
Pointers in C

Pointers in C

Xiao Jia

Shanghai Jiao Tong University

November 22, 2011

Pointers in C

Outline

Outline

Overview of pointers

Pointers in depth

Q & A

* If you can’t read this, move closer!

Pointers in C

Overview of pointers

Overview of pointers

Definition & declaration

Assignment & dereferencing

Arrays

Pointer arithmetic

Indexing

Structures and unions

Multiple indirection

const

Function pointers

Pointers in C

Overview of pointers

Definition & declaration

Definition

A pointer is a memory address.

int foo;

int *foo_ptr = &foo;

Pointers in C

Overview of pointers

Definition & declaration

Declaration

int* ptr_a, ptr_b;

int *ptr_a;

int ptr_b;

int *ptr_a, ptr_b;

int ptr_b, *ptr_a;

Pointers in C

Overview of pointers

Definition & declaration

Declaration

int *ptr_a, *ptr_b;

int ((not_a_pointer)), (*ptr_a), (((*ptr_b)));

This is useful for declaring function pointers (described later).

Pointers in C

Overview of pointers

Assignment & dereferencing

Assignment & dereferencing

int foo;

int *foo_ptr = &foo;

foo_ptr = 42;

int bar = *foo_ptr;

*foo_ptr = 42; //Sets foo to 42

Pointers in C

Overview of pointers

Arrays

Arrays

int array[] = { 45, 67, 89 };

The variable array is an extra-big box: three ints’ worth of
storage.

array == &array == &array[0]

array

pointer to array

pointer to the first element of array

Pointers in C

Overview of pointers

Pointer arithmetic

Pointer arithmetic

int *array_ptr = array;

printf(" first element: %d\n", *(array_ptr++));

printf("second element: %d\n", *(array_ptr++));

printf(" third element: %d\n", *array_ptr);

first element: 45

second element: 67

third element: 89

int pointers are incremented or decremented by sizeof(int)

bytes. void pointers are incremented or decremented by 1 byte
since sizeof(void) is illegal.

Pointers in C

Overview of pointers

Indexing

Indexing

int array[] = { 45, 67, 89 };

int *array_ptr = &array[1];

printf("%d\n", array[0]); // 45

printf("%d\n", array_ptr[1]); // 89

Pointers in C

Overview of pointers

Structures and unions

Structures and unions

struct foo {

size_t size;

char name[64];

int answer_to_ultimate_question;

unsigned shoe_size;

};

struct foo my_foo;

my_foo.size = sizeof(struct foo);

Pointers in C

Overview of pointers

Structures and unions

Structures and unions

struct foo *foo_ptr = &my_foo;

(*foo_ptr).size = new_size;

foo_ptr->size = new_size;

struct foo **foo_ptr_ptr = &foo_ptr;

(*foo_ptr_ptr)->size = new_size;

(**foo_ptr_ptr).size = new_size;

Pointers in C

Overview of pointers

Multiple indirection

Multiple indirection

int a = 3;

int *b = &a;

int **c = &b;

int ***d = &c;

*d == c

**d == *c == b

***d == **c == *b == a == 3

Pointers in C

Overview of pointers

const

const

const int *ptr_a;

int const *ptr_a;

int const *ptr_a;

// int is const; cannot do *ptr_a = 42

int *const ptr_b;

// can change *ptr_b; cannot do ptr_b++

Pointers in C

Overview of pointers

Function pointers

Function pointers

Consider strcpy.

enum { str_length = 18U };

char src[str_length] = "This is a string.",

dst[str_length];

strcpy(dst, src);

Pointers in C

Overview of pointers

Function pointers

Declaring function pointers

char *strcpy(char *dst, const char *src);

// Just for reference

char *(*strcpy_ptr)(char *dst, const char *src);

// Pointer to strcpy-like function

strcpy_ptr = strcpy;

strcpy_ptr = &strcpy;

//strcpy_ptr = &strcpy[0];

Pointers in C

Overview of pointers

Function pointers

Parameter names are optional

char *(*strcpy_ptr_noparams)(char *, const char *) =

strcpy_ptr;

strcpy_ptr =

(char *(*)(char *, const char *))my_strcpy;

char *(**strcpy_ptr_ptr)(char *, const char *) =

&strcpy_ptr;

Pointers in C

Overview of pointers

Function pointers

Array of function-pointers

char *(*strcpies[])(char *, const char *) =

{ strcpy, strcpy, strcpy };

strcpies[0](dst, src);

Pointers in C

Overview of pointers

Function pointers

Declaring exercise

Declare the following in a single line:

a function f with no parameters returning an int

a function fip with no parameter specification returning a
pointer to an int

a pointer pfi to a function with no parameter specification
returning an int

(taken from C99 standard)

Pointers in C

Overview of pointers

Function pointers

Declaring exercise

Declare the following in a single line:

a function f with no parameters returning an int

a function fip with no parameter specification returning a
pointer to an int

a pointer pfi to a function with no parameter specification
returning an int

(taken from C99 standard)

int f(void), *fip(), (*pfi)();

Pointers in C

Overview of pointers

Function pointers

Function returning a function pointer

char *(*get_strcpy_ptr(void))(char *dst,

const char *src);

strcpy_ptr = get_strcpy_ptr();

Pointers in C

Overview of pointers

Function pointers

typedef

typedef char *(*strcpy_funcptr)(char *, const char *);

strcpy_funcptr strcpy_ptr = strcpy;

strcpy_funcptr get_strcpy_ptr(void);

Pointers in C

Overview of pointers

Function pointers

Summary

Declaring

void (*foo)(int);

Initializing

void foo();

func_ptr = foo;

func_ptr = &foo;

Invoking

func_ptr(arg1, arg2);

(*func_ptr)(arg1, arg2);

Pointers in C

Pointers in depth

Pointers in depth

What is a pointer?

Pointer types and arrays

Pointers and strings

Pointers and structures

Multi-dimensional arrays

Dynamic allocation of memory

When to use pointers?

Pointers in C

Pointers in depth

What is a pointer?

What is a pointer?

int j, k, *ptr;

k = 2;

j = 7;

k = j;

ptr = &k;

*ptr = 7;

What is a variable?

What is an address?

What is an object?

Pointers in C

Pointers in depth

What is a pointer?

What is a pointer?

int j, k;

k = 2;

j = 7;

k = j;

What is lvalue?

What is rvalue?

Pointers in C

Pointers in depth

What is a pointer?

Object & lvalue

int j, k;

k = 2;

j = 7;

k = j;

An object is a named region of storage

An lvalue is an expression referring to an object

Pointers in C

Pointers in depth

Pointer types and arrays

Pointer types

int *ptr;

char *str;

double *dptr;

What is the size of a pointer?

Pointers in C

Pointers in depth

Pointer types and arrays

Pointer types

int *ptr;

*ptr = 2;

What is the problem with the code above?

Pointers in C

Pointers in depth

Pointer types and arrays

Pointer types

int *ptr, k;

ptr = &k; // What is the value of ptr?

*ptr = 10; // What is the value of k?

ptr++;

*ptr = 11;

What is the problem with the code above?

Pointers in C

Pointers in depth

Pointer types and arrays

Pointers and arrays

int my_array[] = {1, 23, 17, 4, -5, 100};

int *ptr;

ptr = &my_array[0];

ptr = my_array;

my_array = ptr; // It’s a named region of storage!

What is the problem with the code above?

What is the difference between ptr and my array?

Pointers in C

Pointers in depth

Pointers and strings

Pointers and strings

char my_string[40];

my_string[0] = ’A’;

my_string[1] = ’c’;

my_string[2] = ’m’;

my_string[3] = ’\0’;

char my_string[40] = {’A’, ’c’, ’m’, ’\0’};

char my_string[40] = "Acm";

char *my_string = "Acm";

const char *my_string = "Acm";

Pointers in C

Pointers in depth

Pointers and strings

Implementing strcpy

char *my_strcpy(char dest[], char src[]) {

int i = 0;

while (src[i] != ’\0’) {

dest[i] = src[i];

i++;

}

dest[i] = ’\0’;

return dest;

}

Pointers in C

Pointers in depth

Pointers and structures

Pointers and structures

struct Man { int age; };

struct Superman { Man man_part; int power; };

void print_man(void *p) {

cout << "Age: " << ((Man *)p)->age << endl;

}

void print_superman(void *p) {

print_man(p);

cout << "Power: " << ((Superman *)p)->power << endl;

}

Pointers in C

Pointers in depth

Pointers and structures

Pointers and structures

struct Man a = { 25 };

struct Superman b = { a, 250 };

print_man(&a); // Age: 25

print_superman(&b); // Age: 25

// Power: 250

b.man_part.age++;

print_man(&a); // Age: 25

print_superman(&b); // Age: 26

// Power: 250

Pointers in C

Pointers in depth

Pointers and structures

Arrays of length zero

struct line {

int length;

char contents[0];

};

struct line *this_line = (struct line *)

malloc(sizeof(struct line) + this_length);

this_line->length = this_length;

strcpy(this_line->contents, this_contents);

Pointers in C

Pointers in depth

Pointers and structures

Arrays of length zero

struct foo { int x; int y[]; };

struct bar { struct foo z; };

struct foo a = { 1, {2, 3, 4} }; // Valid.

struct bar b = { { 1, {2, 3, 4} } }; // Invalid.

struct bar c = { { 1, {} } }; // Valid.

struct foo d[1] = { { 1, {2, 3, 4} } }; // Invalid.

Pointers in C

Pointers in depth

Multi-dimensional arrays

Multi-dimensional arrays

int multi[5][10];

multi[row][col]

((multi + row) + col)

// *(multi + row) -> X

// *(X + col)

&multi == 100

sizeof(int) == 4

&multi[3][5] == ???

Pointers in C

Pointers in depth

Dynamic allocation of memory

Allocate & release an int

int *p = (int *) malloc(sizeof int);

*p = 100;

free(p);

int *p = new int;

*p = 100;

delete p;

Pointers in C

Pointers in depth

Dynamic allocation of memory

Allocate & release a 1-dimension array

int *a, i;

a = (int *) malloc(10 * sizeof(int));

for (i = 0; i < 10; i++) {

a[i] = i;

}

free(a);

int *a = new int[10];

for (int i = 0; i < 10; i++) {

a[i] = i;

}

delete[] a;

Pointers in C

Pointers in depth

Dynamic allocation of memory

Allocate a 2-dimension array

int **a = new int*[10];

for (int i = 0; i < 10; i++) {

a[i] = new int[20];

for (int j = 0; j < 20; j++) {

a[i][j] = i + j;

}

}

Pointers in C

Pointers in depth

Dynamic allocation of memory

Release a 2-dimension array

for (int i = 0; i < 10; i++) {

delete[] a[i];

}

delete[] a;

Pointers in C

Pointers in depth

Dynamic allocation of memory

Allocate a 3-dimension array

int ***a = new int**[10];

for (int i = 0; i < 10; i++) {

a[i] = new int*[20];

for (int j = 0; j < 20; j++) {

a[i][j] = new int[30];

for (int k = 0; k < 30; k++) {

a[i][j][k] = i + j + k;

}

}

}

Pointers in C

Pointers in depth

Dynamic allocation of memory

Allocate a fluctuated 2-dimension array

int **a = new int*[10];

for (int i = 0; i < 10; i++) {

a[i] = new int[i + 1];

for (int j = 0; j <= i; j++) {

a[i][j] = i + j;

}

}

Pointers in C

Pointers in depth

When to use pointers?

When to use pointers?

Indirect addressing

Dynamic (run-time) addressing

Polymorphism

Pointers vs. references

Pointers may be NULL

References have to be valid (but may not if misused)
As parameters, small objects should behave like ints, e.g.
std::string.

Resource management

Must NOT have memory leaks
Acquiring and releasing tend to behave in a well-nested fashion
Across the borders of functions/methods, use smart pointers

Pointers in C

Q & A

Q & A

Thank you for listening!

Any questions?

Pointers in C

Q & A

References

Ted Jensen. A Tutorial on Pointers and Arrays in C. Sept.,
2003.

Peter Hosey. Everything you need to know about pointers in
C. Jan. 16, 2010.

Cprogramming.com. Function Pointers in C and C++.

