This book covers the following
topics: Scaling and estimation, Velocity and relative motion, Acceleration and
free fall, Force and motion, Analysis of forces, Newton's laws in three
dimensions, Vectors, Vectors and motion, Circular motion, Gravity, Conservation
of energy, Simplifying the energy zoo, Work: the transfer of mechanical energy,
Conservation of momentum, Conservation of angular momentum, Thermodynamics,
Vibrations, Resonance, Free waves, Electricity and circuits, non mechanical
universe, relativity and magnetism, Electromagnetism, General relativity, The
ray model of light, Images by reflection, Images, quantitatively, Refraction,
Wave optics and Rules of randomness.
This book shows how the existing technology of material
characterization can contribute to science and applied technology. The
authors who contributed with this book sought to show the importance of
applying the existing techniques in the development of their works.
This lecture note is intended to provide theoretical background to
understand and predict a host of optical phenomena that become possible when
nonlinearity in the optical response of a material is included in the
description. It includes a detailed description of several of these phenomena,
their experimental observation and photonic devices based on them.
This book covers the
following topics: Waves and Photons, The Physics of Waves,The Huygens-Fresnel
Principle, Diffraction, Maxwell's Equations, Polarisation, Fermats Principle,
Spherical Lenses and Mirrors, Crystal Symmetry and Optical Instruments.