Computer Science BooksArtificial Intelligence Books

Lecture Notes in Machine Learning By Zdravko Markov

Lecture Notes in Machine Learning By Zdravko Markov

Lecture Notes in Machine Learning By Zdravko Markov

This book contains the following topics: Concept learning, Languages for learning, Version space learning, Induction of Decision Trees, Covering strategies, Inductive Logic Programming, Bayesian approach and MDL, Unsupervised Learning,Paradigms, Learning semantic nets, Induction task, Relational languages, Language of logic programming, Search strategies in version space, Candidate Elimination Algorithm, Representing disjunctive concepts, Building a decision tree, Learning multiple concepts, Learning from noisy data, Basic idea, Basic idea, Searching the space of propositional hypotheses, Searching the space of relational hypotheses, ILP task, Ordering Horn clauses, Inverse Resolution, Predicate Invention, Extralogical restrictions, Illustrative examples, Basic strategies for solving the ILP problem, Bayesian induction, Occams razor, Evaluating propositional hypotheses, Evaluating relational hyporheses, Introduction, COBWEB, Introduction, Basic concepts of EBL, Example and Discussion

Author(s):

s65 Pages
Similar Books
Introduction to Artificial Intelligence by Marc Toussaint

Introduction to Artificial Intelligence by Marc Toussaint

Mark Toussaint's 'Introduction to Artificial Intelligence' provides a comprehensive overview of basic and advanced AI concepts. The text delves into research design, probability theory, and the multi-armed robber problem, laying a solid foundation for understanding decision-making processes It requires Monte Carlo Tree Search and games theoretically, providing insight into the process of solving problems. The book talks about dynamic design and reinforcement learning, and shows how AI workers learn and adapt over time. Other topics include constraint satisfaction problems, graphical modeling, and dynamic simulation, highlighting various approaches to dealing with complex, interacting fields The text addresses AI and machine learning and neural network management focusing on the importance of AI presentation Both the theoretical and practical aspects of the I Provides a suitable ground.

s248 Pages
Introduction to Artificial Intelligence by Thomas P Trappenberg

Introduction to Artificial Intelligence by Thomas P Trappenberg

Introduction to Artificial Intelligence by Thomas P. Trappenberg provides a comprehensive insight into AI concepts, presented by Dalhousie University. The essay begins with an introduction and history, providing a foundation for the development of AI , It includes research designs and their applications, followed by Robotics and Motion Planning, which are robotic While exploring the integration of AI in the design, the paper delves into constraint satisfaction problems, dealing with solution methods handles complex constraints, including learning machines and perceptrons, and improves with regression, classification , and maximum likelihood techniques support vector machines, learning theory, and naive Bayes and other generative models, probabilistic reasoning is also available, including Bayesian networks and Markov models Overview of essential AI methods and applications.

s208 Pages
Digital notes on Artificial Intelligence

Digital notes on Artificial Intelligence

Department of Information Technology's 'Digital Notes on Artificial Intelligence' at Malla Reddy College of Engineering and Technology provides a comprehensive overview of AI concepts. It begins with an introduction to AI, setting up more advanced topics . The essays include a variety of search methods, including A Search, and overcome challenges such as partial discovery searches. Techniques such as Alpha-Beta Pruning have been introduced in order to optimize the search process. The text explores ways of understanding including forward and backward chains, and delves into the syntax and semantics of first-order meaning. This includes all knowledge technologies, decision-making, and classical planning including state space exploration. In addition, it involves practice in random environments, multidimensional design, probabilistic reasoning using Bayes rules, Bayesian networks, Dempster-Shafer theorem The presentation goes on to say useful things on such as learning decision trees and the importance of knowledge in curriculum design.

s143 Pages
Lecture Notes On Artificial Intelligence By Dr. Prashanta Kumar Patra

Lecture Notes On Artificial Intelligence By Dr. Prashanta Kumar Patra

Dr. A.S. The PDF of Prashant Kumar's paper titled Lecture Notes On Artificial Intelligence provides an in-depth analysis of the basic concepts of AI. It begins with AI Techniques which introduce the techniques used in artificial intelligence. The notes include Level of the Model, detailing the various levels of abstraction in AI systems. Problem space and search include problem definition as a state space search and associated methods. Processes are analyzed, including their problem characteristics and product characteristics. The book addresses research design issues and presents heuristic search methods such as generate-and-test, hill climbing, best-first search, problem-reduction, constraint satisfaction, and means-end analysis in this Symbolic Reasoning Under Uncertainty and Game Playing this outcome was also discussed, showing the role of AI in strategic decision making. Finally, learning: learning by imagination is discussed, focusing on the fundamentals of how AI systems acquire knowledge through repetition.

s128 Pages