This note describes the following topics: Feedback basic
concepts, Macromodeling, Op Amp with resistive components, Measurement and
simulation, High Sensitivity Transconductance Converter, Op Amp static and
dynamic properties, Integrator modeling via Simulink, Op Amp non-idealities,
System Level Closed Loop Amplifiers, Biquad Filters using integrators, Active-RC
Inverting based ,Filter Software, Sinusoidal Oscillators, Signal Generators,
voltage regulators and Stability Considerations.
This note describes the following topics: Feedback basic
concepts, Macromodeling, Op Amp with resistive components, Measurement and
simulation, High Sensitivity Transconductance Converter, Op Amp static and
dynamic properties, Integrator modeling via Simulink, Op Amp non-idealities,
System Level Closed Loop Amplifiers, Biquad Filters using integrators, Active-RC
Inverting based ,Filter Software, Sinusoidal Oscillators, Signal Generators,
voltage regulators and Stability Considerations.
This note explains the following
topics: Common-mode and differential-mode voltages , Common-Mode Rejection Ratio
, Difference amplifier , Improved difference amplifier , Instrumentation
amplifier , Current-to-voltage conversion , Op Amp circuits (linear region) ,
Offset voltage , Effect of VOS.
This note explains the design of following
amplifiers: Ideal op-Amp circuits, summing amplifiers, differential
amplifiers,Op-Amp difrentiators, Op-Amp integrators, Low pass amplifiers, High
pass amplifiers and Characteristics of Physical Op-Amps, effects of Finite Gain
and Bandwidth, effects of Finite Input Resistance, effects of Non-Zero Output
Resistance, output Waveform Distortion, output Waveform Distortion, DC Offsets
and Linear Op-Amp Macromodels.
This note covers the following topics related
to operational amplifier: History, OP AMP Construction/design, OP Amp
Application Circuits, Effect of Input offset voltage, Effect of Slew Rate and
Packaging.
Author(s): Cheng Zhang, Nan Xia, Alexander Gollin,
Kenneth Young and Patrick Powers