval command treats its arguments like eval. If there are extra
arguments, they are all concatenated together first. This can lose important
structure, as described in Chapter 10. To be safe, use list to construct your com-
mands. For example, to safely define a variable in the slave, you should do this:

interp eval slave [list set var $value]

Safe Interpreters 277
II. A

d
va

nc
e

d
 Tc

l

Safe Interpreters

A child can be created either safe (i.e., untrusted) or fully functional. In the
examples so far, the children have been trusted and fully functional; they have
all the basic Tcl commands available to them. An interpreter is made safe by
eliminating certain commands. Table 19–2 lists the commands removed from
safe interpreters. As described later, these commands can be used by the master
on behalf of the safe interpreter. To create a safe interpreter, use the -safe flag:

interp create -safe untrusted

A safe interpreter does not have commands to manipulate the file system
and other programs (e.g., cd, open, and exec). This ensures that untrusted
scripts cannot harm the host computer. The socket command is removed so that
untrusted scripts cannot access the network. The exit, source, and load com-
mands are removed so that an untrusted script cannot harm the hosting applica-
tion. Note that commands like puts and gets are not removed. A safe interpreter
can still do I/O, but it cannot create an I/O channel. We will show how to pass an
I/O channel to a child interpreter on page 281.

The initial state of a safe interpreter is very safe, but it is too limited. The
only thing a safe interpreter can do is compute a string and return that value to
the parent. By creating command aliases, a master can give a safe interpreter
controlled access to resources. A security policy implements a set of command
aliases that add controlled capabilities to a safe interpreter. We will show, for
example, how to provide limited network and file system access to untrusted
slaves. Tcl provides a framework to manage several security policies, which is
described in Chapter 20.

Table 19–2 Commands hidden from safe interpreters.

cd Changes directory.

exec Executes another program.

exit Terminates the process.

fconfigure Sets modes of an I/O stream.

file Queries file attributes.

glob Matches on file name patterns.

load Dynamically loads object code.

open Opens files and process pipelines.

pwd Determines the current directory.

socket Opens network sockets.

source Loads scripts.

278 Multiple Interpreters and Safe-Tcl Chap. 19

Command Aliases
A command alias is a command in one interpreter that is implemented by a com-
mand in another interpreter. The master interpreter installs command aliases in
its slaves. The command to create an alias has the following general form:

interp alias slave cmd1 target cmd2 ?arg arg ...?

This creates cmd1 in slave that is an alias for cmd2 in target. When cmd1 is
invoked in slave, cmd2 is invoked in target. The alias mechanism is transparent
to the slave. Whatever cmd2 returns, the slave sees as the return value of cmd1. If
cmd2 raises an error, the error is propagated to the slave.

Name the current interpreter with {}.
If target is the current interpreter, name it with {}. The empty list is the

way to name yourself as the interpreter. This is the most common case, although
target can be a different slave. The slave and target can even be the same
interpreter.

The arguments to cmd1 are passed to cmd2, after any additional arguments
to cmd2 that were specified when the alias was created. These hidden arguments
provide a safe way to pass extra arguments to an alias. For example, it is quite
common to pass the name of the slave to the alias. In Example 19–3, exit in the
interpreter foo is an alias that is implemented in the current interpreter (i.e.,
{}). When the slave executes exit, the master executes:

interp delete foo

Example 19–3 A command alias for exit.

interp create foo
interp alias foo exit {} interp delete foo
interp eval foo exit
Child foo is gone.

Alias Introspection

You can query what aliases are defined for a child interpreter. The interp
aliases command lists the aliases; the interp alias command can also return
the value of an alias, and the interp target command tells you what interpreter
implements an alias. These are illustrated in the following examples:

Example 19–4 Querying aliases.

proc Interp_ListAliases {name out} {
puts $out "Aliases for $name"
foreach alias [interp aliases $name] {

puts $out [format "%-20s => (%s) %s" $alias \
[interp target $name $alias] \
[interp alias $name $alias]]

}
}

Hidden Commands 279
II. A

d
va

nc
e

d
 Tc

l

Example 19–4 generates output in a human readable format. Example 19–
5 generates the aliases as Tcl commands that can be used to re-create them later:

Example 19–5 Dumping aliases as Tcl commands.

proc Interp_DumpAliases {name out} {
puts $out "# Aliases for $name"
foreach alias [interp aliases $name] {

puts $out [format "interp alias %s %s %s %s" \
$name $alias [list [interp target $name $alias]] \
[interp alias $name $alias]]

}
}

Hidden Commands

The commands listed in Table 19–2 are hidden instead of being completely
removed. A hidden command can be invoked in a slave by its master. For exam-
ple, a master can load Tcl scripts into a slave by using its hidden source com-
mand:

interp create -safe slave

interp invokehidden slave source filename

Without hidden commands, the master has to do a bit more work to achieve
the same thing. It must open and read the file and eval the contents of the file in
the slave. File operations are described in Chapter 9.

interp create -safe slave

set in [open filename]

interp eval slave [read $in]

close $in

Hidden commands were added in Tcl 7.7 in order to better support the Tcl/
Tk browser plug-in described in Chapter 20. In some cases, hidden commands
are strictly necessary; it is not possible to simulate them any other way. The best
examples are in the context of Safe-Tk, where the master creates widgets or does
potentially dangerous things on behalf of the slave. These will be discussed in
more detail later.

A master can hide and expose commands using the interp hide and interp
expose operations, respectively. You can even hide Tcl procedures. However, the
commands inside the procedure run with the same privilege as that of the slave.
For example, if you are really paranoid, you might not want an untrusted inter-
preter to read the clock or get timing information. You can hide the clock and
time commands:

interp create -safe slave

interp hide slave clock

interp hide slave time

280 Multiple Interpreters and Safe-Tcl Chap. 19

You can remove commands from the slave entirely like this:
interp eval slave [list rename clock {}]

interp eval slave [list rename time {}]

Substitutions

You must be aware of Tcl parsing and substitutions when commands are invoked
in other interpreters. There are three cases corresponding to interp eval,
interp invokehidden, and command aliases.

With interp eval the command is subject to a complete round of parsing
and substitutions in the target interpreter. This occurs after the parsing and
substitutions for the interp eval command itself. In addition, if you pass several
arguments to interp eval, those are concatenated before evaluation. This is sim-
ilar to the way the eval command works as described in Chapter 19. The most
reliable way to use interp eval is to construct a list to ensure the command is
well structured:

interp eval slave [list cmd arg1 arg2]

With hidden commands, the command and arguments are taken directly
from the arguments to interp invokehidden, and there are no substitutions
done in the target interpreter. This means that the master has complete control
over the command structure, and nothing funny can happen in the other inter-
preter. For this reason you should not create a list. If you do that, the whole list
will be interpreted as the command name! Instead, just pass separate arguments
to interp invokehidden and they are passed straight through to the target:

interp invokehidden slave command arg1 arg2

Never eval alias arguments.
With aliases, all the parsing and substitutions occur in the slave before the

alias is invoked in the master. The alias implementation should never eval or
subst any values it gets from the slave to avoid executing arbitrary code.

For example, suppose there is an alias to open files. The alias does some
checking and then invokes the hidden open command. An untrusted script might
pass [exit] as the name of the file to open in order to create mischief. The
untrusted code is hoping that the master will accidentally eval the filename and
cause the application to exit. This attack has nothing to do with opening files; it
just hopes for a poor alias implementation. Example 19–6 shows an alias that is
not subject to this attack:

Example 19–6 Substitutions and hidden commands.

interp alias slave open {} safeopen slave
proc safeopen {slave filename {mode r}} {

do some checks, then...
interp invokehidden $slave open $filename $mode

}
interp eval slave {open \[exit\]}

I/O from Safe Interpreters 281
II. A

d
va

nc
e

d
 Tc

l

The command in the slave starts out as:
open \[exit\]

The master has to quote the brackets in its interp eval command or else
the slave will try to invoke exit because of command substitution. Presumably
exit isn’t defined, or it is defined to terminate the slave. Once this quoting is
done, the value of filename is [exit] and it is not subject to substitutions. It is
safe to use $filename in the interp invokehidden command because it is only
substituted once, in the master. The hidden open command also gets [exit] as
its filename argument, which is never evaluated as a Tcl command.

I/O from Safe Interpreters

A safe child interpreter cannot open files or network sockets directly. An alias
can create an I/O channel (i.e., open a file or socket) and give the child access to
it. The parent can share the I/O channel with the child, or it can transfer the I/O
channel to the child. If the channel is shared, both the parent and the child can
use it. If the channel is transferred, the parent no longer has access to the chan-
nel. In general, transferring an I/O channel is simpler, but sharing an I/O chan-
nel gives the parent more control over an unsafe child. The differences are
illustrated in Example 19–7 and Example 19–9.

There are three properties of I/O channels that are important to consider
when choosing between sharing and transferring: the name, the seek offset, and
the reference count.

• The name of the I/O channel (e.g., file4) is the same in all interpreters. If a
parent transfers a channel to a child, it can close the channel by evaluating
a close command in the child. Although names are shared, an interpreter
cannot attempt I/O on a channel to which it has not been given access.

• The seek offset of the I/O channel is shared by all interpreters that share
the I/O channel. An I/O operation on the channel updates the seek offset for
all interpreters that share the channel. This means that if two interpreters
share an I/O channel, their output will be cleanly interleaved in the chan-
nel. If they both read from the I/O channel, they will get different data.
Seek offsets are explained in more detail on page 114.

• A channel has a reference count of all interpreters that share the I/O chan-
nel. The channel remains open until all references are closed. When a par-
ent transfers an I/O channel, the reference count stays the same. When a
parent shares an I/O channel, the reference count increments by one. When
an interpreter closes a channel with close, the reference count is decre-
mented by one. When an interpreter is deleted, all of its references to I/O
channels are removed.

The syntax of commands to share or transfer an I/O channel is:
interp share interp1 chanName interp2

interp transfer interp1 chanName interp2

282 Multiple Interpreters and Safe-Tcl Chap. 19

In these commands, chanName exists in interp1 and is being shared or
transferred to interp2. As with command aliases, if interp1 is the current inter-
preter, name it with {}.

The following example creates a temporary file for an unsafe interpreter.
The file is opened for reading and writing, and the slave can use it to store data
temporarily.

Example 19–7 Opening a file for an unsafe interpreter.

proc TempfileAlias {slave} {
set i 0
while {[file exists Temp$slave$i]} {

incr i
}
set out [open Temp$slave$i w+]
interp transfer {} $out $slave
return $out

}
proc TempfileExitAlias {slave} {

foreach file [glob -nocomplain Temp$slave*] {
file delete -force $file

}
interp delete $slave

}
interp create -safe foo
interp alias foo Tempfile {} TempfileAlias foo
interp alias foo exit {} TempfileExitAlias foo

The TempfileAlias procedure is invoked in the parent when the child
interpreter invokes Tempfile. TempfileAlias returns the name of the open
channel, which becomes the return value from Tempfile. TempfileAlias uses
interp transfer to pass the I/O channel to the child so that the child has per-
mission to access the I/O channel. In this example, it would also work to invoke
the hidden open command to create the I/O channel directly in the slave.

Example 19–7 is not fully safe because the unsafe interpreter can still
overflow the disk or create a million files. Because the parent has transferred the
I/O channel to the child, it cannot easily monitor the I/O activity by the child.
Example 19–9 addresses these issues.

The Safe Base

An safe interpreter created with interp create -safe has no script library envi-
ronment and no way to source scripts. Tcl provides a safe base that extends a raw
safe interpreter with the ability to source scripts and packages which are
described in Chapter 12. The safe base also defines an exit alias that terminates
the slave like the one in Example 19–7. The safe base is implemented as Tcl
scripts that are part of the standard Tcl script library. Create an interpreter that
uses the safe base with safe::interpCreate:

Security Policies 283
II. A

d
va

nc
e

d
 Tc

l

safe::interpCreate foo

The safe base has source and load aliases that only access directories on
an access path defined by the master interpreter. The master has complete con-
trol over what files can be loaded into a slave. In general, it would be all right to
source any Tcl program into an untrusted interpreter. However, untrusted
scripts might learn things from the error messages they get by sourcing arbi-
trary files. The safe base also has versions of the package and unknown com-
mands that support the library facility. Table 19–3 lists the Tcl procedures in the
safe base:

Table 19–4 lists the aliases defined in a safe interpreter by the safe base.

Security Policies

A security policy defines what a safe interpreter can do. Designing security poli-
cies that are secure is difficult. If you design your own, make sure to have your
colleagues review the code. Give out prizes to folks who can break your policy.
Good policy implementations are proven with lots of review and trial attacks.

Table 19–3 The safe base master interface.

safe::interpCreate ?slave?
?options?

Creates a safe interpreter and initialize the security
policy mechanism.

safe::interpInit slave
?options?

Initializes a safe interpreter so it can use security
policies.

safe::interpConfigure slave
?options?

Options are -accessPath pathlist,
-nostatics, -deleteHook script,
-nestedLoadOk.

safe::interpDelete slave Deletes a safe interpreter.

safe::interpAddToAccessPath
slave directory

Adds a directory to the slave’s access path.

safe::interpFindInAccessPath Maps from a directory to the token visible in the
slave for that directory.

safe::setLogCmd ?cmd arg ... ? Sets or queries the logging command used by the
safe base.

Table 19–4 The safe base slave aliases.

source Loads scripts from directories in the access path.

load Loads binary extensions from the slaves access path.

file Only the dirname, join, extension, root, tail,
pathname, and split operations are allowed.

exit Destroys the slave interpreter.

284 Multiple Interpreters and Safe-Tcl Chap. 19

The good news is that Safe-Tcl security policies can be implemented in relatively
small amounts of Tcl code. This makes them easier to analyze and get correct.
Here are a number of rules of thumb:

• Small policies are better than big, complex policies. If you do a lot of complex
processing to allow or disallow access to resources, chances are there are
holes in your policy. Keep it simple.

• Never eval arguments to aliases. If an alias accepts arguments that are
passed by the slave, you must avoid being tricked into executing arbitrary
Tcl code. The primary way to avoid this is never to eval arguments that are
passed into an alias. Watch your expressions, too. The expr command does
an extra round of substitutions, so brace all your expressions so that an
attacker cannot pass [exit] where you expect a number!

• Security policies do not compose. Each time you add a new alias to a secu-
rity policy, it changes the nature of the policy. Even if alias1 and alias2
are safe in isolation, there is no guarantee that they cannot be used
together to mount an attack. Each addition to a security policy requires
careful review.

Limited Socket Access

The Safesock security policy provides limited socket access. The policy is
designed around a simple table of allowed hosts and ports. An untrusted inter-
preter can connect only to addresses listed in the table. For example, I would
never let untrusted code connect to the sendmail, ftp, or telnet ports on my hosts.
There are just too many attacks possible on these ports. On the other hand, I
might want to let untrusted code fetch a URL from certain hosts, or connect to a
database server for an intranet application. The goal of this policy is to have a
simple way to specify exactly what hosts and ports a slave can access. Example
19–8 shows a simplified version of the Safesock security policy that is distrib-
uted with Tcl 8.0.

Example 19–8 The Safesock security policy.

The index is a host name, and the
value is a list of port specifications, which can be
an exact port number
a lower bound on port number: N-
a range of port numbers, inclusive: N-M
array set safesock {

sage.eng 3000-4000
www.sun.com 80
webcache.eng {80 8080}
bisque.eng {80 1025-}

}
proc Safesock_PolicyInit {slave} {

interp alias $slave socket {} SafesockAlias $slave
}

Security Policies 285
II. A

d
va

nc
e

d
 Tc

l

proc SafesockAlias {slave host port} {
global safesock
if ![info exists safesock($host)] {

error "unknown host: $host"
}

foreach portspec $safesock($host) {
set low [set high ""]
if {[regexp {^([0-9]+)-([0-9]*)$} $portspec x low high]} {

if {($low <= $port && $high == "") ||
($low <= $port && $high >= $port)} {

set good $port
break

}
} elseif {$port == $portspec} {

set good $port
}

}

if [info exists good] {
set sock [interp invokehidden $slave socket $host $good]
interp invokehidden $slave fconfigure $sock \

-blocking 0
return $sock

}
error "bad port: $port"

}

The policy is initialized with Safesock_PolicyInit. The name of this proce-
dure follows a naming convention used by the safe base. In this case, a single
alias is installed. The alias gives the slave a socket command that is imple-
mented by SafesockAlias in the master.

The alias checks for a port that matches one of the port specifications for
the host. If a match is found, then the invokehidden operation is used to invoke
two commands in the slave. The socket command creates the network connec-
tion, and the fconfigure command puts the socket into nonblocking mode so
that read and gets by the slave do not block the application:

set sock [interp invokehidden $slave socket $host $good]

interp invokehidden $slave fconfigure $sock -blocking 0

The socket alias in the slave does not conflict with the hidden socket com-
mand. There are two distinct sets of commands, hidden and exposed. It is quite
common for the alias implementation to invoke the hidden command after vari-
ous permission checks are made.

The Tcl Web browser plug-in ships with a slightly improved version of the
Safesock policy. It adds an alias for fconfigure so that the http package can set
end of line translations and buffering modes. The fconfigure alias does not let
you change the blocking behavior of the socket. The policy has also been
extended to classify hosts into trusted and untrusted hosts based on their
address. A different table of allowed ports is used for the two classes of hosts. The
classification is done with two tables: One table lists patterns that match trusted

286 Multiple Interpreters and Safe-Tcl Chap. 19

hosts, and the other table lists hosts that should not be trusted even though they
match the first table. The improved version also lets a downloaded script connect
to the Web server that it came from. The Web browser plug-in is described in
Chapter 20.

Limited Temporary Files

Example 19–9 improves on Example 19–7 by limiting the number of tempo-
rary files and the size of the files. It is written to work with the safe base, so it
has a Tempfile_PolicyInit that takes the name of the slave as an argument.
TempfileOpenAlias lets the child specify a file by name, yet it limits the files to a
single directory.

The example demonstrates a shared I/O channel that gives the master con-
trol over output. TempfilePutsAlias restricts the amount of data that can be
written to a file. By sharing the I/O channel for the temporary file, the slave can
use commands like gets, eof, and close, while the master does the puts. The
need for shared I/O channels is somewhat reduced by hidden commands, which
were added to Safe-Tcl more recently than shared I/O channels. For example, the
puts alias can either write to a shared channel after checking the file size, or it
can invoke the hidden puts in the slave. This alternative is shown in Example
19–10.

Example 19–9 The Tempfile security policy.

Policy parameters:
directory is the location for the files
maxfile is the number of files allowed in the directory
maxsize is the max size for any single file.

array set tempfile {
maxfile 4
maxsize 65536

}
tempfile(directory) is computed dynamically based on
the source of the script

proc Tempfile_PolicyInit {slave} {
global tempfile
interp alias $slave open {} \

TempfileOpenAlias $slave $tempfile(directory) \
$tempfile(maxfile)

interp alias $slave puts {} TempfilePutsAlias $slave \
$tempfile(maxsize)

interp alias $slave exit {} TempfileExitAlias $slave
}
proc TempfileOpenAlias {slave dir maxfile name {m r} {p 0777}} {

global tempfile
remove sneaky characters
regsub -all {|/:} [file tail $name] {} real
set real [file join $dir $real]

Security Policies 287
II. A

d
va

nc
e

d
 Tc

l

Limit the number of files
set files [glob -nocomplain [file join $dir *]]
set N [llength $files]
if {($N >= $maxfile) && (\

[lsearch -exact $files $real] < 0)} {
error "permission denied"

}
if [catch {open $real $m $p} out] {

return -code error "$name: permission denied"
}
lappend tempfile(channels,$slave) $out
interp share {} $out $slave
return $out

}
proc TempfileExitAlias {slave} {

global tempfile
interp delete $slave
if [info exists tempfile(channels,$slave)] {

foreach out $tempfile(channels,$slave) {
catch {close $out}

}
unset tempfile(channels,$slave)

}
}
See also the puts alias in Example 22–4 on page 327
proc TempfilePutsAlias {slave max chan args} {

max is the file size limit, in bytes
chan is the I/O channel
args is either a single string argument,
or the -nonewline flag plus the string.

if {[llength $args] > 2} {
error "invalid arguments"

}
if {[llength $args] == 2} {

if {![string match -n* [lindex $argv 0]]} {
error "invalid arguments"

}
set string [lindex $args 1]

} else {
set string [lindex $args 0]\n

}
set size [expr [tell $chan] + [string length $string]]
if {$size > $max} {

error "File size exceeded"
} else {

puts -nonewline $chan $string
}

}

The TempfileAlias procedure is generalized in Example 19–9 to have
parameters that specify the directory, name, and a limit to the number of files
allowed. The directory and maxfile limit are part of the alias definition. Their
existence is transparent to the slave. The slave specifies only the name and

288 Multiple Interpreters and Safe-Tcl Chap. 19

access mode (i.e., for reading or writing.) The Tempfile policy can be used by dif-
ferent slave interpreters with different parameters.

The master is careful to restrict the files to the specified directory. It uses
file tail to strip off any leading pathname components that the slave might
specify. The tempfile(directory) definition is not shown in the example. The
application must choose a directory when it creates the safe interpreter. The
Browser security policy described on page 300 chooses a directory based on the
name of the URL containing the untrusted script.

The TempfilePutsAlias procedure implements a limited form of puts. It
checks the size of the file with tell and measures the output string to see if the
total exceeds the limit. The limit comes from a parameter defined when the alias
is created. The file cannot grow past the limit, at least not by any action of the
child interpreter. The args parameter is used to allow an optional -nonewline
flag to puts. The value of args is checked explicitly instead of using the eval
trick described in Example 10–3 on page 127. Never eval arguments to aliases
or else a slave can attack you with arguments that contain embedded Tcl com-
mands.

The master and slave share the I/O channel. The name of the I/O channel is
recorded in tempfile, and TempfileExitAlias uses this information to close the
channel when the child interpreter is deleted. This is necessary because both
parent and child have a reference to the channel when it is shared. The child’s
reference is automatically removed when the interpreter is deleted, but the par-
ent must close its own reference.

The shared I/O channel lets the master use puts and tell. It is also possi-
ble to implement this policy by using hidden puts and tell commands. The rea-
son tell must be hidden is to prevent the slave from implementing its own
version of tell that lies about the seek offset value. One advantage of using hid-
den commands is that there is no need to clean up the tempfile state about open
channels. You can also layer the puts alias on top of any existing puts implemen-
tation. For example, a script may define puts to be a procedure that inserts data
into a text widget. Example 19–10 shows the difference when using hidden com-
mands.

Example 19–10 Restricted puts using hidden commands.

proc Tempfile_PolicyInit {slave} {
global tempfile
interp alias $slave open {} \

TempfileOpenAlias $slave $tempfile(directory) \
$tempfile(maxfile)

interp hide $slave tell
interp alias $slave tell {} TempfileTellAlias $slave
interp hide $slave puts
interp alias $slave puts {} TempfilePutsAlias $slave \

$tempfile(maxsize)
no special exit alias required

}
proc TempfileOpenAlias {slave dir maxfile name {m r} {p 0777}} {

Security Policies 289
II. A

d
va

nc
e

d
 Tc

l

remove sneaky characters
regsub -all {|/:} [file tail $name] {} real
set real [file join $dir $real]
Limit the number of files
set files [glob -nocomplain [file join $dir *]]
set N [llength $files]
if {($N >= $maxfile) && (\

[lsearch -exact $files $real] < 0)} {
error "permission denied"

}
if [catch {interp invokehidden $slave \

open $real $m $p} out] {
return -code error "$name: permission denied"

}
return $out

}
proc TempfileTellAlias {slave chan} {

interp invokehidden $slave tell $chan
}
proc TempfilePutsAlias {slave max chan args} {

if {[llength $args] > 2} {
error "invalid arguments"

}
if {[llength $args] == 2} {

if {![string match -n* [lindex $args 0]]} {
error "invalid arguments"

}
set string [lindex $args 1]

} else {
set string [lindex $args 0]\n

}
set size [interp invokehidden $slave tell $chan]
incr size [string length $string]
if {$size > $max} {

error "File size exceeded"
} else {

interp invokehidden $slave \
puts -nonewline $chan $string

}
}

Safe after Command

The after command is unsafe because it can block the application for an
arbitrary amount of time. This happens if you only specify a time but do not spec-
ify a command. In this case, Tcl just waits for the time period and processes no
events. This will stop all interpreters, not just the one doing the after command.
This is a kind of resource attack. It doesn’t leak information or damage anything,
but it disrupts the main application.

Example 19–11 defines an alias that implements after on behalf of safe
interpreters. The basic idea is to carefully check the arguments, and then do the
after in the parent interpreter. As an additional feature, the number of out-

290 Multiple Interpreters and Safe-Tcl Chap. 19

standing after events is limited. The master keeps a record of each after event
scheduled. Two IDs are associated with each event: one chosen by the master
(i.e., myid), and the other chosen by the after command (i.e., id). The master
keeps a map from myid to id. The map serves two purposes: The number of map
entries counts the number of outstanding events. The map also hides the real
after ID from the slave, which prevents a slave from attempting mischief by
specifying invalid after IDs to after cancel. The SafeAfterCallback is the pro-
cedure scheduled. It maintains state and then invokes the original callback in
the slave.

Example 19–11 A safe after command.

SafeAfter_PolicyInit creates a child with
a safe after command

proc SafeAfter_PolicyInit {slave max} {
max limits the number of outstanding after events
global after
interp alias $slave after {} SafeAfterAlias $slave $max
interp alias $slave exit {} SafeAfterExitAlias $slave
This is used to generate after IDs for the slave.
set after(id,$slave) 0

}

SafeAfterAlias is an alias for after. It disallows after
with only a time argument and no command.

proc SafeAfterAlias {slave max args} {
global after
set argc [llength $args]
if {$argc == 0} {

error "Usage: after option args"
}
switch -- [lindex $args 0] {

cancel {
A naive implementation would just
eval after cancel $args
but something dangerous could be hiding in args.
set myid [lindex $args 1]
if {[info exists after(id,$slave,$myid)]} {

set id $after(id,$slave,$myid)
unset after(id,$slave,$myid)
after cancel $id

}
return ""

}
default {

if {$argc == 1} {
error "Usage: after time command args..."

}
if {[llength [array names after id,$slave,*]]\

>= $max} {
error "Too many after events"

Security Policies 291
II. A

d
va

nc
e

d
 Tc

l

}
Maintain concat semantics
set command [concat [lrange $args 1 end]]
Compute our own id to pass the callback.
set myid after#[incr after(id,$slave)]
set id [after [lindex $args 0] \

[list SafeAfterCallback $slave $myid $command]]
set after(id,$slave,$myid) $id
return $myid

}
}

}

SafeAfterCallback is the after callback in the master.
It evaluates its command in the safe interpreter.

proc SafeAfterCallback {slave myid cmd} {
global after
unset after(id,$slave,$myid)
if [catch {

interp eval $slave $cmd
} err] {

catch {interp eval $slave bgerror $error}
}

}

SafeAfterExitAlias is an alias for exit that does cleanup.

proc SafeAfterExitAlias {slave} {
global after
foreach id [array names after id,$slave,*] {

after cancel $after($id)
unset after($id)

}
interp delete $slave

}

Blank page 292

293

C H A P T E R

II. A
d

va
nc

e
d

 Tc
l

 20

Safe-Tk and
the Browser Plugin 20

This chapter describes Safe-Tk that lets untrusted scripts display and
manipulate graphical user interfaces. The main application of Safe-Tk is
the Tcl/Tk plugin for Web browsers like Netscape Navigator and Internet
Explorer.

Safe-Tk supports network applets that
display user interfaces. The main vehicle for Safe-Tk is a plugin for Netscape
Navigator and Internet Explorer. The plugin supports Tcl applets, or Tclets, that
are downloaded from the Web server and execute inside a window in a Web
browser. For the most part, Tcl/Tk applications can run unchanged in the plugin.
However, security policies place some restrictions on Tclets. The plugin supports
multiple security policies, so Tclets can do a variety of interesting things in a safe
manner.

The current version of the plugin uses Tcl/Tk 8.0. You can configure the
plugin to use an existing wish application to host the Tcl applets, or the plugin
can load the Tcl/Tk shared libraries and everything runs in the browser process.
You can use a custom wish that has extensions built in or dynamically loaded.
This gives intranet applications of the plugin the ability to access databases and
other services that are not provided by the Tcl/Tk core. With the security policy
mechanism you can still provide mediated access to these resources. This chap-
ter describes how to set up the plugin.

The source code of the plugin is freely available. You can recompile the
plugin against newer versions of Tcl/Tk, or build custom plugins that have your
own Tcl extensions built in. One particularly active plugin user is NASA, which
maintains and distributes an enhanced version of the plugin. You can find them
from the main plugin Web site at:

http://www.scriptics.com/plugin/

294 Safe-Tk and the Browser Plugin Chap. 20

Tk in Child Interpreters

A child interpreter starts out with just the core Tcl commands. It does not
include Tk or any other extensions that might be available to the parent inter-
preter. This is true whether or not the child interpreter is declared safe. You add
extensions to child interpreters by using a form of the load command that speci-
fies an interpreter:

load {} Tk child

Normally, load takes the name of the library file that contains the exten-
sion. In this case, the Tk package is a static package that is already linked into
the program (e.g., wish or the plugin), so the file name is the empty string. The
load command calls the Tk initialization procedure to register all the Tcl com-
mands provided by Tk.

Embedding Tk Windows

By default, a slave interpreter that loads Tk gets a new top-level window.
Wish supports a -use command line option that directs Tk to use an existing
window as dot. You can use this to embed an application within another. For
example, the following commands run a copy of Wish that uses the .embed
toplevel as its main window:

toplevel .embed

exec wish -use [winfo id .embed] somescript.tcl &

More often, embedding is used with child interpreters. If the interpreter is
not safe, you can set the argv and argc variables in the slave before loading Tk:

interp create trustedTk

interp eval trustedTk \

[list set argv [list -use [winfo id .embed]]]

interp eval trustedTk [list set argc 2]

load {} Tk trustedTk

If the child interpreter is safe, then you cannot set argv and argc directly.
The easiest way to pass -use to a safe interpreter is with the safe::loadTk com-
mand:

safe::interpCreate safeTk

safe::loadTk safeTk -use [winfo id .embed]

When Tk is loaded into a safe interpreter, it calls back into the master
interpreter and evaluates the safe::TkInit procedure. The job of this procedure
is to return the appropriate argv value for the slave. The safe::loadTk proce-
dure stores its additional arguments in the safe::tkInit variable, and this
value is retrieved by the safe::TkInit procedure and returned to the slave. This
protocol is used so that a safe interpreter cannot attempt to hijack the windows
of its master by constructing its own argv variable!

Tk in Child Interpreters 295
II. A

d
va

nc
e

d
 Tc

l

Safe-Tk Restrictions

When Tk is loaded into a safe interpreter, it hides several Tk commands.
Primarily these are hidden to prevent denial of service attacks against the main
process. For example, if a child interpreter did a global grab and never released
it, all input would be forever directed to the child. Table 20–1 lists the Tk com-
mands hidden by default from a safe interpreter. The Tcl commands that are hid-
den in safe interpreters are listed on page 277.

If you find these restrictions limiting, you can restore commands to safe
interpreters with the interp expose command. For example, to get menus and
toplevels working, you could do:

interp create -safe safeTk

foreach cmd {grab menu menubutton toplevel wm} {

interp expose safeTk $cmd

}

Instead of exposing the command directly, you can also construct aliases
that provide a subset of the features. For example, you could disable the -global
option to grab. Aliases are described in detail in Chapter 19.

The Browser plugin defines a more elaborate configuration system to con-
trol what commands are available to slave interpreters. You can have lots of con-
trol, but you need to distribute the security policies that define what Tclets can
do in the plugin. Configuring security policies for the plugin is described later.

Table 20–1 Tk commands omitted from safe interpreters.

bell Rings the terminal bell.

clipboard Accesses the CLIPBOARD selection.

grab Directs input to a specified widget.

menu Creates and manipulates menus, because menus need grab.

selection Manipulates the selection.

send Executes a command in another Tk application.

tk Sets the application name.

tk_chooseolor Color choice dialog.

tk_getOpenFile File open dialog.

tk_getSaveFile File save dialog.

tk_messageBox Simple dialog boxes.

toplevel Creates a detached window.

wm Controls the window manager.

296 Safe-Tk and the Browser Plugin Chap. 20

The Browser Plugin

The HTML EMBED tag is used to put various objects into a Web page, including a
Tcl program. For example:

<EMBED src=eval.tcl width=400 height=300>

The width and height are interpreted by the plugin as the size of the
embedded window. The src specifies the URL of the program. These parameter
names (e.g., width) are case sensitive and should be lowercase. In the above
example, eval.tcl is a relative URL, so it should be in the same directory as the
HTML file that has the EMBED tag. The window size is fixed in the browser, which
is different from normal toplevels in Tk. The plugin turns off geometry propaga-
tion on your main window so that your Tclet stays the size allocated.

There are also "full window" Tclets that do not use an EMBED tag at all.
Instead, you just specify the .tcl file directly in the URL. For example, you can
type this into your browser, or use it as the HREF parameter in a URL link:

http://www.beedub.com/plugin/bike.tcl

In this case, the plugin occupies the whole browser window and will resize
as you resize the browser window.

The embed_args and plugin Variables

The parameters in the EMBED tag are available to the Tcl program in the
embed_args variable, which is an array with the parameter names as the index
values. For example, the string for a ticker-tape Tclet can be passed in the EMBED
tag as the string parameter, and the Tclet will use $embed_args(string) as the
value to display:

<EMBED src=ticker.tcl width=400 height=50 string="Hello World">

Note that HTML tag parameters are case sensitive. Your Tclet may want to
map all the parameter names to lowercase for convenience:

foreach {name value} [array get embed_args] {
set embed_args([string tolower $name]) $value

}

The plugin array has version, patchLevel, and release elements that
identify the version and release date of the plugin implementation.

Example Plugins

The plugin home page is a great place to find Tclet examples. There are sev-
eral plugins done by the Tcl/Tk team at Sunlabs, plus links to a wide variety of
Tclets done on the Net.

http://www.scriptics.com/plugin/

I wrote a cute little plugin that calculates the effective wheel diameter of
multigear bicycles. Brian Lewis, who built the Tcl 8.0 byte-code compiler,
explained to me the concept and how important this information is to bicycle

The Browser Plugin 297
II. A

d
va

nc
e

d
 Tc

l

enthusiasts. I put together a Tclet that displays the gear combinations on a Tk
canvas and lets you change the number of gears and their size. You can find the
result at:

http://www.beedub.com/plugin/bike.html

Setting Up the plugin

There are plugin versions for UNIX, Windows, and Macintosh. The installa-
tion scripts take care of installing the plugin in the correct locations, which are
described in the next sections about each platform. The plugin and the security
policies that are distributed with it will continue to be updated. You can get the
latest version from the Tcl/Tk Web site, http://www.scriptics.com/plugin/. If
that URL changes, you can find an up-to-date pointer under http://

www.beedub.com/book/. The plugin may already be installed at your site. Bring
up the About Plugins dialog under Help in your browser to see if the Tcl/Tk plu-
gin is listed.

The plugin is composed of the following parts, although the location of these
files varies somewhat among platforms:

• The plugin shared libraries (i.e., DLLs). The Web browser dynamically loads
the plugin implementation when it needs to execute a Tclet embedded in a
Web page. There is a standard directory that the browser scans for the
libraries that implement plugins.

• The Tcl/Tk script libraries. The plugin needs the standard script libraries
that come with Tcl and Tk, plus it has its own scripts that complete its
implementation. Each platform has a plugin script directory with these
subdirectories: tcl, tk, plugin, config, safetcl, and utils. The plugin
implementation is in the plugin directory.

• The security policies. These are kept in a safetcl directory that is a peer of
the Tcl script library.

• The trust configuration. This defines what Tclets can use which security
policies. This is in a config directory that is a peer of the Tcl script library.

• Local hooks. Local customization is supported by two hooks, siteInit and
siteSafeInit. The siteInit procedure is called from the plugin when it
first loads, and siteSafeInit is called when each applet is initialized. It is
called with the name of the slave interpreter and the list of arguments from
the <EMBED> tag. You can provide these as scripts that get loaded from the
auto_path of the master interpreter. Chapter 12 describes how to manage
script libraries found in the auto_path. The plugin also sources a personal
start up script in which you can define siteInit and siteSafeInit. This
script is ~/.pluginrc on UNIX and plugin/tclplugin.rc on Windows and
Macintosh.

Plugin Environment Variables

The plugin can be configured to run Tcl/Tk directly in the browser process,

298 Safe-Tk and the Browser Plugin Chap. 20

or to run with a small library in the browser that communicates with an external
wish application. The default is to run in process. The advantage of the external
process is that you can use custom wish shells that can load various extensions.
Table 20–2 shows the environment variables used to control the plugin configu-
ration.

UNIX Configuration

Netscape looks in each user’s ~/.netscape/plugins for the shared libraries
that implement plugins. It also looks in a plugins directory under its main direc-
tory, which will vary from site to site. You can define a search path for plugins
with the NXP_PLUGIN_PATH environment variable. The plugin script library is in
~/.tclplug/2.0/plugin. You can change this default location by setting the
TCL_PLUGIN_DIR environment variable. Once the plugin finds its script library, it
assumes that the Tcl and Tk script directories, the security policies, and the
trust map are in peer directories.

Windows Configuration

The default location for plugins is in the PLUGINS directory of the Netscape
installation. The Tcl/Tk plugin also works in Internet Explorer from the same
location. The script libraries are found under C:\TCLPLUG\2.0. You can change
this location by setting the registry variable:

Software\Sun\Tcl Plugin\2.0\Directory

Macintosh Configuration

Installing the plugin on the Macintosh is a three-step process. In step one,
you unpack the initial download file, which creates another installer file. In step
two, you run that installer, which puts files into two locations. You specify one
folder that will hold the documentation and the Netscape plugin. The rest of the
plugin goes into a plugin folder under the Tool Command Language folder in your

Table 20–2 Plugin Environment Variables

TCL_PLUGIN_INPROCESS If this is defined and 1, then Tcl/Tk is loaded directly into the
browser. Otherwise, the plugin forks wish.

TCL_PLUGIN_WISH This names the wish executable used to run Tclets. This must be
version 8.0 or higher to properly support embedding.

TCL_PLUGIN_CONSOLE If this is set to 1, then a console is opened when a Tclet is loaded.
The console prompts for Tcl commands that are evaluated in the
master interpreter. If the value is something other than 1, then it
is taken to be a script (e.g., TkCon) that implements a console.

TCL_PLUGIN_LOGWINDOW If 1, various status messages from the plugin are displayed.

TCL_PLUGIN_LOGFILE If defined, this file captures the log output.

Security Policies and Browser Plugin 299
II. A

d
va

nc
e

d
 Tc

l

system’s Extensions folder. It does not conflict with any existing Tcl/Tk installa-
tions you may already have. In step three, you complete the process by moving
the Tcl Plugin file into the Plugins directory of your Netscape installation.

The current version of the Macintosh plugin is limited to Netscape. Version
4 works better than Netscape 3, and Internet Explorer is not supported at all.

Security Policies and Browser Plugin

Tclets run in a safe interpreter that is set up with the safe base facilities
described on page 282. This limits a Tclet to a display-only application. To do
something more interesting, you must grant the Tclet more privilege. The extra
functions are bundled together into a security policy, which is implemented as a
set of command aliases. Unlike a Java applet, a Tclet can choose from different
security policies. A few standard security policies are distributed with the plu-
gin, and these are described below. You can also create custom security policies to
support intranet applications. You can even choose to grant certain Tclets the
full power of Tcl/Tk. The policy command is used to request a security policy:

policy name

The policies that are part of the standard plugin distribution are described
below. The home, inside, and outside policies all provide limited network access.
They differ in what set of hosts are accessible. The default trust configuration
lets any Tclet request the home, inside, or outside policy.

• home. This provides a socket and fconfigure commands that are limited to
connecting to the host from which the Tclet was downloaded. You can spec-
ify an empty string for the host argument to socket to connect back to the
home host. This policy also supports open and file delete that are similar
to the Tempfile policy shown in Example 19–9 on page 286. This provides
limited local storage that is inside a directory that is, by default, private to
the Tclet. Files in the private directory persist after the Tclet exits, so it can
maintain long term state. Tclets from the same server can share the direc-
tory by putting the same prefix=partialurl argument in their EMBED tag.
The partialurl must be a prefix of the Tclet’s URL. Finally, the home policy
automatically provides a browser package that is described later.

• inside. This is just like the home policy, except that the site administrator
controls a table of hosts and ports to which untrusted slaves can connect
with socket. A similar set of tables control what URLs can be accessed with
the browser package. This is similar to the Safesock policy shown in Exam-
ple 19–8 on page 284. The set of hosts is supposed to be inside the firewall.
The local file storage used by this policy is distinct from that used by the
home and outside policies. This is true even if Tclets try to share by using
the prefix=partialurl parameter.

• outside. This is just like the home and inside policies, except that the set of
hosts is configured to be outside the firewall. The local file storage used by

300 Safe-Tk and the Browser Plugin Chap. 20

this policy is distinct from that used by the home and inside policies.
• trusted. This policy restores all features of Tcl and Tk. This policy lets you

launch all your Tcl and Tk applications from the Web browser. The default
trust map settings do not allow this for any Tclet. The trust map configura-
tion is described later.

• javascript. This policy provides a superset of the browser package that lets
you invoke arbitrary Javascript and to write HTML directly to frames. This
does not have the limited socket or temporary file access that the home,
inside, and outside policies have. However, the javascript policy places
no restrictions on the URLs you can fetch, plus it lets Tclets execute Java-
script, which may have its own security risks. The default trust map set-
tings do not allow this for any Tclet.

The Browser Package

The browser package is bundled with several of the security policies. It
makes many features of the Web browser accessible to Tclets. They can fetch
URLs and display HTML in frames. However, the browser package has some
risks associated with it. HTTP requests can be used to transmit information, so a
Tclet using the policy could leak sensitive information if it can fetch a URL out-
side the firewall. To avoid information leakage, the inside, outside, and home
policies restrict the URL that can be fetched with browser::getURL. Table 20–3
lists the aliases defined by the browser package.

The browser::getURL function uses the browser’s built-in functions, so it
understands proxies and supports ftp:, http:, and file: urls. Unfortunately,
the browser::getURL interface is different from the http::geturl interface. It
uses a more complex callback scheme that is due to the nature of the browser’s

Table 20–3 Aliases defined by the browser package.

browser::status string Displays string in the browser status window.

browser::getURL url
?timeout? ?newcallback?
?writecallback?
?endcallback?

Fetches url, if allowed by the security policy. The
callbacks occur before, during, and after the url data
is returned.

browser::displayURL url
frame

Causes the browser to display url in frame.

browser::getForm url data
?raw? ?timeout?
?newcallback?
?writecallback?
?endcallback?

Posts data to url. The callbacks are the same as for
browser::getURL. If raw is 0, then data is a name value
list that gets encoded automatically. Otherwise, it is
assumed to be encoded already.

browser::displayForm url
frame data ?raw?

Posts data to url and displays the result in frame. The
raw argument is the same as in browser::getForm.

Configuring Security Policies 301
II. A

d
va

nc
e

d
 Tc

l

built-in functions. If you do not specify any callbacks, then the call blocks until
all the data is received, and then that data is returned. The callback functions
are described in Table 20–4.

Configuring Security Policies

There are three aspects to the plugin security policy mechanism: policies, fea-
tures, and trust maps. A policy is an umbrella for a set of features that are
allowed for certain Tclets based on the trust map. A feature is a set of commands
and aliases that are defined for a safe interpreter that requests a policy. The
trust map is a filter based on the URL of the Tclet. In the future, trust may bet
determined by digital signatures instead of URLs. The trust map determines
whether a Tclet can request a given policy.

Security Policies are configured for each client.
Remember that the configuration files affect the client machine, which is

the workstation that runs the Web browser. If you create Tclets that require cus-
tom security policies, you have the burden of distributing the configuration files
to clients that will use your Tclets. You also have the burden of convincing them
that your security policy is safe!

The config/plugin.cfg File

The main configuration file is the config/plugin.cfg file in the plugin dis-
tribution. This file lists what features are supported by the plugin, and it defines
the URL filters for the trust map.

The configuration file is defined into sections with a section command. The
policies section defines which Tclets can use which security policies. For exam-
ple, the default configuration file contains these lines in the policies section:

section policies

allow home

disallow intercom

disallow inside

Table 20–4 The browser::getURL callbacks.

newcallback name stream
url mimetype
datemodified size

This is called when data starts to arrive from url. The
name identifies the requesting Tclet, and the stream
identifies the connection. The mimetype, datemodi-
fied, and size parameters are attributes of the returned
data.

writecallback name stream
size data

This is called when size bytes of data arrive for Tcllet
name over stream.

endcallback name stream
reason data

This is called when the request has completed, although
there may be some final bytes in data. The reason is one
of: EOF, NETWOR_ERROR, USER_BREAK, or TIMEOUT.

302 Safe-Tk and the Browser Plugin Chap. 20

disallow outside

disallow trusted

allow javascript ifallowed trustedJavaScriptURLS \

$originURL

This configuration grants all Tclets the right to use the home policy, disal-
lows all Tclets from using the intercom, inside, outside, and trusted policies,
and grants limited access to the javascript policy.

If you are curious, the configuration files are almost Tcl, but not quite. I lost
an argument about that one, so these are stylized configuration files that follow
their own rules. For example, the originURL variable is not defined in the config-
uration file but is a value that is tested later when the Tclet is loaded. I’ll just
give examples here and you can peer under the covers if you want to learn how
they are parsed.

The ifallowed clause depends on another section to describe the trust
mapping for that policy. For the javascript policy, the config/plugin.cfg file
contains:

section trustedJavascriptURLs

allow http://sunscript.sun.com:80/plugin/javascript/*

Unfortunately, this server isn’t running anymore, so you may want to add
the Scriptics Web server to your own configuration:

allow http://www.scriptics.com:80/plugin/javascript/*

You can use a combination of allow and disallow rules in a section. The
arguments to allow and disallow are URL string match patterns, and they are
processed in order. For example, you could put a liberal allow rule followed by
disallow rules that restrict access, or vice versa. It is probably safest to explic-
itly list each server that you trust.

Policy Configuration Files

Each security policy has a configuration file associated with it. For example,
the outside policy uses the file outside.cfg file in the config directory. This file
specifies what hosts and ports are accessible to Tclets using the outside policy.
For the inside and outside policies, the configuration files are similar in spirit
to the safesock array used to configure the Safesock security policy shown on
page 284. There are a set of allowed hosts and ports, and a set of excluded hosts.
The excluded hosts are an exception list. If a host matches the included set but
also matches the excluded set, it is not accessible. There is an included and
excluded set for URLs that affect browser::geturl. The settings from the Temp-
file policy shown on page 286 are also part of the home, inside, and outside
configuration files. The configuration files are well commented, and you should
read through them to learn about the configuration options for each security pol-
icy.

Configuring Security Policies 303
II. A

d
va

nc
e

d
 Tc

l

Security Policy Features

The aliases that make up a security policy are organized into sets called
features. The features are listed in the main config/plugin.cfg configuration
file:

variable featuresList {url stream network persist unsafe}

In turn, each security policy configuration file lists what features are part
of the policy. For example, the config/home.cfg file lists these features:

section features

allow url

allow network

allow persist unless {[string match {UNKNOWN *} \

[getattr originURL]]}

Each feature is implemented in a file in the safetcl directory of the distri-
bution. For example, the url feature is implemented in safetcl/url.tcl. The
code in these files follows some conventions in order to work with the configura-
tion mechanism. Each one is implemented inside a namespace that is a child of
the safefeature namespace (e.g., safefeature::url). It must implement an
install procedure that is called to initialize the feature for a new Tclet. It is
inside this procedure that the various allow/disallow rules are checked. The
cfg::allowed command supports the rule language used in the .cfg files.

Creating New Security Policies

This book does not describe the details of the configuration language or the
steps necessary to create a new security policy. There are several manual pages
distributed with the plugin that explain these details. They can be found on the
Web at:

http://www.scriptics.com/plugin/man/

If you are serious about tuning the existing security policies or creating new
ones, you should read the existing feature implementations in detail. As usual,
modifying a working example is the best way to proceed! I think it is a very nice
property of the plugin that its security policies are implemented in Tcl source
code that is clearly factored out from the rest of the Tcl/Tk and plugin implemen-
tation. With a relatively small amount of code, you can create custom security
policies that grant interesting abilities to Tclets.

Blank page 304

