This course develops and applies scaling laws and
the methods of continuum mechanics to biomechanical phenomena over a range of
length scales. This lecture note explains the following topics: structure of
tissues and the molecular basis for macroscopic properties, chemical and
electrical effects on mechanical behavior, cell mechanics, motility and
adhesion, biomembranes, biomolecular mechanics and molecular motors.
Experimental methods for probing structures at the tissue, cellular, and
molecular levels will also be investigated.
Author(s): Prof. Roger D. Kamm, Prof.
Patrick Doyle and Maxine Jonas
This book covers many aspects of human
musculoskeletal biomechanics. Topics range from image processing to interpret
range of motion and/or diseases, to subject specific temporomandibular joint,
spinal units, braces to control scoliosis, hand functions, spine anthropometric
analyses along with finite element analyses.
This PDF covers the following topics
related to Biomechanics in Sport : Muscle Action in Sport and Exercise,
Locomotion, Jumping and Aerial Movement, Throwing and Hitting, Injury Prevention
and Rehabilitation, Special Olympic Sports.
This
note introduce the scientific principles and laws underlying the field of
biomechanics and describes how biomechanical principles can be applied to
understanding and analyzing the causes of human movements and their affects on
the body. Topics covered includes: Statics, Gravity and Forces, Levers and
Moments of Force, Dry Friction, Kinematics, Kinetics, Impulse and Momentum,
Work, Energy and Power, Fluid Mechanics, Gait Analysis.
The first section of the book, General
notes on biomechanics and mechanobiology, comprises from theoretical
contributions to Biomechanics often providing hypothesis or rationale for a
given phenomenon that experiment or clinical study cannot provide. It deals with
mechanical properties of living cells and tissues, mechanobiology of fracture
healing or evolution of locomotor trends in extinct terrestrial giants. The
second section, Biomechanical modelling, is devoted to the rapidly growing field
of biomechanical models and modelling approaches to improve our understanding
about processes in human body.
This course develops and applies scaling laws and
the methods of continuum mechanics to biomechanical phenomena over a range of
length scales. This lecture note explains the following topics: structure of
tissues and the molecular basis for macroscopic properties, chemical and
electrical effects on mechanical behavior, cell mechanics, motility and
adhesion, biomembranes, biomolecular mechanics and molecular motors.
Experimental methods for probing structures at the tissue, cellular, and
molecular levels will also be investigated.
Author(s): Prof. Roger D. Kamm, Prof.
Patrick Doyle and Maxine Jonas
This lecture note develops and applies scaling laws
and the methods of continuum and statistical mechanics to biomechanical
phenomena over a range of length scales, from molecular to cellular to tissue or
organ level.
Author(s): Prof. Roger Kamm
and Prof. Alan Grodzinsky