

1

 LECTURE NOTES

 ON

 LINUX PROGRAMMING

IV B. Tech I semester

Prepared By

Y. Harika Devi

Assistant Professor

G. Geetha Reddy

Assistant Professor

B. Ramyasree

Assistant Professor

E. Umashankari

Assistant Professor

Computer Science & Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomous)

Dundigal – 500 043, Hyderabad

2

UNIT-I

Introduction to Linux:

Linux is a Unix-like computer operating system assembled under the model of free and open

source software development and distribution. The defining component of Linux is the Linux

kernel, an operating system kernel first released 5 October 1991 by Linus Torvalds.

Linux was originally developed as a free operating system for Intel x86-based personal

computers. It has since been ported to more computer hardware platforms than any other

operating system. It is a leading operating system on servers and other big iron systems such as

mainframe computers and supercomputers more than 90% of today's 500 fastest

supercomputers run some variant of Linux, including the 10 fastest. Linux also runs on

embedded systems (devices where the operating system is typically built into the firmware and

highly tailored to the system) such as mobile phones, tablet computers, network routers,

televisions and video game consoles; the Android system in wide use on mobile devices is

built on the Linux kernel.

Basic Features

Following are some of the important features of Linux Operating System.

 Portable - Portability means software‘s can works on different types of hardware‘s in

same way. Linux kernel and application programs support their installation on any kind

of hardware platform.

 Open Source - Linux source code is freely available and it is community based

development project. Multiple Teams works in collaboration to enhance the capability

of Linux operating system and it is continuously evolving.

 Multi-User - Linux is a multiuser system means multiple users can access system

resources like memory/ ram/ application programs at same time.

 Multiprogramming - Linux is a multiprogramming system means multiple applications

can run at same time.

 Hierarchical File System - Linux provides a standard file structure in which system

http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Free_and_open_source_software
http://en.wikipedia.org/wiki/Free_and_open_source_software
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Operating_system_kernel
http://en.wikipedia.org/wiki/Linus_Torvalds
http://en.wikipedia.org/wiki/Intel_x86
http://en.wikipedia.org/wiki/Porting
http://en.wikipedia.org/wiki/Server_%28computing%29
http://en.wikipedia.org/wiki/Big_iron
http://en.wikipedia.org/wiki/Mainframe_computer
http://en.wikipedia.org/wiki/Supercomputer
http://en.wikipedia.org/wiki/TOP500
http://en.wikipedia.org/wiki/TOP500
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Firmware
http://en.wikipedia.org/wiki/Tablet_computer
http://en.wikipedia.org/wiki/Router_%28computing%29
http://en.wikipedia.org/wiki/Video_game_console
http://en.wikipedia.org/wiki/Video_game_console
http://en.wikipedia.org/wiki/Android_%28operating_system%29

3

files/ user files are arranged.

 Shell - Linux provides a special interpreter program which can be used to execute

commands of the operating system. It can be used to do various types of operations, call

application programs etc.

 Security - Linux provides user security using authentication features like password

protection/ controlled access to specific files/ encryption of data.

Linux Advantages

1. Low cost: You don‘t need to spend time and money to obtain licenses since Linux and

much of its software come with the GNU General Public License. You can start to work

immediately without worrying that your software may stop working anytime because the free

trial version expires. Additionally, there are large repositories from which you can freely

download high quality software for almost any task you can think of.

2. Stability: Linux doesn‘t need to be rebooted periodically to maintain performance levels.

It doesn‘t freeze up or slow down over time due to memory leaks and such. Continuous

up- times of hundreds of days (up to a year or more) are not uncommon.

3. Performance: Linux provides persistent high performance on workstations and on

networks. It can handle unusually large numbers of users simultaneously, and can make old

computers sufficiently responsive to be useful again.

4. Network friendliness: Linux was developed by a group of programmers over the Internet

and has therefore strong support for network functionality; client and server systems can be

easily set up on any computer running Linux. It can perform tasks such as network backups

faster and more reliably than alternative systems.

5. Flexibility: Linux can be used for high performance server applications, desktop

applications, and embedded systems. You can save disk space by only installing the

components needed for a particular use. You can restrict the use of specific computers by

installing for example only selected office applications instead of the whole suite.

6. Compatibility: It runs all common UNIX software packages and can process all common

file formats.

7. Choice: The large number of Linux distributions gives you a choice. Each distribution is

developed and supported by a different organization. You can pick the one you like best; the

4

core functionalities are the same; most software runs on most distributions.

8. Fast and easy installation: Most Linux distributions come with user-friendly installation

and setup programs. Popular Linux distributions come with tools that make installation of

additional software very user friendly as well.

9. Full use of hard disk: Linux continues work well even when the hard disk is almost full.

10. Multi-tasking: Linux is designed to do many things at the same time; e.g., a large

printing job in the background won‘t slow down your other work.

11. Security: Linux is one of the most secure operating systems. ―Walls‖ and flexible file

access permission systems prevent access by unwanted visitors or viruses. Linux users have to

option to select and safely download software, free of charge, from online repositories

containing thousands of high quality packages. No purchase transactions requiring credit card

numbers or other sensitive personal information are necessary.

12. Open Source: If you develop software that requires knowledge or modification of the

operating system code, LINUX‘s source code is at your fingertips. Most Linux applications

are Open Source as well.

Difference between UNIX and LINUX

Features LINUX UNIX

Cost Linux can be freely distributed,

downloaded freely, distributed

through magazines, Books etc.

There are priced versions for

Linux also, but they are

normally cheaper than

Windows.

Different flavors of Unix have

different cost structures according

to vendors

Development

and

Distribution

Linux is developed by Open

Source development i.e. through

sharing and collaboration of

code and features through

forums etc and it is distributed

Unix systems are divided into

various other flavors, mostly

developed by AT&T as well as

various commercial vendors and

non-profit organizations.

5

 by various vendors.

Manufacturer Linux kernel is developed by

the community. Linus Torvalds

oversees things.

Three biggest distributions are

Solaris (Oracle), AIX (IBM) & HP-

UX Hewlett Packard. And Apple

Makes OSX, an unix based os..

User Everyone. From home users to

developers and computer

enthusiasts alike.

Unix operating systems were

developed mainly for mainframes,

servers and workstations except

OSX, Which is designed for

everyone. The Unix environment

and the client-server program

model were essential elements in

the development of the Internet

Usage Linux can be installed on a wide

variety of computer hardware,

ranging from mobile phones,

tablet computers and video

game consoles, to mainframes

and supercomputers.

The UNIX operating system is used

in internet servers, workstations &

PCs. Backbone of the majority of

finance infrastructure and many

24x365 high availability solutions.

File system

support

Ext2, Ext3, Ext4, Jfs, ReiserFS,

Xfs, Btrfs, FAT, FAT32, NTFS

jfs, gpfs, hfs, hfs+, ufs, xfs, zfs

format

Text mode

interface

BASH (Bourne Again SHell) is

the Linux default shell. It can

support multiple command

interpreters.

Originally the Bourne Shell. Now

it's compatible with many others

including BASH, Korn & C.

What is it? Linux is an example of Open

Source software development

and Free Operating System

(OS).

Unix is an operating system that is

very popular in universities,

companies, big enterprises etc.

http://www.diffen.com/difference/PS4_vs_Wii_U
http://www.diffen.com/difference/PS4_vs_Wii_U
http://www.diffen.com/difference/FAT32_vs_NTFS

6

GUI Linux typically provides two

GUIs, KDE and Gnome. But

there are millions of alternatives

such as LXDE, Xfce, Unity,

Mate, twm, ect.

Initially Unix was a command

based OS, but later a GUI was

created called Common Desktop

Environment. Most distributions

now ship with Gnome.

Price Free but support is available for

a price.

Some free for development use

(Solaris) but support is available for

a price.

Security Linux has had about 60-100

viruses listed till date. None of

them actively spreads

nowadays.

A rough estimate of UNIX viruses

is between 85 -120 viruses reported

till date.

Threat

detection and

solution

In case of Linux, threat

detection and solution is very

fast, as Linux is mainly

community driven and

whenever any Linux user posts

any kind of threat, several

developers start working on it

from different parts of the world

Because of the proprietary nature of

the original Unix, users have to

wait for a while, to get the proper

bug fixing patch. But these are not

as common.

Processors Dozens of different kinds. x86/x64, Sparc, Power, Itanium,

PA-RISC, PowerPC and many

others.

Examples Ubuntu, Fedora, Red Hat,

Debian, Archlinux, Android etc.

OS X, Solaris, All Linux

Architectures Originally developed for Intel's

x86 hardware, ports available

for over two dozen CPU types

including ARM

is available on PA-RISC and

Itanium machines. Solaris also

available for x86/x64 based

systems.OSX is PowerPC(10.0-

http://www.diffen.com/difference/GNOME_vs_KDE
http://www.diffen.com/difference/Linux_Mint_vs_Ubuntu
http://www.diffen.com/difference/Fedora_vs_Ubuntu

7

 10.5)/x86(10.4)/x64(10.5-10.8)

Inception Inspired by MINIX (a Unix-like

system) and eventually after

adding many features of GUI,

Drivers etc, Linus Torvalds

developed the framework of the

OS that became LINUX in

1992. The LINUX kernel was

released on 17th September,

1991

In 1969, it was developed by a

group of AT&T employees at Bell

Labs and Dennis Ritchie. It was

written in ―C‖ language and was

designed to be a portable, multi-

tasking and multi-user system in a

time-sharing configuration

Linux Distribution (Operating System) Names

A few popular names:

1.Redhat Enterprise Linux

2.Fedora Linux

3. Debian Linux

4. Suse Enterprise Linux

5.Ubuntu Linux

Common things between Linux & UNIX

Both share many common applications such as:

1.GUI, file, and windows managers (KDE, Gnome)

2.Shells (ksh, csh, bash)

3. Various office applications such as OpenOffice.org

4. Development tools (perl, php, python, GNU c/c++ compilers)

5.Posix interface

8

Layered Architecture:

Linux System Architecture is consists of following layers

 Hardware layer - Hardware consists of all peripheral devices (RAM/ HDD/ CPU etc).

 Kernel - Core component of Operating System, interacts directly with hardware,

provides low level services to upper layer components.

 Shell - An interface to kernel, hiding complexity of kernel's functions from users. Takes

commands from user and executes kernel's functions.

 Utilities - Utility programs giving user most of the functionalities of an operating

systems.

LINUX File system

Linux file structure files are grouped according to purpose. Ex: commands, data files,

documentation. Parts of a Unix directory tree are listed below. All directories are grouped

under the root entry "/". That part of the directory tree is left out of the below diagram.

9

1. / – Root

 Every single file and directory starts from the root directory.

 Only root user has write privilege under this directory.

 Please note that /root is root user‘s home directory, which is not same as /.

2. /bin – User Binaries

 Contains binary executables.

 Common linux commands you need to use in single-user modes are located under this

directory.

 Commands used by all the users of the system are located here.

 For example: ps, ls, ping, grep, cp.

3. /sbin – System Binaries

 Just like /bin, /sbin also contains binary executables.

 But, the linux commands located under this directory are used typically by system

aministrator, for system maintenance purpose.

 For example: iptables, reboot, fdisk, ifconfig, swapon

4. /etc – Configuration Files

 Contains configuration files required by all programs.

 This also contains startup and shutdown shell scripts used to start/stop individual

programs.

 For example: /etc/resolv.conf, /etc/logrotate.conf

5. /dev – Device Files

 Contains device files.

 These include terminal devices, usb, or any device attached to the system.

 For example: /dev/tty1, /dev/usbmon0

6. /proc – Process Information

 Contains information about system process.

 This is a pseudo filesystem contains information about running process. For example:

/proc/{pid} directory contains information about the process with that particular pid.

 This is a virtual filesystem with text information about system resources. For example:

/proc/uptime

7. /var – Variable Files

 var stands for variable files.

 Content of the files that are expected to grow can be found under this directory.

10

 This includes — system log files (/var/log); packages and database files (/var/lib);

emails (/var/mail); print queues (/var/spool); lock files (/var/lock); temp files needed

across reboots (/var/tmp);

8. /tmp – Temporary Files

 Directory that contains temporary files created by system and users.

 Files under this directory are deleted when system is rebooted.

9. /usr – User Programs

 Contains binaries, libraries, documentation, and source-code for second level programs.

 /usr/bin contains binary files for user programs. If you can‘t find a user binary under

/bin, look under /usr/bin. For example: at, awk, cc, less, scp

 /usr/sbin contains binary files for system administrators. If you can‘t find a system

binary under /sbin, look under /usr/sbin. For example: atd, cron, sshd, useradd, userdel

 /usr/lib contains libraries for /usr/bin and /usr/sbin

 /usr/local contains users programs that you install from source. For example, when you

install apache from source, it goes under /usr/local/apache2

10. /home – Home Directories

 Home directories for all users to store their personal files.

 For example: /home/john, /home/nikita

11. /boot – Boot Loader Files

 Contains boot loader related files.

 Kernel initrd, vmlinux, grub files are located under /boot

 For example: initrd.img-2.6.32-24-generic, vmlinuz-2.6.32-24-generic

12. /lib – System Libraries

 Contains library files that supports the binaries located under /bin and /sbin

 Library filenames are either ld* or lib*.so.*

 For example: ld-2.11.1.so, libncurses.so.5.7

13. /opt – Optional add-on Applications

 opt stands for optional.

 Contains add-on applications from individual vendors.

 add-on applications should be installed under either /opt/ or /opt/ sub-directory.

14. /mnt – Mount Directory

 Temporary mount directory where sysadmins can mount filesystems.

15. /media – Removable Media Devices

 Temporary mount directory for removable devices.

11

 For examples, /media/cdrom for CD-ROM; /media/floppy for floppy drives;

/media/cdrecorder for CD writer

16. /srv – Service Data

 srv stands for service.

 Contains server specific services related data.

 For example, /srv/cvs contains CVS related data.

Linux Utilities:

File Handling utilities:

Cat Command:

cat linux command concatenates files and print it on the standard output.

SYNTAX:

The Syntax is

cat [OPTIONS] [FILE]...

OPTIONS:
-A Show all.

-b Omits line numbers for blank space in the output.

-e A $ character will be printed at the end of each line prior to a new line.

-E Displays a $ (dollar sign) at the end of each line.

-n Line numbers for all the output lines.

-s If the output has multiple empty lines it replaces it with one empty line.

-T Displays the tab characters in the output.

-v

Non-printing characters (with the exception of tabs, new-lines and form-feeds)

are printed visibly.

Example:

To Create a new file:

cat > file1.txt

This command creates a new file file1.txt. After typing into the file press control+d

(^d) simultaneously to end the file.

1. To Append data into the

file: cat >> file1.txt

To append data into the same file use append operator >> to write into the file, else

the file will be overwritten (i.e., all of its contents will be erased).

12

2. To display a

file: cat

file1.txt

This command displays the data in the file.

3. To concatenate several files and

display: cat file1.txt file2.txt

The above cat command will concatenate the two files (file1.txt and file2.txt) and it will

display the output in the screen. Sometimes the output may not fit the monitor screen. In

such situation you can print those files in a nlew file or display the file using less

command.

cat file1.txt file2.txt | less

4. To concatenate several files and to transfer the output to another file.

cat file1.txt file2.txt > file3.txt

In the above example the output is redirected to new file file3.txt. The cat command will

create new file file3.txt and store the concatenated output into file3.txt.

rm COMMAND:

rm linux command is used to remove/delete the file from the directory.

SYNTAX:

The Syntax is

rm [options..] [file | directory]

OPTIONS:

-f Remove all files in a directory without prompting the user.

-i
Interactive. With this option, rm prompts for confirmation before removing

any files.

-r (or) -R

Recursively remove directories and subdirectories in the argument list. The

directory will be emptied of files and removed. The user is normally

prompted for removal of any write-protected files which the directory

contains.

13

EXAMPLE:

1. To Remove / Delete a file:

rm file1.txt

Here rm command will remove/delete the file file1.txt.

2. To delete a directory tree:

rm -ir tmp

This rm command recursively removes the contents of all subdirectories of the tmp

directory, prompting you regarding the removal of each file, and then removes the tmp

directory itself.

3. To remove more files at once

rm file1.txt file2.txt

rm command removes file1.txt and file2.txt files at the same time.

cd COMMAND:

cd command is used to change the directory.

SYNTAX:

The Syntax is

cd [directory | ~ | ./ | ../ | -]

OPTIONS:

-L Use the physical directory structure.

-P Forces symbolic links.

EXAMPLE:

1. cd linux-command

This command will take you to the sub-directory(linux-command) from its parent

directory.

2. cd ..

This will change to the parent-directory from the current working directory/sub-directory.

3. cd ~

This command will move to the user's home directory which is "/home/username".

cp COMMAND:

cp command copy files from one location to another. If the destination is an existing file, then

the file is overwritten; if the destination is an existing directory, the file is copied into the

directory (the directory is not overwritten).

14

SYNTAX:

 The Syntax is

cp [OPTIONS]... SOURCE DEST

cp [OPTIONS]... SOURCE... DIRECTORY

cp [OPTIONS]... --target-directory=DIRECTORY SOURCE...

OPTIONS:

-a same as -dpR.

--backup[=CONTROL] make a backup of each existing destination file

-b like --backup but does not accept an argument.

-f

if an existing destination file cannot be opened, remove it and try

again.

-p same as --preserve=mode,ownership,timestamps.

-

preserve[=ATTR_LIST]

preserve the specified attributes

 (default: mode,ownership,timestamps) and security

contexts, if possible

additional attributes: links, all.

--no-

preserve=ATTR_LIST

don't preserve the specified attribute.

--parents append source path to DIRECTORY.

EXAMPLE:

Copy two

files: cp

file1 file2

The above cp command copies the content of file1.php to file2.php.

1. To backup the copied

file: cp -b file1.php

file2.php

Backup of file1.php will be created with '~' symbol as file2.php~.

2. Copy folder and

subfolders: cp -R scripts

scripts1

The above cp command copy the folder and subfolders from scripts to scripts1.

15

ls COMMAND:

ls command lists the files and directories under current working directory.

SYNTAX:

The

Syntax is

ls [OPTIONS]... [FILE]

OPTIONS:

-l
Lists all the files, directories and their mode, Number of links, owner of the

file, file size, Modified date and time and filename.

-t Lists in order of last modification time.

-a Lists all entries including hidden files.

-d Lists directory files instead of contents.

-p Puts slash at the end of each directories.

-u List in order of last access time.

-i Display inode information.

-ltr List files order by date.

-lSr List files order by file size.

EXAMPLE:

Display root directory contents:

ls /

lists the contents of root directory.

1. Display hidden files and directories:

ls -a

lists all entries including hidden files and directories.

2. Display inode information:

ls -i

7373073 book.gif

7373074 clock.gif

7373082 globe.gif

7373078 pencil.gif

7373080 child.gif

23

16

7373081 email.gif

7373076 indigo.gif

The above command displays filename with inode value.

ln COMMAND:

ln command is used to create link to a file (or) directory. It helps to provide soft link for

desired files. Inode will be different for source and destination.

SYNTAX:

The

Syntax is

ln [options] existingfile(or directory)name newfile(or directory)name

OPTIONS:

-f
Link files without questioning the user, even if the mode of target forbids

writing. This is the default if the standard input is not a terminal.

-n Does not overwrite existing files.

-s Used to create soft links.

EXAMPLE:

1. ln -s file1.txt file2.txt

Creates a symbolic link to 'file1.txt' with the name of 'file2.txt'. Here inode for

'file1.txt' and 'file2.txt' will be different.

2. ln -s nimi nimi1

Creates a symbolic link to 'nimi' with the name of 'nimi1'.

chown COMMAND:

chown command is used to change the owner / user of the file or directory. This is an

admin command, root user only can change the owner of a file or directory.

SYNTAX:

The Syntax is

chown [options] newowner filename/directoryname

17

OPTIONS:

-R
Change the permission on files that are in the subdirectories of the directory

that you are currently in.

-c Change the permission for each file.

-f
Prevents chown from displaying error messages when it is unable to change

the ownership of a file.

EXAMPLE:

1. chown hiox test.txt

The owner of the 'test.txt' file is root, Change to new user hiox.

2. chown -R hiox test

The owner of the 'test' directory is root, With -R option the files and subdirectories

user also gets changed.

3. chown -c hiox calc.txt

Here change the owner for the specific 'calc.txt' file only.

Security By File Permissions

Chmod Command:

chmod command allows you to alter / Change access rights to files and directories.

 File Permission is given for users, group and others as,

User

Group

Others

Permission 000

SYNTAX:

The Syntax is

chmod [options] [MODE] FileName

File Permission

File Permission

0 none

Read Write Execute

18

1 execute only

2 write only

3 write and execute

4 read only

5 read and execute

6 read and write

7 set all permissions

OPTIONS:

-c Displays names of only those files whose permissions are being changed

-f Suppress most error messages

-R Change files and directories recursively

-v Output version information and exit.

EXAMPLE:

1. To view your files with what permission they are:

ls -alt

This command is used to view your files with what permission they are.

2. To make a file readable and writable by the group and others.

chmod 066 file1.txt

3. To allow everyone to read, write, and execute the file

chmod 777 file1.txt

mkdir COMMAND:

mkdir command is used to create one or more directories.

SYNTAX:

The Syntax is

mkdir [options] directories

OPTIONS:

-m Set the access mode for the new directories.

-p Create intervening parent directories if they don't exist.

-v Print help message for each directory created.

19

EXAMPLE:

1. Create directory:

mkdir test

The above command is used to create the directory 'test'.

2. Create directory and set permissions:

mkdir -m 666 test

The above command is used to create the directory 'test' and set the read and write

permission.

rmdir COMMAND:

rmdir command is used to delete/remove a directory and its subdirectories.

SYNTAX:

The Syntax is

rmdir [options..] Directory

OPTIONS:

-p
Allow users to remove the directory dirname and its parent directories which

become empty.

EXAMPLE:

1. To delete/remove a directory

rmdir tmp

rmdir command will remove/delete the directory tmp if the directory is empty.

2. To delete a directory tree:

rm -ir tmp

This command recursively removes the contents of all subdirectories of the tmp

directory, prompting you regarding the removal of each file, and then removes the tmp

directory itself.

mv COMMAND:

mv command which is short for move. It is used to move/rename file from one directory to

another. mv command is different from cp command as it completely removes the file from the

source and moves to the directory specified, where cp command just copies the content from one

file to another.

SYNTAX:

The Syntax is

mv [-f] [-i] oldname newname

20

OPTIONS:

-f
This will not prompt before overwriting (equivalent to --reply=yes). mv -f will

move the file(s) without prompting even if it is writing over an existing target.

-i Prompts before overwriting another file.

EXAMPLE:

1. To Rename / Move a file:

mv file1.txt file2.txt

This command renames file1.txt as file2.txt

2. To move a directory

mv hscripts tmp

In the above line mv command moves all the files, directories and sub-directories from

hscripts folder/directory to tmp directory if the tmp directory already exists. If there is no

tmp directory it rename's the hscripts directory as tmp directory.

3. To Move multiple files/More files into another directory

mv file1.txt tmp/file2.txt newdir

This command moves the files file1.txt from the current directory and file2.txt from the

tmp folder/directory to newdir.

diff COMMAND:

diff command is used to find differences between two files.

SYNTAX:

The Syntax is

diff [options..] from-file to-file

OPTIONS:

-a Treat all files as text and compare them line-by-line.

-b Ignore changes in amount of white space.

-c Use the context output format.

-e Make output that is a valid ed script.

-H
Use heuristics to speed handling of large files that have numerous scattered

small changes.

-i Ignore changes in case; consider upper- and lower-case letters equivalent.

21

-n
Prints in RCS-format, like -f except that each command specifies the number

of lines affected.

-q
Output RCS-format diffs; like -f except that each command specifies the

number of lines affected.

-r When comparing directories, recursively compare any subdirectories found.

-s Report when two files are the same.

-w Ignore white space when comparing lines.

-y Use the side by side output format.

EXAMPLE:

Lets create two files file1.txt and file2.txt and let it have the following data.

Data in file1.txt Data in file2.txt

HIOX TEST

hscripts.com

with friend ship

hiox india

HIOX TEST

HSCRIPTS.com

with friend ship

1. Compare files ignoring white space:

diff -w file1.txt file2.txt

This command will compare the file file1.txt with file2.txt ignoring white/blank space

and it will produce the following output.

2c2

< hscripts.com

> HSCRIPTS.com

4d3

< Hioxindia.com

2. Compare the files side by side, ignoring white space:

diff -by file1.txt file2.txt

This command will compare the files ignoring white/blank space, It is easier to

differentiate the files.

HIOX TEST HIOX TEST

hscripts.com | HSCRIPTS.com

with friend ship with friend ship

Hioxindia.com <

22

The third line(with friend ship) in file2.txt has more blank spaces, but still the -b ignores

the blank space and does not show changes in the particular line, -y printout the result

side by side.

3. Compare the files ignoring case.

diff -iy file1.txt file2.txt

This command will compare the files ignoring case(upper-case and lower-case) and

displays the following output.

HIOX TEST HIOX TEST

hscripts.com HSCRIPTS.com

with friend ship | with friend ship

chgrp COMMAND:

chgrp command is used to change the group of the file or directory. This is an admin

command. Root user only can change the group of the file or directory.

SYNTAX:

The Syntax is

chgrp [options] newgroup filename/directoryname

OPTIONS:

-R
Change the permission on files that are in the subdirectories of the directory

that you are currently in.

-c Change the permission for each file.

-f Force. Do not report errors.

Hioxindia.com <

EXAMPLE:

1. chgrp hiox test.txt

The group of 'test.txt' file is root, Change to newgroup hiox.

2. chgrp -R hiox test

The group of 'test' directory is root. With -R, the files and its subdirectories also changes

to newgroup hiox.

3. chgrp -c hiox calc.txt

They above command is used to change the group for the specific file('calc.txt') only.

About wc

Short for word count, wc displays a count of lines, words, and characters in a file.

23

Syntax

wc [-c | -m | -C] [-l] [-w] [file ...]

-c Count bytes.

-m Count characters.

-C Same as -m.

-l Count lines.

-w Count words delimited by white space characters or new line characters.

Delimiting characters are Extended Unix Code (EUC) characters from any code

set defined by iswspace()

File Name of file to word count.

Examples

wc myfile.txt - Displays information about the file myfile.txt. Below is an example of the output.

5 13 57 myfile.txt

5 = Lines

13 = Words

57 = Characters

About split

Split a file into pieces.

Syntax

split [-linecount | -l linecount] [-a suffixlength] [file [name]]

split -b n [k | m] [-a suffixlength] [file [name]]

-linecount | -l

linecount

Number of lines in each piece. Defaults to 1000 lines.

-a

suffixlength

Use suffixlength letters to form the suffix portion of the filenames of the split

file. If -a is not specified, the default suffix length is 2. If the sum of the name

operand and the suffixlength option-argument would create a filename exceeding

NAME_MAX bytes, an error will result; split will exit with a diagnostic message

 and no files will be created.

-b n Split a file into pieces n bytes in size.

24

-b n k Split a file into pieces n*1024 bytes in size.

-b n m Split a file into pieces n*1048576 bytes in size.

File The path name of the ordinary file to be split. If no input file is given or file is -,

the standard input will be used.

name The prefix to be used for each of the files resulting from the split operation. If no

name argument is given, x will be used as the prefix of the output files. The

combined length of the basename of prefix and suffixlength cannot exceed

NAME_MAX bytes; see OPTIONS.

Examples

split -b 22 newfile.txt new - would split the file "newfile.txt" into three separate files called

newaa, newab and newac each file the size of 22.

split -l 300 file.txt new - would split the file "newfile.txt" into files beginning with the name

"new" each containing 300 lines of text each

About settime and touch

Change file access and modification time.

Syntax

touch [-a] [-c] [-m] [-r ref_file | -t time] file

settime [-f ref_file] file

-a Change the access time of file. Do not change the modification time unless -m is

also specified.

-c Do not create a specified file if it does not exist. Do not write any diagnostic

messages concerning this condition.

-m Change the modification time of file. Do not change the access time unless -a is

also specified.

-r ref_file Use the corresponding times of the file named by ref_file instead of the current

time.

25

-t time Use the specified time instead of the current time. time will be a decimal number

of the form:

[[CC]YY]MMDDhhmm [.SS]

MM - The month of the year [01-12].

DD - The day of the month [01-31].

hh - The hour of the day [00-23].

mm - The minute of the hour [00-59].

CC - The first two digits of the year.

YY - The second two digits of the year.

SS - The second of the minute [00-61].

-f ref_file Use the corresponding times of the file named by ref_file instead of the current

time.

File A path name of a file whose times are to be modified.

Examples

settime myfile.txt

Sets the file myfile.txt as the current time / date.

touch newfile.txt

Creates a file known as "newfile.txt", if the file does not already exist. If the file already exists

the accessed / modification time is updated for the file newfile.txt

About comm

Select or reject lines common to two files.

Syntax

comm [-1] [-2] [-3] file1 file2

-1 Suppress the output column of lines unique to file1.

-2 Suppress the output column of lines unique to file2.

-3 Suppress the output column of lines duplicated in file1 and file2.

file1 Name of the first file to compare.

file2 Name of the second file to compare.

26

Examples

comm myfile1.txt myfile2.txt

The above example would compare the two files myfile1.txt and myfile2.txt.

Process utilities:
ps Command:

ps command is used to report the process status. ps is the short name for Process Status.

SYNTAX:

The Syntax is

ps [options]

OPTIONS:

-a
List information about all processes most frequently requested: all those

except process group leaders and processes not associated with a terminal..

-A or e List information for all processes.

-d List information about all processes except session leaders.

-e List information about every process now running.

-f Generates a full listing.

-j Print session ID and process group ID.

-l Generate a long listing.

EXAMPLE:

1. ps

Output:

PID TTY TIME CMD

2540 pts/1 00:00:00 bash

2621 pts/1 00:00:00 ps

In the above example, typing ps alone would list the current running processes.

2. ps -f

Output:

UID PID PPID C STIME TTY TIME CMD

nirmala 2540 2536 0 15:31 pts/1 00:00:00 bash

nirmala 2639 2540 0 15:51 pts/1 00:00:00 ps -f

Displays full information about currently running processes.

27

kill COMMAND:

kill command is used to kill the background process.

SYNTAX:

The Syntax is

kill [-s] [-l] %pid

OPTIONS:

-s
Specify the signal to send. The signal may be given as a signal name or

number.

-l
Write all values of signal supported by the implementation, if no operand is

given.

-pid Process id or job id.

-9 Force to kill a process.

EXAMPLE:

Step by Step process:

 Open a process music player.

xmms

press ctrl+z to stop the process.

 To know group id or job id of the background task.

jobs -l

 It will list the background jobs with its job id as,

 xmms 3956

kmail 3467

 To kill a job or process.

kill 3956

kill command kills or terminates the background process xmms.

About nice

Invokes a command with an altered scheduling priority.

Syntax

nice [-increment | -n increment] command [argument ...]

28

-increment | -

n increment

increment must be in the range 1-19; if not specified, an increment of 10 is

assumed. An increment greater than 19 is equivalent to 19.

The super-user may run commands with priority higher than normal by using a

negative increment such as -10. A negative increment assigned by an

unprivileged user is ignored.

command The name of a command that is to be invoked. If command names any of the

special built-in utilities, the results are undefined.

argument Any string to be supplied as an argument when invoking command.

Examples

nice +13 pico myfile.txt - runs the pico command on myfile.txt with an increment of +13.

About at

Schedules a command to be ran at a particular time, such as a print job late at night.

Syntax

 at executes commands at a specified time.

atq lists the user's pending jobs, unless the user is the superuser; in that case, everybody's jobs

are listed. The format of the output lines (one for each job) is: Job number, date, hour, job

 class.

atrm deletes jobs, identified by their job number.

batch executes commands when system load levels permit; in other words, when the load

average drops below 1.5, or the value specified in the invocation of atrun.

at [-c | -k | -s] [-f filename] [-q queuename] [-m] -t time [date] [-l] [-r]

-c C shell. csh(1) is used to execute the at-job.

-k Korn shell. ksh(1) is used to execute the at-job.

-s Bourne shell. sh(1) is used to execute the at-job.

-f filename Specifies the file that contains the command to run.

-m Sends mail once the command has been run.

29

-t time Specifies at what time you want the command to be ran. Format hh:mm. am / pm

indication can also follow the time otherwise a 24-hour clock is used. A timezone

name of GMT, UCT or ZULU (case insensitive) can follow to specify that the

time is in Coordinated Universal Time. Other timezones can be specified using

the TZ environment variable. The below quick times can also be entered:

midnight - Indicates the time 12:00 am (00:00).

noon - Indicates the time 12:00 pm.

now - Indicates the current day and time. Invoking at - now will submit submit

an at-job for potentially immediate execution.

date Specifies the date you wish it to be ran on. Format month, date, year. The

following quick days can also be entered:

today - Indicates the current day.

tomorrow - Indicates the day following the current day.

-l Lists the commands that have been set to run.

-r Cancels the command that you have set in the past.

Examples

at -m 01:35 < atjob = Run the commands listed in the 'atjob' file at 1:35AM, in addition all

output that is generated from job mail to the user running the task. When this command has been

successfully enter you should receive a prompt similar to the below example.

Commands will be executed using /bin/csh job 1072250520.a at Wed Dec 24

00:22:00 2003

at -l = This command will list each of the scheduled jobs as seen below.

1072250520.a Wed Dec 24 00:22:00 2003

at -r 1072250520.a = Deletes the job just created.

or

atrm 23 = Deletes job 23.

If you wish to create a job that is repeated you could modify the file that executes the commands

with another command that recreates the job or better yet use the crontab command.

Note: Performing just the at command at the prompt will give you an error "Garbled Time", this

is a standard error message if no switch or time setting is given.

http://www.computerhope.com/unix/ucrontab.htm

30

Disk utilities:

du (abbreviated from disk usage) is a standard Unix program used to estimate file space

usage—space used under a particular directory or files on a file system.

du takes a single argument, specifying a pathname for du to work; if it is not specified, the current

directory is used. The SUS mandates for du the following options:

-a, display an entry for each file (and not directory) contained in the current directory

-H, calculate disk usage for link references specified on the command line

-k, show sizes as multiples of 1024 bytes, not 512-byte

-L, calculate disk usage for link references anywhere

-s, report only the sum of the usage in the current directory, not for each file

-x, only traverse files and directories on the device on which the pathname argument is

specified.

Other Unix and Unix-like operating systems may add extra options. For example, BSD and GNU

du specify a -h option, displaying disk usage in a format easier to read by the user, adding units

with the appropriate SI prefix‘

$ du -sk *

152304 directoryOne

1856548 directoryTwo

Sum of directories in human-readable format (Byte, Kilobyte, Megabyte, Gigabyte, Terabyte and

Petabyte):

$ du -sh *

149M directoryOne

1.8G directoryTwo

disk usage of all subdirectories and files including hidden files within the current directory

(sorted by filesize) :

$ du -sk .[!.]* *| sort -n

disk usage of all subdirectories and files including hidden files within the current directory

(sorted by reverse filesize) :

$ du -sk .[!.]* *| sort –nr

The weight of directories:

$ du -d 1 -c -h

http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Folder_%28computing%29
http://en.wikipedia.org/wiki/Computer_file
http://en.wikipedia.org/wiki/File_system
http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/SI_prefix
http://en.wikipedia.org/wiki/Human-readable

31

df command : Report file system disk space usage

Df command examples - to check free disk space

Type df -h or df -k to list free disk space:

$ df -h

OR

$ df –k

Output:

Filesystem Size Used Avail Use% Mounted on

/dev/sdb1 20G 9.2G 9.6G 49% /

varrun 393M 144k 393M 1% /var/run

varlock 393M 0 393M 0% /var/lock

procbususb 393M 123k 393M 1% /proc/bus/usb

udev 393M 123k 393M 1% /dev

devshm 393M 0 393M 0% /dev/shm

lrm 393M 35M 359M 9% /lib/modules/2.6.20-15-generic/volatile

/dev/sdb5 29G 5.4G 22G 20% /media/docs

/dev/sdb3 30G 5.9G 23G 21% /media/isomp3s

/dev/sda1 8.5G 4.3G 4.3G 51% /media/xp1

/dev/sda2 12G 6.5G 5.2G 56% /media/xp2

/dev/sdc1 40G 3.1G 35G 9% /media/backup

du command examples

du shows how much space one ore more files or directories is using.

$ du -sh

103M

-s option summarize the space a directory is using and -h option provides "Human-readable"

output.

Networking commands:

These are most useful commands in my list while working on Linux server , this enables you to

quickly troubleshoot connection issues e.g. whether other system is connected or not , whether

other host is responding or not and while working for FIX connectivity for advanced trading

system this tools saves quite a lot of time .

This article is in continuation of my article How to work fast in Unix and Unix Command

tutorials and Examples for beginners.

• finding host/domain name and IP address - hostname

• test network connection – ping

• getting network configuration – ifconfig

• Network connections, routing tables, interface statistics – netstat

• query DNS lookup name – nslookup

• communicate with other hostname – telnet

• outing steps that packets take to get to network host – traceroute

• view user information – finger

http://javarevisited.blogspot.com/2011/03/unix-command-tutorial-working-fast-in.html
http://javarevisited.blogspot.com/2011/04/unix-commands-tutorial-and-tips-for.html
http://javarevisited.blogspot.com/2011/04/unix-commands-tutorial-and-tips-for.html

32

• checking status of destination host - telnet

Example of Networking commands in Unix

let's see some example of various networking command in Unix and Linux. Some of them are

quite basic e.g. ping and telnet and some are more powerful e.g. nslookup and netstat. When you

used these commands in combination of find and grep you can get anything you are looking for

e.g. hostname, connection end points, connection status etc.

hostname

hostname with no options displays the machines host name

hostname –d displays the domain name the machine belongs to

hostname –f displays the fully qualified host and domain name

hostname –i displays the IP address for the current machine

ping

It sends packets of information to the user-defined source. If the packets are received, the

destination device sends packets back. Ping can be used for two purposes

1. To ensure that a network connection can be established.

2. Timing information as to the speed of the connection.

If you do ping www.yahoo.com it will display its IP address. Use ctrl+C to stop the test.

ifconfig

View network configuration, it displays the current network adapter configuration. It is handy to

determine if you are getting transmit (TX) or receive (RX) errors.

netstat

Most useful and very versatile for finding connection to and from the host. You can find out all

the multicast groups (network) subscribed by this host by issuing "netstat -g"

netstat -nap | grep port will display process id of application which is using that port

netstat -a or netstat –all will display all connections including TCP and UDP

netstat --tcp or netstat –t will display only TCP connection

netstat --udp or netstat –u will display only UDP connection

netstat -g will display all multicast network subscribed by this host.

slookup

If you know the IP address it will display hostname. To find all the IP addresses for a given

domain name, the command nslookup is used. You must have a connection to the internet for

this utility to be useful.

E.g. nslookup blogger.com

You can also use nslookup to convert hostname to IP Address and from IP Address from

hostname.

traceroute

A handy utility to view the number of hops and response time to get to a remote system or web

site is traceroute. Again you need an internet connection to make use of this tool.

finger

View user information, displays a user‘s login name, real name, terminal name and write status.

this is pretty old unix command and rarely used now days.

telnet

Connects destination host via telnet protocol, if telnet connection establish on any port means

connectivity between two hosts is working fine.

telnet hostname port will telnet hostname with the port specified. Normally it is used to see

http://www.yahoo.com/
http://javarevisited.blogspot.com/2011/09/find-hostname-from-ip-address-to.html

33

C ether

Iface Flags Mask

eth0

[fasil@smashtech]# arp

Address HWtype HWaddress

59.36.13.1

whether host is alive and network connection is fine or not.

10 Most important linux networking commands

Linux is most powerful operating system which often needs to use commands to explore it

effectively.Some of the commands are restricted to normal user groups as they are powerful and

has more functionality involved in it.Here we summarized most interesting and useful

networking commands which every linux user are supposed to be familiar with it.

1. Arp manipulates the kernel‘s ARP cache in various ways. The primary options are clearing

an address mapping entry and manually setting up one. For debugging purposes, the arp

program also allows a complete dump of the ARP cache.ARP displays the IP address assigned to

particular ETH card and mac address

2. Ifconfig is used to configure the network interfaces. Normally we use this command to check

the IP address assigned to the system.It is used at boot time to set up interfaces as

necessary. After that, it is usually only needed when debugging or when system tuning is

needed.

[fasil@smashtech ~]# /sbin/ifconfig

eth0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:126341 errors:0 dropped:0 overruns:0 frame:0

TX packets:44441 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

3. Netstat prints information about the networking subsystem. The type of information which is

usually printed by netstat are Print network connections, routing tables, interface statistics,

masquerade connections, and multicast.

[fasil@smashtech ~]# netstat

Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 .230.87:https ESTABLISHED

Active UNIX domain sockets (w/o servers)

Proto RefCnt Flags Type State I-Node Path

unix 10 [] DGRAM 4970 /dev/log

unix 2 [] DGRAM 6625 @/var/run/hal/hotplug_socket

unix 2 [] DGRAM 2952 @udevd

unix 2 [] DGRAM 100564

unix 3 [] STREAM CONNECTED 62438 /tmp/.X11-unix/X0

unix 3 [] STREAM CONNECTED 62437

http://www.mfasil.com/2009/03/10-most-important-linux-networking.html
http://smashtech.blogspot.com/2008/08/linux-commands-hardware-informations.html

34

unix 3 [] STREAM CONNECTED 10271 @/tmp/fam-root-

unix 3 [] STREAM CONNECTED 10270

unix 3 [] STREAM CONNECTED 9276

unix 3 [] STREAM CONNECTED 9275

4. ping command is used to check the connectivity of a system to a network.Whenever there is

problem in network connectivity we use ping to ensure the system is connected to network.

[root@smashtech ~]# ping google.com

PING google.com (74.125.45.100) 56(84) bytes of data.

64 bytes from yx-in-f100.google.com (74.125.45.100): icmp_seq=0 ttl=241 time=295 ms

64 bytes from yx-in-f100.google.com (74.125.45.100): icmp_seq=1 ttl=241 time=277 ms

64 bytes from yx-in-f100.google.com (74.125.45.100): icmp_seq=2 ttl=241 time=277 ms

--- google.com ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 6332ms

rtt min/avg/max/mdev = 277.041/283.387/295.903/8.860 ms, pipe 2

5. Nslookup is a program to query Internet domain name servers. Nslookup has two modes:

interactive and non-interactive. Interactive mode allows the user to query name servers for

information about various hosts and domains or to print a list of hosts in a domain. Non-

interactive mode is used to print just the name and requested information for a host or domain.

[fasil@smashtech ~]# nslookup google.com

Server: server ip

Address: gateway ip 3

Non-authoritative answer:

Name: google.com

Address: 209.85.171.100

Name: google.com

Address: 74.125.45.100

Name: google.com

Address: 74.125.67.100

6. dig (domain information groper) is a flexible tool for interrogating DNS name servers. It

performs DNS lookups and displays the answers that are returned from the name server(s) that

were queried. Most DNS administrators use dig to troubleshoot DNS problems because of its

flexibility, ease of use and clarity of output. Other lookup tools tend to have less functionality

than dig.

[fasil@smashtech ~]# dig google.com

35

; <<>> DiG 9.2.4 <<>> google.com

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4716

;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 4, ADDITIONAL: 4

;; QUESTION SECTION:

;google.com. IN A

;; ANSWER SECTION:

google.com. 122 IN A 74.125.45.100

google.com. 122 IN A 74.125.67.100

google.com. 122 IN A 209.85.171.100

;; AUTHORITY SECTION:

google.com. 326567 IN NS ns3.google.com.

google.com. 326567 IN NS ns4.google.com.

google.com. 326567 IN NS ns1.google.com.

google.com. 326567 IN NS ns2.google.com.

;; ADDITIONAL SECTION:

ns1.google.com. 152216 IN A 216.239.32.10

ns2.google.com. 152216 IN A 216.239.34.10

ns3.google.com. 152216 IN A 216.239.36.10

ns4.google.com. 152216 IN A 216.239.38.10

;; Query time: 92 msec

;; SERVER: 172.29.36.1#53(172.29.36.1)

;; WHEN: Thu Mar 5 14:38:45 2009

;; MSG SIZE rcvd: 212

7. Route manipulates the IP routing tables. Its primary use is to set up static routes to specific

hosts or networks via an interface after it has been configured with the ifconfig program.When

the add or del options are used, route modifies the routing tables. Without these options, route

displays the current contents of the routing tables.

[fasil@smashtech ~]# route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

54.192.56.321 * 255.255.255.0 U 0 0 0 eth0

* 255.255.0.0 U 0 0 0 eth0

default 0.0.0.0 UG 0 0 0 eth0

36

8. Traceroute : Internet is a large and complex aggregation of network hardware, connected

together by gateways. Tracking the route one‘s packets follow (or finding the miscreant gateway

that‘s discarding your packets) can be difficult.

Traceroute utilizes the IP protocol ‗time to live‘ field and attempts to elicit an ICMP

TIME_EXCEEDED response from each gateway along the path to some host. The only

mandatory parameter is the destination host name or IP number. The default probe

datagram length is 40 bytes, but this may be increased by specifying a packet length (in bytes)

after the destination host name.

[fasil@smashtech ~]# traceroute google.com

traceroute: Warning: google.com has multiple addresses; using 209.85.171.100

traceroute to google.com (209.85.171.100), 30 hops max, 38 byte packets

1 * * *

9.W-displays information about the users currently on the machine, and their processes. The

header shows, in this order, the current time, how long the system has been running, how many

users are currently logged on, and the system load averages for the past 1, 5, and 15 minutes.

[fasil@smashtechl ~]# w

15:18:22 up 4:38, 3 users, load average: 0.89, 0.34, 0.19

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

root :0 - 10:41 ?xdm? 24:53 1.35s /usr/bin/gnome-session

root pts/1 :0.0 10:58 1.00s 0.34s 0.00s w

root pts/2 :0.0 12:10 23:32 0.03s 0.03s bash

Filters:
more COMMAND:

more command is used to display text in the terminal screen. It allows only backward

movement.

SYNTAX:

The Syntax is

more [options] filename

OPTIONS:

-c Clear screen before displaying.

-e Exit immediately after writing the last line of the last file in the argument list.

-n Specify how many lines are printed in the screen for a given file.

+n Starts up the file from the given number.

EXAMPLE:

1. more -c index.php

Clears the screen before printing the file .

2. more -3 index.php

37

Prints first three lines of the given file. Press Enter to display the file line by line.

head COMMAND:

head command is used to display the first ten lines of a file, and also specifies how many lines

to display.

SYNTAX:

The Syntax is

head [options] filename

OPTIONS:

-n To specify how many lines you want to display.

-n number The number option-argument must be a decimal integer whose sign affects
 the location in the file, measured in lines.

-c number
The number option-argument must be a decimal integer whose sign affects

the location in the file, measured in bytes.

EXAMPLE:

1. head index.php

This command prints the first 10 lines of 'index.php'.

2. head -5 index.php

The head command displays the first 5 lines of 'index.php'.

3. head -c 5 index.php

The above command displays the first 5 characters of 'index.php'.

tail COMMAND:

tail command is used to display the last or bottom part of the file. By default it displays last

10 lines of a file.

SYNTAX:

The Syntax is

tail [options] filename

OPTIONS:

-l To specify the units of lines.

-b To specify the units of blocks.

-n To specify how many lines you want to display.

-c number
The number option-argument must be a decimal integer whose sign affects the

location in the file, measured in bytes.

38

-n number
The number option-argument must be a decimal integer whose sign affects the

location in the file, measured in lines.

EXAMPLE:

1. tail index.php

It displays the last 10 lines of 'index.php'.

2. tail -2 index.php

It displays the last 2 lines of 'index.php'.

3. tail -n 5 index.php

It displays the last 5 lines of 'index.php'.

4. tail -c 5 index.php

It displays the last 5 characters of 'index.php'.

cut COMMAND:

cut command is used to cut out selected fields of each line of a file. The cut command uses

delimiters to determine where to split fields.

SYNTAX:

The Syntax is

cut [options]

OPTIONS:

-c Specifies character positions.

-b Specifies byte positions.

-d flags Specifies the delimiters and fields.

EXAMPLE:

1. cut -c1-3 text.txt

Output:

Thi

Cut the first three letters from the above line.

2. cut -d, -f1,2 text.txt

Output:

This is, an example program

The above command is used to split the fields using delimiter and cut the first two fields.

paste COMMAND:

paste command is used to paste the content from one file to another file. It is also used to set

column format for each line.

SYNTAX:

The Syntax is

paste [options]

39

OPTIONS:

-s Paste one file at a time instead of in parallel.

-d Reuse characters from LIST instead of TABs .

EXAMPLE:

1. paste test.txt>test1.txt

Paste the content from 'test.txt' file to 'test1.txt' file.

2. ls | paste - - - -

List all files and directories in four columns for each line.

sort COMMAND:

sort command is used to sort the lines in a text file.

SYNTAX:

The Syntax is

sort [options] filename

OPTIONS:

-r Sorts in reverse order.

-u If line is duplicated display only once.

-o filename Sends sorted output to a file.

EXAMPLE:

1. sort test.txt

Sorts the 'test.txt'file and prints result in the screen.

2. sort -r test.txt

Sorts the 'test.txt' file in reverse order and prints result in the screen.

About uniq

Report or filter out repeated lines in a file.

Syntax

uniq [-c | -d | -u] [-f fields] [-s char] [-n] [+m] [input_file [output_file]]

-c Precede each output line with a count of the number of times the line occurred in

 the input.

-d Suppress the writing of lines that are not repeated in the input.

-u Suppress the writing of lines that are repeated in the input.

40

-f fields Ignore the first fields fields on each input line when doing comparisons, where

fields is a positive decimal integer. A field is the maximal string matched by the

basic regular expression:

[[:blank:]]*[^[:blank:]]*

If fields specifies more fields than appear on an input line, a null string will be

used for comparison.

-s char Ignore the first chars characters when doing comparisons, where chars is a

positive decimal integer. If specified in conjunction with the -f option, the first

chars characters after the first fields fields will be ignored. If chars specifies more

characters than remain on an input line, a null string will be used for comparison.

-n Equivalent to -f fields with fields set to n.

+m Equivalent to -s chars with chars set to m.

input_file A path name of the input file. If input_file is not specified, or if the input_file is -

,the standard input will be used.

output_file A path name of the output file. If output_file is not specified, the standard output

will be used. The results are unspecified if the file named by output_file is the

file named by input_file.

Examples

uniq myfile1.txt > myfile2.txt - Removes duplicate lines in the first file1.txt and outputs the

results to the second file.

About tr

Translate characters.

Syntax

tr [-c] [-d] [-s] [string1] [string2]

-c Complement the set of characters specified by string1.

-d Delete all occurrences of input characters that are specified by string1.

-s Replace instances of repeated characters with a single character.

string1 First string or character to be changed.

41

string2 Second string or character to change the string1.

Examples

echo "12345678 9247" | tr 123456789 computerh - this example takes an echo response of

'12345678 9247' and pipes it through the tr replacing the appropriate numbers with the letters. In

this example it would return computer hope.

tr -cd '\11\12\40-\176' < myfile1 > myfile2 - this example would take the file myfile1 and strip

all non printable characters and take that results to myfile2.

Text processing utilities and Backup utilities:

Text processing utilities:

cat : concatenate files and print on the standard output

Usage: cat [OPTION] [FILE]...

eg. cat file1.txt file2.txt

cat n

file1.txt

echo : display a line of text

Usage: echo [OPTION] [string] ...

eg. echo I love India

echo $HOME

wc: print the number of newlines, words, and bytes in files

Usage: wc [OPTION]... [FILE]...

eg. wc file1.txt

wc L

file1.txt

sort :sort lines of text files

Usage: sort [OPTION]... [FILE]...

eg. sort file1.txt

sort r

file1.txt

42

General Commands:
date COMMAND:

date command prints the date and time.

SYNTAX:

The Syntax is

date [options] [+format] [date]

OPTIONS:

-a
Slowly adjust the time by sss.fff seconds (fff represents fractions of a second).

This adjustment can be positive or negative.Only system admin/ super user

 can adjust the time.

- date -

string

Sets the time and date to the value specfied in the datestring. The datestr may

contain the month names, timezones, 'am', 'pm', etc.

-u Display (or set) the date in Greenwich Mean Time (GMT-universal time).

Format:

%a Abbreviated weekday(Tue).

%A Full weekday(Tuesday).

%b Abbreviated month name(Jan).

%B Full month name(January).

%c Country-specific date and time format..

%D Date in the format %m/%d/%y.

%j Julian day of year (001-366).

%n Insert a new line.

%p String to indicate a.m. or p.m.

%T Time in the format %H:%M:%S.

%t Tab space.

%V Week number in year (01-52); start week on Monday.

43

EXAMPLE:

date command

date

The above command will print Wed Jul 23 10:52:34 IST 2008

1. To use tab space:

date +"Date is %D %t Time is %T"

The above command will remove space and print as

Date is 07/23/08 Time is 10:52:34

2. To know the week number of the year,

date -V

The above command will print 30

3. To set the date,

date -s "10/08/2008 11:37:23"

The above command will print Wed Oct 08 11:37:23 IST 2008

who COMMAND:

who command can list the names of users currently logged in, their terminal, the time they

have been logged in, and the name of the host from which they have logged in.

SYNTAX:

The Syntax is

who [options] [file]

OPTIONS:

am i
Print the username of the invoking user, The 'am' and 'i' must be space

separated.

-b Prints time of last system boot.

-d print dead processes.

-H Print column headings above the output.

-i Include idle time as HOURS:MINUTES. An idle time of . indicates activity
 within the last minute.

-m Same as who am i.

-q Prints only the usernames and the user count/total no of users logged in.

-T,-w Include user's message status in the output.

44

EXAMPLE:

1. who –Uh

Output:

NAME LINE TIME IDLE PID COMMENT

hiox ttyp3 Jul 10 11:08 . 4578

This sample output was produced at 11 a.m. The "." indiacates activity within the last

minute.

2. who am i

who am i command prints the user name.

echo COMMAND:

echo command prints the given input string to standard output.

SYNTAX:

The Syntax is

echo [options..] [string]

OPTIONS:

-n do not output the trailing newline

-e enable interpretation of the backslash-escaped characters listed below

-E disable interpretation of those sequences in STRINGs

Without -E, the following sequences are recognized and interpolated:

\NNN
the character whose ASCII code is NNN

(octal)

\a alert (BEL)

\\ backslash

\b backspace

\c suppress trailing newline

\f form feed

\n new line

\r carriage return

\t horizontal tab

\v vertical tab

EXAMPLE:

echo command

echo "hscripts Hiox India"

The above command will print as hscripts Hiox India

45

1. To use backspace:

echo -e "hscripts \bHiox \bIndia"

The above command will remove space and print as hscriptsHioxIndia

2. To use tab space in echo command

echo -e "hscripts\tHiox\tIndia"

The above command will print as hscripts Hiox India

passwd COMMAND:

passwd command is used to change your password.

SYNTAX:

The Syntax is

passwd [options]

OPTIONS:

-a Show password attributes for all entries.

-l Locks password entry for name.

-d
Deletes password for name. The login name will not be prompted for

password.

-f
Force the user to change password at the next login by expiring the password

for name.

EXAMPLE:

1. passwd

Entering just passwd would allow you to change the password. After entering passwd you

will receive the following three prompts:

Current Password:

New Password:

Confirm New Password:

Each of these prompts must be entered correctly for the password to be successfully

changed.

pwd COMMAND:

pwd - Print Working Directory. pwd command prints the full filename of the current working

directory.

46

SYNTAX:

The Syntax is

pwd [options]

OPTIONS:

-P The pathname printed will not contain symbolic links.

-L The pathname printed may contain symbolic links.

EXAMPLE:

1. Displays the current working directory.

pwd

If you are working in home directory then, pwd command displays the current working

directory as /home.

cal COMMAND:

cal command is used to display the calendar.

SYNTAX:

The Syntax is

cal [options] [month] [year]

OPTIONS:

-1 Displays single month as output.

-3 Displays prev/current/next month output.

-s Displays sunday as the first day of the week.

-m Displays Monday as the first day of the week.

-j Displays Julian dates (days one-based, numbered from January 1).

-y Displays a calendar for the current year.

EXAMPLE:

1. cal

Output:

September 2008

Su Mo Tu We Th Fr Sa

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30

47

cal command displays the current month calendar.

2. cal -3 5 2008

Output:

April 2008 May 2008 June 2008

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

1 2 3 4 5 1 2 3 1 2 3 4 5 6 7

6 7 8 9 10 11 12 4 5 6 7 8 9 10 8 9 10 11 12 13 14

13 14 15 16 17 18 19 11 12 13 14 15 16 17 15 16 17 18 19 20 21

20 21 22 23 24 25 26 18 19 20 21 22 23 24 22 23 24 25 26 27 28

27 28 29 30 25 26 27 28 29 30 31 29 30

Here the cal command displays the calendar of April, May and June month of year 2008.

login Command

Signs into a new system.

Syntax

login [-p] [-d device] [-h hostname | terminal | -r hostname] [name [environ]]

-p Used to pass environment variables to the login shell.

-d device login accepts a device option, device. device is taken to be the path name of the

TTY port login is to operate on. The use of the device option can be expected to

improve login performance, since login will not need to call ttyname. The -d

option is available only to users whose UID and effective UID are root. Any

other attempt to use -d will cause login to quietly exit.

-h hostname |

terminal

Used by in.telnetd to pass information about the remote host and terminal type.

-r hostname Used by in.rlogind to pass information about

the remote host.

Examples

login computerhope.com - Would attempt to login to the computerhope domain.

uname command

Print name of current system.

Syntax

uname [-a] [-i] [-m] [-n] [-p] [-r] [-s] [-v] [-X] [-S systemname]

-a Print basic information currently available from the system.

-i Print the name of the hardware implementation (platform).

48

49

-m Print the machine hardware name (class). Use of this option is discouraged; use

uname -p instead.

-n Print the nodename (the nodename is the name by which the system is known to

a communications network).

-p Print the current host's ISA or processor type.

-r Print the operating system release level.

-s Print the name of the operating system. This is the default.

-v Print the operating system version.

-X Print expanded system information, one information

element per line, as expected by SCO Unix. The

displayed information includes:

 system name, node, release, version, machine, and number of CPUs.

 BusType, Serial, and Users (set to "unknown" in Solaris)

 OEM# and Origin# (set to 0 and 1, respectively)

-S

systemname

The nodename may be changed by specifying a system name argument. The

system name argument is restricted to SYS_NMLN characters. SYS_NMLN is

an implementation specific value defined in <sys/utsname.h>. Only the super-

user is allowed

this capability.

Examples

uname -arv

List the basic system information, OS release, and OS version as shown below.

SunOS hope 5.7 Generic_106541-08 sun4m sparc SUNW,SPARCstation-10

uname -p

Display the Linux platform.

SED:

What is sed?

 A non-interactive stream editor

 Interprets sed instructions and performs actions

 Use sed to:

50

 Automatically perform edits on file(s)

 Simplify doing the same edits on multiple files

 Write conversion programs

Sed Command Syntax(Sed Scripts):

51

Sed Operation

How Does sed Work?

 sed reads line of input

 line of input is copied into a temporary buffer called pattern space

 editing commands are applied

 subsequent commands are applied to line in the pattern space, not the original input

line

 once finished, line is sent to output (unless –n option was used)

 line is removed from pattern space

 sed reads next line of input, until end of file

Note: input file is unchanged

sed instruction format(Sed Addresses):

 address determines which lines in the input file are to be processed by the command(s)

 if no address is specified, then the command is applied to each input line

 address types:

 Single-Line address

 Set-of-Lines address

 Range address

 Nested address

Single-Line Address

 Specifies only one line in the input file

 special: dollar sign ($) denotes last line of input file

52

Examples:

 show only line 3

sed -n -e '3 p' input-file

 show only last line

sed -n -e '$ p' input-file

 substitute ―endif‖ with ―fi‖ on line 10

sed -e '10 s/endif/fi/' input-file

Set-of-Lines Address

 use regular expression to match lines

 written between two slashes

 process only lines that match

 may match several lines

 lines may or may not be consecutives

Examples:

sed -e ‘/key/ s/more/other/’ input-file

sed -n -e ‘/r..t/ p’ input-file

Range Address

 Defines a set of consecutive lines

Format:

start-addr,end-addr (inclusive)

Examples:

10,50 line-number,line-number

10,/R.E/ line-number,/RegExp/

/R.E./,10 /RegExp/,line-number

/R.E./,/R.E/ /RegExp/,/RegExp/

Example: Range Address

% sed -n -e ‘/^BEGIN$/,/^END$/p’ input-file

 Print lines between BEGIN and END, inclusive

53

BEGIN

Line 1 of input

Line 2 of input

Line3 of input

END

Line 4 of input

Line 5 of input

Nested Address

 Nested address contained within another address

Example:

print blank lines between line 20 and 30

20,30{

/^$/ p

}

Address with !

 address with an exclamation point (!):

instruction will be applied to all lines that do not match the address

Example:

print lines that do not contain ―obsolete‖

sed -e ‘/obsolete/!p’ input-file

sed commands

Line Number

 line number command (=) writes the current line number before each matched/output line

Examples:

sed -e '/Two-thirds-time/=' tuition.data

sed -e '/^[0-9][0-9]/=' inventory

54

modify commands

Insert Command: i

 adds one or more lines directly to the output before the address:

 inserted ―text‖ never appears in sed‘s pattern space

 cannot be used with a range address; can only be used with the single-line and set-

of-lines address types

Syntax:

[address] i\

text

Append Command: a

 adds one or more lines directly to the output after the address:

 Similar to the insert command (i), append cannot be used with a range address.

 Appended ―text‖ does not appear in sed‘s pattern space.

Syntax:

[address] a\

text

Change Command: c

 replaces an entire matched line with new text

 accepts four address types:

 single-line, set-of-line, range, and nested addresses.

Syntax:

[address1[,address2]] c\

text

Delete Command: d

 deletes the entire pattern space

 commands following the delete command are ignored since the deleted text is no

55

longer in the pattern space

Syntax:

[address1[,address2]] d

Substitute Command (s)

Syntax:

[addr1][,addr2] s/search/replace/[flags]

 replaces text selected by search string with replacement string

 search string can be regular expression

 flags:

 global (g), i.e. replace all occurrences

 specific substitution count (integer), default 1

Regular Expressions: use with sed

56

Substitution Back References

Example: Replacement String &

$ cat datafile

Charles Main 3.0 .98 3 34

Sharon Gray 5.3 .97 5 23

Patricia Hemenway 4.0 .7 4 17

TB Savage 4.4 .84 5 20

AM Main Jr. 5.1 .94 3 13

Margot Weber 4.5 .89 5 9

Ann Stephens 5.7 .94 5 13

$ sed -e ‘s/[0-9][0-9]$/&.5/’ datafile

Charles Main 3.0 .98 3 34.5

Sharon Gray 5.3 .97 5 23.5

57

Patricia Hemenway 4.0 .7 4 17.5

TB Savage 4.4 .84 5 20.5

AM Main Jr. 5.1 .94 3 13.5

Margot Weber 4.5 .89 5 9

Ann Stephens 5.7 .94 5 13.5

Transform Command (y)

Syntax:

[addr1][,addr2]y/a/b/

 translates one character 'a' to another 'b'

 cannot use regular expression metacharacters

 cannot indicate a range of characters

 similar to ―tr‖ command

Example:

$ sed -e ‘1,10y/abcd/wxyz/’ datafile

sed i/o commands

Input (next) Command: n and N

 Forces sed to read the next input line

 Copies the contents of the pattern space to output

 Deletes the current line in the pattern space

 Refills it with the next input line

 Continue processing

58

 N (uppercase) Command

 adds the next input line to the current contents of the pattern space

 useful when applying patterns to two or more lines at the same time

Output Command: p and P

 Print Command (p)

 copies the entire contents of the pattern space to output

 will print same line twice unless the option ―–n‖ is used

 Print command: P

 prints only the first line of the pattern space

 prints the contents of the pattern space up to and including a new line character

 any text following the first new line is not printed

List Command (l)

 The list command: l

 shows special characters (e.g. tab, etc)

 The octal dump command (od -c) can be used to produce similar result

Hold Space

 temporary storage area

used to save the contents of the pattern space

 4 commands that can be used to move text back and forth between the pattern space and

the hold space:

h, H

g, G

File commands

 allows to read and write from/to file while processing standard input

 read: r command

 write: w command

Read File command

Syntax: r filename

 queue the contents of filename to be read and inserted into the output stream at

59

the end of the current cycle, or when the next input line is read

 if filename cannot be read, it is treated as if it were an empty file, without any

error indication

 single address only

Write File command

Syntax: w filename

 Write the pattern space to filename

 The filename will be created (or truncated) before the first input line is read

 all w commands which refer to the same filename are output through the same

FILE stream

Branch Command (b)

 Change the regular flow of the commands in the script file

Syntax: [addr1][,addr2]b[label]

 Branch (unconditionally) to ‗label‘ or end of script

 If ―label‖ is supplied, execution resumes at the line following :label; otherwise,

control passes to the end of the script

 Branch label

:mylabel

Example: The quit (q) Command

Syntax: [addr]q

 Quit (exit sed) when addr is encountered.

Example: Display the first 50 lines and quit

% sed -e ’50q’ datafile

Same as:

% sed -n -e ‘1,50p’ datafile

% head -50 datafile

Awk
What is awk?

 created by: Aho, Weinberger, and Kernighan

 scripting language used for manipulating data and generating reports

 versions of awk

60

 awk, nawk, mawk, pgawk, …

 GNU awk: gawk

What can you do with awk?

 awk operation:

 scans a file line by line

 splits each input line into fields

 compares input line/fields to pattern

 performs action(s) on matched lines

 Useful for:

 transform data files

 produce formatted reports

 Programming constructs:

 format output lines

 arithmetic and string operations

 conditionals and loops

The Command: awk

Basic awk Syntax

 awk [options] ‘script’ file(s)

 awk [options] –f scriptfile file(s)

Options:

-F to change input field separator

61

-f to name script file

Basic awk Program

 consists of patterns & actions:

pattern {action}

 if pattern is missing, action is applied to all lines

 if action is missing, the matched line is printed

 must have either pattern or action

Example:

awk '/for/' testfile

 prints all lines containing string ―for‖ in testfile

Basic Terminology: input file

 A field is a unit of data in a line

 Each field is separated from the other fields by the field separator

 default field separator is whitespace

 A record is the collection of fields in a line

 A data file is made up of records

Example Input File

62

Buffers

 awk supports two types of buffers:

record and field

 field buffer:

 one for each fields in the current record.

 names: $1, $2, …

 record buffer :

 $0 holds the entire record

Some System Variables

FS Field separator (default=whitespace)

RS Record separator (default=\n)

NF Number of fields in current record

NR Number of the current record

OFS Output field separator (default=space)

ORS Output record separator (default=\n)

FILENAME Current filename

Example: Records and Fields

63

% cat emps

Tom Jones 4424 5/12/66 543354

Mary Adams 5346 11/4/63 28765

Sally Chang 1654 7/22/54 650000

Billy Black 1683 9/23/44 336500

% awk '{print NR, $0}' emps

1 Tom Jones 4424 5/12/66 543354

2 Mary Adams 5346 11/4/63 28765

3 Sally Chang 1654 7/22/54 650000

4 Billy Black 1683 9/23/44 336500

Example: Space as Field Separator

% cat emps

Tom Jones 4424 5/12/66 543354

Mary Adams 5346 11/4/63 28765

Sally Chang 1654 7/22/54 650000

Billy Black 1683 9/23/44 336500

% awk '{print NR, $1, $2, $5}' emps

1 Tom Jones 543354

2 Mary Adams 28765

64

3 Sally Chang 650000

4 Billy Black 336500

Example: Colon as Field Separator

% cat em2

Tom Jones:4424:5/12/66:543354

Mary Adams:5346:11/4/63:28765

Sally Chang:1654:7/22/54:650000

Billy Black:1683:9/23/44:336500

% awk -F: '/Jones/{print $1, $2}' em2

Tom Jones 4424

awk Scripts

 awk scripts are divided into three major parts:

65

 comment lines start with #

 BEGIN: pre-processing

 performs processing that must be completed before the file processing starts

(i.e., before awk starts reading records from the input file)

 useful for initialization tasks such as to initialize variables and to create

report headings

 BODY: Processing

 contains main processing logic to be applied to input records

 like a loop that processes input data one record at a time:

 if a file contains 100 records, the body will be executed 100 times, one for

each record

 END: post-processing

 contains logic to be executed after all input data have been processed

 logic such as printing report grand total should be performed in this part

of the script

Pattern / Action Syntax

66

Categories of Patterns

Expression Pattern types

 match

 entire input record

o regular expression enclosed by ‗/‘s

 explicit pattern-matching expressions

o ~ (match), !~ (not match)

o expression operators

 arithmetic

 relational

 logical

 % cat employees2

Tom Jones:4424:5/12/66:543354

Mary Adams:5346:11/4/63:28765

Sally Chang:1654:7/22/54:650000

Billy Black:1683:9/23/44:336500

% awk –F: '/00$/' employees2

Sally Chang:1654:7/22/54:650000

Billy Black:1683:9/23/44:336500

67

Example: explicit match

% cat datafile

northwest NW Charles Main 3.0 .98 3 34

western WE Sharon Gray 5.3 .97 5 23

southwest SW Lewis Dalsass 2.7 .8 2 18

southern SO Suan Chin 5.1 .95 4 15

southeast SE Patricia Hemenway 4.0 .7 4 17

eastern EA TB Savage 4.4 .84 5 20

northeast NE AM Main 5.1 .94 3 13

north NO Margot Weber 4.5 .89 5 9

central CT Ann Stephens

% awk '$5 ~ /\.[7-9]+/' datafile

5.7 .94 5 13

southwest SW Lewis Dalsass 2.7 .8 2 18

central CT Ann Stephens 5.7 .94 5 13

Examples: matching with REs

% awk '$2 !~ /E/{print $1, $2}' datafile

northwest NW

southwest SW

southern SO

north NO

central CT

68

% awk '/^[ns]/{print $1}' datafile

northwest

southwest

southern

southeast

northeast

north

Arithmetic Operators

Operator Meaning Example

+ Add x + y

- Subtract x – y

* Multiply x * y

/ Divide x / y

% Modulus x % y

^ Exponential x ^ y

Example:

% awk '$3 * $4 > 500 {print $0}' file

Relational Operators

Operator Meaning Example

< Less than x < y

< = Less than or equal x < = y

== Equal to x == y

69

!= Not equal to x != y

> Greater than x > y

> = Greater than or equal to x > = y

~ Matched by reg exp x ~ /y/

!~ Not matched by req exp x !~ /y/

Logical Operators

Operator Meaning Example

&& Logical AND a && b

|| Logical OR a || b

! NOT ! a

Examples:

% awk '($2 > 5) && ($2 <= 15) {print $0}' file

% awk '$3 == 100 || $4 > 50' file

Range Patterns

 Matches ranges of consecutive input lines

Syntax:

pattern1 , pattern2 {action}

 pattern can be any simple pattern

 pattern1 turns action on

 pattern2 turns action off

70

Range Pattern Example

awk Actions

awk expressions

 Expression is evaluated and returns value

 consists of any combination of numeric and string constants, variables,

operators, functions, and regular expressions

 Can involve variables

 As part of expression evaluation

 As target of assignment awk variables

 A user can define any number of variables within an awk script

 The variables can be numbers, strings, or arrays

 Variable names start with a letter, followed by letters, digits, and underscore

 Variables come into existence the first time they are referenced; therefore, they do not

need to be declared before use

 All variables are initially created as strings and initialized to a null string ―‖

awk Variables

Format

variable = expression

71

Examples:

% awk '$1 ~ /Tom/

{wage = $3 * $4; print wage}' filename

% awk '$4 == "CA" {$4 = "California"; print $0}' filename

awk assignment operators

= assign result of right-hand-side expression to

left-hand-side variable

++ Add 1 to variable

-- Subtract 1 from variable

+= Assign result of addition

-= Assign result of subtraction

*= Assign result of multiplication

/= Assign result of division

%= Assign result of modulo

^= Assign result of exponentiation

Awk example:

File: grades

john 85 92 78 94 88

andrea 89 90 75 90 86

jasper 84 88 80 92 84

 awk script: average

average five grades

{ total = $2 + $3 + $4 + $5 + $6

avg = total / 5

print $1, avg }

 Run as:

awk –f average grades

Output Statements

72

print

print easy and simple output

printf

print formatted (similar to C printf)

sprintf

format string (similar to C sprintf)

Function: print

 Writes to standard output

 Output is terminated by ORS

 default ORS is newline

 If called with no parameter, it will print $0

 Printed parameters are separated by OFS,

 default OFS is blank

 Print control characters are allowed:

 \n \f \a \t \\ … print example

% awk '{print}' grades

john 85 92 78 94 88

andrea 89 90 75 90 86

% awk '{print $0}' grades

john 85 92 78 94 88

andrea 89 90 75 90 86

% awk '{print($0)}' grades

john 85 92 78 94 88

andrea 89 90 75 90 86

Redirecting print output

73

 Print output goes to standard output

unless redirected via:

> ―file‖

>> ―file‖

| ―command‖

 will open file or command only once

 subsequent redirections append to already open stream

print Example

% awk '{print $1 , $2 > "file"}' grades

% cat file

john 85

andrea 89

jasper 84

% awk '{print $1,$2 | "sort"}' grades

andrea 89

jasper 84

john 85

% awk '{print $1,$2 | "sort –k 2"}' grades

jasper 84

john 85

andrea 89

% date

Wed Nov 19 14:40:07 CST 2008

74

% date |

awk '{print "Month: " $2 "\nYear: ", $6}'

Mo0nth: Nov

Year: 2008

printf: Formatting output

Syntax:

printf(format-string, var1, var2, …)

 works like C printf

 each format specifier in ―format-string‖ requires argument of matching type

Format specifiers

%d %i decimal integer

%c single character

%s string of characters

%f floating point number

%o octal number

%x hexadecimal number

%e scientific floating point notation

%% the letter ―%‖

Format specifier examples

Format specifier modifiers

 between ―%‖ and letter

75

%10s

%7d

%10.4f

%-20s

 meaning:

 width of field, field is printed right justified

 precision: number of digits after decimal point

 ―-‖ will left justify sprintf: Formatting text

Syntax:

sprintf(format-string, var1, var2, …)

 Works like printf, but does not produce output

 Instead it returns formatted string

Example:

{

text = sprintf("1: %d – 2: %d", $1, $2)

print text

}

awk Array

 awk allows one-dimensional arrays

to store strings or numbers

 index can be number or string

 array need not be declared

 its size

 its elements

76

 array elements are created when first used

 initialized to 0 or ―‖

Arrays in awk

Syntax:

arrayName[index] = value

Examples:

list[1] = "one"

list[2] = "three"

list["other"] = "oh my !"

Illustration: Associative Arrays

 awk arrays can use string as index

Awk builtin split functions

split(string, array, fieldsep)

 divides string into pieces separated by fieldsep, and stores the pieces in array

 if the fieldsep is omitted, the value of FS is used.

Example:

split("auto-da-fe", a, "-")

77

 sets the contents of the array a as follows:

a[1] = "auto"

a[2] = "da"

a[3] = "fe"

Example: process sales data

 input file:

 output:

78

 summary of category sales Illustration: process each input line

Illustration: process each input line

Summary: awk program

79

Example: complete program

% cat sales.awk

{

deptSales[$2] += $3

}

END {

for (x in deptSales)

print x, deptSales[x]

}

% awk –f sales.awk sales

awk builtin functions

tolower(string)

 returns a copy of string, with each upper-case character converted to lower-case.

Nonalphabetic characters are left unchanged.

Example: tolower("MiXeD cAsE 123")

returns "mixed case 123"

toupper(string)

 returns a copy of string, with each lower-case character converted to upper-case.

awk Example: list of products

103:sway bar:49.99

101:propeller:104.99

104:fishing line:0.99

113:premium fish bait:1.00

106:cup holder:2.49

107:cooler:14.89

80

112:boat cover:120.00

109:transom:199.00

110:pulley:9.88

105:mirror:4.99

108:wheel:49.99

111:lock:31.00

102:trailer hitch:97.95

awk Example: output

Marine Parts R Us

Main catalog

Part-id name price

======================================

101 propeller 104.99

102 trailer hitch 97.95

103 sway bar 49.99

104 fishing line 0.99

105 mirror 4.99

106 cup holder 2.49

107 cooler 14.89

108 wheel 49.99

109 transom 199.00

81

110 pulley 9.88

111 lock 31.00

112 boat cover 120.00

113 premium fish bait 1.00

======================================

Catalog has 13 parts

awk Example: complete

BEGIN {

FS= ":"

print "Marine Parts R Us"

print "Main catalog"

print "Part-id\tname\t\t\t price"

print "======================================"

}

{

printf("%3d\t%-20s\t%6.2f\n", $1, $2, $3)

count++

}

END {

print "======================================"

print "Catalog has " count " parts"

82

}

Applications:

Awk control structures

 Conditional

 if-else

 Repetition

 for

 with counter

 with array index

 while

 do-while

 also: break, continue

if Statement

Syntax:

if (conditional expression)

statement-1

else

statement-2

Example:

if (NR < 3)

print $2

else

print $3

83

for Loop

Syntax:

for (initialization; limit-test; update)

statement

Example:

for (i = 1; i <= NR; i++)

{

total += $i

count++

}

for Loop for arrays

Syntax:

for (var in array)

statement

Example:

for (x in deptSales)

{

print x, deptSales[x]

}

While Loop

Syntax:

84

while (logical expression)

statement

Example:

i = 1

while (i <= NF)

{

print i, $i

i++

}

do-while Loop

Syntax:

do

statement

while (condition)

 statement is executed at least once, even if condition is false at the beginning

Example:

i = 1

do {

print $0

i++

} while (i <= 10)

85

loop control statements

 break

exits loop

 continue

skips rest of current iteration, continues with next iteration

Shell Programming

The shell has similarities to the DOS command processor Command.com (actually Dos was

design as a poor copy of UNIX shell), it's actually much more powerful, really a programming

language in its own right.

A shell is always available on even the most basic UNIX installation. You have to go through the

shell to get other programs to run. You can write programs using the shell. You use the shell to

administrate your UNIX system. For example:

ls -al | more
is a short shell program to get a long listing of the present directory and route the output through

the more command.

What is a Shell?

A shell is a program that acts as the interface between you and the UNIX system, allowing you
to enter commands for the operating system to execute.

Here are some common shells.

86

Introduction- Working with Bourne Shell

• The Bourne shell, or sh, was the default Unix shell of Unix Version 7. It was developed

by Stephen Bourne, of AT&T Bell Laboratories.

• A Unix shell, also called "the command line", provides the traditional user interface for

the Unix operating system and for Unix-like systems. Users direct the operation of the

computer by entering command input as text for a shell to execute.

• There are many different shells in use. They are

– Bourne shell (sh)

– C shell (csh)

– Korn shell (ksh)

Bourne Again shell (bash)

• When we issue a command the shell is the first agency to acquire the information. It

accepts and interprets user requests. The shell examines &rebuilds the commands

&leaves the execution work to kernel. The kernel handles the h/w on behalf ofthese

commands &all processes in the system.

• The shell is generally sleeping. It wakes up when an input is keyed in at the prompt. This

input is actually input to the program that represents the shell.

•

Shell responsibilities

1. Program Execution

2. Variable and Filename Substitution

3. I/O Redirection

4. Pipeline Hookup

5. Environment Control

6. Interpreted Programming Language

1.Program Execution:

• The shell is responsible for the execution of all programs that you request from your

terminal.

• Each time you type in a line to the shell, the shell analyzes the line and then determines

what to do.

87

• The line that is typed to the shell is known more formally as the command line. The shell

scans this command line and determines the name of the program to be executed and

what arguments to pass to the program.

2. Variable and Filename Substitution:

• Like any other programming language, the shell lets you assign values to variables.

Whenever you specify one of these variables on the command line, preceded by a dollar

sign, the shell substitutes the value assigned to the variable at that point.

3. I/O Redirection:

• It is the shell's responsibility to take care of input and output redirection on the command

line. It scans the command line for the occurrence of the special redirection characters <,

>, or >>.

4. Pipeline Hookup:

• Just as the shell scans the command line looking for redirection characters, it also looks

for the pipe character |. For each such character that it finds, it connects the standard

output from the command preceding the | to the standard input of the one following the |.

It then initiates execution of both programs.

5. Environment Control:

• The shell provides certain commands that let you customize your environment. Your

environment includes home directory, the characters that the shell displays to prompt you

88

to type in a command, and a list of the directories to be searched whenever you request

that a program be executed.

6. Interpreted Programming Language:

• The shell has its own built-in programming language. This language is interpreted,

meaning that the shell analyzes each statement in the language one line at a time and then

executes it. This differs from programming languages such as C and FORTRAN, in

which the programming statements are typically compiled into a machine-executable

form before they are executed.

• Programs developed in interpreted programming languages are typically easier to debug

and modify than compiled ones. However, they usually take much longer to execute than

their compiled equivalents.

Pipes and Redirection

Pipes connect processes together. The input and output of UNIX programs can be redirected.

Redirecting Output

The > operator is used to redirect output of a program. For example:

ls -l > lsoutput.txt

redirects the output of the list command from the screen to the file lsoutput.txt.

To 0append to a file, use the >> operator.

ps >> lsoutput.txt

Redirecting Input

You redirect input by using the < operator. For example:

more < killout.txt

Pipes

We can connect processes together using the pipe operator (|). For example, the following

program means run the ps program, sort its output, and save it in the file pssort.out

ps | sort > pssort.out
The sort command will sort the list of words in a textfile into alphbetical order according to the

ASCII code set character order.

Here Documents

89

A here document is a special way of passing input to a command from a shell script. The

document starts and ends with the same leader after <<. For example:

#!/bin/sh

cat < this is a here

document

!FUNKY!

How It Works

It executes the here document as if it were input commands.

Running a Shell Script

You can type in a sequence of commands and allow the shell to execute them interactively, or

youu can sotre these commands in a file which you can invoke as a program.

Interactive Programs

A quick way of trying out small code fragments is to just type in the shell script on the command

line. Here is a shell program to compile only files that contain the string POSIX.

The Shell as a Programming Language

Creating a Script

To create a shell script first use a text editor to create a file containing the commands. For

example, type the following commands and save them as first.sh

90

Note: commands start with a #.

The line

#!/bin/sh

is special and tells the system to use the /bin/sh program to execute this program.

The command

exit 0

Causes the script program to exit and return a value of 0, which means there were not errors.

Making a Script Executable

There are two ways to execute the script. 1) invoke the shell with the name of the script file as a

parameter, thus:

/bin/sh first.sh

Or 2) change the mode of the script to executable and then after execute it by just typing its
name.

chmod +x first.sh

first.sh

Actually, you may need to type:

./first.sh

to make the file execute unles the path variable has your directory in it.

Shell Syntax

The modern UNIX shell can be used to write quite large, structured programs.

Shell metacharacters

The shell consists of large no. of metacharacters. These characters plays vital role in Unix

programming.

Types of metacharacters:

91

1.File substitution

2.I/O redirection

3.Process execution

4. Quoting metacharacters

5.Positional parameters

6.Special characters

7.Command substitution

Filename substitution:

These metacharacters are used to match the filenames in a directory.

Metacharacter significance

* matches any no. of characters

? matches a single character

[ijk] matches a single character either i,j,k

[!ijk] matches a single character that is not an I,j,k

Shell Variables

Variables are generally created when you first use them. By default, all variables are considered

and stored as strings. Variable names are case sensitive.

 U can define & use variables both in the command line and shell scripts. These variables

are called shell variables.

 No type declaration is necessary before u can use a shell variable.

 Variables provide the ability to store and manipulate the information with in the shell

program. The variables are completely under the control of user.

92

 Variables in Unix are of two types.

1) User-defined variables:

Generalized form:

variable=value.

Eg: $x=10

$echo $x

10

 To remove a variable use unset.

 $unset x

 All shell variables are initialized to null strings by default. To explicitly set null values

use

 x= or x=‗‘ or x=―‖

 To assign multiword strings to a variable use

 $msg=‗u have a mail‘

2) Environment Variables

 They are initialized when the shell script starts and normally

capitalized to distinguish them from user-defined variables in scripts

 To display all variables in the local shell and their values, type the set command

 The unset command removes the variable from the current shell and sub shell

Environment Variables Description

$HOME Home directory

$PATH List of directories to search for commands

$PS1 Command prompt

$PS2 Secondary prompt

$SHELL Current login shell

$0 Name of the shell script

$# No . of parameters passed

93

$$ Process ID of the shell script

Command substitution and Shell commands:

read:

 The read statement is a tool for taking input from the user i.e.

making scripts interactive. It is used with one or more variables.

Input supplied through the standard input is read into these

variables.

$read name

What ever u entered is stored in the variable

name. printf:

Printf is used to print formatted

o/p. printf "format" arg1 arg2 ...

Eg:

$ printf "This is a number: %d\n" 10
This is a number: 10

$

Printf supports conversion specification characters like %d, %s ,%x

,%o…. Exit status of a command:

o Every command returns a value after execution .This value is called the exit

status or return value of a command.

o This value is said to be true if the command executes successfully and false if it fails.
o There is special parameter used by the shell it is the $?. It stores the exit

status of a command.

exit:

o The exit statement is used to prematurely terminate a program. When this

statement is encountered in a script, execution is halted and control is returned to

the calling program- in most cases the shell.

o U don‘t need to place exit at the end of every shell script because the shell
knows when script execution is complete.

set:

 Set is used to produce the list of currently defined variables.

$set

94

 Set is used to assign values to the positional parameters.

$set welcome to Unix

The do-nothing(:)Command

 It is a null command.

 In some older shell scripts, colon was used at the start of a line to introduce a
comment, but modern scripts uses # now.

 expr:

 The expr command evaluates its arguments as an expression:

$ expr 8 + 6

 $ x=`expr 12 / 4 ̀

 $ echo $x

 3

export:

There is a way to make the value of a variable known to a sub shell, and that's

by exporting it with the export command. The format of this command is

export variables

where variables is the list of variable names that you want exported. For any sub

shells that get executed from that point on, the value of the exported variables will be

passed down to the sub shell.

eval:

eval scans the command line twice before executing it. General form for eval

is eval command-line

Eg:

$ cat last

eval echo \$$#

$ last one two three four

four

${n}

If u supply more than nine arguments to a program, u cannot access the tenth and greater
arguments with $10, $11, and so on.

${n} must be used. So to directly access argument 10, you must write

95

${10}

Shift command:

The shift command allows u to effectively left shift your positional parameters. If u execute

the command

Shift

whatever was previously stored inside $2 will be assigned to $1, whatever was previously

stored in $3 will be assigned to $2, and so on. The old value of $1 will be irretrievably lost.

The Environment-Environment Variables

It creates the variable salutation, displays its value, and some parameter variables.

• When a shell starts, some variables are initialized from values in the environment.

Here is a sample of some of them.

Parameter Variables

• If your script is invoked with parameters, some additional variables are created.

Quoting

Normally, parameters are separated by white space, such as a space. Single quot marks can be

used to enclose values containing space(s). Type the following into a file called quot.sh

96

make sure to make it executable by typing the command:

< chmod a+x

quot.sh The results of executing

97

the file is:

How It Works

The variable myvar is created and assigned the string Hi there. The content of the variable is

displyed using the echo $. Double quotes don't effect echoing the value. Single quotes and

backslash do.

The test, or []Command

Here is how to check for the existance of the file fred.c using the test and using the []

command.

You can even place the then on the same line as the if, if youu add a semicolon before the

word then.

Here are the conditon types that can be used with the test command. There are string

comparison.

There are arithmetic comparison.

98

There are file conditions.

Control Structures

The shell has a set of control structures.

if

The if statement is vary similar other programming languages except it ends with a fi.

if condition

then

else

fi

statements

statements

elif

the elif is better known as "else if". It replaces the else part of an if statement with another if

statement. You can try it out by using the following script.

99

#!/bin/sh

echo "Is it morning? Please answer yes or no"
read timeofday

if [$ti0meofday = "yes"]

then

echo "Good morning"

elif [$timeofday = "no"]; then

echo "Good afternoon"

 else

 echo "Sorry, $timeofday not recognized. Enter yes

or no" exit 1 fi

exit 0

How It Works

The above does a second test on the variable timeofday if it isn't equal to yes.

A Problem with Variables

If a variable is set to null, the statement

looks like

if [$timeofday = "yes"]

if [= "yes"]

100

which is illegal. This problem can be fixed by using double quotes around the variable name.

if ["$timeofday" = "yes"]

.

for

The for construct is used for looping through a range of values, which can be any set of strings.

The syntax is:

for variable in values

do

statements

done
Try out the following script:

#!/bin/sh

for foo in bar fud 43

do

echo $foo

done

exit 0

When executed, the output should be:

bar

fud0

43

How It Works

The above example creates the variable foo and assigns it a different value each time around the

for loop.

How It Works

Here is another script which uses the $(command) syntax to expand a list to chap3.txt, chap4.txt,

and chap5.txt and print the files.

#!/bin/sh

for file in $(ls chap[345].txt); do

lpr $file

done0

while

While loops will loop as long as some condition exist. OF course something in the body

statements of the loop should eventually change the condition and cause the loop to exit. Here is

the while loop syntax.

while condition do

statements

done

101

Here is a whil loop that loops 20 times.

#!/bin/sh

foo=1

while ["$foo" -le 20]

do

done exit 0

How It Works

echo "Here we go again" foo=$(($foo+1))

The above script uses the [] command to test foo for <= the value 20. The line

foo=$(($fo0o+1))

increments the value of foo each time the loop executes..

until

The until statement loops until a condition becomes true! Its syntax is:

until condition

do

statements

done
Here is a script using until.

#!/bin/sh

until who | grep "$1" > /dev/null

do

Sl0eep 60
done

now ring the bell and announce the expected user.

echo -e \\a
echo "**** $1 has just loogged in ****"

exit 0

case

The case statement allows the testing of a variable for more then one value. The case statement

ends with the word esac. Its syntax is:

case variable in

pattern [| pattern] ...) statements;;
pattern [| pattern] ...) statements;;

...
esac

102

Here is a sample script using a case statement:

#!/bin/sh

echo "Is it morning? Please answer yes or no"

read timeofday

case "$timeofday" in
"yes") echo "Good Morning";;

"no") echo "Good Afternoon";;

0"y") echo "Good Morning";;

"n") echo "Good Afternoon";;

*) echo "Soory, answer not recognized";;

esac

exit 0

The value in the varaible timeofday is compared to various strings. When a match is made, the

associated echo command is executed.

Here is a case where multiple strings are tested at a time, to do the some action.

case "$timeofday" in

"yes" | "y" | "yes" | "YES") echo "good Morning";;
"n"* | "N"*) <echo "Good Afternoon";;

*) < echo "Sorry, answer not recognized";;

0esac

How It Works

The above has sever strings tested for each possible statement.

Here is a case statement that executes multiple statements for each case.

case "$timeofday" in

"yes" | "y" | "Yes" | "YES")
echo "Good Morning"

echo "Up bright and early this morning"

;;

esac

How It Works

[nN]*)

*)

echo "Good Afternoon"

;;

echo "Sorry, answer not recognized"

echo "Please answer yes or noo"

exit 1

;;

103

When a match is found to the variable value of timeofday, all the statements up to the ;; are

executed.

Arithmetic in shell

The $((...)) is a better alternative to the expr command, which allows simple arithmetic

commands to be processed.

x=$(($x+1))

Parameter Expansion

Using { } around a variable to protect it against expansion.

#!/bin/sh

for i in 1 2
do

my_secret_process ${i}_tmp

done
Here are some of the parameter expansion

How It Works

The try it out exercise uses parameter expansion to demonstrate how parameter expansion works.

Shell Script Examples

Example

#!/bin/sh

echo "Is it morning? (Answer yes or no)"

read timeofday

if [$timeofday = "yes"]; then

104

echo "Good Morning"

else

echo "Good afternoon"

fi

exit 0

elif - Doing further Checks

#!/bin/sh

echo "Is it morning? Please answer yes or no"

read timeofday

if [$timeofday = "yes"]; then

echo "Good Morning"

elif [$timeofday = "no"]; then

echo "Good afternoon"

else echo "Wrong answer! Enter yes or no"

exit 1

fi exit 0

Interrupt Processing-trap

The trap command is used for secifying the actions to take on receipt of signals. It syntax is:

trap command signal

Here are some of the signals.

How It Works

The try it out section has you type in a shell script to test the trap command. It creates a file and

105

keeps saying that it exists until youu cause a control-C interrupt. It does it all again.

Functions

You can define functions inthe shell. The syntax is:

function_name () {

statements
}0

Here is a sample function and its execution.
#!/bin/sh

foo() {

}

echo "Function foo is executing"

106

echo "script starting"

foo

echo "script ended"

exit 0

How It Works

When the above script runs, it defines the funcion foo, then script echos script starting, then it

runs the functions foo which echos Function foo is executing, then it echo script ended.

Here is another sample script with a function in it. Save it as my_name

#!/bin/sh

yes_or_no() {

echo "Parameters are $*"
while true

do

echo -n "Enter yes or no"

read x

0case "$x" in

y | yes) return 0;;

n | no) return 1;;

*) echo "Answer yes or no"
esac

done

}

echo "Original parameters are $*"

if yes_or_no "IS your naem $1"

then

else

fi

0exit 0

How It Works

echo "Hi $1"

echo "Never mind"

107

When my_name is execute with the statement:

my_name Rick and Neil

. gives the output of:
Original parameters are Rick and Neil

Parameters are Is your name Rick

Enter yes or no

no

Never mind

Commands

You can execute normal command and built-in commands from a shell script. Built-in
commands are defined and only run inside of the script.

break

It is used to escape from an enclosing for, while or until loop before the controlling condition has

been met.

The : Command

The colon command is a null command. It can be used for an alias for true..

Continue

The continue command makes the enclosing for, while, or until loop continue at the next

iteration.

The Command

The dot command executes the command in the current shell:

. shell_script

echo

The echo command simply outputs a string to the standard output device followed by a newline

character.

Eval

The eval command evaluates arguments and give s the results.

exec

The exec command can replace the current shell with a different program. It can also modify the

current file descriptors.

exit n

108

The exit command causes the script to exit with exit code n. An exit code of 0 means success.
Here are some other codes.

export

The export command makes the variable named as its parameter available in subshells.

expr

The expr command evaluates its arguments as an expression.

0x = `expr $x + 1`

Here are some of its expression evaluations

printf

The printf command is only available in more recent shells. It works similar to the echo

command. Its general form is:

printf "format string" parameter1 parameter2 ...

Here are some characters and format specifiers.

109

return

The return command causes functions to return. It can have a value parameter which it returns.

set

The set command sets the parameter variables for the shell.

shift

The shift command moves all the parameters variables down by one, so $2 becomes $1, $3

becomes $2, and so on.

unset

The unset command removes variables or functions from the environment.

Command Execution

The result of $(command) is simply the output string from the command, which is then available

to the script.

Debugging Shell Scripts

When an error occurs in a script, the shell prints out the line number with an error. You can use

the set command to set various shell option. Here are some of them.

110

Unit II

Files and Directories

UNIX File Structure

In UNIX, everything is a file.

Programs can use disk files, serial ports, printers and other devices in the exactly the same way

as they would use a file.

Directories, too, are special sorts of files.

File types

Most files on a UNIX system are regular files or directories, but there are additional types of

files:

1. Regular files: The most common type of file, which contains data of some form. There

is no distinction to the UNIX kernel whether this data is text or binary.

2. Directory file: A file contains the names of other files and pointers to information on

these files. Any process that has read permission for a directory file can read the contents

of the directory, but only the kernel can write to a directory file.

3. Character special file: A type of file used for certain types of devices on a system.

4. Block special file: A type of file typically used for disk devices. All devices on a

system are either character special files or block special files.

5. FIFO: A type of file used for interprocess communication between processes. It‘s

sometimes called a named pipe.

6. Socket: A type of file used for network communication between processes. A socket

can also be used for nonnetwork communication between processes on a single host.

7. Symbolic link: A type of file that points to another file.

The argument to each of different file types is defined as follows_

111

Macro Type of file

S_ISREG() Regular file

S_ISDIR() Directory file

S_ISCHR() Character special file

S_ISBLK() Block special file

S_ISFIFO() Pipe or FIFO

S_ISLNK() Symbolic link

S_ISSOCK() Socket

File System Structure

Files are arranged in directories, which also contain subdirectories.

A user, neil, usually has his files stores in a 'home' directory, perhaps /home/neil.

112

Files and Devices

Even hardware devices are represented (mapped) by files in UNIX. For example, as root, you

mount a CD-ROM drive as a file,

$ mount -t iso9660 /dev/hdc /mnt/cd_rom

$ cd /mnt/cd_rom

/dev/console - this device represents the system console.

/dev/tty - This special file is an alias (logical device) for controlling terminal (keyboard and
screen, or window) of a process.

/dev/null - This is the null device. All output written to this device is discarded.

File Metadata Inodes

• A structure that is maintained in a separate area of the hard disk.

• File attributes are stored in the inode.

• Every file is associated with a table called the inode.

• The inode is accessed by the inode number.

• Inode contains the following attributes of a file: file type, file permissions , no. of links

UID of the owner, GID of the group owner, file size date and time of last modification, last

access, change.

File attributes

Attribute value meaning

File type type of the file

Access permission file access permission for owner, group and others

Hard link count no.of hard links of a file.

UID file owner user ID.

GID the file group ID.

File size file size in bytes.

Inode number system inode number of the file.

File system ID file system ID where the file is stored.

113

Kernel Support For Files:

UNIX supports the sharing of open files between different processes. Kernel has three data

structures are used and the relationship among them determines the effect one process has on

another with regard to file sharing.

1. Every process has an entry in the process table. Within each process table entry is a table

of open file descriptors, which is taken as a vector, with one entry per descriptor.

Associated with each file descriptor are

a. The file descriptor flags.

b. A pointer to a file table entry.

2. The kernel maintains a file table for all open files. Each file table entry contains

a. The file status flags for the file(read, write, append, sync, nonblocking, etc.),

b. The current file offset,

c. A pointer to the v-node table entry for the file.

3. Each open file (or device) has a v-node structure. The v-node contains information about

the type of file and pointers to functions that operate on the file. For most files the v-

node also contains the i-node for the file. This information is read from disk when the

file is opened, so that all the pertinent information about the file is readily available.

The arrangement of these three tables for a single process that has two different files open

one file is open on standard input (file descriptor 0) and the other is open standard output

(file descriptor 1).

Here, the first process has the file open descriptor 3 and the second process has file open

descriptor 4. Each process that opens the file gets its own file table entry, but only a single v-

node table entry. One reason each process gets its own file table entry is so that each process has

its own current offset for the file.

 After each ‗write‘ is complete, the current file offset in the file table entry is incremented

by the number of bytes written. If this causes the current file offset to exceed the current

file size, the current file size, in the i-node table the entry is to the current file offset(Ex:

file is extended).

 If a file is opened with O_APPEND flag, a corresponding flag is set in the file status flags

of the file table entry. Each time a ‗write‘ is performed for a file with this append flag

114

set, the current file offset in the file table entry is first set to the current file size from the

i-node table entry. This forces every ‗write‘ to be appended to the current end of file.

 The ‗lseek‘ function only modifies the current offset in the file table entry. No I/O table

place.

 If a file is positioned to its current end of file using lseek, all that happens is the current

file offset in the file table entry is set to the current file size from the i-node table entry.

It is possible for more than a descriptor entry to point to the same file table only. The file

descriptor flag is linked with a single descriptor in a single process, while file status flags are

descriptors in any process that point to given file table entry.

System Calls and Device Drivers

System calls are provided by UNIX to access and control files and devices.

A number of device drivers are part of the kernel.

The system calls to access the device drivers include:

Library Functions

To provide a higher level interface to device and disk files, UNIIX provides a number of standard

libraries.

115

Low-level File Access

Each running program, called a process, has associated with it a number of file descriptors.

When a program starts, it usually has three of these descriptors already opened. These are:

The write system call arranges for the first nbytes bytes from buf to be written to the file

associated with the file descriptor fildes.

With this knowledge, let's write our first program, simple_write.c:

Here is how to run the program and its output.

$ simple_write

Here is some data

$

read

The read system call reads up to nbytes of data from the file associated with the file

decriptor fildes and places them in the data area buf.

This program, simple_read.c, copies the first 128 bytes of the standard input to the standard

output.

116

If you run the program, you should see:

$ echo hello there | simple_read

hello there

$ simple_read < draft1.txt

Files

open

To create a new file descriptor we need to use the open system call.

open establishes an access path to a file or device.

The name of the file or device to be opened is passed as a parameter, path, and

the oflags parameter is used to specify actions to be taken on opening the file.

The oflags are specified as a bitwise OR of a mandatory file access mode and other optional

modes. The open call must specify one of the following file access modes:

117

The call may also include a combination (bitwise OR) of the following optional modes in

the oflags parameter:

Initial Permissions

When we create a file using the O_CREAT flag with open, we must use the three parameter

form. mode, the third parameter, is made form a bitwise OR of the flags defined in the header

file sys/stat.h. These are:

For example

Has the effect of creating a file called myfile, with read permission for the owner and execute

permission for others, and only those permissions.

umask

118

The umask is a system variable that encodes a mask for file permissions to be used when a file is

created.

You can change the variable by executing the umask command to supply a new value.

The value is a three-digit octal value. Each digit is the results of ANDing values from 1, 2, or 4.

For example, to block 'group' write and execute, and 'other' write, the umask would be:

Values for each digit are ANDed together; so digit 2 will have 2 & 1, giving 3. The

resulting umask is 032.

close

119

We use close to terminate the association between a file descriptor, fildes, and its file.

ioctl

ioctl is a bit of a rag-bag of things. It provides an interface for controlling the behavior of

devices, their descriptors and configuring underlying services.

ioctl performs the function indicated by cmd on the object referenced by the descriptor fildes.

Try It Out - A File Copy Program

We now know enough about the open, read and write system calls to write a low-level

program, copy_system.c, to copy one file to another, character by character.

Running the program will give the following:

120

We used the UNIX time facility to measure how long the program takes to run. It took 2 and one

half minutes to copy the 1Mb file.

We can improve by copying in larger blocks. Here is the improved copy_block.c program.

Now try the program, first removing the old output file:

The revised program took under two seconds to do the copy.

Other System Calls for Managing Files

Here are some system calls that operate on these low-level file descriptors.

lseek

121

The lseek system call sets the read/write pointer of a file descriptor, fildes. You use it to set

where in the file the next read or write will occur.

The offset parameter is used to specify the position and the whence parameter specifies how the

offset is used.

whence can be one of the following:

dup and dup2

The dup system calls provide a way of duplicating a file descriptor, giving two or more, different
descriptors that access the same file.

File Status Information-Stat Family: fstat, stat and lstat

The fstat system call returns status information about the file associated with an open file

descriptor.

The members of the structure, stat, may vary between UNIX systems, but will include:

122

The permissions flags are the same as for the open system call above. File-type flags include:

Other mode flags include:

Masks to interpret the st_mode flags include:

123

There are some macros defined to help with determining file types. These include:

To test that a file doesn't represent a directory and has execute permisson set for the owner and

no other permissions, we can use the test:

File and record locking-fcntl function

• File locking is applicable only for regular files.

• It allows a process to impose a lock on a file so that other processes can not modify the

file until it is unlocked by the process.

• Write lock: it prevents other processes from setting any overlapping read / write locks on

the locked region of a file.

• Read lock: it prevents other processes from setting any overlapping write locks on the

locked region of a file.

• Write lock is also called a exclusive lock and read lock is also called a shared lock.

• fcntl API can be used to impose read or write locks on either a segment or an entire file.

• Function prototype:

#include<fcntl.h>

int fcntl (int fdesc, int cmd_flag, ….);

• All file locks set by a process will be unlocked when the process terminates.

124

File Permission-chmod

You can change the permissions on a file or directory using the chmod system call. Tis forms the

basis of the chmod shell program.

chown

A superuser can change the owner of a file using the chown system call.

Links-soft link and hard link

Soft link(symbolic links):Refer to a symbolic path indicating the abstract location of another

file.

 Used to provide alternative means of referencing files.

 Users may create links for files using ln command by specifying –s option.

hard links : Refer to the specific location of physical data.

 A hard link is a UNIX path name for a file.

 Most of the files have only one hard link. However users may create additional hard links for

files using ln command.

Limitations:

 Users cannot create hard links for directories unless they have super user privileges.

 Users cannot create hard links on a file system that references files on a different systems.

unlink, link, symlink

We can remove a file using unlink.

The unlink system call decrements the link count on a file.

The link system call cretes a new link to an existing file.

125

The symlink creates a symbolic link to an existing file.

Directories

As well as its contents, a file has a name and 'administrative information', i.e. the file's

creation/modification date and its permissions.

The permissions are stored in the inode, which also contains the length of the file and where on

the disc it's stored.

A directory is a file that holds the inodes and names of other files.

mkdir, rmdir

We can create and remove directories using the mkdir and rmdir system calls.

The mkdir system call makes a new directory with path as its name.

The rmdir system call removes an empty directory.

chdir

A program can naviagate directories using the chdir system call.

Current Working Directory- getcwd

A program can determine its current working directory by calling the getcwd library function.

The getcwd function writes the name of the current directory into the given buffer, buf.

126

Scanning Directories

The directory functions are declared in a header file, dirent.h. They use a structure, DIR, as a
basis for directory manipulation.

Here are these functions:

opendir

The opendir function opens a directory and establishes a directory stream.

readdir

The readdir function returns a pointer to a structure detailing the next directory entry in the

directory stream dirp.

The dirent structure containing directory entry details included the following entries:

telldir

127

The telldir function returns a value that records the current position in a directory stream.

seekdir

The seekdir function sets the directory entry pointer in the directory stream given by dirp.

 closedir

The closedir function closes a directory stream and frees up the resources associated with it.

Try It Out - A Directory Scanning Program

1. The printdir, prints out the current directory. It willrecurse for subdirectories.

128

2. Now we move onto the main function:

After some initial error checking, using opendir, to see that the directory exists, printdir makes

a call to chdir to the directory specified. While the entries returned by readdir aren't null, the

program checks to see whether the entry is a directory. If it isn't, it prints the file entry with

indentation depth.

129

The program produces output like this (edited for brevity):How It Works

Here is one way to make the program more general.

You can run it using the command:

$ printdir /usr/local | more

130

UNIT-III

Processes and signals form a fundamental part of the UNIX operating environment, controlling

almost all activities performed by a UNIX computer system.

Here are some of the things you need to understand.

What is a Process

The X/Open Specification defines a process as an address space and single thread of control that

executes within that address space and its required system resources.

A process is, essentially, a running program.

Layout of a C program

Here is how a couple of processes might be arranged within the operationg system.

Each process is allocated a unique number, a process identifier, or PID.

The program code that will be executed by the grep command is stored in a disk file.

The system libraries can also be shared.

A process has its own stack space.

131

Image in main memory

The UNIX process table may be though of as a data structure describing all of the processes that

are currently loaded.

Viewing Processes

We can see what processes are running by using the ps command.

Here is some sample output:

The PID column gives the PIDs, the TTY column shows which terminal started the process,

the STAT column shows the current status, TIME gives the CPU time used so far and

the COMMAND column shows the command used to start the process.

Let's take a closer look at some of these:

The initial login was performed on virtual console number one (v01). The shell is running bash.

Its status is s, which means sleeping. Thiis is because it's waiting for the X Windows sytem to

finish.

X Windows was started by the command startx. It won't finished until we exit from X. It too is

sleeping.

The fvwm is a window manager for X, allowing other programs to be started and windows to be

arranged on the screen.

This process represents a window in the X Windows system. The shell, bash, is running in the

new window. The window is running on a new pseudo terminal (/dev/ptyp0) abbreviated pp0.

132

This is the EMACS editor session started from the shell mentioned above. It uses the pseudo

terminal.

This is a clock program started by the window manager. It's in the middle of a one-minute wait

between updates of the clock hands.

Process environment

Let's look at some other processes running on this Linux system. The output has been
abbreviated for clarity:

Here we can see one very important process indeed:

In general, each process is started by another, known as its parent process. A process so started

is known as a child process.

When UNIX starts, it runs a single program, the prime ancestror and process number one: init.

One such example is the login procedure init starts the getty program once for each terminal that

we can use to long in.

These are shown in the ps output like this:

133

134

When interacting with your server through a shell session, there are many pieces of information

that your shell compiles to determine its behavior and access to resources. Some of these settings

are contained within configuration settings and others are determined by user input.

One way that the shell keeps track of all of these settings and details is through an area it

maintains called the environment. The environment is an area that the shell builds every time that

it starts a session that contains variables that define system properties.

In this guide, we will discuss how to interact with the environment and read or set environmental

and shell variables interactively and through configuration files. We will be using an Ubuntu

12.04 VPS as an example, but these details should be relevant on any Linux system.

Every time a shell session spawns, a process takes place to gather and compile information that

should be available to the shell process and its child processes. It obtains the data for these

settings from a variety of different files and settings on the system.

Basically the environment provides a medium through which the shell process can get or set

settings and, in turn, pass these on to its child processes.

Environment List

The environment is implemented as strings that represent key-value pairs. If multiple values are

passed, they are typically separated by colon (:) characters. Each pair will generally will look

something like this:

KEY=value1:value2:...

If the value contains significant white-space, quotations are used:

KEY="value with spaces"

The keys in these scenarios are variables. They can be one of two types, environmental variables

or shell variables.

Environmental variables are variables that are defined for the current shell and are inherited by

any child shells or processes. Environmental variables are used to pass information into

processes that are spawned from the shell.

Shell variables are variables that are contained exclusively within the shell in which they were

set or defined. They are often used to keep track of ephemeral data, like the current working

directory.

135

By convention, these types of variables are usually defined using all capital letters. This helps

users distinguish environmental variables within other contexts.

Environment variables- getenv, setenv

Every process has an environment block that contains a set of environment variables and their

values. There are two types of environment variables: user environment variables (set for each

user) and system environment variables (set for everyone).

By default, a child process inherits the environment variables of its parent process. Programs

started by the command processor inherit the command processor's environment variables. To

specify a different environment for a child process, create a new environment block and pass a

pointer to it as a parameter to the CreateProcess function.

The command processor provides the set command to display its environment block or to create

new environment variables. You can also view or modify the environment variables by

selecting System from the Control Panel, selectingAdvanced system settings, and

clicking Environment Variables.

Each environment block contains the environment variables in the following format:

Var1=Value1\0

Var2=Value2\0

Var3=Value3\0

...

VarN=ValueN\0\0

The name of an environment variable cannot include an equal sign (=).

The GetEnvironmentStrings function returns a pointer to the environment block of the calling

process. This should be treated as a read-only block; do not modify it directly. Instead, use

the SetEnvironmentVariable function to change an environment variable. When you are finished

with the environment block obtained from GetEnvironmentStrings,call the

FreeEnvironmentStrings function to free the block. Calling SetEnvironmentVariable has no

effect on the system environment variables.

Kernel support for process

The kernel runs the show, i.e. it manages all the operations in a Unix flavored environment. The

kernel architecture must support the primary Unix requirements. These requirements fall in two

categories namely, functions for process management and functions for file management (files

include device files). Process management entails allocation of resources including CPU,

memory, and offers services that processes may need. The file management in itself involves

handling all the files required by processes, communication with device drives and regulating

transmission of data to and from peripherals. The kernel operation gives the user processes a feel

of synchronous operation, hiding all underlying asynchronism in peripheral and hardware

operations (like the time slicing by clock). In summary, we can say that the kernel handles the

following operations :

1. It is responsible for scheduling running of user and other processes.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v%3Dvs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms683187(v%3Dvs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686206(v%3Dvs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms683151(v%3Dvs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686206(v%3Dvs.85).aspx

136

2. It is responsible for allocating memory.

3. It is responsible for managing the swapping between memory and disk.

4. It is responsible for moving data to and from the peripherals.

5. it receives service requests from the processes and honors them.

Process Identification:

Every process has a unique process ID, a non-negative integer. There are two special processes.

Process ID0 is usually the schedule process and is often known as the ‗swapper‘. No program on

disk corresponds to this process – it is part of the kernel and is known as a system process,

process ID1 is usually the ‗init‘ process and is invoked by the kernel at the end of the bootstrap

procedure. The program files for this process loss /etc/init in older version of UNIX and is

/sbin/init is newer version. ‗init‘ usually reads the system dependent initialization files and brings

the system to a certain state. The ‗init‘ process never dies. ‗init‘ becomes the parent process of

any orphaned child process.

Process control

One further ps output example is the entry for the ps command itself:

This indicates that process 192 is in a run state (R) and is executing the command ps-ax.

We can set the process priority using nice and adjust it using renice, which reduce the priority of

a process by 10. High priority jobs have negative values.

Using the ps -l (forlong output), we can view the priority of processes. The value we are

interested in is shown in the NI (nice) column:

Here we can see that the oclock program is running with a default nice value. If it had been

stated with the command,

it would have been allocated a nice value of +10.

We can change the priority of a ruinning process by using the renice command,

137

So that now the clock program will be scheduled to run less often. We can see the modified nice

value with the ps again:

Notice that the status column now also contains N, to indicate that the nice value has changed

from the default.

Process Creation Starting New Processes

We can cause a program to run from inside another program and thereby create a new process by

using the system. library function.

The system function runs the command passed to it as string and waits for it to complete.

The command is executed as if the command,

has been given to a shell.

Try It Out - system

1. We can use system to write a program to run ps for us.

138

2. When we compile and run this program, system.c, we get the following:

3. The system function uses a shell to start the desiredprogram.

We could put the task in the background, by changing the function call to the following:

Now, when we compile and run this version of the program, we get:

How It Works

139

In the first example, the program calls system with the string "ps -ax", which executes

the ps program. Our program returns from the call to system when the ps command is finished.

In the second example, the call to system returns as soon as the shell command finishes. The

shell returns as soon as the ps program is started, just as would happen if we had typed,

at a shell prompt.

Replacing a Process Image

There is a whole family of related functions grouped under the exec heading. They differ in the

way that they start processes and present program arguments.

The exec family of functions replace the current process with another created according to the

arguments given.

If we wish to use an exec function to start the ps program as in our previous examples, we have

the following choices:

140

Try It Out - exclp

Let's modify our example to use an exexlp call.

Now, when we run this program, pexec.c, we get the usual ps output, but no Done. message at

all.

Note also that there is no reference to a process called pexec in the output:

How It Works

The program prints its first message and then calls execlp, which searches the directories given

by the PATH environment variable for a program called ps.

It then executes this program in place of our pexec program, starting it as if we had given the

shell command:

Waiting for a Process

We can arrange for the parent process to wait until the child finishes before continuing by

calling wait.

The wait system call causes a parent process to pause until one of its child processes dies or is

stopped.

We can interrogate the status information using macros defined in sys/wait.h. These include:

141

Try It Out - wait

1. Let's modify our program slightly so we can wait for and examine the child process exit status.

Call the new program wait.c.

142

2. This section of the program waits for the child process to finish:

143

When we run this program, we see the parent wait for the child. The output isn't confused and

the exit code is reported as expected.

How It Works

The parent process uses the wait system call to suspend its own execution until status

information becomes available for a child process.

Zombie Processes

When a child process terminates, an association with its parent survives until the parent in turn

either terminates normally or calls wait.

This terminated child process is known as a zombie process.

Try It Out - Zombies

fork2.c is jsut the same as fork.c, except that the number of messages printed by the child and

paent porcesses is reversed.

Here are the relevant lines of code:

144

How It Works

If we run the above program with fork2 & and then call the ps program after the child has

finished but before the parent has finished, we'll see a line like this:

There's another system call that you can use to wail for child processes. It's called waitpid and you

can use it to wait for a specific process to terminate.

If we want to have a parent process regularly check whether a specific child process had

terminated, we could use the call,

which will return zero if the child has not terminated or stopped or child_pid if it has.

Orphan Process

• When the parent dies first the child becomes Orphan .

• The kernel clears the process table slot for the parent.

System call interface for process management

In addition to the process ID, there are other identifiers for every process. The following

functions return these identifiers

#incldue<sys/types.h>

#include<unistd.h>

pid_t getpid(void); Returns: process ID of calling process

pid_t geppid(void); Returns: parent process ID OF calling process

uid_t getuid(void); Returns: real user ID of calling process

145

uid_t geteuid(void); Returns: effective user ID of calling process

gid_t getgid(void); Returns: real group ID of calling process

gid_t getegid(void); Returns: effective group ID of calling process

fork Function

The only way a new process is created by the UNIX kernel is when an existing process calls the

fork function.

#include<sys/types.h>

#include<unistd.h>

pid_t fork(void);

Return: 0 is child, process ID of child in parent, -1 on error

The new process created by fork is called child process. This is called once, but return twice that

is the return value in the child is 0, while the return value in the parent is the process ID of the

new child. The reason the child‘s process ID is returned to the parent is because a process can

have more than one child, so there is no function that allows a process to obtain the process IDs

of its children. The reason fork return 0 to the child is because a process can have only a single

parent, so that child can always call getppid to obtain the process ID of its parent.

Both the child and parent contain executing with the instruction that follows the call to fork. The

child is copy of the parent. For example, the child gets a copy of the parent‘s data space, heap

and stack. This is a copy for the child the parent and children don‘t share these portions of

memory. Often the parent and child share the text segment, if it is read-only.

There are two users for fork:

1. When a process wants to duplicate itself so that the parent and child can each execute

different sections of code at the same time. This is common for network servers_ the

parent waits for a service requests from a client. When the request arrives, the parent

calls fork and lets the child handle the request. The parent goes back to waiting for the

next service request to arrive.

When a process wants to execute a different program, this is common for shells. In this

case the child does an exec right after it returns from the fork.

146

vfork Function

The function vfork has the same calling sequence and share return values as fork. But the

semantics of the two functions differ. vfork is intended to create a new process when the

purpose of the new process is to exec a new program. vfork creates the new process, just like

fork, without fully copying the address space of the parent into the child, since the child won‘t

reference the address space – the child just calls exec right after the vfork. Instead, while the

child is running, until it calls either exec or exit, the child runs in the address space of the parent.

This optimization provides an efficiency gain on some paged virtual memory implementations of

UNIX.

Another difference between the two functions is that vfork guarantees that the child runs first,

until the parent resumes.

exit Function

There are three ways for a process to terminate normally, and two forms of abnormal

termination.

1. Normal termination:

a. Executing a return from the main function. This is equivalent to calling exit

b. Calling the exit function

c. Calling the _exit function

2. Abnormal termination

a. Calling abort: It generates the SIGABRT signal

b. When the process receives certain signals. The signal can be generated by the

process itself

Regardless of how a process terminates, the same code in the kernel is eventually executed. This

kernel code closes all the open descriptors for the process, releases the memory that it was using,

and the like.

For any of the preceding cases we want the terminating process to be able to notify its parent how it

terminated. For the exit and _exit functions this is done by passing an exit status as the argument to

these two functions. In the case of an abnormal termination however, the kernel generates a

termination status to indicate the reason for the abnormal termination. In any case, the parent of the

process can obtain the termination status from either the wait or waitpid function.The exit status is

converted into a termination status by the kernel when _exit is finally called. If the child terminated

normally, then the parent can obtain the exit status of the child.

147

If the parent terminates before the child, then init process becomes the parent process of any

process, whose parent terminates; that is the process has been inherited by init. Whenever a

process terminates the kernel goes through all active processes to see if the terminating process is

the parent of any process that still exists. If so, the parent process ID of the still existing process

is changed to be 1 to assume that every process has a parent process.

When a child terminates before the parent, and if the child completely disappeared, the parent

wouldn‘t be able to fetch its termination status, when the parent is ready to seek if the child had

terminated. But parent get this information by calling wait and waitpid, which is maintained by

the kernel.

wait and waitpid Functions

When a process terminates, either normally or abnormally, the parent is notified by the kernel

sending the parent SIGCHLD signal. Since the termination of a child is an asynchronous event,

this signal is the asynchronous notification from the kernel to the parent. The default action for

this signal is to be ignored. A parent may want for one of its children to terminate and then

accept it child‘s termination code by executing wait.

A process that calls wait and waitpid can

1. block (if all of its children are still running).

2. return immediately with termination status of a child (if a child has terminated and is

waiting for its termination status to be fetched) or

3. return immediately with an error (if it down have any child process).

If the process is calling wait because it received SIGCHLD signal, we expect wait to return

immediately. But, if we call it at any random point in time, it can block.

#include<sys/types.h>

#include<sys/wait.h>

pid_t wait(int *statloc);

pid_t waitpid(pid_t pid, int *statloc, int options);

Both return: process ID if OK, o or -1 on error

148

The difference between these two functions is

1. wait can block the caller until a child process terminates, while waitpid has an option that

prevents it from blocking.

2. waitpid does not wait for the first child to terminate, it has a number of options that

control which process it waits for.

If a child has already terminated and is a zombie, wait returns immediately with that child‘s

status. Otherwise, it blocks the caller until a child terminates: if the caller blocks and has

multiple children, wait returns when one terminates, we can know this process by PID return by

the function.

For both functions, the argument statloc is pointer to an integer. If this argument is not a null

pointer, the termination status of the terminated process is stored in the location pointed to by the

argument.

If we have more than one child, wait returns on termination of any of the children. A function

that waits for a specific process is waitpid function.

The interpretation of the pid argument for waitpid depends on its value:

pid == -1 waits for any child process. Here, waitpid is equivalent to wait

pid > 0 waits for the child whose process ID equals pid

pid == 0 waits for any child whose process group ID equals that of the calling

process

pid < -1 waits for any child whose process group ID equals the absolute value of

pid

waitpid returns the process ID of the child that terminated, and its termination status is returned

through statloc. With wait the only error is if the calling process has no children. With waitpid

however, it‘s also possible to get an error if the specified process or process group does not exist

or is not a child of the calling process.

The options argument lets us further control the operation of waitpid. This argument is either 0

or is constructed from the bitwise OR of the following constants.

WNOHANG waitpid will not blink if a child specified by pid is not immediately

available. In this case, the return value is 0.

WUNTRACED if the status of any child specified by pid that has stopped, and whose

149

status has not been updated since it has stopped, is returned

The waitpid function provides these features that are not provided by the wait function are:

1. waitpid lets us to wait for one particular process

2. waitpid provides a non-blocking version of wait

3. waitpid supports job control (wit the WUNTRACED option)

exec Function

The fork function can create a new process that then causes another program to be executed by

calling one of the exec functions. When a process calls one of the exec functions, that process is

completely replaced by the new program and the new program starts executing at its main

function. The process ID doesn‘t change across an exec because a new process is not created.

exec merely replaces the current process with a brand new program from disk.

There are six different exec functions. These six functions round out the UNIX control

primitives. With fork we can create new processes, and with the exec functions we can initiate

new programs. The exit function and the two wait functions handle termination and waiting for

termination. These are the only process control primitives we need.

#include<unistd.h>

int execl(const char *pathname, const char *arg0, . . . /*(char *) 0*/

int execv(const char *pathname, char *const argv[]);

int execle(const char *pathname, const char *arg0, . . . /* (char *) 0, char envp[]*/);

int execve(const char *pathname, char *const argv[], char *const envp[]);

int execlp(const char *pathname, const char *arg0, . . . /* (char *) 0*/);

int execvp(const char *filename, char *const argv[]);

All six returns: -1 on error, no return on success.

The first difference in these functions is that the first four take a pathname argument, while the

last two take a filename argument. When a filename argument is specified:

 if filename contains a slash, it is taken as a pathname.

 Otherwise, the executable file is a searched for in directories specified by the PATH

150

environment variable.

The PATH variable contains a list of directories (called path prefixes) that are separated by

colors. For example, the name=value environment string

PATH=/bin:/usr/bin:usr/local/bin/:.

Specifies four directories to search, where last one is current working directory.

If either of the two functions, execlp or execvp finds an executable file using one of the path

prefixes, but the file is not a machine executable that was generated by the link editor, it assumes

the file is a shell script and tries to invoke /bin/sh with filename as input to the shell.

The next difference concerns the passing of argument list. The function execl, execlp and execle

require each of the command-line arguments to the new program to be specified as separate

arguments. The end of the argument should be a null pointer. For the other three functions

execv, execvp and execve, we have to build an array of pointers to the arguments, and the

address of this array is the argument to these three functions.

The final difference is the passing of the environment list to the new program. The two functions

execle and execve allow us to pass a pointer to an array of pointer to an array of pointer to an

array of pointers to the environment strings. The other four functions, however, use the environ

variable in the calling process to copy the existing environment for the new program.

Differences Between Threads and Processes

UNIX processes can cooperate; they can send each other messages and they can interrupt one

another.

There is a class of process known as a thread which are distinct from processes in that they are

separate execution streams within a single process.

Signals

A signal is an event generated by the UNIX system in response to some condition, upon receipt

of which a process may in turn take some action.

Signal names are defined in the header file signal.h. They all begin with SIG and include:

151

Additional signals include:

If the shell and terminal driver are configured normally, typing the interrupt character (Ctrl-C) at

the keyboard will result in the SIGINT signal being sent to the foreground process. This will

cause the program to terminate.

We can handle signals using the signal library function.

152

The signal function itself returns a function of the same type, which is the previous value of the

function set up to handle this signal, or one of these tow special values:

Signal generation & Handling

1. We'll start by writing the function which reacts to the signal which is passed in the parameter sig.

Let's call it ouch:

2. The main function has to intercept the SIGINT signal generated when we type Ctrl-C.

For the rest of the time, it just sits in an infinite loop, printing a message once a second:

3. While the program is running, typing Ctrl-C causes it to react and then continue.

When we type Ctrl-C again, the program ends:

153

How It Works

The program arranges for the function ouch to be called when we type Ctrl-C, which gives

the SIGINT signal.

Kernel support for Signals-Sending Signals

A process may send a signal to itself by calling raise.

A process may send a signal to another process, including itself, by calling kill.

Signals provide us with a useful alarm clock facility.

The alarm function call can be used by a process to schedule a SIGALRM signal at some time

in the future.

154

Try It Out - An Alarm Clock

1. In alarm.c, the first function, ding, simulates an alarm clock:

2. In main, we tell the child process to wait for five seconds before sending a SIGALRM signal

to its parent:

3. The parent process arranges to catch SIGALRM with a call to signal and then waits for the

inevitable.

155

When we run this program, it pauses for five seconds while it waits for the simulated alarm

clock.

This program introduces a new function, pause, which simply causes the program to suspend

execution until a signal occurs.

It's declared as,

How It Works

The alarm clock simulation program starts a new process via fork. This child process sleeps for

five seconds and then sends a SIGALRM to its parent.

A Robust Signals Interface

X/Open specification recommends a newer programming interface for signals that is more

robust: sigaction.

The sigaction structure, used to define the actions to be taken on receipt of the signal specified

by sig, is defined in signal.h and has at least the following members:

Try It Out - sigaction

Make the changes shown below so that SIGINT is intercepted by sigaction. Call the new

156

program ctrlc2.c.

Running the program, we get a message when we type Ctrl-C because SIGINT is handled

repeated;y by sigaction.

Type Ctrl-\ to terminate the program.

157

How It Works

The program calls sigaction instead of signal to set the signal handler for Ctrl-C (SIGINT) to

the function ouch.

Signal Sets

The header file signal.h defines the type sigset_t and functions used to manipulate sets of

signals.

The function sigismember determines whether the given signal is amember of a signal set.

The process signal mask is set or examined by calling the function sigprocmask.

sigprocmask can change the process signal mask in a number of ways according to

the how argument.

158

The how argument can be one of:

If a signal is blocked by a process, it won't be delivered, but will remain pending.

A program can determine which of its blocked signals ar pending by calling the

function sigpending.

A process can suspend execution until the delivery of one of a set of signals by

calling sigsuspend.

This is a more general form of the pause function we met earlier.

Signal Functions

The system calls related to signals are explained in the following sections.

Unreliable signals

The signals could get lost – a signal could occur and the process would never know about it.

Here, the process has little control over a signal, it could catch the signal or ignore it, but

blocking of a signal is not possible.

Reliable signals

Linux supports both POSIX reliable signals (hereinafter "standard signals") and POSIX real-time

signals.

Signal dispositions

159

Each signal has a current disposition, which determines how the process behaves when it is

delivered the signal.

The entries in the "Action" column of the tables below specify the default disposition for each

signal.

kill and raise Functions

The kill function sends a signal to a process or a group of processes. The raise function allows a

process to send a signal to itself.

#include<sys/types.h>

#include<signal.h>

int kill(pid_t pid, int signo);

int raise(int signo);

Both return: 0 if OK, -1 on error

There are four different conditions for the pid argument to kill:

pid > 0 The signal is sent to the process whose process ID is pid.

pid = 0 The signal is sent to all processes whose process group ID equals the process

group ID of the sender and for which the sender has permission to send the signal.

pid<0 The signal is sent to all processes whose process group ID equals the absolute

value of pid and for which the sender has permission to send the signal.

pid = -1 unspecified.

alarm and pause Functions

The alarm function allows us to get a timer that will expire at a specified time in the future.

When the timer expires, the SIGALRM signal is generated. If we ignore or don‘t catch this

signal, its default action is to terminate the process.

#include<unistd.h>

unsigned int alarm(unsigned int seconds);

Returns: 0 or number of seconds until previously set alarm.

160

The seconds value is the number of clock seconds in the future when the signal should be

generated. There is only one of the alarm clocks per process. If, when we call alarm, there is a

previously registered alarm clock for the process that has not yet expired, the number of seconds

left for that alarm clock to return as the value of this function. That previously registered alarm

clock is replaced by the new value.

If there is a previously registered alarm clock for the process that has not yet expired and if the

seconds value is 0, the previous alarm clock is cancelled. The number of seconds left for that

previous alarm clock is still returned as the value of the function.

Although the default action for SIGALRM is terminating the process, most processes use an

alarm clock catch this signal.

161

The pause function suspends the calling process until a signal is caught.

#include<unistd.h>

int pause(void);

Returns: -1 with errno set to EINTR

The only time pause returns is if a signal handler is executed and that handler returns. In that

case, pause returns -1 with errno set to EINTR.

abort Function

abort function causes abnormal program termination.

#include<stdlib.h>

void abort(void);

This function never returns.

This function sends the SIGABRT signal to the process. A process should not ignore this signal.

abort overrides the blocking or ignoring of the signal by the process.

sleep Function

#include<unistd.h>

unsigned int sleep(unsigned int seconds);

Returns: 0 or number of unslept seconds.

This function causes the calling process to be suspended until either:

1. The amount of clock that is specified by seconds has elapsed or

2. A signal is caught by the process and the signal handler returns.

In case 1 the return value is 0 when sleep returns early, because of some signal being caught case

2, the return value is the number of unslept seconds.

Sleep can be implemented with an alarm function. If alarm is used, however, there can

be interaction between the two functions.

162

 Unit IV
Introduction to IPC

Interprocess communication (IPC) includes thread synchorization and data exchange between

threads beyond the process boundaries. If threads belong to the same process, they execute in the

same address space, i.e. they can access global (static) data or heap directly, without the help of

the operating system. However, if threads belong to different processes, they cannot access each

others address spaces without the help of the operating system.

There are two fundamentally different approaches in IPC:

 processes are residing on the same computer

 processes are residing on different computers

The first case is easier to implement because processes can share memory either in the user space

or in the system space. This is equally true for uniprocessors and multiprocessors.

In the second case the computers do not share physical memory, they are connected via I/O

device(for example serial communication or Ethernet). Therefore the processes residing in

different computers can not use memory as a means for communication.

IPC between processes on a Single System

Most of this chapter is focused on IPC on a single computer system, including four general

approaches:

 Shared memory

 Messages

 Pipes

 Sockets

The synchronization objects considered in the previous chapter normally work across the process

boundaries (on a single computer system). There is one addition necessary however: the

synchronization objects must be named. The handles are generally private to the process, while

the object names, like file names, are global and known to all processes.

h = init_CS("xxx");
h = init_semaphore(20,"xxx");

h = init_event("xxx");

h = init_condition("xxx");

h = init_message_buffer(100,"xxx");

IPC between processes on different systems

IPC between processes on different systems

IPC is Inter Process Communication, more of a technique to share data across different processes

within one machine, in such a way that data passing binds the coupling of different processes.

 The first, is using memory mapping techniques, where a memory map is created, and others

163

open the memory map for reading/writing...

 The second is, using sockets, to communicate with one another...this has a high overhead, as

each process would have to open up the socket, communicate across... although effective

 The third, is to use a pipe or a named pipe, a very good example

PIPES:

A pipe is a serial communication device (i.e., the data is read in the order in which it was

written),which allows a unidirectional communication. The data written to end

isreadbackfromtheotherend.

The pipe is mainly used to communicate between two threads in a single process or between

parent and child process. Pipes can only connect the related process. In shell,

thesymbolcanbeusedtocreateapipe.

In pipes the capacity of data is limited. (i.e.) If the writing process is faster than the reading

process which consumes the data, the pipe cannot store the data. In this situation the writer

process will block until more capacity becomes available. Also if the reading process tries to

read data when there is no data to read, it will be blocked until the data becomes available. By

this, pipes automatically synchronize the two process.

Creatingpipes:

The pipe() function provides a means of passing data between two programs and also allows to

read and write the data.

#include<unistd.h>

int pipe(int file_descriptor[2]);

pipe()function is passed with an array of file descriptors. It will fill the array with new file

descriptors and returns zero. On error, returns -1 and sets the errno to indicate the reason of

failure.
The file descriptors are connected in a way that is data written to file_ descriptor[1] can be read

back from the file_descriptor[0].

(Note: As this uses file descriptors and not the file streams, we must use read and write system

calls to access the data.)

Pipes are originally used in UNIX and are made even more powerful in Windows 95/NT/2000.

Pipes are implemented in file system. Pipes are basically files with only two file offsets: one for

reading another for writing. Writing to a pipe and reading from a pipe is strictly in FIFO manner.

(Therefore pipes are also called FIFOs).

For efficiency, pipes are in-core files, i.e. they reside in memory instead on disk, as any other

global data structure. Therefore pipes must be restricted in size, i.e. number of pipe blocks must

be limited. (In UNIX the limitation is that pipes use only direct blocks.)Since the pipes have a

limited size and the FIFO access discipline, the reading and writing processes are synchronized

in a similar manner as in case of message buffers. The access functions for pipes are the same as

for files: WriteFile() and ReadFile().

164

Pipes used as standard input and output:

We can invoke the standard programs, ones that don‘t expect a file descriptor as a parameter.

#include<unistd.h>

int dup(int file_descriptor);
int dup2(int file_descriptor_1,

int file_descriptor_2);

The purpose of dup call is to open a new file descriptor, which will refer to the same file as an

existing file descriptor. In case of dup, the value of the new file descriptor is the lowest number

available. In dup2 it is same as, or the first available descriptor greater than the parameter

file_descriptor_2.

We can pass data between process by first closing the file descriptor 0 and call is made to dup.

By this the new file descriptor will have the number 0.As the new descriptor is the duplicate of

an existing one, standard input is changed to have the access. So we have created two file

descriptors for same file or pipe, one of them will be the standard input.

(Note: The same operation can be performed by using the fcntl() function. But compared to this

dup and dup2 are more efficient)

//pipes.c

#include<unistd.h>

#include<stdlib.h>

#include<stdio.h>

#include<string.h>

int main()

{

int data_processed;

int file_pipes[2];

const char some_data[]= "123";

pid_t fork_result;

if(pipe(file_pipes)==0)

{

fork_result=fork();
if(fork_result==(pid_t)-1)

{
fprintf(stderr,"fork failure");

exit(EXIT_FAILURE);

}

 if(fork_result==(pid_t)0)

{
close(0);

dup(file_pipes[0]);

close(file_pipes[0]);

165

close(file_pipes[1]);

execlp("od","od","-c",(char *)0);

exit(EXIT_FAILURE);

}

else

{

close(file_pipes[0]);

data_processed=write(file_pipes[1],

some_data,strlen(some_data)); close(file_pipes[1]);

printf("%d -wrote %d bytes\n",(int)getpid(),data_processed);

}

} exit(EXIT_SUCCESS);
}

The program creates a pipe and then forks. Now both parent and child process will have its own

file descriptors for reading and writing. Therefore totally there are four file descriptors.

The child process will close its standard input with close(0) and calls duo(file_pipes[0]). This

will duplicate the file descriptor associated with the read end. Then child closes its original file

descriptor. As child will never write, it also closes the write file descriptor,

file_pipes[1]. Now there is only one file descriptor 0 associated with the pipe that is standard

input. Next, child uses the exec to invoke any program that reads standard input.

The od command will wait for the data to be available from the user terminal.

Since the parent never read the pipe, it starts by closing the read end that is file_pipe[0]. When

writing process of data has been finished, the write end of the parent is closed and exited. As there

are no file descriptor open to write to pipe, the od command will be able to read the three bytes

written to pipe, meanwhile the reading process will return 0 bytes indicating the end of the file.

There are two types of pipes:

 Namedpipes.

 Unnamed pipes (Anonymous pipes)

Named pipes (FIFOs)

Similar to pipes, but allows for communication between unrelated processes.

This is done by naming the communication channel and making it permanent.

Like pipe, FIFO is the unidirectional data stream.

FIFO creation:

int mkfifo (const char *pathname, mode_t mode);

- makes a FIFO special file with name pathname.

(mode specifies the FIFO's permissions, as common in UNIX-like file systems).

- A FIFO special file is similar to a pipe, except that it is created in a different way. Instead of being an

anonymous communications channel, a FIFO special file is entered into the file system by calling mkfifo()

Once a FIFO special file has been created, any process can open it for reading or writing, in the
same way as an ordinary file.

166

A First-in, first-out(FIFO) file is a pipe that has a name in the filesystem. It is also called as

med pipes.

Creation of FIFO:

We can create a FIFO from the command line and within a program.

To create from command line we can use either mknod or mkfifo commands.

$ mknod filename p

$ mkfifo filename

(Note: The mknod command is available only n older versions, you can make use of mkfifo in

new versions.)

To create FIFO within the program we can use two system calls. They are,

#include<sys/types.h>

#include<sys/stat.h>

int mkfifo(const char

*filename,mode_t mode);
int mknod(const char *filename,

mode_t mode|S_IFIFO,(dev_t) 0);

If we want to use the mknod function we have to use ORing process of fileaccess mode with

S_IFIFO and the dev_t value of 0.Instead of using this we can use the simple mkfifo function.

Accessing FIFO:

Let us first discuss how to access FIFO in command line using file commmands. The useful

feature of named pipes is, as they appear in the file system, we can use them in commands.

We can read from the FIFO(empty)

$ cat < /tmp/my_fifo

Now, let us write to the FIFO.

$ echo "Simple!!!" > /tmp/my_fifo

(Note: These two commands should be executed in different terminals because first command

will be waiting for some data to appear in the FIFO.)

FIFO can also be accessed as like a file in the program using low-level I/O functions or C library
I/O functions.

The only difference between opening a regular file and FIFO is the use of open_flag with the

optionO_NONBLOCK. The only restriction is that we can‘t open FIFO for reading and writing

with O_RDWR mode.

//fifo1.c

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <fcntl.h>

#include <limits.h>

167

#include <sys/types.h>

#include <sys/stat.h>

#define FIFO_NAME "/tmp/my_fifo"

#define BUFFER_SIZE PIPE_BUF

#define TEN_MEG (1024 * 1024 * 10)

int main()

{

int pipe_fd;

int res;

int open_mode = O_WRONLY;

int bytes_sent = 0;

char buffer[BUFFER_SIZE + 1];
if (access(FIFO_NAME, F_OK) == -1) {

res = mkfifo(FIFO_NAME, 0777);

if (res != 0) {

fprintf(stderr, "Could not create fifo %s\n", FIFO_NAME);

exit(EXIT_FAILURE);

}

}

printf("Process %d opening FIFO O_WRONLY\n", getpid());
pipe_fd = open(FIFO_NAME, open_mode);

printf("Process %d result %d\n", getpid(), pipe_fd); if

(pipe_fd != -1) {

while(bytes_sent < TEN_MEG) {
res = write(pipe_fd, buffer, BUFFER_SIZE); if

(res == -1) {

fprintf(stderr, "Write error on pipe\n");

exit(EXIT_FAILURE);

}

}
(void)close(pipe_fd);

}

else { exit(EXIT_FAILURE);
}

printf("Process %d finished\n", getpid());

exit(EXIT_SUCCESS);

}

//fifo2.c

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <fcntl.h>

#include <limits.h>

#include <sys/types.h>

#include <sys/stat.h>

#define FIFO_NAME "/tmp/my_fifo"

#define BUFFER_SIZE PIPE_BUF int

168

main()

{

int pipe_fd; int

res;

int open_mode = O_RDONLY; char

buffer[BUFFER_SIZE + 1]; int

bytes_read = 0;

memset(buffer, '\0', sizeof(buffer));
printf("Process %d opening FIFO O_RDONLY\n", getpid());

pipe_fd = open(FIFO_NAME, open_mode);

printf("Process %d result %d\n", getpid(), pipe_fd);

if (pipe_fd != -1) {

do {
res = read(pipe_fd, buffer, BUFFER_SIZE);

bytes_read += res;

} while (res > 0);

(void)close(pipe_fd);

}

else {

exit(EXIT_FAILURE);

}

printf("Process %d finished, %d bytes read\n", getpid(), bytes_read);
exit(EXIT_SUCCESS);

}

Both fifo1.c and fifo2.c programs use the FIFO in blocking mode.

First fifo1.c is executed .It blocks and waits for reader to open the named pipe. Now writer

unblocks and starts writing data to pipe. At the same time, the reader starts reading data from the

pipe.

Unnamed pipes (Anonymous Pipes)

Anonymous pipes don't have names, therefore they can be used only between related processes

which can inherit the file handles (file descriptors).

Anonymous pipes are typically used to "pipe" two programs: standard output from one program

is redirected to the pipe input (write handle), while the standard input of the second program is

redirected to from the pipe output (read handle). The pipe is created by the parent (usually the

login shell), and the pipe handles are passed to children through the inheritance mechanism.

Anonymous pipes cannot be used across a network. Also, anonymous pipes are unidirectional- in

order to communicate two related processes in both directions, two anonymous pipes must be

created.

Example of Win32 anonymous pipes used for program piping:

//***

// This program implements piping of programs p1.exe and p2.exe

// through an anonymous pipe. The program creates two child processes

// (which execute images p1.exe and p2.exe) and a pipe, then passes

// the pipe handles to the children.

169

//

// The program is invoked as: pipe p1 p2 (no command line arguments)

//***

#include <windows.h>

#include <iostream.h>

int main(int argc, char *argv[])

{

// Create anonymous (unnamed) pipe
SECURITY_ATTRIBUTES sa;

sa.nLength = sizeof(SECURITY_ATTRIBUTES);
sa.lpSecurityDescriptor = 0;

sa.bInheritHandle = TRUE; // Handles are inheritable (default is FALSE)

HANDLE rh,wh; // Read and write handles of the pipe

if(!CreatePipe(&rh,&wh,&sa,0))

{

cout << "Couldn't create pipe " << GetLastError()<< endl;
return (1);

}

// Create the first child process p1

PROCESS_INFORMATION pi1;

STARTUPINFO si1;

GetStartupInfo(&si1); // Get default startup structure

si1.hStdInput = GetStdHandle(STD_INPUT_HANDLE);

si1.hStdOutput = wh; // Std output of p1 is input to the pipe

si1.dwFlags = STARTF_USESTDHANDLES;

CreateProcess(argv[1], // Name of the p1's image (without ".exe."

0,0,0,

TRUE, // Each open inheritable handle of the
// parent will be inherited by the child

0,0,0,

&si1,&pi1);

CloseHandle(wh); // Pipe handle no longer needed
// Create the second child process p2

PROCESS_INFORMATION pi2;

STARTUPINFO si2;

GetStartupInfo(&si2); // Get default startup structure

si2.hStdInput = rh; // Std input of p2 is otput from the pipe

si2.hStdOutput = GetStdHandle(STD_OUTPUT_HANDLE);

si2.dwFlags = STARTF_USESTDHANDLES;

CreateProcess(0,argv[2], // Name of the p1's image (without ".exe."

0,0,

TRUE, // Each open inheritable handle of the

// parent will be inherited by the child

0,0,0,

&si2,&pi2);

WaitForSingleObject(pi1.hProcess,INFINITE);

CloseHandle(pi1.hProcess);

WaitForSingleObject(pi2.hProcess,INFINITE);

CloseHandle(pi2.hProcess);

CloseHandle(rh);

170

return(0);

}

Comment:
In order to communicate two processes (P1 and P2) through anonymous pipes by redirecting the

standard I/O, the processes don't have to be aware of the existence of pipes, i.e. their sources and

images don't have to be modified.

 Pipe processing:(popen &pclose library functions)

The process of passing data between two programs can be done with the help of popen() and

pclose() functions.

#include<stdio.h>

FILE *popen(const char *command ,

const char *open-mode);

int pclose(FILE *stream_to_close);

popen():

The popen function allows a program to invoke another program as a new process and either

write the data to it or to read from it. The parameter command is the name of the program to run.

The open_mode parameter specifies in which mode it is to be invoked, it can be only either "r" or

"w". On failure popen() returns a NULL pointer. If you want to perform bi-directional

communication you have to use two pipes.

pclose():

By using pclose(), we can close the filestream associated with popen() after the process started

by it has been finished. The pclose() will return the exit code of the process, which is to be

closed. If the process was already executed a wait statement before calling pclose, the exit status

will be lost because the process has been finished. After closing the filestream, pclose() will wait

for the child process to terminate.

Messagequeue:

This is an easy way of passing message between two process. It provides a way of

sending a block of data from one process to another. The main advantage of using this is, each

block of data is considered to have a type, and a receiving process receives the blocks of data

having different type values independently.

Creation and accessing of a message queue:
You can create and access a message queue using the msgget() function.
#include<sys/msg.h>

int msgget(key_t key,int msgflg);

The first parameter is the key value, which specifies the particular message queue. The special

constant IPC_PRIVATE will create a private queue. But on some Linux systems the message

queue may not actually be private.

The second parameter is the flag value, which takes nine permission flags.

171

Adding a message:

The msgsnd() function allows to add a message to a message queue.

#include<sys/msg.h>

int msgsnd(int msqid,const void *msg_ptr ,size_t msg_sz,int msgflg);

The first parameter is the message queue identifier returned from an msgget function.

The second parameter is the pointer to the message to be sent. The third parameter is the size of

the message pointed to by msg_ptr. The fourth parameter, is the flag value controls what happens

if either the current message queue is full or within the limit. On success, the function returns 0

and a copy of the message data has been taken and placed on the message queue, on failure -1 is

returned.

Retrieving a message:

The smirch() function retrieves message from the message queue.
#include<sys/msg.h>

int msgsnd(int msqid,const void *msg_ptr
,size_t msg_sz,long int msgtype ,int msgflg);

The second parameter is a pointer to the message to be received.

The fourth parameter allows a simple form of reception priority. If its value is 0,the first

available message in the queue is retreived. If it is greater than 0,the first message type is

retrived. If it is less than 0,the first message that has a type the same a or less than the absolute

value of msgtype is retrieved.

On success, msgrcv returns the number on bytes placed in the receive buffer, the message is

copied into the user-allocated buffer and the data is deleted from the message queue. It returns -1

on error.

Controlling the message queue:

This is very similar that of control function of shared memory.

#include<sys/msg.h>

int msgctl(int msgid,int command,

struct msqid_ds *buf);

The second parameter takes the values as given below:

1.) IPC_STAT - Sets the data in the msqid_ds to reflect the values associated with the message

 queue.

2.) IPC_SET - If the process has the permission to do so, this sets the values associated with the

message queue to those provided in the msgid_ds data structure.

3.) IPC_RMID-Deletes the message queue.

(Note: If the message queue is deleted while the process is writing in a msgsnd or msgrcv

function, the send or receive function will fail.

172

Client /server Example:

//msgq1.c

#include<stdlib.h>

#include<stdio.h>

#include<string.h>

#include<errno.h>

#include<unistd.h>

#include<sys/msg.h>

struct my_msg_st

{

long int my_msg_type;
char some_text[BUFSIZ];

};

int main()

{

int running = 1;

int msgid;

struct my_msg_st some_data;

long int msg_to_receive = 0;

msgid = msgget((key_t)1234,
0666 | IPC_CREAT);

if (msgid == -1)

{

fprintf(stderr, "failed to get:\n");

exit(EXIT_FAILURE);

}

while (running)

{

if(msgrcv(msgid, (void *)&some_data,
BUFSIZ,msg_to_receive,0) == -1)

{

fprintf(stderr, "failedto receive: \n");

exit(EXIT_FAILURE);

}

printf("You Wrote: %s",

some_data.some_text);

173

if(strncmp(some_data.some_text, "end", 3)

== 0)

{

running = 0;

}

}

if (msgctl(msgid, IPC_RMID, 0) == -1)

{
fprintf(stderr, "failed to delete\n");

exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);

}

//msgq2.c

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <errno.h>

#include <unistd.h>

#include <sys/msg.h>

#define MAX_TEXT 512

struct my_msg_st

{

long int my_msg_type;

char some_text[MAX_TEXT];

};

int main()

{

int running = 1;

struct my_msg_st some_data;

int msgid;

char buffer[BUFSIZ];

msgid = msgget((key_t)1234,
0666 | IPC_CREAT);

if (msgid == -1)

{

fprintf(stderr, "failed to create:\n");
exit(EXIT_FAILURE);

}

while(running)

{

printf("Enter Some Text: ");

fgets(buffer, BUFSIZ, stdin);

some_data.my_msg_type = 1;

strcpy(some_data.some_text, buffer);

174

if(msgsnd(msgid, (void *)&some_data, MAX_TEXT, 0) == -1)

{

fprintf(stderr, "msgsnd failed\n");

exit(EXIT_FAILURE);

}

if(strncmp(buffer, "end", 3) == 0)

{

running = 0;

}
}

exit(EXIT_SUCCESS);

}

The msgq1.c program will create the message queue using msgget() function.

The msgid identifier is returned by the msgget().The message are received from the queue

using msgrcv() function until the string "end" is encountered. Then the queue is

deletedusing msgctl() function.

The msgq2.c program uses the msgsnd() function to send the entered text to the queue.

Semaphore:

While we are using threads in our programs in multi-user systems, multiprocessing system, or a

combination of two, we may often discover critical sections in the code. This is the section where

we have to ensure that a single process has exclusive access totheresource.

For this purpose the semaphore is used. It allows in managing the access to resource.

To prevent the problem of one program accessing the shared resource simultaneously, we are in

Need to generate and use a token which guarantees the access to only one

threadofexecutioninthecriticalsectionatatime.

It is counter variable, which takes only the positive numbers and upon which programs can only

act atomically. The positive number is the value indicating the number of units of the shared

resources are available for sharing.

The common form of semaphore is the binary semaphore, which will control a single resource,

and its value is initialized to 0.

Creation of semaphore:

The shmget() function creates a new semaphore or obtains the semaphore key of an existing

semaphore.

#include<sys/sem.h>

intshmget(key_tkey,intnum_sems,

intsem_flags);

The first parameter, key, is an integral value used to allow unrelated process to access the same

semaphore. The semaphore key is used only by semget. All others use the identifier return by the

semget(). There is a special key value IPC_PRIVATE whichallows to create the semaphore and

to be accessed only by the creating process.

175

The second parameter is the number of semaphores required, it is almost always 1. The

third parameter is the set of flags. The nine bits are the permissions for the semaphore.

On success it will return a positive value which is the identifier used by the other semaphore

functions. On error, it returns -1.

Changing the value:

The function semop() is used for changing the value of the semaphore.

#include<sys/sem.h>

int semop(int sem_id,struct sembuf

*sem_ops,size_t num-_sem_ops);

The first parameter is the shmid is the identifier returned by the semget().

The second parameter is the pointer to an array of structure. The structure may contain at least

the following members:

struct sembuf{

short sem_num;

short sem_op;

short sem_flg;

}

The first member is the semaphore number, usually 0 unless it is an array of semaphore. The

sem_op is the value by which the semaphore should be changed. Generally it takes -1,which is

operation to wait for a semaphore and +1, which is the operation to signal the availability of

semaphore.

The third parameter, is the flag which is usually set to SET_UNDO. If the process terminates

without releasing the semaphore, this allows to release it automatically.

Controlling the semaphore:

The semctl() function allows direct control of semaphore information.

#include<sys/sem.h>
int semctl(int sem_id,int sem_num,

int command,.../*union semun arg */);

The third parameter is the command, which defines the action to be taken. There are two

common values:

1.) SETVAL: Used for initializing a semaphore to a known value.

2.) IPC_RMID:Deletes the semaphore identifier.

File locking with semaphores

//sem.c

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

#include <sys/sem.h>

176

#include<sys/ipc.h>

#include<sys/types.h>

union semun

{

int val;

struct semid_ds *buf;
unsigned short *array;

};

static void del_semvalue(void);

static int set_semvalue(void);

static int semaphore_p(void);

static int semaphore_v(void);

static int sem_id;

//---------------------------------

static int set_semvalue()

{

union semun sem_union;
sem_union.val = 1;

if (semctl(sem_id, 0, SETVAL, sem_union) == -1) return(0);

return(1);

}

//---

static void del_semvalue()

{

union semun sem_union;
if (semctl(sem_id, 0, IPC_RMID, sem_union) == -1)

fprintf(stderr, "Failed to delete semaphore\n");

}

//--

static int semaphore_p()

{
struct sembuf sem_b;

sem_b.sem_num = 0;

sem_b.sem_op = -1; /* P() */

sem_b.sem_flg = SEM_UNDO;

if (semop(sem_id, &sem_b, 1) == -1)
{

fprintf(stderr, "semaphore_p failed\n");

return(0);

}
return(1);

}

//--

static int semaphore_v()

{

struct sembuf sem_b;

sem_b.sem_num = 0;

sem_b.sem_op = 1; /* V() */

sem_b.sem_flg = SEM_UNDO;

177

if (semop(sem_id, &sem_b, 1) == -1) {

fprintf(stderr, "semaphore_v failed\n");

return(0);

}

return(1);

}
int main(int argc, char *argv[])

{

int i;

int pause_time;
char op_char = 'O';

srand((unsigned int)getpid());

sem_id = semget((key_t)1234, 1, 0666 | IPC_CREAT);

if (argc > 1)

{

if (!set_semvalue())

{

fprintf(stderr, "Failed to initialize semaphore\n");
exit(EXIT_FAILURE);

}
op_char = 'X';

sleep(2);

}

for(i = 0; i < 10; i++)

{

if (!semaphore_p()) exit(EXIT_FAILURE);

printf("%c", op_char);

fflush(stdout);

pause_time = rand() % 3;

sleep(pause_time);

printf("%c", op_char);fflush(stdout);

if (!semaphore_v()) exit(EXIT_FAILURE);

pause_time = rand() % 2;

sleep(pause_time);

}
printf("\n%d - finished\n", getpid());

if (argc > 1)

{
sleep(10);

del_semvalue();

}
exit(EXIT_SUCCESS);

}

 The function set_semvalue() initializes the semaphore using the SETVAL command

 in semctl()function. But this is to be done before the usage of semaphore.

The function del_semvalue() is used to delete the semaphore by using the

command IPC_RMID in the semctl() function. The function semaphore_p() changes the

178

semaphore value to -1, which is used to make the process to wait.

In the function semaphore_v(),the semop member of the structure sembuf is set to 1.By this the

semphore becomes available for the other processes because it is released.

179

 UNIT V

Shared Memory:

Shared memory is a highly efficient way of data sharing between the running programs. It allows

two unrelated processes to access the same logical memory. It is the fastest form of IPC because

all processes share the same piece of memory. It also avoidscopyingdataunnecessarily.

As kernel does not synchronize the processes, it should be handled by the user. Semaphore can

also be used to synchronize the access to shared memory.

Usageofsharedmemory:

To use the shared memory, first of all one process should allocate the segment, and then each

process desiring to access the segment should attach the segment. After accessing the segment,

each process should detach it. It is also necessary to deallocate thesegmentwithoutfail.

Allocating the shared memory causes virtual pages to be created. It is important to note that

allocating the existing segment would not create new pages, but will return

theidentifierfortheexistingpages.

All the shared memory segments are allocated as the integral multiples of the system's page size,

which is the number of bytes in a page of memory.

Unix kernel support for shared memory

 There is a shared memory table in the kernel address space that keeps track of all shared

memory regions created in the system.

 Each entry of the tables store the following data:

1. Name

2. Creator user ID and group ID.

3. Assigned owner user ID and group ID.

4. Read-write access permission of the region.

5. The time when the last process attached to the region.

6. The time when the last process detached from the region.

7. The time when the last process changed control data of the region.

8. The size, in no. of bytes of the region.

UNIX APIs for shared memory shmget

 Open and create a shared memory.

 Function prototype:

#include<sys/types.h>

#include<sys/ipc.h>

#include<sys/shm.h>

180

int shmget (key_t key, int size, int flag);

 Function returns a positive descriptor if it succeeds or -1 if it fails.

Shmat

 Attach a shared memory to a process virtual address space.

 Function prototype:

#include<sys/types.h>

#include<sys/ipc.h>

#include<sys/shm.h>

void * shmat (int shmid, void *addr, int flag);

 Function returns the mapped virtual address of he shared memory if it succeeds or -1 if it

fails.

Shmdt

 Detach a shared memory from the process virtual address space.

 Function prototype:

#include<sys/types.h>

#include<sys/ipc.h>

#include<sys/shm.h>

int shmdt (void *addr);

 Function returns 0 if it succeeds or -1 if it fails.

Shmctl

 Query or change control data of a shared memory or delete the memory.

 Function prototype:

#include<sys/types.h>

#include<sys/ipc.h>

#include<sys/shm.h>

int shmctl (int shmid, int cmd, struct shmid_ds *buf);

 Function returns 0 if it succeeds or -1 if it fails.

181

Shared memory Example

//shmry1.c

#include<unistd.h>

#include<stdlib.h>

#include<stdio.h>

#include<string.h>

#include<sys/shm.h>

#define TEXT_SZ 2048

struct shared_use_st

{

int written_by_you;

char some_text[TEXT_SZ];

};

int main()

{

int running = 1;
void *shared_memory = (void *)0;

struct shared_use_st *shared_stuff;

int shmid;

srand((unsigned int)getpid());

shmid = shmget((key_t)1234,

sizeof(struct shared_use_st),

0666 |IPC_CREAT);

if (shmid == -1)

{

fprintf(stderr, "shmget failed\n");

exit(EXIT_FAILURE);

}

shared_memory = shmat(shmid,(void *)0, 0);
if (shared_memory == (void *)-1)

{
fprintf(stderr, "shmat failed\n");

exit(EXIT_FAILURE);

}

printf("Memory Attached at %x\n",

(int)shared_memory);

shared_stuff = (struct shared_use_st *)

shared_memory;

shared_stuff->written_by_you = 0;

while(running)

{

182

if(shared_stuff->written_by_you)

{

printf("You Wrote: %s",

shared_stuff->some_text);

sleep(rand() %4);

shared_stuff->written_by_you = 0;

if (strncmp(shared_stuff->some_text,

"end", 3)== 0)

{

running = 0;

}

}

}

if (shmdt(shared_memory) == -1)

{
fprintf(stderr, "shmdt failed\n");

exit(EXIT_FAILURE);

}

if (shmctl(shmid, IPC_RMID, 0) == -1)

{

fprintf(stderr, "failed to delete\n");

exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);

}

//shmry2.c

#include<unistd.h>

#include<stdlib.h>

#include<stdio.h>

#include<string.h>

#include<sys/shm.h>

#define TEXT_SZ 2048

struct shared_use_st

{

int written_by_you;
char some_text[TEXT_SZ];

};

int main()

{

int running =1

183

void *shared_memory = (void *)0;

struct shared_use_st *shared_stuff;

char buffer[BUFSIZ];

int shmid;

shmid =shmget((key_t)1234, sizeof(struct

shared_use_st),

0666 | IPC_CREAT);

if (shmid == -1)

{

fprintf(stderr, "shmget failed\n");

exit(EXIT_FAILURE);

}

shared_memory=shmat(shmid,

(void *)0, 0);

if (shared_memory == (void *)-1)

{

fprintf(stderr, "shmat failed\n");

exit(EXIT_FAILURE);

}

printf("Memory Attached at %x\n", (int) shared_memory);

shared_stuff = (struct shared_use_st *)shared_memory;

while(running)

{

while(shared_stuff->written_by_you== 1)

{

sleep(1);

printf("waiting for client....\n");

}

printf("Enter Some Text: ");

fgets (buffer, BUFSIZ, stdin);

strncpy(shared_stuff->some_text, buffer,

TEXT_SZ);

shared_stuff->written_by_you = 1;

if(strncmp(buffer, "end", 3) == 0)

{

running = 0;

}

}

if (shmdt(shared_memory) == -1)

{

fprintf(stderr, "shmdt failed\n");

exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);

}

184

The shmry1.c program will create the segment using shmget() function and returns the identifier

shmid. Then that segment is attached to its address space using shmat() function.

The structure share_use_st consists of a flag written_by_you is set to 1 when data is available.

When it is set, program reads the text, prints it and clears it to show it has read the data. The

string end is used to quit from the loop. After this the segment is detached and deleted.

The shmry2.c program gets and attaches to the same memory segment. This is possible with the

help of same key value 1234 used in the shmget() function. If the written_by_you text is set, the

process will wait until the previous process reads it. When the flag is cleared, the data is written

and sets the flag. This program too will use the string "end" to terminate. Then the segment is

detached.

Sockets

A socket is a bidirectional communication device that can be used to communicate withanother

process on the same machine or with a process running on other machines.Sockets are the only

interprocess communication we‘ll discuss in this chapter thatpermit communication between

processes on different computers. Internet programs such as Telnet, rlogin, FTP, talk, and the

World Wide Web use sockets.

For example, you can obtain the WWW page from a Web server using theTelnet program

because they both use sockets for network communications.To open a connection to a WWW

server at www.codesourcery.com, use telnet www.codesourcery.com 80.The magic constant 80

specifies a connection to the Web server programming running www.codesourcery.com instead

of some other process.Try typing GET / after the connection is established.This sends a message

through the socket to the Web server, which replies by sending the home page‘s HTML source

and then closing the connection—for example:

% telnet www.codesourcery.com 80

Trying 206.168.99.1...

Connected to merlin.codesourcery.com (206.168.99.1).

Escape character is ‗^]‘.

GET /
<html>

<head>

<meta http-equiv=‖Content-Type‖ content=‖text/html; charset=iso-8859-1‖>

...

3. Note that only Windows NT can create a named pipe;Windows 9x programs can form only

client connections.

4. Usually, you‘d use telnet to connect a Telnet server for remote logins. But you can also use

telnet to connect to a server of a different kind and then type comments directly at it.

Introduction to Berkeley sockets

Berkeley sockets (or BSD sockets) is a computing library with an application programming

interface (API) for internet sockets and Unix domain sockets, used for inter-process

communication (IPC).

http://www.codesourcery.com/
http://www.codesourcery.com/
http://www.codesourcery.com/
http://www.codesourcery.com/
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Internet_socket
https://en.wikipedia.org/wiki/Unix_domain_socket
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Inter-process_communication

185

This list is a summary of functions or methods provided by the Berkeley sockets API

library:

 socket() creates a new socket of a certain socket type, identified by an integer number,

and allocates system resources to it.

 bind() is typically used on the server side, and associates a socket with a socket address

structure, i.e. a specified local port number and IP address.

 listen() is used on the server side, and causes a bound TCP socket to enter listening state.

 connect() is used on the client side, and assigns a free local port number to a socket. In

case of a TCP socket, it causes an attempt to establish a new TCP connection.accept() is

used on the server side. It accepts a received incoming attempt to create a new TCP

connection from the remote client, and creates a new socket associated with the socket

address pair of this connection.

 send() and recv(), or write() and read(), or sendto() and recvfrom(), are used for sending

and receiving data to/from a remote socket.

 close() causes the system to release resources allocated to a socket. In case of TCP, the

connection is terminated.

 gethostbyname() and gethostbyaddr() are used to resolve host names and addresses. IPv4
only.

 select() is used to pend, waiting for one or more of a provided list of sockets to be ready

to read, ready to write, or that have errors.

 poll() is used to check on the state of a socket in a set of sockets. The set can be tested to
see if any socket can be written to, read from or if an error occurred.

 getsockopt() is used to retrieve the current value of a particular socket option for the

specified socket.

 setsockopt() is used to set a particular socket option for the specified socket.

IPC over a network Socket Concepts

When you create a socket, you must specify three parameters:

 communication style,

 namespace,

 protocol.

A communication style controls how the socket treats transmitted data and specifies

the number of communication partners.When data is sent through a socket, it is ackaged into

chunks called packets.The communication style determines how these

packets are handled and how they are addressed from the sender to the receiver.

Connection styles guarantee delivery of all packets in the order they were sent. If

packets are lost or reordered by problems in the network, the receiver automatically

requests their retransmission from the sender.

A connection-style socket is like a telephone call: The addresses of the sender

and receiver are fixed at the beginning of the communication when the connection

is established.

Datagram styles do not guarantee delivery or arrival order. Packets may be lost or

reordered in transit due to network errors or other conditions. Each packet must

be labeled with its destination and is not guaranteed to be delivered.The system

186

guarantees only ―best effort,‖ so packets may disappear or arrive in a different

order than shipping.

A datagram-style socket behaves more like postal mail.The sender specifies the

receiver‘s address for each individual message.

A socket namespace specifies how socket addresses are written. A socket address identifies one

end of a socket connection. For example, socket addresses in the ―local namespace‖ are ordinary

filenames. In ―Internet namespace,‖ a socket address is composed of the Internet address (also

known as an Internet Protocol address or IP address) of a host attached to the network and a

port number.The port number distinguishes among multiple sockets on the same host.

A protocol specifies how data is transmitted. Some protocols are TCP/IP, the primary
networking protocols used by the Internet; the AppleTalk network protocol; and the UNIX local

communication protocol. Not all combinations of styles, namespaces,and protocols are

supported.

Client-server datagram socket — example

To experiment with datagram sockets in the UNIX domain we will write a client/server

application where:

 the client takes a number of arguments on its command line and send them to the server

using separate datagrams

 for each datagram received, the server converts it to uppercase and send it back to the

client

 the client prints server replies to standard output

For this to work we will need to bind all involved sockets to pathnames.

Client-server datagram socket example — protocol

#include <ctype .h>

#include <sys/un.h>

#include <sys/socket .h>

#include <unistd .h>

#include " helpers .h"

#define SRV_SOCK_PATH " /tmp/uc_srv_socket "

#define CLI_SOCK_PATH " /tmp/ uc_cl i_socket .%ld "

#define MSG_LEN 10

#include "uc�proto .h"
int main(int argc , char *argv []) {

struct sockaddr_un srv_addr , cl i_addr ;

int srv_fd , i ;

ssize_t bytes ;

socklen_t len ;

char buf [MSG_LEN] ;
i f ((srv_fd = socket (AF_UNIX , SOCK_DGRAM, 0)) < 0)

err_sys (" socket error ") ;

memset(&srv_addr , 0, sizeof (struct sockaddr_un)) ;

srv_addr . sun_family = AF_UNIX ;

strncpy (srv_addr . sun_path , SRV_SOCK_PATH,

sizeof (srv_addr . sun_path) �1) ;

i f (access (srv_addr . sun_path , F_OK) == 0)

unlink (srv_addr . sun_path) ;

i f (bind (srv_fd , (struct sockaddr *) &srv_addr ,

187

sizeof (struct sockaddr_un)) < 0)

err_sys (" bind error ") ;

for (; ;) {

len = sizeof (struct sockaddr_un) ;
i f ((bytes = recvfrom(srv_fd , buf , MSG_LEN, 0,

(struct sockaddr *) &cl i_addr , &len)) < 1)

err_sys (" recvfrom error ") ;

pr int f (" server received %ld bytes from %s\n" ,

(long) bytes , cl i_addr . sun_path) ;

for (i = 0; i < bytes ; i ++)

buf [i] = toupper ((unsigned char) buf [i]) ;

i f (sendto (srv_fd , buf , bytes , 0,

(struct sockaddr *) &cl i_addr , len) != bytes)

err_sys (" sendto error ") ;

}
}

#include "uc�proto .h"
int main(int argc , char *argv []) {

struct sockaddr_un srv_addr , cl i_addr ;

int srv_fd , i ;

size_t len ;

ssize_t bytes ;

char resp [MSG_LEN] ;

i f (argc < 2)

er r_qui t ("Usage : uc�c l ient MSG. . . ") ;

i f ((srv_fd = socket (AF_UNIX , SOCK_DGRAM, 0)) < 0)

err_sys (" socket error ") ;

memset(&cl i_addr , 0, sizeof (struct sockaddr_un)) ;

cl i_addr . sun_family = AF_UNIX ;

snpr int f (cl i_addr . sun_path , sizeof (cl i_addr . sun_path) ,

CLI_SOCK_PATH, (long) getpid ()) ;

i f (bind (srv_fd , (struct sockaddr *) &cl i_addr ,

sizeof (struct sockaddr_un)) == �1)

err_sys (" bind error ") ;

Notes:

the server is persistent and processes one datagram at a time, no matter the client rocess, i.e.

there is no notion of connection messages larger than 10 bytes are silently truncated

Socket address structures(UNIX domain & Internet domain) UNIX

domain Sockets:

We now want to give an example of stream sockets. To do so, we can longer remain in the

abstract of general sockets, but we need to pick a domain. We pick the UNIX domain. In the

UNIX domain, addresses are pathnames. The corresponding Cstructure is sockaddr_un:

struct sockaddr_un {

sa_fami ly_t sun_family ; /* = AF_UNIX */

188

char sun_path[108] ; /* socket pathname,

NULL�terminated */

}
The field sun_path contains a regular pathname, pointing to a special file of type socket (. pipe)

which will be created at bind time.

During communication the file will have no content, it is used only as a rendez-vous point

between processes.

Internet-Domain Sockets

UNIX-domain sockets can be used only for communication between two processes on the same

computer. Internet-domain sockets, on the other hand, may be used to connect processes on

different machines connected by a network.

Sockets connecting processes through the Internet use the Internet namespace represented by

PF_INET.The most common protocols are TCP/IP.The Internet Protocol (IP), a low-level

protocol, moves packets through the Internet, splitting and rejoining the packets, if necessary. It

guarantees only ―best-effort‖ delivery, so packets may vanish or be reordered during transport.

Every participating computer is specified using a unique IP number.The Transmission Control

Protocol (TCP), layered on top of IP, provides reliable connection-ordered transport. It permits

telephone-like connections to be established between computers and ensures that data is

delivered reliably and inorder.

DNS Names

Because it is easier to remember names than numbers, the Domain Name Service (DNS)

associates names such as www.codesourcery.com with computers‘ unique IP numbers. DNS is

implemented by a worldwide hierarchy of name servers, but you don‘t need to understand DNS

protocols to use Internet host names in your programs.

Internet socket addresses contain two parts: a machine and a port number.This information is

stored in a struct sockaddr_in variable. Set the sin_family field to AF_INET to indicate that this

is an Internet namespace address.The sin_addr field stores the Internet address of the desired

machine as a 32-bit integer IP number.A port number distinguishes a given machine‘s different

sockets. Because different machines store multibyte values in different byte orders, use htons to

convert the port number to

network byte order. See the man page for ip for more information.To convert human-readable

hostnames, either numbers in standard dot notation (such as 10.0.0.1) or DNS names (such as

www.codesourcery.com) into 32-bit IP numbers, you can use gethostbyname.This returns a

pointer to the struct hostent structure; the h_addr field contains the host‘s IP number.

System Calls

Sockets are more flexible than previously discussed communication techniques.These

are the system calls involving sockets:

socket—Creates a socket

closes—Destroys a socket

connect—Creates a connection between two sockets

bind—Labels a server socket with an address

http://www.codesourcery.com/

189

listen—Configures a socket to accept conditions

accept—Accepts a connection and creates a new socket for the connection

Sockets are represented by file descriptors.

Creating and Destroying Sockets

Sockets are IPC objects that allow to exchange data between processes running:

either on the same machine (host), or on different ones over a network.

The UNIX socket API first appeared in 1983 with BSD 4.2. It has been finally standardized for

the first time in POSIX.1g (2000), but has been ubiquitous to every UNIX implementation since

the 80s.

The socket API is best discussed in a network programming course,which this one is not. We

will only address enough general socketconcepts to describe how to use a specific socket family:

UNIXdomain sockets.

Connection Oriented Protocol

190

Connectionless Protocol

Client-server setup

Let‘s consider a typical client-server application scenario — no matter if they are located on the

same or different hosts.

Sockets are used as follows:

each application: create a socket

idea: communication between the two applications will flow through an imaginary ―pipe‖ that

will connect the two sockets together

server: bind its socket to a well-known address

we have done the same to set up rendez-vous points for other IPC objects.

e.g. FIFOs

client: locate server socket (via its well-known address) and ―initiate communication‖1 with the

server.

Socket options:

In order to tell the socket to get the information about the packet destination, we should call

setsockopt().

setsockopt() and getsockopt() - set and get options on a

socket. Both methods return 0 on success and -1 on error.

Prototype: int setsockopt(int sockfd, int level, int optname,...

There are two levels of socket options:

To manipulate options at the sockets API level:

SOL_SOCKET

To manipulate options at a protocol level, that protocol number should be used;

191

for example, for UDP it is IPPROTO_UDP or SOL_UDP (both are equal 17) ; see

include/linux/in.h and include/linux/socket.h

● SOL_IP is 0.
● There are currently 19 Linux socket options and one another on option for BSD

compatibility.

● There is an option called IP_PKTINFO.

We will set the IP_PKTINFO option on a socket in the following example.

// from /usr/include/bits/in.h

#define IP_PKTINFO 8 /* bool */

/* Structure used for IP_PKTINFO. */

struct in_pktinfo

{

int ipi_ifindex; /* Interface index */

struct in_addr ipi_spec_dst; /* Routing destination address */
struct in_addr ipi_addr; /* Header destination address */

};

const int on = 1;

sockfd = socket(AF_INET, SOCK_DGRAM,0);
if (setsockopt(sockfd, SOL_IP, IP_PKTINFO, &on,

sizeof(on))<0)

perror("setsockopt");

...

...

...

When calling recvmsg(), we will parse the msghr like this:

for (cmptr=CMSG_FIRSTHDR(&msg); cmptr!=NULL;

cmptr=CMSG_NXTHDR(&msg,cmptr))

{

if (cmptr->cmsg_level == SOL_IP && cmptr->cmsg_type ==IP_PKTINFO)

{

pktinfo = (struct in_pktinfo*)CMSG_DATA(cmptr);

printf("destination=%s\n", inet_ntop(AF_INET, &pktinfo->ipi_addr,str, sizeof(str)));

}

}
In the kernel, this calls ip_cmsg_recv() in

net/ipv4/ip_sockglue.c. (which eventually calls

ip_cmsg_recv_pktinfo()).

● You can in this way retrieve other fields of the ip header:
For getting the TTL:

● setsockopt(sockfd, SOL_IP, IP_RECVTTL, &on, sizeof(on))<0).
● But: cmsg_type == IP_TTL.

For getting ip_options:

● setsockopt() with IP_OPTIONS.

192

fcntl system calls

The fcntl system call provides further ways to manipulate low level file descriptors.

It can perform miscellaneous operations on open file descriptors.

The call,

returns a new file descriptor with a numerical value equal to or greater than the integer newfd.

The call,

returns the file descriptor flags as defined in fcntl.h.

The call,

is used to set the file descriptor flags, usually just FD_CLOEXEC.

The calls,

respectively get and set the file status flags and access modes.

Comparision of IPC mechanisms.

IPC mechanisms are mianly 5 types

1. pipes:it is related data only send from one pipe output is giving to another pipe input to share

resouses pipe are used drawback:itis only related process only communicated

2. message queues:message queues are un related process are also communicate with message

queues.

3. sockets:sockets also ipc it is comunicate clients and server

193

with socket system calls connection oriented and connection less also
4. PIPE: Only two related (eg: parent & child) processess can be communicated. Data reading

would be first in first out manner.

Named PIPE or FIFO : Only two processes (can be related or unrelated) can communicate. Data

read from FIFO is first in first out manner.

5. Message Queues: Any number of processes can read/write from/to the queue. Data can be

read selectively. (need not be in FIFO manner)

6. Shared Memory: Part of process's memory is shared to other processes. other processes can

read or write into this shared memory area based on the permissions. Accessing Shared memory

is faster than any other IPC mechanism as this does not involve any kernel level

switching(Shared memory resides on user memory area).

7. Semaphore: Semaphores are used for process synchronisation. This can't be used for bulk data
transfer between processes.

