Computer Science BooksComputation Theory Books

Theory of Computation Lectures

Theory of Computation Lectures

Theory of Computation Lectures

This note covers the following topics: Sets, functions and other preliminaries, Formal Languages, Finite Automata , Regular Expressions, Turing Machines, Context-Free Languages, Rice's Theorem, Time complexity, NP-Completeness, Space Complexity , Log Space, Oracle machines and Turing Reducibility, Probabilistic Complexity, Approximation and Optimisation, Complexity Hierarchy Theorems.

Author(s):

sNA Pages
Similar Books
Theory of Computation by Frank Stephan

Theory of Computation by Frank Stephan

Frank Stephan's detailed lecture notes on the theory of computation cover quite a wide spectrum of issues. The document starts with the basics of sets and regular expressions, then goes ahead to grammars and the Chomsky hierarchy, helping one in understanding the structure of languages. Then it discusses finite automaton and nondeterministic finite automata, giving all details about the processing of strings by these models. The notes also treat the composition of languages, normal forms, and algorithms used in computation. Membership testing, whether deterministic or nondeterministic, is also explained, together with the proof of how models of computation handle language recognition. Finally, the approach is important when considering complexity, the problems that turn out undecidable, showing thus the intrinsic limits of computation. This is an important resource concerning formal languages, automata theory, and basic bounds of computability.

s176 Pages
Introduction to the Theory of Computation Lecture Notes

Introduction to the Theory of Computation Lecture Notes

These are lecture notes from the University of Toronto, giving a very brief introduction to some of the basic ideas in the theory of computation. We start with some basic topics: induction and recursion; the correctness of programs, that must be understood if more advanced computational theories are to be enlightened. Then we go on to develop the topics of regular languages and finite automata, giving the basic models and techniques used in analysing and recognising regular languages. The coverage is designed to provide students with a reasonably solid grounding in the basic ideas of the theory of computation and to render a clear and thorough exposition of the fundamental concepts underlying more advanced topics.

s75 Pages
Lecture Notes of Introduction to the Theory of Computation

Lecture Notes of Introduction to the Theory of Computation

Authored by Margaret Fleck and Sariel Har Peled, this is a wide set of lecture notes on the theory of computation. These start with the very basic objects such as strings and deterministic finite automata (DFAs) before moving up to regular expressions and nondeterministic automata. This course covers formal language theory, including some advanced topics such as Turing machines, decidability, and several language-related problems. It is intended that these notes afford a comprehensively broad yet deep exploration of the formal languages, automata, and computability material with an excellent bibliography that creates interest among students and researchers.

s345 Pages
Lecture Notes   Theory of Computation

Lecture Notes Theory of Computation

This lecture note from S R Engineering College offers a detailed introduction to key concepts in the Theory of Computation. It begins with Properties of Binary Operations, exploring fundamental mathematical operations and their essential properties like associativity and commutativity. The section on Concatenation Properties covers how strings can be joined and the characteristics of such operations, including associativity and the identity element. Finite Automata are thoroughly discussed, explaining both deterministic and nondeterministic (NFA) models, and their role in recognizing regular languages. The notes also cover Formal Languages, categorizing them into regular, context-free, context-sensitive, and recursively enumerable types based on complexity. Finally, the Pumping Lemma is introduced as a critical tool for proving the non-regularity and non-context-freeness of languages by demonstrating how strings in these languages can be decomposed and manipulated.

s155 Pages
Introduction to   Computational Theory Lecture Notes

Introduction to Computational Theory Lecture Notes

These broad-ranging notes introduce some of the fundamental concepts in the theory of computation. The set starts with a brief introduction to formal languages and their classification, including regular languages and sets. In these notes, finite automata are introduced, discussing their structure and role in recognizing regular languages. This is followed by Context-Free Grammars and Pushdown Automata, focusing on the role in defining and recognizing context-free languages. This will cover Turing Machines, the original model of computation; a review of the Chomsky Hierarchy from a perspective on the various levels of languages about their power of generation. The conclusion deals with an overview of Complexity Theory, mainly dealing with the P and NP problems. It gives insight into the computational complexity in general and into the famous P vs NP questions.

sNA Pages
Advanced   Theory in Computation

Advanced Theory in Computation

This is an advanced set of notes on the analysis of algorithms and their complexity. Of interest in these notes are the topics on string matching algorithms, such as Knuth-Morris-Pratt and Boyer-Moore. Suffix trees and dictionary techniques are also part of the discussion here. Among the methods to be shown in a way of analyzing algorithm efficiency are amortized analysis and randomized algorithms. It also treats the pairing technique, Ziv-Lempel coding; further topics on statistical adversaries, portfolio selection, and reservation-price policies that are objects of other techniques discussed herein.

sNA Pages