Computer Science BooksInformation Theory Books

Information Theory and its applications in theory of computation

Information Theory and its applications in theory of computation

Information Theory and its applications in theory of computation

This note covers the following topics: Entropy, Kraft's inequality, Source coding theorem, conditional entropy, mutual information, KL-divergence and connections, KL-divergence and Chernoff bounds, Data processing and Fano's inequalities, Asymptotic Equipartition Property, Universal source coding: Lempel-Ziv algorithm and proof of its optimality, Source coding via typical sets and universality, joint typicality and joint AEP, discrete channels and channel capacity, Proof of Noisy channel coding theorem, Constructing capacity-achieving codes via concatenation, Polarization, Arikan's recursive construction of a polarizing invertible transformation, Polar codes construction, Bregman's theorem, Shearer's Lemma and applications, Source coding and Graph entropy, Monotone formula lower bounds via graph entropy, Optimal set Disjointness lower bound and applications, Compression of arbitrary communication protocols, Parallel repetition of 2-prover 1-round games.

Author(s):

sNA Pages
Similar Books
Applied Digital Information theory

Applied Digital Information theory

This note serves as a comprehensive guide to fundamental concepts in information theory and coding. This pdf provides discrete probability theory, information theory, and coding principles. Beginning with Shannon's measure of information, then delves into the efficient coding of information, the methodology of typical sequences is introduced, emphasizing the distinction between lossy and lossless source encoding. The text also discusses coding for noisy digital channels, block coding principles and tree and trellis coding principles.

s153 Pages
Lecture Notes on statistics and information Theory

Lecture Notes on statistics and information Theory

This lecture note navigates through information theory, statistics and measure theory. It covers fundamental concepts such as definitions, chain rules, data processing inequalities, and divergences and extends to optimal procedures, LeCam’s and Fano’s inequalities, and operational results like entropy and source coding. It also focus on exponential families and statistical modeling, fitting procedures, and lower bounds on testing parameters, sub-Gaussian and sub-exponential random variables, martingale methods, uniformity covering topics such as Kullback-Leibler divergence, PAC-Bayes bounds, interactive data analysis, and error bounds.

s464 Pages
Advanced Information Theory notes

Advanced Information Theory notes

This book contains following contents: Information Theory for Discrete Variables, Information Theory for Continuous Variables, Channel Coding, Typical Sequences and Sets, Lossy Source Coding, Distributed Source Coding, Multiaccess Channels.

s180 Pages
Basics of information theory

Basics of information theory

This book explains basics of thermodynamics, including thermodynamic potentials, microcanonical and canonical distributions, and evolution in the phase space, The inevitability of irreversibility, basics of information theory, applications of information theory, new second law of thermodynamics and quantum information.

s165 Pages
Information Theory for Data Communications and Processing

Information Theory for Data Communications and Processing

The PDF covers the following topics related to Information Theory : Information Theory for Data Communications and Processing, On the Information Bottleneck Problems: Models, Connections,Applications and Information Theoretic Views, Variational Information Bottleneck for Unsupervised Clustering: Deep Gaussian Mixture Embedding, Asymptotic Rate-Distortion Analysis of Symmetric Remote Gaussian Source Coding: Centralized Encoding vs. Distributed Encoding, Non-Orthogonal eMBB-URLLC Radio Access for Cloud Radio Access Networks with Analog Fronthauling, Robust Baseband Compression Against Congestion in Packet-Based Fronthaul Networks Using Multiple Description Coding, Amplitude Constrained MIMO Channels: Properties of Optimal Input Distributions and Bounds on the Capacity, Quasi-Concavity for Gaussian Multicast Relay Channels, Gaussian Multiple Access Channels with One-Bit Quantizer at the Receiver, Efficient Algorithms for Coded Multicasting in Heterogeneous Caching Networks, Cross-Entropy Method for Content Placement and User Association in Cache-Enabled Coordinated Ultra-Dense Networks, Symmetry, Outer Bounds, and Code Constructions: A Computer-Aided Investigation on the Fundamental Limits of Caching.

s296 Pages
Information Theory and Coding cam

Information Theory and Coding cam

The PDF covers the following topics related to Information Theory : Foundations: probability, uncertainty, information, Entropies defined, and why they are measures of information, Source coding theorem; prefix, variable-, and fixed-length codes, Channel types, properties, noise, and channel capacity, Continuous information, density, noisy channel coding theorem, Fourier series, convergence, orthogonal representation, Useful Fourier theorems, transform pairs, Sampling, aliasing, Discrete Fourier transform, Fast Fourier Transform Algorithms, The quantised degrees-of-freedom in a continuous signal, Gabor-Heisenberg-Weyl uncertainty relation, Kolmogorov complexity.

s75 Pages