Introduction to Differential Topology by Uwe Kaiser

This book gives
a deeper account of basic ideas of differential topology than usual in
introductory texts. Also many more examples of manifolds like matrix groups
and Grassmannians are worked out in detail. Topics covered includes:
Continuity, compactness and connectedness, Smooth manifolds and maps, Regular
values and Sards theorem, Manifolds with boundary and orientations, Smooth homotopy and vector bundles, Intersection numbers, vector fields and Euler
characteristic.

**Author(s):** Uwe Kaiser

110 Pages