Computer Science Bookscomputer algorithm Books

Data Structures and Algorithms Annotated Reference with Examples

Data Structures and Algorithms Annotated Reference with Examples

Data Structures and Algorithms Annotated Reference with Examples

This book provides implementations of common and uncommon algorithms in pseudocode which is language independent and provides for easy porting to most imperative programming language. Topics covered includes: Data Structures, Linked Lists, Binary Search Tree, Heap, Sets, Queues, Algorithms, Sorting, Sorting.

Author(s):

s112 Pages
Similar Books
Lecture Notes on Design and Analysis of Algorithms

Lecture Notes on Design and Analysis of Algorithms

These ecture notes give a comprehensive introduction to the basic techniques in the design and analysis of algorithms. It covers major methodologies, including greedy methods, which build up solutions piece by piece; dynamic programming (DP), which breaks down problems into simpler subproblems, solves them, and memorizes their solutions; and backtracking, which incrementally generates candidates for solutions and discards those that cannot satisfy criteria. It also discusses the method of Branch and Bound, where all branches on a solution space are systematically explored until the best possible solution is obtained. These methods are crucial in the design of nice algorithms with a view to efficiency, and they form the basis of complex computational problems that require solutions.

s96 Pages
Lecture Notes On Design And Analysis Of Algorithms

Lecture Notes On Design And Analysis Of Algorithms

Dr. Subasish Mohapatra's Lecture Notes on Design and Analysis of Algorithms, published on August 2, 2022, is a big 125-pages book to cover many of the algorithmic core ideas. It contains the core ideas such as growth of functions and recurrences, with great detail on the solving of these via substitution, recursion trees, and the Master Method. Discussion of detailed Divide and Conquer algorithms, along with worst-case running times for problems such as merge sort, quick sort, and binary search, is also covered. Heaps, heap sort, priority queues, and sorting lower bounds are discussed. Detailed discussions of dynamic programming techniques cover the matrix chain multiplication problem, longest common subsequence problem, and general strategies. Discussions of robust algorithms based on dynamic programming that cover applications such as the activity selection problem, fractional knapsack problem, and Huffman coding. It also comprises graph algorithms, for instance: BFS, DFS, minimum spanning trees, Kruskal's, and Prim's.

s125 Pages
Design And Analysis Of Algorithms by Herbert Edelsbrunner

Design And Analysis Of Algorithms by Herbert Edelsbrunner

Design and Analysis of Algorithms is a book by Herbert Edelsbrunner that gives a detailed description of the basic principles and techniques of algorithms. The book offers basic data structures and some graph algorithms, making it one of the best platforms to understand how to design and analyze algorithms. It emphasizes the developers developing a good and efficient algorithm, followed by the analysis of complexity. It contains basic data structures such as trees, graphs, and several strategies of algorithmic problem-solving. Edelsbrunner's approach in the text marries theoretical insights with the practical details that are absolutely necessary to implement his algorithms. So, his book will be of great use to students, researchers, and practitioners concerned with algorithms in computer science. The book will help the readers to incite strong skills in algorithmic techniques and their applications and create an overview necessary for a deeper understanding of computational efficiency and problem solving.

s95 Pages
Advanced Algorithms by Prof. Michel Goemans

Advanced Algorithms by Prof. Michel Goemans

Advanced Algorithms" by Prof. Michel Goemans is an advanced-level text focused on sophisticated algorithmic methods for doctoral students and researchers. Advanced subjects like Fibonacci heaps, network flows, and dynamic trees are explained in detail, together with linear programming-the Goldberg-Tarjan min-cost circulation algorithm, approximation algorithms, max-cut problems, and conic programming. Goemans explains such advanced concepts in great detail, merging theory and practice. This text will be useful for anyone interested in deeply understanding modern algorithms and how they may be implemented and includes a conceptual framework for rigorous solutions to complex computational problems.

sNA Pages
Distributed Algorithms Lecture Notes

Distributed Algorithms Lecture Notes

Prof. Nancy Lynch's Distributed Algorithms Lecture Notes has a great amount of detail concerning algorithms designed for distributed systems within which important aspects are that of multiple processors executing without centralized control. This paper investigates the model assumptions and organization strategies tasked with the two basic timing models. It also looks at synchronous, asynchronous, and partially synchronous models and synchronous networks. They discuss various models, thus enable the researchers to understand what one is actually up against and what strategies one can use in order to design algorithms working effectively in distributed environments. Hence, Lynch's notes are a must-have for any researcher who aims to know how to manage communication and coordination in distributed systems. Therefore, ideal for use by students and professionals dealing with distributed computing and networked systems.

sNA Pages
Advanced Algorithms Lectures by Shuchi Chawla

Advanced Algorithms Lectures by Shuchi Chawla

Advanced Algorithms Lectures by Shuchi Chawla give an insight into advanced techniques in the design and analysis of algorithms. The lectures cover topics such as greedy algorithms, dynamic programming, and network flow applications. Advanced topics, including randomized algorithms and Karger's min-cut algorithm, NP-completeness, together with linear programming, primal-dual algorithms, and semi-definite programming, are discussed. Chawla also deals with models like Probably Approximately Correct (PAC) and boosting within this framework. This set of lectures comprehensively covers advanced algorithmic methodologies along with their applications and constitutes an excellent resource for students and researchers interested in advanced classes of algorithmic techniques and their applications to pressing real-world problems.

s195 Pages