
Survey of Filesystems for
Embedded Linux

Presented by Gene Sally
CELF

2Drop by www.timesys.com

Presentation

�Filesystems In Summary
�What is a filesystem
�Kernel and User space filesystems
�Picking a root filesystem

�Filesystem Round-up
�Slide-by-slide description of filesystems frequently used

by embedded Linux engineers
�NFS and initramfs filesystems

3Drop by www.timesys.com

Diversion for Those New to Linux/Embedded:
The Kernel and Filesystem

� The RFS and Kernel are separate entities.
� Related? Yes, but not so tightly bound that they can’t change

independently.
� A filesystem must be present for the kernel to start

successfully.
� Can be an in memory filesystem, network filesystem
� Can be “attached” to the kernel image loaded into memory
� This filesystem mounted at /, aptly called the root filesystem

(RFS)
� Can have a system with several filesystem types

� The Linux kernel, after starting, will mount the filesystem
and execute some program.
� While they may be packaged together, the root filesystem is a

separate entity from the kernel.

For those new to using Linux for an embedded
project, having a separate kernel and user-

space takes some explaining, even for those
who use Linux on their desktop.

4Drop by www.timesys.com

Filesystems in Linux: General Features

� Linux (like Unix) is designed to use any number of
arbitrary filesystems
� Provides uniform interface to filesystems through the VFS

(Virtual FileSystem)
� Provides shared routines (like caching)
� Physical storage not necessary (think proc filesystem)

� Filesystems implemented as kernel modules
� Most of the time (for embedded systems) compiled directly

into the kernel
� Can be loaded as modules after kernel starts

� User space filesystems: FUSE
� Fully functional filesystems that run in user space
� Intriguing solution for embedded systems, more stable kernel

5Drop by www.timesys.com

Linux Virtual FileSystem

� Around Since Linux 1.0
� File-oriented nature of *nix OS makes it important to get this

right
� ext/ext2 filesystems used the “emergent” VFS in Linux 1.0
� As OS matured, more functionality migrated to VFS layer, with

ext2 often serving as the model and test case
� Housekeeping

� Registration, removal
� Enumeration (cat /proc/fs)
� Associate physical devices to filesystem drivers
� Synchronization

� Common Code
� Node handling
� Look-ups
� Caching

6Drop by www.timesys.com

FUSE Filesystems

� Part of the kernel starting at 2.6.14
� Kernel module
� User land helper programs and library
� Patches for 2.4.21

� Sample Filesystems
� Media: DVD, Playlists, MythTV
� Dynamic Devices: USB
� Interesting: Database, Encrypted, GMail

� Language Bindings
� C, C++, Java, C#, Python, Perl, Ruby and some more…

� More Info
� http://fuse.sourceforge.net/
� http://fuse.sourceforge.net/wiki/

Not very space efficient or high-performance in
its current release, so not super-useful for

embedded applications. But keep your eyes
peeled!

7Drop by www.timesys.com

VFS “Traditional” Filesystems

� Implemented as filesystem drivers that plug into the Linux
VFS architecture

� Lots of these! For desktop users, the following may be
familiar:
� Ext3, ReiserFS, NTFS

� Embedded Systems typically use specialized filesystems
� ext2
� cramfs
� JFFS2
� squashfs
� YAFFS2

8Drop by www.timesys.com

Picking an RFS

�Right for the device
�Flash devices require a wear-leveling filesystem if you’re

using it for read-write.
� If you’re short on space, pick a filesystem that allows

you to control block size and that doesn’t store
complete metadata.

�Right for the application
�Read/write when necessary
�Read-only filesystems need extra work at boot time to

create writable partitions expected by the operating
system.

�Remember – RAM-based filesystems reduce memory
available to the kernel or applications.

9Drop by www.timesys.com

ext2: Second Extended Filesystem

http://e2fsprogs.sourceforge.net/ext2.html
http://lldn.timesys.com/tag/ext2

Home Page
More Info

Most systems ship with ext2/3 drivers and utilities as part of
the distribution. Typical usage pattern is to create a partition
directly on a block device, or use a loopback block device that
is bound to a file.

How to Use

2 TB, 1018 files
Full complement of file ownership and permissions

Capacity and
Limitations

� Ramdisks
� Low-resource systems

When to Use

Ext2 shipped with Linux from the start. Most systems today
use the journaling cousin of ext2, named ext3.

Description

10Drop by www.timesys.com

cramfs

http://sourceforge.net/projects/cramfs
http://lldn.timesys.com/tag/cramfs

Home Page
More Info

$ mkcramfs -m dev.cramfs.txt <rfs_dir> rootfs.cramfs

Full details at: http://lldn.timesys.com/docs/cramfs
How to Use

256 MB, 216 files
Does not store all permissions, all files owned by root.
No timestamps stored (inode overhead is just 12 bytes!)

Capacity and
Limitations

� Low-memory systems
� Ensures RFS integrity
� Metadata not important (doesn’t store full information)

When to Use

Compressed ROM Filesystem. Read only filesystem widely
used in the embedded space. Data stored in compressed
format (zlib).

Description

11Drop by www.timesys.com

squashfs

http://squashfs.sourceforge.net
http://www.artemio.net/projects/linuxdoc/squashfs
http://lldn.timesys.com/docs/tiny_flash

Home Page
More Info

$ mksquashfs $RFS ./squashfs-rfs/rfs -nopad -all-root

The resulting file can then be written directly to a flash
partition. Use rootfstype=squashfs on the command line,
mounting the /dev/mtdblock device as the root device.

How to Use

232 GB, 232 files, Page size from 212 to 218

A files owned by root
Read-only

Capacity and
Limitations

� Low-memory systems
� Need control over the endianness

When to Use

Read only filesystem that includes several improvements over
cramfs, notably in compression and metadata storage.
Adjustable block sizes allow a user to create filesystems that
compress better.

Description

12Drop by www.timesys.com

romfs

<kernel>/Documentation/filesystems
http://romfs.sourceforge.net/
http://lldn.timesys.com/docs/tiny_flash

Home Page
More Info

$ genromfs -f ./romfs-rfs/rfs -d $RFS

Create filesystem with mkromfs utility. Creating device nodes
particularly interesting – create a file starting with @ with
device node information. Example: @console,5,1

How to Use

All files owned by root
Read-only
No compression

Capacity and
Limitations

� Trying to make as compact a kernel as possible
� Initial RAM disks

When to Use

Minimum filesystem, very small kernel module. The “rom” in
romfs doesn’t refer to the hardware “ROM”.

Description

13Drop by www.timesys.com

A Word About MTD

� MTD “Memory Technology Device” is used for flash devices.
� These are not block devices

� /dev/mtdblockX serves as a primitive translation layer, but you shouldn’t
go putting a block-based filesystem on this device.

� Not character devices either

� What’s the difference
� Work by manipulating “erase blocks”
� Erase blocks then contain some number file nodes
� Can “wear out”, must spread writes over the media to avoid

� MTD vs. Flash Drives/USB Sticks
� These devices contain a Flash Translation Layer that performs wear

leveling and presents a block device.

� Use JFFS2 with devices that don’t have a flash translation layer.

14Drop by www.timesys.com

JFFS2

http://sourceware.org/jffs2
http://sourceware.org/jffs2/jffs2-html/jffs2-html.html
http://lldn.timesys.com/tag/jffs2

Home Page
More Info

$ mkfs.jffs2 -o ../<bsp_name>-flash.jffs2 -e 00040000

Full details at: http://lldn.timesys.com/docs/jffs2
rootfstype=jffs2 on the command line, mounting the
/dev/mtdblock device as the root device.

How to Use

232 GB, 232 files, Page size from 212 to 218

Complete POSIX meta data
Mounts slowly (improved lately); at capacity, writes can be slow

Capacity and
Limitations

Flash-based storage hardwareWhen to Use

Read/Write filesystem designed specifically for MTD/Flash
based devices. Handles wear leveling and compresses data
during creation and subsequent writes

Description

15Drop by www.timesys.com

YAFFS2

http://www.aleph1.co.uk/taxonomy/term/31
http://www.aleph1.co.uk/node/40
http://lldn.timesys.com/docs/tiny_flash

Home Page
More Info

Filesystems created using user space tool, much like JFFS2.
The resulting file can then be written directly to a flash
partition.

How to Use

232 GB, 232 files
Complete POSIX metadata
No compression

Capacity and
Limitations

NAND flash devicesWhen to Use

Yet Another Flash FileSystem. Works, in principle, much like
JFFS2, but designed specifically for NAND flash devices, which
are a bit different than MTD flash devices.

Description

16Drop by www.timesys.com

initramfs

� Integral part of 2.6 Linux kernel boot
� A filesystem that sits on top of the kernel’s inode cache
� Looks for initramfs before using “traditional booting method”
� Can use as “real” filesystem

� How to create
� Part of the kernel build process
� As a compressed cpio archive

$ cd <rfs-directory>
$ find . | cpio -o -H newc | gzip > ../initramfs_data.cpio.gz

� Point to a directory
� Make CONFIG_INITRAMFS_SOURCE a directory name

� Use specification file
� Make CONFIG_INITRAMFS_SOURCE a file name that specifies what

files\devices to create with what ownership permissions

� More Information
� http://www.timesys.com/timesource/initramfs.htm
� http://lldn.timesys.com/tag/initramfs

17Drop by www.timesys.com

initramfs and Booting

1. At boot time, the kernel extracts an archive
(cpio format) into a ramfs filesystem, called
rootfs.
� When this archive isn’t present, an empty rootfs is

created.
� Root filesystems mount over rootfs.

2. The kernel looks at the filesystem for an init,
and runs it if it exists.

3. Otherwise, the kernel follows the “prior” boot
algorithm.

18Drop by www.timesys.com

In Summary

� Block devices
� ext2 – Very stable, easy to work with, widely supported, keeps all

permissions… but, not very space efficient
� cramfs – Produces a small filesystem … tradeoff: read-only with

minimal permissions
� squashfs – More metadata and larger filesystems, great compression

results in small filesystem, but … performance hit
� romfs – Small kernel module, but … lacks compression

� Flash
� JFFS2 – Stores all metadata, high capacity … performance lacking on

mount times and writes (under certain circumstances)
� YAFFS2 – Handles particularities of NAND flash … performance also

lacking under certain circumstances
� In Memory

� initramfs – Complete support for permissions and file ownership,
however … stored in memory, so changes aren’t persistent

19Drop by www.timesys.com

How These Stack Up in the Real World

� Created filesystem
� Busybox 1.2, statically linked, ~600K

� Basic filesystem: init, some file tools, http server

� Minimal devices
� Did not size the filesystem any larger than necessary

� Results
305,376 initramfs
306,992 squashfs
339,968 cramfs
358,608 JFFS2
686,400 YAFFS2
577,537 romfs
701,440 ext2

These results are less surprising than one
would think. The read-only filesystems don’t
have as much overhead, and are, therefore,
smaller. I could not figure out why YAFFS2

was so much larger. (Sorry!)

20Drop by www.timesys.com

What about NFS?

�Rarely used in production systems
�Great way for testing your board
�Relying on network in production is risky
�Not very fast on Linux, slow when using Cygwin as a

server
�While a filesystem from a technical perspective, it
is a protocol
�Makes some filesystem remotely accessible
�Negotiates privileges, what clients can access in the

resource
�Can export any filesystem type for access over NFS

(well, almost any)

21Drop by www.timesys.com

Not Mentioned

� ISO9660
�Since this is a read-only filesystem, it could be put on a

flash partition.

�vfat
�Small, yes, but not space efficient. Has the extra

baggage of the “case preserving” nature of the MS-DOS
filesystem.

�minix fs
�Maybe I should have. Simple and fast. Very small driver

footprint, but no compression.

22Drop by www.timesys.com

Recommendations

�Read-Only
� squashfs – Best compression, ability to control

endianness and compression

�Flash
� JFFS2 – The standard, compresses well, well-supported

and rock solid, recent improvements in performance,
too!

�Development
�NFS – Small impact on kernel size, can configure as

read-only so it looks like system

23Drop by www.timesys.com

Thank you for attending!

