This
book covers the following topics: OS History, computer System Structures, Operating System Structures, Processes,
Interprocess Communication, Threads, Nachos, Mutual Exclusion, Semaphores,
Implementing Semaphores, Locks and CVs, Readers/Writers Problem, Non-preemptive
Scheduling, Preemptive Scheduling, Complex CPU Scheduling, Deadlock, Deadlock
Detection, Deadlock Avoidance, Static Memory Allocation, Dynamic Alloc.,
Relocation, Dynamic Reloc., Segmentation, Paging, Demand Paging, Page
Replacement, File System Operations, File System Data Structures, File System
Implementation, File System Improvement, Disk Management, Distributed Operating
Systems and Networking.
This
paper highlights the major operating system concepts. It also covers
essential functions, the history of OS, with particular services and
an underlying computer system architecture. Major topics include
Process Control Blocks, CPU Scheduling, Threads, further notes on
Inter-process Communication, and several synchronization mechanisms,
such as Peterson's solution, Synchronization Hardware, Semaphores.
Besides these, it addresses highly complex issues such as the
Readers-Writers Problem, including descriptions of both abstract and
concrete solutions used for concurrent resource management.
The notes go into great detail of how operating
systems have evolved and what kinds of operating systems exist today. The
content ranges from basic-level ideas such as system calls, OS structure, and
process management to important topics such as memory management, virtual
memory, page replacement algorithms, and the theory that describes how deadlocks
work, including detection, recovery, avoidance, and prevention. Both basic
concepts and more advanced practice issues are found in the discussion of
multiprocessor systems, I/O hardware and software principles, and file system
management, including implementation and optimization strategies. This document
proves to be very informative in terms of grasping the minute details of modern
operating systems.
Authored by Remzi H.
Arpaci-Dusseau and Andrea C. Arpaci-Dusseau, the book provides a full overview
of operating systems. It begins with virtualization and the basic process/needs
and scheduling then transitions into memory virtualization and management that
includes paging and segmentation. The book looks at concurrency-including locks,
condition variables, and semaphores. Other areas included are I/O devices, RAID
configurations, file system implementation, crash consistency, and distributed
systems. This is a comprehensive book ideal for anyone looking for essential
knowledge as well as advanced information on operating systems.
Author(s): Remzi H. Arpaci-dusseau, Andrea C.
Arpaci-dusseau, University of Wisconsin madison
Mrs.
Sk Abeeda's notes describe the basic concepts of the operating
system. The material includes processes, threads, and scheduling. It
gives a thorough view of such synchronization mechanisms and
deadlocks besides memory management. File and I/O subsystems and
protection mechanisms are also discussed, providing a comprehensive
view of how operating systems work and how they manage resources. In
short, it is a paper to allow one to gain a good grasp of the core
principles of operating systems and to put them into practice.
Lecture notes from Stanford University-cover a wide
spectrum of systems concepts- including threads and processes,
concurrency, and synchronization. The course also discusses several
scheduling methods, virtual memory, I/O, disk management and file
systems, network file systems, and security. Emphasis is placed both
on fundamental theories and leading-edge topics in operating
systems. This can be really useful when one wants to gain a good
grasp of the principles of classical and modern operating systems.
The notes by Hugh Murrell provide a starting point in UNIX and operating
system theory. Key topics include: UNIX file systems, networking, and process
synchronisation. Inter-process communication under UNIX; including deadlock
scenarios and concepts of virtual memory and paging are also covered. A good
resource to explain both UNIX-specific features, as well as general operating
system principles.