The contents of this
book include: Complex numbers, Polynomials and rational functions, Riemann
surfaces and holomorphic maps, Fractional linear transformations, Power series,
More Series, Exponential and trigonometric functions, Arcs, curves, etc, Inverse
functions and their derivatives, Line integrals, Cauchy’s theorem, The winding
number and Cauchy’s integral formula, Higher derivatives, including Liouville’s
theorem, Removable singularities, Taylor’s theorem, zeros and poles, Analysis of
isolated singularities, Local mapping properties, Maximum principle, Schwarz
lemma, and conformal mappings, Weierstrass’ theorem and Taylor series, Plane
topology, The general form of Cauchy’s theorem, Residues, Schwarz reflection
principle, Normal families, Arzela-Ascoli, Riemann mapping theorem, Analytic
continuation, Universal covers and the little Picard theorem.

**Author(s):** Ko Honda

73**Pages**