This book covers the following
topics: Scaling and estimation, Velocity and relative motion, Acceleration and
free fall, Force and motion, Analysis of forces, Newton's laws in three
dimensions, Vectors, Vectors and motion, Circular motion, Gravity, Conservation
of energy, Simplifying the energy zoo, Work: the transfer of mechanical energy,
Conservation of momentum, Conservation of angular momentum, Thermodynamics,
Vibrations, Resonance, Free waves, Electricity and circuits, non mechanical
universe, relativity and magnetism, Electromagnetism, General relativity, The
ray model of light, Images by reflection, Images, quantitatively, Refraction,
Wave optics and Rules of randomness.
This book shows how the existing technology of material
characterization can contribute to science and applied technology. The
authors who contributed with this book sought to show the importance of
applying the existing techniques in the development of their works.
This lecture note covers following topics: Nature of Light,
Geometrical Optics, Optical Instrumentation, Dispersion, Prisms, and
Aberrations, Wave Equations, EM Waves, Polarization, Fresnel Equations,
Production of Polarized Light, Superposition of Waves Interference of Light,
Coherence, Fraunhofer Diffraction, Fourier Optics, Characteristics of Laser
Beams, Optics of the Eye.
This
book is divided in four sections. The book presents several physical effects and
properties of materials used in lasers and electro-optics in the first chapter
and, in the three remaining chapters, applications of lasers and electro-optics
in three different areas are presented.
This lecture note is intended to provide theoretical background to
understand and predict a host of optical phenomena that become possible when
nonlinearity in the optical response of a material is included in the
description. It includes a detailed description of several of these phenomena,
their experimental observation and photonic devices based on them.