This PDF covers the following topics related to Set Theory and
Forcing : Introduction, Axioms of Set Theory, Class Relations, Functions,
Families of Sets and Cartesian Products, Ordinals and Cardinals, Classes and
Sets, Well-Orderings and Ordinals, Inductive Definitions, Stratified or
Ranked Classes, Ordinal Arithmetic, Cardinals and Their Arithmetic,
Foundation, Relativization, Consistency of the Axiom of Foundation,
Inaccessible Ordinals and Models of ZFC, The Reflection Scheme, Formalizing
Logic in U, Model Theory for U-formulas, Ordinal Definability and Inner
Models of ZFC, The Principle of Choice, Constructibility , Formulas and
Absoluteness, The Generalized Continuum Hypothesis in L, Forcing, Generic
Extensions, Mostowski Collpase of a Well-founded Relation, Construction of
Generic Extensions, Definition of Forcing, etc.

**Author(s):** Jean-louis
Krivine

65**Pages**