This note covers
the following topics: Ideal Op-amp in an open loop configuration, Operational
Amplifier Circuits as Computational Devices, Summing Amplifier, Difference
Amplifier, Instrumentation Amplifier, Voltage to Current converter, The
Differentiator: Active High Pass Filter, Active Band Reject Filter, Diodes and
transistors in op-amp circuits.
Author(s): Prof.
David Cory, Prof. Ian Hutchinson and Prof. Manos Chaniotakis
The goal of this text, as its name implies, is to allow the reader to
become proficient in the analysis and design of circuits utilizing modern linear
ICs. It progresses from the fundamental circuit building blocks through to
analog/digital conversion systems. The text is intended for use in a second year
Operational Amplifiers course at the Associate level, or for a junior level
course at the Baccalaureate level.
This note discusses the following topics:Op Amp:
equivalent circuit, Op Amp circuits, Op Amp circuits (linear region), Op Amp
circuits: inverting amplifier , Non-inverting amplifier , Loading effects and Op
Amp buffer.
This note covers the following topics related
to operational amplifier: History, OP AMP Construction/design, OP Amp
Application Circuits, Effect of Input offset voltage, Effect of Slew Rate and
Packaging.
Author(s): Cheng Zhang, Nan Xia, Alexander Gollin,
Kenneth Young and Patrick Powers
This note covers the
following topics related to operational amplifier: Properites and Modeling of
Feedback Systems, Linear System Response, Stability, Compensation, Nonlinear
Systems, Direct-Coupled Amplifiers, Operational-Amplifier Design Techniques,
Integrated-Circuit Operational Amplifiers, Basic and Advanced Applications.
Author(s): James K. Roberge and Kent
H. Lundberg, Massachusetts Institute of Technology