This
PDF is prepared by Gonzalo Galiano Casas and Esperanza Garcia Gonzalo from the
Department of Mathematics at Oviedo University. With a view to keeping things
compact, this document initiates with finite arithmetic and error analysis,
which forms the basis necessary for understanding the issue of numerical
precision and limitations. It considers methods for nonlinear equations,
interpolation, and approximation. Key sections on numerical differentiation and
integration give hands-on tools both for data analysis and the solution of
mathematical problems. It also covers systems of linear equations and
optimization, rounding it out for students and practitioners who might want to
apply the numerical methods through a variety of problems.
Author(s): Gonzalo Galiano Casas, Esperanza Garcia Gonzalo, Dept. of Mathematics, Oviedo University
Numerical Topics in Fluid
Dynamics Computation!!! Peter Bastian Authored - This PDF covers advanced
numerical computation topics but puts more emphasis on the solution of
computational fluid dynamics. The book starts with the modeling of immiscible
fluid flow in a composite porous medium, thus laying down the basics for the
equations of multiphase fluid flow. It then provides fully implicit methods that
have been used to find the finite volume discretization of systems for complex
algebraic equations. Two important chapters are the parallelization methods that
result in higher productivity of computation and the UG framework used for
carrying out grid computations. Numerical results are then presented, which
allow deriving some conclusions concerning practical applications and
performance. The document will be particularly useful to researchers and
engineers studying computational fluid dynamics and related numerical modeling
problems.
Prof. L. Vandenberghe's lecture note is on applied numerical
computing but brings out the practical application aspect. The text covers most
areas of numerical linear algebra, nonlinear optimization nonlinear least
squares, introduction to floating-point numbers, and rounding errors that are to
be needed for understanding the issues of numerical precision. Examples are
drawn from signal and image processing, control systems, and machine learning,
among other areas, to indicate how these numerical methods are actually applied.
This resource aims to fill the gap between theory and practice by providing a
practical method for solving computational problems.
The
resource described here is an overview of numerical methods important in the
study of computational science and engineering. The text starts off with
Computing with Matrices and Vectors, foundational elements in many algorithms.
The note moves forward and explains Direct Methods for Linear Systems of
Equations and Direct Methods for Linear Least Squares Problems, important
problem-solving aspects in linear algebra. The Filtering Algorithms for data
processing are reviewed, while Data Interpolation and Data Fitting in 1D discuss
ways of approximating onedimensional data. Approximation of Functions in 1D and
Numerical Quadrature introduce the techniques on function approximation and
integration. It also discusses Iterative Methods for Non-Linear Systems of
Equations and Eigenvalues-a critical topic needed for solving complex systems.
It finally includes Numerical Integration and Structure Preserving Integration,
fundamental to perform numerical calculations with appropriate accuracy in
scientific computing.
This
lecture series provides comprehensive foundational knowledge in the field of
numerical computational analysis. Numerical Linear Algebra covers basic matrix
operations and solutions of linear systems. The book further goes into the
Solution of Nonlinear Equations that shows methods for solving equations which
are not linear in form. Finally, it discusses Approximation Theory, showing how
functions and data may be approximated. The lectures also cover Numerical
Solution of ODEs and PDEs, giving ways to solve these two basic kinds of
equations. This resource is intended for students and professionals looking to
gain a solid understanding of basic and applied numerical analysis techniques.