An Introduction to Differential Geometry through Computation
An Introduction to Differential Geometry through Computation
An Introduction to Differential Geometry through Computation
This note
explains the following topics: Linear Transformations, Tangent Vectors, The
push-forward and the Jacobian, Differential One-forms and Metric Tensors, The
Pullback and Isometries, Hypersurfaces, Flows, Invariants and the Straightening
Lemma, The Lie Bracket and Killing Vectors, Hypersurfaces, Group actions and
Multi-parameter Groups, Connections and Curvature.
This book
explains the following topics: General Curve Theory, Planar Curves, Space
Curves, Basic Surface Theory, Curvature of Surfaces, Surface Theory, Geodesics
and Metric Geometry, Riemannian Geometry, Special Coordinate Representations.
This note covers
the following topics: Manifolds as subsets of Euclidean space, Abstract
Manifolds, Tangent Space and the Differential, Embeddings and Whitney’s Theorem,
The de Rham Theorem, Lie Theory, Differential Forms, Fiber Bundles.
This note explains the following
topics: From Kock–Lawvere axiom to microlinear spaces, Vector
bundles,Connections, Affine space, Differential forms, Axiomatic structure of
the real line, Coordinates and formal manifolds, Riemannian structure,
Well-adapted topos models.
This
note contains on the following subtopics of Differential Geometry,
Manifolds, Connections and curvature, Calculus on
manifolds and Special topics.