This
note introduces elementary programming concepts including variable types, data
structures, and flow control. After an introduction to linear algebra and
probability, it covers numerical methods relevant to mechanical engineering,
including approximation, integration, solution of linear and nonlinear equations, ordinary
differential equations, and deterministic and probabilistic approaches.
Author(s): Prof.
Anthony T. Patera, Prof. Daniel Frey and Prof. Nicholas Hadjiconstantinou
Numerical Topics in Fluid
Dynamics Computation!!! Peter Bastian Authored - This PDF covers advanced
numerical computation topics but puts more emphasis on the solution of
computational fluid dynamics. The book starts with the modeling of immiscible
fluid flow in a composite porous medium, thus laying down the basics for the
equations of multiphase fluid flow. It then provides fully implicit methods that
have been used to find the finite volume discretization of systems for complex
algebraic equations. Two important chapters are the parallelization methods that
result in higher productivity of computation and the UG framework used for
carrying out grid computations. Numerical results are then presented, which
allow deriving some conclusions concerning practical applications and
performance. The document will be particularly useful to researchers and
engineers studying computational fluid dynamics and related numerical modeling
problems.
Prof. L. Vandenberghe's lecture note is on applied numerical
computing but brings out the practical application aspect. The text covers most
areas of numerical linear algebra, nonlinear optimization nonlinear least
squares, introduction to floating-point numbers, and rounding errors that are to
be needed for understanding the issues of numerical precision. Examples are
drawn from signal and image processing, control systems, and machine learning,
among other areas, to indicate how these numerical methods are actually applied.
This resource aims to fill the gap between theory and practice by providing a
practical method for solving computational problems.
This book is a technical
reference to the floating-point environment supported on SPARCTM and x86
platforms running under the Solaris operating system. The book describes the
Floating-Point Environment, the representation and computation of floating point
numbers and how the results of arithmetic operations are rounded. The Software
and Hardware Support section describes how numerical operations are passed
between the hardware and software of the system. The book should be
indispensable to anyone seeking an understanding of how numerical computations
are executed and optimized on Solaris systems. In particular, it will be an
asset worth having in real life for developers and engineers working in the
field of numerical algorithms within this particular environment of computing
and offers a deep view into performance and accuracy considerations.
This
lecture series provides comprehensive foundational knowledge in the field of
numerical computational analysis. Numerical Linear Algebra covers basic matrix
operations and solutions of linear systems. The book further goes into the
Solution of Nonlinear Equations that shows methods for solving equations which
are not linear in form. Finally, it discusses Approximation Theory, showing how
functions and data may be approximated. The lectures also cover Numerical
Solution of ODEs and PDEs, giving ways to solve these two basic kinds of
equations. This resource is intended for students and professionals looking to
gain a solid understanding of basic and applied numerical analysis techniques.